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ABSTRACT

A Power Management and Distribution Direct

Current ( PMAD DC ) test bed has been set up
at tile NASA Lewis Research Center to investigate
Space Station Freedom Electric Power System
issues. Efficiency of test bed operation significantly

improves with a computer simulation model of the
test bed as an adjunct tool of investigation. Such

a model is developed using the Electromagnetic
Transients Program (EMTP) and is available to

the test bed developers and experimenters. The
computer model is assembled on a modulal basis.

Device models of different types can be
incorporated into the system model with only a
few lines of code. A library of the various model
types is created for this purpose. Simulation results

and corresponding test bed results are presented
to demonstrate model validity.

INTRODUCTION

NASA Lewis Research Center has the

responsibility to oversee the design, fabrication,

and assembly of the Electric Power System (EPS)
for the Space Station Freedom (SSF). From the
early concepts to the present baseline, the EPS

design has undergone many changes. One of the
earl), concepts was to use a 20 kHz based ac

distribution system. Due to the immaturity of
information about 20 kHz distribution, a test bed

was set up to help collect the same. Since then,
tile test bed has kept in step with the evolving EPS,

culminating in the present PMAD DC test bed for
tile all dc EPS design. [1].

Purpose of the Test Bed

The main purpose of the test bed is to evaluate
system design concepts and issues, e.g., source

system stability, fault protection system
coordination, power quality, power control, etc..
The information gained from the test bed can be

used by the prime contractor to facilitate overall
development. Therefore, the test bed should be
a sufficient representation of the EPS but it need

not be an exact replica.

Purpose of the Test Bed Computer Model

The main purpose of the test bed computer model
is to provide an environment where a proposed test

bed run can be simulated to asses safe operating
regions. In that respect it becomes very useful to
the test bed operator. The computer model is also

a useful tool for other investigations which can not
be performed on the test bed due to time and cost

constraints, e.g., parametric studies, evaluation of
anomalous behavior, hardware operation at its
design limits, evaluation of reconfiguration

options, etc..

History of Test Bed Modeling

Test bed modeling efforts at Lewis began with the
20 kHz test bed. EASY5 was used as the modeling

tool [2,3]. While an excellent tool for control
system analysis and design, EASY5 is not well
suited to model electrical distribution networks

with attendant stiff systems. EMTP can model such

networks very efficiently and is used as such,
worldwide, by the utility industry. Recently, power
electronic devices were successfully modeled on

EMTP with help from its Transient Analysis of
Control Systems (TACS ) feature [4]. Such
devices, while slowly populating the terrestrial

power systems, are the basic components for the
EPS. Initial EMTP models were based on circuit

representation of the devices. Although faster to

execute compared to EASY5 models, these were

not fast enough to become building blocks for an
end-to-end system level model. This led to the
development of functional models, which simulate

the input/output behavior of a device. The
functional models achieved the necessary speed of

execution for an end-to-end representation while



retaining sufficient fidelity to produce accurate
system simulation results [5,6].

TEST BED CONFIGURATION AND

DESCRIPTION

A test bed should include all the significant
elements of the proposed EPS, both in types of
hardware as well as the connecting elements of the

system.

The PMAD DC test bed is equipped with the

necessary hardware and software to study issues
concerning the operation and control of the EPS

[7,8]. Presently, it consists of one channel
(Channel A) of supporting development hardware.
This hardware is functionally equivalent to the
hardware that will be used on the SSF but more

readily available. Channel B will consist of early
breadboard versions of flight hardware. Each
channel contains the following hardware elements:
1) a solar array/simulator source, 2) a sequential

shunt switching unit (SSU) to match the source
output to the load, 3) a battery charge/discharge
converter (BCDU) to regulate the battery source,

4) a dc-to-dc voltage converter (DDCU) to
connect the 160V primary system to the 120V

secondary system, 5) dc-to-dc load converters
(LCU) for connecting the low voltage tertiary
system (loads) to the secondary system, and 6)
switchgear, both the regular and current limiting

type, connecting differem parts of the distribution
network. Each hardware piece is protected against
electrical faults and has the necessary controls for

safe operation. Also, there are appropriate control
and protection schemes for each channel.

Although the channels can be operated
independently of each other, cross-tying them
near the source end is under consideration for

evaluation of increased power channel size.
Further details about the test bed layout,
operation, protection and control system may be
found in reference [7].

DESCRIPTIONS OF MODELS

The models have already been extensively

described in reference 15]. Circuit level models
were developed first to determine how they

compared with those in EASY5, both for fidelity
and execution time. Not all of the components
were modeled at circuit level. While the circuit

level models could be constructed from design

information, the functional models required some
form of hardware test data to determine their

functionality.

Circuit Level Component Models

A typical hardware component has electric circuits
in the power, control, and protection areas. Figure

1 shows the power processing component for a
DDCU. It is inappropriate to model the control
and protection schemes as circuits because it
requires a very small integration time step size to
correctly simulate such circuits. Since the same

time step will be used for the entire simulation, it
will result in very lengthy execution time. On the
other hand, TACS can model such circuits

functionally without requiring small integration

time steps. Thus, only the power stage of the
hardware was modeled at circuit level while the

electronic circuitry in the control and protection
system was modeled as functional equivalents in

terms of digital logic and transfer function models
using TACS. Electronic switches were represented
as either ideal or diode switches. Filters were

modeled as actual circuits. A pulse width

modulation (PWM) device controls the switches
in the power stage, typically operating at 40 kHz.
This limits the choice of integration time step size

to less than a few microseconds, resulting in
lengthy execution times. Nevertheless, these
models are useful in studies where, for example,

voltage stress across the solid state switch is of
concern.
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Fig. 1 Power Stage Circuit of a DDCU
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Functional Component Models

It is clear from the previous discussion that system
level simulation of the test bed involving many

hardware pieces is not practical with circuit level
component models. Functional models were
developed as a compromise between fidelity and

the ability to represent an end-to-end system

using reasonable amount of computer resources.
The performance of these models was validated
against test results, examples of which are shown

later in this paper. The main difference between
the functional and the circuit level models is in the

power stage modeling. The switches and the
attendant PWM devices were eliminated,

permitting a much larger integration time step size.

Input/output relationships were now established
using a controlled current source and a

corresponding dependent voltage source.
Complexity in the circuit level simulation of a
DDCU is shown by figure 1. Figure 2 shows the
functional model of the same DDCU.
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Fig. 2 Functional DDCU Model in EMTP

One of the main advantages of the functional

models is the ability to use larger values of
integration time steps permitting execution of
end-to-end system simulation in a reasonable

length of time. This entails some loss of fidelity,
especially for the response of the input and output
filters which were simulated as electric circuits.

This does not, however, mean any numerical

instability because of the inherent stability of the
implicit integration technique using trapezoidal

rule that EMTP employs [gj.

Protection and Control System Models

Test bed protection system protects the individual
pieces of hardware and brings the test bed to a safe
state of operation upon the occurrence of an
abnormality, e.g., a fault (short circuit),
malfunction of a hardware, etc. [10]. Traditional

protection schemes such as over current and

differentia/ zone are being implemented in the
system level model. Any protection or control
scheme that takes more than one second to

complete its action will not be implemented ha a
transient, system level model of the test bed.
Controls for maintaining hardware power quality

have been implemented in the respective models.
Control schemes such as load tripping based on
under voltage condition will be implemented later.

System Model Configuration

The system model layout has the description of
the electrical network and also has the information

needed to execute a particular test case.
Component modules are incorporated from a data
base specifically created for that purpose.

The circuit level and the functional models are not

intended to be mutually exclusive. A circuit level
model could be connected into an otherwise

entirely functional model environment for a

specific purpose such as to test a circuit level model
in the total system. Of course, the whole
simulation will have to be run at the smaller time

step as dictated by the circuit level model. This will
not result in much higher execution time because
the remaining, less complex functional models run

much faster, even with small time steps, compared
to a complex circuit level model. For this and other
reasons the system model configuration was

designed on a modular basis enabling replacement
of component models with only a few lines of code.

MODEL VALIDATION

One of the functions of the test bed model is to

predict operating conditions for the test bed. The
model should behave similar to the actual test bed

to have reasonable confidence in the simulation

results. No model is an exact replica of the

hardware it represents. It is more so with the
functional models. Therefore, the models needed

some fine tuning to match the test results
(validation). Validation should take place, using
the functional models, at the three levels of test

bed check out process, namely at, component,
subsystem, and system levels. Some examples of
validation follow where only functional models of

components were utilized.



Functional Component Model Validation

All of the test bed components are individually

tested for correct input/output behavior. These
tests provide data for functional component model
validation.

A DDCU is subjected to a step load change, from

a light to a heavy load condition. DDCU output
current and voltage wave forms from the test are
compared with simulation results and are shown

in figures 3 and 4 respectively. The voltage
feedback control loop gain in the model is adjusted
to obtain the best possible match between the test
data and simulation results. Figure 4 shows some

mismatch between the respective DDCU output
voltage plots. Because of the utilization of implicit

integration, it is possible to reduce this mismatch
by using a smaller integration time step and by

plottingevery data point. However, that will defeat
the purpose of developing the functional models
which were meant to be used for long term

investigations (of the order of I sec) with large
time steps (0.1 msec). The functional models

behave properly within tile limitations imposed
upon them.
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Fig. 3 Functional DDCU Model Validation
Output Current -- Step Load

Subsystem Level Validation

The test bed can be considered as a coherent

connection of subsystems, each able to function
somewhat independently. Thus, testing of
subsystems in the test bed, before the final

end-to-end integration, was a necessary step in
tile scheme of comprehensive testing. Data from

one such test were used to validate the computer
model. The primary source subsystem was tested

to study the response of the solar array/simulator
and SSU to step load changes. Initially the source

subsystem is heavily loaded by connecting loads at
both the main Bus Switching Unit (MBSU) and
the Direct Current Switching Unit (DCSU). The
load at DCSU is switched off to create the

transient. Computer simulation for the test
configuration was performed and results compared

with test data as shown in figure 5. During this
comparison the value of the voltage feedback
control loop gain of the SSU was adjusted to obtain

best possible match between test data and
simulation results. Once again, the simulation
results appear to be more damped compared to
the test data. The reason for this was explained

previously under functional component model
validation.
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Fig. 4 Functional DDCU Model Validati,n
Output Voltage -- Step Load
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SIMULATION STUDY RESULTS

After the test bed model has been validated to a

reasonable degree, it is ready to be used as a

precursor for a test bed study or to be used for
testing other possible operating scenarios which
may or may not be repeated on the test bed. Figure
6 shows the block diagram of the present EMTP

test bed layout. Two sample cases were run using
this model. Results are presented and described.

Case Study No. 1

The start up process of the test bed consists of
a series of events. The nature of the start up and

shut down characteristics of the various hardware

pieces of the EPS is of great concern, mainly
because of the limited current capacity of the

sources. Inrush currents caused by charging of

input filters may affect the protection system
operation.

Figure 7 shows the SSU output voltage and current
when the 600 uF SSU and the 4000 uF DCSU bus

capacitors are charging up in an unloaded system.
The oscillatory nature of the current wave form is
due to the R-L-C circuit formed by the bus

capacitors being charged and cables connecting
them.
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Figures 8 and 9 show the input/output voltage
and current wave forms, respectively, for an LCU
under start up and shut down conditions. The

location of the LCU is shown in figure 6. The LCU

is designed to slowly ramp up its output voltage to

control or eliminate load starting transients. The

wave forms show that the LCU output current is
free from load transients. There is a transient in

the input current due to charging or discharging
of the of the LCU input filter.
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Fig. 9 LCU Model -- Start up & Shutdown
Current Wave Forms

Case Study No. 2

As described earlier, the function of the test bed

protection system is to protect the test bed
network as well as individual hardware pieces.

Thus, for example, the DDCU is designed to go
into a current limit mode when its output is short
circuited. The value of the limiting current can

be pre-set by the test bed operator.

There are some concerns about DDCUs operating
from the same input bus. This test case was

selected to investigate those concerns.

A DD('U appears as a constant power load to the
bus it is connected to. When another DDCU,

connected to the same bus, experiences a load
disturbance (or a short circuit) the first DDCU

can shift to an undesirable operating condition
while keeping the power (load) constant and,
therefore, a cause of concern.

The relative isolation of the outputs of two DDCUs

connected to the same input bus is of interest. It
is desirable that any disturbance at the output of
one DDCU should have minimal effect on the

output of the other DDCU.

Figures 10 and 11 show the output voltage and
current, respectively, of a DDCU subjected to a

short circuit (fault) at its output terminals. Upon
the application of the fault the output voltage at
the faulted DDCU goes to zero and remains at that
value for the duration of the fault. The fault

current, after an initial transient, is limited to the

value preset by the user. Please note that the

DDCU recovers and resumes normal operation
when the fault is removed. The concerns about

DDCUs being connected to the same input bus

were not substantiated by this case. First, the

unfauited DDCU appears to behave properly
during the application and removal of fault at the
output of the other DDCU. Secondly, the output
voltage of the unfaulted DDCU shows very little
change due to a fault at the output of the other
DDCU, as seen in figure 12. Thus, the outputs of
the two DDCUs are well isolated for this test case.

FUTURE WORK

Although an end-to-end model for channel A is
now available, the modeling process is not yet

complete. Basic switchgear models as well as
model of the protection system is under
implementation. In addition, the model validation

process will continue and the corresponding results
will be reported.
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Other future work includes modeling of the
Channel B hardware components and the prime

program control and protection scheme to

evaluate its performance in the test bed
environment.

CONCLUSIONS

A system level end-to-end computer simulation
model of the PMAD DC test bed has been

generated using EMTP. Circuit level models were
generated for some of the components while
functional models were generated for all the

components. When using functional component
models, the system level model executes fast

enough to serve as an adjunct tool for the test bed

developer and user. The test bed model is designed
on a modular basis for quick reconfiguration
between cases. Models are validated against test
bed data at various stages. There is good

agreement between the simulation results and test
data for the purposes of the end-to-end
simulation. The test bed team now has a valuable
simulation tool to aid in test bed hardware

integration, operation, and evaluation.
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