TECHNOLOGY FOR THE FUTURE: In-Space Technology Experiments Program

Compiled by
Roger A. Breckenridge
Lenwood G. Clark
Kelli F. Willshire
and Sherwin M. Beck
NASA Langley Research Center
Hampton, Virginia

Lisa D. Collier
CTA, Inc.
Hampton, Virginia

Proceedings of OAST IN-STEP 88 workshop sponsored by the National Aeronautics and Space Administration and held in Atlanta, Georgia December 6–9, 1988

JUNE 1991

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225
Preface

The major space goal of the National Aeronautics and Space Administration's Office of Aeronautics and Space Technology (OAST) is to provide enabling technologies—validated at a level suitable for user-readiness—for future space missions, in order to ensure continued U.S. leadership in space. An important element in accomplishing this goal is the In-Space Technology Experiments Program (IN-STEP), whose purpose it is to explore and validate, in space, advanced technologies that will improve the effectiveness and efficiency of current and future space systems.

On December 6 through 9, 1988, almost 400 researchers, technologists, and managers from U.S. companies, universities, and the government participated in the OAST IN-STEP 88 Workshop*. The participants reviewed the current in-space technology flight experiments, identified and prioritized the technologies that are critical for future national space programs and that require verification or validation in space, and provided constructive feedback on the future plans for the In-Space Technology Experiments Program. The attendees actively participated in the identification and prioritization of future critical space technologies in eight major discipline theme areas. The content presented in the two parts of this NASA Conference Publication (CP), each under separate cover, reflect an overview of the workshop participants' efforts to review IN-STEP planning for the future of the program. These critical space technologies will help focus future solicitations for in-space flight experiments.

At the workshop, Dr. Harrison H. Schmitt emphasized that the nations which effectively exploit the advantages of space will lead human activities on Earth. OAST has worked closely with the aerospace community over the last few years to utilize the Space Shuttle, expendable launch vehicles, and, in the future, Space Station Freedom, for experimentation in space in the same way that we utilize wind tunnels to develop aeronautical technologies. This close cooperation with the user community is an important, integral part of the evolution of the In-Space Technology Experiments Program which was originated to provide access to space for technology research and for experimentation by the entire U.S. aerospace community.

The PREFACE edited for this NASA Conference Publication is based on the IN-STEP 88 WORKSHOP handout foreword written by Dr. Leonard Harris, Chief Engineer, Office of Aeronautics and Space Technology.

* The Office of Aeronautics and Space Technology has since been renamed the Office of Aeronautics, Exploration and Technology (OAET). In conjunction with this change, the scope of the Human Exploration Initiative (HEI) has been broadened and renamed the Space Exploration Initiative (SEI).

* The IN-STEP 88 Workshop was conducted by the Space Station Freedom Office of the Langley Research Center. Questions regarding this workshop should be directed to Dr. Roger A. Breckenridge, Deputy Manager, Space Station Freedom Office, M.S. 288, NASA Langley Research Center, Hampton, Virginia, 23665.
This Page Intentionally Blank
Introduction

NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop December 6-9, 1988, on the In-Space Technology Experiments Program (IN-STEP) in Atlanta, Georgia. The purpose of this workshop, IN-STEP 88, was to identify and prioritize space technologies that are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and industry/university (Out-Reach) experiments.

Finally, the aerospace community was asked to review and comment on the proposed plans for continuation of the In-Space Technology Experiments Program itself. In particular, this review included the proposed process for focusing the next experiment selection on specific, critical technologies as well as the process for implementing associated hardware development and integration on the Space Shuttle vehicle.

The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants—including researchers, technologists and managers—from aerospace industries, universities and government organizations. The identification and prioritization of the critical space technology needs were initiated by assigning NASA chairpersons (theme leaders) to the eight major technology discipline themes requiring consideration. These themes were as follows:

1. Space Structures
2. Space Environmental Effects
3. Power Systems and Thermal Management
4. Fluid Management and Propulsion Systems
5. Automation and Robotics
6. Sensors and Information Systems
7. In-Space Systems
8. Humans in Space

In order to afford further structure within each theme, the chairpersons divided their themes into three theme elements each. The theme element concept allowed focused technical discussions to occur within the broad discipline themes. For each theme element, the theme leader selected government, industry and university experts to present the critical space technology needs of their respective organizations. The presentations were reviewed and discussed by the theme audiences (other members of the aerospace community), and prioritized lists of the critical technologies in need of verification and validation in space were established for each theme element. The comments and conclusions for each theme were incorporated into a summary listing of the critical space technology needs as well as associated flight experiments representing the combined inputs of the speakers, the audience, and the theme leader.

The critical space technology needs and associated space flight experiments identified by the participants provide an important part of the strategic planning process for space technology development and provide the basis for the next solicitation for space technology flight experiments. The results of the workshop will be presented in the IN-STEP Selection Advisory Committee in early 1989. This committee will review the critical technology needs, the funding available for the program, and the space flight opportunities available to determine the specific technologies for which space flight experiments will be requested in the next solicitation.
Conference Publication Content Description, Parts 1 and 2

The proceedings handbooks were organized as three presentation categories in four volumes: (1) Overview (Executive Summary volume), (2) In-Reach/Out-Reach experiments and the experiment integration process (Volume I), and (3) critical technology presentations (Volumes II and III). For presentation in this NASA Conference Publication (CP), a two-part set (under separate covers), the Executive Summary and Volume I are combined in Part 1 and Volumes II and III are combined in Part 2.

Part 1

Keynote Address — Part 1 of the IN-STEP 88 CP set opens with the keynote address presented at the workshop banquet by Dr. Harrison Schmitt, a former U.S. Senator and Apollo astronaut, on the 16th anniversary of his lunar launch (Apollo 17). In his presentation, Dr. Schmitt outlined his vision for the future of the U.S. space program by describing a Millennium Project which would combine space ventures to the Moon, to Mars, and to planet Earth.

Executive Summary — The Executive Summary (first half of Part 1) contains the welcome and workshop instructions, strategic planning for the in-space technology experiments, an overview of the space technology experiments being conducted in OAST as well as the solicitation process for IN-STEP, the proposed accommodation process for Space Station Freedom, and the critical-technology-needs summaries for each theme. These summaries are presented in a standardized format version of the lists prepared in "real-time" at the workshop.

The Welcome and Workshop Instructions describes the purpose, the process, and the product intended for the workshop. The Space Strategic Planning process describes the OAST space research and technology base programs which generate new technology concepts in the major discipline areas, the new focused programs of the Civil Space Technology Initiative (CSTI) as well as the Pathfinder, and provides funding for the industry, university and NASA space technology experiments. Overview charts of current OAST sponsored space flight experiments and specific information regarding the IN-STEP solicitation process are provided to establish an understanding of space technologies currently validated and the proposed approach for initiating new experiments.

Brief overviews of the objectives, technology needs/backgrounds, descriptions, and development schedules for current industry, university and NASA space flight technology experiments are presented in the second half of Part 1 (Volume I of the original workshop handbook set). This was a very important part of the workshop, providing an opportunity for the aerospace community to interact with experimenters and provide feedback on the flight experiments. An overview of the user/payload integration and accommodation process being established for use on Space Station Freedom is included in the content of Part 1 Experiment Descriptions to promote better understanding within the space experiment community, and presentations describing the experiment integration process are presented at the end of Part 1.

Part 2

Critical Technologies — Part 2 of the IN-STEP 88 CP set combines the contents of Volumes II and III of the original handbook set. This book contains a theme introduction by each chairperson, critical technology presentations for each of the theme's three elements of technical focus, and summary listings of critical space technology needs for each theme. The introduction for each theme includes the chairperson's overview and instructions for the participants. The critical technology presentations, along with summaries listing the critical space technology needs and associated flight experiments, are presented as previously described.
Contents

By Presentation Title & Speaker

Part I: IN-STEP 88 Executive Summary

IN-STEP 88 Keynote Address: *Mission to Earth, Moon, and Mars* ... 1
Dr. Harrison H. Schmitt

Workshop Opening:

- Workshop Purpose and Agenda ... 12
 Dr. Leonard Harris, Chief Engineer, OAST, NASA Headquarters
- In-Space Technology Experiments in NASA's Strategic Planning† 14
 Dr. Judith H. Ambrus, Assistant Director for Space, NASA Headquarters
- In-Space Technology Experiment Program ... 34
 Jack Levine, Director, Flight Projects Division, OAST, NASA Headquarters
 Jon S. Pyle, Manager, In-Reach/Out-Reach Programs, NASA Headquarters
- Space Station *Freedom* User/Payload Integration & Accommodations 43
 Alan C. Holt, Dep. Dir. (Acting), User Integration Division,
 Utilization & Operations Group, Space Station Freedom Program Office

Critical In-Space Technology Needs:

- **Space Structures** ... 68
 Martin Mikulas, Jr., NASA Langley Research Center
- **Space Environmental Effects** ... 69
 Lubert J. Leger, NASA Johnson Space Center
- **Power Systems and Thermal Management** ... 70
 Roy McIntosh, NASA Goddard Space Flight Center
- **Fluid Management and Propulsion Systems** ... 71
 Lynn M. Anderson, NASA Lewis Research Center
- **Automation and Robotics** ... 72
 Antal K. Bejczy, Jet Propulsion Laboratory
- **Sensors and Information Systems** ... 73
 Martin M. Sokoloski, NASA Headquarters
 John Dalton, NASA Goddard Space Flight Center
- **In-Space Systems** .. 74
 Jon B. Haussler, NASA Marshall Space Flight Center
- **Humans in Space** .. 75
 Remus Bretoi, NASA Ames Research Center

† Part 1 of the IN-STEP Workshop Conference Publication two-part set is under separate cover.

† Dr. Ambrus' presentation for the IN-STEP 88 Workshop was given by Dr. Harris.
Part 1: IN-STEP 88 Experiment Descriptions

In-Reach / Out-Reach Experiments and Experiment Integration Process

In-Reach / Out-Reach Experiments (by Theme):

1 SPACE STRUCTURES
 - In-Space Structural Dynamics Evaluation of a Skewed-Scale Truss .. 78
 James H. Peebles, McDonnell Douglas Astronautics
 - Middeck 0-Gravity Dynamics Experiment (MODE) ... 81
 Prof. Edward F. Crawley and Dr. David W. Miller, Massachusetts Institute of Technology
 - Measurement and Modeling of Joint Damping in Space Structures ... 84
 Steven L. Folkman and Frank J. Redd, Utah State University
 - Payload Vibration Isolation in Microgravity Environment ... 87
 Carl H. Gerhold and Richard M. Alexander, Texas A&M University
 - Generic Pointing Mount ... 90
 Robert W. Bosley, Allied/Signal Aerospace Company
 - Space Station Structural Characterization Experiment .. 96
 James W. Johnson and Paul A. Cooper, NASA Langley Research Center
 - Inflatable Solar Concentrator Experiment .. 99
 Costa Cassapakis and Geoff Williams, L'Garde, Inc.

2 SPACE ENVIRONMENTAL EFFECTS
 - Measurement of Surface Reactions in the Space Environment ... 103
 L.R. Megill, Globesat, Inc.
 - Optical Properties Monitor (OPM) Experiment .. 106
 Donald R. Wilkes, John M. Cockerham & Associates
 - Experimental Investigation of Spacecraft Glow ... 109
 Gary Swenson, Lockheed Missiles & Space Company
 - Return Flux Experiment (REFLEX) ... 112
 Jack J. Triolo and Roy McIntosh, NASA Goddard Space Flight Center
 - Debris Collision Warning Sensors ... 115
 Faith Vilas and David Thompson, NASA Johnson Space Center
 - Thin Foil X-Ray Optics Space Environment Contamination Experiment 118
 Robert Petre, P.J. Seriemitsos, C.A. Glasser, NASA Goddard Space Flight Center

3 POWER SYSTEMS AND THERMAL MANAGEMENT
 - Sodium-Sulfur Battery Flight Experiment Definition .. 122
 Becky Chang, Ford Aerospace Corporation
 - Unitized Regenerative Fuel Cell ... 125
 Timothy A. Nalette, United Technologies Corporation
 David Namkoong, Jerri Ling, Steve Johnson, Barbara Heizer, Tom Foster; NASA LeRC/Boeing
 - Investigation of Microgravity Effects on Heat Pipe Thermal Performance and Working Fluid Behavior .. 131
 George L. Fleischman, Hughes Aircraft Company

Part 1 Contents Continued on Next Page
Part 1: Experiment Descriptions (continued)

- A High-Efficiency Thermal Interface (using condensation heat transfer) Between a Two-Phase Fluid Loop and a Heat Pipe Radiator .. 135
 John A. Pohner, TRW Space & Technology Group
- Moving Belt Radiator Dynamics ... 139
 W. Peter Teagan, Arthur D. Little, Inc.
- Liquid Droplet Radiator ... 144
 Shlomo L. Pfeiffer, Grumman Space Systems

FLUID MANAGEMENT AND PROPULSION SYSTEMS

- Tank Pressure Control Experiment .. 148
 Michael D. Bentz, Boeing Aerospace
- Integrated Cryogenic Experiment (ICE) Microsphere Insulation Investigation ... 151
 Dean C. Read, Lockheed Missiles & Space Company
- Liquid Motion in a Rotating Tank .. 157
 Franklin T. Dodge, Southwest Research Institute
- Thermoacoustic Convection Heat Transfer .. 160
 Prof. Masood Parang, University of Tennessee

AUTOMATION AND ROBOTICS

- Research and Design of Manipulator Flight Testbeds ... 162
 T.M. Depkovich, Martin Marietta Corporation
- Control of Flexible Robot Manipulators in Zero Gravity 164
 Warren F. Phillips, Utah State University
- Jitter Suppression for Precision Space Structures .. 169
 Robert M. Laurenson, McDonnell Douglas
- Passive Damping Augmentation for Space Applications .. 173
 Dr. Thomas E. Alberts, Old Dominion University (Supported by 3M Corporation)

SENSORS AND INFORMATION SYSTEMS

- Development of Emulsion Chamber Technology .. 177
 John Gregory, University of Alabama in Huntsville
- Infrared Focal Plane Performance in the South Atlantic Anomaly ... 181
 Frank Junga, Lockheed Missiles & Space Company
- Construction and In-Space Performance Evaluation of High Stability Hydrogen Maser Clocks .. 184
 Robert F.C. Vessot, Smithsonian Astrophysical Observatory
- Acceleration Measurement and Management Experiment Definition ... 188
 Jan A. Bijvoet, University of Alabama in Huntsville
- Dynamic Spacecraft Attitude Determination with GPS .. 192
 Dr. Duncan B. Cox, Jr., Mayflower Communications Company, Inc.
- Stanford University NASA In-Space Technology Experiment (SUNLITE) 196
 Robert L. Byer, Stanford University

Part 1 Contents Continued on Next Page
Part 1: Experiment Descriptions (concluded)

- **IN-SPACE SYSTEMS**
 - Definition of Experiments to Investigate Fire Suppressants in Microgravity
 - Dr. James J. Reuther, Battelle Columbus Division
 - Risk-Based Fire Safety Experiment Definition
 - George Apostolakis, University of California at Los Angeles
 - Plasma Arc Welding in Space
 - Boris Rubinsky, University of California at Berkeley
 - Extra-Vehicular Activity Welding Experiment
 - Gary Schnittgrund, Rockwell International Corporation
 - On-Orbit Electron Beam Welding Experiment
 - William Hooper, Martin Marietta Corporation
 - Laser Welding in Space
 - Dr. Gary L. Workman and Dr. William F. Kaukler, University of Alabama
 - Liquid Encapsulated Float Zone Refining of Gallium Arsenide
 - Edward Barocela, McDonnell Douglas Astronautics Company
 - Vapor Crystal Growth Technology
 - Franz E. Rosenberger and Francis C. Wessling, University of Alabama (Supported by Boeing)

- **HUMANS IN SPACE**
 - Enhancement of In-Space Operations Using Spatial Perception Auditory Referencing (SPAR)
 - Dr. Robert H.I. Blanks, Dr. Joie P. Jones, and Dr. Yasuhiro Torigoe; U. of California at Irvine
 - Dr. William Douglas and Herb Helly, McDonnell Douglas Astronautics
 - Definition of a Microbiological Monitor for Application in Space Vehicles
 - Melvin V. Kilgore, Jr., and Dr. Robert J. Zahorchak; U. of Alabama in Huntsville
 - Design of a Closed-Loop Nutrient Solution Delivery System for CELSS (Controlled Ecological Life Support Systems) Application
 - Dr. Steven H. Schwartzkopf, Lockheed Missiles & Space Company
 - Mr. Mel W. Oleson, Boeing Aerospace Company
 - Impact of Low Gravity on Water Electrolysis Operation
 - Franz H. Schubert, Life Systems, Inc.
 - Experiment Integration Process Presentations
 - Clarke R. Prouty, NASA Goddard Space Flight Center

Payload Integration Overview:

- NSTS Integration and Operations
 - John C. O’Laughlin, NASA Johnson Space Center
- Complex Autonomous Payload Carriers
 - Clarke R. Routy, NASA Goddard Space Flight Center
- Hitchhiker Project Overview
 - T.C. Goldsmith, NASA Goddard Space Flight Center
- Middeck Payload Integration
 - John C. O’Laughlin, NASA Johnson Space Center
- KSC Payload Integration
 - Dean C. Zimmerman, NASA Kennedy Space Center
Part 2: Critical Technologies

IN-STEP 88 Technology Themes

By Theme:

1 SPACE STRUCTURES

Background and Objectives:

- Theme Orientation and Recap of In-Space RE&E Workshop (Williamsburg, '85) ... 291
 Martin Mikulas, Jr., NASA Langley Research Center

1.1 Structures:

- Air Force Structural Dynamics and CSI Technology Needs ... 297
 Jerome Pearson, USAF Wright Aeronautical Laboratories

- Industry Perspective on Technology Needs for Space Structures .. 299
 Donald E. Skoumal and Richard M. Gates, Boeing Aerospace Company

- University Participation in In-Space Technology Experiments ... 302
 K.C. Park, University of Colorado

1.2 Control/Structure Interaction (CSI):

- An Overview of the NASA Controls-Structures-Interaction Program ... 305
 J. Newsom, NASA Langley Research Center
 H. Waites, NASA Marshall Space Flight Center
 W. Layman, Jet Propulsion Laboratory

- Technology Development Needs: Industry Perspective ... 308
 Carolyn S. Major, TRW Space & Technology Group

- The Need for Space Flight Experimentation in Control/Structure Interaction ... 310
 Edward F. Crawley, Massachusetts Institute of Technology

1.3 Controls:

- Space Structures: Controls (Validation — Ground and In Space) ... 314
 Henry B. Waites, NASA Marshall Space Flight Center

- Industry Perspective on Control Technology Needs for Space Flight Verification 316
 Irving Hirsch, Boeing Aerospace

- Experiments in Dynamics and Controls ... 319
 Robert E. Skelton, Purdue University

- Space Structures Critical Technology Requirements ... 323
 Martin Mikulas, Jr., NASA Langley Research Center

2 SPACE ENVIRONMENTAL EFFECTS

Background and Objectives:

- Theme General Content and Sub-Theme Definition ... 330
 Lubert J. Leger, NASA Johnson Space Center

2.1 Atmospheric Effects and Contamination:

- Atmospheric Effects & Contamination: Government Perspective .. 333
 Bruce A. Banks, NASA Lewis Research Center

Part 2 Contents Continued on Next Page
Part 2: Critical Technologies (continued)

2.1 Atmospheric Effects and Contamination (continued):
- Atmospheric Effects & Contamination Technology Development Needs .. 336
 Lyle E. Bareiss, Martin Marietta Corporation
- Hyperthermal Interactions of Atmospheric Species with Spacecraft .. 338
 John Gregory, University of Alabama at Huntsville

2.2 Micrometeoroids and Debris:
- Detection and Measurement of the Orbital Debris Environment .. 341
 Faith Vilas, NASA Johnson Space Center
- Design Considerations for Space Debris: An Industry Viewpoint .. 343
 Dr. H.W. Babel, McDonnell Douglas Astronautics Company
- Space Debris Environment Definition .. 346
 Dr. Robert D. Culp

2.3 Charged Particles and Electromagnetic Radiation Effects:
- Effects of Charged Particles and Electromagnetic Radiation on Structural Materials and Coatings ... 349
 W.S. Slemp and S.S. Tompkins, NASA Langley Research Center
- Effects on Space Systems: Technology Requirements for the Future .. 352
 H. Garrett, Jet Propulsion Laboratory
- Electromagnetic and Plasma Environment Interactions: Technology Needs for the Future 354
 G. Murphy, Jet Propulsion Laboratory
- Space Environmental Effects Critical Technology Requirements .. 357
 Lubert J. Leger, NASA Johnson Space Center

POWER SYSTEMS & THERMAL MANAGEMENT

Background and Objectives:
- Review of Previous Workshops (Williamsburg '85, Ocean City '88) .. 362
 Roy McIntosh, NASA Goddard Space Flight Center

3.1 Dynamic and Nuclear Power Systems:
- Dynamic and Nuclear Systems .. 370
 John M. Smith, NASA Lewis Research Center
- Dynamic & Nuclear Power Systems .. 374
 Dr. J.S. Armijo, General Electric Astro Space Division
- Dynamic & Nuclear Systems .. 377
 Prof. Mohamed S. El-Genk, University of New Mexico

3.2 Conventional Power Systems:
- Conventional Power Systems .. 381
 Dr. Karl A. Faymon, NASA Lewis Research Center
- Conventional Power Systems .. 384
 Stephen R. Peck, GE Astro Space Division
- Conventional Power Systems .. 387
 R.F. Askew, Auburn University

Part 2 Contents Continued on Next Page
Part 2: Critical Technologies (continued)

3.3 Thermal Management:
- Government View: Spacecraft Thermal Management Requirements & Technology Needs ... 390
 Dr. Tom Mahefkey, Air Force Wright Aeronautical Labs
- Thermal Management: An Industry Viewpoint .. 393
 Ted J. Kramer, Boeing Aerospace Company
- Thermal Management Issues in Advanced Space Missions: University Viewpoint ... 395
 Prof. Larry C. White, University of Houston
- Power Systems & Thermal Management Critical Technology Requirements .. 398
 Roy McIntosh, NASA Goddard Space Flight Center

0 FLUID MANAGEMENT & PROPULSION SYSTEMS

Background and Objectives:
- Theme Organization and Purpose ... 402
 Lynn M. Anderson, NASA Lewis Research Center

4.1 On-Orbit Fluid Management:
- Fluid Management Technology .. 403
 John C. Aydelott, NASA Lewis Research Center
- Cryogenic Fluid Management Technology: An Industry Perspective .. 405
 John R. Schuster, General Dynamics

4.2 Propulsion:
- Low Thrust Propulsion Space Experiments .. 408
 J.R. Stone, NASA Headquarters, OAST
- Key Propulsion Technologies for In-Space Experiments .. 411
 James H. Kelley, Jet Propulsion Laboratory
- In-Space Technology Experiments in Propulsion: The Role of Universities ... 414
 Charles L. Merkle, Pennsylvania State University

4.3 Fluid Physics:
- Fluid Physics .. 416
 Jack A. Salzman, NASA Lewis Research Center
- Low-G Interface Configurations, Stability and Dynamics 419
 Franklin T. Dodge, Southwest Research Institute
- The Case for Two-Phase Gas-Liquid Flow Experiments in Space .. 423
 A.E. Dukler, University of Houston
- Fluid Management & Propulsion Systems Critical Technology Requirements ... 424
 Lynn M. Anderson, NASA Lewis Research Center

9 AUTOMATION AND ROBOTICS

Background and Objectives:
- Subthemes: Robotics, Teleoperation, and Artificial Intelligence;
 Summary of Williamsburg Workshop (’85) ... 433
 Antal K. Bejczy, Jet Propulsion Laboratory

Part 2 Contents Continued on Next Page
Part 2: Critical Technologies (continued)

5.1 Robotic Systems:
- Robotics ... 443
 Al Meintel, NASA Langley Research Center
- Robotics ... 446
 T.M. Depkovich and J.R. Spofford, Martin Marietta Corporation
- Robots in Space ... 448
 Prof. Delbert Tesar, University of Texas at Austin

5.2 Teleoperations:
- Space Operations, Now and Future 451
 Charles R. Price, NASA Johnson Space Center
- Teleoperation .. 454
 Paul B. Pierson, General Electric Aerospace
- Multimode Operator Interfaces, Intelligent Displays, Hierarchical-Control Communication Time Delay Visual Perception Systems 457
 Thomas B. Sheridan, Massachusetts Institute of Technology

5.3 Artificial Intelligence:
- In-Space Experiments in Artificial Intelligence 459
 Dr. Peter Friedland, NASA Ames Research Center
 Nancy Sliwa, NASA Langley Research Center
- Artificial Intelligence: An Industry View 462
 David A. Rosenberg, ISX Corporation
- Artificial Intelligence ... 465
 Dr. Robert Cannon, Stanford University
- Automation and Robotics Critical Technology Requirements ... 467
 Antal K. Bejczy, Jet Propulsion Laboratory

6. SENSORS AND INFORMATION SYSTEMS

Background and Objectives:
- Themes and Criteria for Prioritization 472
 Martin M. Sokoloski, NASA Headquarters
 John T. Dalton, NASA Goddard Space Flight Center

6.1 Sensors:
- In-Space Experiments in Remote Sensing Systems 474
 Martin M. Sokoloski, NASA Headquarters
- In-Space Sensor Technology Experiments 478
 E. David Hinkley, Hughes Aircraft Company
- LIDAR/Laser Sensors .. 482
 Dr. Denis Killinger, University of South Florida

6.2 Communications:
- In-Space Experiments in Communication Systems 485
 Martin M. Sokoloski, NASA Headquarters
- Space Laser Communication Experiments 488
 M. Ross, Laser Data Technology, Inc.
Part 2: Critical Technologies (continued)

6.2 Communications (continued):
- Coherent Optical Intersatellite Crosslink Systems .. 491
 Vincent W.S. Chan, Massachusetts Institute of Technology

6.3 Information Systems:
- In-Space Experiments in Information Systems .. 495
 John T. Dalton, NASA Goddard Space Flight Center
- Information System Panel DMS Perspectives — December '88 499
 George Nossaman, IBM Federal Systems Division
- In-Space Experiments in Information Systems .. 503
 Neil R. White, University of Colorado
- Sensors and Information Systems Critical Technology Requirements 506
 Martin M. Sokoloski, NASA Headquarters
 John T. Dalton, NASA Goddard Space Flight Center

7 IN-SPACE SYSTEMS

Background and Objectives:
- Theme Session Objectives and Prioritization Criteria .. 512
 Jon B. Haussler, NASA Marshall Space Flight Center

7.1 Materials Processing:
- Materials Processing .. 516
 Larry Spencer, NASA Headquarters (MSAD)
- Floating-Point Crystal Growth in Space ... 520
 John T. Viola, Rockwell International
- Materials Processing — Cells and Cellular Products .. 523
 David W. Sammons, University of Arizona

7.2 Maintenance, Repair and Fire Safety:
- Maintenance, Servicing and Repair in Space .. 525
 Ed Falkenhayn, NASA Goddard Space Flight Center
- Spacecraft Fire Safety for Advanced Spacecraft .. 528
 Wallace W. Youngblood, Wyle Laboratories
- Maintenance, Servicing and Repair in Space .. 531
 Bob Dellacamera, McDonnell Douglas Space Systems Company

7.3 In-Space Systems:
- Payload Operations from the Perspective of Manned Space Flight 535
 Dr. Jeffrey A. Hoffman, NASA Johnson Space Center
- Orbit Assembly Node .. 537
 Tom Styczynski and Lee R. Lunsford, Lockheed Missiles & Space Company
- In-Space Systems: Space Construction and Payload Operations 540
 Dr. George W. Morgenthaler, University of Colorado
- In-Space Systems Critical Technology Requirements ... 543
 Jon B. Haussler, NASA Marshall Space Flight Center

Part 2 Contents Continued on Next Page
Part 2: Critical Technologies (concluded)

HUMANS IN SPACE

Background and Objectives:

8.1 EVA / Suit:
- EVA Technology ... 553
 Dr. Bruce W. Webbon and Bernadette Squire, NASA Ames Research Center
- Extra-Vehicular Activity / Suit 556
 H.T. Fisher, Lockheed Missiles & Space Company
- EVA and Pressure Suit Technology 560
 Prof. David L. Akin, Massachusetts Institute of Technology

8.2 Human Performance:
- Crew and Environmental Factors 562
 Dr. Barbara G. Kanki, NASA Ames Research Center
- Artificial Gravity .. 565
 Larry G. Lemki, NASA Ames Research Center
- Human Performance .. 568
 William R. Ferrell, University of Arizona

8.3 Closed-Loop Life Support Systems:
- Physical/Chemical Closed-Loop Life Support 571
 R.D. MacElroy, NASA Ames Research Center
- Closed-Loop Life Support Industry Presentation 573
 Thomas J. Slavin, Boeing Aerospace
- Physical/Chemical Closed-Loop Life Support 575
 Marvin W. Luttges and Louis Stodieck, University of Colorado
- Humans in Space Critical Technology Requirements 578
 Remus N. Bretoi, NASA Ames Research Center
Space Structures

Background and Objectives

Theme Orientation and Recap of In-Space RT&E Workshop (Williamsburg, '85)

Martin M. Mikulas, Jr.
NASA Langley Research Center, Hampton, Virginia

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEME LEADER:</td>
</tr>
<tr>
<td>COMMITTEE:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Subthemes & Theme Groups:

1. Structures
2. Control/Structure Interaction
3. Controls

Theme Discussions

After Each Subtheme Session:

- Open 80 minute DISCUSSION with audience and theme leader/speakers/panel
- Questions and answers
- Identification of additional technologies from audience
- Audience prioritization of critical technologies

Joint Theme Discussion, Thursday 8:30-10:45 am

- Discussion between audience and all theme element speakers
- Resolution of critical technologies across theme

Theme Session Objectives

Purpose:

- Identify and prioritize in-space technologies for space structures by considering subtheme details which are critical for future U.S. space programs.
- Require development and in-space validation.
- Generate comments and suggestions from aerospace community on OAST IN-STEP plans.

Product:

- Priority listing of critical space technology needs and associated space flight experiments, recommended by aerospace community.
<table>
<thead>
<tr>
<th>Theme 1 of 8</th>
<th>SPACE STRUCTURES</th>
<th>Theme 1 of 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background and Objectives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theme Orientation and Recap of In-Space RT&E Workshop (Williamsburg, '85)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martin M. Mikulas, Jr.
NASA Langley Research Center, Hampton, Virginia

Summary of
Space Structures Theme from 1985 Williamsburg, VA In-Space RT&E Workshop

KEY STRUCTURES DYNAMICS AND CONTROL TECHNOLOGIES

1. COMPONENT TECHNOLOGY
 - SENSORS
 - ACTUATORS

2. CONTROL STRUCTURE INTERACTION
 - CONTROL TECHNOLOGY
 - STATION KEEPING
 - MANEUVERS
 - POINTING

3. SPACE STATION DYNAMIC CHARACTERIZATION
 - DYNAMIC MODELLING

4. SPACE STATION CONSTRUCTION TECHNOLOGY
 - MATERIAL BEHAVIOR
 - ASSEMBLY
 - DEPLOYMENT

5. ADVANCED STRUCTURAL CONCEPTS

292
Theme 1 of 8

SPACE STRUCTURES

Background and Objectives

Theme Orientation and Recap of In-Space RT&E Workshop (Williamsburg, '85)

Martin M. Mikulas, Jr.
NASA Langley Research Center, Hampton, Virginia

TECHNOLOGY GAPS IN PROPOSED EXPERIMENTS

- Validation of Station IOC Construction and Utility Integration
- Validation of Long-Term Structural Integrity
- Passive Damping
- In-Space Loads Characterization
- Cost-Effective Hardware Development
- Structurally-Embeded Sensors/Actuators
- Vibration/Shape Control Devices
 - Sensors
 - Actuators
- Low-Frequency Isolation Devices

SPACE CONSTRUCTION TECHNOLOGY

Diagram showing technology levels and timelines from 1985 to 1995 with categories such as Large Structures, On-Orbit Assembly and Check-Out.
ADVANCED STRUCTURAL CONCEPTS

SPACE STATION DYNAMIC CHARACTERIZATION
SPACE STRUCTURES
Background and Objectives
Theme Orientation and Recap of In-Space RT&E Workshop (Williamsburg, '85)

Martin M. Mikulas, Jr.
NASA Langley Research Center, Hampton, Virginia

CONTROL/STRUCTURES INTERACTION (CSI)

COMPONENT TECHNOLOGY
Critical Elements Needed for Development

- High Accuracy Surface Sensor (Multi DOF)
- Real-Time Photogrammetric Concept
- Mid-Range Momentum Actuators
- High Speed, High Capacity Flight Computers for CSI
- High Speed, High Capacity Data Bases
- Multi-Body Alignment Transfer & Pointing System
- Relative Alignment Sensor
- Vibration Actuators
- Low-Frequency Actuators
- Optical/Inertial Vibration Sensors
- Low-G Accelerometer
- Low-Thruster for Near-Boost
INTRODUCTION/BACKGROUND

PROPOSED SPACE SYSTEMS ARE VERY LARGE, AND INHERENTLY FLEXIBLE

- ADVANCED COMMUNICATIONS
- SPACE BASED RADAR
- SPACE STATION
- SDI SPACE BASED ARCHITECTURE

MISSIONS CALL FOR EXTREMELY PRECISE ACQUISITION, Slew, POINTING, TRACKING, AND FIGURE CONTROL

- MICRON DISPLACEMENT CONTROL
- NANO Radian POINTING ACCURACIES
- AN EXTREME RETARGET CHALLENGE

THE COMBINED IMPACT OF STRUCTURE, MISSION, AND ENVIRONMENT REQUIRES A SIGNIFICANT 'LEAP' BEYOND CURRENT CAPABILITIES.

MISSION APPLICATIONS

TECHNOLOGY NEEDS DRIVEN BY NUMEROUS SYSTEMS

- NEAR TERM SYSTEMS
 - SSTs/ISTs
 - ADVANCED COMMUNICATIONS
 - SPACE BASED RADAR

- FAR TERM SYSTEMS
 - SPACE BASED LASER
 - RAIL GUN
 - NPB
TECHNOLOGY NEEDS

- **Passive Damping**
 - Passive damping design concepts
 - Passive damping optimization
 - Damping materials certification for space

- **Active Control**
 - High efficiency, low mass actuators
 - Accurate multi-point sensors
 - Distributed sensing/processing/actuation
 - Ultra precision sensors/control laws/actuators
 - Structural stiffness/passive damping/control optimization

- **Ground Testing**
 - System parameter identification
 - Microgravity suspension
 - Ultra precision, low frequency measurements

IN SPACE EXPERIMENTATION NEEDS/VOIDS

- Space testing to verify ground dynamic test results
- On orbit system identification methods
- Sensor and actuator behavior in the space environment
- Long term space exposure effects

SUMMARY/RECOMMENDATIONS

- Establish zero gravity structural characterization methods
- Qualify structural and damping materials
- Quantify optimal technology blend for vibration suppression
- Develop free-flying structural dynamics experiment
IN-SPACE STRUCTURES: BACKGROUND

- Advanced structural concepts being defined

- Construction techniques
 - Deployment
 - Assembly (manual, robotic)
 - Fabrication
 - Repairing

- Construction site/facility will impact concept design and assembly approach

- Structural characterization techniques
 - Quasi-static (as-built accuracy, thermal deflections)
 - Dynamic (vibration, frequency, damping, nonlinearities)

- Ground testing not always feasible

- Large analytical models for in-space predictions

- Testing must simulate actual environment

- New NDE methods coming along

- In-space testing required

- NDE methods for in-space applications
 - Structural characterization
 - Damage detection and isolation

- Space Station, Space Technology Demonstrations

SUMMARY AND RECOMMENDATIONS

Need Cohesive Integration Theme:

- Antennas
 - Earth observation
 - Communications

- Propulsion
 - Improved Ground Test Methods

- Missions
 - Manned spacecraft
 - Manned Mars Mission

- Model Verification and Long Life Integrity through In-Space Technology Demonstrations
TECHNOLOGY NEEDS

- Structural concepts
 - Deployable
 - Erectable
- Construction techniques
 - Deployment
 - Manual assembly
 - Fabrication
- Structural characterization
 - As-built accuracy
 - Dynamic characteristics
- Ground test methods
 - Components/assemblies
 - Scaled models
- Analytical prediction techniques
 - Model fidelity
 - Multi-body issues
- Sensor/actuator technology
 - Embedded devices
 - Conventional
 - Robotic assembly
 - Repair/maintenance
 - Modular
 - Smart structure
 - Health monitoring
 - Measurement techniques
 - Zero spring rate supports
 - Nonlinear representations (joints, friction)
 - Structure/wavefront interaction (CSI)
IN-SPACE EXPERIMENTATION NEEDS / Voids

- Construction techniques
 - Deployment
 - Assembly (manual, robotic)
 - Fabrication
 - Repair/maintenance

- Structural characterization techniques
 - Quasi-static (as-built accuracy, thermal deflections)
 - Dynamic (mode shapes, frequencies, damping, non-linearities)

- Sensor/actuator technology verification
 - Embedded devices
 - Optical/laser measurement systems

- NDE methods for In-Space applications
 - Structural characterization
 - Damage detection and isolation

- Space Station Facility for Technology Demonstrations

SUMMARY / RECOMMENDATIONS

Need Cohesive Interdisciplinary Plan:

- Innovative Structural Concepts
- Compatible Construction Approaches
- Improved Ground Test Methods
- In-Space Structural Characterization
- Model Verification and Long Life Integrity through In-Space Technology Demonstrations
University Participation in In-Space Technology Experiments

K.C. Park
University of Colorado, Center for Space Structures and Controls

In-Space Experiments Criteria for University

- Maximum Student and Multi-Institution Participation
- Experiments That Lead to New Analytical Research
- Progressive Difficulty in Design and Instrumentation
- Experiments That Provide Real-World Experience and Will Be Adopted by NASA
- Multi-Disciplinary Features: Structure-Dynamics, Structure-Control, Structure-Robotics

Technology Needs for University Space Structures Program

- Structures Discipline:
 - In-Space Construction: Deployment/Assembly Simulation Validation
 - LSS Modeling and System Identification
 - Structural Modifications and Dynamic Stability
 - Design and Test of Fully Instrumented Structures
 - Joining/Assembly Design and Test Methods
University Participation in In-Space Technology Experiments

K.C. Park
University of Colorado, Center for Space Structures and Controls

Technology Needs for University Space Structures Program

- Structures—Other Discipline Fertilization:
 - Articulation and Maneuvering of Structures by Space Crane
 - Smart Structural Elements and Active Controls
 - Accurate Pointing of Flexible Manipulator Tip
 - Tether Retrieval and Retrieval Platform Dynamics
 - Thermal Transients and Shape Control

Candidate In-Space Experiment Needs for University Space Structures Program

- Repetitive Usage for Several Experiments
- Long-Term Involvement of Students
- Interdisciplinary Activities (i.e., Controls, Dynamics, Robotics, Instrumentation)
- Models and Experimental Data Can Be Shared by Many Institutions

Progressively Instrumented Space Crane
Candidate In-Space Experiment Needs for University Space Structures Program

Proposed Experiments for Scale-Model Space Crane

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Ground Test of Assembly and Dynamics</td>
</tr>
<tr>
<td>#2</td>
<td>Motion Study of Assembly Procedures and Dynamics</td>
</tr>
<tr>
<td>#3</td>
<td>Re-Design of the Model Crane</td>
</tr>
<tr>
<td>#4</td>
<td>Articulation and Controls</td>
</tr>
<tr>
<td>#5</td>
<td>Environmental/Operational Loads Identification</td>
</tr>
<tr>
<td>#6</td>
<td>Full Instrumentation and Systems Integration</td>
</tr>
<tr>
<td>#7</td>
<td>Use of Space Crane for Construction Demands</td>
</tr>
</tbody>
</table>
THE NASA CONTROLS-STRUCTURES INTERACTION (CSI) PROGRAM

- A RESTRUCTURING OF THE COFS PROGRAM
- EMPHASIZES INCREASED GROUND TESTING AND ANALYTICAL METHODOLOGY DEVELOPMENT WITH A CONSERVATIVE FLIGHT EXPERIMENT SCHEDULE
- SPACECRAFT APPLICATIONS WEIGHTED TOWARD SCIENCE MISSIONS FOR THE 2000+ TIME FRAME
- JOINT EFFORT OF NASA HEADQUARTERS, LANLEY, MARSHALL AND JPL

CSI TECHNOLOGY NEEDS

- QUANTIFICATION OF MISSION REQUIREMENTS AND BENEFIT TRADE-OFFS
- INTEGRATED MODELING, ANALYSIS, AND CONTROL/STRUCTURE DESIGN APPROACHES
- GROUND TEST METHODS FOR VERIFYING CSI DESIGNS
- SELECTED IN-SPACE FLIGHT EXPERIMENTS TO QUANTIFY ACCURACY OF GROUND-BASED PREDICTIONS
IN-SPACE FLIGHT EXPERIMENT PLANNING

APPROACH

• DEFINE CSI ELEMENTS REQUIRING FLIGHT TESTING ("NEEDS" ASSESSMENT)

• DEFINE APPROACHES FOR REDUCING FLIGHT EXPERIMENT COSTS (LOW-COST SYSTEMS STUDY)

• QUANTIFY TECHNOLOGY RETURN FROM CANDIDATE EXPERIMENT OPPORTUNITIES (POTENTIAL RETURN EVALUATIONS)

FLIGHT EXPERIMENT PLANNING

LOW-COST SYSTEMS STUDY

• TAKE ADVANTAGE OF EXPERIMENTAL NATURE---
 - SHORT DURATION - PREDICTABLE PERFORMANCE
 - RETEST OPPORTUNITY - INHERENT REDUNDANCY

TO RELAX REQUIREMENTS AND REDUCE COST---

- OPERATING LIFE - RELIABILITY
- QUALITY CONTROL - TRACEABILITY
- PERFORMANCE TOLERANCES - NOISE GENERATION

• TRADE:
 SHUTTLE-ATTACHED VS FREE FLYERS
An Overview of the NASA Controls-Structures-Interaction Program

J. Newsom, Langley Research Center
H. Waltes, Marshall Space Flight Center; W. Layman, Jet Propulsion Laboratory

SUMMARY

• CONTROLS-STRUCTURES INTERACTION (CSI) IS A KEY ENABLING TECHNOLOGY FOR FUTURE NASA SPACECRAFT

• PROPER IMPLEMENTATION OF CSI TECHNOLOGY PROMISES SIGNIFICANT IMPROVEMENTS IN CAPABILITY AT LESS COST

• CSI IS EFFECTIVELY A NEW DISCIPLINE WHICH ENCOMPASSES AND INTEGRALLY MERGES STRUCTURES AND CONTROLS

• NASA HAS EMBARKED ON A MAJOR MULTI-CENTER EFFORT TO DEVELOP THIS TECHNOLOGY FOR PRACTICAL APPLICATION IN SPACECRAFT

• A CONSERVATIVE FLIGHT EXPERIMENT APPROACH IS PLANNED
 • ON ORBIT TEST WHEN READY AND NEED EXISTS
 • STUDY WAYS TO REDUCE FLIGHT EXPERIMENTS
 • STUDY ADVANTAGES/DISADVANTAGES OF SMALL SCALE VS LARGE SCALE FLIGHT EXPERIMENTS
INTRODUCTION/BACKGROUND

- CSI technology motivated by many future missions
 - Large flexible structures
 - Precision pointing and agility
- Research in CSI dates to mid '70's
- Plethora of ground experiments (government, academia, industry)
- Several space experiments planned but thwarted (e.g., ACOSS, ACE, COFS)

MISSION APPLICATIONS

<table>
<thead>
<tr>
<th>Missions</th>
<th>Deployable Reflectors</th>
<th>Segmented Optics</th>
<th>Articulated Payloads</th>
<th>Flexible Appendages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLBI</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LDR</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SST5</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A-TDRS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Theme 1 of 8

SPACE STRUCTURES

1.2 Control/Structure Interaction (CSI)

Technology Development Needs: Industry Perspective

Carolyn S. Major
TRW Space & Technology Group

TECHNOLOGY NEEDS

- Improved modeling
 - beyond NASTRAN
 - non-linear multibody dynamics
- On-line system identification and adaptive control
- Integrated controls/structures design approaches
- Coordinated control system design techniques: slew and point, active and passive
- Component development
 - embedded sensors & actuators
 - space qualified parallel processor
 - light-weight active isolators

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- Modeling, identification & components must be proven via space experimentation
- Design methodologies can be developed and proven with rigorous ground experiments

SUMMARY/RECOMMENDATIONS

- Piggy-back CSI hardware & software on appropriate near-term missions for cost-effective, timely validation
 - Vehicle accommodation of CSI equipment (weight, power, data handling)
 - Requirements for additional a priori testing
- Proceed with top-down ground experiment with well-defined mission requirements to further design methodologies
ARE THERE MISSIONS WHICH NEED CSI?

- Space Science -
 Astronomical
 Multi Payload Platforms
 Planetary Exploration
 Fundamental Physics
 Micro Gravity
- Commercial/Transportation
 Communications
 Infra Structure
- Defense

SERC APPROACH

Rather than examine specific missions, extract common configuration themes, and associated requirements

- Two point alignment (e.g., Masking instruments)
- Multipoint alignment (e.g., Interferometer)
- Precision surface control (e.g., Reflector, collector)
- Multi sensor isolation (e.g., Platforms)
- Multibody articulation (e.g., Planetary exploration)
- Micro gravity environment maintenance (e.g., Materials)
- Large system attitude stabilization (e.g., Physics)
- Other defense configurations
- Non space configurations
<table>
<thead>
<tr>
<th>Theme 1 of 8</th>
<th>Theme 1 of 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE STRUCTURES</td>
<td>SPACE STRUCTURES</td>
</tr>
<tr>
<td>1.2 Control/Structure Interaction (CSI)</td>
<td>1.2 Control/Structure Interaction (CSI)</td>
</tr>
<tr>
<td>The Need for Space Flight Experimentation in Control/Structure Interaction</td>
<td>The Need for Space Flight Experimentation in Control/Structure Interaction</td>
</tr>
<tr>
<td>Edward F. Crawley</td>
<td>Edward F. Crawley</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Department of Aeronautics & Astronautics, Space Engineering Research Center</td>
<td>Department of Aeronautics & Astronautics, Space Engineering Research Center</td>
</tr>
</tbody>
</table>

CLASSES OF TECHNOLOGY NEEDS

SERC has identified the following critical technology needs:

- System Architecture
- Structural Concepts
- Control for Structures
- Structures for Control
- Hardware Development
- Test and Verification

SYSTEM ARCHITECTURE AND STRUCTURAL CONCEPTS

- **System architecture** -
 Identify disturbance sources, transmission paths and performance critical locations
 Minimize disturbances through selection of spacecraft systems and layout

- **Structural concepts** -
 Develop precision construction or deployment techniques
 Provide ability to reconfigure structure using mechanisms which carry static loads passively
 Design for zero CTE, large size, long lifetime and low density
CONTROL FOR STRUCTURES AND STRUCTURES FOR CONTROL

- Control for structures
 - Hierarchic control
 - Control using intelligent materials
 - Actuator and sensor staging for enhanced dynamic range and bandwidth
 - Techniques based upon alternate modelling techniques
- Structures for control
 - Provide required passive damping
 - Provide frequency regimes for controller rolloff where modes are suppressed
 - Modeling of micro-dynamics

HARDWARE DEVELOPMENT AND TEST AND VALIDATION

Hardware development -
- Space-realizable sensors and actuators
- Spatially continuous sensors
- Dual function actuators/sensors
- Expand the numbers and types of available flight sensors, actuators and computers

Test and validation -
- Provide the ground test program to which flight test data is to be correlated
- Identify unknowns and unmodelled aspects of plant
- Verify that control hardware and software is effective and robust
THREE POTENTIAL ROLES OF CSI SPACE FLIGHT EXPERIMENTS

- Investigation of basic technology, to understand a fundamental gravity dependence in the physics of the problem
- Demonstration of capabilities, to increase confidence in the maturity of CSI technology
- Development of a spacecraft qualification procedure, to be used in the "flight test" of future vehicles which use CSI technology
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 1 of 8

SPACE STRUCTURES

1.3 Controls

Space Structures: Controls (Validation—Ground and In Space)

Henry B. Waite
NASA Marshall Space Flight Center

GENERAL PLAN

- ANALYTICAL MODELING
- HARDWARE TESTING
 - OPEN LOOP
 - EXCITATION
 - SENSORS
 - TELEMETRY
 - DATA REDUCTION
 - CLOSED LOOP
 - EXCITATION
 - SENSORS
 - TELEMETRY
 - DATA REDUCTION
- VALIDATION
 - MODEL COMPARISON
 - MODEL CHANGES OR UPDATES
- PROGRAMS
 - GROUND FACILITIES (MSFC)
 - SINGLE STRUCTURE (SS) LAB (CA, ASU, CRU, VCOS-II, ACES I-IV)
 - MULTI-STRUCTURE (MS) LAB (CASES, POF, ASO, ASOR)
 - MULTI-BODY MODELING VERIFICATION AND CONTROL (MMVC) LAB
 - ROBOT ENHANCEMENT (RE) LAB
 - IN-FLIGHT
 - IPS
 - SAFE-I
 - CASES

ANALYTICAL MODELING

- MASS
- STIFFNESS
- GEOMETRY
- BOUNDARY CONDITIONS
- SEISMIC AND SUSPENSION EFFECTS
- NONLINEARITIES
- METHODS
SPACE STRUCTURES

1.3 Controls

Space Structures: Controls (Validation—Ground and In Space)

Henry B. Waites
NASA Marshall Space Flight Center

HARDWARE TESTING

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPORT STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>EXCITATION</td>
<td></td>
</tr>
<tr>
<td>BANDWIDTH AND OTHER LIMITS</td>
<td></td>
</tr>
<tr>
<td>INTERFACES (CONNECTIONS, CABLES, ETC.)</td>
<td></td>
</tr>
<tr>
<td>LOCATION(s)</td>
<td></td>
</tr>
<tr>
<td>CALIBRATION AND MONITORING</td>
<td></td>
</tr>
<tr>
<td>TELEMETRY</td>
<td></td>
</tr>
<tr>
<td>SENSORS</td>
<td></td>
</tr>
<tr>
<td>BANDWIDTH AND OTHER LIMITS</td>
<td></td>
</tr>
<tr>
<td>INTERFACES</td>
<td></td>
</tr>
<tr>
<td>LOCATION(s)</td>
<td></td>
</tr>
<tr>
<td>CALIBRATION AND MONITORING</td>
<td></td>
</tr>
<tr>
<td>TELEMETRY</td>
<td></td>
</tr>
<tr>
<td>OPEN LOOP</td>
<td></td>
</tr>
<tr>
<td>IMPACT OR IMPULSE</td>
<td></td>
</tr>
<tr>
<td>SINGLE AND MULTI-POINT RANDOM</td>
<td></td>
</tr>
<tr>
<td>SINE DWELL</td>
<td></td>
</tr>
<tr>
<td>SINE SWEEP</td>
<td></td>
</tr>
<tr>
<td>COHERENCE</td>
<td></td>
</tr>
<tr>
<td>LINEARITY</td>
<td></td>
</tr>
<tr>
<td>RECIPROCITY</td>
<td></td>
</tr>
<tr>
<td>EFFECTORS LEVELS</td>
<td></td>
</tr>
<tr>
<td>NONLINEARITY</td>
<td></td>
</tr>
<tr>
<td>IN-THE-LARGE</td>
<td></td>
</tr>
<tr>
<td>IN-THE-SMALL</td>
<td></td>
</tr>
<tr>
<td>EIGENVALUES AND EIGENVECTORS</td>
<td></td>
</tr>
<tr>
<td>CLOSED LOOP</td>
<td></td>
</tr>
<tr>
<td>TRANSFER FUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>EIGENVALUES AND EIGENVECTORS</td>
<td></td>
</tr>
<tr>
<td>CONTROLS STRUCTURES INTERACTION</td>
<td></td>
</tr>
</tbody>
</table>

VALIDATION

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL(s) VS TEST CONFIGURATION(s)</td>
<td></td>
</tr>
<tr>
<td>MODEL CHANGES AND UPDATES</td>
<td></td>
</tr>
<tr>
<td>MASS</td>
<td></td>
</tr>
<tr>
<td>STIFFNESS</td>
<td></td>
</tr>
<tr>
<td>GEOMETRY</td>
<td></td>
</tr>
<tr>
<td>BOUNDARY CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>SEISMIC AND SUSPENSION AFFECTS</td>
<td></td>
</tr>
<tr>
<td>DAMPING</td>
<td></td>
</tr>
<tr>
<td>UPDATED MODEL VS TEST CONFIGURATION</td>
<td></td>
</tr>
<tr>
<td>TRANSITION MODEL</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLES

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS LAB</td>
<td></td>
</tr>
<tr>
<td>IPS</td>
<td></td>
</tr>
<tr>
<td>SAFE-I</td>
<td></td>
</tr>
<tr>
<td>FUTURE PROGRAMS</td>
<td></td>
</tr>
</tbody>
</table>
Theme 1 of 8: SPACE STRUCTURES

1.3 Controls

Industry Perspective on Control Technology Needs for Space Flight Verification

Irving Hirsch

Boeing Aerospace

MISSION APPLICATIONS

<table>
<thead>
<tr>
<th>Class/Example</th>
<th>Typical Issues</th>
</tr>
</thead>
</table>
| - Large flexible spacecraft
 - Large deployable reflector
 - Very large optical interferometer | - Space assembly (handling/robotics)
 - Jitter control/precision pointing/shape control |
| - Manned spacecraft
 - Space station
 - Manned Mars mission | - System identification
 - Precision appendage articulation
 - Space assembly (handling/robotics) |
| - Planetary exploration
 - Mars sample return mission | - Smart autonomy
 - Robustness
 - Precision appendage articulation |
| - Earth observation
 - Satellites
 - Tethers | - Precision appendage articulation
 - Stability/robustness |
| - Space transportation vehicles
 - Advanced Launch System
 - Shuttle C
 - Orbital transfer vehicles | - Robustness
 - Adaptive control and estimation
 - TVC actuation |
TECHNOLOGY NEEDS

- Modeling and simulation
 - Accurate structural representations within control bandpass
 - Fluid flow interactions
 - Nonlinear joint response characterization
 - Realistic nonlinear controls component models
 - Accurate large-angle and slewing motion representations for flexible structures
 - Accurate translational connection representations for maneuvering and docking or grappling

- Controls algorithms
 - Hierarchical and distributed control architectures
 - Application of robust and/or adaptive control theory
 - Nonlinear control methodology
 - Software redundancy for failure detection, isolation and reconfiguration of multiple sensors/actuators
 - Parallel processing (e.g., neural networks)

- Controls components
 - Magnetic suspension control moment gyros (CMG's)
 - Throttletube thrusters for proportional control
 - 'Smart' structures (i.e., embedded actuators/sensors)
 - Wavefront, surface shape, and alignment sensors
 - Fault-tolerant digital computers and interfaces
 - Low-g accelerometers
 - Low cost, low weight components
 - Passive damping elements
 - Electro mechanical actuators with redundancy

- Design and analysis tools
 - Common database executive and interface programs
 - Integrated system analysis and design optimization

- Verification simulation and test
 - Large-scale hardware-in-loop (HIL) simulators
 - Soft and air-bearing suspensions for large systems
 - Magnetic suspension for precision pointing and vibration isolation (in-space?)
 - Vision and force control test capability for robotics (in-space?)
 - Surface shape and wavefront control test capability (in-space?)
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- Instrument and system identification of 'planned' spacecraft to quantify structural dynamics and correlate with ground test results (e.g., 'high frequency' space station modes and damping)
 - Joints unloaded in space
 - Micro-g environment
- Robotics assisted structural assembly
 - Astronaut interfaces
- Precision articulation/vibration isolation
 - Control hardware nonlinearities
 - Micro-g environment
- Advanced component technology verification
 - Non-ground testable

SUMMARY/RECOMMENDATIONS

- Control Technology gaps exist for space flight verification
- Many of these gaps can be cost effectively reduced by analysis, simulation and ground test
- Some in-flight test verification is still required
- Technology gaps in other subthemes overlap control technology gaps
- A detailed space flight verification plan is required for integration with other subthemes
INTRODUCTION / BACKGROUND

- LESSONS FROM THE PAST
- GUIDING PRINCIPLES
- THEORY NEEDS
- SOFTWARE NEEDS
- HARDWARE NEEDS
- THEME PROBLEMS, EXPERIMENTS
1.3 Controls

Experiments in Dynamics and Controls

Robert E. Skelton
Purdue University, School of Aeronautics & Astronautics

THEORY NEEDS

- MULTIPLE PERFORMANCE GUARANTEES
- ROBUSTNESS GUARANTEES
- NUMERICAL ISSUES IMBEDDED IN CONTROLLER DESIGN
- THEORY OF DESIGN INTERATIONS
 (CONVERGENCE)
- IMPACT ON HARDWARE COMPONENT DESIGN
 (SUBSYSTEM SPECS FROM SYSTEM GOERS)

SOFTWARE NEEDS

- DESIGN WORKSTATIONS
 (FOR FAST DESIGN ITERATIONS)
 (GRAPHIC PRESENTATION OF TRADEOFFS)
- OPTIMIZING SIMULATIONS FOR MAXIMAL ACCURACY
 COMPUTATIONS
- OPTIMIZING CONTROLLER SOFTWARE FOR MAXIMAL ACCURACY
 COMPUTATIONS
- OPTIMAL TRADEOFFS BETWEEN HARDWARE/SOFTWARE IN
 SIMULATIONS AND LAB EXPERIMENTS
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Space Structures

1.3 Controls

Experiments in Dynamics and Controls

Robert E. Skelton
Purdue University, School of Aeronautics & Astronautics

Hardware Needs

- NEW SENSORS
 Optimal noise levels (from component specs)
 Position, rate, acceleration, strain
 Distributed, reliable, hardened

- NEW ACTUATORS
 Optimal noise levels (from component specs)
 Current, voltage, torque, momentum exchange,
 Mass distribution,

- NEW COMPUTERS TAILORED TO FLIGHT CONTROL NEEDS
 Parallel processing?
 Multiple word length & sample rates?

- NEW LAB EXPERIMENTS TO TRADEOFF DESIGN METHODOLOGIES

Theme Problems

- NEEDED AT EVERY LEVEL.
 - ANALYTICAL EXPERIMENTS
 - PDE VS ODE
 - MODEL REDUCTION
 - CONTROL DESIGNS
 - NUMERICAL EXPERIMENTS SIMULATION
 - IDENTIFICATION IN CLOSED LOOP
 - ADAPTIVE CONTROLLERS
 - ROBUST CONTROLLERS
 - N-BODY GENERATION PROGRAMS
 - HARDWARE EXPERIMENTS
 - ACTUATORS
 - SENSORS
 - CLOSED LOOP
SPACE STRUCTURES

1.3 Controls

Experiments in Dynamics and Controls

Robert E. Skelton
Purdue University, School of Aeronautics & Astronautics

SUMMARY/RECOMMENDATIONS

- **DEVELOP FLEXIBLE STRUCTURE THEME PROBLEMS AT 3 LEVELS:**
 - ANALYTICAL EXPERIMENTS
 - NUMERICAL EXPERIMENTS
 - HARDWARE EXPERIMENTS (LAB, FLIGHT)

- **TO TEST**
 - MODELING FOR CONTROL DESIGN
 - CLOSED LOOP IDENTIFICATION AND CONTROL REDESIGN
 - SENSOR/ACTUATOR DESIGN, CONFIGURATION
 - COMPUTATIONAL ISSUES
 - WORDLENGTH
 - ARCHITECTURE (PARALLEL, ARRAY, ETC.)
 - DECENTRALIZED COMPUTING
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 1 of 8 SPACE STRUCTURES
1.3 Controls

Space Structures Critical Technology Requirements

Martin Mikulas, Jr.
NASA Langley Research Center

OBSERVATION

o PEOPLE ARE ASKING FOR
 - MULTIDISCIPLINARY EXPERIMENTS
 - REUSABLE TEST BEDS

o POTENTIAL TEST BEDS
 - SPACE STATION
 - PSR - SHUTTLE BASED
 - ?

SPACE EXPERIMENT
TECHNOLOGY NEEDS AREAS
(STRUCTURES, DYNAMICS, AND CONTROLS)

• CONTROL / STRUCTURES INTERACTION EXPERIMENTS
• STRUCTURAL CHARACTERIZATION EXPERIMENTS
• IN-SPACE CONSTRUCTION EXPERIMENTS

CSI/SYSTEMS
TECHNOLOGY NEEDS

<table>
<thead>
<tr>
<th>NEEDED EXPERIMENTS</th>
<th>FOR FUND TECH DEV</th>
<th>FOR DEMO OF TECH MATUREITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEXIBLE MULTI-BODY / ARTICULATED CONTROL</td>
<td>SPACE</td>
<td>SPACE</td>
</tr>
<tr>
<td>PRECISION POINTING AND SHAPE DIMENSIONAL CONTROL</td>
<td>SPACE</td>
<td>SPACE</td>
</tr>
<tr>
<td>MULTIPLE INTERACTING CONTROL SYSTEM</td>
<td>SPACE (?)</td>
<td>SPACE (?)</td>
</tr>
<tr>
<td>DAMPING AND VIBRATION SUPPRESSION</td>
<td>GROUND</td>
<td>SPACE (?)</td>
</tr>
<tr>
<td>VIBRATION ISOLATION</td>
<td>GROUND</td>
<td>SPACE (?)</td>
</tr>
<tr>
<td>ACTIVE BALANCING</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
</tbody>
</table>
CSI / COMPONENTS

TECH ISSUES

- ACTUATORS, SENSORS AND PROCESSORS
 - SHOULDN'T ONLY BE TESTED IN SPACE AS AN INDIVIDUAL COMPONENT WHEN FUNDAMENTAL CHANGES IN CHARACTERISTICS ARE EXPECTED IN SPACE (E.G., RADIATION ON A COMPUTER, GRAVITY ON AN INERTIAL SENSOR)
 - OTHERWISE SHOULDN'T ONLY BE TESTED IN SPACE AS PART OF A SYSTEM

CRITERIA FOR SELECTING AN EXPERIMENT FOR SPACE TESTING

- BASIC PRINCIPLE
 - SPACE TESTING IS JUSTIFIED FOR FUNDAMENTAL TECHNICAL DEVELOPMENT ONLY IF THE EXPERIMENT CAN'T BE CONDUCTED ON EARTH OR WILL PRODUCE DISTORTED AND UNCORRECTABLE DATA WHEN CONDUCTED ON EARTH.

- APPLIED TO CSI
 - MIS-MODELING OF STRUCTURES AND "ZERO-G" SUSPENSIONS CAN MASK SINGULARITIES IN THE CONTROL/STRUCTURE SYSTEM WHICH CAN BE EVIDENCED ON-ORBIT BY SYSTEM INSTABILITY.
 - THERE IS NO WAY OF GUARANTEING THRU ON-ORBIT OPEN LOOP TESTING OR GROUND BASED CLOSED LOOP TESTING THAT THE SYSTEM WILL BE STABLE ON ORBIT AT DESIGN GAIN LEVELS.
STRUCTURAL CHARACTERIZATION
TECHNOLOGY NEEDS

- SYSTEM IDENTIFICATION
 - QUASI-STATIC
 - AS-BUILT
 - THERMAL DEFORMATIONS
 - DYNAMIC (OPEN LOOP AND CLOSED LOOP)
 - STRUCTURAL DYNAMICS
 - FLUID / STRUCTURE (SLOSH, FLOW)
 - DISTURBANCE SOURCE IDENTIFICATION

- SENSOR DEVELOPMENT
 - PRECISION DYNAMICS DUE TO LOW LEVEL EXCITATION
 - STATIC SHARE SENSORS
 - DISTURBANCE QUALIFICATION

- VERIFICATION OF PREDICTION METHODS
 - SCALE MODELS
 - COMPONENT GROUND TESTING
 - ANALYSIS

- STRUCTURAL INTEGRITY
 - HEALTH MONITORING
 - NDE
1.3 Controls

Space Structures Critical Technology Requirements

Martin Mikulas, Jr.
NASA Langley Research Center

STRUCTURAL CHARACTERIZATION

IN-SPACE EXPERIMENT JUSTIFICATION

- **ELIMINATES GROUND TEST LIMITATIONS**
 - GRAVITY EFFECTS
 - SUSPENSION SYSTEMS
 - SIZE LIMITATIONS
 - TERRESTRIAL DISTURBANCES THAT MASK THE PHYSICS
- **ALLOWS SMALL SCALE EFFECTS TO BE IDENTIFIED**
 - DAMPING
 - NONLINEARITIES
 - SENSOR CHARACTERISTICS
- **PROVIDES REALISTIC TEST RESULTS FOR ANALYSIS VERIFICATION**

IN-SPACE CONSTRUCTION EXPERIMENTS

TECHNOLOGIES CONSIDERED

- **DEPLOYABLE STRUCTURES**
 - LARGE TRUSSES (SPACE STATIONS SIZE)
 - 10 - 15 METER HARD SURFACE REFLECTORS
 - 40 METER HARD SURFACE REFLECTORS
 - 55 METER MESH ANTENNAS
 - INFLATABLES (15-30 METERS)
- **ERECTABLE STRUCTURES**
 - SPACE STATION
 - PRECISION SEGMENTED REFLECTOR (EVA ON SHUTTLE)
 - PRECISION SEGMENTED REFLECTOR (ROBOTIC / EVA)
- **MAINTENANCE AND REPAIR**
TEST BED OBJECTIVE

- DEVELOP TECHNOLOGY ENABLING THE CONSTRUCTION AND OPERATION OF FUTURE SPACE CRAFT

APPROACH

- **EVOLUTIONARY TESTBED**
 - EACH PHASE IS A FRACTION OF THE COST
 - NEW TECHNOLOGY CAN BE ADDED MIDSTREAM

- **MULTIDISCIPLINARY TESTBED**
 - LOOK AT ALL INTERESTED ASPECTS
 - MAXIMIZE BENEFIT / MONEY
 - PROVIDE RELAVANT SCIENCE FOCUS

PSR FLIGHT CONSTRUCTION EXPERIMENT

PHASE I TASKS (STS PAYLOAD BAY)

- CONSTRUCTION / ASSEMBLY
 - TRUSS
 - SIMULATED MIRROR SEGMENTS
 - UTILITIES (SENSORS AND WIRING)

- TIMELINE VERIFICATION
 - ZERO-G VS. NEUTRAL BUOYANCY

- AS-BUILT ACCURACY VERIFICATION
 - SURFACE
 - SUBSTRUCTURE

- HUMAN FACTORS VERIFICATION
 - CREW RESTRAINTS
 - LIGHTING (VIEW FACTORS)
 - TOOLS AND ASSEMBLY AIDS

- DYNAMIC CHARACTERIZATION
PHASE II TASKS (FREE-FLYER)

- SECOND ASSEMBLY TEST, FREE-FLYER
- MAINTENANCE OF LONG TERM PASSIVE PRECISION
- DISTURBANCE CHARACTERIZATION
- DEGRADATION OF MATERIALS
- RELIABILITY OF MEASUREMENTS

PHASE III TASKS (REVISIT)

- REPAIRING, INSPECTION, CLEANING, SERVICING (ROBOTICS)
- UPGRADING WITH
 - QUASI-STATIC RECONFIGURATION CAPABILITY
 - FURTHER UTILITIES (COOLANTS, FLUIDS, ETC)
 - PUMPS
 - VIBRATION ISOLATION

FURTHER PHASE TASKS

- PHASED INCREASE IN CSI COMPLEXITY LEADING TO FUNCTIONAL SPACE SCIENCE INSTRUMENT
PSR FLIGHT EXPERIMENT TEST BED
MULTIDISCIPLINARY INVOLVEMENT

<table>
<thead>
<tr>
<th>TECHNOLOGY THEMES</th>
<th>TIMELINE</th>
<th>ACCURACY</th>
<th>HUMAN</th>
<th>CHARACTER</th>
<th>PHASE I</th>
<th>PHASE II</th>
<th>PHASE III</th>
<th>FURTHER PHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ROBOTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>POWER & THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MAINTENANCE & REPAIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HUMANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FLUIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SENSORS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OBSERVATORIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MATERIAL DEVELOP.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHYSICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* SET SPECIFICATION
X RECEIVE DATA
THEME SESSION OBJECTIVES

• PURPOSE
 • IDENTIFY & PRIORITIZE IN-SPACE TECHNOLOGIES FOR EACH THEME WHICH:
 - ARE CRITICAL FOR FUTURE NATIONAL SPACE PROGRAMS
 - REQUIRE DEVELOPMENT & IN-SPACE VALIDATION
 • OBTAIN AEROSPACE COMMUNITY COMMENTS & SUGGESTIONS ON OAST IN-STEP PLANS

• PRODUCT
 • AEROSPACE COMMUNITY RECOMMENDED PRIORITY LISTING OF CRITICAL SPACE TECHNOLOGY NEEDS & ASSOCIATED SPACE FLIGHT EXPERIMENTS

SPACE ENVIRONMENTAL EFFECTS THEME GENERAL CONTENT

• THEME ADDRESS ALL ENVIRONMENTAL EFFECTS ON SPACECRAFT SYSTEMS

 • NEUTRAL AND CHARGED PORTION OF ENVIRONMENT
 • INDUCED REACTIONS/INTERACTIONS LEADING TO SURFACE, ENVIRONMENT, EQUIPMENT CHANGES
 • MICROMETEOROID/DEBRIS IMPACTS
 • ELECTROMAGNETIC RADIATION
 • CONTAMINATION

• ALL ORBIT ALTITUDES AND INCLINATIONS CONSIDERED

• EXPERIMENTS LAUNCHED ON SPACE SHUTTLE, UNMANNED LAUNCH VEHICLES, FREE FLYERS AND CONDUCTED ON SPACE STATION
Theme General Content and Sub-Theme Definition

Lubert J. Leger
NASA Johnson Space Center

Theme 1: ENVIRONMENTAL EFFECTS

SUB-THEME 1: ATMOSPHERIC EFFECTS AND CONTAMINATION

- Atomic Oxygen Effects
- Local Chemistry Modification
- Pressure Effects
- Deposition on Surfaces
- Plume and Vent Contaminants
- Sensor Development
- Control Techniques
- Measurement Techniques

SUB-THEME 2: MICROMETEOROIDS AND DEBRIS

- Shield Systems
- Environment Definition
- Effects on Spacecraft
- Detection and Impact Control

SUB-THEME 3: CHARGED PARTICLES AND ELECTROMAGNETIC RADIATION EFFECTS

- Electronic System Effects
- Material Damage
- Sensor Development
- Protection Systems
- EMI / EMC
- Single Event Upset
- Dosage Effects
- Charging
- Plasma Interactions
Theme Session Agenda

- **Theme Element Sessions**
 - Critical space technology needs for theme element from perspective of:
 - Industry, universities & government
 - Open discussion with the audience & theme element speakers / theme leader
 - Question & answer with speakers
 - Identification of additional technologies from audience

- **Combination & Prioritization of Theme Technologies**
 - Discussion between audience & all theme element speakers
 - Resolution of critical technologies across theme

Prioritization Criteria

1.) **Critical Enabling Technologies**
 - Technologies which are critical for future U.S. space missions

2.) **Cost Reduction Technologies**
 - Technologies which can decrease costs or complexity (e.g., development, life-cycle, operations)

3.) **Broad Application Technologies**
 - Technologies which can improve or enhance a variety of space missions

4.) **Require In-Space Validation**
 - Technologies which require the space environment or micro-gravity for validation or experimentation

* Criteria are listed in order of importance (1. = highest)
Space Environmental Effects

2.1 Atmospheric Effects and Contamination

Atmospheric Effects & Contamination: Government Perspective

Bruce A. Banks
NASA Lewis Research Center

Background

0 Flight data from STS-3, -4, -5, -8, -41G and Solar Max
0 Most atomic oxygen does not react upon first impact
0 Lower reaction probabilities at near grazing incidence
0 Erosion yields for approximately 60 materials measured from flight tests with significant uncertainty for key materials
0 Materials which produce volatile oxidation products develop texture
0 Optical properties change (e.g.,) observed
0 Basic atomic oxygen interaction processes and degradation pathways have been proposed but not fully verified
0 Influence of temperature and solar radiation on erosion yield has not been clearly determined

Mission Applications

0 Atomic oxygen durable materials must be identified for long duration LEO missions
0 Scattered atomic oxygen may threaten durability of materials on spacecraft interior
0 Erosion yields at low fluxes may allow use of some materials considered unacceptable at high fluxes
0 Atomic oxygen interactions must be understood in functional environment
 - Temperature
 - UV
 - Wandering or ram attack
0 Protective coating environmental durability is required for high performance spacecraft materials and surfaces

ORIGINAL PAGE IS OF POOR QUALITY
SPACE ENVIRONMENTAL EFFECTS

2.1 Atmospheric Effects and Contamination

Atmospheric Effects & Contamination: Government Perspective

- **Bruce A. Banks**
- NASA Lewis Research Center

TECHNOLOGY NEEDS

- Erosion yield dependence upon:
 - Flux
 - Fluence
 - Temperature
 - Solar radiation
- Scattered atomic oxygen reaction data
- Higher certainty data for low erosion yield materials
- Protective coating performance data
 - Undercutting oxidation at pinholes, cracks, and scratches
 - Diffusion
 - Functional performance
- Adequate flight data to develop algorithms to predict flight performance from ground laboratory LEO simulation

IN-SPACE EXPERIMENT NEEDS/VOIDS

- Temperature dependency over broad range
 - Metals
 - Polymers
- Accurate flux/fluence measurements
- High fluence data $10^{22} - 10^{23}$ atoms/cm3
 - Low erosion yield materials
 - Protected coatings
 - Evaluation of solar radiation dependence
- Temporal erosion/reaction data
- Scattered atomic oxygen erosion yield data
- Functional performance evaluation of exposed materials
 - Protected or durable polymer films for solar arrays and thermal blankets
 - Radiator surfaces
 - Solar concentrators
 - Structures
 - Lubricants
Space Environmental Effects

2.1 Atmospheric Effects and Contamination

Atmospheric Effects & Contamination: Government Perspective

Bruce A. Banks
NASA Lewis Research Center

SUMMARY/RECOMMENDATIONS

0 Active experiments to allow erosion yield or reaction data to be taken under variable conditions of:
 - Flux
 - Fluence
 - Angle of attack
 - Temperature
 - Solar radiation
0 Scattered atomic oxygen erosion yield data
0 Active flux measurement
0 Functional evaluation of materials performance
 - Mechanical
 - Optical
 - Thermal radiative
 - Tribological
0 Adequate testing at low altitudes to develop high fluence (10^{22} - 10^{23} atoms/cm3)
INTRODUCTION/BACKGROUND

- CONTAMINATION DEFINED AS THE TRANSPORT OF MOLECULAR OR PARTICULATE MATERIAL TO UNDESIREABLE LOCATIONS
- INDUCED ENVIRONMENT IN THE NEAR VICINITY OF SPACECRAFT WILL CAUSE SYSTEM/INSTRUMENT DEGRADATION
- TECHNOLOGY BASE IS INCOMPLETE AND FRAGMENTED THROUGHOUT INDUSTRY
- DEVELOPMENT OF CONTAMINANT FREE SPACE VEHICLE IS NOT CURRENTLY POSSIBLE
- FUTURE LONG TERM (10-30 YR) MISSIONS AND MORE SENSITIVE INSTRUMENTS WILL DICTATE THE NEED FOR ENHANCED UNDERSTANDING/TECHNOLOGY ADVANCES

TECHNOLOGY NEEDS

- LONG TERM CONTAMINANT SOURCE CHARACTERISTICS
 - m = f(T,t), SPECIES, STICKING
- LONG TERM DEPOSITION EFFECTS DATA
 - COMBINED ENVIRONMENT EFFECTS
- ENHANCED COMPUTER MODELING CAPABILITIES
- CONTAMINATION REMOVAL METHODS/PREVENTION TECHNIQUES
- HIGH SENSITIVITY CONTAMINATION MONITORS
 - DEPOSITION
 - OPTICAL (FIELD-OF-VIEW)
- NATURAL ENVIRONMENT INDUCED SOURCES
 - DEBRIS/MICROMETEROIDS
 - LONG TERM THERMAL CYCLING/UV DEGRADATION
 - ATOMIC OXYGEN
- FIELD-OF-VIEW INTERFERENCE
 - VENT/THRUSTER PLUME
 - RANDOM PARTICULATES
 - SURFACE OR PLUME INDUCED "GLOW"
- GROUND TESTS LIMITATIONS
 - SIMULATING LONG TERM CHARACTERISTICS IN SHORT TERM TESTS
- FLIGHT TEST LIMITATIONS
 - FIXED PARAMETERS
 - SHORT MISSIONS
 - PRIORITIES
 - UNEXPECTED SOURCES/EVENTS
INSTEP Technology Themes

Theme 2 of 8

SPACE ENVIRONMENTAL EFFECTS

2.1 Atmospheric Effects and Contamination

Atmospheric Effects & Contamination Technology Development Needs

Lyle E. Barelss
Martin Marietta Space Systems Company, Astronautics Group

IN-SPACE EXPERIMENTATION NEEDS/VOIDS*

- LONG TERM MISSION CONTAMINATION EFFECTS
- ATOMIC OXYGEN EFFECTS MEASUREMENTS
- CONTAMINATION ABATEMENT EXPERIMENTS
 --PURGE SYSTEMS
 --INNOVATIVE COATINGS
 --VOLATILE COATINGS
- IMPROVED CONTAMINATION SENSORS
 --DEPOSITION/SURFACE EFFECTS
 --OPTICAL ENVIRONMENT MONITORS
- ENGINE PLUME CONTAMINATION EFFECTS
 --FLOWFIELDS
 --DEPOSITION EFFECTS
- MODEL VERIFICATION EXPERIMENTS
 --LONG DISTANCE TRANSPORT
 --RETURN FLUX MONITORING
- ON-ORBIT CLEANING EXPERIMENTS
 --BEAM DEVICES/LASERS/ETC
 --USE OF AMBIENT ATOMIC OXYGEN
- SURFACE GLOW/PROMPT ENHANCEMENT MONITORS
 --AFE TYPE RADIOMETERS/SPECTROMETERS
- CRYOGENIC DEPOSITION EXPERIMENTS
- RAM DENSITY ENHANCEMENT STUDIES
- ON-ORBIT CONTAMINATION EFFECTS EXPERIMENTS
 --COMBINED ENVIRONMENTS
 --CONTROLLED SOURCES
 --PARTICLE ENVIRONMENT MONITORS

* INTERNAL CONTAMINATION ISSUES ADDRESSED IN THEME AREA #4
INTRODUCTION/BACKGROUND

OBJECTS IN LOW EARTH ORBIT PASS THROUGH THE AMBIENT ATMOSPHERE AT 7-8 KM/SEC. IN THE REFERENCE FRAME OF THE OBJECT THE GAS HAS AN EQUIVALENT TEMPERATURE OF 100,000°K, OR A KINETIC ENERGY (FOR O ATOMS) OF ABOUT 5eV/ATOM. THIS IS A RELATIVELY UNSTUDIED REGION OF CHEMISTRY AND PHYSICS AND ONE WHERE ENERGETIC NEW PROCESSES MIGHT BE EXPECTED. OBSERVED PROBLEM EFFECTS INCLUDE:

- SURFACE EROSION
- SURFACE PROPERTY MODIFICATION: OPTICAL, THERMAL, ELECTRICAL
- SURFACE AND FREE-MOLECULAR GLOW
- MOMENTUM ACCOMMODATION UNCERTAINTY

SCATTERING STUDIES

- DYNAMICS OF SCATTERING ARE COMPLETELY DETERMINED BY THE POTENTIAL ENERGY OF INTERACTION BETWEEN ATOMS OF GAS AND SOLID.

- EXPERIMENTAL SYSTEMS CONTAIN (1) THE BEAM, (2) THE DETECTOR, AND (3) THE TARGET SURFACE.

- IDEAL MEASUREMENTS WOULD BE (IN ABSOLUTE NUMBERS OF ATOMS): VELOCITY DISTRIBUTION OF INCIDENT BEAM AND VELOCITY DISTRIBUTION OF REFLECTED BEAM MEASURED OVER ALL ANGLES.

- VERY LITTLE DATA EXISTS ON 5 eV SCATTERING BECAUSE OF EXPERIMENTAL DIFFICULTY.

- FOR REACTIVE SCATTERING, ALSO NEED ANGULAR AND VELOCITY DISTRIBUTIONS OF PRODUCT MOLECULES
TECHNOLOGY NEEDS

O A BETTER UNDERSTANDING OF THE PHYSICS AND CHEMISTRY OF GAS SURFACE AND GAS-GAS INTERACTIONS IN THE HYPERTHERMAL REGIME IS NEEDED.

O AN UNDERSTANDING OF THE MECHANISM OF SURFACE CHEMICAL REACTIONS WOULD ALLOW QUANTITATIVE PREDICTION OF EFFECTS FOR NEW MATERIAL-OXYGEN DOSE COMBINATIONS WITHOUT EXHAUSTIVE TESTING AND COMPLETE SIMULATION.

O AN UNDERSTANDING OF THE SCATTERING PROCESS IS NEEDED TO PREDICT AND PERHAPS CONTROL ENERGY AND MOMENTUM ACCOMMODATION AND TO PREDICT SECONDARY EFFECTS OF SCATTERED ATOMS.

O CHEAPER METHODS OF MONITORING THE DENSITY OR FLUX OF ATMOSPHERIC SPECIES ARE NEEDED.

O PROBLEMS WITH SIMULATORS
 O PRESENCE OF IONS, METASTABLE AND EXCITED ATOMS OR MOLECULES
 O SIMULTANEOUS UV IRRADIATION
 O UNCERTAIN BACKGROUND VACUUM CONDITIONS
 O VELOCITY (ENERGY) PROFILE; (RATE = R[E]?)
 O ANGULAR DISTRIBUTION PROFILE (MORPHOLOGY)
 O FLUX RATE (R = k1?)

O FOR EACH EXPERIMENTAL APPARATUS CONDITION AND CHEMICAL SYSTEM IT MUST BE REASONABLY WELL ESTABLISHED THAT THE ABOVE FACTORS DO NOT MATERIALLY AFFECT REACTION MECHANISMS OR MEASURED RATES.

O NEEDED GLOW INFORMATION (IN-SPACE)

INTENSITY AS A FUNCTION OF:
 O WAVELENGTH
 O ALTITUDE
 O VELOCITY VECTOR
 O SURFACE MATERIAL
 O TIME AFTER LAUNCH
 O SPATIAL EXTENT

MOST IMPORTANT IS TO IDENTIFY THE SPECTRA OF THE EMITTING SPECIES
WHAT'S NEEDED TO ELUCIDATE REACTION MECHANISMS

MEASURE REACTION RATES AS FUNCTION OF:

- MATERIAL
- TEMPERATURE
- OXYGEN ATOM FLUX
- OXYGEN ATOM ENERGY

MATERIAL TYPES:

- ALIPHATIC AND AROMATIC POLYMERS OF DIFFERENT TYPES
- METALS
- OXIDES
- OTHER; E.G. C, MoS₂

MANY OF THE SURFACE REACTIONS ARE COMPLEX AND MULTI-STEPED. A VARIETY OF INSTRUMENTAL TECHNIQUES ARE NEEDED TO MEASURE THESE RATES AND MOST OF THESE STUDIES MUST BE DONE IN THE LABORATORY.

IN-SPACE TECHNOLOGY NEEDS

- IMPROVED TECHNIQUES FOR MEASURING REACTION RATES IN SPACE
- PRECISE, REPRODUCIBLE RATES MEASURED IN SPACE NEEDED FOR VERIFICATION OF SIMULATORS
- ATOMIC OXYGEN AND MOLECULAR NITROGEN DOSIMETERS
- NOVEL INSTRUMENTATION TO CHARACTERIZE IR-VISIBLE-UV GLOWS AND TEST GLOW HYPOTHESES
- IMPROVED INSTRUMENTATION FOR SCATTERING STUDIES TO VERIFY WORK AT SIMULATORS
METEOROID AND DEBRIS ENVIRONMENT

- 200 KG OF METEOROID MASS EXIST WITHIN 2000 KM OF EARTH'S SURFACE.

- 3,000,000 KG OF MAN-MADE OBJECT MASS EXIST WITHIN 2000 KM OF EARTH'S SURFACE.

- AVERAGE TOTAL INCREASE IN LEO DEBRIS HAS BEEN 5% PER YEAR.

- DEBRIS HAZARD IS LARGE ENOUGH TO AFFECT THE SPACE STATION DESIGN.
 - IMPACT DAMAGE FROM LARGE PIECES.
 - SURFACE DEGRADATION/EROSION FROM SMALL PARTICLES.

TECHNOLOGY NEEDS: NEAR TERM

- SPACE-BASED DEBRIS DETECTION SYSTEMS NEED TO BE DEVELOPED TO MONITOR LEO ENVIRONMENT IN DIFFERENT SPECTRAL RANGES.

- NEW MATERIALS AND CONCEPTS FOR SHIELDING SPACECRAFT MUST BE DEVELOPED.

TECHNOLOGY NEEDS: LONGER TERM

- SPACE-BASED COLLISION WARNING SYSTEMS NEED TO BE DEVELOPED FOR MANNED AND UNMANNED SPACECRAFT.

- DEBRIS REMOVAL SYSTEMS SHOULD BE STUDIED.

- IN-SITU METHODS OF REMOVING OR DEFLECTING A DEBRIS PIECE WHEN IMPACT IS IMMINENT MUST BE DEVELOPED.

- SPACECRAFT MATERIALS MUST BE DESIGNED WHICH WILL MINIMIZE DEGRADATION IN ORDER TO MINIMIZE FUTURE ENVIRONMENT CONTAMINATION, PRESERVE OTHER SPACE ENVIRONMENT FROM DEBRIS CONTAMINATION.
IN-SPACE EXPERIMENTS NEEDS: ENVIRONMENT DETECTION

- Extend data on distribution of debris particle size with altitude to particles ≤ 10 cm through 2000 km altitude.
- Determine mean albedo (% reflectivity) or albedos of debris.
- Monitor temporal changes in LEO debris environment.
- Monitor LEO debris environment changes after specific events.

IN-SPACE EXPERIMENT NEEDS: COLLISION WARNING DEVELOPMENT

- Optimize detector selection from LEO debris thermal heating information.
- Identify noise or false signal sources which could affect collision warning systems.
- Test detector systems in situ.
INTRODUCTION/BASIC BACKGROUND
ENVIRONMENT & SHIELD CAPABILITY

- Debris has become much more severe than micrometeoroids
- Debris flux below 10 cm based primarily on analytic projections

INTRODUCTION AND BACKGROUND DEBRIS CONSIDERATIONS

<table>
<thead>
<tr>
<th></th>
<th>In-Space</th>
<th>Ground Simulation Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>1 - 14 km/sec</td>
<td>To 8 km/sec for 1 cm dia spherical Al particle</td>
</tr>
<tr>
<td></td>
<td>Peak flux around 12 km/sec</td>
<td></td>
</tr>
<tr>
<td>Particle shape</td>
<td>Fragments</td>
<td>Spheres and rods</td>
</tr>
<tr>
<td>Alloy</td>
<td>Approx. 90% aluminum</td>
<td>Al and to a lesser extent other material</td>
</tr>
<tr>
<td>Mass</td>
<td>Estimates only</td>
<td>To 18 gm</td>
</tr>
<tr>
<td>Angle of Impact</td>
<td>All</td>
<td>Studied for spherical particles</td>
</tr>
</tbody>
</table>
2.2 Micrometeoroids and Debris

Design Considerations for Space Debris: An Industry Viewpoint

Dr. H.W. Babel
McDonnell Douglas Astronautics Company

TECHNOLOGY NEEDS
PREVENT LOSS OF SPACECRAFT OR LIFE FROM LARGE PARTICLES

Large size debris particles (>10 cm)
- Spacecraft avoidance maneuver
 - Need high accuracy tracking system
 - Need early warning - 2 hours before impact
- Mitigation concepts
 - Deflect particle orbit, disintegrate, vaporize
 - Sweep out the debris

TECHNOLOGY NEEDS
PREVENT LOSS OF SPACECRAFT OR LIFE FOR 1 TO 10 CM PARTICLES

Medium size debris particles (~ 1 to 10 cm)
- Validation of flux predictions based on debris measurements
- Definition of debris particles - shape, alloy, and size
- Ability to test design concepts under realistic conditions
 - Ground test facilities
 - In-space
- Lighter weight shield concepts
EXAMPLES OF POSSIBLE IN-SPACE EXPERIMENTS RELATIVE TO DEBRIS

Debris definition concept

- Move active debris capture system in debris path - slow down and capture such as done for bullets
- Develop a large area passive capture system that can be deployed; e.g., multiple pocket capture systems (in concept like a down quilt)

Debris mitigation

- Passive large area screens that slow particles as they pass through, so they re-enter quickly. Select screen materials that do not cause secondary ejecta

Shield evaluation in space

- Seed projectile(s) and subsequently deploy tethered shield concept to be impacted. Ensure impact and retrieve shield for post test evaluation. Measure relative velocity between particle and shield. Seeded particles to re-enter quickly if experiment aborted.
INTRODUCTION/BACKGROUND

- Natural Environment - micrometeoroids: constant
- Artificial Space Debris: increasing
 - Sources and Sinks
 - Trackable and Untrackable
- Hazards from Untrackable Space Debris
 - Mission Catastrophic
 - Mission Degrading
- Necessity of Modeling and Simulating Debris

TECHNOLOGY NEEDS

- Modeling
 - Current Environment
 - Future Scenarios
- Simulation
 - Debris Generation and Evolution
 - Specific Hazard Analysis
 - Spacecraft Breakup Models
- Debris Detection and Verification
- Model Validation
Space Environmental Effects

2.2 Micrometeoroids and Debris

Space Debris Environment Definition

Dr. Robert D. Culp
University of Colorado
Department of Aerospace Engineering Sciences, Colorado Center for Astrodynamics Research

<table>
<thead>
<tr>
<th>MODELING AND SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>o University of Colorado Debris Models</td>
</tr>
<tr>
<td>o NASA Johnson Space Center Analytic Debris Models</td>
</tr>
<tr>
<td>o U.S. Air Force Space Command SMART Catalog</td>
</tr>
<tr>
<td>- Extended Catalog</td>
</tr>
<tr>
<td>- Statistical Database for Space Debris</td>
</tr>
<tr>
<td>- Hybrid Database</td>
</tr>
<tr>
<td>o Feedback from Debris Sampling</td>
</tr>
<tr>
<td>- Validation of Models</td>
</tr>
<tr>
<td>- Updating of Databases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN-SPACE EXPERIMENTATION NEEDS/VOIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>o On-Orbit Sampling</td>
</tr>
<tr>
<td>- Quicksat</td>
</tr>
<tr>
<td>- LDEF Retrieval and Analysis</td>
</tr>
<tr>
<td>- Future Sampling</td>
</tr>
<tr>
<td>o Damage-model Validation</td>
</tr>
<tr>
<td>- Breakup Simulation</td>
</tr>
<tr>
<td>- Reconciliation of Results with Other Space Experiments</td>
</tr>
<tr>
<td>o Shielding Testing and Model Validation</td>
</tr>
</tbody>
</table>

347
Summary/Recommendations

- **Modeling/Simulation Development**
- **Detection/Sampling for Validation and Updating**
- **On-Orbit Hazard Verification**
- **On-Orbit Shielding Verification**
2.3 Charged Particles and Electromagnetic Radiation Effects

Effects of Charged Particles and Electromagnetic Radiation on Structural Materials and Coatings

W.S. Slemp and S.S. Tompkins
NASA Langley Research Center

BACKGROUND

- High doses of particle radiation degrade mechanical properties of polymeric films, adhesives and resin-matrix composites
- Precision space structures require low CTE, stiff materials
- Electron radiation with thermal cycling degrades CTE of polymeric-matrix composites
- Solar UV radiation affects optical and mechanical properties of most polymeric films and coatings
- Data not available on long-term effects of radiation and thermal cycling on structural materials and coatings in space

TECHNOLOGY PROGRAMS

- Precision segmented reflector (large deployable reflector)
- Space Station Freedom
- Space Defense Initiative
- Global Climate Change Program
- NASA base technology research on space environmental effects

CURRENT FLIGHT EXPERIMENTS

- LDEF (return late 1989)
- EOIM-3
- DELTA STAR
SPACE ENVIRONMENTAL EFFECTS

2.3 Charged Particles and Electromagnetic Radiation Effects

Effects of Charged Particles and Electromagnetic Radiation on Structural Materials and Coatings

W.S. Slemp and S.S. Tompkins
NASA Langley Research Center

TECHNOLOGY NEEDS

- Ability to predict useful lifetimes of films, coatings, adhesives, and structural materials in any space service environment
- Long-term synergistic effects data base (UV, e\(^-\), P\(^+\), temp. cycling)
- Accelerated testing methodology for simulation of real-time space radiation effects
- Standardized UV sources and test techniques
- Model compounds to elucidate radiation effects for degradation mechanism studies
- Materials designed to understand exposure environment
- Mechanical property testing in-space with radiation exposure

IN-SPACE NEEDS

- Radiation effects flight data for verification of laboratory testing and development of analytical models
- Radiation effects data in service environments of GEO, inner Van Allen belt, LEO equatorial and polar
- Space radiation environment data for protons < 10 meV and electrons < 1 meV
- Mechanical/optical property data in space
- "Smart" materials which monitor in-space performance
- Additional long-term flight opportunities
2.3 Charged Particles and Electromagnetic Radiation Effects

Effects of Charged Particles and Electromagnetic Radiation on Structural Materials and Coatings

W.S. Slemp and S.S. Tompkins
NASA Langley Research Center

SUMMARY

- Precision space structures are required for space antenna systems and most large space structural applications.

- Long-term in-space data needed to establish radiation durability.

- Long-term flights also needed in each proposed flight environment to provide:
 - Data to improve environment models
 - Data for laboratory correlation
 - Verification of long-term performance predictions from short-term flight and lab data
INTRODUCTION/BACKGROUND

WHAT WE ARE INTERESTED IN:

- DEFINING LONG TERM RADIATION EFFECTS ON ELECTRONIC SYSTEMS AND SENSORS.
- PLANNING LONG TERM MISSIONS IN HOSTILE RADIATION ENVIRONMENTS.
- PROTECTING AGAINST SINGLE EVENT UPSETS AND DOSAGE EFFECTS.

TECHNOLOGY NEEDS

NEEDS DUE TO NEW TECHNOLOGIES:

- REQUIRE METHODS FOR REDUCING SENSITIVITY TO HIGH-Z/HIGH ENERGY COSMIC RAY AND SOLAR FLARE PARTICLES (I.E., "VOTING", SPECIAL DESIGNS, NEW SHIELDING TECHNOLOGY).
- SENSITIVITY TO LATCHUP, DISPLACEMENT, AND HIGH ENERGY PROTONS MAY BECOME CONCERNS IN FUTURE GENERATIONS OF DEVICES.
- FIBER OPTICS AND OTHER TECHNOLOGIES THAT ARE "HARD" TO SEU'S AND OTHER RADIATION EFFECTS NEED TO BE DEVELOPED FOR SPACE USE.
- NEED TO DEVELOP COMPREHENSIVE TESTING METHODS FOR COMPONENTS (PARTICULARLY FOR SEU EFFECTS AND LONG TERM DOSAGE) THAT CAN SIMULATE IN-SPACE COMPOSITION AND ENERGY SPECTRA.
- REQUIRE COMPUTER MODELLING TOOLS FOR PREDICTING RADIATION EFFECTS ON NEW COMPONENTS.

NEEDS DUE TO EXTENDED MISSIONS:

- NEED NEW TESTING TECHNOLOGIES CAPABLE OF SIMULATING DOSE/RATE, TOTAL DOSE, AND ANNEALING.
- INTERNAL CHARGING OF COMPONENTS OVER LONG TIME PERIODS NEEDS TO BE DEFINED AND ARCING CHARACTERISTICS DEFINED.
- LONG TERM EFFECTS OF INDUCED RADIATION/HEATING ON COMPONENTS NEED TO BE DEFINED.
- UNIFORM TECHNIQUES FOR DEFINING/APPLYING RADIATION DESIGN MARGINS NEED TO BE DEVELOPED.
- NEW TECHNIQUES FOR HARDENING PARTS NEED TO BE DEVELOPED WITH PART EXPOSURES IN EXCESS OF $10^3 - 10^6$ RADS TYPICAL.
- REQUIRE INEXPENSIVE, RELIABLE RADIATION MONITORS CAPABLE OF BEING STANDARD "HOUSEKEEPING" ITEM ON ALL MISSIONS.
2.3 Charged Particles and Electromagnetic Radiation Effects

Effects on Space Systems: Technology Requirements for the Future

H. Garrett
Jet Propulsion Laboratory

TECHNOLOGY NEEDS (CONT.)

NEEDS DUE TO SIZE/PROLIFERATION:
- Require cheap/intrinsically 'hard' components for proliferation missions (I.E., phased array radar)
- Better shielding techniques to reduce mass requirements
- Accurate, user-friendly shielding models capable of modeling complex geometries are required
- Environmental impact—large sizes may modify radiation and particulate environments
- Better models of environment for mission planning and operations are required (Solar flares, geomagnetic storms, etc.)

NEEDS DUE TO NEW ENVIRONMENTS:
- Devices required to survive near nuclear reactors (SP-100) will need to withstand dosages in excess of $10^6 - 10^7$ rads
- Increasing utilization of the 1000-30000 km altitude range will require much more radiation-insensitive devices; both dose/rate and dosage effects will be of concern
- Long term missions in interplanetary and interstellar space will require self-annealing parts
- DoD-unique requirements for survivability (I.E., microwave environments, nuclear weapons) need to be included
- New, unexpected effects are likely; techniques for identifying and for rapidly coping with these are required

SUMMARY/RECOMMENDATIONS

SPACE RADIATION EFFECTS:
- Radiation effects on systems will be a continuing and potentially growing concern in the decades ahead. New, more stringent mission radiation requirements are inevitable
- A consistent, long range policy of monitoring the environment and evaluating new technologies is crucial to controlling the impact of radiation
- Increases in hardening and reductions in shielding mass requirements are the keys to substantial mission enhancement
- Ground test, modelling (environment and interaction), development of design guidelines, and in situ experimentation must go hand-in-hand

KEY EXPERIMENTS:
- Comprehensive electronic component testing facility
- Flare/storm prediction capability
- Standardized environmental monitoring packages
- In-space radiation testing facility
SPACE ENVIRONMENTAL EFFECTS
2.3 Charged Particles and Electromagnetic Radiation Effects

Electromagnetic and Plasma Environment Interactions: Technology Needs For the Future

G. Murphy
Jet Propulsion Laboratory

INTRODUCTION/BACKGROUND

- Missions of the future require technological advances in electromagnetics and space environment interactions.

- The drivers for these new technologies are three fold:
 1. Increased duration and reliability requirements;
 2. Increased complexity of payloads and subsystems;
 3. Increased susceptibility of complex sensors and subsystems.

- These factors are complicated by the need for increased power levels, provision for on-orbit integration/reconfiguration, and use of robotic servicers.

MISSION APPLICATIONS

- Space station attached payload and racks must be integrated on orbit.

- Systems will be flown that are too large to test by MIL-STD 461 methods and will not fit in screen rooms or test chambers.

- Large structures such as active element phased arrays require special consideration for ESD and EM compatibility.

- Materials that serve to protect a system change with age (UV, radiation, surface contamination, oxygen erosion, debris impact).

- New generation sensors and instruments need high density electronics, high clock frequencies, and low background noise.

- High power systems and their distribution architectures must consider EMI and plasma effects from inception.
TECHNOLOGY NEEDS

- THE NEEDS WILL BE FOCUSED ON THREE AREAS: EMI/EMC TECHNOLOGY; PLASMA/NEUTRAL INTERACTIONS; SENSOR DEVELOPMENT.

- THE EMI/EMC TECHNOLOGY NEEDS ARE DRIVEN BY SYSTEM AND OPERATIONAL REQUIREMENTS
 1. EM ENVIRONMENT MUST INCLUDE INTERACTION WITH THE PLASMA
 2. ESD DESIGN MUST BE COMPATIBLE WITH THERMAL REQUIREMENTS AND WEIGHT LIMITATIONS.
 3. SOFTWARE VERIFIED AS NON-SUSCEPTIBLE TO EMI
 4. METHODS OF DIAGNOSING AND SOLVING EMC PROBLEMS ON ORBIT

- PLASMA INTERACTIONS DESCRIBE INTERRELATIONSHIP BETWEEN THE PLASMA ENVIRONMENT (LEO, GE, INTERPLANETARY) AND THE SYSTEM

- ISSUES THAT NEED RESOLUTION IN ORDER TO ACCURATELY PREDICT THE CONSEQUENCES OF CERTAIN ENVIRONMENT/SYSTEM COMBINATIONS.
 1. PLASMA CHEMISTRY WITH CONTAMINANT EFFLUENTS
 2. CHARACTERIZATION OF MATERIALS (PHOTO EMISSION, SECONDARY PRODUCTION, ION SPATTERING ETC.)
 3. CONTROL OF CHARGE BUILDUP ON LARGE SURFACES
 4. MODEL OF COMBINED NEUTRAL/PLASMA ENVIRONMENTS NEAR LARGE OBJECTS
 5. BREAKDOWN THRESHOLDS, DISCHARGE CURRENTS AS FUNCTION OF GEOMETRY, MATERIAL, AND PLASMA DENSITY.

- TO BETTER UNDERSTAND AND MODEL THE ENVIRONMENT EFFECTS AND EMI, NEW SENSOR TECHNOLOGY MUST BE DEVELOPED.
 1. SFR'S AND OTHER FLIGHT QUALIFIED, LIGHT WEIGHT DIAGNOSTIC EQUIPMENT
 2. ION/NEUTRAL MASS SPECTRAL ANALYSIS WITH TRACE ELEMENT SENSITIVITY
 3. DISTRIBUTED SENSORS AS STANDARD COMPONENTS OF LARGE SYSTEMS
 4. MEASUREMENT OF DISTRIBUTION FUNCTION OF PARTICULATE MATERIALS
2.3 Charged Particles and Electromagnetic Radiation Effects

Electromagnetic and Plasma Environment Interactions: Technology Needs For the Future

G. Murphy
Jet Propulsion Laboratory

EXPERIMENTATION NEEDS

- GROUND BASED EXPERIMENTS/STANDARDS/MODELS

- EMI/EMC:
 1. TOOLS FOR SIMULATING ON-BOARD PERFORMANCE BASED ON GROUND TESTS.
 2. LONG-LIFE MATERIALS WITH GOOD CONDUCTIVITY/HEAT TRANSFER PROPERTIES
 3. TOOLS FOR VERIFYING SOFTWARE RELIABILITY IN EM ENVIRONMENT

- PLASMA INTERACTIONS
 1. CROSS SECTIONS FOR CHEMICAL REACTIONS BETWEEN AMBIENT AND CONTAMINANTS
 2. PREDICT ARC THRESHOLD WITH ACTIVE AND PASSIVE DEVICES AS FUNCTION OF GEOMETRY, MATERIAL, AND PLASMA DENSITY

- SENSORS
 1. CONVERT LABORATORY SENSORS TO SPACE ENVIRONMENT
 2. DEVELOP TECHNIQUES FOR MORE SENSITIVE SPECTROMETRY

EXPERIMENT NEEDS--FLIGHT

- EMI/EMC:
 1. FLIGHT TEST NEW CONDUCTIVITY COATINGS (LONGEVITY)
 2. VERIFY GROUND MEASUREMENTS OF ARCS

- PLASMA/INTERACTIONS
 1. MEASURE DYNAMICS OF PLASMA AND NEUTRAL GAS CLOUDS TO VERIFY AND IMPROVE MODELS
 2. CHARGING OF LARGE STRUCTURES IN WAKE AND IN POLAR ORBIT

- SENSORS
 1. INVESTIGATE USE OF SUPERCONDUCTING TECHNOLOGY IN SENSORS
 2. DEVELOPMENT OF SMALL, AUTONOMOUS DISTRIBUTED SENSORS.
NASA/SDI MEETING ON SPACE ENVIRONMENTAL EFFECTS

- Meeting held during mid 1988 to review technology needs for space environmental effects

- Results of meeting emphasized the following:
 - Subject for ongoing experiments
 - LDEF
 - EOIM III
 - Other missions such as Delta Star
 - Need for simulation facilities
 - Need for future experiment carriers for extensive study of effects

- In-STEP meeting was therefore focused more directly to in-space experiment needs that would be the subject of the next outreach solicitation

MISSION RELATIONSHIP

- Future national space missions are more complex, require long life and utilize more sensitive instrumentation

- Information gained over the last decade has identified aspects of the environment which could be life limiting to large spacecraft

- Debris - impact by 30 cm size object in 30 years

- Atomic oxygen - complete removal by erosion of space station uncoated structural tubes in 15 years

- Successful accomplishment of future missions requires increased emphasis on environmental effects

- Long life enhances environmental effects

- New understanding of environment and effects on spacecraft
WHY IN-SPACE EXPERIMENTS?

- WELL CHARACTERIZED ENVIRONMENT NECESSARY TO SUPPORT PROPER DESIGN OF FUTURE MISSIONS - THEME ENCOURAGES BROAD BASE MEASUREMENTS

- ENVIRONMENT SIMULATION DIFFICULT
 - NOT POSSIBLE TO SIMULATE MANY ASPECTS OF THE ENVIRONMENT - ENERGY, COMPOSITION
 - INTERACTION OF THE ENVIRONMENT WITH SURFACES IS SENSITIVE TO MANY PARAMETERS WHICH ARE HARD TO CONTROL
 - NEED IN-SPACE DATA TO VERIFY GROUND BASED SIMULATION SYSTEMS

ATMOSPHERIC EFFECTS AND CONTAMINATION SUMMARY

To develop materials and material configurations which are environmentally durable and functionally compatible with long duration space missions, it is necessary to perform in-space experiments to quantify and characterize interactions with the atmospheric and space system environment. This data will provide for an understanding of mechanisms involved and enable the development of ground based modeling and simulation technologies needed for materials and material applications development.

Critical technology needs identified include: active measurement of atomic oxygen flux for accurate real time data on all atmospheric interaction phenomena; glow phenomena information for compatible sensor design; contamination effects and atomic oxygen erosion data (direct and scattered reactions) for durability and functional performance prediction; contamination effects data and abatement techniques for long term space system durability and spacecraft/atmosphere interaction.
Space Environmental Effects Critical Technology Requirements

Lubert J. Leger
NASA Johnson Space Center

ATMOSPHERIC EFFECTS AND CONTAMINATION SUMMARY

<table>
<thead>
<tr>
<th>PRIORITY</th>
<th>AVERAGE SCORE</th>
<th>IN-SPACE TECHNOLOGY NEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>Active Measurement of A/O flux</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>Glow - LEO</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>Data to enable ground based modeling and simulation</td>
</tr>
<tr>
<td>3</td>
<td>1.9</td>
<td>Materials Erosion</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>Contamination - All Altitudes</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>Demonstration of Contamination abatement/reduction techniques</td>
</tr>
<tr>
<td>5</td>
<td>2.1</td>
<td>Drag - Low Earth Orbit</td>
</tr>
<tr>
<td>5</td>
<td>2.1</td>
<td>Measurements of Contamination generation/transport/effects (all phases) for improved model.</td>
</tr>
<tr>
<td>6</td>
<td>2.7</td>
<td>Contamination Design guidelines Experiments</td>
</tr>
<tr>
<td>6</td>
<td>2.7</td>
<td>Measurements of perturbations to the ambient environment due to spacecraft/ atmospheric interactions.</td>
</tr>
</tbody>
</table>

MICROMETEOROIDS AND DEBRIS SUMMARY

- CHARACTERIZATION OF THE LEO DEBRIS ENVIRONMENT AND ITS EFFECT ON SPACECRAFT
 - LEO ENVIRONMENT PARTICLE SIZE DISTRIBUTION, SPECTRAL PROPERTIES CHARACTERIZATION
 - LONG TERM SURFACED DEGRADATION FROM DEBRIS
 - IN-SPACE SAMPLING OF COLLISION FRAGMENTS: SIZE, SHAPE AND COMPOSITION

- IN-SPACE TESTING OF PROTECTION AND MITIGATION TECHNIQUES FROM LEO DEBRIS
 - DEVELOPMENT AND VERIFICATION OF COLLISION WARNING SYSTEMS TECHNOLOGY IN-SITU
 - EVALUATION OF SHIELD CONCEPTS IN-SITU
 - EVALUATION AND VERIFICATION OF MITIGATION TECHNIQUES IN-SITU
MICROMETEOROIDS AND DEBRIS SUMMARY

<table>
<thead>
<tr>
<th>PRIORITY</th>
<th>AVERAGE SCORE</th>
<th>IN-SPACE TECHNOLOGY NEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.14</td>
<td>LEO PARTICLE DISTRIBUTION</td>
</tr>
<tr>
<td>2</td>
<td>2.27</td>
<td>COLLISION WARNING SYSTEM</td>
</tr>
<tr>
<td>3</td>
<td>2.29</td>
<td>IN-SPACE DEBRIS SAMPLING</td>
</tr>
<tr>
<td>4</td>
<td>2.44</td>
<td>IN-SITU SHIELD EVALUATION</td>
</tr>
<tr>
<td>5</td>
<td>2.80</td>
<td>SURFACE DEGRADATION</td>
</tr>
<tr>
<td>6</td>
<td>3.00</td>
<td>MITIGATION TECHNIQUES</td>
</tr>
<tr>
<td>7</td>
<td>3.29</td>
<td>EXTERNAL TANK USE</td>
</tr>
</tbody>
</table>

CHARGED PARTICLES AND ELECTROMAGNETIC RADIATION EFFECTS SUMMARY

- MONITORING OF RADIATION ENVIRONMENT EFFECTS ON MATERIALS AND ICs
 - NEED LONG TERM, CONTINUOUS MEASUREMENTS OF MECHANICAL, OPTICAL, AND ELECTRICAL PROPERTIES IN CRITICAL ORBITS (LEO, GEO, POLAR)
 - NEED DATA TO VALIDATE GROUND TESTING TECHNIQUES
 - NEED DATA TO UPGRADE/VALIDATE RADIATION AND SOLAR FLARE MODELS

- NEED TO DETERMINE EFFECTS OF CHEMICAL VENTING IN LEO ON ELECTROMAGNETIC INTERFERENCE AND SURFACE DEPOSITION

- DEVELOP AND TEST IN SPACE SIMPLE, SMALL AUTONOMOUS SENSORS FOR SURFACE CHARGING, RADIATION EXPOSURE AND ELECTRIC FIELDS
Charged Particles and Electromagnetic Radiation Effects Summary

<table>
<thead>
<tr>
<th>Priority</th>
<th>Average Score</th>
<th>IN-SPACE TECHNOLOGY NEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7</td>
<td>Monitor in-situ environment on continuing basis.</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>Validate ground test techniques using in-space experiments.</td>
</tr>
<tr>
<td>3</td>
<td>1.87</td>
<td>Long-term in-space data in proposed orbital environments.</td>
</tr>
<tr>
<td>4</td>
<td>1.91</td>
<td>Mechanical / optical properties measured in space in a variety of orbits.</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>Determine electromagnetic and deposition consequences from the venting of expected chemicals in the low Earth orbit environment.</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>Data to upgrade / validate radiation & solar flare models.</td>
</tr>
<tr>
<td>7</td>
<td>2.22</td>
<td>Develop and test simple, small autonomous sensors for surface charging, radiation exposure and electric field.</td>
</tr>
<tr>
<td>8</td>
<td>2.44</td>
<td>Understand the material / plasma interface by testing long-term conductivity of dielectrics and effectiveness of conductive coatings.</td>
</tr>
<tr>
<td>9</td>
<td>2.44</td>
<td>Determine arc onset voltages of expected dielectric / metal geometries and test discharge EMI in Low Earth orbit conditions.</td>
</tr>
<tr>
<td>10</td>
<td>2.45</td>
<td>"Smart" materials which help correlate flight data to laboratory data.</td>
</tr>
<tr>
<td>11</td>
<td>2.6</td>
<td>Validate SEU models with in-space tests.</td>
</tr>
<tr>
<td>12</td>
<td>2.6</td>
<td>Develop permanent in-space radiation testing facility. Should be in worst part of radiation belts.</td>
</tr>
<tr>
<td>13</td>
<td>2.9</td>
<td>Quantify internal charging effects on components.</td>
</tr>
<tr>
<td>14</td>
<td>3.1</td>
<td>Test fiber optics systems behavior under long-term exposure.</td>
</tr>
</tbody>
</table>
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 3 of 8
POWER SYSTEMS & THERMAL MANAGEMENT

SUMMARY OF THE NASA/OAST SPONSORED
IN-SPACE RESEARCH, TECHNOLOGY AND
ENGINEERING (RT&E) WORKSHOP

HELD AT:
WILLIAMSBURG, VA 8-10 OCTOBER, 1985

- WORKSHOP BACKGROUND -

- ADVENT OF THE SPACE STATION MARKS A NEW ERA OF PERMANENTLY MANNED PRESENCE IN SPACE
- EXISTING TECHNOLOGY BASE NEEDED EXPANSION IN SEVERAL KEY AREAS
- INDUSTRY AND UNIVERSITY INVOLVEMENT IN SPACE ACTIVITIES ANTICIPATED TO INCREASE
- PERCEIVED NEED TO BRING TOGETHER INDUSTRY, UNIVERSITY, AND GOVERNMENT RESEARCHERS IN A COMMON FORUM

Roy McIntosh
NASA Goddard Space Flight Center
Review of Previous Workshops (Williamsburg 10/85, Ocean City 6/88)

Roy McIntosh
NASA Goddard Space Flight Center

- WORKSHOP GOALS -

- IDENTIFY FUTURE NEEDS FOR IN-SPACE EXPERIMENTS IN SUPPORT OF SPACE TECHNOLOGY DEVELOPMENT, ESPECIALLY AS RELATED TO THE SPACE STATION
- VALIDATE NASA'S IN-SPACE EXPERIMENT THEME AREAS
- INITIATE A LONG-TERM PROGRAM OF OUTREACH TO UNIVERSITIES AND PRIVATE INDUSTRY TO ESTABLISH A USER COMMUNITY NETWORK
- FORM THE BASIS FOR ESTABLISHMENT OF ONGOING TECHNICAL WORKING GROUPS

- WORKSHOP THEME AREAS -

- SPACE STRUCTURES (DYNAMICS & CONTROL)
- FLUID MANAGEMENT
- SPACE ENVIRONMENTAL EFFECTS
- ENERGY SYSTEMS & THERMAL MANAGEMENT
- INFORMATION SYSTEMS
- AUTOMATION & ROBOTICS
- IN-SPACE OPERATIONS
ENERGY SYSTEMS AND THERMAL MANAGEMENT

KEY TECHNOLOGY ISSUES

FUNDAMENTAL PHENOMENA
- THERMAL TRANSPORT
 - PHASE CHANGE SYSTEMS
- THERMAL STORAGE
 - SOLID/LIQUID CONTAINMENT
 - HEAT FLOW MANAGEMENT

ENVIRONMENTAL FACTORS
- ATOMIC OXYGEN
- SPACE PLASMA
- MICROMETEOROIDS

PERFORMANCE TESTING
- COMPONENTS/SUBSYSTEM
- SYSTEMS

WORKSHOP RESULTS
KEY TECHNOLOGY ISSUES

- FUNDAMENTAL PHENOMENA
 - HEAT TRANSFER IN MICRO-GRAVITY
 - PHASE CHANGE/THERMAL STORAGE

- ENVIRONMENTAL CONCERNS
 - MICROMETEOROIDS, ATOMIC OXYGEN, SPACE PLASMA

- PERFORMANCE TESTING (IN-SPACE)
 - TWO-PHASE COMPONENTS AND SUBSYSTEMS
 - TWO-PHASE SYSTEMS
ENERGY SYSTEMS AND THERMAL MANAGEMENT

GENERAL OBSERVATIONS

- Much of proposed experimental effort could be conducted on the ground.
- Many proposed experiments were appropriate for precursor shuttle flight.
- Some experiments were not suited for shuttle or space station.
- Most experiments were at the "idea" level - minimal technical detail.
- Two fundamental research areas were identified as requiring space flight:
 - Phase change/heat transfer phenomena in zero-G
 - Environmental effects.
- Advanced power and thermal systems will require in-space experimental support.

- WORKSHOP RESULTS - FUTURE ACTIVITIES

- 1986: Announcement of opportunity for in-space experiments
 - 231 proposals received
 - 41 proposals selected, mostly for definition phase effort.
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 3 of 8
POWER SYSTEMS & THERMAL MANAGEMENT

Background and Objectives

Review of Previous Workshops (Williamsburg 10/85, Ocean City 6/88)

Roy McIntosh
NASA Goddard Space Flight Center

SUMMARY OF THE NASA/OAST SPONSORED WORKSHOP ON TWO-PHASE FLUID BEHAVIOR IN A SPACE ENVIRONMENT

HELD AT:
OCEAN CITY, MARYLAND 13-14 JUNE, 1988

-GENESIS OF WORKSHOP-

• NASA HQ RECEIVED A LARGE NUMBER OF PROPOSALS WHICH FOCUSED ON RESEARCH INTO TWO-PHASE FLOW PHENOMENA IN A MICROGRAVITY ENVIRONMENT. THIS SPOTLIGHTED THE PROBLEM.

• COST AND MANIFESTING CONSTRAINTS PROHIBIT MORE THAN A FEW SELECT FLIGHT EXPERIMENTS.

• CONCEPT OF A COORDINATED FLIGHT TEST PROGRAM DEVELOPED.

• HEADQUARTERS REQUESTED GSFC TO ORGANIZE AND CONDUCT A WORKSHOP TO BEGIN PLANNING FOR THIS TEST PROGRAM.
Background and Objectives

Review of Previous Workshops (Williamsburg 10/85, Ocean City 6/88)

Roy McNintosh
NASA Goddard Space Flight Center

- WORKSHOP GOALS -

- IDENTIFY AND CATEGORIZE/PRIORITIZE THE TECHNICAL ISSUES, CONCERNS, AND PROBLEMS INVOLVED IN DESIGNING TWO-PHASE THERMO-FLUID DYNAMIC SYSTEMS FOR SPACE APPLICATIONS.

- CONCEPTUALIZE POSSIBLE TECHNOLOGIES AND FLIGHT EXPERIMENTS TO ADDRESS THE ISSUES IDENTIFIED.

The above will provide the primary inputs towards definition of the test program. Workshop itself does not seek to define test program.

- WORKSHOP RESULTS -

MAJOR TECHNICAL ISSUES

HARDWARE NEEDS:
- HEAT PUMPS
- LOW WEIGHT RADIATORS
- ADVANCED HEAT PIPES
 - CRYOGENIC
 - UPPER MID-TEMPERATURE (e.g. WATER)
 - HIGH TEMPERATURE
- IMPROVED MATERIALS
- STABILITY ENHANCEMENT DEVICES
- HIGH FLUX EVAPORATORS
- VAPOR SEPARATORS
<table>
<thead>
<tr>
<th>PART 2: CRITICAL TECHNOLOGIES</th>
<th>INSTEP TECHNOLOGY THEMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theme 3 of 8 POWER SYSTEMS & THERMAL MANAGEMENT</td>
<td>Theme 3 of 8</td>
</tr>
<tr>
<td>Background and Objectives</td>
<td></td>
</tr>
<tr>
<td>Review of Previous Workshops (Williamsburg 10/85, Ocean City 6/88)</td>
<td></td>
</tr>
<tr>
<td>Roy McIntosh</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
</tbody>
</table>

WORKSHOP RESULTS - MAJOR TECHNICAL ISSUES

HARDWARE NEEDS:
- HEAT PUMPS
- LOW WEIGHT RADIATORS
- ADVANCED HEAT PIPES
 - CRYOGENIC
 - UPPER MID-TEMPERATURE (e.g. WATER)
 - HIGH TEMPERATURE
- IMPROVED MATERIALS
- STABILITY ENHANCEMENT DEVICES
- HIGH FLUX EVAPORATORS
- VAPOR SEPARATORS

BASIC RESEARCH NEEDS:
- TWO-PHASE INSTABILITIES
- PROPERTIES OF MATERIALS
- ANALYTICAL MODELS
- EMPIRICAL MODELS FOR DESIGN PURPOSES
INSTEP 88 WORKSHOP

OBJECTIVES

- **REVIEW STATE OF TECHNOLOGY READINESS IN**
 - CONVENTIONAL POWER SYSTEMS
 - NUCLEAR AND DYNAMIC POWER SYSTEMS
 - THERMAL MANAGEMENT

- **IDENTIFY CRITICAL TECHNOLOGY NEEDS**
 - FOR IN SPACE EXPERIMENTS
 - GOVERNMENT
 - INDUSTRY
 - UNIVERSITY
 - AUDIENCE

- **PRIORITIZE NEEDS**
Theme 3 of 8

POWER SYSTEMS & THERMAL MANAGEMENT

3.1 Dynamic and Nuclear Power Systems

Dynamic and Nuclear Systems

Dr. John M. Smith
NASA Lewis Research Center

MISSION APPLICATIONS

- EARTH OBSERVING MISSIONS
- MATERIALS PROCESSING PLATFORMS
- SPACE BASED AIR/OCEAN TRAFFIC CONTROL RADAR
- PRODUCTION, MANAGEMENT, STORAGE OF CRYO FLUIDS
- GEO COMMUNICATIONS PLATFORM
- MARS AND/OR PHOBOS SAMPLE ACQUISITION, ANALYSIS, RETURN
- PLANETARY ROVERS (PILOTED AND ROBOTIC)
- LUNAR AND ASTEROID RESOURCE UTILIZATION
- SPACE TRANSFER VEHICLE (NEP AND SEP)
- LUNAR OUTPOSTS TO EARLY MARS OUTPOSTS
- FAR OUTER PLANET ORBITER
- INTERPLANETARY TRAVEL

INTRODUCTION AND BACKGROUND

- PAST EXPERIENCE
 NERVA/ROVER
 SNAP 10A
 NUCLEAR/ THERMIONICS
 SPACE RANKINE AND BRAYTON
 SOLAR DYNAMIC CONCENTRATOR AND RECEIVER
 RTG - 22 U.S. SPACECRAFT

- PRESENT
 GPHS RTG
 GALILEO
 ULYSSES

- FUTURE
 MOD RTG
 DIPS
 SOLARDYNAMICS
 SP 100 THERMEOLECTRICS
 SP-100 STIRLING
 NUCLEAR/THERMIONICS

- DREAMS
 NUCLEAR FUSION
 ANTI MATTER
 ETC.
TECHNOLOGY NEEDS:

- **NUCLEAR**
 - HIGH POWER/ENERGY
 - LONG LIFE/HIGH RELIABILITY
 - AUTONOMOUS OPERATION
 - 100% SAFE

- **DYNAMIC POWER CONVERSION SYSTEMS**
 - 2 PHASE FLOW - RANKINE
 - START-UP/SHUT DOWN/RESTART - RANKINE
 - GAS BEARINGS - Brayton and Stirling
 - COMPACT/LIGHTWEIGHT RADIATORS

- **SOLAR DYNAMIC SYSTEMS**
 - LIGHTWEIGHT, HIGH HEAT CAPACITY, HIGH THERMAL CONDUCTIVITY
 - THERMAL ENERGY STORAGE (TES) SYSTEMS
 - SPACE VERIFICATION OF TES VOID THEORY AND GROUND EXPERIMENTS
 - THERMAL CONTROL AND ENVIRONMENTAL PROTECTION COATINGS FOR CONCENTRATOR SURFACES

- **POWER MANAGEMENT AND DISTRIBUTION**
 - HIGH POWER/VOLTAGE
 - HIGH TEMPERATURE
 - RADIATION RESISTANT
 - FAULT TOLERANT/AUTONOMOUS

- **MATERIALS**
 - TESTING IN COMBINED SPACE ENVIRONMENT
 - SURFACE COATINGS/MODIFICATION FOR HIGH EMISSIVITY RADIATORS
 - REFRACTORY METAL DATA BASE FOR HIGH TEMPERATURE DYNAMIC AND NUCLEAR SYSTEMS
<table>
<thead>
<tr>
<th>Theme 3 of 8</th>
<th>POWER SYSTEMS & THERMAL MANAGEMENT</th>
<th>Theme 3 of 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Dynamic and Nuclear Power Systems</td>
<td>Dynamic and Nuclear Systems</td>
<td></td>
</tr>
<tr>
<td>Dr. John M. Smith</td>
<td>NASA Lewis Research Center</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY AND RECOMMENDATIONS

- **Dynamic and Nuclear Systems require in-space experiments**
 - Basic research to provide design data
 - Component testing to verify design data

- In-space experiments provide only true test of combined space environmental effects
Dynamic and Nuclear Space Power Systems

<table>
<thead>
<tr>
<th>Heat Source</th>
<th>Type</th>
<th>Static Conv.</th>
<th>Dynamic Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>Isotope REACTOR</td>
<td>TE (SP-100 Ti (TFE))</td>
<td>Rankine ORGANIC LIQUID METAL BRAYTON STIRLING</td>
</tr>
<tr>
<td>Solar</td>
<td>PV *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>H_2O_2</td>
<td>BATTERIES * FUEL CELLS *</td>
<td>OPEN BRAYTON</td>
</tr>
</tbody>
</table>

* NOT CONSIDERED AS PART OF DYNAMIC AND NUCLEAR SYSTEM WORKSHOP
TECHNOLOGY NEEDS

Reactors
- High Temp. Transient Fuel for Burst Power & Propulsion
- Well Characterized High Temp./Strength Materials
- Material Fabrication & Joining

Shielding
- Low Mass Shield Material/Configurations
- Temperature Tolerant Shield Materials
- Improved MCNP Codes/Experiment Validation

Conversion
- Improved Performance Passive Conversion
- Reliable Space Qualified Dynamic Conversion
- High Temp. Materials, Bearings/Seals
- Spacecraft Compatible - Jitter, Effluents, etc.

Structure
- Fabrication & Joining in Micro/Zero Gravity

Thermal Management
- Low Mass Radiators
- Thermal Coatings
- Low Mass Survivability Techniques
- Fault Tolerant - Self Healing Structures
- Low Cost/High Performance Heat Pipes

Instrumentation & Control
- Super Rad Hard Electronics (Instr. & Communications)
- Reliable Fault Tolerant Architecture
- Hybrid Packaging VLSI Components
- Long Life High Temp/Rad Tolerant Sensors

Power Management & Distribution
- High Performance, Low Mass Hardware
- High Voltage Transformation, Insulation & Distribution
Theme 3 of 8

POWER SYSTEMS & THERMAL MANAGEMENT

3.1 Dynamics and Nuclear Power Systems

Dynamic & Nuclear Power Systems

Dr. J.S. Armijo
General Electric Astro Space Division

IN-SPACE EXPERIMENTS

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>EXPERIMENT</th>
<th>TIME FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACTOR COOLANT LOOP</td>
<td>He GAS COLLECTION AND RETENTION IN LIQUID METAL COOLANTS IN MICRO AND ZERO GRAVITY</td>
<td>'92+</td>
</tr>
<tr>
<td>REACTOR COOLANT LOOP CONVERSION</td>
<td>TWO PHASE SOLID/LIQUID PUMPING, FLOW AND SEPARATION AND MICRO ZERO GRAVITY</td>
<td>'92+</td>
</tr>
<tr>
<td>REACTOR COOLANT LOOP CONVERSION</td>
<td>TWO PHASE LIQUID/GAS SEPARATION AND GAS ACCUMULATION IN WORKING FLUIDS AND COOLANT LOOPS</td>
<td>'92+</td>
</tr>
<tr>
<td>REACTOR COOLANT LOOP</td>
<td>GAS BUBBLE NUCLEATION AND GROWTH PHENOMENA IN LIQUID METALS</td>
<td>'92+</td>
</tr>
<tr>
<td>REACTOR COOLANT LOOP CONVERSION</td>
<td>FREEZE/THAW OF LIQUID METALS IN-SPACE, INCLUDING VOID FORMATION AND DISTRIBUTION</td>
<td>'92+</td>
</tr>
<tr>
<td>STRUCTURE MATERIALS</td>
<td>ATOMIC OXYGEN CORROSION RATES OF HIGH TEMP STRUCTURAL MATERIALS IN SPACE ENVIRONMENT</td>
<td>'92+</td>
</tr>
<tr>
<td>STRUCTURE MATERIALS FABRICATION OPERATIONS</td>
<td>MICRO GRAVITY/ZERO GRAVITY EFFECTS ON WELDING AND JOINING</td>
<td>'94+</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>MAINTENANCE & SERVICING OF POWER SYSTEMS BY ROBOTICS IN REMOTE MICRO-ZERO GRAVITY SPACE & PLANETARY ENVIRONMENTS</td>
<td>'94+</td>
</tr>
</tbody>
</table>
Theme 3 of 8
POWER SYSTEMS & THERMAL MANAGEMENT
3.1 Dynamics and Nuclear Power Systems

Dynamic & Nuclear Power Systems

Dr. J.S. Armijo
General Electric Astro Space Division

SUMMARY/RECOMMENDATIONS

- Space power is a precious commodity
- High power significantly enhances and enables future space missions
- Space experiments will provide assurance of high temperature liquid metal coolant, conversion working fluid & material performance and lifetime.
- Experiments are compatible with early to mid '90s STS operations

QUALITATIVE RANGE OF APPLICABILITY OF VARIOUS SPACE POWER SYSTEMS

[Diagram showing the range of electric power levels and duration of use for different power systems, including nuclear reactors, solar panels, and chemical systems, with a qualitative range for the 1990s and beyond.]
3.1 Dynamics and Nuclear Power Systems

Dynamic & Nuclear Systems

Prof. Mohamed S. El-Genk
University of New Mexico, Institute for Space Nuclear Power Studies

INTRODUCTION/BACKGROUND

SPACE POWER SYSTEM REQUIREMENTS

-- LONG LIFE (UP TO 10 YEARS)
-- HIGH RELIABILITY (> 0.95)
-- HIGH SPECIFIC POWER (UP TO 100 We/kg)
-- SAFETY (LAUNCH, IN-FLIGHT, IN-ORBIT, AND END OF MISSION DISPOSAL)
-- MODULARITY AND SCALABILITY
-- LOAD - FOLLOWING/AUTONOMOUS OPERATION

ADVANCED TECHNOLOGY NEEDS

-- HIGH TEMPERATURE MATERIALS
-- EFFICIENT AND RELIABLE CONVERTORS (STIRLING, THERMOELECTRICS, THERMIONIC, BRAYTON, RANKINE
-- INSTRUMENTATION/POWER CONDITIONING/HARD ELECTRONICS
-- ROBOTICS, SIMULATION, FAULT DETECTION AND AUTONOMY

MISSION APPLICATIONS

-- ORBITING PLATFORMS
-- SPACE STATION
-- LUNAR MISSION SUPPORT APPLICATIONS
-- MARS MISSION SUPPORT APPLICATIONS
-- SPACE AND LUNAR COMMERCIALIZATION ACTIVITIES
-- PLANETARY EXPLORATION SPACECRAFT
-- ORBITAL OPERATIONS SUPPORT VEHICLES
TECHNOLOGY NEEDS

THERMAL MANAGEMENT
- TWO-PHASE FLOW IN MICROGRAVITY
- TWO-PHASE SEPARATION IN MICROGRAVITY
- CONDENSATION AND SEPARATION OF NON-CONDENSIBLE GASES
- BOILING PHENOMENA/CRITICAL HEAT FLUX/BUBBLE NUCLEATION
- THAW AND RETHAW IN ORBIT OF LIQUID METAL SYSTEMS
- CRITICAL FLOW, SURFACE TENSION AND WETTING ANGLE IN-ORBIT
- INTERFACIAL PHENOMENA (LIQUID/LIQUID AND LIQUID/SOLID)
- HEAT PIPES TRANSIENT OPERATION AND STARTUP FROM FROZEN STATE

MATERIALS
- COMPATIBILITY WITH ADVANCED AND REFRACTORY-METAL ALLOYS
- SELF-DIFFUSION/SELF-WELDING
- ADVANCED RADIATOR FABRICS/HIGH TEMPERATURE COMPOSITS
- THERMAL AND ELECTRICAL INSULATION
- EFFECT OF CHARGED PARTICLES (ele & pro) ON OPTICAL PROPERTIES OF SPACECRAFT STRUCTURE MATERIALS
- EFFECTS OF ATOMIC OXYGEN ON POWER CABLES, INSULATION AND STRUCTURE MATERIALS
- LUNAR AND MARTIN SHEILDING MATERIALS

OPERATION AND SAFETY
- AUTOMATION AND AUTONOMY
- AUTOMATION AND CONTROL
- RELIABILITY
- IN-ORBIT THAW AND RETHAW
- CRITICAL FLOW AND INTERFACIAL PHENOMENA
- SURVIVABILITY
- TEMPERATURE, PRESSURE, AND RADIATION SENSORS
<table>
<thead>
<tr>
<th>IN-SPACE EXPERIMENTS NEEDS/VOIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROOF OF PRINCIPLE EXPERIMENTS (BASIC RESEARCH)</td>
</tr>
<tr>
<td>- TWO-PHASE AND TWO-COMPONENT FLOW EXPERIMENTS</td>
</tr>
<tr>
<td>- CHANGE-OF-PHASE (MELTING/FREEZING) OF PURE LIQUIDS AND LIQUID-GAS MIXTURES</td>
</tr>
<tr>
<td>- INTERACTION OF ATOMIC OXYGEN AND CHARGED PARTICLES WITH THERMAL AND ELECTRIC INSULATION, CABLES, STRUCTURE, RADIATOR SURFACE</td>
</tr>
<tr>
<td>- INTERFACIAL PHENOMENA (WETTING, SURFACE AREA, INTERFACE CHARACTERIZATION)</td>
</tr>
<tr>
<td>- SELF DIFFUSION/SELF WELDING AND MATERIAL COMPATIBILITY</td>
</tr>
<tr>
<td>- STARTUP OF HIGH TEMPERATURE HEAT PIPE FROM FROZEN STATE</td>
</tr>
<tr>
<td>- ADVANCED HIGH TEMPERATURE ALLOYS INVOLVING HEAVY/LIGHT ELEMENT</td>
</tr>
<tr>
<td>- BOILING AND CONDENSATION OF PURE LIQUIDS/ LIQUID MIXTURES</td>
</tr>
<tr>
<td>- CRITICAL FLOW EXPERIMENTS</td>
</tr>
<tr>
<td>CONCEPT VERIFICATION EXPERIMENTS OF DEVICES/COMPONENTS</td>
</tr>
<tr>
<td>- GAS/VAPOR SEPARATORS</td>
</tr>
<tr>
<td>- ADVANCED INSTRUMENTATION/ELECTRONIC DEVICES</td>
</tr>
<tr>
<td>- THAW AND RETHAW OF LIQUID METAL LOOPS</td>
</tr>
<tr>
<td>- ADVANCE RADIATOR CONCEPTS</td>
</tr>
<tr>
<td>- FAULT DETECTION/AUTONOMY SIMULATIONS</td>
</tr>
<tr>
<td>- ROTATING DEVICES (NUCLEAR REACTOR CONTROL SYSTEM, STIRLING ENGINE, BRAYTON TURBO-ALTERNATOR, AND RANKINE)</td>
</tr>
<tr>
<td>- LOSS-OF-FLOW SIMULATION</td>
</tr>
</tbody>
</table>
SUMMARY/RECOMMENDATIONS

SPACE POWER SYSTEMS DEVELOPMENT AND ADVANCED TECHNOLOGY NEEDS ARE BEST MET BY:

- BASIC RESEARCH AND PROOF OF PRINCIPLE IN-SPACE EXPERIMENTS

- CONCEPT VERIFICATION IN-SPACE EXPERIMENTS OF DEVICE/COMPONENTS

IN-SPACE EXPERIMENTS ARE NECESSARY TO THE SUCCESS OF FUTURE MISSIONS INCLUDING:

- MARS AND LUNAR MISSIONS
- SPACE COMMERCIALIZATION
INTRODUCTION/BACKGROUND

- **SPACE POWER SYSTEMS OF THE PAST:**
 - Low power-low voltage DC systems
 - High specific mass/high cost per Kw.

- **PRESENT DAY SPACE POWER SYSTEMS:**
 - Improved specific mass
 - Still low power-low voltage DC systems
 - Cost improvements have been accomplished

- **TO ENSURE A VIABLE SPACE PROGRAM, POWER SYSTEMS OF THE FUTURE MUST HAVE GREATLY IMPROVED ATTRIBUTES:**
 - High power-high voltage AC systems
 - Significant reductions in weight
 - Significant reductions in costs

MISSION APPLICATIONS

- Planetary exploration spacecraft
- Earth surveillance satellites
- Earth resource satellites
- Communication satellites
- Space station
- Orbiting platforms
- Lunar mission support applications
- Mars mission support applications
- Orbital operations support vehicles
- Cis-lunar transportation vehicles
- Space commercialization activities
3.2 Conventional Power Systems

Conventional Power Systems

Dr. Karl A. Faymon
NASA Lewis Research Center, Power Technology Division

TECHNOLOGY NEEDS/Critical Technologies

- SOLAR PHOTOVOLTAIC CELLS
 - High efficiency/weight solar cells
 - Radiation tolerant cells
 - Lightweight solar arrays
 - Deployable
 - Stowable
 - Refractive concentrator development

- HIGH ENERGY DENSITY STORAGE SYSTEMS
 - Advanced batteries
 - Regenerative fuel cells
 - Inertial energy storage
 - Superconducting magnetic energy storage

- POWER MANAGEMENT AND DISTRIBUTION SYSTEMS
 - High power/high voltage systems
 - High frequency AC components and devices
 - Fault tolerant power systems and components
 - Autonomous power systems operation

- MATERIALS
 - Materials for high power-high voltage systems
 - Insulators
 - Conductors
 - Thermal control materials
 - Materials compatibility with operating environment

- ENVIRONMENTAL INTERACTIONS
 - Design criteria for power system space operating environment compatibility
 - High voltage operation
 - Spacecraft charging/discharging phenomena
 - Design criteria for power system planetary environment compatibility
 - Lunar surface operation
 - Martian atmosphere environment

IN-SPACE EXPERIMENTS NEEDS/VOIDS

Power Technology Development Experiments Can Be Put Into The Following Three Broad Categories:

I. Proof of principle experiments (Basic research)

II. Concept verification experiments of devices/components

III. Design/operational readiness verification tests of systems in space

The Space Power In-Space Experiments program is directed toward category I and II experiments:

- In support of the OAST Base Research and Technology Program
- To support the Civil Space Technology Initiative
- To support the Pathfinder Program
3.2 Conventional Power Systems

Conventional Power Systems

Dr. Karl A. Faymon
NASA Lewis Research Center, Power Technology Division

IN-SPACE EXPERIMENTS NEEDS/VOIDS

IN-SPACE EXPERIMENTS SUPPORT

IN-SPACE EXPERIMENTS NEEDS/VOIDS

- SHORT TERM EXPOSURE TESTS OF PV CELLS
- EXPERIMENTS TO COMPILERE DATA ON ELECTROCHEMICAL PHENOMENA
- SHORT TERM MATERIALS TESTING
- ION THRUSTER EFFLUX CHARACTERIZATION
- DEVELOPMENT EXPERIMENTS ON ADVANCED BATTERIES
- PLASMA INTERACTION EXPERIMENTS FOR SOLAR ARRAYS
- IN-SPACE PERFORMANCE OF HEAT REJECTION TECHNIQUES
- LONG TERM EXPOSURE TESTS OF NEW SOLAR CELLS, BLANKETS, ARRAYS, ETC.
- LONG TERM EXPOSURE TESTING OF POWER SYSTEM MATERIALS
- IN-SPACE VERIFICATION OF HIGH-VOLTAGE POWER SYSTEMS INTERACTIONS-OPERATIONS

PHOTOVOLTAICS
HIGH ENERGY DENSITY STORAGE
POWER MANAGEMENT AND DISTRIBUTION
ENVIRONMENTAL INTERACTIONS
MATERIALS FOR POWER SYSTEMS

NOTES: A = NOT FUNDABLE. (Experiment dates shown are definition phase start dates.)
3.2 Conventional Power Systems

Conventional Power Systems

Stephen R. Peck
General Electric, Astro Space Division

High Priority Technology Objectives

- Better Batteries
 - Lower weight (higher w hr/lb)
 - Higher capacity (up to about 200 A-hr)
 - Longer activated shelf life (cost and schedule issue)
 - Less expensive
 - Improved volume efficiency
 - Improved thermal design/thermal interface (esp. for IPV NiH₂)
 - Lower temperature sensitivity
 - Higher operating temperature range
 - Most promising near-term technologies
 - CPV NiH₂ - Low cost and high performance
 - NaS - high performance

- Better Solar Cells/Arrays
 - Higher efficiency
 - Lower weight (thin cells, spray-on cover glass)
 - Improved radiation hardness
 - Eliminate need for cover glass
 - UV tolerant adhesive and cells
 - Lower cost
 - Built in reverse voltage protection
 - Improved interconnections
 - Concentrator technologies (especially for laser hardening)

- High voltage power distribution switch gear
 - 50, 100, 200 VDC operation
 - 1, 2, 5, 10, 20, 50, 100 ADC operation
 - Switches with "relay-like" characteristics
 - High efficiency (> 99.9%)
 - Permanent memory
 - High noise immunity, command/power ground isolation
 - Light weight
 - High reliability
 - Low cost
 - High surge-carrying capability
 - Fuses
 - High reliability, hermetically sealed
 - Sturdy, lightweight

- Capacitors
 - 100, 200, 400 VDC operation
 - 1, 10, 20, 50, 100 microfarads
 - Low ESR, high AC current rating
 - Volumetrically efficient
 - High resonant frequency
 - Light weight
 - Fail-safe (ie. no permanent short circuit failure mode)

- Radiation Hardened Power MOSFETs
 - Higher power ratings
 - Prompt response hard (X-ray)
 - Single event upset hard (cosmic ray)

- Combined Technology Power Control Building Blocks
 - Analog, digital, and power devices in standard building block packages (power hybrids)
 - Digital input signal, high power switch output.
 - Could be part of enabling technology for resonant and quasi-resonant converters with promise of
 > 2:1 power density improvement
3.2 Conventional Power Systems

Conventional Power Systems

Stephen R. Peck
General Electric, Astro Space Division

In-Space Experiments Needs (Near-Term)

- Qualification of most power systems equipment can be satisfactorily accomplished without in-space demonstration.
 - Exception - Equipment possibly sensitive to micro-gravity such as batteries.
- Biggest need for flight experiments is to better define the characteristics of certain space environments. Better environment models will permit improved performance analyses/predictions and thus better designs.
 - Space plasma
 - Effect on high-voltage solar arrays
 - ESD
 - Atomic oxygen
 - Charged particle environment in mid-altitude orbits
 - Possible effect on UV degradation

Suggested In-Space Experiment

Contamination, U-V and Charged Particle Induced Solar Array Effects

Concerns
Unresolved degradation of solar arrays due to space UV/charged particle radiation effects; Unresolved UV/charge particle degradation on advanced cell types.

Objectives
Establish design criteria for UV/charge particle radiation effects on contamination; Establish design criteria for UV/charged particle radiation effects on advanced cell types.

Variables
Orbit charged particle environment, contamination type and amount, solar cell type/configuration, solar array components other than solar cells (covers, adhesives, etc.)

Approach
Test articles flown would be designed to test for UV, radiation and contaminant degradation. Various thickness of coverglass would be used to factor radiation, etc. Entire I-V curves would be measured periodically.
3.2 Conventional Power Systems

Stephen R. Peck
General Electric, Astro Space Division

Suggested In-Space Experiment

Plasma Induced Solar Array Effects

Concerns Degradation of solar cells/solar arrays due to the plasma environment.

Objectives Establish design criteria for advanced array designs operating in plasma environments.

Variables Orbit/plasma environment, solar array operating voltage, solar cell type/configuration, solar array components other than solar cells (covers, adheresives, insulators, etc.), solar array layout.

Approach Test articles to be flown would be designed to include as many advanced concepts as practical.
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 3 of 8
POWER SYSTEMS & THERMAL MANAGEMENT

3.2 Conventional Power Systems

Conventional Power Systems

R.F. Askew
Auburn University, Center for Commercial Development of Space Power, Space Power Institute

OVERVIEW

- SPACE POWER SYSTEMS
 - MULTIDISCIPLINARY TECHNOLOGY REQUIRED
 - SYSTEM ADVANCES ARE INCREMENTAL
 - UNIQUE POWER-ENVIRONMENT COUPLING

- CURRENT STATE-OF-ART
 - A FEW KILOWATTS
 - LOW VOLTAGE-HIGH CURRENT

- FUTURE NEEDS
 - HUNDREDS OF KILOWATTS-MEGAWATTS
 - EXTREME RELIABILITY/AUTONOMY
 - MINIMUM REDUNDANCY/MAXIMUM SELF HEALING
 - HIGHER VOLTAGE OPERATIONS
 - BROAD PARAMETER RANGE DATABASE

- UNIQUE UNIVERSITY ROLE
 - ALL DISCIPLINES REPRESENTED AT MAJOR UNIVERSITY
 - DIFFERENCE BETWEEN SA AND PROJECTED NEEDS MAKE "FIRST PRINCIPLES" APPROACHES ATTRACTIVE
 - PARALLEL EFFORTS ARE COST EFFECTIVE
 - EDUCATION OF SPACE POWER ENGINEERS AND SCIENTISTS

MISSION APPLICATIONS

- PLANETARY EXPLORATION SPACECRAFT
- EARTH SURVEILANCE SATELLITES
- EARTH RESOURCE SATELLITES
- COMMUNICATION SATELLITES
- SPACE STATION
- ORBITING PLATFORMS
- LUNAR MISSION SUPPORT APPLICATIONS
- MARS MISSION SUPPORT APPLICATIONS
- ORBITAL OPERATIONS SUPPORT VEHICLES
- CIS-LUNAR TRANSPORTATION VEHICLES
- SPACE COMMERCIALIZATION ACTIVITIES
3.2 Conventional Power Systems

Conventional Power Systems

R.F. Askew
Auburn University, Center for Commercial Development of Space Power, Space Power Institute

NEEDED RESEARCH FOCUS TOPICS

- **SOLAR PHOTOVOLTAIC CELLS**
 - Metal/Semiconductor/Insulator Interface Phenomena
 - Quantum Wells/Graded Band Gap Devices/Super Lattice
 - Degredation Mechanisms
 - Multistimulus Space Effects

- **HIGH ENERGY DENSITY STORAGE SYSTEMS**
 - Failure Mechanisms
 - Electrode Phenomena
 - Operation in Radiation Environment
 - Vacuum Operation
 - Safety Issues
 - Operation in 0 "g"

- **POWER MANAGEMENT AND DISTRIBUTION SYSTEMS**
 - Integration of an Expert System into Power/Thermal Management
 - Effects of Environment Induced System Errors
 - Voting Logic in AI
 - Self Healing Components
 - Fault Management Techniques
 - Advanced Diagnostic Suites/New Sensors
 - Distribution System/Environmental Interactions--Effects & Limits
 - Power (V-I Characteristics)/Thermal Management Trade Off Implications

- **MATERIALS**
 - New Classes Optimized for Long Term Space Exposure
 - Detailed Understanding of Materials Response
 - Self Healing Materials/Coatings
 - Contamination Mechanisms

- **ENVIRONMENTAL INTERACTIONS**
 - Power/Platform/Environment Synergism
 - Long Term Evolution of Local Environment
 - Limits Imposed on Power System Parameter Space

- **SIMULATION**
 - Theory & Modeling
 - Advanced Multistimulus Facilities
 - Accelerated Aging Methodology
 - Benchmark Space Experiments
3.2 Conventional Power Systems

Conventional Power Systems

R.F. Askew
Auburn University, Center for Commercial Development of Space Power, Space Power Institute

IN-SPACE EXPERIMENTAL NEEDS

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>ISSUES</th>
<th>FOCUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics of high current arcs in 0 "g"</td>
<td>Gas switch operation. Fault management.</td>
<td>Effects of 0 "g" on switch stability/reliability. Control of arc faults in contaminated space environments.</td>
</tr>
<tr>
<td>0 "g" liquid/solid phase change dynamics.</td>
<td>Thermal energy storage.</td>
<td>Two phase component separation. Effects on thermal conductivity.</td>
</tr>
<tr>
<td>Spatial and temporal evolution of space debris.</td>
<td>Surface flashover. Corona discharges.</td>
<td>Insulation degradation debris migration in electrical/magnetic fields.</td>
</tr>
</tbody>
</table>

IN-SPACE EXPERIMENTS NEEDS/VOIDS

- Accurate characterization of space environment & its evolution
- Verify simulation & modeling of space environment
- Accurate determination of platform role in long term evolution of local space environment
- Benchmark exposure (LDEF) to determine adequacy of simulation of long term exposure
- Electrical characterization of space environment
- Long term controllable microgravity laboratory

CRITICAL TECHNOLOGIES

1. High efficiency solar cell technology
2. High energy density energy storage systems
3. New materials technology specifically optimized for long term space applications
4. Advanced diagnostic techniques employing AI/expert systems
5. Fault tolerant power systems
6. Multistimulus space simulation facilities
7. High efficiency thermal management technology
8. High efficiency high temperature electronics
PRELIMINARY REMARKS

- THERE ARE SIGNIFICANT DIFFERENCES AMONG SPONSORING AGENCIES RELATED TO MISSIONS, GOALS, OBJECTIVES, POLICIES, AND ATTITUDES...

- THERE IS THUS NO SINGLE OVERALL GOVERNMENT VIEWPOINT RELATED TO TECHNOLOGY NEEDS, R&D PRIORITIES, INVESTMENT STRATEGIES, AND PROGRAMMATIC POLICIES

- THIS PRESENTATION ADDRESSES ONLY THE MISSION IMPLIED TECHNOLOGY NEEDS AND LIKELY "NATIONAL" DIRECTION IN SPACECRAFT THERMAL MANAGEMENT R&D

THE NATIONS SPACE MISSION SET

NASA MISSIONS

- INTERPLANETARY/DEEP SPACE SCIENCE PLATFORMS, MANNED MISSIONS
- EARTH RESOURCES/NEAR EARTH SCIENCE PLATFORMS
- COMMUNICATIONS
- SPACE STATION...SCIENCE PLATFORM, SPACE MAN'F, LAUNCH PLATFORM
- LUNAR BASE
- NASP

DOD MISSIONS

- NAVIGATION, METEOROLOGY....
- SURVEILLANCE, EARLY WARNING....
- COMMUNICATIONS
- DEFENSE FROM SPACE (SDI)....
- NASP, HLLV, ALS

KEY DIFFERENCES

- MILITARY MISSIONS ALL NEAR EARTH
- MILITARY MISSIONS MUST BE SURVIVABLE
- OPERATING ORBITS, MASS TO ORBIT
- MANNED VS. UNMANNED
- SPACE MAINTAINABLE VS. AUTONOMOUS
NASA/DOD Thermal Management Needs Contrasted

<table>
<thead>
<tr>
<th>NASA</th>
<th>DOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Acquisition</td>
<td></td>
</tr>
<tr>
<td>10-100K</td>
<td>✓ IR sensors</td>
</tr>
<tr>
<td></td>
<td>✓ Propellant depot, delivery</td>
</tr>
<tr>
<td></td>
<td>✓ Higher power, lower allowable at</td>
</tr>
<tr>
<td>300-400K</td>
<td>✓ Manned habitat ECS</td>
</tr>
<tr>
<td></td>
<td>✓ Payload electronics cooling</td>
</tr>
<tr>
<td></td>
<td>✓ Thermal bus distributed loads</td>
</tr>
<tr>
<td></td>
<td>✓ Higher power, lower allowable at</td>
</tr>
<tr>
<td>600-2000K</td>
<td>✓ Energy conversion device cooling</td>
</tr>
<tr>
<td></td>
<td>Solar dynamic, SP-100 reactor</td>
</tr>
<tr>
<td></td>
<td>✓ Space manufacturing process heat</td>
</tr>
<tr>
<td>Heat Transport</td>
<td></td>
</tr>
<tr>
<td>✓ Leo maintainable allowed</td>
<td>✓ Autonomy, long unattended life</td>
</tr>
<tr>
<td>✓ Cost vs. mass-to-orbit driven</td>
<td>✓ Mass-to-orbit vs. cost driven</td>
</tr>
<tr>
<td>✓ Primarily closed cycle, steady state</td>
<td>✓ Both open/closed cycle, high</td>
</tr>
<tr>
<td>✓ To 100kW/100m regime</td>
<td>✓ Peak to average profiles</td>
</tr>
<tr>
<td>✓ Micro-G environment</td>
<td>✓ To 100MW-100M regime</td>
</tr>
<tr>
<td></td>
<td>✓ Macro-G environment</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td></td>
</tr>
<tr>
<td>✓ Space erectible radiators</td>
<td>✓ Deployable</td>
</tr>
<tr>
<td>✓ Leo, interplanetary, lunar natural</td>
<td>✓ Leo-GEO orbit, natural and</td>
</tr>
<tr>
<td>environment survivability</td>
<td>military threat environment</td>
</tr>
</tbody>
</table>

Common NASA/DOD R&D Needs: Two-Phase Heat Transport

- High transport capacity heat pipes...cryogenic through liquid metal temperature regimes...scaling validity for capillary loops, subcooling similarity demonstration
- Steady state heat transfer - Experimental data on co-current, counter current heat and mass transfer...augmentation effectiveness
- Unsteady heat transfer - Frozen and supercritical start-up...micro to macro "G" influences on priming, depriming...void formation in T.E.S. freezing/melting...
- Mass transfer - Heat pump lubricant/refrigerant separation, liquid reactant delivery, vapor venting separation
- Micro/Macro "G" flow stability regimes - Gas cooled reactor start-up, expandable volume radiators...transient and periodic cryo-cooled load cooling...vibrationally induced instability
Theme 3 of 8

POWER SYSTEMS & THERMAL MANAGEMENT

3.3 Thermal Management

Government View: Spacecraft Thermal Management Requirements & Technology Needs

Dr. Tom Mahafkey
Air Force Wright Aeronautical Labs, Aerospace Power Division

SUMMARY

- **THERE ARE SIGNIFICANT DIFFERENCES IN THE APPLICATIONS AND OPERATING REGIMES OF THERMAL MANAGEMENT TECHNOLOGIES FOR MILITARY AND CIVILIAN MISSIONS.**

- **THE BASIC TECHNOLOGIES/TECHNICAL DISCIPLINES ARE THE SAME...THE SPECIFIC MISSION NEEDS NECESSITATE CHARACTERIZING THE TECHNOLOGY OVER WIDER REGIMES OF PERFORMANCE.**

- **MILITARY MISSIONS ARE MORE STRONGLY DRIVEN BY PERFORMANCE, LIFE, AND RELIABILITY.**

- **THE NEED FOR MICRO/MACRO "G" IN-SPACE PERFORMANCE VERIFICATION EXISTS FOR BOTH MILITARY AND CIVILIAN MISSIONS...SPECTRUM OF NEEDS RANGE FROM FUNDAMENTAL PHENOMENA CHARACTERIZATION TO FLIGHT - READINESS VERIFICATION.**
<table>
<thead>
<tr>
<th>Introduction/Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Focus on zero "g" issues</td>
</tr>
<tr>
<td>• Not simulated on earth</td>
</tr>
<tr>
<td>• Large time constant effects</td>
</tr>
<tr>
<td>• Identified</td>
</tr>
<tr>
<td>• Technology needs and voids</td>
</tr>
<tr>
<td>• Experiments</td>
</tr>
<tr>
<td>• Facilities</td>
</tr>
<tr>
<td>• Recommendations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Basic zero "g" phenomena</td>
</tr>
<tr>
<td>• Evaporation/boiling</td>
</tr>
<tr>
<td>• Condensation</td>
</tr>
<tr>
<td>• Two-phase flow</td>
</tr>
<tr>
<td>— Pressure drop</td>
</tr>
<tr>
<td>— Flow regimes</td>
</tr>
<tr>
<td>— Stability</td>
</tr>
<tr>
<td>• Surface tension effects</td>
</tr>
<tr>
<td>• Wet wall dryout</td>
</tr>
<tr>
<td>• Diffusion controlled processes</td>
</tr>
<tr>
<td>• Droplet dynamics</td>
</tr>
<tr>
<td>• Supports component optimization and acceptable design conservatism</td>
</tr>
<tr>
<td>• Component performance in zero "g"</td>
</tr>
<tr>
<td>• Flow stability</td>
</tr>
<tr>
<td>• Pressure drop</td>
</tr>
<tr>
<td>• Heat transfer effectiveness</td>
</tr>
<tr>
<td>• Isothermality</td>
</tr>
<tr>
<td>• Priming</td>
</tr>
<tr>
<td>• Freezing and recovery</td>
</tr>
<tr>
<td>• Induced accelerations (maneuvering)</td>
</tr>
<tr>
<td>• Component candidates</td>
</tr>
<tr>
<td>• Heat pipes</td>
</tr>
<tr>
<td>• Evaporators</td>
</tr>
<tr>
<td>• Condensers</td>
</tr>
<tr>
<td>• Two-phase system components</td>
</tr>
<tr>
<td>— Tee's</td>
</tr>
<tr>
<td>— Valves</td>
</tr>
<tr>
<td>— Pumps</td>
</tr>
<tr>
<td>• Thermal storage</td>
</tr>
<tr>
<td>• Accumulators/reservoirs</td>
</tr>
<tr>
<td>• Instrumentation</td>
</tr>
<tr>
<td>• Supports subsystem and system optimization</td>
</tr>
</tbody>
</table>
In-Space Experimentation Needs/Voids

- Two-phase heat transfer
- Two-phase flow
- Heat pipes
 - Liquid metal
 - Unusual geometry/size
 - Cryogenic
- Two-phase fluid storage/reservoir
- Thermal storage
- Capillary loops
- Two-phase loops
- Zero "g" and short term accelerations
- New facilities
 - Multi-use
 - Well-defined interfaces
 - Industry and academia inputs
- Two-phase fluid \((\text{NH}_3)\) test bed
- Cryogenic test bed
- High-temperature test bed
- Long term operation and exposure test bed
INTRODUCTION

• Thermal Management Required for:
 - Inhabitants (Environment)
 - Spacecraft Systems
 - On Board Experiments

• Thermal Management Includes:
 - Heat Acquisition and Transport
 - Heat Rejection
 - System Integration

• Single Phase Loops and Systems Suitable for Small Vehicles

• Two Phase Thermal Loops Are Capable of:
 - Higher Transport Capabilities
 - Constant Temperature Performance

• Problems Inherent in Two Phase Systems
 - Working Fluids
 - Vapor and Condensate Removal
 - Liquid Vapor Interfacial Behavior
 - Phase Distribution

• Problems Inherent in Heat Rejection Systems
 - Radiating Area per Unit Weight
 - Contact Resistance
 - Thermal Storage
3.3 Thermal Management

Thermal Management Issues In Advanced Space Missions: University Viewpoint

Prof. Larry C. White
University of Houston, Department of Mechanical Engineering

IN-SPACE EXPERIMENTATION: NEEDS/VOIDS

- Heat Acquisition and Transport, General
 - Fundamental Physical Measurements Leading to Q and ΔP Correlations (data limited to drop tower and aircraft trajectories)
 - Flow Rates
 - Temperatures
 - Pressure (Drops)
 - Heat Transfer Rates
 - Quality (Void Fraction)
 - Configuration
 - Photographic Observations (data limited to aircraft trajectories)
 - Flow Patterns/Phase Distribution
 - Interfacial Dynamics
 - Secondary Flows

- Heat Acquisition and Transport, Specific Components
 (Complete Data Void for Almost All of These Components)
 - Tube Farms
 - Condensers
 - Capillary Pumped
 - Shear Flow
 - Evaporators
 - Swirl Flow
 - Monogroove
 - Pumping Systems
 - Rotary Fluid Management Devices (Pilot Pump)
 - Load/Flow Control Strategies
Thermal Management Issues in Advanced Space Missions: University Viewpoint

Prof. Larry C. White
University of Houston, Department of Mechanical Engineering

SUMMARY/RECOMMENDATIONS

NEAR TERM RECOMMENDATION

• Develop a Comprehensive In-Space Test Program for Behavior of Multi-Phase Fluids

• Perform as much Preliminary Work as Possible in Earth Labs, Centrifuges, Drop Towers, and Aircraft

LONG TERM RECOMMENDATIONS

• Testing of Advanced Radiators
• In-Space Testing of Heat Pumps
• Testing of Thermal Storage Systems
3.3 Thermal Management

Power Systems & Thermal Management Critical Technology Requirements

Roy McIntosh
NASA Goddard Space Flight Center

PARTICIPANTS: 66

SUBTHEMES

• DYNAMIC AND NUCLEAR POWER SYSTEMS
• CONVENTIONAL POWER SYSTEMS
• THERMAL MANAGEMENT

DYNAMIC AND NUCLEAR POWER SYSTEMS

1. GAS COLLECTION AND RETENTION IN LIQ COOLANTS 372
2. FREEZE/THAW IN LIQ METAL SYSTEMS 317
3. GAS BUBBLE NUCLEATION/GROWTH IN LIQ METALS 238
4. TWO COMPONENT (SOLID/LIQUID) PUMPING/SEPARATION 221
5. TWO PHASE LIQ/GAS SEPARATION IN COOLANTS 197
6. LIGHT WEIGHT RADIATORS 173
7. TWO PHASE BOILING 171
8. PLASMA INTERACTION 158
9. ADVANCED POWER CONVERSION SYSTEMS 147
10. ENVIRONMENTAL EFFECTS 133

• Technology issues were ranked from 1 to 10, with the most important receiving 10 votes, the next 9 votes, etc.
3.3 Thermal Management

Power Systems & Thermal Management Critical Technology Requirements

Roy McIntosh
NASA Goddard Space Flight Center

CONVENTIONAL POWER SYSTEMS

<table>
<thead>
<tr>
<th>Technology Issue</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Advanced Energy Storage</td>
<td>243</td>
</tr>
<tr>
<td>2. Advanced P.V. Cell Technology</td>
<td>200</td>
</tr>
<tr>
<td>3. Primary & Regen. Fuel Cells</td>
<td>197</td>
</tr>
<tr>
<td>4. Thermal Energy Storage</td>
<td>162</td>
</tr>
<tr>
<td>5. Contamination/UV & Charged Particle P.V. Effects</td>
<td>155</td>
</tr>
<tr>
<td>6. Primary/Secondary Batteries</td>
<td>154</td>
</tr>
<tr>
<td>7. High Voltage/High Power Systems</td>
<td>146</td>
</tr>
<tr>
<td>8. High Performance Arrays</td>
<td>141</td>
</tr>
<tr>
<td>9. High Density Power Systems</td>
<td>138</td>
</tr>
</tbody>
</table>

* Technology issues were ranked from 1 to 10, with the most important receiving 10 votes, the next 9 votes, etc.

THERMAL MANAGEMENT

<table>
<thead>
<tr>
<th>Technology Issue</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Two-phase Heat Transfer</td>
<td>328</td>
</tr>
<tr>
<td>2. Heat Pipes (Liquid Metal Cryo)</td>
<td>250</td>
</tr>
<tr>
<td>3. Capillary Loops</td>
<td>225</td>
</tr>
<tr>
<td>4. Two Phase Flow & Stability</td>
<td>219</td>
</tr>
<tr>
<td>5. Void Behavior Flight Test</td>
<td>201</td>
</tr>
<tr>
<td>6. Heat Pumps</td>
<td>185</td>
</tr>
<tr>
<td>7. Two-phase Ammonia Test Bed</td>
<td>182</td>
</tr>
<tr>
<td>8. Thermal Storage</td>
<td>152</td>
</tr>
<tr>
<td>9. Cryogenic Test Bed</td>
<td>139</td>
</tr>
<tr>
<td>10. Advanced Radiators</td>
<td>136</td>
</tr>
</tbody>
</table>

* Technology issues were ranked from 1 to 10, with the most important receiving 10 votes, the next 9 votes, etc.
CRITICAL TECHNOLOGIES

DYNAMIC AND NUCLEAR POWER SYSTEMS

1. TWO COMPONENT FLOW AND PHASE CHANGE
 • He GAS NUCLEATION, SEPARATION AND COLLECTION
 • FREEZE/THAW (SYSTEMS)
 • KINETICS OF VOID FORMATION AND DISTRIBUTION BEHAVIOR

2. ADVANCED CONVERSION
 • HIGH EFFICIENCY PASSIVE CONVERSION (AMTEC, HYTEC)
 • DYNAMIC CONVERSION VALIDATION (STIRLING, BRAYTON)

CRITICAL TECHNOLOGIES

CONVENTIONAL POWER SYSTEMS

1. MICRO GRAVITY EFFECTS ON ADVANCED ELECTROCHEMICAL
 CONVERSION/STORAGE
 • REGENERATIVE FUEL CELLS
 • CELLS/BATTERIES

2. ADVANCED PHOTOVOLTAIC TECHNOLOGY
 • ENVIRONMENTAL EFFECTS (CELLS/CELL ASSEMBLIES)
 • SPACECRAFT INDUCED ENVIRONMENT
 • NATURAL ENVIRONMENT
3.3 Thermal Management

Power Systems & Thermal Management Critical Technology Requirements

Roy McIntosh
NASA Goddard Space Flight Center

CRITICAL TECHNOLOGIES
THermal Management

1. TWO-PHASE FLOW STUDIES (TEST BED)
 • FUNDAMENTAL THERMAL HYDRAULICS
 - HEAT TRANSFER
 - INSTABILITIES
 - PRESSURE DROPS
 • SYSTEM AND COMPONENT RELATED STUDIES
 - CAPILLARY PUMPED LOOPS
 - HEAT PUMP ISSUES
 - FLOW MANAGEMENT

2. ADVANCED HEAT PIPES
 • CRYOGENIC HEAT PIPES
 • LIQUID METAL HEAT PIPES
 • INTERMEDIATE TEMPERATURE HEAT PIPES

INTERACTIONS WITH OTHER THEMES

<table>
<thead>
<tr>
<th>THEME</th>
<th>CONCERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE STRUCTURES</td>
<td>• SOLAR ARRAY DEPLOYMENT VIBRATION CONTROL</td>
</tr>
<tr>
<td>SPACE ENVIRONMENTAL EFFECTS</td>
<td>• ATOMIC OXYGEN DEGRADATION OF HIGH TEMP/HIGH E SURFACES</td>
</tr>
<tr>
<td>AUTOMATION AND ROBOTICS</td>
<td>• ON ORBIT MAINTENANCE/REPAIR</td>
</tr>
<tr>
<td>IN SPACE SYSTEMS</td>
<td>• JOINING/WELDING</td>
</tr>
<tr>
<td></td>
<td>• ENVIRONMENTAL EFFECTS ON POWER SYSTEM COMPONENTS</td>
</tr>
<tr>
<td></td>
<td>• EFFECTS DATA BASE</td>
</tr>
<tr>
<td></td>
<td>• ARTIFICIAL INTELLIGENCE FOR POWER THERMAL SYSTEM CONTROL</td>
</tr>
</tbody>
</table>
Theme 4 of 8 FLUID MANAGEMENT & PROPULSION SYSTEMS

Background and Objectives

Theme Organization and Purpose

Lynn M. Anderson
NASA Lewis Research Center

ORGANIZATION

THEME LEADER: LYNN M. ANDERSON, LeRC

COMMITTEE: EARL E. VANLANDINGHAM, OAST/RP
WALTER F. BROOKS, ARC
WILBERT ELLIS, JSC
E. JOHN ROSCHKE, JPL
KARL A. FAYMON, LeRC
JOHN M. KRAMER, MSFC
PLUS SUB-THEME SPEAKERS

SUB-THEMES: 1. ON-ORBIT FLUID MANAGEMENT
2. PROPULSION
3. FLUID PHYSICS

THEME SESSION OBJECTIVES

PURPOSE

• Identify and prioritize in-space technologies for fluid management and propulsions systems by considering subtheme details which
 • are critical for future U.S. space programs.
 • require development and in-space validation.

• Generate comments and suggestions from aerospace community on OAST IN-STEP plans.

PRODUCT

• Priority listing of critical space technology needs and associated space flight experiments, recommended by aerospace community.
FLUID MANAGEMENT & PROPULSION SYSTEMS

4.1 On-Orbit Fluid Management

Fluid Management Technology

John C. Aydelott
NASA Lewis Research Center

CRYOGENIC FLUID MANAGEMENT TECHNOLOGY ROADMAP

- EXAMINE FUTURE MISSIONS TO ESTABLISH NEEDS
 - EARTH-TO-ORBIT TRANSPORT OF CRYOGENS
 - IN-SPACE STORAGE AND SUPPLY (DEPOT)
 - FUELING OF SPACE-BASED TRANSFER VEHICLES
 - EXPERIMENT AND SATELLITE COOLANT RESUPPLY
 - HANDLING OF REACTANTS, COOLANTS, AND PROPELLANTS ON SPACE DEFENSE INITIATIVE SPACECRAFT

- CATEGORIZE TECHNOLOGY AND IDENTIFY IN-SPACE EXPERIMENTATION REQUIREMENTS
 - LIQUID STORAGE (THERMAL AND PRESSURE CONTROL)
 - LIQUID SUPPLY (PRESSURIZE, ACQUIRE, AND SUBCOOL)
 - LIQUID TRANSFER
 - FLUID HANDLING
 - INSTRUMENTATION
 - STRUCTURES AND MATERIALS

CRYOGENIC FLUID MANAGEMENT TECHNOLOGY REQUIREMENTS

LIQUID STORAGE - THERMAL CONTROL SYSTEM PERFORMANCE

- EFFECT OF LAUNCH ENVIRONMENT ON THICK MULTILAYER INSULATION
- LONG TERM SPACE ENVIRONMENT EFFECTS ON INSULATION (DEBRIS, MICROMETEROIDS AND ATOMIC OXYGEN)
- COMBINED EARTH/ORBIT INSULATION
- COOLING ENHANCEMENT PROVIDED BY PARA-TO-ORTHO CONVERSION
- MULTIPLE/COPLED VAPOR COOLED SHIELDS

LIQUID STORAGE - PRESSURE CONTROL

- THERMODYNAMIC VENT SYSTEM PERFORMANCE
- FLUID MIXING FOR STRATIFICATION CONTROL
- REFRIGERATION/LIQUEFACTION SYSTEM DEMONSTRATION (INCLUDING CONDENSATE COLLECTION)

Italicized items must be addressed via flight experiments, however, some information can be obtained via ground based experiments.
<table>
<thead>
<tr>
<th>Theme 4 of 8</th>
<th>FLUID MANAGEMENT & PROPULSION SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 On-Orbit Fluid Management</td>
<td></td>
</tr>
</tbody>
</table>

Fluid Management Technology

John C. Aydelott
NASA Lewis Research Center

CRYOGENIC FLUID MANAGEMENT TECHNOLOGY REQUIREMENTS

LIQUID SUPPLY - PRESSURIZATION SYSTEM PERFORMANCE

- Autogenous (including Para/Ortho Composition)
- Helium
- Mechanical (pumps/compressors)

LIQUID SUPPLY - FLUID ACQUISITION/SUBCOOLING

- Fine mesh screen liquid acquisition device (LAD) expulsion efficiency
- Reorientation & outflow via impulsive acceleration
- Reorientation & outflow under constant low-gravity conditions
- Thermal effects on LAD performance
- Thermal subcooling of liquid outflow

LIQUID TRANSFER

- Transfer line chilldown
- Tank chilldown with spray
- No-vent fill
- Liquid acquisition device (LAD) fill
- Low-gravity vented fill

FLUID HANDLING

- Liquid dynamics/slosh control
- Fluid dumping/tank venting and inerting
- Earth-to-orbit transport as subcooled liquid on liquid/solid mixture (slush)

ADVANCED INSTRUMENTATION

- Quantity gaging
- Mass flow/quality metering
- Leak detection
- Liquid/vapor sensors

TANK STRUCTURES AND MATERIALS

- Composite (light weight) vacuum jacket
- Low thermal conductivity components
- Low pressure tankage
- Contamination/degradation of liquid acquisition device

Italicized items must be addressed via flight experiments, however, some information can be obtained via ground based experiments.
Background

<table>
<thead>
<tr>
<th>TRANSPORTATION MISSIONS</th>
<th>POSSIBLE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim Space Transfer Vehicle (STV)</td>
<td>1998</td>
</tr>
<tr>
<td>Space-Based STV</td>
<td>2001</td>
</tr>
<tr>
<td>Orbital Propellant Depot</td>
<td>2001</td>
</tr>
<tr>
<td>Lunar Base</td>
<td>2005</td>
</tr>
<tr>
<td>Piloted Mars Expedition</td>
<td>2003-2008</td>
</tr>
</tbody>
</table>

System Developer Roles

<table>
<thead>
<tr>
<th>DEVELOPMENT CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieve Adequate Risk Reduction</td>
</tr>
<tr>
<td>Contend with Constraints</td>
</tr>
<tr>
<td>Available Testing Environments</td>
</tr>
<tr>
<td>Schedule</td>
</tr>
<tr>
<td>Budget</td>
</tr>
<tr>
<td>Institutional Considerations</td>
</tr>
</tbody>
</table>

Observations

- **Bottom Line is Risk Reduction**
 - Testing and validation methods must be affordable
 - Test results must be timely to support development schedules
- **Universal Problem**
 - Mission planners awed by development challenges
 - Feasibility evaluations become prolonged
 - IOC dates slip
 - Missions too weakly supported to exert technology pull
 - Technology development is slowed
 - Technology development requires long-term commitment
 - In-space testing can be expensive
- **Mission Planners and Technologists Need to Get in Step**
 - Link technology development to program milestones
 - Begin technology development early
 - Achieve synergism
 - Programs will "pull" technology
 - Technology advances will "push" programs
FLUID MANAGEMENT & PROPULSION SYSTEMS

4.1 On-Orbit Fluid Management

Cryogenic Fluid Management Technology

John R. Schuster
General Dynamics, Space Systems Division

TECHNOLOGY NEEDS

TECHNOLOGY CATEGORY

<table>
<thead>
<tr>
<th>Technology Category</th>
<th>Interim-STV</th>
<th>STV Resupply</th>
<th>Tanker</th>
<th>Lunar Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Thermal Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Degradation of Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Effect of Launch Env. on Thick MLI</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Combined Foam/MLI Sys</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Pure/Ortho Conversion</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Multiple/Coupled VCS</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Pressure Control Systems</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- TVS Performance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fluid Misc for Stratification Control</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Refrigeration/Reflux Fabrication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pressure Sustainment Perf</td>
<td>Enhance</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Autogenous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Helium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Acquisition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fine Mesh Screen LAD</td>
<td>Enhance?</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fluid Setting & Outflow under (G) Condns</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Fluid Setting & Outflow under Impulsive Accel</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Impact of Heat Addition on LAD Performance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
<tr>
<td>- Thermal Subcooling of Liquid Outflow</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
<td>Enhance</td>
</tr>
</tbody>
</table>

Liquid Transfer

<table>
<thead>
<tr>
<th></th>
<th>Interim-STV</th>
<th>STV Resupply</th>
<th>Tanker</th>
<th>Lunar Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Transfer Line Childdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tank Chilldown with Spray</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No-Vent Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- LAD Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low-G Vented Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pump Assist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fluid Handling

<table>
<thead>
<tr>
<th></th>
<th>Interim-STV</th>
<th>STV Resupply</th>
<th>Tanker</th>
<th>Lunar Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Liquid Dynamics/Slush Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fluid Dumping & Tank Inerting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Earth to Orbit Transport as Subcooled Liquid or Slush</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced Instrumentation

<table>
<thead>
<tr>
<th></th>
<th>Interim-STV</th>
<th>STV Resupply</th>
<th>Tanker</th>
<th>Lunar Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Quality Gauging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mass Flow/Quality monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Leak Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Vapor Sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials & Structures

<table>
<thead>
<tr>
<th></th>
<th>Interim-STV</th>
<th>STV Resupply</th>
<th>Tanker</th>
<th>Lunar Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Low Thermal Conductivity Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low Pressure Tankage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Composites/Light Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Vacuum Jackets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Contamination/Degradation of LAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORIGINAL PAGE IS OF POOR QUALITY
FLUID MANAGEMENT & PROPULSION SYSTEMS

Theme 4 of 8

4.1 On-Orbit Fluid Management

Cryogenic Fluid Management Technology

John R. Schusler
General Dynamics, Space Systems Division

IN-SPACE EXPERIMENTATION NEEDS

TESTING OBJECTIVE

<table>
<thead>
<tr>
<th>Technology Category</th>
<th>Engineering Data Base</th>
<th>Performance Modeling</th>
<th>Environmental Validation</th>
<th>System Validation</th>
<th>In-Space Testing Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Control Systems</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation of Material</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of Launch Env on Thick ML</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Foam/MLI Sys.</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para/Ortho Conversion</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Control Systems</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVS Performance</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Mixing for Stratification Control</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigeration/Refriguation</td>
<td>yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurization System Perf</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autogasous</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech (Pumps/Comp)</td>
<td>yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Acquisition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Mesh Screen LAD Performance</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Settling & Outflow under Low G Conditions</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Settling & Outflow under Impulsive Vehic</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact of Heat & Radiation on LAD Performance</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Subcooling of Liquid Outflow</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Line Chilldown</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Chilldown with Spray</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Vent Fill</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAD Fill</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low G Vented Fill</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump-Assist</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Dynamics/Slosh Control</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Damping & Tank Inerting</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrust to Orbital Transport on Subcooled Liquid or Skidded</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Instrumentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity Gauging</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Flow/Quality metering</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leak Detection</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid/Vapor Sensors</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Structures & Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Thermal Conductivity Components</td>
<td>yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Pressure Tankage</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite(Light Weight)</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Journals</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination/Degradation of LAD</td>
<td>yes yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION/BACKGROUND

THE NASA LOW THRUST PROPULSION PROGRAM PROVIDES THE TECHNOLOGY FOR ADVANCED ON-BOARD PROPULSION FOR FUTURE SPACE SYSTEMS:

- SPACECRAFT
- PLATFORMS
- TRANSPORTATION VEHICLES

LOW THRUST PROPULSION TECHNOLOGIES

- CHEMICAL: HYDROGEN/OXYGEN STORABLES
- ELECTRIC: AUXILIARY PRIMARY

MISSION APPLICATIONS

- ORBIT TRANSFER
 - SATELLITE PLACEMENT/RETURN
 - LOGISTICS
- STATIONKEEPING
 - DRAG & SOLAR PRESSURE
 - EPHemeris CONTROL

IMPACT OF LOW THRUST PROPULSION TECHNOLOGY ADVANCEMENT

- MASS SAVINGS FOR
 - SPACECRAFT
 - PLATFORMS
 - VEHICLES
4.2 Propulsion

Low Thrust Propulsion Space Experiments

J.R. Stone
NASA Hq's, Office of Aerospace Science & Technology — Propulsion, Power & Energy Division

TECHNOLOGY NEEDS/OPPORTUNITIES

- 1-kW class, storable propellant arcjet for applications such as communications satellite stationkeeping
 - Long life
 - High degree of commonality w. S-O-A systems
 - Minimal impact on other spacecraft systems/subsystems
- Multipropellant resistojets for space station freedom and tended platforms
 - Long life
 - Minimize logistics requirements
 - Minimal impact on other spacecraft systems/subsystems
- Integrated auxiliary propulsion for launch & transfer vehicles
 - Save mass by using residual primary propellants
 - Simplify logistics (minimize number of fluids handled)
- High power electric propulsion for lunar/planetary exploration and cargo vehicles
 - Very long life, high performance ion & MPD systems
 - Ground facility (power/pumping/vacuum) capability to provide adequate space simulation not established

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- Address critical critical concerns of potential users of advanced propulsion technology
 - Plume contamination and performance impacts (both chemical and electric propulsion)
 - Electromagnetic interference (conducted and radiated)
 - Spacecraft charging
- Validate performance and life test results from ground simulation facilities
- Minimize risk for potential users by providing initial demonstration of advanced technology
SUMMARY/RECOMMENDATIONS

- HIGHEST PRIORITY IS TO CONTINUE TO DEVELOP THE ARCJET FLIGHT TEST OPPORTUNITY ON A COMMERCIAL COMMUNICATIONS SATELLITE
- VERIFY IN SPACE THE VALIDITY OF COMPUTATIONAL PREDICTIONS AND GROUND-TEST ASSESSMENTS OF PLUME IMPACTS
- VALIDATE THE ADEQUACY OF GROUND TEST FACILITIES FOR HIGH-POWER ELECTRIC PROPULSION TESTS
- ASSESS THE MERIT OF DEVELOPING A TESTBED CAPABILITY FOR PROPULSION, PROBABLY AS A COMBINED FACILITY APPLICABLE TO OTHER ADVANCED TECHNOLOGIES, SUCH AS POWER
INTRODUCTION / BACKGROUND

• TWO KEY PROPULSION TECHNOLOGIES NEED FLIGHT DATA
 SOLAR ELECTRIC PROPULSION (SEP)
 - Xe ION IN PARTICULAR
 ROCKET EXHAUST PLUME TECHNOLOGY

• BOTH TECHNOLOGIES WILL DRAMATICALLY AFFECT DESIGNs
 AND PLANNING FOR FUTURE SPACECRAFT AND MISSIONs

• SEP WOULD BE WIDELY USED WERE IT NOT FOR:
 DEVELOPMENT COST / RISK
 UNKNOWNS REGARDING IN SPACE BEHAVIOR
 LACK OF FLIGHT EXPERIENCE

• ROCKET EXHAUST PLUMES (ESPECIALLY BIPROPELLANT ACS
 THRUSTERS) CAN DEGRADE S/C PERFORMANCE THROUGH:
 FORCES AND MOMENTS
 HEATING
 CONTAMINATION

TECHNOLOGY NEEDS

○ RELIABLE, VALIDATED, PREDICTIVE MODELS OF:
 CONTAMINANT GENERATION
 NOZZLE AND PLUME FLOW FIELDS
 PLUME / SURFACE INTERACTIONS
 CONTAMINANT PROPERTIES

○ PRESENT MODELS ARE DEFICIENT
 KNOWN TO CONTAIN ERRONEOUS ASSUMPTIONS
 WHERE BASIC PHYSICAL UNDERSTANDING IS MISSING
TECHNOLOGY NEEDS

○ DEVELOPMENT AND INTEGRATION OF COMPLETE SEPS SYSTEM

 Xe ION ENGINE
 POWER PROCESSOR
 CONTROLLER
 LIGHT WEIGHT SOLAR ARRAY

○ DEMONSTRATION OF PERFORMANCE AND LIFE

 S/C CHARGING ISSUES
 PLASMA EFFECTS ON SOLAR ARRAY
 ENGINE LIFE AND PERFORMANCE

○ DEVELOPMENT OF PREDICTIVE PLUME CAPABILITY REQUIRES

 IMPROVED UNDERSTANDING OF COMBUSTION IN PULSED ROCKET ENGINES
 DEVELOPMENT OF NOZZLE FLOW FIELD CODES FOR FULLY TRANSIENT, VISCOUS, REACTING FLOWS
 DEVELOPMENT AND VALIDATION OF CODES TO PREDICT RAREFIED PLUME FLOW FIELDS

○ COLLECTION OF QUALITY EXPERIMENTAL DATA IS A FORMIDIBLE TASK

 IMPROVED DIAGNOSTICS NEEDED
IN-SPACE EXPERIMENTATION NEEDS / VOIDS

○ SEP-INDUCED PLASMA / SPACECRAFT INTERACTIONS CAN ONLY BE EVALUATED IN SPACE
 SPACECRAFT CHARGING EFFECTS
 PLASMA-INDUCED LEAKAGE CURRENTS ON SOLAR ARRAY

○ SERT FLIGHT TESTS OF MERCURY ION ENGINES IN THE 1960s REVEALED THAT ENGINE LIFE CAN BE LIMITED BY MECHANISMS UNIQUE TO SPACE (i.e., ZERO G)
 IN-SPACE DEMONSTRATION REQUIRED TO PROVIDE ACCEPTABLE RISK FOR USERS OF SEP!

○ GROUND-BASED TESTS CAN NOT SIMULATE THE EXPANSION OF A ROCKET EXHAUST PLUME INTO A SPACE ENVIRONMENT
 PLUME DENSITIES AS LOW AS 10 MOLECULES/CC ARE OF INTEREST
 DENSITY OF BACKGROUND IN THE BEST SPACE SIMULATORS IS MORE THAN 10 ORDERS OF MAGNITUDE TOO HIGH

○ CONTAMINANT (i.e., DROPLET) GENERATION AND TRANSPORT IS ALTERED BY GRAVITY IN GROUND TESTS

○ DATA COLLECTED IN SPACE TO DATE MONITORS CONTAMINATION BUT DOES NOT:
 UNIQUELY IDENTIFY SOURCE
 ADEQUATELY CHARACTERIZE CONTAMINANT PROPERTIES
 ALLOW DETERMINATION OF WHAT PROBLEMS EXIST IN PREDICTIVE METHODS, e.g.;
 INCORRECT MODEL OF CONTAMINANT GENERATION?
 INCORRECT MODEL OF RAREFIED FLOW FIELD?
 INADEQUATE MODEL OF SURFACE INTERACTIONS?
INTRODUCTION / BACKGROUND

- University participation in space experimentation requires innovation

- Traditional university research roles not effective in space experimentation

- Lead times for space experiments can exceed student degree programs

- Complexity of space experimentation requires group participation

- Important to get faculty attention/commitment to interdisciplinary research

TECHNOLOGY ISSUES

- Propulsion pertains to all space missions

- Diverse mission requirements define need for broad range of propulsion systems
 - Sizes
 - Concepts
 - Capabilities

- Both propulsion and space experimentation are strongly multidisciplinary

- Emphasis on safety/packaging/integration requires diverse expertise beyond specific experiment

- In-space experimentation requires long lead times
 - May exceed degree lengths
ATTRIBUTES OF UNIVERSITIES FOR IN-STEP

- **Primary Source of New Talent to NASA/Industry**

- **Potential University Contributions Include:**
 - Get Graduates Aware/Interested in Space Experimentation
 - Impact Curricula to Provide Graduates with Proper Background
 - Bring Expertise of Faculty to Bear on Fundamental Problems
 - Provide Direct Input in Terms of Research Findings

- **University Research Has Historically Focused On:**
 - Independent Researchers
 - Simple Experiments
 - Providing In-Depth Understanding From Detailed Measurements

- **IN-STEP Requires:**
 - Group Participation
 - Single Shot Experiments
 - In-Depth Understanding from Limited Information

SUMMARY / RECOMMENDATIONS

- **Universities Must Function as Sub-Elements of NASA/Industry Groups**

- **Traditional Role of Faculty as Independent Investigators Must Be Modified**

- **Attempts Should Be Made to Keep Faculty Involved in Simple, Fundamental Experiments**

- **Important to Involve Universities to Impact Graduates' Awareness, Interest, and Expertise**

- **In-Space Role of Students/Faculty is Expected Downstream**

- **Faculty/Universities Need Encouragement to Participate in Interdisciplinary Programs**
Objective

Enhance the fundamental understanding of fluid behavior and dynamics in a reduced gravity environment to enable the development of advanced space systems.

Process

1. Low-G Experiments
2. Theory and Analysis
3. Numerical Simulation
4. Predictive Models and Design Data Base

Approach

Systematic and structured program of conducting low-gravity fluids experiments guided by theoretical analyses and numerical simulation to progressively build understanding and data bases.

Background

- Extensive low-gravity fluid research program during 1960's and early 1970's
- Range of critical fluid management issues/problems identified and addressed
 - Focused mission/system driven research
 - Depth of basic understanding limited to specific goals set for each mission
 - Critical enabling fluid management functions in space accomplished
- Low-gravity fluids research in late 1970's and early 1980's at maintenance level
 - Cryogenic fluids programs
 - Physics and chemistry experiments program (PACE)
- Renewed interest with new mission drivers
 - Many of the same old problems
 - New specific problems but same basic fluid processes

Status

Predictive models for low-gravity fluid behavior and processes are inadequate, inaccurate, and potentially misleading.
4.3 Fluid Physics

Jack A. Salzman
NASA Lewis Research Center

GENERAL PLANNING MODEL

<table>
<thead>
<tr>
<th>MISSION DRIVERS</th>
<th>ADVANCED SYSTEMS</th>
<th>TECHNOLOGY ELEMENT</th>
<th>FLUID PROCESSES/PHENOMENA CATEGORIES</th>
<th>REFERENCE EXPERIMENT SET OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynamic Power</td>
<td>Thermal Energy Storage</td>
<td>Interface/Capillary Phenomena</td>
<td>ESTABLISH AND VERIFY ANALYTICAL/NUMERICAL MODELS TO PREDICT:</td>
</tr>
<tr>
<td></td>
<td>Chemical Energy</td>
<td>Condensers</td>
<td></td>
<td>HYDROSTATIC INTERFACE CONFIGURATIONS</td>
</tr>
<tr>
<td></td>
<td>Life Support</td>
<td>Phase Separators</td>
<td></td>
<td>INTERFACE STABILITY AND DYNAMICS</td>
</tr>
<tr>
<td></td>
<td>OTV</td>
<td>Fluid Storage/Supply</td>
<td></td>
<td>THE RESPONSE OF A REDUCED-GRAVITY LIQUID-VAPOR INTERFACE TO MECHANICAL AND THERMAL DISTURBANCES AND ITS EFFECTS ON BULK LIQUID MOTION</td>
</tr>
<tr>
<td></td>
<td>Cryo-Dropot</td>
<td>Radiators</td>
<td></td>
<td>BUBBLE/DROPLET DYNAMICS</td>
</tr>
<tr>
<td></td>
<td>Spacecraft Systems</td>
<td>Thermal Loops</td>
<td></td>
<td>THE BUOYANCY AND/OR THERMALLY DRIVEN MOTION OF SINGLE BUBBLE/DROPLET UNDER REDUCED GRAVITY CONDITIONS AND THE INTERACTIONS BETWEEN MULTIPLE BUBBLES/DROPLETS INCLUDING COALESCE/BREAKUP</td>
</tr>
<tr>
<td></td>
<td>Space/Lunar Based Processing</td>
<td>Materials Processing</td>
<td></td>
<td>MULTIPHASE FLOW REGIMES</td>
</tr>
<tr>
<td></td>
<td>Instrumentation Cooling</td>
<td></td>
<td></td>
<td>THE FLOW REGIME PATTERNS & CHARACTERISTICS GENERATED BY THE FORCED ADIABATIC FLOW OF LIQUID-VAPOR OR IMMISCIBLE LIQUID MIXTURES THROUGH CONDUITS AND FITTINGS AS A FUNCTION OF FLUID PROPERTIES, FLOW RATES, CONDUIT/FITTING GEOMETRY AND SIZE, AND GRAVITY LEVEL</td>
</tr>
</tbody>
</table>

REFERENCE EXPERIMENT SET OBJECTIVES

- ESTABLISH AND VERIFY ANALYTICAL/NUMERICAL MODELS TO PREDICT:
 - HYDROSTATIC INTERFACE CONFIGURATIONS
 - THE BULK LIQUID LOCATION AND THE CONFIGURATION OF THE EQUILIBRIUM LIQUID-GAS INTERFACE AS A FUNCTION OF FLUID PROPERTIES, VESSEL GEOMETRY AND SIZE, GRAVITY LEVEL, AND SYSTEM INITIAL CONDITIONS
 - INTERFACE STABILITY AND DYNAMICS
 - THE RESPONSE OF A REDUCED-GRAVITY LIQUID-VAPOR INTERFACE TO MECHANICAL AND THERMAL DISTURBANCES AND ITS EFFECTS ON BULK LIQUID MOTION
 - BUBBLE/DROPLET DYNAMICS
 - THE BUOYANCY AND/OR THERMALLY DRIVEN MOTION OF SINGLE BUBBLE/DROPLET UNDER REDUCED GRAVITY CONDITIONS AND THE INTERACTIONS BETWEEN MULTIPLE BUBBLES/DROPLETS INCLUDING COALESCE/BREAKUP
 - MULTIPHASE FLOW REGIMES
 - THE FLOW REGIME PATTERNS & CHARACTERISTICS GENERATED BY THE FORCED ADIABATIC FLOW OF LIQUID-VAPOR OR IMMISCIBLE LIQUID MIXTURES THROUGH CONDUITS AND FITTINGS AS A FUNCTION OF FLUID PROPERTIES, FLOW RATES, CONDUIT/FITTING GEOMETRY AND SIZE, AND GRAVITY LEVEL
 - THERMAL/SOLUTAL CONVECTION
 - THE HEAT AND MASS TRANSFER GENERATED BY BUOYANCY DRIVEN FLOWS RESULTING FROM THERMAL AND/OR CONCENTRATION GRADIENTS UNDER REDUCED GRAVITY CONDITIONS
 - POOL/FLOW BOILING
 - THE ONSET OF NUCLEATE BOILING AND SUBSEQUENT BUBBLE DYNAMICS AS A FUNCTION OF SYSTEM SATURATION SUBCOOLING, HEAT FLUX, FLUID PROPERTIES, HEATER GEOMETRY, AND GRAVITY LEVEL FOR BOTH STAGNANT AND LIQUID FLOW CONDITIONS
 - CONDENSATION/EVAPORATION
 - THE CONDITIONS FOR CONDENSATION/EVAPORATION OF LIQUID AT LIQUID-VAPOR INTERFACES AND ITS EFFECTS ON INTERFACE STABILITY/DYNAMICS UNDER LOW-GRAVITY CONDITIONS FOR BOTH STAGNANT AND VAPOR FLOW CONDITIONS
 - SOLIDIFICATION/MELTING
 - THE DYNAMIC BEHAVIOR OF THE SOLID-FLUID FRONT DURING SOLIDIFICATION AND/OR MELTING UNDER LOW-GRAVITY CONDITIONS WITH SPECIAL EMPHASIS ON VOID FORMATION AND DYNAMICS DUE TO VOLUME CHANGES
IN-Space Experiment Design Options

- All experiment reference set objectives can be achieved through two approach options
 - Several (>7) specialized sets of experiment hardware with limited complexity/capabilities
 - Two or three sets of facility class hardware

Choice of approach dictated by

- Manifest opportunities
- Basic in-step philosophies on program structure (e.g., individual experimenter provided hardware vs NASA furnished hardware for experiment teams)
- Existence of critical timeline for data acquisition

One Possible Space Facility Approach

- Initially implement adiabatic multiphase flow closed-loop system
 - Single liquid-gas pair
 - Straight conduit test section
 - Limited diagnostics

- First add capabilities for
 - Isolated test section with heaters for pool boiling experiment
 - Multiple liquid-gas pairs
 - Increased diagnostics

- Next add capabilities for
 - Flow boiling experiments
 - Flow through fittings
 - Increased diagnostics

- Next add capabilities for
 - Flow condensation experiments
 - Multiple bubble/drop coalescence & migration experiments
BACKGROUND AND GENERAL OBSERVATIONS

Interface configurations, stability, and dynamics have a prominent effect on spacecraft design and operations.

1. Progress in predictive methods (CFD codes) is hampered by lack of understanding of free-surface physics in low gravity (e.g., contact line motion).
2. Interface motions in many cases interact with other systems.
3. For cryogens, interface motions can affect heat transfer, vaporization, and other thermal effects.

This discussion will focus on:
- Identifying important liquid processes
- Technology needed to solve the problems
- Required in-space experimentation
- Problems caused by lack of predictive understanding

Discussion will use examples of satellites and OTV.

EXAMPLE: Orbiting Satellite

Fluid Process: Interface Configuration
Problem: Since interface locations are unknown, "propellant management devices" are used to insure gas-free liquid. This increases weight/complexity and decreases reliability.
Technology Need: Predict interface location as a function of tank geometry, fluid properties, tank surface properties, fill level, gravity vector, and history of satellite operations.

Fluid Process: Interface stability - what disturbance level (satellite motion) will cause an interface to re-locate
Problem: PMD's are used to circumvent the problem. Complexity and weight increase, and reliability decreases.
Technology Need: Accurate prediction of the required acceleration needed to de-stabilize an interface.
4.3 Fluid Physics

Low-G Interface Configurations, Stability and Dynamics

Franklin T. Dodge
Southwest Research Institute

ORBITING SATELLITE (cont'd)

Fluid Process: Interface Dynamics

Problem: Maneuvering sets the liquid in motion; this feeds back disturbances. The maneuver is degraded (Peacekeeper, space telescope, SDI systems, comm. satellites)

Technology Need: Surface tension and contact line dynamics control the liquid motion. Physics of the motion is not understood. Motions may not be small. Need to predict motions as a function of tank shape, liquid properties, tank surface properties, fill level, and spacecraft motion. (Current CFD codes are of limited use because of poor surface physics.)

EXAMPLE: Spin Stabilized Satellite

Fluid Process: Liquid configuration and motion in a tank spinning about an axis outside the tank, when surface tension is important.

Problem: Liquid motions and viscous dissipation can not be predicted. Spacecraft design is thus very conservative or even abandoned in favor of non-spinners.

Technology Need: Liquid motions do not resemble non-spinning motions (e.g., a free-surface is not necessary). No good theory exists. Ground-based tests are of limited value. Need to predict motions and energy dissipation and the influence of surface physics.
4.3 Fluid Physics

Low-G Interface Configurations, Stability and Dynamics

Franklin T. Dodge
Southwest Research Institute

EXAMPLE: OTV

Fluid Process: Interface configuration and stability
Problems: • gas-free liquid transfer
• quantity-gaging - liquid location is unknown so elaborate, heavy, complex, and limited accuracy systems are used.
Technology Need: Accurate prediction of interface location so a simple, reliable, accurate gaging system can be used.

Fluid Process: Interface dynamics and bulk liquid motion.
Problem: Docking causes large impulsive accelerations. The liquid undergoes gross motions which degrade control and increase liquid transfer time.
Technology Need: Validate method (CFD code) to predict large free-surface motions in low-g and the duration of such motions

IN-SPACE EXPERIMENTATION NEEDS

Interface configuration and stability
High-quality reference set of data to verify and guide analytical/numerical models

Interface slosh dynamics
Highly instrumented reference data sets to guide and verify analytical/numerical models (wave shape, natural frequency, forces and moments, nonlinear effects, damping).

Liquid dynamics in spinning tanks
Acquire fundamental understanding to illuminate the physics and guide/validate models

Large amplitude interface motions
Reference data sets to verify numerical models

PRIORITYIZATION OF IN-SPACE EXPERIMENTATION

Phase 1
• Interface slosh dynamics
• Liquid dynamics in a spinning tank

Phase 2
• Interface configuration
• Interface stability
• Large interface motions
The Case for Two-Phase Gas-Liquid Flow Experiments In Space

A.E. Dukler
University of Houston, Chemical Engineering Department

BACKGROUND

- Two phase flow will exist in many applications in space
 - Rankin power cycle
 - Emergency nuclear cooling systems
 - Space station thermal bus
 - Transfer lines for resupply of cryogen tanks
 - Projected chemical processing operations

- Gravity level has a profound effect on these flows because of the existence of free interfaces

- Basic fluid mechanical models which are needed to design such systems at reduced gravity are largely nonexistent

- The penalty for this ignorance is overdesign with the cost of extra weight to lift to orbit and possible unsafe operating conditions.

- Sound modeling is needed along with careful space experiments in order that design methods be available in the near future.

EXAMPLES OF TECHNOLOGY NEEDS RELATED TO TWO PHASE FLOW

A. THE RANKIN CYCLE

- Reactor/boiler
 - Two phase flow pressure drop (boiler feed pump design)
 - Flow pattern (two phase flow pressure drop)
 - Bubble size (interfacial area available for HT transfer)
 - Size and velocity of liquid slugs (stability & vibration; local heat transfer coefficients)
 - Void fraction (HT transfer coeff and HT transfer area reqd)
 - Bubble coalescence frequency and interfacial wave motion (transition to film boiling and burnout)

- Separator
 - Inlet flow pattern

- Separator-turbine transfer line
 - Pressure drop during annular flow (line sizing)
 - Thickness of condensed film (calc'n of heat loss & P)

- Turbine
 - Drop size and velocity (turbine performance)
 - Drop deposition (blade design)

- Turbine-condenser transfer line
 - Flow pattern (stability and vibration)
 - Pressure drop (line sizing)

- Condenser
 - Flow pattern as gas and liquid ratio change along condenser (controls HT transf. coeff and heat transfer area)
 - Pressure drop (cycle efficiency)

B. COOLDOWN OF CRYOGEN TRANSFER LINE

- During cooldown two phase flow takes place. Pressure drop is much larger than for single phase flow and capacity of the line is smaller.

- Flow pattern is important to predicting the HT transfer and must be known to design the tank storage distributors.
The Case for Two-Phase Gas-Liquid Flow Experiments in Space

A.E. Dukler
University of Houston, Chemical Engineering Department

Two Phase Flow Space Experiments Which Are Needed

Approach:
- Physical and mathematical modelling is undertaken to identify the fundamental processes controlling the phenomena.
- Space experiments are designed to test these underlying premises but not to obtain empirical correlations.
- Models are modified based on the physical insights obtained from the experiments. Subsequent runs in space under different flow conditions, fluid properties or geometry are used to test the generality of the model.

Some Experimental Systems:

A. The Isothermal Loop for Macro Measurements
 This system is to be designed to flow gas/liquid pairs over a wide range of rates in several line diameters, instrumented to measure flow pattern, time varying pressure gradient, cross-sectional average voids and local film thickness during annular flow. Must be suitable for several different fluids to study the effect of fluid properties. Low pressure system. Relatively simple instrumentation and data acquisition system.

B. The Isothermal Loop for Micro Measurements
 A closed loop equipped with a laser velocimeter system and instrumentation to measure bubble and drop size and velocity. Instrumentation is more complex and some development will be necessary to adapt existing instruments for space.

C. Boiling/Condensation Loop
 A closed loop system to permit the study of two phase flow in conditions of condensation and boiling. This will include local heat flux probes as well as probes for macroscopic two phase flow measurements.

Needed Emphasis:
Experiments must be designed and equipment instrumented to reveal underlying mechanism of the flow. Obtaining data followed by empirical correlation will be of limited usefulness.
FLUID MANAGEMENT & PROPULSION SYSTEMS

4.3 Fluid Physics

Fluid Management & Propulsion Systems

Lynn M. Anderson
NASA Lewis Research Center

PROPOSED ROADMAP

<table>
<thead>
<tr>
<th>CY</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-ORBIT FLUID MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT STARTS</td>
<td></td>
</tr>
<tr>
<td>LN2 STORAGE / RESUPPLY</td>
<td>▲</td>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE PROP. RESUPPLY</td>
<td></td>
</tr>
<tr>
<td>TANK SLOSH DYN. / REORIENTATION</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
<tr>
<td>FLUID PHYSICS</td>
<td></td>
</tr>
<tr>
<td>DEFN (PRECURSOR EXPTS)</td>
<td></td>
<td>HARDWARE DEV'T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFN (FACILITY APPROACH)</td>
<td></td>
<td></td>
<td>CUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROPULSION</td>
<td></td>
</tr>
<tr>
<td>DEFN (SCOPING)</td>
<td></td>
<td>ADVOCACY</td>
<td>FOR LARGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUMES</td>
<td></td>
</tr>
<tr>
<td>ELECTRIC PROPULSION</td>
<td></td>
</tr>
<tr>
<td>TEST BED</td>
<td></td>
</tr>
</tbody>
</table>

OAST IN-SPACE TECHNOLOGY PROGRAM PHASES

PROGRAM DEVELOPMENT

- AO's
- TECHNOLOGY THEME WORKING GROUPS
- CRITICAL FLIGHT EXPERIMENT ROADMAPS
- AO PREPARATION

DEFINITION

- TECHNICAL REQUIREMENTS
- HARDWARE IDEAS
- PRELIMINARY PROJECT PLAN

ENGINEERING DEVELOPMENT

- ENGINEERING REQUIREMENTS DEFINED
- FEASIBILITY ESTABLISHED
- HARDWARE CONCEPTUAL DESIGN
- PHASE 0 SAFETY PACKAGE
- PROJECT PLAN

FLIGHT DEVELOPMENT

- FLIGHT HARDWARE DESIGN, FABRICATE, INTEGRATION, & TEST OPERATIONS
- DATA ANALYSIS & REPORT

PROJECT MANAGEMENT

- TECHNOLOGY CONCEPT REVIEW
- FLIGHT EXPERIMENT REVIEW
WORKSHOP SPEAKERS

<table>
<thead>
<tr>
<th>On-Orbit Fluid Mgmt</th>
<th>John Aydelott</th>
<th>John Schuster</th>
<th>Leon Hastings</th>
<th>NASA LeRC</th>
<th>General Dynamics</th>
<th>NASA MSFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Physics</td>
<td>Jack Salzman</td>
<td>Dr. Franklin Dodge</td>
<td>Dr. A. E. Dukler</td>
<td>NASA LeRC</td>
<td>Southwest Res. Inst.</td>
<td>U. Houston</td>
</tr>
</tbody>
</table>

PARTICIPANTS (ROUGHLY)

<table>
<thead>
<tr>
<th>GOVERNMENT</th>
<th>INDUSTRY</th>
<th>UNIVERSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-ORBIT FLUID MGMT.</td>
<td>LERC / COLDSAT</td>
<td>GENERAL DYNAMICS</td>
</tr>
<tr>
<td></td>
<td>MSFC</td>
<td>MARTIN MARIETTA</td>
</tr>
<tr>
<td></td>
<td>JSC</td>
<td>BOEING AEROSPACE</td>
</tr>
<tr>
<td></td>
<td>KSC</td>
<td>McDONNELL DOUGLAS</td>
</tr>
<tr>
<td>FLUID PHYSICS</td>
<td>LERC / MICROGRAV.</td>
<td>LOCKHEED</td>
</tr>
<tr>
<td>PROPULSION</td>
<td>LERC / ELECTRIC</td>
<td>SW RESEARCH INST.</td>
</tr>
<tr>
<td></td>
<td>JPL / PLANETARY</td>
<td>BATTELLE NW</td>
</tr>
<tr>
<td></td>
<td>LERC / CHEMICAL SPACE STATION</td>
<td>TELEDYNE BROWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOSTER MILLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM. SPACE TECH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG&G IDAHO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRUMMAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROCKETDYNE</td>
</tr>
</tbody>
</table>
Theme 4 of 8

FLUID MANAGEMENT & PROPULSION SYSTEMS

4.3 Fluid Physics

Fluid Management & Propulsion Systems

Lynn M. Anderson
NASA Lewis Research Center

ON-ORBIT FLUID MANAGEMENT THEME ELEMENT

POTENTIAL THRUSTS:

- PROVIDE ENHANCING TECHNOLOGY FOR SPACE STATION FREEDOM ORBITAL MANEUVERING VEHICLE, INTERIM STV, CO-ORBIBING PLATFORM, AND COLD-SAT

AND / OR PROVIDE ENABLING TECHNOLOGY FOR ORBITAL DEPOT, RESUPPLY TANKER, LUNAR BASE, MARS EXPEDITION

CRITICAL TECHNOLOGIES

- LIQUID STORAGE
- LIQUID SUPPLY
- LIQUID TRANSFER
- FLUID HANDLING
- INSTRUMENTATION

AUDIENCE PRIORITIES

1. FLUID TRANSFER
2. MASS GAUGING
3. TVS / MIXING
4. LIQUID DYNAMICS / SLOSH
5. AUTOGENOUS PRESSURIZATION / LONG TERM STORAGE

REPRESENTATIVE PROJECTS

- LIQUID NITROGEN STORAGE & SUPPLY EXPT
- STORAGE PROPELLANT RESUPPLY
- TANK SLOSH DYNAMICS & LIQ. REORIENTATION
- DEVT
- SPEEDY DEFN & DEVT

REPRESENTATIVE PROJECTS

- **LIQUID NITROGEN STORAGE AND SUPPLY EXPERIMENT**

 - ENHANCE ABILITY TO PROVIDE CRYO HEAT SINK FOR SPACE STATION EXPERIMENTS AND LAB FREEZER OPERATION FOR SPECIMEN PRESERVATION

 - REDUCE ANNUAL LIFE SUPPORT SYSTEM RESUPPLY TANKAGE WEIGHT TRANSPORTED TO STATION

 - SUPPORT DEVELOPMENT OF ISTV AND COLD-SAT

 - CARGO EXPT
 - LN STORAGE DEWAR
 - PASSIVE TVS, MIXER
 - LIQUID ACQUISITION DEVICE

 - STORAGE & SUPPLY IN LOW GRAVITY
 - VENT TANK & DUMP OVERBOARD
 - N₂ & HE PRESSURANTS
 - GAGING INSTRUMENTATION

- **STORABLE PROPELLANT RESUPPLY EXPERIMENT**

 - ENHANCE ABILITY FOR ON-ORBIT SERVICING OF OMV AND CO-ORBIBING PLATFORM

 - SUPPORT OTHER BI-PROP USERS AND DEVELOPMENT OF COLD-SAT

 - CARGO ON MIDDECK EXPT
 - REFEREE FLUID
 - FILL STORABLE PROP. TANK

 - LAD PERFORMANCE & FILL
 - TANK VENTING
 - MASS GAUGING

- **TANK SLOSH DYNAMICS AND LIQUID REORIENTATION**

 - ENHANCE OMV AND ISTV PERFORMANCE BY INCREASING DYNAMIC STABILITY, PROPELLANT UTILIZATION

 - REDUCE REQUIRED DESIGN MARGINS

 - MIDDECK EXPERIMENT
 - REFEREE FLUID

 - MULTIPLE TANKS (SIZE, SHAPE)
 - SLOSH & REORIENT UNDER IMPOSED LOW G
 - VIDEO
CRITICAL IN-SPACE TECHNOLOGY NEEDS

- Effect of launch environment on thick multilayer insulation
- Long term space environment effects on insulation (debris, micrometeoroids and atomic oxygen)
- Combined Earth orbit insulation cooling enhancement provided by parasol or mirror
- Conversion multiphase (liquid/vapor) cooled shields
- Two phase (liquid/vapor) cooled venting systems
- Fluid mixing for stagnation control
- Refrigeration/liquefaction system demonstration (including condensate collection)
- Autogenous (including paraquat and composite) pressurization system
- Helium supply/pressurization
- Mechanical transfer (pumps/compressors)
- Fine mesh screen liquid acquisition device (LAD)
- Fluid mixing for stagnation control
- Thermal effects on adiabatic vapor cooled shields
- Thermal subcooling of liquid outflow
- In space experimentation needed

CURRENT STATUS/COMMENTS

- Not required
- In final page is not required
- OBAM CITY ADVANCED TECHNOLOGY TASK
- COMET CITY ADVANCED TECHNOLOGY TASK
- DNEON CITY ADVANCED TECHNOLOGY TASK
- UNICITY CITY ADVANCED TECHNOLOGY TASK
- TWO-PHASE CITY ADVANCED TECHNOLOGY TASK
- SPICE CITY ADVANCED TECHNOLOGY TASK
- NO-HOT CITY ADVANCED TECHNOLOGY TASK
- NOT REQUIRED

ORIGINAL PAGE IS OF POOR QUALITY
IN-SPACE TESTING OPPORTUNITIES

<table>
<thead>
<tr>
<th>Technology Category</th>
<th>Critical Data Needed</th>
<th>Deployment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable</td>
<td>Enhance</td>
</tr>
<tr>
<td>Liquid Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Degradation of Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- TVS Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Autogenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Helium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fluid Acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fine Mesh Screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fluid Setting & Outflow under Low G</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>Liquid Transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tank Childdown with Spray</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>- No-Vent Fill</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>- LAD Fill</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>- Low G Vented Fill</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Liquid Handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liquid Dynamics/Slosh Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fluid Dumping & Tank Inerting</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>- Advanced Instrumentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNOLOGY NEEDS

<table>
<thead>
<tr>
<th>Technology Category</th>
<th>Mission Criticality</th>
<th>Space-Based STV</th>
<th>Resupply Tanker</th>
<th>Mars Expedition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interim STV</td>
<td>Orbital Depot</td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td>Liquid Storage</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Thermal Control Systems</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Degradation of Material</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Ejector Launch Flow on Thin MLJ</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Combined Foam/MLJ Sys</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Para/Ortho Conversion</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Multiple/Independent VCS</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>Pressure Control Systems</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- TVS Performance</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fluid Mixing for Stratification Control</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Refrigeration/Throttle</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>Liquid Supply</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Pressurization System Perf.</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Autogenous</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Helium</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Mech. (Pump/Comp.)</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>Fluid Acquisition</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fine Mesh Screen LAD Performance</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fluid Setting & Outflow under Low G Conditions</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Fluid Setting & Outflow under Impulsive Acceleration</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Impact of Heat Addition on LAD Performance</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>- Thermal Subcooling of Liquid Outflow</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
</tbody>
</table>

428
FLUID PHYSICS THEME ELEMENT

POTENTIAL THRUST:

ENHANCE FUNDAMENTAL UNDERSTANDING OF FLUID BEHAVIOR/DYNAMICS IN REDUCED GRAVITY TO ESTABLISH RELIABLE PREDICTIVE MODELS & DATA BASES FOR ADVANCED SYSTEMS DEVELOPMENT

AND/OR

INITIATE DEFINITION & PRECURSOR FLIGHT EXPTS FOR SPACE STATION FLUID PHYSICS FACILITY (1987 IOC, 1992 CUP)

REPRESENTATIVE PROJECTS:

1. ISOTHERMAL MULTIPHASE FLOW
2. POOL/FLOW BOILING
3. ADVANCING LIQUID FRONTS
4. BUBBLE / DROPLET DYNAMICS
5. LIQUID-VAPOR INTERFACES
6. CONDENSATION / EVAPORATION

TYPICALLY:
UNIVERSITY PI
HARDWARE DEV'T CONTRACT
FACILITY OPTIONS
FLUID MANAGEMENT & PROPULSION SYSTEMS

4.3 Fluid Physics

Fluid Management & Propulsion Systems

Lynn M. Anderson
NASA Lewis Research Center

GENERAL PLANNING MODEL

- **MISSION DRIVERS**
 - Advanced Systems
 - Dynamic Power
 - Chemical Energy
 - Nuclear Power
 - Life Support
 - OTV
 - Cryo-Depot
 - Spacecraft Systems
 - Spacecraft-Based Processing
 - Instrumentation Cooling

- **ADVANCED SYSTEMS**
 - Technology Element
 - Fluid Management Need
 - Gravitational Effects
 - Maturity of Understanding

- **FLUID PROCESSES & PHENOMENA CATEGORIES**
 - Interface/Capillary Phenomena
 - Multiphase Flow
 - Multicomponent Coupled Transport
 - Phase Change Processes

- **REFERENCE EXPERIMENT SETS**
 - Hydrostatic Interface Configurations
 - Interface Stability and Dynamics
 - Bubble Dynamics
 - Multiphase Flow Regimes
 - Thermal/Thermal Radiation
 - Condensation
 - Solidification

CRITICAL IN-SPACE TECHNOLOGY NEEDS

- Hydrostatic Interface Configurations
 - Liquid-Gas Interface as a Function of Fluid Properties, Vessel Geometry & Size, Gravitational Level, & System Initial Conditions

- Interface Stabilization
 - Response of a Liquid-Liquid Vapor Interface to Mechanical, Thermal, Disturbances & Its Effect on Bulk Liquid Motion

- Bubble Drop Dynamics
 - The Buoyancy-Driven Thermally Driven Motion of Single Bubble Droplets Under Low Conditions & Interactions Between Multiple Bubble Droplets Including Coalescence/ breakup

- Multiphase Flow Regimes

- Thermal-Physical Convection
 - Heat & Mass Transfer Generated by Buoyancy-Driven Flow Resulting from Thermal Convection Conditions Under Reduced Gravity Conditions

- Poolflow Boiling
 - Onset of Nuclear Boiling & Subsequent Bubble Dynamics as a Function of System Saturation, Heat Flux, Fluid Properties, Wall Geometry, & Gravity Level for Both Stagnant & Liquid Flow Conditions

- Condensation/evaporation
 - Conditions for Condensation/Evaporation of Liquid-Vapor Interfaces & Its Effect on Interface Stability Dynamics Under Low Conditions for Both Stagnant & Vapor Flow Conditions

- Spatial Motion
 - Dynamic Behavior of the Solid Fluid Front During Specified Processes under Reduced Gravity Conditions with Special Emphasis on Void Formation & Dynamics Due to Volume Changes

- Shape & Stability of Liquid-Liquid Vapor Interface & the Location of the Bulk Liquid Volume in a Tank in Reduced Gravity Conditions of Tank Geometry, Fluid Properties, Tank Surface Properties, Liquid-Filled Level, and Gravity Level

- Effects of Surface Tension on Liquid Motion in Spinning Tanks

- Surface Physic for Surfaces In Motion by the Spin in Liquid-Vapor Contact Line in Reduced Gravity

- Heat Transfer at the Onset of Boiling in Reduced Gravity

- Determination of Turbulent Flow Parameters in a Turbulent Liquid Flow at Any Reduced Gravity Level

- Effects of Gravity on Heat Transfer for Forced Convection Boiling, Especially at Transition to Film Boiling and Burnout

- Fluid Mechanics of & Heat Transfer to a Thin Liquid Film Moving Along a Solid Surface Under the Influence of Interfacial Gas Film, Including the Stability of Thin Film & the Process of Drop Formation from the Interface as a Result of Flow Across the Liquid Surface

- Pressure Drop & its Temporal Variation for Two Phase Flow in Reduced Gravity for Steady Flow Conditions or During Variations in Flow Rate & Varying Levels

- Shape & Rate of Advance of a Liquid Front Moving Along a Solid Surface When It's Being Thermally Quenched in Reduced Gravity
4.3 Fluid Physics

Fluid Management & Propulsion Systems

Lynn M. Anderson
NASA Lewis Research Center

EXAMPLE: OTV

Fluid Process: Interface configuration and stability
Problems: • gas-free liquid transfer • quantity-gaging - liquid location is unknown so elaborate, heavy, complex, and limited accuracy systems are used.
Technology Need: Accurate prediction of interface location so a simple, reliable, accurate gaging system can be used.

Docking Impulse

Fluid Process: Interface dynamics and bulk liquid motion.
Problem: Docking causes large impulsive accelerations. The liquid undergoes gross motions which degrade control and increase liquid transfer time.
Technology Need: Validate method (CFD code) to predict large free-surface motions in low-g and the duration of such motions

PROPULSION THEME ELEMENT

POTENTIAL THRUST:

Definition & Engineering Development of Propulsion Flight Projects,
- May be beyond outreach scope due to cost, carrier complexity, multi-agency sponsorship

Representative Projects:
1. Plume Characteristics & Impact
2. Electric Propulsion Space Test
3. Man Tended, Multidiscipline Space Testbed
Theme 4 of 8
FLUID MANAGEMENT & PROPULSION SYSTEMS

4.3 Fluid Physics

Fluid Management & Propulsion Systems

Lynn M. Anderson
NASA Lewis Research Center

RECOMMENDATION PROCESS FINDINGS

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>NUMBER OF RECOMMEND</th>
<th>AVERAGE SCORE</th>
<th>CONSENSUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUME IMPACTS & CHARACTERISTICS</td>
<td>10</td>
<td>1.2</td>
<td>X</td>
</tr>
<tr>
<td>ELECTRIC PROPULSION SPACE TEST</td>
<td>9</td>
<td>1.9</td>
<td>X</td>
</tr>
<tr>
<td>MULTIDISCIPLINE SPACE TEST BED</td>
<td>7</td>
<td>2.4</td>
<td>X</td>
</tr>
<tr>
<td>LARGE NOZZLE (5-25K LB.) SPACE EVALS</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FAULT DIAGNOSTICS & MAINTENANCE</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL PROTECTION</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IN-SPACE ENGINE RESTARTS</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VACUUM WELDING</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IN-SITU PROPELLANTS</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

PROGRAMMATIC CONCERNS

SCOPE

- DOLLAR LIMITS/GUIDELINES
- TIME CONSTRAINTS/FLEXIBILITY WITH DISCIPLINE & INSTITUTION
- TECHNOLOGY READINESS LEVELS (SYSTEM DEMOS?)
- FROM DEFINITION THROUGH DEVELOPMENT?
- FACILITY CONCEPT WITH MULTIPLE INVESTIGATORS

SELECT CRITERIA

- "SPREADING DOLLARS ACROSS THEMES"?
- PROJECTS WHICH SPAN SUBTHEMES
- HIGH DOLLARS ON ONE ACTIVITY PRECLUDES OTHERS?

COMMITMENT

- UNIVERSITY INVOLVEMENT
AUTOMATION AND ROBOTICS

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

Antal K. Bejczy
Jet Propulsion Laboratory

ORGANIZATION

THEME LEADER: ANTAL K. BEJCZY, JPL.

COMMITTEE:
- THOMAS S. DOLLMAN, MSFC
- HENRY LUM, ALC
- ALFRED J. MEINTEL, JR., LaRC
- CHARLES R. PRICE, JSC
- LLOYD R. PURVES, GSFC
- DOUGLAS A. ROHN, LeRC
- JAMES P. JENKINS, NASA HQ, OAST/RC (EX OFFICIO)

SUBTHEMES & THEME GROUPS:
1. ROBOTICS
2. TELEOPERATION
3. ARTIFICIAL INTELLIGENCE

THEME SESSION OBJECTIVES

PURPOSE

- IDENTIFY & PRIORITIZE IN-SPACE TECHNOLOGIES FOR AUTOMATION & ROBOTICS, BY CONSIDERING SUBTHEME DETAILS, WHICH
 - ARE CRITICAL FOR FUTURE U.S. SPACE PROGRAMS
 - REQUIRE DEVELOPMENT & IN-SPACE VALIDATION

- GENERATE COMMENTS AND SUGGESTIONS FROM AEROSPACE COMMUNITY ON OAST IN-STEP PLANS

PRODUCT

- PRIORITY LISTING OF CRITICAL SPACE TECHNOLOGY NEEDS & ASSOCIATED SPACE FLIGHT EXPERIMENTS, RECOMMENDED BY AEROSPACE COMMUNITY
AUTOMATION AND ROBOTICS

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

Antal K. Bejczy
Jet Propulsion Laboratory

THEME DESCRIPTION

• SCOPE
FULL SPECTRUM OF TELEOPERATION, ROBOTICS AND ARTIFICIAL INTELLIGENCE COMPONENTS, SUBSYSTEMS AND SYSTEMS AS THEY RELATE TO SPACE MISSIONS, INCLUDING HUMAN OPERATOR FUNCTIONS IN THESE SYSTEMS

• GOAL
PROVIDE THE TECHNOLOGY AND UNDERSTANDING OF ALL THREE SUBTHEMES NEEDED TO ENSURE PRODUCTIVE AND SAFE APPLICATION OF INCREASINGLY AUTOMATED ROBOTIC AND SYSTEM CAPABILITIES IN SPACE MISSIONS UNDER REMOTE HUMAN OPERATOR SUPERVISION, INCLUDING THE UNDERSTANDING OF HUMAN PERFORMANCE CAPABILITIES IN THESE SYSTEMS

BACKGROUND OF THEME TECHNOLOGY DEVELOPMENT

• SUMMARY OF A&R THEME FROM 1985 WILLIAMSBURG, VA WORKSHOP (SEE APPENDIX)

• ACCOMPLISHMENTS SINCE 1985
• IN-REACH ACTIVITIES
• OUT-REACH ACTIVITIES
• EXPERIMENTS IN PREPARATIONS
 - SHUTTLE RMS FTS/DEXTROUS MANIPULATION
 - TRIIFEX/ROTEX
 - S/S FTS

434
Theme 5 of 8: Automation and Robotics

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

Antal K. Bejczy

Jet Propulsion Laboratory

Description of Subtheme 1: Robotics

Technology Elements
- Robot mechanisms and actuators
- Robot sensing
- Robot controls
- Robot processing and its architecture
- Robot system concepts and designs

Including redundancy in robotic systems, together with reliability and fault tolerance requirements in space systems

Subtheme Objectives

Develop a validated technology base for above elements, taking into account space application and space environmental conditions and mission constraints.

Description of Subtheme 2: Teleoperation

Technology Elements
- Multi-mode operator interfaces to telerobots
- Intelligent displays
- Hierarchical control/information architectures
- Visual perception systems
- Communication time delay

Including supervisory command languages, traded shared manual/computer controls and the use of expert systems by human operators.

Subtheme Objectives

Develop a validated technology base for efficient and safe utilization of human operator capabilities in direct or supervisory control of telerobots, taking into account the effects of space conditions (microgravity, etc.) and communication time delays on operator behavior and performance, and also considering the handling of singular or unexpected tasks.

Description of Subtheme 3: Artificial Intelligence

Technology Elements
- Operations and control planning/coordination
- Performance monitoring of complex systems
- Error detection and recovery
- Multi-sensor data interpretation
- Operator interaction with expert systems

Using existing and evolving capabilities of artificial or machine intelligence techniques.

Subtheme Objectives

Develop a validated technology base for increased level of intelligent automation applicable to space missions and operations, including telerobotic missions and operations, taking into account space operations constraints.
THEME SESSION AGENDA

9:45 A.M. SUBTHEME: ROBOTICS
1. A. MEINTEL, JRC
2. T. DEPKOVICH/J. SPOFFORD, MARTIN MARITTA SPACE SYSTEMS
3. PROFESSOR D. TESAR, UNIVERSITY OF TEXAS, AUSTIN
PANEL: SUBTHEME SPEAKERS AND:
PROFESSOR J. DUFFY, UNIV. OF FLORIDA; PROFESSOR G. SARIDIS, RPI;
F. GARCIA, IBM; S. HARRIS, DODGECK.

11:45 A.M.
SPEAKER 1 (30 min)
SPEAKER 2 (30 min)
SPEAKER 3 (30 min)
DISCUSSION (30 min)

1:00 P.M. SUBTHEME: TELEOPERATION
1. C. PRICE, JSC
2. P. PIERSON, GENERAL ELECTRIC
3. PROFESSOR T. SHERIDAN, MIT
PANEL: SUBTHEME SPEAKERS AND:
JENKINS, JSC; PROFESSOR L. STARK, UC BERKELEY; PROFESSOR J. STAUDHAMMER;
UNIVERSITY OF FLORIDA.

3:00 P.M.
SPEAKER 1 (30 min)
SPEAKER 2 (30 min)
SPEAKER 3 (30 min)
DISCUSSION (30 min)

3:15 P.M. SUBTHEME: ARTIFICIAL INTELLIGENCE
1. N. SLWA/P. FRIEDLAND, ARC
2. D. ROVEMBER 15X, INC.
3. PROF R. CANNON, STANFORD UNIV.
PANEL: SUBTHEME SPEAKERS AND:
SIMPSON, DARPA; J. DICKERSON,
MCDONNEL-DOUGLAS SPACE DIV.

5:15 P.M.
SPEAKER 1 (30 min)
SPEAKER 2 (30 min)
SPEAKER 3 (30 min)
DISCUSSION (30 min)

THEME DISCUSSIONS

• AFTER EACH SUBTHEME SESSION
 • OPEN 30 min DISCUSSION WITH AUDIENCE & THEME LEADER/SPEAKERS/PANEL
 - QUESTIONS & ANSWERS
 - IDENTIFICATION OF ADDITIONAL TECHNOLOGIES FROM AUDIENCE
 • AUDIENCE PRIORITIZATION OF CRITICAL TECHNOLOGIES

• JOINT THEME DISCUSSION, THURSDAY 8:30-10:45 A.M.
 • DISCUSSION BETWEEN AUDIENCE & ALL THEME ELEMENT SPEAKERS
 • RESOLUTION OF CRITICAL TECHNOLOGIES ACROSS THEME
Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

Antal K. Bejczy
Jet Propulsion Laboratory

PRIORITIZATION CRITERIA
(LISTED IN ORDER OF IMPORTANCE)

1. **CRITICAL ENABLING TECHNOLOGIES**
 - TECHNOLOGIES WHICH ARE CRITICAL FOR FUTURE U.S. SPACE MISSIONS

2. **COST REDUCTION TECHNOLOGIES**
 - TECHNOLOGIES WHICH CAN DECREASE COSTS OR COMPLEXITY (e.g., DEVELOPMENT, LIFE-CYCLE, OPERATIONS)

3. **BROAD APPLICATION TECHNOLOGIES**
 - TECHNOLOGIES WHICH CAN IMPROVE OR ENHANCE A VARIETY OF SPACE MISSIONS

4. **REQUIRE IN-SPACE VALIDATION**
 - TECHNOLOGIES WHICH REQUIRE THE SPACE ENVIRONMENT OR MICRO-GRAVITY FOR VALIDATION OR EXPERIMENTATION
SUMMARY OF

AUTOMATION & ROBOTICS THEME FROM

1985 WILLIAMSBURG, VA, IN-SPACE RT&E WORKSHOP

--- QUOTED FROM WORKSHOP EXECUTIVE SUMMARY ---

---Quotes from the 1985 Williamsburg, Virginia, RT&E Workshop---

AUTOMATION AND ROBOTICS

OBJECTIVES/CAPABILITIES

- **VALIDATE ROBOTIC IN-SPACE OPERATIONS CAPABILITY**
 - DOCKING - 1988
 - SATLLITE SERVICING - 1990
 - STRUCTURAL ASSEMBLY - 1992
 - IVA ASSISTANT - 1996
 - EVA ASSISTANT - 2000

- **EVOLVE ROBOTIC IN-SPACE OPERATIONS CAPABILITY**
 - TELEPRESENCE - 1990
 - SUPERVISORY CONTROL - 1994
 - AUTONOMOUS OPERATIONS - 1998

- **SYSTEM AUTONOMY CAN BE DEMONSTRATED ON GROUND**
WHY IN-SPACE EXPERIMENTS

- EVALUATE ZERO "G" VS. ONE "G" DYNAMICS FOR:
 - MECHANICAL CONFIGURATIONS
 - PROXIMITY OPERATIONS
 - FLUIDS, SOLIDS, GASES
- DEVELOP DESIGN/OPERATIONAL DATA BASE
- VALIDATE PROTO FLIGHT HARDWARE/SOFTWARE/
 PROCESSES
- EVALUATE MAN/MACHINE PERFORMANCE ON-ORBIT
- EVALUATE GROUND MODELS/SIMULATIONS
- EVALUATE LONG TERM SPACE EFFECTS ON SYSTEMS

AUTOMATION AND ROBOTICS

EXPERIMENT THRUSTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEXTROUS MANIPULATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED/AUTONOMOUS ROBOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVANCED CONCEPTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORKSTATION EVALUATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AUTOMATION AND ROBOTICS

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop ('85)

Antal K. Bejczy
Jet Propulsion Laboratory

Theme 5 of 8

PRE-IOC

- Single Arm Teleoperator
- Teleoperation from Earth
- Combined Translation/Manipulation
- Fixed On-Station RMS
- Docking
- End-Effector Definition
- Mechanical Assembly Process
- Work Station HW/SW/MM Interfaces
- Sensor Accommodations
- Space Effects on Teleop. Capability

IOC (92-97)

- Dual Arm Teleoperator Coordination
- Telepresence
- Mobile On Station RMS
- Teleoperated Free-Flying Operations
- Free-Flyer and Dual-Arm Collision Avoidance
- CAD-Driven Position Registration (On S/S)
- (Evolving)
- (Evolving)
- (Evolving)
- (Evolving)
- Zero G Materials Handling

FOC (97-Beyond)

- Multi-Arm Coordination
- Autonomous Robotics
- Multiple Robot Coordination
- Free-Flying Autonomous Proximity Operations
- Multiple Arm Collision Avoidance
- Fault Tolerant (Evolving)
- Fault Repair (Evolving)
- Interactive AV/Expert Systems
- Autonomous Satellite Servicing & Repair By Robots
- Robots Repair By Robots

Quotes from the 1985 Williamsburg, Virginia, RT&E Workshop

PRE-IOC

- Failure Detection
- Failure Isolation
- Fault Tolerance
- Advanced Automation Software Algorithms
- Improved Satellite Servicing Tools
- Workload Power Consumption Experiments
- Robotic Vision and Imagery Optimization
- Autonomous Orbit Transfer
- Compliance Techniques
- Mass Movements Studies
- Voice Control/Interaction

IOC (92-97)

- Fault Tolerant (Evolving)
- Fault Repair
- Real-Time Planning
- Independent Expert
- Teleoperator Satellite Servicing
- Robotic Inspection (Sensor Dependent)
- Autonomous Satellite Servicing & Repair By Robots
- (Evolving)
- (Evolving)
- (Evolving)

FOC (97-Beyond)

- Fault Repair (Evolving)
- Interactive AV/Expert Systems
- Autonomous Satellite Servicing & Repair By Robots
- Robots Repair By Robots
- Space Effects On Vision Systems
- (Evolving)
- (Evolving)
- (Evolving)
- (Evolving)
- (Evolving)
Theme 5 of 8

AUTOMATION AND ROBOTICS

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop (’85)

Antal K. Bejczy
Jet Propulsion Laboratory

AUTOMATION AND ROBOTICS

EXPERIMENT LIST

1988 PROXIMITY MANEUVERING
1989 TELEOPERATED MANEUVERING (MMU)
1990 SMART FRONT END TECHNOLOGY
1992 SATELLITE SERVICING
1994/6 SUPERVISORY STRUCTURAL ASSEMBLY
1996 IVA ROBOT
2000 AUTONOMOUS SPACE ROBOT
2010 SPACE SPIDER

CONTINUOUS WORKSTATION EVALUATION AND IN-SPACE WORKLOAD MEASUREMENTS

Quotes from the 1985 Williamsburg, Virginia, RT&I Workshop

AUTOMATION AND ROBOTICS

ACCOMMODATION ISSUES

- "ROBOT FRIENDLY" INTERFACES FOR SERVICING, ASSEMBLY, AND DOCKING
- STANDARD UTILITIES REQUIRED FROM MOBILITY SYSTEMS (RMS, MRMS, OMV, OTV, ETC.)
- SAFETY
- COMPUTING POWER, DATA STORAGE, SYSTEM ARCHITECTURES
- STANDARDS FOR END EFFECTORS, ARMS, HOLDERS, ETC.
- MASS/VOLUME MODEST
- ASTRONAUT TRAINING REQUIRED
- FORMATION FLYING REQUIRED
- EVA NECESSARY IN SOME CASES
- IVA ACTIVITY REQUIRED
- HIGH BANDWIDTH VIDEO/ENCRYPTION COMMUNICATIONS SYSTEM

441
AUTOMATION AND ROBOTICS

Background and Objectives

Subthemes: Robotics, Teleoperation, and Artificial Intelligence; Summary of Williamsburg Workshop (’85)

Antal K. Bejczy
Jet Propulsion Laboratory

RECOMMENDATIONS

- ACCELERATE EXPERIMENT SCHEDULE - IMPACT SPACE STATION
- ACTIVE FOLLOW-UP TO EMBED TECHNOLOGY ACCOMMODATION ISSUES WITH SPACE STATION
- ESTABLISHMENT OF IN-SPACE TECHNOLOGY ADVOCACY COMMITTEE
- WORK WITH ULTIMATE USER GROUPS
- ENCOURAGE USERS TO COME FORWARD
- EXPLORE CREATIVE WAYS OF COST SHARING
- DEVELOP AND DISSEMINATE SPACE STATION IN-SPACE RESEARCH CAPABILITY
- BROADEN RESEARCH USER LIAISON WITH STATION
- COORDINATE BETWEEN PANELS - DISTRIBUTE TO PARTICIPANTS
- ESTABLISH CONTINUING MAIL LIST AND FOCAL POINTS

Quotes from the 1985 Williamsburg, Virginia, RT&E Workshop
INTRODUCTION/BACKGROUND

- AUTOMATIC MACHINE
 SPECIAL PURPOSE MECHANISM

- REPROGRAMMABLE MULTIFUNCTIONAL MACHINE
 INDUSTRIAL ROBOT

- ADAPTIVE ROBOT
 SENSOR BASED

- TELEROBOT
 SUPERVISED MACHINE

- INTELLIGENT ROBOT
 GOAL DRIVEN

MISSION APPLICATIONS

- ASSEMBLY
- INSPECTION
- SERVICING
- EXPERIMENTATION
- MANUFACTURING
- REPAIR
- CONSTRUCTION
- EXPLORATION
TECHNOLOGY NEEDS

- **MECHANISMS**
- **SENSORS**
- **CONTROL**
- **PLANNING**
- **FAULT TOLERANCE**
- **SYSTEMS ARCHITECTURE**

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- **MECHANISMS**
 - Redundant manipulators with low weight & power
 - Positive retention of end effectors/tools
 - Mobility
- **SENSORS**
 - End point determination
 - Collision detection
 - Data correlation
- **CONTROLS**
 - Flexibility
 - Disturbance compensation
 - Dynamic interaction
- **OPERATOR INTERFACE**
 - Dynamic simulation
 - Monitoring
 - Interactive replanning
AUTOMATION AND ROBOTICS

5.1 Robotic Systems

Robotics

AI McInerl
NASA Langley Research Center

SUMMARY/RECOMMENDATIONS

- **IN-SPACE EXPERIMENTS**
 - FLEXIBILITY
 - DYNAMIC INTERACTIONS
 - FLIGHT QUALIFIED HARDWARE
 - MECHANISMS
 - SENSORS
 - COMPUTERS
 - SYSTEM VALIDATION

- **STANDARDIZATION**

- **EFFICIENT ROBOTIC PROGRAMMING**

- **FAULT TOLERANCE/REDUNDANCY**

- **TELEROBOTICS**
INTRODUCTION/BACKGROUND

- R&D ACTIVITIES HAVE DEVELOPED AN ARRAY OF TECHNIQUES FOR ROBOTIC SYSTEM CONTROL

- MATURE AND NEAR MATURE AREAS INCLUDE:
 - POSITION CONTROL
 - COMPLIANT CONTROL
 - COORDINATED DUAL ARM CONTROL

- FEASIBILITY DEMONSTRATIONS HAVE INCREASED CONFIDENCE IN TECHNOLOGY

- MISSION APPLICATION ASSESSMENT SUFFERS FROM "CHICKEN AND EGG" SYNDROME
 - MISSIONS UNWILLING TO COMMIT WITHOUT FIRM DEFINITION OF ROBOTIC CAPABILITY
 - ROBOTIC CAPABILITY ONLY GENERALLY DEFINED BECAUSE OF LACK OF MISSION SUPPORT
 - EXAMPLE: "DESIGN FOR SERVICING"

- BROAD RANGE OF POTENTIAL APPLICATIONS
 - EVA: CONSTRUCTION, INSPECTION, REFURBISHMENT, REPAIR, CONTINGENCY
 - IVA: HOUSEKEEPING, EXPERIMENTS

TECHNOLOGY NEEDS

- DEMONSTRATIONS PERFORMED OVER THE PAST SEVERAL YEARS HAVE SHOWN FEASIBILITY OF ALL MAJOR TECHNOLOGY ELEMENTS NECESSARY FOR ROBOTIC SERVICING PROGRAM

- MAJOR SHORTFALL AT THIS TIME IS A LACK OF CONSENSUS ON MEANS OF SPECIFYING MANIPULATOR SYSTEM PERFORMANCE REQUIREMENTS AND VALIDATING SYSTEM PERFORMANCE

- VIRTUALLY ALL CURRENT SPECIFICATIONS ARE STATIC; TO BE MEANINGFUL AND USEFUL, DYNAMIC SPECIFICATIONS ARE ALSO REQUIRED

- SOLUTION IS ACHIEVED THROUGH THE UNDERSTANDING OF RELATIONSHIP BETWEEN TASK FUNCTIONAL DESCRIPTION AND MANIPULATOR CLOSED LOOP DYNAMIC IMPEDANCE

- EQUIVALENT TO ASSIGNING UNITS ON DEXTERITY

- THREE POTENTIAL APPROACHES TO ESTABLISHING THESE RELATIONSHIPS
 - ANALYTICAL (NOT LIKELY)
 - SIMULATION (LIKELY WITH ADVANCED CAD/CAE)
 - EMPIRICAL (BEST NEAR TERM SOLUTION)
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- **MAJORITY OF SPACE ISSUES CAN BE ANSWERED THROUGH GROUND BASED TESTING AND EXPERIMENTATION**

- **SPACE BASED EXPERIMENTS SHOULD BE VIEWED AS FINAL LINK IN CHAIN OF VALIDATION STUDIES NECESSARY PRIOR TO HANDOVER TO OPERATIONAL COMMUNITY**

- **DEDICATED EXPERIMENTAL TESTBED AVAILABLE TO RESEARCH COMMUNITY FOR GENERAL INVESTIGATIONS**
 - MECHANISMS
 - SENSORS
 - CONTROL
 - PROCESSING
 - MMI

- **KEY INITIAL EXPERIMENTS**
 - CONTROL LAW VALIDATION
 - COMPLIANT CONTROL
 - CONTROL WITH LARGE PAYLOADS
 - COORDINATION
 - SUPERVISORY CONTROL
 - PERFORMANCE DATABASE FOR OPERATIONS ASSESSMENT

SUMMARY/RECOMMENDATIONS

- **ROBOTIC TECHNOLOGY NOW READY TO ADVANCE TO MATURE TECHNOLOGY STATUS**

- **THIS REQUIRES THE ABILITY TO UNAMBIGUOUSLY SPECIFY PERFORMANCE REQUIREMENTS, BOTH STATIC AND DYNAMIC**

- **THIS ABILITY ESSENTIAL TO DESIGN AND VALIDATION PROCESS, AN IMPORTANT FACTOR IN ACHIEVING COST EFFICIENCY**

- **CAPABILITY NOW EXISTS FOR EMPIRICAL DETERMINATION OF DYNAMIC REQUIREMENTS**

- **EXPERIMENTAL TESTBED REQUIRED TO SUPPORT ADVANCED RESEARCH**

- **KEY TO TESTBED SUCCESS IS FLEXIBILITY IN ACCEPTING NEW TECHNOLOGY**
 - MECHANISMS
 - SENSORS
 - PROCESSING
 - ALGORITHMS
 - MMI

- **LAST STEP IS FINAL VALIDATION OF TECHNOLOGY**
INTRODUCTION/BACKGROUND
TECH Base ISSUES FOR ROBOTICS

I. LIGHTWEIGHT
 1. ROBOTS ARE LIMBER
 2. MUST BE MADE ELECTRONICALLY RIGID
 3. REQUIRES COMPLETE PARAMETRIC MODEL
 4. LEVEL OF CONTROL FAR BEYOND PRESENT CAPABILITY

II. PRECISION UNDER DISTURBANCE
 1. PRECISION LIGHT MACHINING
 2. REAL TIME DYNAMIC MODEL
 3. ADAPTIVE CONTROL
 4. FEEDFORWARD COMPENSATION

III. MAN MACHINE INTERFACE
 1. NEED INCREASES WITH BETTER TECHNOLOGY
 2. SHOULD BE KINESTHETIC (ANALOG)
 3. FORCE FEEDBACK ESSENTIAL
 4. GENERIC UNIVERSAL MANUAL CONTROLLER

IV. DYNAMICS OF DOCKING
 1. SHOCK TO STATION UNDESIRABLE
 2. SATELLITE SPIN AND WOBBLE IS COMPLEX
 3. PRESENTLY REQUIRES 8 TO 10 HOURS
 4. SOPHISTICATED MANIPULATOR DYNAMICS REQUIRED

V. LEVEL OF TECHNOLOGY REQUIRED
 1. FAR BEYOND TODAY'S INDUSTRIAL ROBOT
 2. GEOMETRY MUST BE MORE GENERIC (PARALLEL)
 3. DYNAMIC CONTROL TECHNOLOGY GROSSLY INADEQUATE
 4. BALANCE OF ELECTRICAL AND MECHANICAL ESSENTIAL

GENERIC TECHNOLOGY NEEDS/VOIDS

<table>
<thead>
<tr>
<th>NEEDS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MULTI TASK CAPABILITY</td>
<td>NUMBER OF DIFFERENT PHYSICAL TASKS FEASIBLE</td>
</tr>
<tr>
<td>2. LEVEL OF MACHINE INTELLIGENCE</td>
<td>LEVEL OF INTEGRATION OF COMPUTER HARDWARE, SOFTWARE, ARTIFICIAL INTELLIGENCE, ETC.</td>
</tr>
<tr>
<td>3. TIME EFFICIENT OPERATION</td>
<td>SPEED OF PERFORMANCE RELATIVE TO HUMAN ACTING ALONE</td>
</tr>
<tr>
<td>4. UNSTRUCTURED TASK LEVEL</td>
<td>LEVEL OF NUMERICAL UNCERTAINTY IN TASK SPECIFICATION</td>
</tr>
<tr>
<td>5. GEOMETRICAL DEXTERITY</td>
<td>EFFECTIVE MOTION RANGE (LINEAR AND ANGULAR) OF THE END EFFECTOR</td>
</tr>
<tr>
<td>6. PORTABILITY AND MOBILITY</td>
<td>ABSOLUTE MOVEMENT OF SHOULDER BASE WITH OR WITHOUT HUMAN ASSISTANCE</td>
</tr>
<tr>
<td>7. PRECISION</td>
<td>ABSOLUTE PREC OF POSITIONING OF END-EFFECTOR IN D COORDINATES</td>
</tr>
</tbody>
</table>
AUTOMATION AND ROBOTICS
5.1 Robotic Systems

Robots in Space

Prof. Delbert Tesar
University of Texas at Austin

SPECIFIC TECHNOLOGY NEEDS/VOIDS

REAL-TIME SYSTEM MODELING
FOR
MODEL REFERENCE ADAPTIVE CONTROL

NEEDED DEVELOPMENT
• DEMONSTRATE MODEL REFERENCE CONTROL
 - RIGID LINK MODEL
 - COMPENSATE FOR APPLIED LOADS
 - COMPENSATE FOR INERTIA LOADS
• EXPAND TO INCLUDE DEFLECTIONS
 - LINK FLEXIBILITY
 - ACTUATOR FLEXIBILITY
• ESTABLISH OPERATIONAL SOFTWARE
• DEMONSTRATE IN ACTUAL MACHINING OPERATIONS

TASK DESCRIPTION
• EXPAND RANGE OF APPLICATIONS
 FOR GENERIC MANUFACTURING SYSTEMS
 - USE FEED FORWARD COMPENSATION
• ON-LINE COMPUTATION
 - FULL MODELING MATRICES
 - REAL TIME (< 30 ms/esc.)
• ARRAY PROCESSOR IMPLEMENTATION
 PIPELINED COMPUTATION
 - RECURSION IN ALGORITHM

ROBOT TECHNOLOGY NEEDS FOR SPACE

I. ASSEMBLY OF SPACE STRUCTURES
1. HANDLING OF LARGE MODULES
2. PRECISE SUB ASSEMBLY TASKS
3. PRECISION WELDING AND FORMING
4. PRECISION LIGHT MACHINING

II. SPACE STATION MAINTENANCE AND REPAIR
1. CONTINUOUS INSPECTION REQUIRED
2. 40% OF REPAIRS TO BE UNPLANNED
3. UNSTRUCTURED TASK ENVIRONMENT
4. PRECISION UNDER DISTURBANCE

III. SATELLITE SERVICING AND REPAIR
1. 75 MISSIONS/YEAR
2. UNSTRUCTURED TASKS
3. SOME PRECISION WORK UNDER DISTURBANCE
4. DOCKING DYNAMICS CRITICAL

IV. HAZARDOUS MANUFACTURING AND LABORATORY EXPERIMENTS
1. CONTAMINATED ENVIRONMENT IN MODULE
2. CLEAN ROOM ATMOSPHERE
3. ABSOLUTE STABILITY DESIRED
4. TURBULENCE HAZARD CRITICAL

V. MAINTENANCE OF ROBOTS
1. SOFTWARE ADAPTABILITY TO CHANGE IN PARAMETERS
2. MODULARITY FOR MAINTAINABILITY
3. MODULE REPLACEMENT FOR TECHNOLOGY UP DATE
4. DUALITY IN CRITICAL MAINTENANCE OPERATIONS
IMMEDIATE RESEARCH NEEDS FOR SPACE STATION ROBOTICS

- ARCHITECTURE OF ROBOTICS SYSTEMS
- UNIVERSAL MAN-MACHINE INTERFACE FOR ROBOTIC MANIPULATOR SYSTEMS
- CONTROL OF MULTIPLE ARM ROBOTIC SYSTEMS
- ROBUST CONTROL OF FLEXIBLE "CHERRY PICKER" ROBOTIC MANIPULATOR
- REALTIME SYSTEM MODELING FOR MODEL REFERENCE ADAPTIVE CONTROL
- METROLOGY FOR ROBOTIC SYSTEMS
INTRODUCTION/BACKGROUND

- THE SPACE SHUTTLE DEPLOYMENT AND RETRIEVAL SYSTEM IS THE STATE OF THE ART FOR IN-SPACE TELEOPERATIONS
- THE PDRS CONSISTS OF THE REMOTE MANIPULATOR SYSTEM AND ITS ANCILLARY EQUIPMENT MOUNTED ON THE SPACE SHUTTLE ORBITER
- THE PDRS FUNCTIONALITIES ARE:
 - GRAPPLE, TRANSPORT, ORIENTATION, AND RELEASE OF A PAYLOAD
 - TRACK, CAPTURE, GRAPPLE, TRANSPORT, ORIENTATION, AND BERTHING OF A SATELLITE
 - EVA CREW TRANSPORT, POSITIONING, ORIENTATION VIA GRAPPLED MOBILE FOOT RESTRAINT
 - LOCAL ILLUMINATION VIA RMS MOUNTED LIGHTS
 - DIRECTIONAL, AUGMENTED VIEWING VIA RMS MOUNTED CCTV
 - FREESTREAM EXPERIMENT SENSOR POSITIONING
 - POWER AND DATA INTERFACE SERVICES FOR PAYLOADS
 - RESOURCE FOR CREATIVE SOLUTIONS TO UNPLANNED PROBLEMS

NEAR TERM FUTURE TELEOPERATOR APPLICATIONS

- ON-ORBIT:
 - ORBITER-BASED SPACE STATION ASSEMBLY
 - SPACE STATION-BASED SPACE STATION ASSEMBLY
 - SATELLITE SERVICING
- TERRESTRIAL SPACE APPLICATIONS:
 - KSC TURN AROUND OPERATIONAL COST REDUCTION APPLICATION, e.g.:
 - TILE INSPECTION
 - PAYLOAD BAY INSPECTION
 - NSTS TURNAROUND COSTS ARE $250 MILLION/FLIGHT
 - SUCCESSFUL GROUND APPLICATIONS ENHANCE ON-ORBIT APPLICATIONS

LONGER TERM TELEOPERATOR APPLICATIONS (WITH TRENDS TOWARDS Telerobotics)

- EXPANDED ON-ORBIT SERVICING OF SATELLITES
- EXPANDED SHUTTLE TURNAROUND OPERATIONAL SUPPORT
- ON-ORBIT MAINTENANCE OF SPACE STATION
- ON-ORBIT SERVICING OF PLATFORMS, INCLUDING HARVESTING OF PRODUCTS
- ON-ORBIT ASSEMBLY OF LUNAR AND DEEP SPACE EXPLORATORY VEHICLES
- REMOTE LUNAR MINING OPERATIONS
TECHNOLOGY NEEDS FOR SPACE SHUTTLE PAYLOAD DEPLOYMENT AND RETRIEVAL SYSTEM SUPPORT TO SPACE STATION ASSEMBLY

- FORCE/TORQUE FEEDBACK
- CONSTRAINED MOTION CONTROL FUNCTIONALITY
 - RATE COMMAND TO CONTACT TRANSITION
 - RATE COMMAND WITH VARIABLE RESISTANCE LOADING
 - SPLIT AXIS MIXED MODES
- LOW SCAR GRAPPLE FIXTURE
- DISPLAY OF COMPLEX ASSEMBLY WORKSPACES TO CREW
- PRACTICAL COLLISION AVOIDANCE (INFERS LIMITED MACHINE VISION)
- SINGLE WORKSTATION CONTROL OF MULTIPLE, HIERARCHICAL (AND SOME PARALLEL) MANIPULATORS
- FAULT TOLERANCE BY DESIGN TO IMPROVE MISSION SUCCESS PROBABILITIES

PERCEIVED VOIDS IN THE IN-SPACE EXPERIMENTS REGARDING TELEOPERATORS

- ON ORBIT:
 - DISPLAY OF COMPLEX (ASSEMBLY) WORKSPACE UNDER ORBITAL LIGHTING CONDITIONS TO CREW
 - COLLISION AVOIDANCE SENSING, CALCULATION, AND DISPLAY TO CREW
 - SINGLE WORKSTATION CONTROL OF
 - HIERARCHICAL SETS OF MANIPULATORS
 - PARALLEL SETS OF MANIPULATORS
 - TOTAL DEGREES OF FREEDOM EXCEEDING FIFTY OR MORE
 - DEMONSTRATION/VERIFICATION OF MATH MODELED CONSTRAINED MOTION AND CONTACT DYNAMICS
 - FAILURE DETECTION, ISOLATION, AND AUTOMATIC RECONFIGURATION OF A TELEOPERATOR SYSTEM
 - DISTRIBUTED, JOINT-LEVEL REPROGRAMMABLE MICROPROCESSING FOR AN OPERATIONALLY ADAPTIVE TELEOPERATOR

- TERRESTRIAL RELATED:
 - FEEDFORWARD CONTROL FOR GROUND COMMAND OF ON-ORBIT TELEOPERATOR
 - SHUTTLE TURNAROUND COST SAVINGS APPLICATIONS
5.2 Teleoperations

Space Operations, Now and Future

Charles R. Price
NASA Johnson Space Center, Teleoperation Systems Branch

SUMMARY/RECOMMENDATIONS

- ASSEMBLY OF COMPLEX WORKPIECES IS THE MAJOR NEAR TERM TECHNOLOGY DRIVER FOR IN-SPACE TELEOPERATORS
- IN-FLIGHT EXPERIMENTS SUPPORTING ASSEMBLY WILL ALSO APPLY TO SATELLITE SERVICING TELEOPERATION
- RECOMMEND MORE EMPHASIS BE PLACED ON PRACTICAL COLLISION AVOIDANCE AND DISPLAY OF COMPLEX WORKSPACE TO CREW
INTRODUCTION/BACKGROUND

- SPACE TELEOPERATION
 - CANDIDATE MISSIONS DEFINED
 - COST EFFECTIVENESS UNDER REVIEW
 - TELEOPERATION IS POTENTIALLY A VIABLE OPTION

- TECHNOLOGY BASE
 - INDUSTRIAL ROBOTICS
 - UNDERSEA, NUCLEAR POWER PLANT TELEOPERATIONS

- SPACE TELEOPERATION/SUPERVISORY CONTROL
 - COMBINATION OF ROBOTICS AND TELEOPERATIONS
 - COMPLEX OPERATOR INTERFACE
 - HIERARCHICAL CONTROL/INFORMATION ARCHITECTURE
 - COMMUNICATION TIME DELAYS
 - MUST PERFORM PLANNED/UNPLANNED TASKS
 - SPACE CONDITIONS

CAPABILITIES REQUIRED FOR MISSION APPLICATION TASKS

- CAMERA/INSTRUMENT POSITIONING FOR INSPECTION
- HEAVY/LIGHT OBJECT MANIPULATION AND POSITIONING
- MANIPULATION IN FREE SPACE AND WITH CONTACT CONSTRAINED MOTIONS
- APPLICATION OF FORCE

MISSION APPLICATIONS

- INSPECTION (ROUTINE OR DIAGNOSTIC)
- ORU/PAYLOAD EXCHANGE (PAYLOAD UPGRADE, EXPERIMENT REPLACEMENT)
- REFURBISHMENT/REPLENISHMENT OF EXPENDABLES (FUELS, CRYOGENS)
- ASSEMBLY OF LARGE SPACE STRUCTURES, COMPONENTS
 - SPACE STATION TRUSSES AND UTILITY TRAYS
 - LARGE ANTENNAS, NUCLEAR POWERED PLATFORMS
- COMPONENT REPLACEMENT
 - CONTAMINATED OR WORN PARTS
- INSTRUMENT ADJUSTMENT, CALIBRATION
 - SPACE TELESCOPE, EARTH OBSERVATION SYSTEM
- REPAIR/CONTINGENCY OPERATIONS (SOLAR MAX)
- TELESCIENCE
- MANUFACTURING

MISSION PLATFORMS

- SPACE STATION
 - MASSIVE PLATFORM BASE
 - EVA BACKUP: CONTINGENCY EVENTS, SERVICE THE SERVICER
- UNMANNED PLATFORM (E.G., POLAR, GEO)
 - LOW MASS PLATFORM: CONTROL DYNAMICS ISSUES,
 INTERACTION WITH OTHER FLEXIBLE STRUCTURES
 - LONG PERIODS OF INACTIVITY
 - NO EVA BACKUP
OPERATOR INTERFACE TECHNOLOGY NEEDS

- **Intelligent Displays**
 - Eyes/Hands Busy Operation
 - Must (only) provide critical information
- **Visual Perception Systems**
 - Position
 - Force
- **Hand Controllers**
 - Position/Rate Control
 - Force Reflection Option
- **Speech Recognition/Synthesis**
 - Stress
 - Environment

CONTROL SYSTEM TECHNOLOGY NEEDS

- **Stability** given wide range of manipulation speeds, object masses
- **Control Parameters** vary with task/environment
 - Gain values for position/rate control
 - PID gains for closed loop force control
 - Force limits
- **Communication Time Delays**
 - Within on-board control architecture
 - Round trip to remote operator
 - Impacts speed of manipulation, force control sensitivity, viability
- **Simulation**
 - Ground hardware limited by 1 G
 - System non-linearities difficult to model
 - Validity of empirically derived parameters

TECHNOLOGY NEEDED IN HIERARCHICAL CONTROL/INFORMATION ARCHITECTURES

- **Merge Manual/Programmed Tasks**
 - Task script authoring tools
- **Enable Growth Toward Increasing Autonomy**
 - Planning/replanning given intervening human actions
- **Implementation in flight qualified processors**
 - Constraints imposed by platform data communications
- **Supervisory Command Language**

PROBLEMS ASSOCIATED WITH HUMAN CONTROL OF SPACE MANIPULATORS

- **Limited Workspace Views**
 - Camera positions for object grasping, hidden surfaces
 - Need stereo or multiple views for unstructured tasks
- **Human Interaction with Platform Control Dynamics During Teleoperation**
- **Avoidance of Manipulator Singularities**
 - During manual control
 - Starting programmed trajectories after manual positioning
- **Collision Avoidance**
 - Robot versus workspace
 - Curred object versus workspace
- **Rehearsal**
 - Ground and in flight
 - Control dynamics
 - Manipulator stiffness, strength
 - Time between rehearsal and action
- **Many Control Parameters Need to Be Set When Unplanned Tasks Are to Be Performed**
IN-SPACE EXPERIMENTATION NEEDS/VOIDS, MAN-MACHINE INTERFACE

- Teleoperation with operator in microgravity
 - Forces experienced with hand controllers
 - Impact on voice acoustics for speech recognition
- Teleoperation with operator on ground
 - Limited communication bandwidths
 - Time delays
- Camera system control/adequacy
 - Selection, positioning, pointing, zoom, focus, iris
 - Lighting given dynamic solar illumination conditions
 - Communication bandwidth
- Manual selection of control parameters for unplanned tasks
- Dynamic interaction between platform, telerobot/object, operator
- Accuracy, stability of light manipulator given wide range of object masses
- Accuracy of computer simulation dynamic model
- Validity/accuracy of control parameters derived/demonstrated on ground simulation
 how to test prior to executing singular event
AUTOMATION AND ROBOTICS

5.2 Teleoperations

Multimode Operator Interfaces, Intelligent Displays, Hierarchical-Control
Communication Time Delay Visual Perception Systems

Thomas B. Sheridan
Massachusetts Institute of Technology, Man-Machine Systems Laboratory

BACKGROUND

* Solid man-in-space successes in Mercury, Gemini, Apollo. Solid automation demonstrations in deep space, shuttle RMS. Some questions about need for man-in-space in the future, possibilities for remote control.

* Forty years of teleoperator experiments and operations in nuclear plants, undersea, construction, and space.

* Steadily evolving capability of teleoperation and telerobotics. (Reality has lagged public and in some cases R&D rhetoric, but nevertheless is overtaking NASA's actual preparedness.)

* NASA tradition of attention to empirical human factors, but spotty development of human factors discipline outside.

* Fallacious tendency of Congress and US public to see human participation in space and automation/robotics as mutually exclusive. (They should be seen as symbiotic.)

* Legitimate conservatism re human life, resultant demand for reliable non-expendable hardware have inhibited progress where hardware could be expendable without endangering life.

* Growing competition from Europe and Japan in space technology.

* Current interest in commercial space vehicles.

TECHNOLOGY NEEDS IN TELEOPERATION AND TELEROBOTICS

* Flexible, human friendly supervisory command languages which mix analogic and symbolic elements, and enhance computer understanding.

* Means to control redundant degree-of-freedom kinematics (arms of ≥ 7 DOF, arms plus vehicles plus hands).

* Operator adjustable Impedance between master and arm, slave and task.

* Video aids to enhance depth: stereo and other.

* Predictor Instruments and other means to accommodate time delay in both video and force, and predict contact.

* Manipulator arms which are lighter, stiffer (adjustable), and of higher bandwidth and control precision.

* Smart end effectors having more dexterity (more degrees of freedom).

* Higher resolution and more robust touch and proximity sensors.

* Touch display to hands, eyes, ears or other parts of body.
5.2 Teleoperations

Multimode Operator Interfaces, Intelligent Displays, Hierarchical-Control Communication Time Delay Visual Perception Systems

Thomas B. Sheridan
Massachusetts Institute of Technology, Man-Machine Systems Laboratory

TECHNOLOGY NEEDS IN TELEROBOT DESIGN, MISSION PLANNING AND MONITORING

- Theory of telepresence, what it is and what it contributes.
- Theory and experimental measures of manual dexterity.
- Techniques for control of unpredictable dynamics.
- Computer understanding of operator queries and stated intentions (for expert systems and telerobot control aids).
- Real-time simulation and associated graphics for on-line multiobjective control decisions and planning.
- Computer-based aids for telerobot failure detection, diagnosis and recovery.
- Theory of allocating, trading and sharing of telerobot control functions between human and computer.
- Techniques for simulating large-scale space telerobotic operations on the ground.

PROPOSED EXPERIMENTS IN SPACE

- Demonstrations of teleoperator (direct) and telerobot (supervisory) control in dynamic tasks, e.g., throwing and catching objects, rendezvousing with tumbling satellite and inspecting or inserting/removing module.
 - with and without force feedback.
 - with 6 and redundant degrees-of-freedom.
 - one arm-hand
 - two arm-hands
 - vehicle plus arm-hand simultaneously.
 - controlled from the ground.
 - using touch when vision is obscured.
- Demonstration of predictor instruments to accommodate time-delayed video and force feedback.
- Demonstrations of telepresence.
- Demonstrations of telescience by scientists on ground.
- Demonstration of failure recovery drills by various human and machine combinations.
INTRODUCTION/BACKGROUND

- NASA R&D PROGRAMS
 - SYSTEMS AUTONOMY TECHNOLOGY PROGRAM (CSTI)
 - SPACE STATION FREEDOM ADVANCED TECHNOLOGY PROGRAM
 - PATHFINDER
- CURRENT CAPABILITIES:
 - INCO EXPERT SYSTEM IN MISSION CONTROL
 - HST SCHEDULER IN END TO END TESTING, SHARP, AUTOCLASS
- ARTIFICIAL INTELLIGENCE (AI) ELEMENTS
 - REASONING UNDER UNCERTAINTY
 - LEARNING
 - CAUSAL MODELLING
 - KNOWLEDGE ACQUISITION
 - ADVANCED PLANNING METHODS
 - COOPERATING KNOWLEDGE BASE SYSTEMS
 - VALIDATION TECHNOLOGIES
- DIFFERENCES BETWEEN GROUND VS. SPACE-BASE AI SYSTEMS
 - AVAILABILITY OF SUFFICIENT PROCESSING POWER AND MEMORY
 - REALTIME CONSTRAINTS
 - RELIABILITY CONSTRAINTS
 - ENVIRONMENTAL UNCERTAINTY
 - PERCEIVED VS. REAL RISK

TECHNOLOGY NEEDS

- BUILDING AND USING VERY LARGE KNOWLEDGE BASES
 - AUTOMATIC KNOWLEDGE ACQUISITION
 - EFFECTIVE KNOWLEDGE COMBINATION FROM MANY SOURCES
 - REPRESENTATION AND OPERATIONALIZATION OF MASSIVE AMOUNTS OF KNOWLEDGE
- COLLABORATION
 - DISTRIBUTED PROBLEM SOLVING
 - MULTIPLE AGENTS
 - GRACEFUL INTERACTION WITH HUMANS
- CAUSAL REASONING
- UNCERTAINTY MANAGEMENT
 - REASONING ABOUT UNCERTAINTY
 - REACTIVE REPLANNING TO COPE WITH UNCERTAINTY
- VALIDATION AND VERIFICATION OF INTELLIGENT SYSTEMS
TECHNOLOGY NEEDS

- **PLANNING/SCHEDULING IN REAL, COMPLEX SITUATIONS**

- **DESIGN**
 - STATIC GROUND-BASED DESIGN
 - DYNAMIC FLIGHT-BASED REDESIGN

- **MACHINE LEARNING**
 - DISCOVERY
 - IMPROVEMENT OF PERFORMANCE WITH EXPERIENCE
 - ACQUIRING EXPERTISE

- **SPACEBORNE SYMBOLIC PROCESSORS**

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- **FLIGHT TEST NEEDED FOR INTEGRATED HARDWARE/SOFTWARE SYSTEMS**, e.g., PROCESSOR LIMITATIONS, ROBOTICS SYSTEMS

- **IN GENERAL, AI SOFTWARE SHOULD BE TREATED LIKE ANY OTHER COMPUTER CODE** – GROUND SIMULATION SHOULD BE SUFFICIENT FOR VALIDATION. BUT VALIDATION AND VERIFICATION OF AI SOFTWARE IS STILL A RESEARCH ISSUE
 - NEW TECHNIQUES MAY REQUIRE FLIGHT EXPERIMENTATION
 - PERCEIVED RISK MAY ADVISE FLIGHT EXPERIMENTATION
SUMMARY

- AI technology will be critical to future space missions for both ground and flight use
- Integrated hardware/software flight tests will be necessary
- In general, ground-based validation is sufficient for software
- Some flight validation may be necessary to establish a "track record" for AI software
ARTIFICIAL INTELLIGENCE: AN INDUSTRY VIEW

INTRODUCTION/BACKGROUND

- AI SPACE APPLICATIONS WILL CLEARLY BE HYBRIDS, INVOLVING CONVENTIONAL AND AI-BASED COMPONENTS TO SOLVE PROBLEMS THAT NEITHER COULD COPE WITH ALONE.

- THESE PRODUCTS ARE GENERALLY KNOWN AS INTELLIGENT SYSTEMS. HERE, INTELLIGENCE IMPLIES THE USE OF EXPLICIT KNOWLEDGE (OFTEN META-KNOWLEDGE).

- INTELLIGENT AUTONOMOUS SYSTEMS UTILIZE EXPLICIT KNOWLEDGE OF A TARGET SYSTEM AND OF DESIRED GOALS TO EVALUATE OR CONTROL THE TARGET, WITH VARYING DEGREES OF AUTONOMY.

- INTELLIGENT DECISION SUPPORT SYSTEMS EXPLOIT USER KNOWLEDGE, PLUS DOMAIN SPECIFIC KNOWLEDGE TO BETTER AID THE DECISION MAKER.

TECHNOLOGY NEEDS

- IN GENERAL, PAST AI-BASED SYSTEMS HAVE BEEN BRITTLE, NOT WELL INTEGRATED AS COMPONENTS OF BROADER SYSTEMS, ISOLATED FROM CRITICAL DATA OVER WHICH TO REASON, OFTEN BUILT IN AN AD HOC FASHION, AND PRECLUDED FROM REAL-TIME APPLICATIONS DUE TO SEVERE PERFORMANCE CONSTRAINTS.

- TOOLS AND TECHNIQUES ARE NEEDED TO SEAMLESSLY INTEGRATE KNOWLEDGE-BASED COMPONENTS INTO A BROADER SOFTWARE SUPPORT ENVIRONMENT.

- COMMON LIFE CYCLE TOOLS AND METHODOLOGY. TECHNIQUES SUPPORTING SOFTWARE REUSE ARE ESSENTIAL. A UNIFIED VIEW OF DATA, ESPECIALLY SHARED INFORMATION ACROSS MODULES, GEOGRAPHY, AND HARDWARE. RUN TIME SUPPORT FOR HETEROGENEOUS HARDWARE/SOFTWARE, ALONG WITH APPROPRIATE STANDARDS TO MAKE THIS FEASIBLE.

- QUALIFIED AND VALIDATED HARDWARE AND SOFTWARE TO SUPPORT AI SOFTWARE COMPONENTS DO NOT EXIST.

- A FIRM COMMITMENT TO INTEGRATE AI INTO REAL WORLD SYSTEMS. RISK CAN BE REDUCED WITH A PHASED, INCREMENTAL APPROACH TO COMPETENCE, BEGINNING WITH DECISION SUPPORT AND WORKING TOWARDS GREATER AUTONOMY.
5.3 Artificial Intelligence

Artificial Intelligence: An Industry View

David A. Rosenberg
ISX Corporation

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- In a sense, AI technologies are orthogonal to our theme areas, and could be applied to most of the on-going experiments.

- Valuable integration experience could be gained by defining, designing, building, and flying an intelligent decision support system to aid crew members in managing some set of in-space experiments. A common framework could likely be applied to support a number of such experiments.

- Space station freedom represents an ideal opportunity to apply intelligent systems in both crew decision support and semi-autonomous roles.

- The FTS provides an opportunity to apply the ideas discussed for human controlled and autonomous robotics.

SUMMARY & RECOMMENDATIONS

- A relatively new class of system, the intelligent system, can be effective where conventional or pure AI-based approaches are not.

- In the long run, integrated AI will be an enabling technology for autonomous, or very complex manned planetary missions.

- In-space experiments could provide a crucial, real world integration opportunity.
MISSION APPLICATIONS

- SHUTTLE. WHILE NOT "DESIGNED IN" INTELLIGENT SYSTEMS COULD PLAY AN IMPORTANT ROLE

- ADAPTIVE PLANNING TECHNIQUES COULD ASSIST CREW MEMBERS IN PERFORMING NUMEROUS ACTIVITIES, SUCH AS CONDUCTING EXPERIMENTS, OR PERFORMING PAYLOAD CHECKOUT

- GREATER AUTONOMY COULD BE GIVEN TO EXPERIMENTS. KNOWLEDGE GAINED FROM THE EXPERIMENT DESIGNERS COULD REDUCE CREW MONITORING AND PROVIDE BETTER, MORE EFFICIENT CREW INTERFACE WHEN INTERVENTION IS REQUIRED

- SPACE STATION. THE SAME TECHNIQUES DESCRIBED ABOVE COULD PROVIDE EVEN MORE LEVERAGE IF WELL INTEGRATED. SIGNIFICANT IMPROVEMENTS IN OPERATIONS PLANNING, RESOURCE ALLOCATION, AND FAULT DETECTION/CORRECTION COULD BE ACHIEVED. APPLICATION TO THE UNDERLYING DISTRIBUTED COMPUTATION ENVIRONMENT IS ESPECIALLY ATTRACTIVE

- TELEROBOTICS. AUGMENTATION TO THE HUMAN INTERFACE IS ESPECIALLY ATTRACTIVE
 - ADAPTIVE PLANNING COULD BE USED TO PROVIDE HIGH LEVEL TASK PLANNING AND REPLANNING IN CONCERT WITH ACTUAL PROGRESS. THE SELECTION OF VERY LOW LEVEL FEATURES SUCH AS GRIPPING FORCE, FORCE REFLECTION RATIOS, LIGHTING CONTROL, ETC., COULD BE AUTOMATICALLY SELECTED

- AUTONOMOUS ROBOTICS. HERE, INTELLIGENT AUTONOMOUS SYSTEMS ARE AN ENABLING TECHNOLOGY
 - FOR FULLY AUTONOMOUS OPERATION, GOAL-DIRECTED, HIGH LEVEL PLANNING IS EVEN MORE IMPORTANT
 - KNOWLEDGE OF THE SYSTEM BEING SERVICED, THE SERVER ITSELF, AND OF OVERALL GOALS WILL BE REQUIRED TO PROVIDE THE HUMAN SUPPLIED FEATURES DESCRIBED ABOVE: SITUATION ASSESSMENT, MACHINE VISION, TESTING, ETC. THIS COULD BE A VERY HARD PROBLEM
 - USER DIRECTED SPECIALIZATION OF SKELETAL PLANS COULD ALSO PROVIDE A POWERFUL MECHANISM FOR DEVELOPING NEW PLANS FOR BOTH INTELLIGENT AND DUMB AUTONOMOUS ROBOTS

- PLANETARY MISSIONS. HERE, THE MUCH GREATER NEED FOR AUTONOMY MAKES AI AN "ENABLING" TECHNOLOGY. ON UNMANNED MISSIONS, KNOWLEDGE OF MISSION OBJECTIVES AND OF THE STRUCTURE AND FUNCTION OF THE SPACE VEHICLE COULD BE ESSENTIAL TO ADAPTING PLANS AND OBJECTIVES TO UNFORSEEN EVENTS
Theme 5 of 8
AUTOMATION AND ROBOTICS
5.3 Artificial Intelligence

Artificial Intelligence

Dr. Robert Cannon
Stanford University

INTRODUCTION/BACKGROUND

PROVE NEW CONCEPTS → ADVANCED RESEARCH

FOR SPACE

ADVANCED RESEARCH ← IN SPACE

BUILD & PROVE NEW TECHNOLOGY

UPGRADE OPERATIONAL SYSTEMS

TECHNOLOGY NEEDS

- USER INTERFACE
 GEOMETRIC
 OBJECT-LEVEL
 SIMPLE

- MANIPULATOR CONTROL
 LIGHTWEIGHT
 FLEXIBLE
 QUICK
 PRECISE
 ROBUST
 ADAPTABLE
 GRACEFUL
 WORK FROM A MOVING BASE
TECHNOLOGY NEEDS

- **COOPERATION**
 - BETWEEN MANIPULATORS
 - BETWEEN ROBOTS
 - BETWEEN ROBOTS AND PEOPLE

- **NEW GENERATION OF ENGINEERS**
 - GOOD YOUNG ENGINEERS
 - GOOD ENGINEERING PROFESSORS/PROGRAMS/SCHOOLS
 - LOOK AT RADICAL IDEAS
 - * MEGASYSTEMS
 - * MICROSYSTEMS

IN-SPACE EXPERIMENTATION NEEDS

- **ARTIFICIAL INTELLIGENCE NEEDS FLIGHT TESTING ONLY IN CONJUNCTION WITH DEPENDENT TECHNOLOGY, e.g. ROBOTICS**

- **NEED TO GET NEW GENERATION OF YOUNG ENGINEERS INVOLVED IN FLIGHT EXPERIMENTS**
Theme 5 of 8

AUTOMATION AND ROBOTICS

5.3 Artificial Intelligence

Automation and Robotics Critical Technology Requirements

Antal K. Bejczy
Jet Propulsion Laboratory

TARGET NASA MISSIONS

- STS
- GREAT OBSERVATORIES
 - HST
 - GRO
 - AXAF
 - SIRTF
- SSFP
- FREE FLYERS (including POP)
- LUNAR OUTPOST
- MARS EXPLORATION

USER NEED TASK DRIVERS

- IN-SPACE ASSEMBLY
- MATERIALS PROCESSING
- MATERIALS HANDLING
- SYSTEMS MAINTENANCE AND OPERATIONS
- SATELLITE SERVICING
- EXPLORATION
INTEGRATED APPROACH FOR A & R ON A MULTI-DISCIPLINARY BASE

ACTION
(MANIPULATION
& LOCOMOTION)

SENSING

COGNITION
(REASONING
& PROCESSING)

INTELLIGENT
HUMAN
INTERFACE

KNOWLEDGE & DATA BASES

GENERAL THRUST

AUGMENT AND ENHANCE HUMAN RESOURCES/CAPABILITIES
BY ENABLING HUMAN CONTROL OF COMPLEX SYSTEMS AT
HIGHER & HIGHER LEVELS WHILE RETAINING CAPABILITY TO
ENTER CONTROLLING PROCESS AT MULTIPLE LEVELS
SPACE ROBOTICS TASK DOMAINS

- **WIDE RANGE OF OPERATING SCALES**
 - LARGE / HEAVY (e.g. SATELLITE, PAYLOAD MANIPULATION)
 - SMALL / LIGHT (e.g. INSTRUMENT ADJUSTMENT, MATERIALS PROCESSING)

- **MECHANICAL COUPLING ENVIRONMENT**
 - RIGID BASE
 - FLEXIBLY COUPLED
 - FREE FLYING

- **VARYING ILLUMINATION ENVIRONMENT**

SPACE ROBOTICS TECHNOLOGY NEEDS

- **ROBUST AND SAFE MANIPULATION / LOCOMOTION**
 - CONTROL LAWS
 - COLLISION AVOIDANCE
 - COMPLIANCE (ACTIVE OR PASSIVE)
 - USE OF TASK MODELS OR ADAPTIVE CONTROL
 - LOCAL AUTONOMY BASED ON SENSING
 - DYNAMICS OF COUPLING TO PLATFORM

- **FAULT TOLERANT HARDWARE / SOFTWARE ARCHITECTURES**
 - MECHANISMS
 - ACTUATORS
 - SENSORS
 - SENSOR / CONTROL PROCESSORS
 - FAILURE DETECTION, IDENTIFICATION, AND RECOVERY
Teleoperations, Domains and Needs

- **Supervisory Control for Telerobotic Operations in Space**
 - Dynamic Task Control
 - Enhanced Visual Displays with Computation (e.g. Collision Avoidance)
 - Bidirectional M/M Interfaces with Hierarchical Object-Oriented Architecture and Multi-Mode Capabilities
 - Models for Telerobot and Its Actions

- **Control Location**
 - On Orbit
 - Operator with Force Feedback
 - Robot Arm - Vehicle Interaction
 - On Ground
 - Communication Delay / Bandwidth
 - Interacting with Microgravity

- **High Degree-of-Freedom Systems**
 - Redundant Arms
 - Multiple Arms
 - Dextrous End Effectors and Tools
ARTIFICIAL INTELLIGENCE TASK DOMAINS

- FAULT PROCESSING
 - AUTOMATED FAULT DETECTION, ISOLATION, RECOVERY / RECONFIGURATION
 - DIAGNOSIS OF UNANTICIPATED, MULTIPLE FAULTS
 - CONTINGENCY REPLANNING

- LARGE INPUT / OUTPUT SYSTEMS
 - SENSOR INTERPRETATION / FUSION
 - REAL-TIME IMAGE PROCESSING
 - SPEECH RECOGNITION AND SYNTHESIS

ARTIFICIAL INTELLIGENCE TECHNOLOGY NEEDS

- INTEGRATED, REAL-TIME, FAULT-TOLERANT, COOPERATIVE INTELLIGENT SYSTEMS
 - PARALLEL, INTEGRATED NUMERIC / SYMBOLIC PROCESSING
 - ADVANCED, INTELLIGENT OPERATING SYSTEM
 - LARGE, DYNAMIC, DISTRIBUTED KNOWLEDGE BASE
 - INTEGRATION OF DATA AND MODEL INFORMATION
 - LAYERED, TRANSPARENT SOFTWARE

- INTELLIGENT HUMAN INTERFACES
<table>
<thead>
<tr>
<th>THEME SESSION OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURPOSE</td>
</tr>
<tr>
<td>IDENTIFY & PRIORITIZE TECHNOLOGIES FOR SENSORS, COMMUNICATIONS, AND INFORMATION SYSTEMS WHICH</td>
</tr>
<tr>
<td>• ARE CRITICAL FOR FUTURE U.S. SPACE PROGRAMS</td>
</tr>
<tr>
<td>• REQUIRE IN-SPACE TESTING AND VALIDATION</td>
</tr>
<tr>
<td>PRODUCT</td>
</tr>
<tr>
<td>HIGH PRIORITY TECHNOLOGIES AND RATIONALE FOR IN-SPACE EXPERIMENTATION:</td>
</tr>
<tr>
<td>• TECHNOLOGY NEED</td>
</tr>
<tr>
<td>• IMPORTANCE TO SPACE MISSIONS</td>
</tr>
<tr>
<td>• IN-SPACE TESTING REQUIRED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THEME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSORS</td>
</tr>
<tr>
<td>• DEVICES & OPTICS</td>
</tr>
<tr>
<td>• LASERS</td>
</tr>
<tr>
<td>• PRECISION POINTING</td>
</tr>
<tr>
<td>• THERMAL MANAGEMENT & CRYOGENICS</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>• OPTICAL & MICROWAVE</td>
</tr>
<tr>
<td>• POINTING, TRACKING, & ACQUISITION</td>
</tr>
<tr>
<td>INFORMATION SYSTEMS</td>
</tr>
<tr>
<td>• SPACE QUALIFIED PROCESSORS, STORAGE & COMPONENTS</td>
</tr>
<tr>
<td>• IMAGE & SIGNAL PROCESSORS</td>
</tr>
<tr>
<td>• DATA NETWORKS & TELEMETRY SYSTEMS</td>
</tr>
<tr>
<td>• AUTOMATED SYSTEMS</td>
</tr>
</tbody>
</table>
CRITERIA FOR PRIORITIZATION

1. CRITICALITY OF TECHNOLOGY IN ENABLING FUTURE U.S. SPACE MISSIONS

2. POTENTIAL OF TECHNOLOGY FOR REDUCING COST (DEVELOPMENT, OPERATIONS, OR LIFE CYCLE)

3. DEGREE TO WHICH TECHNOLOGY HAS BROAD APPLICATION TO A VARIETY OF SPACE MISSIONS

4. REQUIREMENT FOR IN-SPACE VALIDATION TO EXPERIMENT WITH OR VERIFY PERFORMANCE IN MICRO-GRAVITY / THERMAL / RADIATION ENVIRONMENT OR TO REDUCE RISK FOR OPERATIONAL APPLICATIONS
INTRODUCTION/BACKGROUND

• NASA R&D PROGRAMS
 • Detector Arrays
 - Superconducting Bolometer Arrays
 - Impurity Band Conduction Detectors
 - III-V Material Arrays
 - Superlattice Detectors
 • Heterodyne Systems
 - Local Oscillators
 - Millimeter
 - Submillimeter
 - FIR
 - Mixers
 - Antennas (Radiometry)
 - 4M \(f>100\text{GHz} \)
 - 15-20M \(f<100\text{GHz} \)
 - Quasi-optics (Submillimeter)
 • DIAL/LIDAR
 - Lasers
 - Wavelength
 - Semiconductor Diode Array Pumps
 - CO2 Systems
 - Solid State Lasers (amps)
 - All Solid State Systems
 - Detectors
 • Coolers
 - Single Stage
 - Pulse Tube
 - Mechanical
 - Dilution
 - Flux Compression
 - ADM
 - Multi-Stage
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- DETECTORS
 - Radiation Effects on Arrays
 - Effects of Contaminants on Response of Detectors
 - System Demonstration under Low Background Conditions
 - Interaction of Coolers and Detector Systems
 - Retrofit on In-Reach LITE System with New Detector Arrays & Refly
 - Maintenance of Optical Surface Quality in Space with In-situ Cleaning Demonstration

- HETERODYNE SYSTEMS
 - UV, Protons, and Electron Radiation Effects on Components & Systems
 - Effect of Contaminants on System Performance
 - Modify LITE Experiment for Single or Dual Channel for IR Radiometer for OII Measurement Demonstration
 - Space Test of Large Unfilled Synthetic Aperture Radiometer (Requires Large Structure -- 20 M Arms) for Proof of Concept
 - Space Test of 30 and 118 Micrometer Heterodyne Imaging Spectrometer
IN-SPACE EXPERIMENTATION NEEDS/VOIDS (CONT'D)

DIAL/LIDAR SYSTEMS
- Retrofit LITE Platform with Tuneable Solid State Laser for DIAL Measurements Demo
- Retrofit 2 Micrometer Doppler Wind Shear Detector on LITE
- Demonstrate In-Space Operation of Semiconductor Diode Array Pumps
- Test of Picosecond Laser Ranging and Altimeter System
- In-Space Test of Laser System Stability

COOLER SYSTEMS
- Microgravity Test of Liquid/Vapor Phase Separation in Joule-Thomson Refrigerators
- Microgravity Test of 3He/4He Dilution Refrigerator Systems:
 - JPL System Concept
 - ARC System Concept
 - MSFC System Concept
- Extended Microgravity & Vacuum Test of Mechanical Coolers (10 kelvin and Above)
- Proof of Principle of Microgravity Operation of Subkelvin Coolers
<table>
<thead>
<tr>
<th>Theme 6 of 8</th>
<th>SENSORS AND INFORMATION SYSTEMS</th>
<th>Theme 6 of 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Sensors</td>
<td>In-Space Experiments in Remote Sensing Systems</td>
<td></td>
</tr>
</tbody>
</table>

Martin M. Sokoloski
NASA Headquarters, Information Sciences & Human Factors Division

SUMMARY/RECOMMENDATIONS

- REQUIREMENTS FOR SENSOR SYSTEM IN-SPACE EXPERIMENTS
 - Test of Operation in Space Radiation Environment
 - Functioning in Micro- or 0-g Environment
 - Operation in Vacuum
 - Survive Launch
 - Survive Shuttle Contamination
INSTEP Technology Themes

Theme 6 of 8
SENSORS AND INFORMATION SYSTEMS

6.1 Sensors
In-Space Sensor Technology Experiments

E. David Hinkley
Hughes Aircraft Company

PURPOSE OF IN-SPACE SENSOR TECHNOLOGY EXPERIMENTS

TO DEMONSTRATE:

1. FEASIBILITY
2. RELIABILITY
3. ENVIRONMENTAL COMPATIBILITY

UNIQUENESS OF SPACE ENVIRONMENT FOR SENSOR SYSTEMS

- NEAR-ZERO GRAVITY
- NONSTATIONARY PLATFORM
- SPECIAL SPACECRAFT ATMOSPHERES
- CONTAMINATION-INDUCED PERFORMANCE DEGRADATION
- STRONG RADIATION FLUX (UV, VIS, GAMMA)
- IN-VACUO WAVE PROPAGATION
SENSORS AND INFORMATION SYSTEMS

6.1 Sensors

In-Space Sensor Technology Experiments

E. David Hinkley
Hughes Aircraft Company

CATEGORIES FOR IN-SPACE SENSOR TECHNOLOGY EXPERIMENTS

1. THERMAL MANAGEMENT, CRYOGENICS
2. OPTICS CONTAMINATION/DECONTAMINATION
3. PRECISION POINTING & TRACKING
4. LASER OPERATION

SPACE APPLICATIONS

Thermal Management, Cryogenics

1. SENSOR/ELECTRONICS CRYOCOOLING
2. HEAT SWITCH FOR REDUNDANT CRYOCOOOLER
3. WASTE HEAT TRANSFER TO RADIATOR
4. OPTICS CRYOCOOLING
SENSORS AND INFORMATION SYSTEMS

6.1 Sensors

In-Space Sensor Technology Experiments

E. David Hinkle
Hughes Aircraft Company

SPACE APPLICATIONS

Optics Contamination/Decontamination

1. OPTICS FOR UV, VIS, IR ASTRONOMY
2. CRYOCOOLED SENSORS & ELECTRONICS

SPACE APPLICATIONS

Precision Pointing & Tracking

1. LASER REMOTE SENSING
2. HIGH-RESOLUTION ASTRONOMY
3. FAINT-TARGET ASTRONOMY (LONG INTEGRATION)
4. EARTH OBSERVATIONS FROM GEOSYNCH ORBIT
5. DEEP-SPACE OPTICAL COMMUNICATION
6.1 Sensors

In-Space Sensor Technology Experiments

E. David Hinkley
Hughes Aircraft Company

SPACE APPLICATIONS

Lasers

1. WEATHER-RELATED MEASUREMENTS
2. ATMOSPHERIC CHEMISTRY MEASUREMENTS
3. HIGH-SPEED OPTICAL COMMUNICATIONS
4. IN-SPACE MANUFACTURING
6.1 Sensors

LIDAR/Laser Sensors

Dr. Denis Kullinger
University of South Florida

Selected List of Atmospheric Constituents and Parameters Measured by Lidar

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Laser Type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust, Clouds</td>
<td>Ruby, Nd:YAG</td>
<td>1-10%</td>
</tr>
<tr>
<td>Volcanic Ash</td>
<td>Dye, CO₂</td>
<td>Variable</td>
</tr>
<tr>
<td>Smoke Plumes</td>
<td>Dye</td>
<td>10⁵ - 10⁴ atm/cc</td>
</tr>
<tr>
<td>H₂O, O₃, SO₂</td>
<td>Dye, CO₂</td>
<td>Variable</td>
</tr>
<tr>
<td>NO, NO₂, N₂O</td>
<td>OPO, Excimer</td>
<td>1 ppb to</td>
</tr>
<tr>
<td>CO₂, CH₄, HCl, CO, H₂</td>
<td>CoMgF₂</td>
<td>100 ppm</td>
</tr>
<tr>
<td>OH, Na, K, Li, Ca, Ca⁺</td>
<td>Dye</td>
<td>Fluorescence</td>
</tr>
</tbody>
</table>

Parameters

| Temperature, Pressure | Dye, Nd:YAG | 1 K⁰ |
| Wind Speed | CO₂ | 0.5 m/s |

Accuracy and Ranges given are typical values and depend upon individual lidar measurements.

SPACEBORNE OPPORTUNITIES

- Global Laser Remote Sensing
 1. Detection of [H₂O], [CO₂], [O₃]
 Temperature, wind speed from space;
 LITE, LASA, EAGLE
 2. Range/Altimeter for Surface and Ice Pock
 Profile, Fault Line Movement

- In-Situ Sensors
 - High Altitude (In-Situ) Sensors
 for Trace Gas Contamination

- Unique Spaceborne Problem Areas
 - Power (<10 kw, Eff. > 5%)
 Heat Dissipation (Primary, A/O Modulators)
 - Weight (< 2000 kg)
 - Zero Gravity (Liquids/Dye Lasers, Cooling)
 - Size
 - Lifetime (Consumable, Laser H.V.)
 - Eye Safety (λ > 1.4 µm)
Critical Technology

1) **Laser Development**

 - Diode Laser Pumping of Existing Lasers

 - New Tunable (Mid-IR) Laser Sources
 - Ho:YAG
 - Ti:Sapphire
 - Er:YAG/OPO

 - Lifetime Issues
 - CO₂/Catalyst
 - H.V./Electrodes

2) **LIDAR Deployment**

 - LITE (Laser In-Space Technology Exp.)
 - Nd:Y AG (2x, 3x)
 - 1st Spaceborne LIDAR
 - Phase II: Ti:Sapphire

 - LASA/EOS
 - LIDAR (use to correct passive)
 - DIAL
 - Altimetry

 - LAWS (WINDSAT)
 - CO₂/Doppler (lifetime)
 - Nd:YAG (L.O. Tracking)
 - Ozone (Excimer/Raman Shift)

 - Pointing/Tracking Accuracy
 - Small Footprint (more severe than Radar)
 - Laser/Telescope Overlap
 - Push-Broom Scan
 - Effect of Atmospheric Turbulence

3) **Laser Sensor**

 - Absorption/Fluorescence Sensors
 - (Trace Species In-Situ)

 - Fiber/Optical Coupling

 - Tunable Microlaser Sensors
6.1 Sensors

LIDAR/Laser Sensors

Dr. Denis Killinger
University of South Florida

Road Map (LIDAR/SENSORS)

LIDAR Development

1. Space Shuttle Test of Simple LIDAR (Nd:YAG): LITE
2. Spaceborne LIDAR/Diode Pumped Nd:YAG
 - Direct & Coherent Detection (Limited power)
3. Coherent Doppler (Nd & CO₂)
 - L.O. Tracking
4. Atmospheric Density/H₂O for Passive Corrections
5. Altimeter/Surface Profiler LIDAR

LASER Development

1. Long-Life Nd:YAG
2. Diode-Laser Pumped Nd:YAG
3. Ho:YAG
4. Tunable Ti:Al₂O₃
5. Tunable Local Oscillator
INTRODUCTION/BACKGROUND

- Optical Communication System Elements
 - Lasers & Laser Systems
 - Modulation Techniques
 - Detection (Coherent, Non-coherent)
 - Optics
 - Electronics

- Space Qualification
 - Space Radiation Environment/Energetic Particles
 - Vacuum
 - Microgravity
 - Spacecraft Charging and Outgassing

- Laser Systems Not Space Demonstrated

- NASA R&D Programs
 - Laser Sources
 - AlGaAs
 - Semiconductor Diode Laser Array
 Pumped Solid State Laser Rods & Slabs
 - Detection
 - Coherent
 - Non-coherent

- Modulation Techniques

- Electronics
MISSION APPLICATIONS

- Mission to Planet Earth
 - GEO/GEO for Geoplant
 - GEO/LEO for Geoplant & Eos
 - GEO/Earth
- Planetary
 - Mars Rover
 - Cassini
 - Others
- Solar Physics
 - Star Probe (Enabling)

TECHNOLOGY NEEDS

- Free-Space Optical Communications "Revolutionary" Technology
- Breadboard In-space Demo Needed
- Component Space Qualification
 - Laser & Laser Power
 - Pointing & Control (Closed and Open Loop)
 - Modulation Rate Demo
 - Demo of Space/Ground Link
 - Demo Space/Space Link
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- In-space Breadboard Demo of "Revolutionary" Technology
 - Space-Space
 - Space/Ground
 - Closed & Open Loop Acquisition
 - Coherent/Non-coherent Links
SEMICONDUCTOR LASER BREAKTHROUGH

- HIGH EFFICIENCY
- GREATER THAN 50% ACHIEVED
- UNIFORMITY ACHIEVED
- ARRAYS FEASIBLE
- MULTI-WATT OUTPUTS ACHIEVED

EFFICIENCY TRENDS FOR VISIBLE AND NEAR IR LASERS

LOG OF LASER EFFICIENCY

<table>
<thead>
<tr>
<th>Year</th>
<th>Laser Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>He-Ne Pumped Nd:YAG</td>
</tr>
<tr>
<td>1970</td>
<td>Diode Pumped Nd:YAG</td>
</tr>
<tr>
<td>1975</td>
<td>Diode Pumped Nd:YAG</td>
</tr>
<tr>
<td>1980</td>
<td>Diode Pumped Nd:YAG</td>
</tr>
<tr>
<td>1985</td>
<td>Diode Pumped Nd:YAG</td>
</tr>
<tr>
<td>1990</td>
<td>Diode Pumped Nd:YAG</td>
</tr>
</tbody>
</table>

M. Ross
Laser Data Technology, Inc.
SENSORS AND INFORMATION SYSTEMS

6.2 Communications

Space Laser Communication Experiments

M. Ross
Laser Data Technology, Inc.

LASER POWER/OPTICS SIZE TREND FOR SPACE LASERCOM
(Direct Detection)

REQUIRED OPTICS DIAMETER TO CLOSE LINK (INCHES)

TECHNOLOGY TREND

Photonics Capabilities Advancing Rapidly

Greater Solid State Laser Power Achievable at Higher Efficiency and Lower Cost

Enables Use of More Tolerant Designs in Rest of System

- Smaller, Less Precise Optics
- Easier Tracking Systems
- Less Integration and Test Costs

Enables Lower Weight, Lower Power, Lower Cost Laser Communication Systems

- 100 lb, 100 watt Systems Will Become Achievable for Long-Distance Satellite-to-Satellite Links
SENORS AND INFORMATION SYSTEMS

6.2 Communications

Space Laser Communication Experiments

M. Ross
Laser Data Technology, Inc.

SUMMARY

- POTENTIAL OF LASER COMMUNICATIONS UNTAPPED
- HISTORY OF SPACE LASERCOM EXPERIMENTS
 - MANY STARTS, NO FINISHES
 - LACK OF GOVERNMENT COMMITMENT TO FOLLOW THROUGH
- TECHNOLOGY STATUS
 - ABLE TO SUPPORT EXPERIEMNENTS
- SPACE EXPERIMENT NEEDED FOR VALIDATION
 - HARDWARE
 - RELIABILITY
 - CONCEPTS

SPACE LASERCOM EXPERIMENTS

<table>
<thead>
<tr>
<th>LINE</th>
<th>DATA RATE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE-TO-ONE</td>
<td>1 to 5 Mbps</td>
<td>SCIENTIFIC PAYLOAD, IMAGES, SENSORS DATA</td>
</tr>
<tr>
<td></td>
<td>3 Mbps</td>
<td>REAL TIME HIGH RESOLUTION IMAGE</td>
</tr>
<tr>
<td>MANY-TO-ONE</td>
<td>1 to 5 Mbps</td>
<td>MULTIPLE ACCESS</td>
</tr>
<tr>
<td>ONE-TO-MANY</td>
<td>20 Mbps</td>
<td>COMMAND CONTROL</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS

- DON'T TRY AND DEMONSTRATE TOO MUCH

- NASA SPONSOR ONE LOW-COST SIMPLE SPACE EXPERIMENT THAT
 - VALIDATES CONCEPT
 - DEMONSTRATE COMPONENT RELIABILITY
 - DEMONSTRATES BASIC SUBSYSTEMS SUCH AS
 - ACQUISITION
 - TRACKING
 - LASER TRANSMITTER
 - LASER RECEIVER

- RANGE NOT CRITICAL; COULD BE SHORT RANGE

EXAMPLE: SHUTTLE TO FREE FLYER
LASERCOM CROSSLINK TECHNOLOGY

- CANDIDATE SYSTEM TECHNOLOGIES
 - DIRECT DETECTION (Incoherent)
 - HETERODYNE (Coherent)

- HETERODYNE RECEIVER 15 dB MORE SENSITIVE THAN DIRECT DETECTION

- HIGH ANTI-JAM CAPABILITY

- SMALLER APERTURE ALLOWS EASIER SPACECRAFT INTEGRATION

- USE OF HIGH EFFICIENCY (15%) GaAlAs SEMICONDUCTOR LASERS

- LINCOLN LABORATORY LASER INTERSATELITE TRANSMISSION EXPERIMENT (LITE)

LASER CHARACTERISTICS FOR COHERENT SYSTEMS APPLICATIONS

- HIGH OUTPUT POWER
 - SIZE, WEIGHT, POINTING, MARGIN

- SINGLE SPATIAL MODE
 - USEFUL POWER IN FAR FIELD

- SINGLE FREQUENCY
 - HETERODYNE RECEIVER

- TUNABLE WAVELENGTH
 - WAVELENGTH MATCH, TRACKING

- DIRECT MODULATION
 - EQUALIZABLE FM TRANSFER FUNCTION

- NARROW LINEWIDTH
 - SPECTRAL SPREADING IMPACT ON BER

- STABLE, RELIABLE LIFE
 - >50,000 hr GOAL
<table>
<thead>
<tr>
<th>OPTICAL/MECHANICAL/ THERMAL DESIGN ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OPTICAL DESIGN</td>
</tr>
<tr>
<td>- MAINTAIN THROUGHPUT, WAVEFRONT QUALITY</td>
</tr>
<tr>
<td>- PROVIDE ACCURATE POINTING</td>
</tr>
<tr>
<td>• MECHANICAL DESIGN</td>
</tr>
<tr>
<td>PROVIDE STIFFNESS, STABILITY TO MAINTAIN OPTICAL ALIGNMENT, POINTING ACCURACY</td>
</tr>
<tr>
<td>- ISOLATE AGAINST SPACECRAFT DISTURBANCES</td>
</tr>
<tr>
<td>• THERMAL DESIGN</td>
</tr>
<tr>
<td>MINIMIZE AND STABILIZE TEMPERATURE GRADIENTS UNDER VARYING THERMAL SCENARIOS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HETERODYNE RECEIVER TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LOW-NOISE/WIDEBAND FRONT END</td>
</tr>
<tr>
<td>- NEAR-QUANTUM-LIMITED 1 GHz FRONT END DEMONSTRATED (LITE)</td>
</tr>
<tr>
<td>- FURTHER DEVELOPMENT REQUIRED TO EXTEND BANDWIDTH AT QUANTUM LIMIT</td>
</tr>
<tr>
<td>• FREQUENCY-LOCKING</td>
</tr>
<tr>
<td>- DONE ROUTINELY FOR FSK (LITE)</td>
</tr>
<tr>
<td>• PHASE-LOCKING</td>
</tr>
<tr>
<td>- DIFFICULT WITH PRESENT LASER LINEWIDTHS</td>
</tr>
</tbody>
</table>
SPATIAL ACQUISITION

- LARGE INITIAL POINTING UNCERTAINTY
 - DOMINATED BY SPACECRAFT ATTITUDE CONTROL ERROR
 (~ 1 mrad Typical)
 - SMALL COMMUNICATIONS BEAMWIDTH (4 μrad in LITE)

- SEARCH OVER MANY SPATIAL "CELLS" REQUIRED

- CCD TECHNOLOGY WILL PERMIT RAPID ACQUISITION
 (Few Seconds)

CRITICAL TECHNOLOGY DEVELOPMENT NEEDS FOR SPACE LASER COMMUNICATION SYSTEMS

- ASSESSMENT OF STATE-OF-THE-ART TECHNOLOGY
- EXAMINE INTERPLAY BETWEEN TECHNOLOGY AND SYSTEM DESIGNS
- SOUND FLEXIBLE DESIGN
- ON-ORBIT DEMONSTRATION AND EXPERIMENTATION
 1. SPATIAL ACQ / TRACK EXECUTION AND EXPERIMENTATION
 2. OPTICAL / MECHANICAL / THERMAL DESIGN VERIFICATION
 3. USE OF EXPERIENCE GAINED FOR THE DESIGN OF OPERATIONAL SYSTEMS
CONCLUSIONS

- COHERENT TECHNOLOGY IS READY FOR SPACE CROSSLINK APPLICATIONS

- IT OFFERS SMALL APERTURE SIZE, MODEST WEIGHT AND POWER

- WITH COMMERCIALLY AVAILABLE COMPONENTS, SEVERAL HUNDRED Mbps CAN BE SUPPORTED WITH 20 cm TELESCOPES
INTRODUCTION/BACKGROUND

- **INFORMATION SYSTEMS ELEMENTS:**
 - SPACE-QUALIFIED PROCESSOR SYSTEMS AND COMPONENTS
 - HIGH-SPEED IMAGE AND SIGNAL PROCESSING
 - HIGH CAPACITY STORAGE
 - ON-BOARD LOCAL AREA NETWORKS AND DATA HANDLING SUBSYSTEMS
 - AUTOMATED SYSTEMS AND FAULT TOLERANT SYSTEMS

CURRENT NASA CAPABILITY

- **PROCESSORS:**
 - NSSL-1, SHUTTLE COMPUTERS, 1750A PROCESSORS, HARRIS 80C86 (MARS OBSERVER)
 - **PLANNED:** SPACE STATION FREEDOM INTEL/IBM 80386, CRAFT/CASSINI SANDIA 32016

- **IMAGE PROCESSING:**
 - NONE

- **HIGH CAPACITY STORAGE:**
 - LONGITUDINAL TAPE RECORDERS, VHS BASED HELICAL SCAN (MANNED MISSIONS)

- **ON-BOARD DATA HANDLING:**
 - MISSION-UNIQUE

- **AUTOMATED SYSTEMS:**
 - PRIMARILY LIMITED TO PROCESS CONTROL PROCEDURES, WITH SOME AUTOMATED FAULT PROTECTION

NASA R&D PROGRAMS

- **PROCESSORS:**
 - FAULT TOLERANT MULTIPROCESSOR SYSTEM (LaRC, JPL)
 - FLIGHT SYMBOLIC PROCESSOR WITH R3H Numeric Processor (ARC)

- **IMAGE PROCESSING:**
 - GaAs BIT SLICE PROCESSOR PIPELINE (GSFC)
 - MULTISPECTRAL IMAGE COMPRESSION/PROCESSING (JPL, GSFC)

- **HIGH CAPACITY STORAGE:**
 - SPACE OPTICAL DISK RECORDER - 160 Gbit capacity, 300 Mbps (LaRC)
 - ROTARY HEAD TAPE RECORDER HEAD LIFE TESTING (GSFC)
 - MEDIUM RATE (20 Mbps) LONGITUDINAL RECORDER (GSFC)

- **ON-BOARD DATA HANDLING:**
 - FIBER OPTIC TRANSCIEVERS (LaRC)
 - HIGH RATE ARCHITECTURE (GSFC)
 - CCSDS STANDARD FORMAT DATA HANDLING SYSTEMS (GSFC)

- **SYSTEMS AUTONOMY DEMONSTRATIONS FOR SPACE STATION FREEDOM (POWER AND THERMAL SYSTEM CONTROL) - (ARC, JSC, LeRC)**
Theme 6 of 8
SENORS AND INFORMATION SYSTEMS
6.3 Information Systems

In-Space Experiments in Information Systems

John T. Dalton
NASA Goddard Space Flight Center, Data Systems Technology Division

TECHNOLOGY NEEDS

- **SPACE-QUALIFIED PROCESSORS:**
 - Higher performance 32-bit processors to support complex control operations
 - Processor memory capacity (4 to 32 MBYTES):
 - Reduce flight software development cost
 - Support on-board sensor calibration and data compression
 - Reduce TDRS contact time required for processor loads

- **IMAGE AND SIGNAL PROCESSING:**
 - Image compression devices to reduce telemetry bandwidth
 - Processors to support feature and information extraction
 - Compression of time series of high resolution images (micro gravity experiments)

- **HIGH CAPACITY STORAGE:**
 - Direct access storage (50 MBYTES to 10 GBYTES)
 - On-board management and priority playback of engineering data, control program loads, image storage for near-real time processing
 - High rate storage (250 MBYTES @ 20 Mbps to 31 GBYTES @ 300 Mbps)
 - Link buffering of imaging sensors

- **NETWORKS AND DATA HANDLING SYSTEMS:**
 - Fault-tolerant, adaptable on-board data systems that are operable (upgradable, maintainable) on-line from ground control centers
 - Packet telemetry interfaces
 - System control interfaces for resource envelope enforcement

- **AUTOMATED SYSTEMS:**
 - Real-time expert systems for sensor and system control
 - On-board resource management and control

ISSUE

LARGE GAP EXISTS BETWEEN PERFORMANCE CAPABILITY OF GROUND-BASED INFORMATION SYSTEMS AND SPACE QUALIFIED SYSTEMS:

- Space environment requirements: radiation, thermal, launch stress
- Power and weight constraints

ADVANCED MISSION CONCEPTS TEND TO BE BASED ON TECHNOLOGY CAPABILITY OF GROUND SYSTEMS, AND MUST BE SUBSTANTIALLY DESCOPED TO BE IMPLEMENTABLE IN PROVEN FLIGHT TECHNOLOGY.
SENSERS AND INFORMATION SYSTEMS
6.3 Information Systems

In-Space Experiments in Information Systems

John T. Dalton
NASA Goddard Space Flight Center, Data Systems Technology Division

MISSION APPLICATIONS

- On-board system and sensor control and data processing applications generally applicable to most space missions:
 - Intelligent sensors for long term monitoring of phenomena and for adaptive observation of scientifically interesting events
 - On-board sensor calibration and processing
 - On-board control of coordinated multi-sensor observations
 - On-board fault detection and reconfiguration of spacecraft systems
 - Compression, buffering, and on-board processing for high rate imaging instruments
 - Data driven telemetry systems (using packet telemetry standards)
 - On-board resource control to improve responsiveness of science operations

- Supporting processor technology for robotics:
 - Task planning
 - Sensing and reactive control
 - Machine vision

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- Processors:
 - Demonstrate space-qualified, fault tolerant processors and memory systems
 - With acceptable power and weight characteristics
 - Sufficient space environment operation to verify performance

- Image processors:
 - Demonstrate space-qualified processors for high rate lossless image compression
 - Demonstrate space-qualified processors programmable for multispectral image feature extraction

- Storage:
 - Demonstrate launch survival and in-space operation of moving media storage devices
 - Long duration exposure of material and components to radiation environments (lasers, write-once and erasable media, etc.)

- Networks and data handling systems:
 - Demonstrate software and system reconfiguration while maintaining reliable operations
 - Demonstrate space-qualified components for telemetry generation and handling supporting CCSDS packet telemetry standards

- Automated systems:
 - Demonstrate in-space operation of automated experiment and subsystem operations
 - Demonstrate operation of automated resource management subsystems
 (e.g., resource envelope allocation, resource checking, command checking, interlocks)
SENSEORS AND INFORMATION SYSTEMS

6.3 Information Systems

In-Space Experiments in Information Systems

John T. Dalton
NASA Goddard Space Flight Center, Data Systems Technology Division

SUMMARY/RECOMMENDATIONS

- REQUIREMENTS FOR INFORMATION SYSTEMS IN-SPACE EXPERIMENTS
 - SUCCESSFUL LONG DURATION EXPOSURE TO AND OPERATION IN RADIATION ENVIRONMENT
 - ACCEPTABLY LOW POWER AND WEIGHT REQUIREMENTS
 - LAUNCH SURVIVAL AND ZERO-G OPERATION PRIMARILY FOR MOVING MEDIA STORAGE DEVICES
 - SMART SENSOR SYSTEMS TESTED IN OBSERVATIONS FROM SPACE
 - AUTONOMOUS SYSTEMS: SUFFICIENT TESTING TO ELIMINATE PERCEIVED RISK
INSTEP Technology Themes

Theme 6 of 8

SENORS AND INFORMATION SYSTEMS

6.3 Information Systems

Information System Panel DMS Perspectives — December '88

George Nossaman
IBM, Federal Systems Division

RATIONAL FOR IN-SPACE TECHNOLOGY EXPERIMENTS

"DMS PERSPECTIVES"

- SPACE TESTING GENERALLY EXPENSIVE

- ENVIRONMENT CAN NOT BE ACCURATELY SIMULATED IN GROUND LABS

 GROUND-SUFFICIENT IN-SPACE
 THERMAL ZERO-G
 VACUUM RADIATION (COMPLETE)
 EMC MULTIPLE EFFECTS
 VIBRATION RADIATION (PARTIAL)

- CONFIDENCE - BUILDING
 - ON-ORBIT TESTING RAISES CONFIDENCE IN SYSTEM APPROACH
 - DOES NOT COVER ALL PROBLEM AREAS

- SOME OPERATIONAL INTERACTIONS - INVOLVING HUMANS CANNOT BE ACCURATELY SIMULATED
 - TELEOPERATIONS W/ROBOTS

- SPACE TESTING:
 - SHOULD VERIFY TECHNIQUES, SYSTEM APPROACHES WHICH CANNOT BE TESTED ON THE GROUND
 - SHOULD NOT BE USED AS BASIS FOR DEVELOPMENT OF NEW CONCEPT, OR PRIMARY TESTING APPROACH
TRENDS IN SPACE DATA SYSTEMS

- **SYSTEM ARCHITECTURES**
 - Moving toward distributed approaches
 - Merging with ground-based systems - general purpose H/W
 - Increasing use of standards for LCC reduction
 - Differing military/civilian approaches

- **NETWORKS**
 - Emerging need for high speed (~50 M/s)
 - Continuing need for simple instrumentation buses, local I/O
 - Emerging need for 10 M/s LAN
 - Fiber optics replacing cable/wire buses

- **PROCESSORS**
 - High speed, single board - single chip processors (32 bits)
 - Loosely-coupled arrays of processors
 - Tightly coupled systems (military/sensor systems)
 - On-board high-speed vector processing
 - Silicon memory with ECC & scrub
 - Use of commercial/military systems in space
 - Use of COTS S/W, general purpose OS

- **MASS STORAGE**
 - Moving toward Winchester-disk mass storage
 - Optical memory
 - Integrated data base approaches

RADIATION EFFECTS ON DIGITAL ELECTRONICS

BACKGROUND

- **FAILURE MODES**
 - Single-event upset (SEU)
 - Latch-up
 - Total dose

- **VARIATIONS IN SPACE ENVIRONMENT**
 - Orbital height
 - Orbital inclination
 - Solar cycles
 - Random events (flares, etc)
 - Man-made events (nuclear effects)
 - Shielding
 - Particle flux characteristics

- **GROUND TESTING LIMITATIONS**
 - Radiation spectra
 - Modeling accuracy
 - Circuit complexity
 - Effects reporting
6.3 Information Systems

Information System Panel DMS Perspectives — December '88

George Nossaman
IBM, Federal Systems Division

IN-SPACE TECHNOLOGY TESTING

IN-SPACE TESTING NEEDS

<table>
<thead>
<tr>
<th>SPACE DATA SYSTEM</th>
<th>IN-SPACE TESTING RATIONALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENTS</td>
<td>ZERO-G ENVIRONMENT</td>
</tr>
<tr>
<td></td>
<td>SINGLE EVENT EFFECTS</td>
</tr>
<tr>
<td></td>
<td>TOTAL Dose EFFECTS</td>
</tr>
<tr>
<td></td>
<td>OPERATION COMPLEXITY</td>
</tr>
<tr>
<td></td>
<td>CONDITION</td>
</tr>
<tr>
<td>BASIC PROCESSES</td>
<td>X</td>
</tr>
<tr>
<td>"COMMERCIAL" PROCESSES</td>
<td>X</td>
</tr>
<tr>
<td>SILLICON</td>
<td>X</td>
</tr>
<tr>
<td>"NEW COMPONENT" FPGAS</td>
<td>X</td>
</tr>
<tr>
<td>OPTICAL DRIVES</td>
<td>X</td>
</tr>
<tr>
<td>PROCESSES</td>
<td>X</td>
</tr>
<tr>
<td>NEW ESA SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>ARRAY PROCESSORS</td>
<td>X</td>
</tr>
<tr>
<td>HIGH-SPEED BACKPLAINESS</td>
<td>X</td>
</tr>
<tr>
<td>FAULT TOLERANT ARCHITECTURES</td>
<td>X</td>
</tr>
<tr>
<td>NETWORKS</td>
<td>X</td>
</tr>
<tr>
<td>NEW MEDIA</td>
<td>X</td>
</tr>
<tr>
<td>ROTATING JOINT MISSION</td>
<td>X</td>
</tr>
<tr>
<td>NETWORK SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>DRIVER RECEIVER TECHNOLOGIES</td>
<td>X</td>
</tr>
<tr>
<td>MISS STORAGE</td>
<td>X</td>
</tr>
<tr>
<td>ROTATING SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>OPTICAL DRIVER RECEIVERS</td>
<td>X</td>
</tr>
<tr>
<td>MEDIA STABILITY</td>
<td>X</td>
</tr>
<tr>
<td>SOFTWARE</td>
<td>X</td>
</tr>
<tr>
<td>OPERATING SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>COMMSystem</td>
<td>X</td>
</tr>
<tr>
<td>ALL SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>TELE OPERATIONS</td>
<td>X</td>
</tr>
<tr>
<td>AUTOMATED SYSTEMS</td>
<td>X</td>
</tr>
</tbody>
</table>

IN-SPACE TESTING NEEDS GENERAL

- INEXPENSIVE WAY TO TEST COMPONENTS IN SPACE FOR SEE
- INEXPENSIVE WAY TO VERIFY SYSTEMS FOR SEE, INTEGRATED EFFECTS
- LONG DURATION TEST FACILITY FOR LIFETIME TESTING - TOTAL DOSE, INTEGRATED EFFECTS
- COORDINATED GROUND TEST, MODELING PROGRAM
 - PROGRAM AND FACILITY FOR MULTIPLE EFFECTS
- ORGANIZED APPROACH TO SELECT TECHNOLOGIES WHICH REQUIRE, RECEIVE TESTING
- SIMPLE WAY TO FLY "COMMERCIAL" AND/OR "MILITARIZE" ELECTRONICS FOR QUICK EVALUATION
<table>
<thead>
<tr>
<th>Theme 6 of 8</th>
<th>SENSORS AND INFORMATION SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Information Systems</td>
<td></td>
</tr>
</tbody>
</table>

Information System Panel DMS Perspectives — December '88

George Nossal
IBM, Federal Systems Division

SPECIFIC SUGGESTIONS

- **ESTABLISH COMPONENTS & SYSTEMS TESTING PROGRAM**
 - COMPONENTS & SYSTEM TEST STANDARDS
 - USE STATION AS A PATHFINDER

- **DEVELOP A CONCEPT FOR LONG DURATION "COMPONENTS & ELEMENTS" TEST FIXTURES**
 - PERHAPS SEVERAL AT VARIOUS DURATION AND ORBITS

- **EXPAND INEXPENSIVE SORTIE-LEVEL TESTING CAPABILITIES**
 - TEST COMPONENTS
 - VERIFY SYSTEM ELEMENTS
 - FLY UNMODIFIED COMMERCIAL/MILITARY TECHNOLOGY
UNIVERSITY SCIENTISTS AND ENGINEERS PERSPECTIVES ON INFORMATION SYSTEMS

- THE CATCH 22 OF SPACE INSTRUMENTATION
 - Proposals are often awarded based upon conservative 'cannot fail' designs. At the same time costs must be held down and delivery based upon success oriented schedules.
 - Power, weight, and environmental constraints affect scientific objectives, typically reducing overall scientific return.
 - HW should be 'off-the-shelf', using parts prequalified for space environments. This forces using technologies and parts which are five or more years behind commercially available parts, again limiting scientific return.
 - SW is limited by processor technology (CMOS, LSTTL, HCMOS, etc.), memory sizes, etc., forcing routines to be written in assembly language. Also limits capabilities to simple control algorithms and low data rates.

- Yet we live in a complex universe, forcing the instrumentation to grow in complexity and size:
 - Each generation must be more sensitive, have a larger dynamic range, and higher precision and resolution than its predecessor.
 - Short and long term drift (over time, temperature, radiation, etc.) force the development of complex, in-flight, calibration sequences.
 - Data volume if uninteresting phenomena in a 'sit and wait' mode is excessive. Instrumentation needs to be able to find the high quality data that will enhance scientific discoveries.

- MISSION APPLICATIONS FOR FUTURE SPACE QUALIFIED INFORMATION SYSTEMS
 - On-board sensor based 'event' detection and S/C mode reconfiguration for 'event' observation:
 - Solar physics (flares, coronal mass ejection, coronal holes, etc)
 - Atmospheric physics (aurora, polar mesospheric clouds, etc)
 - Cometary physics (detection, composition)
 - Planetary exploration (volcanos, rings, etc.)
 - Astrophysics (supernovas)

- Resource Management
 - Power
 - Temperature
 - Disturbance Torques
 - Data (Compression, buffering, rates, packetizing)

- Sensor Calibrations

- Fault Detection and Correction

- Pointing, attitude, and motion control and compensation
UNIVERSITY SCIENTISTS AND ENGINEERS PERSPECTIVES ON INFORMATION SYSTEMS (CONTINUED)

- DIFFICULTIES EXPERIENCED RELATING TO DEVELOPMENT AND QUALIFICATION OF NEW FLIGHT TECHNOLOGIES
 - LIMITED PERSONNEL/EXPERIENCE BASE
 - ACS OFTEN PRECLUDE THE DEVELOPMENT OF NEW TECHNOLOGIES
 - NO PROFIT MOTIVE OR INTERNAL R & D FUNDING SOURCES
 - MOST FLIGHT PROGRAMS ARE UNWILLING TO ACCEPT THE RISKS ASSOCIATED WITH THE DEVELOPMENT OF NEW TECHNOLOGIES. SEPARATE GRANTS MUST BE OBTAINED PRIOR TO S/C FUNDING FOR DEVELOPMENT PROGRAMS

- UNIVERSITIES SUFFER FROM POOR OR CONFLICTING DATA PERTAINING TO SPACE QUALIFIED PARTS
 - EACH NASA CENTER USES DIFFERENT APPROVED PARTS AND FABRICATION TECHNIQUES
 - NEWER TECHNOLOGIES IN THE PROCESS OF QUALIFICATION ARE NOT WIDELY PUBLISHED
 - DOD SPACE QUALIFIED PARTS CANNOT BE OBTAINED

- LITTLE OR NO STANDARDIZATION OF S/C INTERFACES, BUS STANDARDS, ETC. THUS EVERY INSTRUMENTS DESIGN IS UNIQUE EVEN THOUGH MANY INCORPORATE SUBSYSTEM COMMON TO ALL
 - MICROPROCESSOR/BUS
 - ECC MEMORY
 - TELEMETRY INTERFACE
 - STANDARD INTERFACES (MULTICHANNEL A/D'S AND D/A'S, ETC)
 - SOFTWARE

UNIVERSITY SCIENTISTS AND ENGINEERS WILL PUSH AVAILABLE FLIGHT DESIGNS AND TECHNOLOGIES TO THEIR LIMITS. HOWEVER, THEY WILL NOT PROPOSE INSTRUMENTATION REQUIRING THE DEVELOPMENT OR QUALIFICATION OF NEWER, COMMERCIALY AVAILABLE PARTS AND TECHNOLOGIES, UNDER S/C ANNOUNCEMENT OF OPPORTUNITIES.
SENSORS AND INFORMATION SYSTEMS
6.3 Information Systems
In-Space Experiments in Information Systems

Neil R. White
University of Colorado, Laboratory for Atmospheric and Space Physics

TECHNOLOGY NEEDS

- INTELLIGENT (NETWORKED) INSTRUMENTATION AND S/C
 - On-board Calibration Sequencing
 - S/C Maneuvering
 - Instrument Configuration
 - Sensor Data Calibration Analysis
 - Storage of Calibration Data

- REAL-TIME DATA PROCESSING
 - Application of Calibration Data
 - Background Removal
 - Analytical Analysis (MIN/ MAX, FFT, MODEL FITTING, ETC)
 - Data Compression

- DATA ANALYSIS
 - EVENT DETECTION AND FEATURE RECOGNITION

- EVENT BROADCAST AND RECONFIGURATION
 - INSTRUMENT
 - S/C
 - OTHER (OTHER S/C, GROUND INSTRUMENTATION, SS INSTRUMENTATION, ETC)

- RESOURCE MANAGEMENT

- SPACE-QUALIFIED PARTS / SYSTEMS
 - STANDARDIZED BUS PROTOCOL(S)
 - OFF-THE-SHELF SPACE-QUALIFIED COMPONENTS
 - 8, 16, & 32 BIT FAULT TOLERANT MICROPROCESSOR CARDS
 - ECC MEMORY (PROM, EPROM, SRAM, AND DRAM)
 - TELEMETRY INTERFACE CARDS (SHOULD COMPLY WITH COMMERCIALLY AVAILABLE STANDARDS LIKE RS-232, IEEE-488, ETHERNET, ETC)
 - CONTROL I/F CARDS (DIGITAL I/O, AD, D/A, ETC)
 - LITERALLY SPACE QUALIFIED PC'S, MAC II'S, MICROVAX'S, ETC. WITH PLUG IN PERIPHERAL CARDS

- SOFTWARE UTILITIES SUPPORTING HARDWARE SYSTEMS
 - REAL-TIME MULTITASKING KERNEL
 - PACKET GENERATION UTILITIES
 - DATA COMPRESSION UTILITIES
 - COMMAND ERROR CHECKING AND PARSING UTILITIES
 - GROUND BASED COMPLEMENTS TO ABOVE UTILITIES
 - RESOURCE MANAGEMENT UTILITIES

- NATIONAL NASA APPROVED PARTS AND SOFTWARE DATABASE
 - CONTINUOUSLY UPDATED
 - DISCRETE PARTS AND MATERIALS
 - COMPONENT LEVEL CARDS / BOARDS
 - SPECIFICATIONS
 - QUALIFICATION LEVEL (MIL-STD-883, MIL-M-38510, ETC)
 - RADIATION HARDNESS
 - VENDOR
 - PRICE

- SOFTWARE UTILITIES

- CURRENT R & D EFFORTS
 - USEFUL FEEDBACK / WISH LISTS
SENSORS IMPORTANT

MISSION TO PLANET EARTH

EOS Laser Active Sensing of Winds
 Laser Active Sensing of Trace Species
 - Ozone, Acid Rain, H2O, CO2, Others
 Laser Altimetry
 - Plate Tectonic Movements

GEOPLAT Fixed Focus with Large Format Arrays
 Multi-Spectral Imagers
 Spatial Imagers

SENSORS IN-SPACE TESTING REQUIRED

- IN-SPACE POINTING, CONTROL & STABILIZATION TEST BED FOR DETECTORS & LASERS REMOTE SENSING SYSTEMS

- IN-SPACE TESTING, DEMONSTRATION, AND VERIFICATION OF PROTOTYPE COOLERS & COOLER SYSTEMS
 - Mechanical Refrigerators
 - Magnetic Refrigerators
 - He3/He4 Dilution Refrigerators
SENSORS TECHNOLOGY NEEDS

- **Precision Pointing, Control & Stabilization for Passive and Active (DIAL/LIDAR) Remote Sensing**
 - Passive Sensing (Detector Arrays)
 - "Earth Looking"
 - "Out Looking"
 - Active Sensing
 - Differential Absorption LIDAR
 - Coherent Doppler LIDAR (Laser Atmospheric Wind Sounder)

- **Space - Qualifiable Coolers & Cooler Systems Operating in 0-G Environment ~ 3-5 Years Lifetime**
 - Cooling Sensor Arrays to Tens of Kelvin
 - Cooling Sensor Arrays to Millikelvin \(T < 100 \text{K} \)

COMMUNICATIONS IMPORTANCE

- **Mission to Planet Earth**
 - Optical (> 500 Mbps) GEOPLAT/GEOPLAT Links
 - GEOPLAT/EOS Links
 - Coherent Links (Two or More Platforms Employed as a Single Observational Instrument)
 - Optical Link Direct to Ground

- **Mars Exploration**
 - Mars Rover (Eliminate Large Antenna)
 - Manned Missions

- **Lunar Base**
 - LaGrange Point / Earth-GEO / Far Side Optical Link

- **Other Missions**
 - Enables Star Probe (Communication in and Thru Sun's Plasma)
 - TAU (Thousand Astronomical Unit)
 - Planetary - High Data Rate
COMMUNICATIONS TECHNOLOGY NEEDS

- EXPERIMENTAL TEST DATA ON OPTO-THERMO-STRUCTURAL MECHANICAL INTERACTIONS OF SPACE-BASED "OPTICAL BENCH" FOR OPTICAL COMMUNICATIONS
 - Laser Power & Cooling
 - Acquisition (Closed & Open Loop)
 - Pointing and Tracking
 - Communications Links
 - Very Large Baselines (> 40,000 Km)

COMMUNICATIONS IN-SPACE TESTING REQUIRED

- Obtain Experimental Test Data to Obtain and Validate Complex Analytical Models to Enable Overall Laser Communications Systems Optimization

- The In-Space Environment:
 - Platform Vibration
 - Thermal Distortion
 - Radiation
 - Natural Background Sources
 - S/C Glow
 - Long Baselines
INFORMATION SYSTEMS TECHNOLOGY NEEDS

- Intelligent Information Systems to Support Automated Operations, On-Board Processing, & Robotics
 - Special Purpose Processors: Image, Symbolic, Neural Network
 - High Performance General Purpose Processors
 - High Volume Storage

IMPORTANCE

- MISSION TO EARTH:
 - On-Board Feature Extraction & Processing Required to Reduce Large Volume of Global Monitoring Data and Enable Manageable Communications and Ground Processing Costs

- MICROGRAVITY:
 - On-Board Selection of Features of Interest From High Rate/Volume Image Sequences. Required to Meet TDRS Communication Limit

- PLANETARY ROVERS:
 - On-Board Science Analysis & Autonomous Vehicle Operation

IN-SPACE TESTING REQUIRED

- System-Level Validation:
 - Adaptive Response to Real-Time Observations
 - Performance and Reliability in Space Radiation Environment

- Space Environment Testing
 - Space-Borne VHSIC Multiprocessor System
 - CSTI High Rate Data Systems
INFORMATION SYSTEMS IN-SPACE TECHNOLOGY NEEDS

- Space Qualified Components with Performance Comparable to Ground System Capability
- Confidence Testing of Commercial-Grade Components to Provide Low-Cost, Low-Risk Applications
- Zero-G Testing of Storage Systems

IMPORTANCE:
- Reduce Cost of Space Experiments
- Modular, Standard Processing Elements for Multi-Mission Applications
- Mission Enabling for Some Applications (Eg. On-Board Instrument Calibration, Automation of Operations)

IN-SPACE TESTING REQUIRED:
- Laboratory for On-Going Testing of New Components
 - Shuttle/SSF Low Inclination Orbit
 - Polar & Geo Radiation Environment
- Build on CRRES Experience
- Improve Model of Radiation Environmental Effects
- Incorporate as Last Step of Ground Modeling & Testing Process
SENSORS & INFORMATION SYSTEMS IN-SPACE TECHNOLOGY NEEDS

SENSORS
- Precision Pointing, Control, and Stabilization
- Coolers

COMMUNICATIONS
- High Rate Optical Communications
- Closed and Open Loop Acquisition
- Pointing and Tracking

INFORMATION SYSTEMS
- Intelligent Systems For In-Space Observations, Automated Control, and Robotics
- Effective Space Application of Processor and Storage Technology Advances
• PURPOSE
 - IDENTIFY & PRIORITIZE IN-SPACE TECHNOLOGIES
 FOR EACH THEME WHICH:
 - ARE CRITICAL FOR FUTURE NATIONAL SPACE PROGRAMS
 - REQUIRE DEVELOPMENT & IN-SPACE VALIDATION
 - OBTAIN AEROSPACE COMMUNITY COMMENTS & SUGGESTIONS ON
 OAST IN-STEP PLANS

• PRODUCT
 - AEROSPACE COMMUNITY RECOMMENDED
 PRIORITY LISTING OF CRITICAL SPACE TECHNOLOGY
 NEEDS & ASSOCIATED SPACE FLIGHT EXPERIMENTS

IN-SPACE SYSTEMS

THEME ELEMENTS
(SUBTHEMES)

MATERIAL PROCESSING
MAINTENANCE, REPAIR AND FIRE SAFETY
PAYLOAD OPERATIONS
1985 Workshop Theme

In-Space Operations

- Advanced Life Support System
- Biomedical Research
- Tethers
- Maintenance and Repair
- Orbital Transfer Vehicle
- System Testing
- Propulsion
- Material Processing

Theme Session Agenda

- **Theme Element Sessions**
 - Critical Space Technology Needs for Theme Element.
 - From Perspective Of:
 - Industry, Universities & Government
 (Brief Presentations of Major Technical Problems/Concerns/Needs in this Theme Element Area from the Perspective of the Speaker's Organization)
 - Open Discussion with the Audience & Theme Element Speakers/Theme Leader
 - Question & Answer with Speakers
 - Identification of Additional Technologies from Audience
 - Audience Prioritization of Critical Technologies
 (Including Those Technologies Discussed by the Audience)
 (Note: Audience Should Use Prioritization Criteria Presented on Viewgraph)

- **Combination & Prioritization of Theme Technologies**
 - Discussion Between Audience and All Theme Element Speakers
 - Resolution of Critical Technologies Across Theme
IN-SPACE SYSTEMS

Background and Objectives

Theme Session Objectives and Prioritization Criteria

Jon B. Haussler
NASA Marshall Space Flight Center

<table>
<thead>
<tr>
<th>MATERIAL PROCESSING SPEAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dr. Robert J. Naumann, MSFC</td>
</tr>
<tr>
<td>- Dr. David W. Sammons, University of Arizona</td>
</tr>
<tr>
<td>- Dr. John T. Viola, Rockwell International</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAINTENANCE AND REPAIR SPEAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Mr. Ed Falkenhayn, GSFC</td>
</tr>
<tr>
<td>- Mr. Bob Dellacamera, McDonnell Douglas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIRE SAFETY SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Mr. Wallace W. Youngblood, Wyle Laboratories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAYLOAD OPERATIONS SPEAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dr. Jeffrey A. Hoffman, JSC</td>
</tr>
<tr>
<td>- Prof. George Morgenthaler, University of Colorado</td>
</tr>
<tr>
<td>- Mr. Lee Lunsford, Lockheed</td>
</tr>
</tbody>
</table>
INSPACE SYSTEMS

Background and Objectives

Theme Session Objectives and Prioritization Criteria

Jon B. Haussler
NASA Marshall Space Flight Center

PRIORITIZATION CRITERIA*

1. CRITICAL ENABLING TECHNOLOGIES
 - Technologies which are critical for future U.S. space missions

2. COST REDUCTION TECHNOLOGIES
 - Technologies which can decrease costs or complexity (e.g., development, life-cycle, operations)

3. BROAD APPLICATION TECHNOLOGIES
 - Technologies which can improve or enhance a variety of space missions

4. REQUIRE IN-SPACE VALIDATION
 - Technologies which require the space environment or micro-gravity for validation or experimentation

* CRITERIA ARE LISTED IN ORDER OF IMPORTANCE (1. = HIGHEST)
WHY MICROGRAVITY?

- **ELIMINATE BUOYANCY-DRIVEN CONVECTION**
 - Establish diffusion-controlled conditions
 - Vastly simplifies transport analysis
 - Suppresses thermal and composition fluctuations
 - Eliminates unwanted mixing
 - Unmasks other, more subtle flows

- **ELIMINATE SEDIMENTATION**
 - Maintain heterogeneous mixtures or suspensions
 - Prevent unwanted phase separation
 - Investigate second-order forces on particles or droplets
 - Objects can be free-floated

- **ELIMINATE HYDROSTATIC PRESSURE**
 - Liquid can be constrained by their surface tension
 - Deploy liquid bridges to Rayleigh limit
 - Extend float zone process to low surface tension materials
 - Eliminate pressure variations in critical point experiments

BONUSES

- Ultrahigh Vacuum — $\sim 10^{-14}$ Torr behind wake-shield
- High pumping speed — virtually infinite sink
- High heat rejection — $\sim 4\,\text{K}$ radiation background
- Flux of atomic oxygen — collimated beam of $5\,\text{ev}$ 0 atoms
- Unfiltered sunlight — source of VUV, especially $121.6\,\text{nm}.$

GOALS

- **Use the microgravity environment as a laboratory to:**
 1) Obtain understanding of basic physical phenomena and processes
 2) Quantify limitations/effects imposed by gravity on these phenomena and processes
 3) Apply this basic knowledge to both Earth based and space based processes or products

- **Disseminate the research data base to the U.S. private sector to enhance U.S. competitiveness in the world market**
IN-SPACE SYSTEMS

Materials Processing

Materls Processing

Larry Spencer
NASA Headquarters, Microgravity Science and Applications Division

MICROGRAVITY SCIENCE AND APPLICATIONS DISCIPLINES

FLUID DYNAMICS AND TRANSPORT PHENOMENA
- Critical Point Phenomena
- Surface Behavior
- Chemical Reaction
- Relativity
- Transport Phenomena
- Solidification Models

GLASSES AND CERAMICS
- New Glass Compositions
- Fining
- Spherical Shells
- Nucleation/Crystallization

ELECTRONIC MATERIALS
- Vapor Growth
- Melt Growth
- Solution Growth
- Float Zone

METALS AND ALLOYS
- Monotectics
- Eutectics
- Undercooling
- Solidification Fundamentals
- Thermophysical Properties

BIOTECHNOLOGY
- New Technique Development
- Evaluation of CFES
- Protein Crystal Growth
- Bioreactor

COMBUSTION SCIENCE
- Solid Surface
- Pool Burning
- Particle Cloud
- Droplet Burning
THE APPROACH

MICROGRAVITY SCIENCE AND APPLICATIONS TECHNOLOGY DEVELOPMENT

- VIBRATION ISOLATION SYSTEMS \((10^{-8} \text{g}, 10^{-3} \text{Hz}) \)
- REACTIONLESS ROBOTICS
- ADVANCED HIGH-TEMPERATURE FURNACES
- HIGH-TEMPERATURE MATERIALS FOR FURNACES \((3000^\circ\text{C}) \)
- HIGH-FRAME RATE/HIGH-RESOLUTION VIDEO \((100 \text{ microns, 1000 FPS}) \)
- CRYSTAL GROWTH NUCLEATION DETECTION \((10\text{Å}) \)
- NON-CONTACT TEMPERATURE MEASUREMENT CAPABILITY \((5^\circ\text{K TO 2500^\circK}) \)
- ELECTRONIC CRYSTAL GROWTH MEASUREMENT TECHNOLOGY
- FLUID AND COMBUSTION DIAGNOSTICS
- ACCELERATION MEASUREMENT \((10^{-8} \text{g}) \)
IN-SPACE TECHNOLOGY VALIDATION NEEDS

- CHARACTERIZATION, MEASUREMENT, AND CONTROL OF THE MICROGRAVITY ENVIRONMENT
- ULTRAHIGH VALUUM TECHNOLOGY
- MEASUREMENT AND CONTROL OF FLUIDS
- REACTIONLESS ROBOTICS
- IN-SPACE SAMPLE PREPARATION AND ANALYSIS
- HANDLING OF MATERIALS AND WASTE PRODUCTS
- COMBUSTION DIAGNOSTIC TECHNOLOGY
INTRODUCTION / BACKGROUND

- ELECTRONIC COMPONENTS AND SUBSYSTEMS FOR DEFENSE AND COMMERCIAL APPLICATIONS IN DEVELOPMENT
 - GaAs SIGNAL PROCESSORS, INFRARED FOCAL PLANE ARRAYS, NON-LINEAR OPTICS AND PHOTONICS

- HIGH QUALITY, DEFECT-FREE MATERIAL IS NEEDED FOR THESE APPLICATIONS

- CURRENT TECHNOLOGY LIMITS SINGLE CRYSTAL SIZE AND IMPOSES UNWANTED DEFECT CONCENTRATIONS (TWINS, DISLOCATIONS, PRECIPITATES, GRAIN BOUNDARIES)

- FLOAT ZONE CRYSTAL GROWTH IN MICROGRAVITY CAN YIELD LARGER CRYSTALS WITH LOWER DEFECT CONCENTRATIONS.
 - REDUCED CONTAMINANT CONCENTRATION AND SPURIOUS NUCLEATION BY ELIMINATION OF INTRACTION WITH AN AMPOULE
 - LARGER DIAMETER ZONE IS POSSIBLE SINCE SURFACE TENSION NEED NOT SUPPORT THE WEIGHT OF THE MELTED ZONE
 - ELIMINATION OF PLASTIC DEFORMATION FROM CRYSTAL'S OWN WEIGHT.

- FLOAT ZONE EXPERIMENTS IN SPACE ARE NEEDED TO DEMONSTRATE FEASIBILITY
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 7 of 8
IN-SPACE SYSTEMS
7.1 Materials Processing

Floating-Zone Crystal Growth in Space

John T. Viola
Rockwell International Science Center

TECHNOLOGY NEEDS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample support and change out</td>
<td>Contactless processing; multiple experiments</td>
</tr>
<tr>
<td>Furnace temperatures up to 1500C</td>
<td>Electronic materials of interest</td>
</tr>
<tr>
<td>Hot wall furnace</td>
<td>Eliminate vapor loss by condensation</td>
</tr>
<tr>
<td>Variable speed zone heater</td>
<td>Establish and move molten zone</td>
</tr>
<tr>
<td>Power budget management</td>
<td>Establish and maintain proper temperature profile</td>
</tr>
<tr>
<td>Molten zone dimensional sensing</td>
<td>Optimize crystal growth conditions</td>
</tr>
<tr>
<td>(length, solid-liquid interfaces, fluid flows)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace and growth system temperature sensing</td>
<td>Optimize crystal growth conditions</td>
</tr>
<tr>
<td>Controllable power and positional settings</td>
<td>Establish and maintain proper temperature profile</td>
</tr>
<tr>
<td>Eventual expert system control</td>
<td>Autonomous operation</td>
</tr>
<tr>
<td>Prove for in situ observation of growing crystal quality (ultrasound?)</td>
<td>Expert system control of growth process</td>
</tr>
<tr>
<td>Robotic manipulation</td>
<td>Autonomous operation/telescience</td>
</tr>
</tbody>
</table>
IN-SPACE EXPERIMENTATION NEEDS / VOIDS

0 FLOATING-ZONE CRYSTAL GROWTH OF HIGH-MELTING SEMICONDUCTOR COMPOUNDS TO DEMONSTRATE LARGE SIZE, HIGH PURITY, LOW DEFECT, SINGLE CRYSTAL MATERIAL.

0 "CONTAINERLESS" PROCESSING TO DEMONSTRATE ADVANTAGES OF CONTACTLESS CRYSTAL GROWTH.

0 SENSING AND IMAGING SYSTEM FOR FLOATING-ZONE CRYSTAL GROWTH TO DEMONSTRATE CONTROL OF MOLTEN ZONE SIZE, LENGTH, SHAPE AND RELATIVE MOTION AND FLOW.

0 EXPERIMENTS TO INVESTIGATE FLUID DYNAMIC PHENOMENA, SUCH AS THERMOCAPILLARY FLOW, THAT ARE OF CRITICAL IMPORTANCE IN EARTH-BASED PROCESSES, BUT CANNOT BE STUDIED ON EARTH BECAUSE OF GRAVITATIONAL EFFECTS; RESULTS CAN BE APPLIED IN BOTH EARTH AND SPACE-BASED PROCESSES.
EXPERIMENTS WITH CELLS UNDER MICROGRAVITY ARE IMPORTANT TO:

- BASIC SCIENCE
- COMMERCIALIZATION OF BIOTECHNOLOGY
- SPACE MEDICINE AND HUMAN ADAPTATION
- TRANSFER OF SPACE TECHNOLOGY TO TERRESTRIAL APPLICATIONS

TECHNOLOGY NEEDS

- HARDWARE FOR CELL MAINTENANCE & GROWTH
- HARDWARE FOR PROLONGED CELL STORAGE AND ACTIVATION
- VISION SYSTEMS FOR COUNTING, MEASURING AND EVALUATING CELLS
- AUTOMATED FLUID TRANSFER SYSTEMS THAT MAINTAIN STERILE ENVIRONMENTS
- SEPARATION SYSTEMS UTILIZING CELLULAR & BIOPHYSICAL CHARACTERISTICS OF TARGET CELLS
- ANALYSIS & QUALITY CONTROL INSTRUMENTATION
- TELECOMMUNICATION & EXPERT SYSTEMS TO MONITOR & ADJUST IN-SPACE EXPERIMENTATION
- MAINTENANCE & CONTINUED GROWTH INSTRUMENTATION FOR NEW IN-SPACE GENERATED PRODUCTS
- RECOVERY AND ANALYSIS SYSTEMS OF IN-SPACE GENERATED CELL PRODUCTS
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

SAMPLE PREPARATION AND PROCESSING
- SAMPLE INJECTION
- LIQUID MIXING DEVICES

MAINTENANCE AND/OR CULTURE
- GAS & TEMPERATURE CONTROLLED INCUBATORS

SEPARATION OF CELLS (POPULATION & SINGLE)
- ELECTROKINETIC
- CELL SORTING
- AFFINITY

TRANSFER OF FLUIDS & CELLS INTO REACTOR AND OUT OF REACTOR
- VALVING
- PUMPING OF FLUIDS

REACTION CHAMBERS
- ELECTROFUSION/ELECTROPERMEATION
- CELL ACTIVATION
- HOLDING TANKS FOR SECRETION OF PRODUCTS

IN-LINE SEPARATION OF CELLS AND PRODUCTS
- ELECTROKINETIC
- CELL SORTING
- AFFINITY

RECYCLE UNREACTED CELLS TO MAINTENANCE AND/OR CULTURE
- VALVING
- PUMPING OF FLUIDS

SPECIALIZED CLONING AND GROWTH CHAMBERS
- AUTOMATIC DILUTORS
- GELS AND SPECIAL GROWTH CHAMBERS

ANALYSIS OF CLONES & ESTIMATION OF YIELDS
- COLORIMETRIC, FLUOREMETRIC & RADIOACTIVE

RECOVERY OF CELL PRODUCT FOR RETURN OR FURTHER PROCESSING
- INCUBATORS
- AFFINITY RESIN MATERIALS OF HIGH CAPACITY
IN-SPACE SYSTEMS

7.2 Maintenance, Repair, and Fire Safety

Maintenance, Servicing and Repair in Space

Ed Falkenhayn
NASA Goddard Space Flight Center, Satellite Servicing Project

INTRODUCTION/BACKGROUND

CURRENT/PLANNED MAINTENANCE & REPAIR CAPABILITY

- PAYLOADS PLANNING ON STS, SPACE STATION OR OMV DOCKING WILL DOCK TO FSS THREE LATCH BERTHING RING
- FSS BERTHING RING PROVIDES ELECTRICAL UMBILICAL SERVICES:
 - POWER
 - DATA
 - COMMAND
- FSS BERTHING RING PROVIDES MECHANICAL POSITIONING
 - PIVOTS 0 TO 90°
 - ROTATION ±175°

OPERATIONS/FUNCTIONS

- POSITIONING FOR INSPECTION AND EASE OF ACCESS
- TOTAL OR SELECTIVE POWER-OFF TO PERMIT REPAIR AND/OR MODULE EXCHANGES
- INDEPENDENT HEATER POWER TO MAINTAIN THERMAL LIMITS ON COMPONENTS/INSTRUMENTS/SYSTEMS
- COMMAND & TELEMETRY LINKS PERMIT SPACECRAFT/PAYLOAD CHECKOUT
 - FROM ORBITER AFT FLIGHT DECK
 - FROM USER'S POC Via ORBITER AVIONICS
- AFTER SMR REPAIR IN 1984, DURING NIGHT, BETWEEN REPAIR DAY & RELAUNCH DAY, FULL SPACECRAFT FUNCTIONAL CHECK WAS PERFORMED
FSS ELECTRICAL AND AVIONICS SERVICES

DIAGNOSTIC SYSTEMS

THE ON-BOARD COMPUTER - NSSC-1

- On-board management, and updating of spacecraft performance statistics and trend data
- Automatic responses to predefined spacecraft anomalies/hardware failures - safe hold
- Allows in-flight telemetry format modifications for diagnostics and reconfiguration for optimum science return as hardware/instruments age and degrade
REMOTE SERVICING -- THE NEXT STEP

MANY SPACECRAFT OPERATE BEYOND STS/OMV AND SPACE STATION/OMV ALTITUDE AND INCLINATION

REMOTE SERVICING WILL USE ELV LAUNCHED SERVICING OPERATIONS: ENGINEERING STUDIES NEED TO ADDRESS:

- INVESTMENT IN ELV LAUNCHED, EXPENDABLE SERVICER CAPABILITY
- PROGRAMMATIC/LOGISTICS/ECONOMICS OF A SPACE BASED SERVICING FACILITY
- SERVICER/SPACECRAFT INTERDEPENDENCY; SHUT DOWN/TRANSFER OF SPACECRAFT FUNCTIONS
- MANIPULATOR SYSTEM REQUIREMENTS/CAPABILITIES
- TELEOPERATOR VS SUPERVISED AUTONOMOUS VS AUTONOMOUS OPERATIONS
IN-SPACE SYSTEMS
7.2 Maintenance, Repair, and Fire Safety

Spacecraft Fire Safety for Advanced Spacecraft

Wallace W. Youngblood
Wyle Laboratories

BACKGROUND

- **EARLY SPACECRAFT** (MERCURY THROUGH APOLLO) UTILIZED A PURE OXYGEN ATMOSPHERE AT 5 PSIA

- **SKYLAB** UTILIZED AN ATMOSPHERE OF 65% OXYGEN, 35% NITROGEN AT 5.2 PSIA

- **STS SHUTTLE & SPACELAB** ADOPTED A SEA LEVEL AIR ATMOSPHERE

- **FIRE DETECTORS (UV SENSORS)** FIRST USED ON SKYLAB

- **A PORTABLE FOAM FIRE EXTINGUISHER WAS PROVIDED ON THE APOLLO CSM**

- **FIXED AND PORTABLE HALON 1301 EXTINGUISHANT SYSTEMS ADOPTED FOR STS SHUTTLE**

- **DESIGN IS NOT FIRM FOR SPACE STATION**

- **ALL ASPECTS OF SPACECRAFT FIRE SAFETY MUST BE REVISITED:**
 - MATERIAL SELECTION/CONFIGURATIONS
 - MATERIAL FLAMMABILITY/FLAME SPREAD
 - FIRE DETECTION/SUPPRESSION
 - HUMAN EFFECTS
 - ATMOSPHERES (NOMINAL/OFF-NOMINAL)
TECHNOLOGY NEEDS

DATA BASE NEEDS FOR LOW GRAVITY IGNITION/FLAME SPREAD:
- CRITICAL HEAT FLUX REQUIRED FOR IGNITION
- EFFECT OF RADIATION ENVIRONMENT
- FLAME SPREAD RATE AND EXTINCTION LIMITS
- FLAME CHARACTERISTICS: FLAME SHAPE, TEMPERATURE AND COLOR; RADIANT ENERGY; SOOT GENERATION

UPGRADED MATERIAL FLAMMABILITY STANDARDS:
- EXPANDED DATA BASE NEEDED FOR MATERIAL IGNITION AND FLAME SPREAD IN LOW GRAVITY
- STANDARDS NEEDED FOR CONFIGURATION MODELING
- DEVELOPMENT OF CORRELATIONS FOR LOW GRAVITY FLAMMABILITY
- UNIFORM FLAMMABILITY TESTS FOR NASA, ESA, NASD...

FIRE DETECTION DEVICE NEEDS:
- FIRE DETECTION IS REQUIRED AT EARLIEST STAGE OF EVENT
- RAPID RESPONSE OVERHEAT AND INCIPIENT CONDITION DETECTORS

- LOW-GRAVITY DATA BASE NEEDS:
 - FLAME CHARACTERISTICS
 - SMOKE PARTICLE SIZE AND SIZE DISTRIBUTION
 - DETECTABLE AEROSOLS DUE TO OVERHEAT

- MEANS FOR MINIMIZATION OF FALSE ALARMS:
 - EXPERT SYSTEMS REQUIRED
 - SPECIAL SYSTEMS FOR CREW ALERTING
 - ARTIFICIAL FIRE SIGNATURE GENERATORS

FIRE EXTINGUISHANTS AND SYSTEMS:
- MUST BE COMPATIBLE WITH SPACECRAFT SYSTEMS
- MUST BE EFFECTIVE ON ALL FIRE SCENARIOS INCLUDING HYPERBARIC REGIONS

- DATA BASE REQUIRED FOR EXTINGUISHANT USE:
 - SEVERITY OF TOXIC PRODUCTS RESULTING FROM VARIOUS FIRE INTERACTION SCENARIOS
 - EFFECTIVENESS OF EXTINGUISHANTS VERSUS FLAME TEMPERATURE AND OXYGEN CONCENTRATION
IN-SPACE SYSTEMS
7.2 Maintenance, Repair, and Fire Safety
Spacecraft Fire Safety for Advanced Spacecraft

Wallace W. Youngblood
Wyle Laboratories

IN-SPACE EXPERIMENTATION NEEDS

LOW-GRAVITY IGNITION AND FLAME SPREAD:
- INVESTIGATE MATERIAL IGNITABILITY
- FOR SELECTED MATERIALS, DETERMINE FLAME SPREAD RATES AND EXTINCTION LIMITS FOR VARIOUS ENVIRONMENTS
- ASSESS POTENTIAL HAZARD FOR SPONTANEOUS COMBUSTION OF PARTICLE CLOUDS
- ASSESS FIRE HAZARDS ASSOCIATED WITH FLAMMABLE LIQUID SPILLS

FIRE DETECTION IN LOW GRAVITY:
- DEVELOP A DATA BASE OF FIRE SIGNATURES IN LOW GRAVITY:
 - INVESTIGATE FLAME CHARACTERISTICS
 - EVALUATE LOW-GRAVITY EFFECTS ON SMOKE PRODUCTION
- TEST NEW DETECTORS IN LOW-GRAVITY USING REAL AND ARTIFICIAL FIRE SIGNATURES

FIRE EXTINGUISHMENT:
- INVESTIGATE EFFECTIVENESS IN LOW-GRAVITY
 - ASSESS EFFECTIVENESS/HAZARD WHEN USED IN HYPERBARIC REGIONS
 - SAFE FOR CREW AND COMPATIBLE WITH SYSTEMS?
- ESTABLISH DATA BASE FOR FIRE/EXTINGUISHANT INTERACTION
 - MAP EXTINGUISHANT EFFECTIVENESS VERSUS FLAME TEMPERATURE
 - EVALUATE EFFECTIVENESS ON SMOLDERING COMBUSTION

POST-FIRE CLEANUP:
- DEVELOP MEANS FOR EFFECTIVE PICK UP OF SMOKE PARTICLES AND AEROSOLS REMAINING AFTER AN EVENT
- EVALUATE EFFECTS OF COMBUSTION/EXTINGUISHANT PRODUCTS ON ELECTRONIC GEAR

FIRE SAFETY EXPERIMENT CONCEPTS:
- EXPERIMENTS GENERALLY NEED TO BE COMPACT/MULTI-PURPOSE
- ATTEMPT TO MAXIMIZE DATA OBTAINED
- PLAN TO ATTEND NASA LEWIS SPONSORED WORKSHOP:
 - INTERNATIONAL MICROGRAVITY COMBUSTION WORKSHOP
 - DATE: JANUARY 25 & 26, 1985
INTRODUCTION/BACKGROUND

- MAINTENANCE, SERVICING & REPAIR HAS BEEN DONE IN SPACE

- MANNED MAINTENANCE & REPAIR SO FAR

- EXTREMELY PLANNED OR UNPLANNED

- NOT NORMALLY BASELINED

MISSION APPLICATIONS

- ALL MISSIONS CAN BENEFIT FROM INCLUDING MAINTENANCE SERVICING AND REPAIR PROVISIONS
 - SOFTWARE
 - HARDWARE
 - REPLENISHMENT

- EVA IS NOT THE ONLY METHOD OF MAINTENANCE, SERVICING & REPAIR

- MAINTENANCE, SERVICING & REPAIR REQUIRES A SUPPORT INFRASTRUCTURE FOR FULL IMPLEMENTATION
TECHNOLOGY NEEDS

DEVELOP TECHNOLOGIES FOR SUPPORTING INFRASTRUCTURE

- **ROBOTICS**
 - COGNITIVE CAPABILITIES
 - SERVICE ROBOTS
- **EVA SUITS**
 - SPACE BASING
 - MORE HARDINESS
 - LESS MAINTENANCE
- **COMPOSITE REPAIR**
 - TRUSS
 - PRESSURE SHELLS
- **CONSUMMABLES**
 - CRYO PUMPING
 - CRYO STORAGE
 - INSULATION
 - RELIQUIFACTION
 - TOXIC FLUIDS
 - DECONTAMINATE THE REFUELER
- **TECHNICAL DATA**
 - FORMAT/ACCESS
 - PRESENTATION STORAGE
 - UPDATES
- **CONSUMMABLES**
 - CRYO PUMPING
 - CRYO STORAGE
 - INSULATION
 - RELIQUIFACTION
 - TOXIC FLUIDS
 - DECONTAMINATE THE REFUELER

IN-SPACE EXPERIMENT NEEDS/VOIDS

- **INSTITUTIONALIZE MAINTENANCE, SERVICING & REPAIR BY DEMONSTRATION**
 - MANNED
 - ROBOTIC
 - COMBINATION

- **MAINTAIN, SERVICE & REPAIR AT HIGH INCLINATION AND POLAR ORBITS**

- **DEMONSTRATE MAINTENANCE, SERVICING & REPAIR HARDWARE FOR**
 - REFUELING
 - SELF-CONTROLLED ROBOTS
 - MANNED POLAR OPERATIONS
IN-SPACE SYSTEMS
7.2 Maintenance, Repair, and Fire Safety

Maintenance, Servicing and Repair in Space

Bob Dellacamera
McDonnell Douglas Space Systems Company

IN-SPACE EXPERIMENT RECOMMENDATION

• ALL SPACE SYSTEMS SHOULD DEMONSTRATE MAINTENANCE, SERVICING & REPAIR CONCEPTS AS PART OF DEVELOPING THE BASIC MISSION CONCEPT

• APPLY ROBOTICS TO MAINTENANCE, SERVICING & REPAIR PROBLEMS SOON

• MAINTAIN AND REPAIR A ROBOTIC SERVICER ON-ORBIT

• FLY A PROTOTYPE HARD SUIT AT HIGH INCLINATIONS

• DEVELOP A SMALL-SCALE LONG DURATION REFUELING PILOT PLANT(CRYO,STORABLE)

• REFUEL SPACECRAFT ON-ORBIT
IN-SPACE SYSTEMS

7.3 Payload Operations

Payload Operations from the Perspective of Manned Space Flight

Dr. Jeffrey A. Hoffman
NASA Johnson Space Center

INTRODUCTION

- HISTORICALLY, THE BUSINESS OF ASTRONAUTS WAS TO GET THEIR SPACECRAFT TO ITS DESTINATION AND BACK AGAIN.

- SINCE SKYLAB, ASTRONAUTS HAVE HAD TIME IN ORBIT TO CARRY OUT EXTENSIVE PAYLOAD-ORIENTED OPERATIONS.

- SPACE STATION WILL CONTINUE THIS TRADITION.

- SPACE SHUTTLE FLIGHTS CARRY SUFFICIENT NUMBER OF CREW MEMBERS TO ALLOW SOME ASTRONAUTS TO BE DEVOTED TO PAYLOAD ACTIVITIES
 - EVA
 - RMS
 - DEPLOYMENTS
 - SCIENTIFIC INVESTIGATIONS

MISSION APPLICATIONS

HIGH GROUND

- VIEW DOWN
 - METEOROLOGY
 - EARTH RESOURCES
 - OCEANOGRAPHY
 - ETC.
 - SYNERGISM BETWEEN SATELLITES AND CREW PHOTOGRAPHY
 - SPACE STATION LIMITED BY 28° ORBIT

- VIEW UP - IR, UV, X, GAMMA RAY ASTRONOMY
 - BEST SUITED FOR UNMANNED VEHICLES
 - FOR FUTURE PAYLOAD OPERATIONS, NEED HONEST TRADE STUDY BETWEEN COST OF MAINTAINABILITY AND COST OF FAILURES

- VIEW AROUND - PLASMA, AURORAL AND IONOSPHERIC STUDIES
 - COMBINE GEO, LEO AND GROUND STUDIES
 - TETHERS, UP AND DOWN, OFFER NEW METHODS OF STUDY
IN-SPACE SYSTEMS

7.3 Payload Operations

 Payload Operations from the Perspective of Manned Space Flight

Dr. Jeffrey A. Hoffman
NASA Johnson Space Center

TECHNOLOGY NEEDS

HIGH GROUND

1) ABILITY TO DEAL WITH EVER-INCREASING AMOUNTS OF DATA

2) TEST TETHER TECHNOLOGY

3) DEVELOP SATELLITE REPAIR, REFURBISHMENT AND REFueling

MISSION APPLICATIONS

MICROGRAVITY

- HUMAN RESPONSE TO SPACE
 - THE ENVIRONMENT CREATES ITS OWN FIELD OF STUDY

- FUNDAMENTAL RESEARCH
 - FLUID PHYSICS
 - MATERIAL PROPERTIES
 - CRYSTAL GROWTH
 - BOTANY/ZOOLOGY

- APPLICATIONS
 - FIRE RESEARCH
 - EVENTUAL PRODUCTION PROCESSES

OVERWHELMING TECHNOLOGICAL NEED: ABILITY TO USE SPACE AS A UNIQUE LABORATORY
TECHNOLOGY NEEDS

USE OF SPACE AS A LABORATORY

- MUST BALANCE UNIQUENESS OF ENVIRONMENT AGAINST OUR ACCUMULATED KNOWLEDGE OF HOW TO OPERATE IN A LAB.
- INTERACTIVE CREW OPERATIONS VS. AUTOMATION
 - USE OF HUMANS IS MOST VALUABLE DURING EARLY STAGES OF INVESTIGATIONS.
 - INCREASED UNDERSTANDING OF μ-g PHENOMENA ALLOWS INCREASED USE OF AUTOMATION TO CREATE GREATER EFFICIENCY.
- EFFICIENT USE OF CREW TIME IS UNIQUE TO SPACE ENVIRONMENT
 - SPACE STATION MAY HAVE LESS CREW TIME THAN SHUTTLE
 - OBSERVE EXPERIMENTS IN PROGRESS
 - CHANGE PROTOCOL WHERE NECESSARY
 - REPAIR OR ALTER HARDWARE
- CLOSE UNION OF SCIENTIFIC ACTIVITIES ON GROUND AND ORBIT IS ESSENTIAL

TELESCIENCE

- HIGH DENSITY DATA AND COMMAND LINKS FOR GROUND OPERATIONS
 - VARIABLE FORMAT TV: RESOLUTION VS. SPEED VS. COLOR.
- EXPERIMENT DESIGN TO ALLOW EFFICIENT USE OF ONBOARD CREW
 - VISIBILITY
 - ACCESSIBILITY
- MAXIMIZE ABILITY TO REPEAT EXPERIMENTS AND ALTER VARIABLES.
- EXPERT SYSTEMS TO ASSIST CREW AND GROUND.
- FOR MATERIALS SCIENCE, SAMPLE RETURN CAPABILITY (SPACEMAIL).

SUMMARY

- BALANCE BETWEEN SCIENTIFIC RESEARCH AND SPACEFLIGHT OPERATIONS
- EARLY INVOLVEMENT OF CREW CAN ENHANCE EXPERIMENTS
INTRODUCTION / BACKGROUND

OBJECTIVE: ASSEMBLY, VERIFICATION, SERVICING, REPAIR & CORRECTION, AND REFURBISHMENT.

MISSIONS:

* PLANETARY EXPLORATION MISSIONS - UNMANNED: PRECURSOR MISSION TO PLANETS AND MOONS WITHIN THE SOLAR SYSTEM.

* PLANETARY EXPLORATION MISSIONS - MANNED: LARGE TRANSIT VEHICLES, REFUELING & REFURBISHMENT STATIONS, etc.

* MISSION TO PLANET EARTH - ASSEMBLY AND TRANSFER OF VEHICLES TO SYN-EQ.

* LARGE SOLAR ELECTRIC ENERGY SYSTEMS.

* SPACE BASED MANUFACTURING & SERVICE FACILITIES.

TECHNOLOGY NEEDS
ORBIT ASSEMBLY AREA CONCEPT
CRITICAL FUNCTIONS

* PRECISION SCHEDULING.

* SELF-CONTAINED, AUTONOMOUS CHECK-OUT AND HEALTH STATUS.

* AUTONOMOUS STABILIZATION FOR ASSEMBLY OF ADDITIONS COMPONENTS, ETC. - docking, berthing, positioning, orientation.

* PRECISION PLACEMENT: MICRO NAVIGATION, PRECISION ALIGNMENT AND ORIENTATION

* VISION CONTROL - focus, alignment, field of view, and shielding from the sun.

* AUTONOMOUS ASSEMBLY (ROBOT ASSEMBLY), TELE-ROBOTIC ASSEMBLY, & EVA ASSEMBLY.

* FUELING OR TOPPING OFF - PROPELLANT DEPOT OR TANKER

* PROTECTION OR HARDENING OF ASSEMBLY FROM SPACE DEBRIS AND SOLAR ILLUMINATION.

* VERIFICATION OF PROPER ASSEMBLY - PNEUMATIC, STRUCTURAL, etc.
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

AUTONOMOUS CHECK-OUT:

SELF-CONTAINED, AUTONOMOUS CHECK-OUT AND HEALTH STATUS WITH CAPABILITY FOR
AUTONOMOUS INTEGRATION INTO THE NEXT HIGHER UNIT. CONCEPT SHOULD INCLUDE
ACTIVATION OF THE AUTONOMOUS SYSTEM AT SHIPMENT FROM THE FACTORY. NETWORKING AND
SOFTWARE SHOULD PROVIDE CONTINUOUS READOUT (i.e., 10 TIMES PER SECOND).

CRITICAL TECHNOLOGIES: - SENSORS, NETWORKING, & SOFTWARE:

* SENSORS REQUIREMENTS INCLUDE: ELECTRICAL, ELECTRONIC, STRUCTURES, MECHANICAL
 (i.e., LOCKED OR UNLOCKED), POSITION, LEAKAGE, PRESSURE, EXPENDABLES
 AVAILABLE (i.e., ZERO "O" MEASURE OF REMAINING PROPELLANTS), TEMPERATURE,
 VIBRATION & SOUND/PRESSURE LEVELS, STRESS & STRAIN, AND SEQUENCE OF EVENTS.

* NETWORKING: POWER, DATA AND COMMAND NETWORKING WILL BE REQUIRED WITH
 CAPABILITY OF AUTONOMOUS INTEGRATION INTO THE NEXT HIGHER UNIT UPON ASSEMBLY -
 BOTH HARDWARE AND SOFTWARE PROBLEM.

* SOFTWARE: COMMAND AND CONTROL, SENSOR DATA PROCESS & EVALUATION, REPORTING
 CRITERIA (i.e., RECORD EVENT, REPORT EVENT, OR SOUND ALARM).

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

AUTONOMOUS PLACEMENT:

AUTONOMOUS ACQUISITION, RECOGNITION/IDENTIFICATION, LOCATION, GRASPING OR MATING,
PRECISION PLACEMENT OR INSERTION AND ASSEMBLY

CRITICAL TECHNOLOGIES:

* VISION: ACQUISITION, RECOGNITION/IDENTIFICATION, LOCATION, EVALUATION AND
 CONTROL

* AUTONOMOUS STABILIZATION FOR ASSEMBLY: STABILIZATION DURING DOCKING,
 BERTHING, POSITIONING, AND ORIENTATION FOR ASSEMBLY.

* MICRO-NAVIGATION: TO SUPPORT PRECISION PLACEMENT, INSERTION, OR LOCATION OF
 DEFECTIVE PART.

* PRECISION ATTITUDE DETERMINATION AND CONTROL: TO SUPPORT LOCATION AND
 IDENTIFICATION, PLACEMENT AND ORIENTATION.

* VERIFICATION: VERIFICATION OF ASSEMBLY TO INCLUDE MECHANICAL, ELECTRICAL,
 ELECTRONIC, PNEUMATIC, HYDRAULIC, STRUCTURAL, POSITION LOCATION & ORIENTATION.

* END EFFECTORS: FOR GRASPING, HOLDING, MANIPULATING, POSITIONING, ORIENTING,
 AND INSERTING.
IN-SPACE SYSTEMS

7.3 Payload Operations

Orbit Assembly Node

Tom Styczynski / Lee R. Lunsford
Lockheed Missiles & Space Company, Inc.

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

Autonomous Replacement of Parts:

- Autonomous acquisition, recognition/identification, location, grasping or attachment, opening of cover or paneling, location, grasping & removal of defective part, followed by insertion of replacement part, closing of cover or panel, and verification of performance. Repeat for electrical/electronic parts, pneumatic parts, hydraulic (i.e., propellant) parts, and mechanical components.

Critical Technologies:

1. Development of compatible assembly components and robot concepts.
2. Higher level of automation, force feedback end effectors, etc.
3. Self-location, orientation, micro navigation.
4. Vision system capable of sensing placement or insertion activity in a closed loop.
5. Positioning and orientation.
6. Verification of performance - i.e., unlocking & locking.

SUMMARY / RECOMMENDATIONS

System Trades:

- Assembly facility vs. assembly area with enhanced space station.
- Orbital propellant depot vs. transport with propellant & top off from tanker.

Critical Technologies:

- Networking, software, & sensors for autonomous check-out and health status.
- Vision control - closed loop acqu., recognition, location, & evaluation.
- Precision placement - micro navigation, precision attitude control, autonomous stabilization to support placement.
- Verification of assembly functions.

In-Space Experimentation

- Self contained check-out and health status with capability of integration into the next higher unit.
- Autonomous precision placement and assembly.
- Autonomous replacement of components & sub-assemblies.
INTRODUCTION/BACKGROUND

- Humanity is entering 2nd ERA of the Space Age:
 - 1st Era: **Space flight realization**, 1957-1987
 - 2nd Era: **Space exploration and base activation**, 1987-2027
 - 3rd Era: **Space colonization and utilization**, 2027-

- Parallel to man's Arctic and Antarctic activities:
 - Visit the Poles; Establish scientific bases; Alaskan pipeline; Canadian Arctic Center

- Long-term Space Mission Planning—**many destinations, many decades**:
 - National Commission on Space Report, 1986
 - Dr. Sally Ride's Report, 1987
 - NASA’s *Pathfinder* Program
 - President Reagan’s National Space Policy, 1988
 - Consensus: Explore and utilize the Solar System; develop space commercially.

- Space Program Philosophy:
 - Building Block Approach;
 - International participation;
 - Mission model optimization, not single mission optimization only.

MISSION APPLICATIONS

- Mission Model Identified:
 - Large unmanned laboratories, antenna arrays, telescopes, etc.
 - Mission to Planet Earth (Remote Sensing)
 - Space Stations and Platforms
 - On-orbit Assembly of Manned Interplanetary Spacecraft
 - Lunar Base
 - Mars Base

- Demands for increased scientific data operations

- Space construction instead of delivering entire space structure at one launch

- Astronaut work limitations

- Astronaut environmental protection required
Technology Needs

- Orbital logistics needs - Determine optimum mix of launch vehicles: large vs small, unmanned vs man-rated

- Telecommunication needs:
 - Construction phase telecommunication
 - Improve telecommunication for operations and experiment telescience (OASIS)

- In-space Construction and Operation needs:
 - Type and intelligence (autonomy) of robots?
 - Bionic devices for astronauts?
 - Optimum astronaut/robot mix?

- Space Environment protection needs:
 - Meteoroid/debris
 - Radiation
 - Thermal
 - Pressure

Space Telecommunications Experiments for Construction/Operations

- The time-delay problem

- The security blanket problem

- The Steady-State Telecommunications System design problem

- The emergency support problem: equipment failure/medical crisis--AI implications

- The Tower of Babel Problem
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

- Telecommunications System
 - Develop and test Telecommunications System for Space Construction Phase
 - Experiment with time-delay command-control

- OASIS system development and test (for operating space experiments)

- ET Space Experiments:
 - Lower-Thermosphere Density Experiment
 - Space Meteoroid/Debris monitoring experiment
 - Fluid vibration generation experiment
 - Space thruster experiment
 - Explosive fastening experiment

- Macro-Planning Model Development

SUMMARY AND RECOMMENDATIONS

- Plans for Space Construction Needs as well as Space Operations Needs.

- Develop standardized Construction-Phase and Steady-State Telecommunications for transmission of voice, video, data, computer, teleoperators commands in presence of time delays.

- Develop and Test a 1990's, user-friendly, teleoperator/telescience work-station, e.g., OASIS.

- Utilize the ET as well as ELV's and Shuttle Orbiter to provide knowledge of Space Environment.

- Develop a Macro-Planning Model for optimizing planning of a multi-year, multi-destination Space Program Mission Model.
Theme 7 of 8

IN-SPACE SYSTEMS

7.3 Payload Operations

In-Space Systems Critical Technology Requirements

Jon B. Haussler
NASA Marshall Space Flight Center

IN-SPACE SYSTEMS THEME

THEME ELEMENTS

- MATERIALS PROCESSING
- MAINTENANCE, REPAIR, AND FIRE SAFETY
- PAYLOAD OPERATIONS

EXPLANATION OF MATERIALS PROCESSING NEEDS

- UNDERSTANDING OF MATERIALS BEHAVIOR IN SPACE ENVIRONMENT. SPACE ENVIRONMENT INCLUDES MICRO G AND/OR ULTRA HIGH VACUUM. WE ARE ESPECIALLY CONCERNED WITH UNDERSTANDING A RANGE OF DYNAMIC PROCESSES IN MICRO-G, INCLUDING BUT NOT LIMITED TO:
 - THERMOCAPILLARY FLOW
 - GAS/LIQUID/SOLID PHASE SEPARATION AND INTERFACE BEHAVIOR
 - DIFFUSION AND PERMEABILITY
 - WETTING

- DEMONSTRATION OF INNOVATIVE IN SPACE SAMPLE ANALYSIS TECHNIQUES. THESE SAMPLE ANALYSIS TECHNIQUES SHOULD FOCUS ON REDUCING THE SIZE, MASS AND/OR HAZARDS OF CONVENTIONAL TECHNIQUES SUCH AS SCANNING ELECTRON MICROSCOPE, X-RAY FLUORESCENCE, WET CHEMICAL PROCESSING AND THE LIKE.

- CHARACTERIZATION AND MANAGEMENT OF THE MICRO-G ENVIRONMENT. IN PARTICULAR THERE IS A CRITICAL NEED FOR IN SITU MEASUREMENT OF G LEVELS FROM 10^{-6} G TO 10^{-4} G AT FREQUENCIES ≥ 1 Hz; PASSIVE AND ACTIVE VIBRATION ISOLATION AT LOW FREQUENCIES, AND THE REALISTIC ASSESSMENT OF G LEVEL REQUIREMENTS FOR BIOLOGICAL AND PHYSICAL EXPERIMENTS.

- DEMONSTRATION OF IMPROVED SENSING AND IMAGING TECHNIQUES IN EXPERIMENTAL SYSTEMS. WE NEED TO DEVELOP AND DEMONSTRATE ENABLING TECHNOLOGIES WHICH ALLOW FOR REALTIME MONITORING, NON-CONTACT TEMPERATURE MEASUREMENT, MINIATURIZATION OF SENSORS AND IMPROVED IMAGE ANALYSIS.

- DEMONSTRATION OF AUTOMATION AND ROBOTIC APPLICATIONS TO MATERIAL PROCESSING SYSTEMS. THERE IS A NEED FOR DEVELOPMENT OF EXPERT SYSTEMS AND REACTIONLESS ROBOTS FOR MATERIALS PROCESSING.
MATERIALS PROCESSING

An all encompassing definition of materials is used in this element.

Priority:

1. Understanding of materials behavior in space environment
2. Demonstration of innovative in-space sample analysis techniques
3. Characterization and management of the micro-G environment
4. Demonstration of improved sensing and imaging techniques in experimental systems
5. Demonstration of automation and robotics applications to material processing systems

Consensus Concern:

Waste products from material processing

MAINTENANCE, REPAIR AND FIRE SAFETY

Priority:

1. Demonstration and validation of capability to repair unexpected events

 1. Investigation of low-G ignition, flammability/flame spread and flame characteristics
 2. Demonstration and validation of fluid replenishment techniques
 3. Understand behavior of flame extinguishants in space environment
 4. Demonstrate robotic maintenance and repair capability

Consensus Interesting Idea:

Simulated accident scenarios
PAYLOAD OPERATIONS

PRIORITY:

1. DEMONSTRATION AND VALIDATION OF TELESCIENCE TECHNIQUES

2. DEMONSTRATION OF AUTONOMOUS CHECKOUT, PLACEMENT AND SPACE CONSTRUCTION

CONSENSUS CONCERNS:
- RAPID SAMPLE RETURN
- ORBITAL DEBRIS
Theme Session Objectives

Purpose
- Identify & Prioritize In-Space Technologies for Humans In Space Which:
 - Are Critical for Our Future Space Programs, & Need Development & In-Space Validation.
- Obtain Aerospace Community Comments & Suggestions on OAST IN-STEP Plans

Product
Aerospace Community Recommended Priority Listing of Critical Space Technology Needs & Associated Space Flight Experiments
HUMANS IN SPACE

Background and Objectives

Overview: EVA, Performance, Life Support Systems

Remus Brelisi
NASA Ames Research Center

DESCRIPTION OF THEME & THEME ELEMENTS

EVA/SUIT

HUMAN PERFORMANCE

CLOSED-LOOP LIFE SUPPORT SYSTEMS

EVA/SUIT

SUITES & EQUIPMENT

- Pressure Suit Technology
- Glove Technology
- End-Effector Technology
- Mobility Aids
- Tools
- Displays & Controls
- Interfaces

PORTABLE LIFE SUPPORT SYSTEMS

- Thermal Control
- Atmosphere Control
- Automated Control Technology
- Display Technology
- Regeneration Equipment

LOGISTICS & SUPPORT

- Diagnostics
- Displays & Controls
- Maintenance & Repair
- Inventory Management & Supply
- Information Management
HUMANS IN SPACE
Background and Objectives
Overview: EVA, Performance, Life Support Systems

Remus Bretoi
NASA Ames Research Center

<table>
<thead>
<tr>
<th>Theme 8 of 8</th>
<th>HUMANS IN SPACE</th>
<th>Theme 8 of 8</th>
</tr>
</thead>
</table>

HUMAN PERFORMANCE

CREW & ENVIRONMENTAL FACTORS
- Organization and Management
- Crew Coordination
- Environmental & Mission Task
- Training and Intervention

HUMAN-MACHINE INTERACTION
- Crew Support and Enhancement
- Human-Automation-Robotics (HAR)

ARTIFICIAL GRAVITY & ADV. COUNTERMEASURES

ARTIFICIAL GRAVITY
- Rotation Rate
- Intermittent G vs Continuous Exposure
- Partial G and G Threshold
- Structural Facility Impact

ADVANCED COUNTERMEASURES
- Electromyostimulation
- Pharmacological Tests
- Autogenic Feedback
- Pre-Adaptation Training
HUMANS IN SPACE
Background and Objectives

Overview: EVA, Performance, Life Support Systems

Remus Breloi
NASA Ames Research Center

CLOSED-LOOP LIFE SUPPORT SYSTEMS

PHYSICAL/CHEMICAL CLOSED-LOOP LIFE SUPPORT

Water Reclamation
Waste Management
Thermal Control
Monitoring & Control Instrumentation
Air Revitalization

THEME BACKGROUND
TECHNOLOGY DEVELOPMENT

HUMANS IN SPACE was not a theme in the 1985 Workshop. It is a new addition to the IN-STEP / Outreach Program.

RELATED STUDY EFFORTS resulting from the 1985 Workshop were:

Spatial Perception Auditory Referencing
Microbiology Monitor
Closed-Loop Nutrient Solution Delivery System
Water Electrolysis Operation
HUMANS IN SPACE

Background and Objectives

Overview: EVA, Performance, Life Support Systems

Remus Bretoi
NASA Ames Research Center

AGENDA

Wednesday December 7th

CRITICAL SPACE TECHNOLOGY & IN-SPACE EXPERIMENTS NEEDS

(PRESENTATIONS and DISCUSSIONS)

EVA/SUIT PRESENTATIONS

- Bruce W. Webbon / Bernadette Squire (NASA-ARC)
- H. Thomas Fisher (Lockheed Corporation)
- David L. Akin (MIT, Aeronautics and Astronautics Dept)

EVA/SUIT OPEN DISCUSSION

Questions & Answers With Speakers
Identification of Additional Technologies/Experiments

HUMAN PERFORMANCE PRESENTATIONS

- Barbara Kanki (NASA-Ames Research Center)
- Lawrence G. Lemke (NASA-HQ / Office of Exploration)
- Wm. Russell Ferrell (University of Arizona, Tucson)

HUMAN PERFORMANCE OPEN DISCUSSION

Questions & Answers With Speakers
Identification of Additional Technologies/Experiments
AGENDA

WEDNESDAY DECEMBER 7th

CLOSED-LOOP LIFE SUPPORT SYSTEMS PRESENTATIONS

Robert D. MacElroy (NASA - Ames Research Center)
Richard L. Olson/Thomas J. Slavin (Boeing Aerospace)
Marvin Luttges (University of Colorado, Boulder)

CLOSED-LOOP LIFE SUPPORT SYSTEMS OPEN

Questions & Answers With Speakers
Identification of Additional Technologies/Experiments

THURSDAY, DECEMBER 8th

PRIORITIZE CRITICAL TECHNOLOGIES (AUDIENCE)

COMBINE & PRIORITIZE THEME TECHNOLOGIES

FRIDAY DECEMBER 9th

THEME LEADER PRESENTATIONS TO GENERAL SESSION

WORKSHOP WRAP-UP
PRIORITIZATION CRITERIA

1. **CRITICAL ENABLING TECHNOLOGIES**
 Technologies critical for future space missions

2. **COST REDUCTION TECHNOLOGIES**
 Technologies which can decrease costs or complexity
 (e.g., development, opns, life-cycle)

3. **BROAD APPLICATION TECHNOLOGIES**
 Technologies which can improve or enhance a variety of space missions

4. **REQUIRE IN-SPACE VALIDATION**
 Technologies which require the space environment or micro-gravity for validation or experimentation

* CRITERIA ARE LISTED IN ORDER OF IMPORTANCE (1 IS HIGHEST)
CURRENT EVA SYSTEM LIMITATIONS

- Low working pressures (productivity impacts)
- Limited mobility
- Marginal crew comfort
- Marginal glove acceptability
- Large consumable mass
- Maintenance and servicing
- Protection from environmental hazards
- Bends risk
- High life-cycle costs
- Growth potential
- Working period limitations
- Sizing repeatability

TECHNOLOGY NEEDS

SYSTEMS STUDIES

- MISSION REQUIREMENTS DEFINITION
 Environmental, Task, Design Reference Mission
- HUMAN REQUIREMENTS DEFINITION
 Human Factors, Physiological, Medical
- EVA WORK SYSTEMS INTEGRATION
 Modeling, Trade Studies, Interface Definition, Logistics, Support, Test Requirements
TECHNOLOGY NEEDS

PORTABLE LIFE SUPPORT SYSTEM (PLSS)

- **THERMAL CONTROL SYSTEMS**
 Heat Storage, Acquisition, Transport, Rejection

- **ATMOSPHERE CONTROL**
 O2 Supply, CO2 Control, Trace Contaminant Control, Humidity Control

- **MONITORING & CONTROL**
 Automated Control, Display Technology

- **SYSTEM INTEGRATION**
 Support Equipment and Interfaces

EVA SUITS & EQUIPMENT

- **PRESSURE SUIT TECHNOLOGY**
 Materials, Structures, Components, Mobility Elements

- **GLOVES & END-EFFECTORS**

- **EVA ANCILLARY EQUIPMENT**
 Mobility Aids, Tools, Displays & Controls, Work System Interfaces

- **SYSTEM INTEGRATION & TEST**
 Logistics & Support
SUMMARY / RECOMMENDATIONS

Determine (empirically):
- EVA Physiological/Metabolic Parameters
- Thermal Environment Parameters

Characterize:
- EVA Biomechanics in Reduced-g
- g-Sensitivity of Phase Change Processes

Demonstrate:
- Radiation Protection (Mars Transit)
- Radiator/Refrigeration System
- Electrochemical Regeneration of CO₂
- Voice Technology for Control Applications
- Countermeasures for Bearing Blocking, Cold Welding
- Advanced Pressure Suit Technology in Zero-g
- High Pressure Gloves
- End-Effector Use in EVA Tasks
1. THERE IS NO DOUBT EVA IS A CRITICAL TECHNOLOGY TO NASA CURRENT SPACE ACTIVITIES AND FUTURE MISSION PLANS

2. EVA HAS UNIVERSAL APPLICABILITY & MULTI-MISSION UTILITY

3. PRESENT EVA TECHNOLOGY IS EVOLVING TO ENHANCE:
 - CREW PRODUCTIVITY
 - MISSION FLEXIBILITY
 - RISK REDUCTION
 - ALTERNATIVE PATHS

4. NASA & DoD MAY SHARE COMMON NEEDS - E.G., CANDIDATE DoD MILITARY MANNED SPACE OPERATIONS

5. CERTAIN EVA TECHNOLOGIES ARE WELL UNDERWAY WHILE OTHERS ARE LAGGING OR ARE NOT BEING WORKED

6. MOST ADVANCED EVA PROGRAM EFFORT IS WITHIN THE NASA WITH LITTLE AEROSPACE/COMMERCIAL INDEPENDENT VENTURES

7. LIMITED, BUT IMPORTANT ADVANCED EVA PLANETARY STUDY WORK IS JUST BEING INITIATED & MORE IS PLANNED (?) VIA PATHFINDER - NASA-JSC/AMES

8. IT APPEARS PRUDENT TO RE-ASSES WHERE EVA TECHNOLOGY IS HEADED

EVA ENCLOSURE & LIFE SUPPORT

- EXTENDED PERSONAL LIFE SUPPORT SYSTEM DURATION
- RAPID CREW 'IN-SITU' SUIT SERVICING
- PROTECTION AGAINST RADIATION HAZARDS
- RAPID EVA ACCESS - LSS COMPATIBILITY WITH S/C
- ENHANCED AUDIO/HEADS-UP DISPLAY & WRIST CUFF

EVA SUPPORT EQUIPMENT

- SMALL LT-WT PORTABLE HYPERBARIC TREATMENT UNIT
- SMALL LT-WT PORTABLE AIRLOCK
- SMALL LT-WT PORTABLE SURFACE TRANSPORTER (EV CREW/EQUIP)
- SMALL LT-WT PORTABLE RADIATION/HEAT/CLIMATE SHELTER
- MULTI-PURPOSE EVA WORK STA. & MOTORIZED FOOT RESTRAINT
- CREW & EQUIP TRANSPORTER & POSITIONING AID
- CREW & EQUIPMENT RECOVERY/RETRIEVAL UNIT
- ADVANCED MANEUVERING UNIT
- EMERGENCY SUIT 'LIFE JACKET'
- EMERGENCY EVA SURVIVAL GEAR
- SUIT CONTAMINATION DETECTION & CLEANING UNIT
- DEBRIS/LOOSE EQUIP. HANDLING AIDS/STOWAGE UNITS
- ADVANCED POWER TOOLS FOR EVA
- PORTABLE EVA EXPER/SURVEY/SAMPLE KIT
- PORTABLE MULTI-PURPOSE AVIONIC UNIT
Theme 8 of 8: HUMANS IN SPACE
8.1 EVA / Suit

Extra-Vehicular Activity / Suit

H.T. Fisher
Lockheed Missiles & Space Co., Inc., Astronautics Division, Space Station Program

EVA ENCLOSURE & LIFE SUPPORT

<table>
<thead>
<tr>
<th>DEVELOPMENT ELEMENTS</th>
<th>MISSION CRITICALITY</th>
<th>NEED DATE</th>
<th>FUNDING LEVEL</th>
<th>TECHNOLOGY STATUS/VOIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended LSS Duration</td>
<td>L-M H 96 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Rapid Crew 'In-Situ' Suit Servicing</td>
<td>L-M H 96 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Protection Against Radiation Hazards</td>
<td>L M-H 2000 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Rapid EVA Access - LSS Compatibility with S/C</td>
<td>L-M H 96 R&D</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Enhanced Audio/Heads-Up Display & Wrist Cuff</td>
<td>L M-H 95 R&D</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
</tbody>
</table>

EVA SUPPORT EQUIPMENT

<table>
<thead>
<tr>
<th>DEVELOPMENT ELEMENTS</th>
<th>MISSION CRITICALITY</th>
<th>NEED DATE</th>
<th>FUNDING LEVEL</th>
<th>TECHNOLOGY STATUS/VOIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small LT-WT Port. Hyperbaric Treatment Unit</td>
<td>L H 2000 R&D</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Small LT-WT Portable Airlock</td>
<td>L-0 H 2000 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Small LT-WT Port. Surface Transporter</td>
<td>0 M-H 2005 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Small LT-WT Port. Rad/Thermal/Wind Shelter</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Multi-Purpose EVA Work Sta. & Motorized Foot Restraint</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Crew & Equip Transporter & Positioning Aid</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Crew & Equipment Recovery/Retrieval Unit</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Advanced Maneuvering Unit</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Emergency Suit 'Life Jacket'</td>
<td>L H 95 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Emergency EVA Survival Gear</td>
<td>L-H 2000 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Suit Contamination Detection & Cleaning Unit</td>
<td>L-0 L-M 98 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Debris/Loose Equip. Handling Aids/Stow. Units</td>
<td>L M 98 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Advanced Power Tools for EVA</td>
<td>L M 98 R&D(P)</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Portable EVA Exper/Survey/Sample Kit</td>
<td>0 L-M 2005 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
<tr>
<td>Portable Multi-Purpose EVA Avionic Unit</td>
<td>0 M 2005 STUDY</td>
<td></td>
<td></td>
<td>Tech in Work*</td>
</tr>
</tbody>
</table>

DEVELOPMENT FACTORS

DEVELOPMENT FACTORS

MISSION CRITICALITY

DEVELOPMENT LEVEL

STATUS/VOIDS

- Tech in Work*
- Some New Tech Needed
- Tech Void
- Tech Build-On/No Ongoing
- Breadboard-WK Req'd
- Tech in Work*
- No Ongoing WK+Tech Void
- No Ongoing WK+Tech Void
- No Ongoing WK
- Some New Tech-WK Req
- Min On Going Work
- Tech Void
- No SIG on Going Work
- No SIG on Going Work
- No On Going Work

* Tech In Work But Not Considered Firm For Immediate Element RDT&E Go-Ahead

557
Theme 8 of 8
HUMANS IN SPACE
8.1 EVA / Suit
Extra-Vehicular Activity / Suit

H.T. Fisher
Lockheed Missiles & Space Co., Inc., Astronautics Division, Space Station Program

EVA ENCLOSURE & LIFE SUPPORT
- Demonstrate rapid suit don & egress in 14.7 psia environment
- Demonstrate & validate "automated" & short-turn-around on-orbit suit servicing
- Demonstrate extended suit life support system duration & utility benefits
- Demonstrate alternatives in 0-g against radiation hazards
- Demonstrate basic & for alternatives to audio/displayed information to the crew

EVA SUPPORT EQUIPMENT
- Demonstrate & validate zero/low-g crew/equipment recovery/retrieval unit
- Demonstrate contamination acquisition, validate species ident., & eval. removal techniques
- Demonstrate & validate zero/low-g advanced maneuvering unit
- Demonstrate & examine range of multi-purpose eva work sta. & motorized foot restraint
- Demonstrate, eval. utility/range, & assess pwr/npw/powercrew/eqn exporter/position aid
- Demonstrate & validate small lt-weight portable hyperbaric treatment unit
- Demonstrate & validate small lt-weight portable airlock
- Examine & assess alternatives for a suit 'life jacket'
- Demonstrate & assess capability & utility of eva survival gear
- Demonstrate & assess eva power tools, e.g., cutters, drills, welders, bonders, etc.
- Demonstrate & assess utility & safety of debris/loose equip. handling aids/stowage units
- Demonstrate & assess utility of multi-terrain small lt-wt port. surface transporter
- Demonstrate & assess utility of rapid deploy zero/low-g rad/thermal/wind shelter
- Demonstrate utility & validate portable multi-purpose avionic unit
- Demonstrate utility & flexibility of portable eva exper/survey/sample kit

DEVELOPMENT ELEMENTS

<table>
<thead>
<tr>
<th>Priority</th>
<th>EVA ENCLOSURE & LIFE SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rapid eva access-ss compat. with 14.7 psia crew compt.</td>
</tr>
<tr>
<td>2</td>
<td>Rapid crew "in-situ" suit servicing</td>
</tr>
<tr>
<td>3</td>
<td>Extended personal life support system duration</td>
</tr>
<tr>
<td>4</td>
<td>Protection against radiation hazards</td>
</tr>
<tr>
<td>5</td>
<td>Enhanced audio/heads-up display & wrist cuff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority</th>
<th>EVA SUPPORT EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crew & equipment recovery/retrieval unit</td>
</tr>
<tr>
<td>2</td>
<td>Suit contamination detection & cleaning unit</td>
</tr>
<tr>
<td>3</td>
<td>Advanced maneuvering unit</td>
</tr>
<tr>
<td>4</td>
<td>Multi-purpose eva work sta. & motorized foot restraint</td>
</tr>
<tr>
<td>5</td>
<td>Crew & equip transporter & positioning aid</td>
</tr>
<tr>
<td>6</td>
<td>Small lt-wt portable hyperbaric treatment unit</td>
</tr>
<tr>
<td>7</td>
<td>Small lt-wt portable airlock</td>
</tr>
<tr>
<td>8</td>
<td>Emergency suit 'life jacket'</td>
</tr>
<tr>
<td>9</td>
<td>Emergency eva survival gear</td>
</tr>
<tr>
<td>10</td>
<td>Advanced power tools for eva</td>
</tr>
<tr>
<td>11</td>
<td>Debris/loose equip. handling aids/stowage units</td>
</tr>
<tr>
<td>12</td>
<td>Small lt-wt portable surface transporter (eva crew/equip)</td>
</tr>
<tr>
<td>13</td>
<td>Small lt-wt portable radiation/thermal/wind shelter</td>
</tr>
<tr>
<td>14</td>
<td>Portable multi-purpose avionic unit</td>
</tr>
<tr>
<td>15</td>
<td>Portable eva exper/survey/sample kit</td>
</tr>
</tbody>
</table>
SUMMARY

1. NASA & CANDIDATE DoD MANNED MISSIONS PRESENTED & TECHNOLOGY NEEDS RELATED TO EACH AND TO NASA 'MODEL' SCHEDULE

2. TECHNOLOGY NEEDS IDENTIFIED AND DEVELOPMENT FACTORS INDICATED

3. RATIONALE FOR EVA SYSTEM HDWR DEVELOPMENT PORTRAYED

CONCLUSIONS

1. TOTAL/ALL-UP SUIT TECHNOLOGY NOT YET IMMEDIATELY READY FOR FULL RDT&E PUSH
 • TECHNOLOGY IS BEING WORKED HARD AT NASA-JSC/AMES

2. MANY EVA EQUIP. ELEMENTS IN BRASSBOARD DEVELOPMENT STATE

3. CERTAIN EVA EQUIPMENT NOT BEING WORKED RELATIVE TO MISSIONS IMMEDIATELY BEYOND FREEDOM SPACE STATION ASSEMBLY

4. MANY STATION EVA ELEMENTS LEND THEMSELVES TO ORBITER PRECURSOR FLIGHTS

5. EVA TECHNOLOGY NEEDS A MORE VIGOROUS $ INFUSION TO ASSURE AVAILABILITY, VERIFICATION, AND MULTI-USER NEEDS/DATES
 • OPPORTUNITY FOR NASA & DoD MUTUAL INVESTMENT BENEFIT
Background

- Gemini
 - Free-floating mobility
 - Experiment collection
 - Investigation of restraints
- Skylab
 - Planned servicing of Instruments
 - Contingency repairs
- Apollo
 - Self-contained life support equipment
 - Retrieval of mapping camera film
 - Lunar surface operations
 - Surface transport Infrastructure
- Shuttle
 - Satellite retrieval
 - ORU changeout
 - Dexterous repair operations
 - Initial EVA/robotic cooperation
 - Untethered MMU operations
 - Large object handling
 - Unpracticed EVA
 - Structural assembly

Research Needs

- Development and use of physiological workload measurement systems for neutral buoyancy simulation
- Correlation of physiological workloads between neutral buoyancy and flight
- Calibration of forces required internally to actuate suit joints
- Development of noninvasive neuromuscular instrumentation for quantifying fatigue in critical muscle groups (wrist and hands)
- Development of advanced computer models of EVA with correlation of force, kinematic, dynamic, and workload elements in neutral buoyancy and space flight
- Development of rule-based system for predicting EVA task performance for use as a simplified front-end to "CAD Astronaut" model
Technology Needs

- Gloves with better mobility, dexterity, tactility
- Simplified suit systems for on-site maintenance and refurbishment, extended operational lifetime
- Non-venting cooling system, zone heating and cooling
- Advanced controls and displays, particularly video
- Extended set of available hand and power tools
- Non-intrusive body joint position and force sensors for biomechanics data collection
- Maneuvering units with additional ΔV, single-hand control, and autonomous navigational capability (leading up to astronaut support vehicle/EVA Retriever)
- In-space suit decontamination systems, particularly for hydrazine

In-Space Experimentation Needs

- Conduct routine EVAs to build experience base and to allow for experimental opportunities
- Baseline the use of suits instrumented for biomechanics and workload measurements to expand quantitative data base on EVA operations
- Conduct a series of fiduciary experiments to determine the limits of human capability in EVA, with and without the use of EVA tools/als/support systems
- Assess the use of AI technology to provide suit monitoring and error diagnosis, reducing or eliminating the need for mission control monitoring
- As telerobotic systems develop, investigate cooperative roles for EVA and robotics to enhance space operations
- Evolve life support systems towards regenerative technology to allow for extended operations in space or on planetary surfaces
- Assess the use of bidirectional video for reducing crew training requirements
- Investigate the use of telepresence technology to replace neutral buoyancy training for long-duration space crew
- Develop "CAD Astronaut" to allow long-duration space crew to investigate trade-offs in EVA techniques, simplify EVA planning and training, reduce dependence on mission control
- Experimentally verify research applied to innovative high-payoff concepts, such as skinsuit technology
INTRODUCTION/BACKGROUND

GOALS

1. "To develop empirically-based scientific principles that identify the environmental, individual, group, and organizational requirements for long-term occupancy of space by humans."

 — Report of the National Research Council Committee on Space Biology and Medicine ("The Goldberg Report"), p. 169

2. To develop useful and practical approaches to selecting, training, and organizing effective crews for long duration space missions in collaboration with operational organizations.

3. To provide a scientific resource to organizations responsible for man-systems design, crew selection and training and missions operations.

TECHNOLOGY NEEDS

Critical shortage of relevant research. No operational guidelines for spaceflight or long-term space occupancy.

PROBLEM AREAS

1. Individual and Physiological
2. Crew and Interpersonal
3. Organization and Management
4. Training and Intervention
5. Environmental and Task
Theme 8 of 8

HUMANS IN SPACE
8.2 Human Performance

Crew and Environmental Factors

Dr. Barbara G. Kanki
NASA Ames Research Center, Crew Research & Space Human Factors

TECHNOLOGY NEEDS
Research for Optimizing Human Performance

<table>
<thead>
<tr>
<th>INPUT FACTORS</th>
<th>PROCESS</th>
<th>PERFORMANCE OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual-level Factors</td>
<td>Adv. Countermeasures</td>
<td></td>
</tr>
<tr>
<td>Training & Intervention</td>
<td>Group Process</td>
<td>Productivity & Safety</td>
</tr>
<tr>
<td>Group-level Factors</td>
<td></td>
<td>Individual & Group Well-being</td>
</tr>
<tr>
<td>Task & Environmental Factors</td>
<td>Task, tool & procedure design</td>
<td></td>
</tr>
</tbody>
</table>

CONCEPTUAL FRAMEWORK
adapted from McGrath, 1984

IN-SPACE EXPERIMENTATION NEEDS/VOIDS

Multi-phase Research Plan
- Laboratory/Mockup Research
- Field Observation
- Systematic Field Research
- Partial Analog Research
- Full-Scale Analog Research

Relevant Analogous Environments
- Space Vehicle Analog
- Space Station Analog
- Planetary Exploration Analog
- Astronaut/Mission Control
- Telescience Analog
INSTEP88 Workshop
OAST Technology For the Future
Part 2: Critical Technologies

Theme 8 of 8
HUMANS IN SPACE
8.2 Human Performance
Crew and Environmental Factors

Dr. Barbara G. Kanki
NASA Ames Research Center, Crew Research & Space Human Factors

IN-SPACE EXPERIMENTATION NEEDS/VOIDS
An Integrated Approach

RESEARCH DESIGN/ METHODS REFINEMENT
- Field observation
- Lab/mockup research

PROBLEM IDENTIFICATION
- Astronaut input
- Operational specifications

SYSTEMATIC RESEARCH/ REAL ENVIRONMENTS
- Systematic field research
- Partial analog research
- Full-scale analog research

OPERATIONAL GUIDELINES & TOOLS

IN-SPACE IMPLEMENTATION
- Development
- Product validation & refinement
- Feedback

FIELD OBSERVATION
LAB/MOCKUP RESEARCH
SYSTEMATIC FIELD RESEARCH
PARTIAL ANALOG RESEARCH
FULL-SCALE ANALOG RESEARCH

AN INTEGRATED APPROACH
INTRODUCTION/BACKGROUND

- "THERE APPEARS TO BE A GENERAL PERCEPTION THAT THE ABSENCE OF LIFE-THREATENING MEDICAL PROBLEMS IN THE MANNED SPACE PROGRAM IMPLIES THAT THERE IS LITTLE NEED TO BE CONCERNED ABOUT HEALTH-RELATED ISSUES ON A MANNED SPACE STATION OR IN INTERPLANETARY MISSIONS OF SEVERAL YEARS DURATION. BASED ON WHAT WE KNOW TODAY, THIS ASSUMPTION OF CONTINUED SUCCESS CANNOT BE RIGOROUSLY DEFENDED".

--NATIONAL RESEARCH COUNCIL, COMMITTEE ON SPACE BIOLOGY & MEDICINE, 1987--

- "LONG-DURATION HUMAN HABITATION OF THE MOON AND MARS WILL REQUIRE PRIOR LONG-TERM STUDIES OF THE EFFECTS OF EXPOSURE TO 1/6 AND 1/3 G ON ANIMALS AND, EVENTUALLY HUMANS, INCLUDING STUDIES OF MULTIGENERATIONAL EXPOSURE TO VARIED G LEVELS"

- RECOMMENDATION:

A TETHERED (> 10-METER DIAMETER) VARIABLE GRAVITY RESEARCH FACILITY FOR THE SPACE STATION THAT WOULD GREATLY REDUCE CORIOLIS/GRADIENT PROBLEMS ACROSS LARGE ANIMALS AND THAT WOULD BE OPERATIONAL BEFORE THE START OF ANY HUMAN SPACE MISSIONS OF EXTENDED DURATION"

--ROBBINS COMMITTEE REPORT, 1988--

MISSION APPLICATIONS

PROBABLE:
- HUMAN MARS EXPLORATION SCENARIOS

POSSIBLE:
- LUNAR BASES
- ADVANCED SPACE STATIONS
- HUMAN ASTEROID RECONNAISSANCE
TECHNOLOGY NEEDS

- DESIGN STRATEGIES, CONTROL ALGORITHMS, & SPECIALIZED ACTUATORS TO ALLOW RELIABLE & SAFE CONTROL OF SPINNING, TETHERED DUMBBELL CONFIGURATIONS

STRATEGIES:
- OPTIMAL MASS DISTRIBUTION
- OPTIMAL ACTUATOR PLACEMENT
- OPTIMAL ACTUATOR TYPE

ALGORITHMS:
- END-BODY ATTITUDE CONTROL
- END-BODY PROPULSIVE THRUSTING CONTROL
- TETHER VIBRATION CONTROL
- TETHER LENGTH CONTROL

ACTUATORS:
- END-BODY ATTITUDE CONTROL
- TETHER LENGTH CONTROL

IN-SPACE EXPERIMENTATION NEEDS

EXPERIMENT HARDWARE:
- SMALL, (~1000KG) FREE-FLYING, REMOTELY CONTROLLED, TETHER-CONNECTED DUMBBELL SPACECRAFT
- INSTRUMENTED TO MEASURE ALL IMPORTANT STATE VARIABLES
- ABILITY TO CONTROL SAME DEGREES-OF-FREEDOM AS HUMAN-RATED SPACECRAFT
- ROTATIONAL AND VIBRATIONAL EIGENVALUES CHOSEN FOR DYNAMIC SIMILARITY (TO ALLOW SCALING TO FULL-SIZE FACILITY)

EXPERIMENT OBJECTIVES:
- MAINTAIN STEADY-STATE HABITAT G-LEVEL WITHIN +/- 1%, 3-AXIS ATTITUDE WITHIN +/- 1 DEG.
- STABILIZE COUPLED TRANSLATIONAL, ROTATIONAL, AND VIBRATIONAL MODES DURING SPIN-UP, SPIN-DOWN, TRANSLATIONAL THRUSTER FIRINGS
- CONTROL TRANSLATIONAL DELTA-V WHILE SPINNING TO < 1 m/s (INCLUDING PLANE CHANGES)
- DEMONSTRATE RECOVERY FROM FAILURES
SUMMARY/RECOMMENDATIONS

- **Human Exploration Missions May Require Artificial Gravity**
- **Very Large Radius (≈ 225 m) Centrifuge Seems Most Conservative from Biological Perspective, Most Challenging from Technological Perspective**
- **Control of Large, Highly Flexible, Rotating Systems Must Be Shown Safe and Reliable Prior to Human-Rating**
- **Experiment Objectives Can Be Achieved with Sub-SCALE, Free-Flying Dumbbell Configuration:**
 - Initiate Flight Experiment Definition and Development Soon to Be Consistent with Overall Agency Schedule
 - **Laboratory Research, Simulation, & Analysis**
 - **Conceptual Development of Flight Hardware**
INTRODUCTION / BACKGROUND

HUMAN PERFORMANCE: Human characteristics that affect the design of tasks, human-system interfaces, training.

NASA SUCCESS IN DESIGN FOR HUMAN PERFORMANCE
- Humans in space
- Ground control of remote operations

ROLES OF HUMANS IN SPACE WILL CONTINUE TO CHANGE
- Passenger to Experimenter to Scientist/Engineer
- Passive to Active
- Sensory-motor skills to Decision-making/Problem-solving

CURRENT BASES FOR DESIGN - will have to evolve
- NASA & Contractor experience
- Data & standards compilations, e.g., MSIS & MSRB
- Models for dynamic manual control
- Models for routine cognitive skills, motor skills, sensory function
- Simulation methods for crew activity and work load analysis
- Guidelines for computer-human interface design
- Beginnings of useful models for cognitive performance of specific tasks, e.g., debugging, transfer of procedural training

HUMAN FACTORS FIELD
- Uneven development and too little basic research
- Focus on skills, task components

MISSION APPLICATIONS

- Multi-way, interpersonal communication with voice, text and images
- High-dexterity manipulation
- Monitoring of intelligent monitoring systems
- Skill maintenance and training
- Data interpretation and analysis
- Information retrieval, storage and management tasks
- Intervention in and redirection of experiments
- Participation in revising old and devising new experiments
- Equipment repair
- Cooperative, creative problem solving and strategic decision making
HUMANS IN SPACE

8.2 Human Performance

Human Performance

William R. Ferrell
University of Arizona, Systems & Industrial Engineering Dept.

TECHNOLOGY NEEDS

COMPUTER - BASED, INTELLIGENT SUPPORT FOR:

- Problem solving and diagnosis
- Decision making
- Information management
- Monitoring of systems and environments
- Skill maintenance and learning
- Cooperative work with voice, text and images

ENABLING TECHNOLOGIES:

- Dynamic management of multi-media, multi-channel computer-human communication
- Language (and spoken language) understanding systems
- Intention Inference
- Image and geometry understanding systems

DESIGN TECHNOLOGIES:

- Task analysis and simulation
- Rapid prototyping
- Integrated human performance models incorporating responses to the space environment

IN-SPACE EXPERIMENTS NEEDS / VOIDS

Most of the technology for supporting human performance in space can be developed and tested without in-space experimentation.

In-space experimentation is important for:

- Design technologies, to determine / verify space environment effects on performance
- Specific interface design proposals, to assess interactions among task, interface, habitat, work-station and crew characteristics in the space environment -- early in the design process.

Need to begin early to develop the research base for design of effective support for distinctively human role in space.
SUMMARY / RECOMMENDATIONS

ROLES: Science, Monitoring, Diagnosis, Intervention, Repair

NEED KNOWLEDGE-BASED TECHNOLOGIES to support:
- Creative Problem Solving
- Unforseen Activities
- Intervention and Repair
- Cooperative Planning & Decision

SUBSTANTIAL SUPPORT FOR GROUND-BASED RESEARCH IS NEEDED TO DEVELOP THESE TECHNOLOGIES

IN-SPACE EXPERIMENTATION:
- Physiological / Perceptual / Anthropometric modeling
- [Habitat & EVA experiments] (related sub-themes)
- [TELEOPERATION experiments]
- Multi-operator, cooperative workstations
- Task / Interface simulations for testing interactions in context and for timely design feedback

NEED FOR AN IN-SPACE FACILITY TO SUPPORT DESIGN

CRITICAL ISSUES:
- Intelligent, dynamic interface management systems
- System integration -- a technical not a management--problem
Background...

Closed-loop Life Support Focuses:

- Post-Space Station Life Support issues
- Efficient regeneration of life support materials
- Further development of existing technologies
- Promotion of innovative technologies
- Evaluation of new technologies

Technology Needs

Life Support Functions / Technologies:

- Collection of CO₂; adsorber regeneration
- Separation of gases
- Generation of O₂ from H₂O, CO₂
- Management and processing waste streams
- Purification of reclaimable water
- Process, sub-system and system sensing, monitoring and control
- Thermal control
In-Space Experimentation Needs:

* Subsystems will be specifically designed to reduce reliance on gravity and low radiation levels
 - However, testing in the space environment will be essential because of long-term human reliance on life support devices
 - Physical integration of subsystem will be simulated; however, validation and verification of in-space behavior is required
 - Start-up, shut-down and operational transients must be evaluated in the space environment

In-space Experimentation needs:

* A central issue: gas - liquid separation
* Related issues:
 - Liquid behavior on surfaces in low gravity
 - Changes in thermal behavior caused by differences in the convective behavior of fluids
* In general, subsystem designs that rely on forced fluid movements will obviate effects caused by decreased gravity
8.3 Closed-Loop Life Support Systems

Industry Presentation

Thomas J. Slavin, P.E.
Boeing Aerospace, Life Support Engineering

SYSTEMS TESTS LESSONS LEARNED/ISSUES

- MATERIALS SELECTION/COMPATIBILITY
- CAREFUL DESIGN OF SYSTEM CLOSURE
- INTEGRATION OF SUBSYSTEMS
- ON-BOARD MAINTENANCE AND SERVICING

TECHNOLOGY NEEDS

LIFE SUPPORT FUNCTIONS

CREW ECLSS

ATMOSPHERE REVITALIZATION
TEMPERATURE AND HUMIDITY CONTROL
WATER MANAGEMENT
HEALTH AND HYGIENE

LIFE SUPPORT TECHNOLOGY SELECTION DRIVERS

- OPERATING ENVIRONMENT
 - Gravity fields
 - Ambient pressures
- RELIABILITY/MAINTAINABILITY
- SAFETY
- POWER, MASS, VOLUME
- DEVELOPMENT COST AND SCHEDULE
- RESTRICTIONS ON RESUPPLY, EXPENDABLES, DISCHARGES
IN-SPACE EXPERIMENTATION NEEDS/VOIDS

PHYSICAL–CHEMICAL LIFE SUPPORT TECHNOLOGY

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>TECHNOLOGY AREA</th>
<th>NEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER RECLAMATION</td>
<td>• Liq/Air Separation</td>
<td>• Passive Separation Devices</td>
</tr>
<tr>
<td></td>
<td>• Solids Separation</td>
<td>• Filter Solids Accumulation</td>
</tr>
<tr>
<td></td>
<td>• Fluid Transport</td>
<td>• Wicking Devices</td>
</tr>
<tr>
<td>WASTE MANAGEMENT</td>
<td>• Pre-Treatment</td>
<td>• Effectiveness of Antifoam in 0 g</td>
</tr>
<tr>
<td></td>
<td>• Solids Reduction</td>
<td>• Low Temp/Energy Processes</td>
</tr>
<tr>
<td>AIR REVITALIZATION</td>
<td>• Catalytic Reactors</td>
<td>• Mixing & Heat Dissipation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Behavior of light gases & thermal gradients</td>
</tr>
<tr>
<td></td>
<td>• Electrochemical Cells</td>
<td>• Behavior of flames & plasmas</td>
</tr>
<tr>
<td></td>
<td>• Gas/Liquid/Solid Separation</td>
<td>• Change in efficiency</td>
</tr>
</tbody>
</table>

CONTROLLED ECOLOGICAL/BIOREGENERATIVE LIFE SUPPORT TECHNOLOGY

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>TECHNOLOGY AREA</th>
<th>NEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOOD, OXYGEN, & WATER PROD.</td>
<td>• Lighting</td>
<td>• Sun light collection, filtering, and distribution from orbiting platform</td>
</tr>
<tr>
<td></td>
<td>• Nutrients</td>
<td>• Nutrient solution delivery</td>
</tr>
<tr>
<td></td>
<td>• Plant Growth</td>
<td>• Incremental Introduction of plants on Space Station program</td>
</tr>
<tr>
<td>FOOD PROCESSING</td>
<td>• Conversion</td>
<td>• Glycerol & protein extraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Biological conversion processes</td>
</tr>
<tr>
<td>WASTE PROCESSING</td>
<td>• Bioregeneration</td>
<td>• Biodigestion in 0 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gas/Liquid/Solid separation</td>
</tr>
<tr>
<td>AUTOMATION & CONTROL</td>
<td>• Instrumentation Design</td>
<td>• Gravity independent sensor dev.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Struct dsn (minimize dead spaces)</td>
</tr>
</tbody>
</table>
INTRODUCTION/BACKGROUND

Life Support resupply requirements seriously constrain manned space missions.

CURRENT TECHNOLOGIES

* Provide for little re-use
* Are costly
* Inhibit space mission flexibility
* Are not well-developed
* Have technical and safety drawbacks

TECHNOLOGY NEEDS

ORBITAL/TRANSIT NEEDS

* Reduced weight, power and heat
* Efficiency
* Safety
* Microgravity-effective subsystems
* Integration
TECHNOLOGY NEEDS

SURFACE NEEDS

* TRANSPORTATION
* SURFACE RESOURCE USE
* AUTONOMY AND RELIABILITY
* PRODUCT MANAGEMENT
* POWER

IN-SPACE EXPERIMENTATION NEEDS

ORBITAL/TRANSIT NEEDS

* FLUID SUBSYSTEM TESTS
* MASS VS. CONTAINMENT TRADES
* MICROGRAVITY SENSORS AND CONTROL
* SURFACE/CATALYTIC EFFICIENCIES
* RELIABILITY
* POWER AND HEAT REDUCTIONS
IN-SPACE EXPERIMENTATION NEEDS

SURFACE NEEDS

* On-site Resource Uses/Tests
* Long-Term Autonomy and Reliability
* Transport and Deployment Tests
* Product Storage, Distribution and Use
* Power
HUMANS IN SPACE

8.3 Closed-Loop Life Support Systems

Humans in Space Critical Technology Requirements

Ramus Bretol
NASA Ames Research Center

EVA / SUIT

- Develop the technology for measurement of EVA forces, moments, dynamics, physiological workload, thermal loads and muscular fatigue.

- Evaluate cooperative roles between EVA and telerobots and for IVA and robotics.

- Suit contaminants detection, identification and removal.

HUMAN PERFORMANCE

- Technology for measurement of gravity-related adaptation and re-adaptation behavior.

- Technology for in-space anthropometric and performance measurement.

- Variable - gravity facility and application technology.
HUMANS IN SPACE

8.3 Closed-Loop Life Support Systems

Humans in Space Critical Technology Requirements

Remus Bretol
NASA Ames Research Center

CLOSED LOOP LIFE SUPPORT SYSTEMS

- Improved Phase Separation Systems
- Gravity-Independent Sensor Systems
- Waste-Conversion Processes
- Fluid Mixing and Composition Control
- Reactor Phenomena
- Chemical Species Separation

OTHERS TO CONSIDER - POSSIBLY BY OTHER THEMES

- Fire and Smoke Detection System
- Zero-G Phase Change Phenomena for EVA Thermal Management
- Foaming Countermeasures
The purpose of the OAST In-STEP 88 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and Industry/University (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following 8 disciplines: Structures; Environmental Effects; Power Systems and Thermal Management; Fluid Management and Propulsion Systems; Automation and Robotics; Sensors and Information Systems; In-Space Systems; and Humans in Space.

Part 2 contains the critical technology presentations for the eight theme elements (space structures, space environmental effects, power systems and thermal management, fluid management and propulsion systems, automation and robotics, sensors information systems, in-space systems, and humans in space) and a summary listing of critical space technology needs for each theme.