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Abstract

This paper gives suggested values for some of the input parameters used in the CAP-TSD

computer code. These parameters include those associated with the mesh design and time step.

The guidelines are based principally on experience with a one-dimensional model problem used

to study wave propagation in the vertical direction.

Introduction

Wave propagation through the finite-difference meshes employed in CFD may be simulated

most simply by one-dimensional model problems. For TSD theory, an appropriate model is the

second order wave equation, which describes the vertical waves in the CAP-TSD code (ref. 1).

The use of this equation provides significant advantages: the exact solution of the partial dif-

ferential equation is well known for any initial/boundary conditions; the numerical solution of the

finite-difference version of the continuous equation is very inexpensive to compute; analysis of the

difference equations may be used to aid in interpreting the numerical results; and computer graph-

ics animation of the wave motion is easy to produce and clearly demonstrates wave propagation,

reflection, and distortion effects.

In the transonic small disturbance code CAP-TSD independent one-dimensional meshes are

used in each of the computational coordinates _, r/, and (. Typically, the streamwise _¢ and

vertical ( meshes extend 10 to 40 chord lengths from the configuration and the spanwise 7/

mesh extends 2 to 4 span lengths. The choice of number, extent, and spacing of mesh points is a

difficult problem. Once these choices have been made, the interactive computer code described

in reference 2 may be used to aid the mesh designer.

Results obtained with the simple model problem were reported in reference 3. The algorithm

employed was that for the vertical sweep in the CAP-TSD code. Wave reflection and time step

effects similar to those experienced with two-dimensional TSD codes were observed. Analysis

of the finite-difference equations supported the numerical results. Additional calculations for this

model problem are reported herein.



The guidelines presented in this paper are based on three levels of experience: extensive

calculation and analysis for the simple model problem; use of the CAP-TSD code, especially for

two-dimensional flow; and physically plausible requirements for modelling the transonic flow. All

calculations and figures were produced using a SUN workstation.
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local mesh spacing

mesh spacing at the far-field boundary

maximum mesh spacing

mesh spacing near the wing surface

reduced frequency

maximum reduced frequency for the mesh
Mach number

number of cycles of harmonic motion

number of time steps per cycle

number of mesh points per wave length

total number of mesh points

velocity potential
time

time at pulse center

temporal period

total time for converged calculation
streamwise coordinate

vertical coordinate

maximum coordinate (far-field boundary location)
V1 - M =

time step size

spatial wave length

computational coordinates

All quantities are normalized w lengths by chord, time by chord over stream speed, and frequency
by stream speed over semichord.

Wave Propagation

In two-dimensional linear theory the wave fronts are circles which propagate outward with

sonic speed as their centers are convected downstream at the stream speed. These wave patterns

for four subsonic Mach numbers are shown in figure 1. In each case the mesh extends 20 chord

lengths from the origin both vertically and streamwise. The circles represent the wave crests

created by a harmonically oscillating disturbance located at the origin. Several comments on

these results will be helpful in understanding the mesh and time step sizes needed to describe

wave propagation using a TSD code.
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Sincetimeisnormalizedbystreamspeed,inonecyclethecentersofthecirclesareconvected
downstreama distance that is independent of the Mach number. Attention is drawn to the smallest

circle in each figure to illustrate this conclusion. The center of this circle lies at

z = T = 7r/k = 27r

in which the first equality results from the normalization of t by stream speed and chord, the

second from normalization of k by semichord, and the third from the choice of k = 0.5 for this

case.
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Figure 1.- Wave patterns for two-dimensional linear theory.
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The radii of the circles depend on the Mach number. The wave length as measured from the
center of the circle is

2 = T/M = _r/Uk

which decreases with increasing Mach number. With time normalized by stream speed, waves

propagate more quickly through the mesh as the Mach number is decreased. Therefore, for a

fixed total calculation time Tma=, disturbances travel a greater distance, which leads to a greater

opportunity for reflections from the boundary to affect the solution.

On the other hand, as the Mach number is increased the wave pattern as viewed from the

origin becomes more and more distorted. Waves propagate slowly upstream and the effective

wave lengths that must be resolved on the mesh become shorter, implying a need for very fine

mesh spacing to track these disturbances accurately, or conversely, leading to increasingly large

errors on a fixed mesh due to inadequate resolution. Specifically, wave lengths for disturbances

propagating along the axes are

1 -MTr
- upstream

M k
l+M_r

-- downstream
M k

_,_ /3 _" vertically
Mk

Since propagation speed is directly proportional to wave length, the time required for a disturbance

to reach a far-field boundary will be inversely proportional to the wave length.

The remainder of the paper contains three main sections. The first section presents results

for a pulse disturbance which illustrate the effects of time step and mesh spacing on frequency

response. The next section contains the recommendations for time step and mesh properties. The

final section shows results for harmonic disturbances which illustrate the efficacy of the guidelines.

Pulse Results

All pulse calculations were made on the same mesh. This mesh has a spacing which is

fine near the origin, stretches smoothly to a maximum, and then shrinks somewhat at the far-field

boundary. The mesh is defined by z as a fifth degree polynomial function of the mesh index and

was designed using the program described in reference 2. The mesh properties are

Zm,,x = 20

Nz...... = 32

h,u,face = 0.01

hr,,-,ela = 0.5

hm..x = 1.0123

where the mesh spacing h would equal Az for the vertical mesh in TSD theory.

A Gaussian pulse in angle of attack is routinely used to produce the frequency response

function in applications of the TSD code. Such a pulse contains energy at all frequencies; however,

4



mostofthe excitationoccursat lowfrequencyandtheeffectiverangedependson thepulsewidth.
Thepulseresponsesfor four time step sizes are presented in this section. The calculations give

the solution for the wave equation with unit speed

for an input in downwash centered at _¢ given by

_P(O,O = 4(t- tc)e-2(t-t_)=

applied at z = 0. The function P represents the potential in TSD theory. The exact solution is

P(z, t) = e-=(H°-=)'

It may be remarked that for a vertical wave the unit propagation speed assumed here occurs for

M = ov: .s

Figure 2 gives the results for a large time step size. The lines with symbols are the numerical

results and the plain lines are the exact solution. The discussion of the results for this figure will

be given alter some general comments on its organization.

The lower part of the figure shows the time history of the solution at z = 0. In the TSD

code this solution would correspond to the pulse in potential (or pressure, or lilt) which results

from the input pulse in angle of attack. The heavy tic-mark near t = 42 marks the time for the

initial disturbance, centered at tc = 2.36 (the third time step for this case), to travel to the far-field

boundary and return.

The figure in the upper right gives the shape of the wave in space at a time shortly before

the propagating pulse reaches the far-field boundary located at Z=,,._ = 20. The tic-marks show

the mesh points, with fine spacing at z = 0, moderate spacing at z = 20, and coarse spacing
near z = 10.

The figure In the upper left gives the Fourier transform of the time history shown at the bottom.

The real and Imaglnary parts of the transform are plotted against reduced frequency for k up to

2.0. Most of the energy for a pulse of the width used is contained in this frequency range.

Details of the parameters for this case are printed in the upper right of the figure. In this list

dt is used for At and CN is the ratio of time step size to mesh spacing.
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Figure2 givesthepulseresponsefor At = _-/4. This time step is too large, with fewer than

four steps contained in the pulse, as may be seen in the time history at the bottom. The resulting

severe broadening and loss in amplitude of the propagating pulse are seen at the upper right.

This dissipation error is a consequence of the large time step. The frequency response function

at the upper left is very smooth, but is accurate only at the lowest frequencies. Without the exact

solution for reference the errors at higher frequency would not be detected.

MODEL EQUATION FOR CAP-TSD

Ouintic 52 pts, dt= 0.785

Implicit, 2nd order dt

dt= 0.78540 tc = 2.36

Newton = 1

0.0100 < dz < 1.0123

0.7758 < CN < 78.5398

sig = 2.0
Zmax = 20. Nz = 32

Tmex = 63. Nmox = 80

EL
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Figure 2.- Pulse response for At = 0.785.
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Figure3 gives the pulse responsefor At = _'/8, half of the value used in the preceding

figure. The frequency response results are fairly good up to about k = 0.4, but the propagating

wave still suffers from dissipation errors. Dispersion errors, the spreading out of the frequency

components as the wave propagates through the mesh, are also present. As will be apparent

shortly, the latter errors become more severe as the time step is reduced, that is, as the spatially

discretized equations are solved more accurately.

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, dt= 0.393

Implicit, 2nd order dt
dt = 0.39270 tc = 2.75

Newton = 1

0.0100 < dz < 1.0123

0.3879 < CN < 39.2699

sig = 2.0
Zmax = 20. Nz =

Tmax = 63. Nmox =

r4
13_

32

160

I,,,,,,,, , k ,,,,,,,,, I L,,,,,,,,,,,,,,, ,,,,,,,,,,,,I
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0 t 64

Figure 3.- Pulse response for /kl = 0.393.
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Resultsfor afurtherreductionintimestepto At = _r/16 are given in figure 4. The dissipation

errors in the upper right part of the figure are smaller but the dispersion errors are larger as

compared with those in figure 3. These errors result from too few mesh points to represent

adequately all of the wave lengths present in the solution and lead to shorter waves (high frequency

components) propagating more slowly than longer waves (low frequencies). This spreading out

of frequencies as the wave propagates is a consequence of the spatial discretization inherent in

the finite-difference method and limits the frequency resolution attainable. The shortest waves

that may be described on the mesh have two mesh points per period for which ,_ = 2/k. These

dispersion errors also affect both the time history and the frequency response. There are only

about three points contained within the width of the pulse in the coarsest part of the mesh.

Oscillations in the time history occur as the wave propagates into the region of Increased

mesh spacing and consequently a decreased number of points per wave length. These errors

reflect back to the left and contaminate the solution at the origin.

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, dt = 0.196

o_

Implicit, 2nd order dt
dt = 0.19635 tc = 2.95

Newton = 1

0.0100 < dz < 1.0123

0.1940 < CN < 19.6350

si9 = 2.0
Zmax = 20. Nz = 32

Tmox = 63. Nmox = 320
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Figure 4.- Pulse response for z&t = 0.196.
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Thefrequencyresponseis reasonablyaccurateup to about k = 1.0, although some small

errors may be detected earlier. The cataslropic breakdown in the solution above k = 1.0 arises

because this mesh has a maximum spacing hm.,, = 1.0123 for which two points per wave length

implies _ -- 2.0246. Consequently, the highest frequency which may be represented is

k=,,= = 2/A _ 1.0

This value k=,,= is indicated with a heavy tic-mark on the figure.

Figure 5 gives the pulse response for At = _r/32, the value recommended in the guidelines

below. The time history of the response at the origin (airfoil) shows the severe oscillations that

result from trying to propagate frequencies that are too high for the maximum mesh spacing used.
However, these large errors do not affect adversely the low frequency response. Although not

shown here, further reduction in At leads to little change in the quality of the solution.

LL

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, dt = 0.098

[ I I I I I I I = _ L

0 k

I t I I I I

..,l.J

_ %._/

12_

ImpliciL 2nd order dt
dt = 0.09817 tc = 2.95

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

sig = 2.0
Zrnox = 20. Nz =

Tmox = 63. Nmox =

32

640
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Figure 5.- Pulse response for At = 0.098.
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Guidelines

Guidelinesfor meshand time step parameters,with an indicationof the reasonsfor their
selection,arepresentedin thissection.Thesechoicesaremotivatedbytheresultsof theprevious
sections.Althoughthestudy leadingto theserecommendationsstrictlyappliesonlyto thevertical
mesh,theguidelinesshouldbe reasonablefor the streamwise mesh as well. As the transonic Mach

number approaches one, the shrinking wave lengths illustrated in figure 1 for both the upstream

and vertical waves would suggest that no mesh could be fine enough to properly treat any but the

lowest frequencies. In the guidelines which follow these features are not addressed, and therefore

the recommendations strictly apply only to the vertical mesh at M _. 0.7.

Mesh parameters

Choice of the extent and spacing of the vertical _-mesh is based on the following consider-
ations:

(a) the far-field boundary should lie at least 20 chord lengths from the wing;

(b) to provide accuracy in both the near-field solution and the downwash boundary condition, the

first mesh point should lie at about 0.00001 and the mesh spacing at the wing surface should

be comparable to that used chordwise of 0.002 to .02 (for unit chord);

(c) to avoid boundary reflections, the spacing at the far-field boundary should allow at least 8

mesh points per wave length at the maximum frequency of interest; and

(d) to avoid internal mesh reflections (i.e., to reduce dispersion errors), the maximum spacing
should provide at least 4 points per wave length at the maximum frequency. These consid-

erations lead to the following constraints on the mesh spacing h:

h,urr_c__ 0.01

hf.r-field = '/T'/8k

hmax = w/4k

in which h.,,r,,ce is the spacing between the first two mesh points at the surface. The last

two requirements result from the approximate relation (for a wave of unit speed) between the

spatial wave length ,_ and the number of mesh points per wave length Np,

), = hNpw /

from which

h =  /Npw k

Time parameters

Selection of the time step size At (DT in CAP-TSD) and number of time steps Nm,_

(NSTEP) is based on the following considerations. The time step must be small enough to resolve

the frequencies of interest and to capture significant transients. The total time Tm,,x must be great

enough to allow for transients to be convected away from the configuration and for the steady-state
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solution to develop. For an oscillatory case, at least two cycles of motion .Ncy should be used

with at least 64 time steps per cycle Np¢. For a reduced frequency k the period is

T = _r/k

The time parameters are selected such that

At < 0.1

Tma x _>20"11"

Ncy >2

Npc _ 64

For a given frequency k the following algorithm may be used to meet these criteria:

1. = 32/k
2. if Np,<64 then Np, =64

3. At = 7r/kNp,
4. N,y = 20k

5. if Ncy <2 then Ncy =2

6. Nmf.=N, yNp,

This algorithm produces the following input values for different frequency ranges

For 0.0<k<0.] At=_-/32 and Nm,,,=64/k

For 0.1 < k < 0.5 At = _r/32 and NmA x = 640

For 0.5 < k At = r/64k and Nm-x = 1280k

It is noteworthy that Nmix attains its minimum of 640 in the frequency range of greatest interest.

Harmonic Oscillation Results

The results presented here for the model problem with harmonic input illustrate the effective-

ness of the guidelines given above. Calculations are first presented for a range of frequencies

using the mesh described previously. According to the guidelines, this mesh should be adequate

for frequencies up to about k = 0.75. Finally, a new mesh is designed for use at the maximum

frequency of k = 1.5 to verify the adequacy of the recommendations.

A sequence of eight values of frequency is presented for k ranging from 0.025 to 1.5. The

calculations give the solution for the wave equation with unit speed (M =/9 _ 0.7)

for an input in downwash given by

OP(O, t) = 2k sin 2kt
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applied at z = 0. The exact solution is

P(=,t) - co,2kCt- =)

The layout of the remaining figures is very similar to that used earlier, with two exceptions

(refer to figure 6). Now, the Fourier components are computed from the last cycle of the time

history shown in the bottom figure. The mean and first four harmonics are plotted with symbols

and are listed in the table. For an exact result, all entries would be 0.0000 except for a 1.0000 in

the real part at the Input frequency (k = 0.025 for this case). The exact transform shown is the

continuous result obtained by integrating the cosine response over one cycle. Also, the picture of

the wave as it propagates across the mesh at the upper right is now shown for = = T=,,x.

We now turn to a discussion of the results in the order of increasing frequency. In each case

the time parameters were chosen using the guidelines given above. The mesh is held fixed until

the final figure.
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The results for k = 0.025 are shown in figure 6. As is typical for low frequencies, the time

step is at its upper limit, which requires a large number of steps per cycle and, consequently,

a large number of time steps to obtain two cycles of oscillation. These large numbers are not

required for accuracy in the model problem, but are appropriate for a TSD calculation. Notice

that only a small portion of one wave is present across the spatial mesh, and the mesh is much

finer than is required to represent the wave accurately. This mesh fineness leads to very small

truncation errors and the Fourier components are essentially exact. The small differences shown

may be round-off errors due to the 32-bit word length of the SUN workstation used.

MODEL EQUATION FOR CAP-TSD

Quintic 52 pts, k = 0.025

k ReF ImF

0.000 -0.0006 0.0000

0.025 1.0003 0.0001
0.050 0.0000 0.0000

,,_ 0.075 0.0000 0.0000
o_

Implicit, 2nd order dt
dt = 0.09817 k = 0.025

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

Npc = 1280
Zmox = 20. Nz = 32

Tmox = 251. Nmox = 2560

C)

EL

Figure 6.- Harmonic response for k = 0.025.
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The results for k -- 0.05 are shown in figure 7. The quality of the calculation is again quite

high. For this case the number of steps per cycle is h/'pc = 640.

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, k = 0.050

k ReF ImF

0.000 0.0003 0.0000

0.050 1.0015 -0.0004.

0.I00 0.0000 0.0000

oo/r,,x o.15o 0.0000 0.0000

N"

CL

Implicit, 2nd order dt

dt = 0.09817 k = 0.050

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

Npc = 640
Zmox = 20. Nz = 32

Tmox = 126. Nmox = 1280

I ! I i I I.,,.,,,,,,,,,,,,,,,,,,jlffll

0 4 0 20
n k z

oj
£1_

Figure 7.- Harmonic response for k = 0.05.
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The results for k = 0.1 are shown in figure 8. The errors are quite small for this case with

Npc = 320 and wave length ,_ > 20. The total time Tin,,= = 20_-, the minimum allowed by the
guidelines.

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, k = 0.100

k ReF ImF

0.000 -0.0001 0.0000

0.100 0.9983 -0.0045

0.200 0.0003 0.0000

0.300 0.0002 -0.0003

2

N

£1_

Implicit, 2nd order dt
dt = 0.09817 k = 0.100

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

Npc = 320
Zmox = 20. Nz =

Tmox = 63. Nmox =

32

640

I I I I I
0 4

nk

LIIIIIII I I I I I I I I f I I I I I II IIIII

0 20
Z

Itlllllllllllllllllllllllllllllllltlllll_lllllllllllllllllllllll

0 t 63

Figure 8.- Harmonic response for k = 0.1.
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The results for k = 0.25 are shown in figure 9. The time step _ = 0.09817 is still at its

upper limit and Npc = 128, which is twice the minimum suggested. Five cycles of oscillation are
required to meet the minimum T,,,ax requirement. More than one and one-half wave lengths are

present across the mesh, which results in about 20 mesh points per wave length.

The Fourier components are still quite accurate with the exception of the imaginary part of

the first harmonic which is in error by about 1.,5 percent. This term indicates a small phase error

in the time history during the last cycle.

(-
LL

MODEL EQUATION FOR CAP-TSD

Quintic 32 pts, k = 0.250

k ReF ImF

0.000 -0.0002 0.0000

0.250 1.0004 -0.0155
0.500 -0.0008 0.0001

,__ 0.750 -0.0012 0.0008_1-000 -0-0016 0-0011 t4

n

Implicit, 2nd order dt
dt = 0.09817 k = 0.250

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

Npc = 128

Zmox = 20. Nz =

Tmax = 63. Nmax =

,:32

640

I I I I I
0 4

nk

I'.iiJlll i i 1 I j I I t I I I IIIIIllll

0 20
Z

o

IiIIilllllllllllllllllllllllllllllllllll Illllllllllllllllllllll

0 t 63

Figure 9.- Harmonic response for k = 0.25.
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The results for k = 0.5 are shown in figure 10. For this case, Npc has attained its minimum
value of 64. The dispersion error is revealed in the slower propagation of the numerical wave

shown at the upper right. This slowdown leads to a significant difference between the numerical

and exact spatial wave lengths. Here, there are approximately 6 mesh points per wave length in

the center of the mesh, too few to maintain spatial accuracy. This inaccuracy leads to internal

mesh reflections which result in an error of over 4 percent in the fundamental Fourier coefficent.

C3

n

MODEL EQUATION FOR CAP-TSD

Ouintic 32 pts, k = 0.500

k ReF ImF

0.000 0.0013 0.0000

0.500 0.9581 -0.0039

1.000 -0.0073 0.0003

1.500 0.0018 --0.0014

1

n

Implicit, 2nd order dt
dt = 0.09817 k = 0.500

Newton = 1

0.0100 < dz < 1.0123

0.0970 < CN < 9.8175

Npc = 64

Zmox = 20. Nz = 32

Tmex = 63. Nm(]x = 640

t/t//
I I I I I

0 4
nk

I111tll I I I I I I t I I I I I I I I I I I I Illl

0 2O
Z

AAA
/VV'

AAAA#
/VVVV

IIIl|lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

0 t 63

Figure 10.- Harmonic response for k = 0.5.
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The results for /¢ = 0.75 are shown in figure 11. For this case At has been reduced to

maintain Ncy at its minimum value of 64. The mesh has approximately 8 points per wave length
at z = 20 and 4 points near z = 10. These are the minimum values recommended above.

Therefore, this frequency is the highest one for which the mesh fineness might be considered

adequate. This relative mesh coarseness results in noticeable inaccuracy in the time history,

probably due to both internal mesh reflections (e.g., for f. _ 30) and boundary reflections (for

t > 40). There is a significant error in the wave propagation speed across the mesh and the error

in the fundamental Fourier coefficent now exceeds 8 percent. Although these errors are larger

than those which would be acceptable for this model problem, the corresponding errors for a TSD

application would not be expected to be as large because of the reduction in amplitude which

occurs for multidimensional wave propagation.

E
LL

MODEL EQUATION FOR CAP-TSD

Ouintic 32 pts, k = 0.750

k ReF ImF

0.000 -0.0098 0.0000

0.750 0.9543 -0.0871

1.500 0.0173 0.01 70

2.250 0.0052 0.0106

_,,,,_3.0O0 0.001 8 0.0057

I I I i I
0 4

nk

Implicit, 2nd order dt

dt = 0.06545 k = 0.750

Newton = 1

0.0100 < dz < 1.0123

0.0647 < CN < 6.5450

Npc = 64

Zmex = 20. Nz = 32

Tmox = 63. Nmox = 960

0 20
Z

  AAAAAAAAAAAAAA/
FVVVVVVVVVVVVVVV
IIIllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll I

0 t 63

Figure 11.- Harmonic response for k = 0.75.
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The resultsfor k = 1.0 are shown in figure 12. For this case, the mesh is obviously too

coarse for the wave to propagate correctly and the spatial plot shows the typical saw-tooth wave

with about 2 points per wave length which results. As was pointed out in the discussion of figure 4

above, this mesh cannot propagate a wave of this frequency with any accuracy. The amplitude

is much too small (at this instant of time when _ -- T=,,x). The time history shows large errors,

including a phase error of about one-quarter cycle at T===. This error is present even though the

boundary condition is forcing the downwash to continue its sinusoidal oscillation.

e-
LL.

Implicit, 2nd order dt
MODEL EQUATION FOR CAP-TSD dt = 0.04909 k = 1.000

Ouintic 32 pts, k = 1.000 Ne.ton = 1
0.0100 < dz < 1.0123

k ReF ImF 0.0485 < CN < 4.9087

0.000 0.0517 0.0000 Npc = 64

1.000 -0.0306 --0.8457 Zmex = 20. Nz = 32

2.000 -0.0665 0.0432 Tmax = 63. Nmox = 1280

3.000 -0.0127 0.0087
4.000 -0.0067 0.0050

oj

 IVV'

nk

lllllllllllllll'lllll_lllllllllllllllllllllllllllllllllllllllllll

0 t 63

Figure 12.- Harmonic response for k = 1.0.
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The results for k = 1.5 are shown in figure 13. For this high frequency case (i.e., high for

the mesh used), the wave cannot propagate across the mesh, the disturbances remain trapped
near the origin, and the time history contains large apparently random errors.

MODEL EQUATION FOR CAP-TSD Implicit, 2nd order dt
dt = 0.03272 k = 1.500

Quintic 32 pts, k = 1.500 Newton = .1
0.0100 < dz < 1.0123

k ReF [mF 0.0323 < CN < 3.2725

0.000 -0.1234 0.0000 Npc = 64
1.500 0.3078 --0.3962 Zmax = 20. Nz = 32

.3 000 0 0494 --0 0498 Tmox = 63. Nmax = 1920

, _-. 4:500 0:0157--0:0481 ..........

I/IAAAAAAAA

I I I I I I_,,,,,,,,,,,,,,,,,,,,,,,,,I

,,,,,,,,,,,,,, f,,l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,i,,,,,,,,,,,,,,,,,
0 t 63

Figure 13.- Harmonic response for k = 1.5.

In order to verify the usefullness of the guidelines for mesh parameter selection, a new mesh

was designed to correct the complete breakdown in the solution for k = 1.5 seen in figure 13.

The mesh design program of reference 2 was used with far-field and maximum spacings chosen
to meet the criteria

hfar-fiel d = _/8k = 0.26

hm,,x = 7r/ 4k = 0.52

for k = 1.5. This new mesh required Nz,,,,, = 61 points, nearly twice as many as the 32 points

used previously.
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The results for k = 1.5 on the finer mesh are shown in figure 14. The maximum error in

the fundamental Fourier coefficient is about 9 percent and the overall quality of the calculation is

comparable to that obtained on the original mesh at k = 0.75, as seen in figure 11. As compared
with the coarse mesh calculation in figure 13, the wave can now propagate across the mesh and

the severe internal mesh reflections have been eliminated. Although not shown herein, the results

on the 61 point mesh were improved over those on the 32 point mesh at all frequencies.

Implicit, 2nd order dt
MODEL EQUATION FOR CAP-TSD dt = 0.0,3272 k = 1.500

Quintic 61 pts, k = 1.500 Newton = 1
0.0100 < dz < 0.5190

k ReF ]mF 0.0631 < CN < 3.2725

0.000 0.0104 0.0000 Npc - 64

1.600 1.0210 0.0903 Zmox = 20. Nz = 61

3.000 --0.0041 0.0036

4.500 -0.0032 --0.0017

I I I I I L-,,,,,,,,,,,,, ,,, j, ,,, ,,,,,,,,,,, ,,,,,,,,,,,,,,,,I
0 4 0 20

n k z

oZ

0 t 63

Figure 14.- Harmonic response with improved mesh for /¢ = 1.5.
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Althoughthe maximum frequency k = 1.5 for which calculations were shown is perhaps

much higher than would be of interest for flutter, it has been assumed that the Mach number is

approximately 0.7 throughout the presentation of these results. An increase in the Mach number

for the linear problem or significant transonic effects would reduce the frequency range for which

the conclusions are valid. Said differently, a finer mesh would be needed to produce comparable
results as the Mach number was increased.

Conclusions

Recommendations for choosing some of the input parameters used in the CAP-TSD computer

code have been made. These parameters include those associated with the mesh design and time

step. These guidelines are based primarily on experience with a one-dimensional model problem

used to study wave propagation in the vertical direction. Numerical simulations presented herein

support the recommendations given.
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