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1. Introduction

This is the final report for the period of performance 7/1/88-6/30/92. The project
was originally proposed for three years. Funds were not made available for the third year.
A no-cost extension of the second year was requested in order to complete as much of the
original project as possible.

2. Summary
The following tasks were described in the original and continuation proposals.

Task 1: Order of Magnitude Estimates

Task 2 : Thermo-capillary Convection - Two Dimensional (fixed planar surface)
Task 3: Thermo-capillary Convection - Three Dimensional and Axisymmetric
Task 4: Liquid Bridge/ Floating-Zone Sensitivity

Task 6: Transport in Closed Containers
Task 7 : Interaction: Design and Development Stages
Task 8: Interaction: Testing Flight Hardware

Task 9: Reporting

Work was completed on all aspects of these tasks despite the lack of funding for the
third year. The only part of the original proposal which was not addressed was the effect of
vibration on diffusion experiments.
A review of work related to experiment sensitivity to residual acceleration has been
published and a copy of the article is attached in Appendix 1. In the third semi-annual
report we stated that Task 2 should complete by June-July of 1990 (i.e. earlier than
originally anticipated). Since that report was issued NASA MSFC extended the P.O.P. of
the second year’s work to June 1991 as continuation funds are not yet available. We
completed Task 2 during this period and a paper describing the results is in preparation for
journal publication. (Task 2 involves an analysis of the residual acceleration sensitivity of
thermocapillary driven flow in a 2-D rectangular region. The free surface is held planar. )
The work is summarized in Section4.
Task 3, which involves the examination of axisymmetric thermocapillary
convection has been started early in the process of developing a method for the examination
of non-isothermal liquid bridge. A code for the axisymmetric isothermal and non-
isothermal (i.e. thermocapillary driven convection is included along with a deformable free
surface) liquid bridge sensitivity analysis has been developed and a comparison with 1-D
results has been made. These results will be reported in Section 3.
Five papers, and one extended abstract, summarizing work carried out entirely (or
partly*) under the VIT project have been accepted for publication:
1. Microgravity Experiment Sensitivity to Residual Accelerations: A Review,
Microgravity Science and Technology,III, No.2, 52-68, 1990. (See Appendix 1)

2. The Sensitivity of a Liquid Bridge to Axial Vibration, with Y. Q. Zhang,
Physics of Fluids, A 2, 1966-1974, 1990. (See Appendix 2)

3.*  Bridgman Crystal Growth in Low Gravity: A Scaling Analysis, with F.
Rosenberger, in Low Gravity Fluid Dynamics and Transport Phenomena,
R. L. Sani and J. N. Koster (eds.), (AIAA, Washington D.C,, 1990) pp.
87-117. (See Appendix 3)

4. A Finite Difference Method for a Model Float Zone Free Surface
Problem, with Y. Q. Zhang, to appear in the Journal of Numerical
Methods in Fluids, 1990. (See Appendix 4)



5. The Sensitivity of a Non-Isothermal Liquid Bridge to Residual
Acceleration, with Y. Q. Zhang, to appear in the Proceedings of the
International Union of Theoretical and Applied Mechanics Symposium on
Microgravity Fluid Mechanics, Bremen, September, 1991. (See Appendix 5)

6. The Sensitivity of a Non-Isothermal Liquid Bridge to Residual
Acceleration, to appear as an extended abstract of the above article in
Microgravity Science and Technology, August/September 1991.

A paper describing our work on 2D thermocapillary flow is in preparation. Results of
work for the VIT project have been (will be) presented at the following conferences and
workshops and invited lectures:

1. Sensitivity of Liquid Bridge and Floating Zone Shapes Subject to Axial
Vibrations, presented at the Alabama Materials Research Conference, University
of Alabama in Huntsville, Sept. 20th and 21st 1989.

2. Sensitivity of Thermocapillary Flow to Residual Acceleration, presented at
the Alabama Materials Research Conference, University of Alabama in
Huntsville, Sept. 20th and 21st 1989.

3. Experiment Sensitivity: Determination of Requirements for Vibration
Isolation, Proceedings of the NASA Workshop on Vibration Isolation
Technology Microgravity Science Experiments, Sept. 28-29 1988.

4. Sensitivity of Crystal Growth Experiments to Residual Accelerations,
presented at the Gordon Conference on Gravitational Effects in Materials
and Processes, July 30 -August 4, 1989, Plymouth State College,
Plymouth, New Hampshire.

5. The Sensitivity of a Non-Isothermal Liquid Bridge to Residual
Acceleration, with Y. Q. Zhang, to be presented at the IUTAM
Symposium on Microgravity Fluid Mechanics, Bremen, September, 1991.

3. Liquid Bridge/Floating-Zone Sensitivity '

This section refers to Task 4 and concerns the sensitivity of an isothermal liquid
bridge to axial acceleration and was been extended to non-isothermal situations covered
under Task 3. The first annual report contained a detailed description of a one-dimensional
model and the sensitivity results obtained using that model, this work was subsequently
been refined published in the journal Physics of Fluids. A reprint is attached in Appendix
2,

The 1-D model had been used to examine the sensitivity of an isothermal liquid
bridge to axial vibration. The results indicate that the zone is most sensitive to accelerations
with frequencies close to or equal to the lowest natural frequency of the zone. For the
purposes of this project it is most useful to assess the sensitivity of the zone in terms of
predicted Space Station and/or Spacelab environments. For the cases examined, we have
seen that frequencies around the 0.1 Hz range appear to be the most sensitive. The low
frequency (< 102 Hz) acceleration environment predicted for the space station! should not
exceed levels of 10-5 g. Higher frequencies can be associated with acceleration magnitudes
of up to 10-2 g. In terms of these predicted levels, or those measured on past missionsl,
the practical sensitivity range is restricted to disturbances with frequencies ranging from



10-1- 10 Hz.

During the second year, work on a full axisymmetric calculation started. A model
was developed for both isothermal and non-isothermal bridges. The adaptation of two
numerical algorithms for the solutions of these problems has been successfully completed
and preliminary calculations have been made.

The early stages of development and verification of the isothermal code (and the
ability of the method to handle buoyancy-driven flows in fixed geometries) was outlined in
the third semi-annual report and an updated account is given below.

For the solution of the axisymmetric isothermal and non-isothermal problems our
objectives were:

1. To develop a full numerical model of the axisymmetric free surface
response of an isothermal liquid bridge (suspended between rigid disks of
equal radius) subject to axial vibration and to compare it to the sensitivities
predicted by a previously developed 1-D model
2. To develop a full numerical model of the axisymmetric free surface
response of a non-isothermal liquid bridge subject to axial vibration. The
presence of a temperature gradient gives rise to a thermocapillary flow. We
wish to investigate the interaction between the free surface motion induced
by vibration, and the surface-driven flow. Interaction of these flows with
internal buoyancy-driven flow driven by the vibration is expected to be
negligible but is included in the basic model.

Any algorithm that is capable of solving the equations governing the second
objective must be capable of solving the first objective. Added complications result from
the fact that the coupled heat transfer and Navier-Stokes-Boussinesq equations must also be
solved to satisfy the second objective. In addition, it is convenient to use steady-state
solutions for thermocapillary convection as initial conditions. As a result we have
developed two algorithms which are based on the same numerical methods; one is used to
compute steady-state velocity and temperature fields and free surface shape for the
following problem, the other is used to calculate the time dependent response.

3.1 Steady State interface shapes and thermocapillary convection

Consider a cylindrical liquid zone held between two parallel coaxial circular rigid
disks (radius = Rg) separated by a distance L. The liquid is a non-isothermal
incompressible Newtonian fluid. The bridge is held between the disks by surface tension.
The free surface of the bridge is a gas-liquid interface and is described by r=R(z,t). The
two disks are maintained at a constant temperature T,. Surface heating is provided through
a parabolic ambient temperature T.(z) and the heat transfer coefficient at the free surface is
denoted by h. In addition, we make the assumptions that the gravitational acceleration is
parallel to the cylinder axis and that the velocity, temperature and free surface deformation
are axisymmetric. Furthermore, we let the surface tension at the free surface vary linearly
with temperature and assume that the Boussinesq approximation holds.

The governing equations are made dimensionless by scaling length, time and

velocity with Ry, Ro/U™ and U™ respectively . Here U* is a characteristic velocity given by

U‘=M
vl

where AT=Tnax-Tmin represents the maximum temperature difference at the surface, Iy is



the absolute value of the derivative of the surface tension with respect to temperature, and B
is the dynamic viscosity. We shall refer to a "half zone" model when the ambient
temperature has extrema at the end disks and a "full zone" when the temperature maximum
occurs between the disks. For a full zone we shall take Tmax to be Too(0), and Tpyin to be

To, where A = L/R, is the aspect ratio.
The non-dimensional pressure is

P "
poU™?

where p* is the dimensional pressure, g is the gravitational acceleration, z is the

dimensionless axial coordinate, and pg is the density corresponding to the reference
temperature. The temperature is rendered dimensionless using Tmax - Tmin. With these
scales the dimensionless equations in a cylindrical coordinate system can be written as

%?ﬁ%:o, (1)
u?a%+w%“z-=-g_f+ﬁlg(%j_g+%%r‘l+?;7‘;-§) , @)
u%§+w%_‘:=-%g+§lz(%+%aa_‘:+g)+%n 3)
u%%+w%§=¢(%+%%}+%) : (4)

where the Reynolds number, Re, Marangoni number, Ma and Grashof number Gr, are
respectively

* 3
Re = RolU_ , Ma= LYIATR, , Gr = gBATRs .
v JLiKC V2

Here, v is the kinematic viscosity, x is the thermal diffusivity, § is the volume thermal
expansion coefficient, and g is the gravitational acceleration. At the disks, the boundary
conditions are

u=w=T=0,a:z=iiz\-. (5)

The symmetry conditions at the centerline r = 0 are



The free surface is located at r = R(z) where the boundary conditions are:
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and are, respectively, the capillary number, Biot number, and dimensionless gravitational

acceleration, Y, is the mean surface tension, and x is thermal conductivity. The force
balance at the free surface in the normal and tangential directions are given by eqs. (7) and
(8), respectively. Equation (9) is the kinematic boundary condition at the liquid-gas
interface. The thermal boundary condition at the interface is given by equation (10) in
which the equivalent heat transfer coefficient h contains the effect of the radiant and

convective heat transfer. The constant A in (7) represents a dimensionless reference
pressure difference2.3 across the interface. In model float zone systems with fixed rigid

endwalls, such as the one discussed here, A is determined by the following constant
volume constraint

A% =[ n R¥(z)dz = V, = constant . 11

Finally, the condition that the contact lines between the liquid end disks are fixed is



R=1latz=+AM. (12)

Numerical Method . _ _ _ _ '
In the case of a two dimensional axisymmetric flow, the governing equations can be

simplified by introducing the stream function, y, and vorticity, ®, as new dependent
variables:

vy d
w=tS vl (13)
_ du ow
= =—-= (14)

From (13), (12), (2) and (3) the following equation is obtained for
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Substitution of (13) into (14) yields

rw:ﬂ-l—ﬂ+ﬂ. (16)
o2 T dr 9z

The original set of three equations governing mass and momentum has been reduced to
two equations governing the steam function and vorticity.

The steady free boundary problem for cylindrical liquid zone is solved iteratively,
since the location of the free surface is a priori unknown. To obtain a solution we adopt a
Picard iterative procedure? as follows:
1. Guess the free surface shape for the initial iterate;
2. Obtain the approximate temperature and velocity fields by transforming the governing
equations and boundary conditions to a circular cylindrical domain via a non-orthogonal
transformation and solve them using a pseudo-unsteady semi-implicit method;
3. Obtain the pressure at the free surface by integrating the transformed momentum
equation;
4. Use the normal force balance condition at the free surface to decide how to update the
free surface location;
5. Return to step 2. Repeat until convergence is obtained.

Non-orthogonal Transformation

The region occupied by the liquid zone is transformed into a fixed circular
cylindrical computational region using a non-orthogonal coordinate transformation, i.e.

n=z, é;:ﬁ{z_) (17)

It then follows that
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The advantage of this transformation is that the free boundary coincides exactly with a
coordinate line in a computational grid and regeneration of mesh during the outer iteration
is avoided. For the sake of simplicity, a pseudo-unsteady method in association with a
semi-implicit discretization with respect to time is used.

The resulting system of governing equations is solved as the time (pseudo)

derivatives of T, ¥ and @ — 0. The discretization in time employs an explicit Adams-
Bashforth scheme for the nonlinear convective terms and the implicit scheme for the
viscous terms. Other terms in the equation are treated explicitly. For spatial discretization,
central differences are used. The A.D.L form for the vorticity equation is then
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Here the superscript n+1/2 denotes the intermediate step associated with the ADI

method’. The velocities (at the nth step) are taken from the values at the previous step
values. Thus, except for the thermal condition at free boundary, these are Dirichlet
boundary conditions. The heat transfer equation is also discretized in an ADI form. The

resulting system of discretized equations is solved using a factorization method>,



We define a steady state to occur reached when the residuals (dw/dt, dT/01, oy/dT)
of the vorticity, energy and stream function equations are less than 10-7. Thatis,

n+l n
Fi - Fy
AT

Where F represents the vorticity, temperature and stream function at the n+1th and nth
iterative step. The numerical solution is second order accurate in space.

Having computed the vorticity and stream functions for a given surface shape, it
remains to iterate on the condition for the balance of force normal to the surface in order to
obtain the final steady surface shape. In addition, the shape must satisfy the volume
constraint (11) and boundary conditions.

Two iterative schemes for determining the interface are discussed in this section. In
both schemes, the new velocities and temperatures are taken from the current calculated

values and the pressure at interface can be obtained by taking the M component of
momentum equation and integrating with respect ton. This yields

max <107 . (21)
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The first scheme (I) involves successive approximation by the direct solution of
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This scheme is based on the following principle. A shape is assigned to the free surface with the

calculated pressure, velocity and temperature. An initial guess for the pressure constant A is made.
The new interface shape is then determined directly from (22). The integral (11) is then evaluated
to check whether the volume constraint has been satisfied. If it is not satisfied an inner iteration is

made using a Newton-Raphson procedure to calculate the following improved estimate of A:

Akl _ gk V! AV (23)
oA

where



A2

AV = f nRZdn - V, . (24)
-A/2

The above procedure for determining A is quite effective and is repeated until the volume

constraint is satisfied. R(n) is then updated. New velocity, pressure and temperature fields
are calculated using the updated value of R(n)). The outer iteration is repeated until

max [R™1 -R<e , (25)
where we take € = 104,

The second scheme (II), used by Ryskin and Leal’, uses the residual of the normal
component of force balance to drive the shape to its steady position. This is equivalent to
equating the residual with an artificial capillary force. This effective force causes a local
displacement of the interface in the direction of the force. The magnitude of the local
displacement is proportional to this force. The interface shape at each iteration is thus
modified so as to reduce the residual until the condition (22) is met. It follows that at each
iteration the improved interface shape is given by

R™! =R™ + oEx;, (26)

where Ex;jis the residual of the force balance equation at the jth surface location and the
constant coefficient a is determined by numerical experiment. In order to ensure
convergence, o should be small. We found that the values of o which led to rapid

convergence depended on the product of Re-! and Co1. If o is chosen to be too small the
amount of CPU time used increases substantially.

The change in volume between the mth and (m+1)th iteration can be found from the
volume constraint (11) and equation (26) and neglecting higher order terms, i.e.

A2
f Ex; RI"dn = 0. (27)
-A/2

The pressure constant A is contained in Ex;j and is obtained by satisfying (24). Even then
the liquid bridge may still change volume slightly at each iteration owing to numerical error
and higher-order effects. These small changes can accumulate and eventually result in a
gross error. To prevent this, the formula (26) is modified to a

V, |12

R™ = RO (Vm) + QEx; . (28)

We have used the method described earlier to examine the influence of various
parameters on momentum and heat transport and meniscus shape. In addition, a
comparison between the results obtained with the combined scheme and those of Hyer et

al.7 has been made.
A parametric study of the effects of varying the temperature difference AT (keeping
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Ma/Gr fixed), Marangoni number, Ma, Nusselt number, Nu, aspect ratio, A, and Grashof
number, Gr, has been made and are described in Appendix 4.

Unsteady interface shapes (g-jitter response) for isothermal and non-isothermal
bridges.

To obtain the time dependent internal and free surface response of isothermal and
non-isothermal liquid bridges to axial acceleration we employed the following procedure.
To obtain a solution we follow the approach of Kang and Leal® and adopt a Picard iterative

procedure# as follows:

1. Use the free surface shape, stream function, vorticity, velocities, and temperature
computed from the steady calculation as the initial condition. (For the isothermal case the
liquid bridge is initially static with a free surface shape given by the prevailing steady axial

acceleration ; ] ]
2. To obtain the temperature and velocity fields at the next time step we transform the

governing equations and boundary conditions to a circular cylindrical domain via a non-
orthogonal transformation and solve them using a semi-implicit Adams-Bashforth/Crank-
Nicolson time discretization. Centered differences are used for the spatial approximation ;

3. Obtain the pressure at the free surface by integrating the transformed momentum
equation;

4. Use the normal force balance condition at free surface to determine the updated free
surface location at the new time step;

5. Return to step 2. Repeat until convergence is obtained.

Our early results showed good agreement between the predictions of the 1-D
isothermal model and the axisymmetric calculations (see Table 1) Further calculations have
been made and for the cases examined to date these findings are confirmed. For the cases
examined to date, the effect of thermo-capillary convection on the response of the free
surface shape has been found to be negligible Our results are given in Appendix §

Table 1: Comparison of Bridge Radii (R) (to 3 decimal places) at two locations predicted by

1-D and axisymmetric (2D) models, g=1.42x10-3 ms-2, the frequency of axial vibration is
3 Hz.

Time (s) |0 0.22 0.39 0.48
RiD 1.001 1.149 1.017 0.801
Raxisym | 1001 1.146 0.998 0.919
RiD 1.001 1.159 0.994 0.909
Raxisym | 1001 1.150 0.986 0.929

4, Thermocapillary Convection -2D

The work for Task 2 involves the solution of the incompressible Navier-Stokes -
Boussinesq equations in a rectangular region with one "free surface” boundary condition
which equates the tangential viscous force at the surface to the temperature gradient along
the surface. A pseudo-spectral Chebyshev collocation methodd has been employed. The
basic approach and the equations to be solved were outlined in the first annual report.
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The objective is to study the effect of g-jitter on thermocapillary flows for a range of

dynamic Bond numbers Bd = pgL?/[0y/0T] (here the denominator represents the change in
surface tension with respect to temperature). To date we have examined fluids with Prandtl
numbers in the range 10-2 to 10, which spans the range associated with most experimental
materials. Marangoni numbers in the range 1 to 103 have been subjected to single
frequency excitations with amplitudes in the range 104-10-2 g. As expected, the sensitivity
of the flow to a given residual acceleration depends on the relative magnitudes of the
Reynolds number and the Grashof number (see discussion in the 1st annual report and 3rd
semi-annual report).
Description of the model system

The physical system currently under examination involves a 2-D rectangular region
which is bounded by three rigid walls and a "free surface". Two of the rigid walls are
isothermal with temperatures Ty and Tc. The other boundaries are adiabatic (no
perpendicular heat flux) and the "free surface” is constrained to be a straight line. This
retains the essential character of a free liquid surface while removing the numerical
problems associated with a deformable one. The forces at the interface may be decomposed
into components normal and tangent to it. Contributions to the force balance include the
fluid pressure, the viscous forces, and the capillary forces. For the normal component of
force balance, the difference between the pressure and viscous forces on either side of the

interface are proportional to the interface curvature multiplied by the surface tension v. For
the tangential force balance at the interface, the difference in the shear stress components is
balanced by a gradient in surface tension. Such gradients will arise when there is a
temperature gradient along the interface. The gradient in temperature produces a gradient in
surface tension that induces shear stresses and, thus, fluid (thermocapillary) motion. In our
calculations the residual gravity vector is capable of taking any orientation with respect to
the boundaries and can be time-dependent.

We approached this problem using a pseudo-spectral technique which incorporated
the influence matrix method. Comparison of our results for steady flows with results
obtained by Carpenter and Homsy [9] and Zebib et al. [10] indicate that our method has
superior spatial accuracy over finite difference and finite volume methods. (See
comparisons in tables 2 and 3. ) Qur g-jitter results confirm our earlier predictions that, for
Ma>>1, if the free surface is not allowed to deform thermocapillary effects dominate for the
range of container dimensions, acceleration magnitudes and frequencies typically associated
with spacecraft experiments. The results of our work comprise the Master’s thesis
(Universitie D’ Aix-Marseille, France) of Ms. Helene Cordier who worked at the CMMR
this year. A paper intended for journal publication which describes our results is now being
prepared.

5. Thermo-capillary Convection - Three Dimensional and Axisymmetric

Owing to the premature termination of the grant this work could not be completed
although some progress was made during the no-cost extension. This work is described in
Appendix 3.
6. Transport in Closed Containers

In the original proposal we agreed to make available the results of related work at
the CMMR not funded through this grant. These results were included in the appendices of
the 3rd semi-annual report and a summary is given in the paper in Appendix 1.

7. References
1. J. Sullivan, Grumman Space Station Freedom Program Support Division, Reston,



10.

12

Virginia, personal communication.

J. L. Duranceau and R. A. Brown, “Thermal-Capillary analysis of small-scale
floating zones: Steady state calculations”, J. Crystal Growth 75 367-389.

J. L. Duranceau and R. A. Brown, “Finite element analysis of melt convection and
interface morphology in earthbound and Microgravity Floating Zones”, in Taylor
G. Wang (ed.) Drops and Bubbles Third International Colloquium 1988, AIP
Conference Proceedings 197, American Institute of Physics, New York, 1989, pp.
133-144.

J. M. Floryan, “Numerical methods for viscous flows with moving boundaries,”
Appl. Mech. Rev. 42 (1989) 323-341.

R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow, Springer
Verlag, New York (1983).

G. Ryskin and L. G. Leal, “Numerical solution of free boundary problems in fluid
mechanics. Part 1.The finite-difference technique,” J. Fluid Mech. 148 (1984) 1.

J. Hyer, D.F. Jankowski and G.P. Neitzel, "Thermo-capillary convection in a
model float zone, to be published AIAA Journal of Thermophysics and Heat
Transfer, 1990.

I. S. Kang and L. G. Leal, “Numerical solution of axisymmetric, unsteady free-
boundary problems at finite Reynolds number. I Finite difference scheme and its
application to the deformation of a bubble in a uniaxial straining flow”, Physics of
Fluids 30 (1987) 1929-1940.

B. M. Carpenter and G. M. Homsy, “High Marangoni number convection in a
square cavity: Part 27, Physics of Fluids 2 (A) (1990).

A. Zebib, G. M. Homsy and E. Meiburg, “High Marangoni number convection in
a square cavity”, Physics of Fluids 28 (1985).



Appendix 1






ORIGINAL CONTRIBUTIONS

© Hanser Publishers, Munich 1990

J. 1. D. Alexander

Fon 57657

Low-Gravity Experiment Sensitivity to
Residual Acceleration: A Review

In this article, work related to the analysis of experiment sensi-
rivity to residual acceleration experienced in low earth orbit
spacecraft is reviewed. Most of the work discussed concerns
heat. mass and momentum transfer in fluid physics and materi-
als science experiments. On the basis of our current under-
standing of experiment sensitivity it is concluded thai, in gener-
al, experimenters should be concerned about the effect of
residual acceleration and that careful modelling included as
part of an experiment program will enable optimal use of the
limited experiment time available in space.

1 Introduction

It has been recognized for some time that the low-gravity ac-
celeration environment associated with a spacecraft in low
earth orbit offers an opportunity to study certain physical
processes which are difficult to investigate under the gravita-
tional acceleration experienced at the earth’s surface. Our ex-
perience with such opportunities has led us to realize that the
residual acceleration environment on board an orbiting
spacecraft is not as low or as steady as would be desired for
certain classes of experiments. The sources of the residual ac-
celeration include [1-5] crew motions, mechanical vibrations
(pumps, motors, excitations of natural frequencies of space-
craft structures), spacecraft maneuvers and basic attitude mo-
tion, atmospheric drag and the earth’s gravity gradient. The
accelerations are characterized by temporal variations in
both magnitude and orientation. Such disturbances will, in
particular, affect those experiments susceptible to buoyancy
induced fluid motion [6]. Indeed, recent studies [7, 9] indicate
that transient disturbances can have undesirable long term
effects. The analysis of the sensitivity of any proposed flight
experiment is necessary for a variety of reasons. These in-
clude the need to optimize the use of the limited time avail-
able for flight experiments, the interpretation of experimental
results and the determination of tolerable acceleration levels
to be used in planning for NASA’s Space Station [3].
Examples of experiments that are conducted in the low-
gravity environment include critical point studies {10]. crystal
growth [11-18]. and diffusion experiments [19, 20]. Since
these experiments involve density gradients in the fluid
phase, they are inherently sensitive to the effects of buoyan-
cy-driven fluid motion [21-25]. For certain types of systems it
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is known [7, 8, 26-37] that the associated physical processes
(mass transfer, heat transfer, convection, oscillation and dis-
tortion of free surfaces) are sensitive to time-dependent ac-
celerations. For example, the transfer of mass and heat in
fluid systems can be significantly affected by oscillatory
flows [28-37]. The effect of oscillation enhanced transport
conditions on the local variation in composition during crys-
tal growth is not well characterized for most of the systems
relevant to crystal growth under microgravity conditions. Or-
der of magnitude analyses {7, 8, 38] suggest that for certain
combinations of physical properties and growth conditions,
oscillations in the residual acceleration may adversely affect
the mass transport conditions. For instance, the DMOS ex-
periment [39] on STS 51-D showed extensive evidence of
convective mixing of liquids. The degree of mixing is greater
than can be attributed to the quasi-steady low-gravity com-
ponent, but can be accounted for when oscillations in effec-
tive gravity are included in the description of the transport
conditions.

It is possible that in future space laboratories some experi-
ments will require isolation from vibration. The design of ef-
ficient isolation systems, however, requires determination of
the tolerable acceleration levels (amplitudes and frequencies)
for given experiments. The results of sensitivity analyses can
be used in the development of vibration isolation systems to
identify those experiments that will need isolation and by
supplying data concerning frequency dependence, the effect
of transients etc. The system can then be designed to filter
out those bandwidths to which the experiment is predicted to
respond adversely.

Low-gravity experiments which involve liquids with free
surfaces are most likely to be sensitive to vibrations. Experi-
ments of this type include studies of liquid bridges, equilibri-
um shapes of drops and bubbles [40-43], and thermocapil-
lary flow experiments [43-46]. Evidence for the oscillation of
liquid zone shapes was found on the D-1 mission. Long lig-
uid bridges were more sensitive to residual gravity, and ex-
hibited random oscillations in zone shape [40].

It should be recognized that the sensitivity of a given pro-
cess to the overall low-gravity environment will depend on
one or more of the following factors:

a) magnitude and direction of accelerations

b) system geometry

¢) boundary conditions (e.g. insulated or conducting walls,
solute sources and sinks), and

d) physical properties of the participating materials (viscosi-
ty, thermal and solute diffusivities).

Any analysis of the sensitivity to oscillatory accelerations and

transient disturbances characteristic of the anticipated envi-

ronment aboard Space Station, or any other spacecraft, must
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take these factors into account. In general, a full mathemati-
cal characterization may not be practical. However, identfi-
cation of sensitive experiments in combination with a judi-
cious choice of simplified numerical models can be used to
choose operating parameters that will optimize the use of the
low-gravity environment. With this in mind, we review work
related to the effects of steady and time-dependent residual
accelerations, and associated work concerning transport in
oscillating flows. _

In sec.2 we describe the components of the low-gravity
environment. In sec, 3 previous work involving order of
magnitude (OM) estimates is discussed. The application of
OM analyses to acceleration-sensitivity determination is dis-
cussed in sec.3.1. The results of simple analytical models
are summarized in sec. 3.2. Work related to linear stability in
the presence of modulated gravity is briefly discussed in sec.
3.3. The results of direct numerical simulations are reviewed
in sec.3.4. In sec. 4, the results and utility of residual accel-
eration analyses are summarized and discussed.

2 The Microgravity Environment

The low-gravity environment of a spacecraft has been re-
ferred to as a “zero gravity” environment. This is because any
object within the craft is subject to roughly the same acceler-
ation due to the earth’s gravitational field. Thus, a free object
may move along approximately the same orbital path as the
spacecraft. As a consequence, to an observer in the space-
craft objects appear to behave as if no gravity were present.
However, any body capable of motion relative to the space-
craft will experience an acceleration relative to the mass cen-
ter of the spacecraft. This relative acceleration arises from
several sources which include the gravity gradient of the
earth, atmospheric drag and attitude motions, as well as ma-
chinery vibrations and crew activities.

The relative acceleration that is associated with the earth’s
gravity gradient is defined as follows. The mass center of the
spacecraft is subject to a force F(ry) due to the gravitational
attraction of the earth, where r, is the position of the mass
center of the craft with respect to the mass center of the
earth. A particle at a position r within the spacecraft is sub-
ject to a force F(r). 1f,asa first approximation, we ignore the
interaction between the spacecraft and the mass of the parti-
cle, and if the distance [r — r¢; is small compared to the se-
mi-major axis of the spacecraft orbit, the difference between
the forces applied at rand ry define the gravity gradient G as
follows {2-6]

F(")—F(rn)=Gz, I=r-r. ) (N

If the spacecraft maintains a fixed orientation, for example
with respect to the sun, there is no rotation of the spacecratt
frame relative to the geocentric frame. In this type of orbit
both the magnitude and the orientation of the residual accel-
eration vector change as a function of time and there will be
no steady residual acceleration.

In addition to the gravity gradient acceleration the atmo-
spheric drag force on the spacecratt can be significant [2-6l.
despite the fact that the atmospheric density at typical shuttle
altitudes is only on the order of 107" kg m~". Atmospheric
drag causes a slow inward spiral of the spacecraft. To an ob-
server in the spacecraft the effect of atmospheric drag is to
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Juble 1. Changes in residual acceleration components [ug m~'] along
the local vertical ( X, and perpendicular to the oribital plane (X) asso-
ciated with the gravity gradient stabilized attitude, and estimated ai-
moshperic drag accelerations. a and b are, respectively, best and worst
drag estimates for the Shutile (1) and NASA's Space Station (2). From
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produce a relative acceleration that is equal in magnitude but
opposite in sign to the atmospheric drag force. Table 1 gives
atmospheric drag acceleration estimates and relative acceler-
ation related to the gravity gradient and centrifugal force in
ug per m [rom the mass center of a spacecraft that is in a cir-
cular orbit with a gravity gradient stabilized attitude. X, is
parallel to the local vertical and X, is perpendicular to the
orbital plane. For this attitude the acceleration points away
from the mass center along X, and toward the mass center
along X;.

If the spacecraft does not maintain such a fixed orienta-
tion then, in addition to (1), centrifugal, Corolis and Euler
accelerations will become apparent in the spacecraft refer-
ence frame. They arise in conjuction with spacecraft attitude
motions and depend on the nature of the rotation of the
spacecraft frame of reference relative to a fixed geocentric
frame. If a spacecraft in a quasi-circular orbit continuously
rotates relative to the fixed geocentric frame such that a giv-
en direction in the spacecraft frame is always oriented paral-
tel to the craft’s position vector ry, a centrifugal acceleration
will augment the gravity gradient in the direction parallel to
the position vector, and cancel the component tangent to the
flight path. Under these conditions there will be a steady
component to the residual acceleration vector. In practice
this situation arises, for example, in the so-called gravity gra-
dient stabilized attitude.

Euler accelerations arise when the rate of rotation of the
spacecraft frame changes as a function of time, as it would in
a4 non-circular orbit, or as the semi-major axis of the orbit
changes as the craft slowly spirals inward due to atmospheric
drag. Coriolis accelerations will also be apparent but are pro-
portional to the velocity of an object relative to the space-
craft. Thus, unless relative velocities are large, the Coriolis ef-
fect will be insignificant [6].

In addition to the above, there are a variety of residual ac-
celeration components that occur over a broad range of am-
plitudes and frequencies. The nature and sources of these ac-
celerations have been discussed in [1-3]. Figs. 1 and 2 are
examples of residual accelerations measured on orbit.

3 Analyses of Residual Acceleration Effects

As discussed in the introduction, many experiments are un-
dertaken in orbiting spacecraft in order to reduce or elimi-
nate unwanted effects of buoyancy driven motions in fluids.
Sourées of buoyancy in fluids include discrete interfaces, as
they occur, for example between immiscible fluids, solid par-
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Fig. 1. An example of a relatively “quiet period" measured on SL-3
(<4 107g. g=98ms~)

a) Total acceleration array, b) Combined amplitude spectrum, note
components in the 5-6 Hz and 7-8 Hz, 10-12 Hz, [7 H: and 30-35
H: ranges. After Rogers and Alexander [47]

ticles and fluids, and bubbles and fluids with different densi-
ties, other buoyancy sources are internal density gradients
that arise as a consequence of gradients in temperature and
concentration. The nature of the response of a bulk fluid to
the effective body force associated with a low-gravity envi-
ronment will depend, in part, on the relative orientation of
the residual acceleration vector and the density gradient. In
particular, if the integral of the effective body force gb
(whete g is the density and b the effective acceleration) acting
on any closed circuit within the fluid is non-zero, motion will
immediately ensue, That is, if

X de- b=\ dd. curlgb
c 5

= gd,4~[gradrxb+gcurlb]s‘=(], 2)
5

motion will occur. Note also, that even if there is no density
gradient motion will occur if
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Fig. 2. "Window" containing three thruster pulses

a} Total acceleration array, maximum magnitude ~ 1-107° g, b} Com-
hined amplitude spectrum, dominant frequency components 11 Hz and
17 Hz. After Rogers and Alexander [47]

\ dA - curlpb+ 0. 3)
s
This includes the case of “precessional stirring” [48]. This
could occur, for example, when a spacecraft orbiting in a ra-
dial attitude (i.e. it continuously rotates about an axis per-
pendicular to the orbital plane) underwent an additional ro-
tation about some axis other than the basic orbital axis.
There -have been three approaches to the determination
experiment sensitivity to the residual acceleration environ-
ment.

a) order of magnitude analyses [38, 49-52],
b) analytical models {5, 6, 39, 53-59], and
¢) direct numerical simulation [9, 3, 60-73].

In addition to work directly related to microgravity, there is
extensive literature on mass and heat transport in oscillatory
flows [26-36], the effect of gravity modulation on the classi-
cal Bénard problem {74-77] and the linear stability of planar
fluid surfaces [78, 79].
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3.1 Order of Magnitude Analyses

An order of magnitude (OM) or dimensional analysis of a
physical process involves the examination of the system of
equations that are assumed to govern the process. For fluid
physics and material science experiments, the relevant physi-
cal processes are governed by equations describing the trans-
port of heat, mass and momentum in single and multi-com-
ponent fluid systems. The usual approach to OM analyses
[51] involyes the definition of reference quantities which ap-
propriately characterize the physical system (i.e. reference
scales for velocity, time, length, forces, etc.). Application of
these scales 1o the (dimensional) governing equations, fol-
lowed by the definition of characteristic dimensionless
groups admits a comparison of the order of magnitude of
every term in each equation. There are several comprehen-
sive discussions of OM analyses applied to low-gravity situa-
tions (e.g. [38, 49-51]).

The advantage of the OM approach is that a great deal of
information pertaining to the sensitivity of a given experi-
ment can be obtained with little computational effort. The
disadvantages are related to the fact that the choice of char-
acteristic reference quantities for length, velocity, time etc.
are not, in general, known a priori [80]. Thus, in cases for
which the chosen characteristic scale is not (for a given set of
conditions) representative of the actual process, the results of
the analysis may be in error, often by several orders of mag-
nitude. In addition, application of OM analyses to the prob-
lem of g=ensitivity has invariably involved implicit lineariza-
tion and often poorly represents the multi-dimensional
nature of the physical process. This can also lead to incorrect
OM predictions. Finaily, analyses are generally restricted to
the examination of a single component_disturbance (e.g.
~ sin{®!)). As a result, they may not properly indicate the

response of the system to the typically complex multi-fre-
quency disturbances characteristic of the spacecraft environ-
ment. It is nonetheless useful to examine the general trends
predicted by such analyses since they can provide at least
qualitative guidance for more detailed analytical and numeri-
cal studies.

The determination of tolerable g-levels using OM analyses
is based upon estimations of the response of a system to ei-
ther steady accelerations or time-dependent disturbances of
the form
g(r) = acos{w?), 4)
~here @ is the angular frequency of the disturbance. The sus-
ceptibility of an experimental system to such disturbances is
defined via the magnitude of a particular response (say a
temperature, compositional or velocity fluctuation) which
must not be exceeded in order to bring the experiment to a
successful conclusion. The most obvious trend predicted by
analyses to date is shown in figs. 3-5. The curves depict the
maximum tolerable residual acceleration magnitude as a
function of frequency, f = @/2 n, for given experiments and
have the form
G = Flo0, 1T .. p), &)
where /1, is the magnitude of the maximum allowable re-
sponse, and the p;, i = 1, N represent the N material proper-
ties of the system (such as viscosity, thermal and species dif-
fusivities). In general, below 1072 to 103 Hz the response is
expected to be either independent or weakly dependent on
frequency. At higher frequencies the analyses indicate that
the allowable residual acceleration magnitude increases as
approximately the square of the frequency. This behavior can
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Fig. 3. Estimated tolerable residual accelerations (in uniis of g =
9.8 m s72) as a function of frequency for: 1) a fluid phvsics experiment
involving a temperature gradient. 2) a crystal growth experiment and 3)
a thermodiffusion experiment. After Monti etal. [38]
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Fig. 4. Estimated tolerable residual accelerations (in units of g =
9.8 m 572} for semiconductor and metal solidification experiments. The
sensitivity parameter is longitudinal segregation, Ac/c. Pe, = 3, tem-
perature gradient = 50 K cm~', k = 0.1. After Monti etal. [36]

Fig. 5. Ijjstimared tolerable residual acceleration (in units of g =
9.8 m s—2) ranges for diffusion experiments. After Monii etal. [36]
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be understood upon consideration of the following OM esti-
mates [38] (used to obtain fig. 3) for velocity, temperature and
concentration changes associated with the acceleration (4):

o 8T 6)

(" + v LY

- AT/ L
T~ Vu NI TSGR 7
? (o + a7 LY )

R . AC L
O0C ~ ¥V, — =", 8
'+ DALY ®)

where g*is the residual acceleration magnitude,

¢ is the mass density,

and Ag-pis the change in density due to temperature and/or
composition;

AT L, AC-Land L are. respectively, a characteristic temper-
ature gradient, concentration gradient and length;

x is the thermal diffusivity.

The sensitivity limits are obtained by using either 5T, §C
or V¥, as a sensitivity parameter and setting g* equal to the al-
lowable residual acceleration g

For situations which involve mixed thermocapillary con-
vection and buovancy-driven convection the governing di-
mensionless groups are [51]:
the Bond number, Bo = gg* L*/y,
the Grashof number Gr = AT! 7 g* L3/v2,
the Prandtl number Pr = v/,
and the Surface Reynolds number Rs = |yr! AT Louv.
Here | v7] is the rate of change of surface tension ¥ with tem-
perature,

/i is the coefficient of thermal expansion,
v is the kinematic viscosity,
(1 is the shear viscosity.

These groups respectively represent the ratios of buoyan-
cv force to surface force, buoyancy force to inertial force,
thermal and momentum timescales, and surface force to iner-
tial force.

The relative importance of gravity and thermocapillary
forces can then be estimated upon considering the relative

magnitudes of the velocity due to buoyancy and the velocity
due to thermocapillary effects [50, 51}. The latter is given by

= lrrlar ] (9)

u

For thermocapillary flow to dominate, the ratio of Veto V™
must be less than one. For this to occur, the maximum mag-
nitude of the acceleration must satisfy:

gt < |y W H VALY
T

{10)
Eq. (10) can be re-interpreted in terms of the ratio of the
Grashof number, Gr, and the surface Reynolds number, Rs.
The condition for buoyancy and thermocapillary forces to be
the same magnitude is

Gr & (Sr* + 1) 2, (I
where St = wL?/vis the Strouhal number.

This condition is illustrated in fig. 6. Three regimes of in-
terest are identified. These regions are defined by the relative
values of the Grashof, Strouhal and surface Reynolds num-
bers. In region I, the Strouhal number, S, is less than one,
and the condition that thermocapillary forces dominate is
equivalent to that for a steady flow. In region II, Sris greater
than one. In this region, for a fixed value of Rs, the value of
Gr required to give buoyancy forces equal weight to thermo-
capillary forces increases with increasing values of the Strou-
hal number. This essentially reflects the fact that the charac-
teristic time for the fluid response greatly exceeds the period
of the disturbance. Thus, thermocapillary forces dominate at
higher values than in region I. In region I1I buoyancy forces
predominate over thermocapillary forces. For situations here
a boundary laver scaling is appropriate i.e. Rs » 1[50]. The
relative importance of buoyancy can be estimated via the ra-

tio
Gr= Rs* (S + 1)! 2. (12)

Fig. 7 depicts the relationship between the estimated toler-
able g-evel and the frequency of the acceleration for experi-
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Fig. 6. Tolerable acceleration limits jor a thermocapiliary flow experi-
ment expressed in 1erms of Grashot - Gri, Strouhal 151. and Surface
Revnolds i Rs) numbers
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Fig. 7. Tolerable acceleration limits (in units of g = 98 ms~%j as a

Junction of frequency for the thermo-capiflary experimenis with proper-

ries listed in table 2. ai Gravity forces 1% of thermo-capillary forces,
b1 gravity forces 10°% of therma-capillary forces
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'e 2. Physical properties and dimensionless groups for various experimenial systems: I-di-methy! silicone oil {44 ]. 2-methanol [81], 3-NaNQ; [45], 4-indium

3-selenium - (82], 6-sificon [15]
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ments with the physical properties given in table 2. These fig-
ures represent estimates based on two extreme flow regimes,
penetrative or “viscous” flow (fig. 7a) and boundary layer
flow (fig. 7b) and may be respectively considered as “worst”
and "best” case estimates for the given sensitivity parameters.
The curves have been determined for a sensitivity criterion
which requires the tolerable acceleration levels to be such
that the buoyancy forces should not exceed 10% of the ther-
mocapillary forces (if the requirement had been 1%, the tol-
erable accelerations would be an order of magnitude small-
er). In terms of acceleration levels predicted for the space
station or measured on past missions the practical sensitive
ranges are restricted to disturbances with frequencies less
than 10 Hz. The majority of the estimates suggest that for
these experimental parameters, periodic vibrations will gen-
erally not lead to significant buoyancy effects.

The above examples estimate the effects of simple single
component accelerations. In reality, low-gravity disturbances
tend to be assaciated with more than one frequency. Given
that a system may respond to a multi-frequency disturbance
in an “additive” way, tolerance curves such as these may un-
derestimate the response to a given low-gravity disturbance.
For example, models of the DMOS experiment, show that
mass transport has an additive response to the (multi-fre-
quency) residual acceleration [39]. Post flight analysis of the
experiment results has demonstrated that the amount of mix-
ing observed between organic liquids can be explained by
the additive response of the system to a muiticomponent dis-
turbance.

In many cases an a priori choice of length or time scales
may not be obvious. For example, in a study of dopant (so-
lute) uniformity in directionally solidified crystals, the OM
estimates of Rouzaud etal.[52) and Camel and Favier [83] are
in agreement with the direct numerical simulations of’ Chang
and Brown [84] for a Schmidt number (ratio of the melt’s
kinematic viscosity to dopant diffusivity) of 50 but overesti-

mate the amount of radial segregation for a Schmidt number
of 10.

The results of an order of magnitude or scaling analysis
have been compared in [80] with those of numerical simula-
tions of the effects of steady residual acceleration on compo-
sitional non-uniformity in directionally solidified crystals.
The basic model consisted of a Bridgman-type system with
an ampoule translated between hot and cold zones spearated
by a thermal barrier. In order to apply the Camel-Favier
technique [52, 83] to the numerical simulation, it was neces-
sary to evaluate a proportionality constant, x,°. This relates
the maximum convective velocity obiained in the numerical
simulations with the Grashof number. The value of this con-
stant depended on the orientation of the acceleration, and on
the chosen length scale. The adiabatic zone length L, yielded
results which best showed the trends predicted by the Camel-
Favier approach. Table 3 lists values of x, associated with
different choices of L, as a reference length. Having calculat-
ed x, we then determined the transport regime (see refs. [52,
80, 83] for details) by graphing, in fig. 8, GrSc vs Pe, for the
case of the residual acceleration parallel to the interface.
Here S¢ (Schmidt number) gives the ratio of kinematic vis-
cosity to thermal diffusivity, and Pe, = VL/D, is a ratio of
the translation rate to the characteristic diffusive speed where
L is the characteristic diffusion length and D the solute diffu-
sivity. The lateral composition non-uniformities in the crystal
obtained from numerical simulations [9] are also given in
fig. 8. A comparison between computed and predicted non-
uniformity values showed that at high values of GrSc(region
Ic in fig. 8), the order of magnitude approach meets with
some success but is less faithful at low values of GrSe(for ex-
ample the transition between regions Ib and II). Fig. 8 also
contains two cases for which Pe, is reduced at fixed GrSc.
According to the estimates the lower GrSe case should have
yielded a higher compositional non-uniformity as the growth
rate was reduced, i.e. the estimates predict that the system

Table 3. Comparison of numerical (%)) and order of magnitude estimates {,,) of compositional non-uniformity Jor different choices of length scale
S0]. The non uniformity X in these cases is given by & = [¢(0) - ¢} /01, ¢ is the melt composition far from the crystal and, because k < 1, ¢(0)

iv the maximum value of the composition at the interface

g-orientation L [cm] Xu Gr Se ol %] S [%0] Pe, regime
parallel 1.0 0.066 145 10 61 10 5 11 (b)
parallel 0.25 0.27 227 10 61 73 1.25 I(b)
parallel 1.0 0.066 145 15 7 5 75 11 (b)
parallel 0.25 0.27 227 15 IA 40 1.875 11 (b)
parallel 1.0 0.066 145 15 73 25 12.5 11 (b)
parallel 0.25 0.27 227 25 73 21 3125 11 (b)
parallel 1.0 0.066 145 10 12 18 0.5 I(b)
parallel 0.25 0.27 227 10 12 8 0.125 1(b)
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Fig. 8. A plot of GrSc vs. Pe, for the results of numerical simulations for
steady accelerations paraliel 1o the crystal-melt interface [80]. The solid
and dashed lines delineate the jollowing transport regimes: [ a-c con-
vective regime; 11 advective-diffusive regime [83] Note that the adia-
batic zone length has been used o calculate the Grashof and growth
Peclet numbers, and thai x, = 0.27. Numbers in parentheses indicate
the value of compositional non-uniformity & = 'Cou - Coun /cw .
100%. wehre c, denoies the crvsial composition at the melt-crystal inter-
Jace, associated with each of the numerical results

moves closer to the convective diffusive transition. This was
not reflected in the non-uniformity obtained from the numer-
ical simulations. Evaluation of the numerical results showed
that the increase in the characteristic diffusion length scale
(associated with reduction in growth rate) led to an order of
magnitude decrease in the solute gradient at the interface.
Hence, because the system-wide variation in composition is
small, the interfacial non-uniformity is correspondingly
small.

The above results indicate that scaling arguments alone
can at best be expected to yield order of magnitude accuracy.
The limitations of scaling arguments are hardly surprising if
one considers the neglect of the multi-dimensionality
{boundary conditions, flow structure, etc.) of the physical sit-
pation which is inherent in such scalar descriptions. Of
course, prior knowledge of the system behavior can be used
to locally improve the accuracy of the scaling, (e.g. Kimura
and Bejan [85]). Similarly, if a system locally exhibits one-di-
mensional behavior, such as boundary layer flow, then the
appropriate scaling for the formal reduction of the transport
equations can be used effectively to estimate the local system
response. [n general, however, our understanding of the re-
sponse of systems to residual acceleration can be furthered
only by an approach which uses scaling, mathematical mo-
delling and, naturally, the results of experiments in a comple-
mentary fashion.
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3.2 Analytical Models

A few attempts have been made to assess the effects of time-
dependent residual acceleration using analytical models
[53-59]. The first attempt to model the effects of disturbances
on heat transfer between a fluid and a solid bounding medi-
um was carried out by Gebhard [53]). Under the assumption
that the fluid and its container would be subject to a “se-
quence of abrupt relative displacements spaced by a time in-
terval 1. ...”, Gebhard took t.to be a random distributed
variable. He showed that as 1, (the most likely value of t.)
decreases, the resulting heat transfer was greater than pre-
dicted by conduction in the absence of a disturbance. In par-
ticular, it was found that for 1,, < d?/Kk (where dis a charac-
teristic length and « is the thermal diffusivity) the heat
transfer increased rapidly as 7,, decreased. The main limita-
tion of this model is that fluid convection (and thus fluid
properties such as kinematic viscosity) do not enter the ana-
lysis. It is well known that the response of heat transfer to
convection varies according to the Prandt! number. In partic-
ular, for low-gravity flows (as we shall see later) the tempera-
ture field is less sensitive to convection for low Prandtl num-
ber fluids (Pr < 1).

Approximate solutions for transient convection in a cylin-
der with an azimuthal temperature variation have been ob-
tained by Dressler [54]. Residual accelerations representing
the motion of an astronaut and a transient rotation of the
spacecraft were imposed on the system. Linear accelerations
were imposed perpendicular to the cylinder axis. For kine-
matic viscosities of 1072 cm? s~', cylinders of radius 1 and
2 cm with a maximum temperature difference of 95 K across
the diameter were examined. The maximum fluid velocities
consequent to the astronaut motion (modelled by a sequence
of two step functions separated by 2 s with 4.10~* g magni-

v =12x10%cm s’

7
,/’ x= 0.06°
e
/// LargeD 10 cm
- l”2= 170 s
T B 5
Time (sec)

0 E 10 0
Time (sec)

v =-3x10‘cm ¢’

Fig. 9. Transient convection in large and small test cells due Io residual
accelerations caused by astronaut motion after Dressler {54]. Here x is
the angular displacement, v the velocity and t,.; is the decay time given
by 0.68 R /v
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~tude, 0.5 s duration and zero mean, oriented perpendicular to
the temperature gradient) were 12 um s~' for both the large
and small diameter cylinders (see fig. 9). For the larger cylin-
der the second pulse reduced the velocity from 12 um s~ o
0 by the end of the pulse. The effect of the second pulse was
to change the velocity in the small container from 12 to —3
um s~ ' by the end of the pulse. The velocity decayed asymp-
totically to zero reaching a value close to zero after 15s. The
reason the response was different for the two containers can
be explained simply in terms of the momentum decay times
(11,2 ~ R*/v) for each container. The velocity in the larger
container had hardly begun to decay when the second im-
pulse arrived. The shorter decay time associated with the
smaller container meant that the impulse acted on a smaller
magnitude velocity which explains the change in direction of
the motion. While the disturbance had a mean value of zero
the fluid particles attained a finite displacement (indicated by
the value x of the angular displacement in fig. 6). Similarly, a
disturbance corresponding to a simple spacecraft maneuver
was examined. The simulated maneuver corresponded to a
90° rotation of the spacecraft at a rate of 1° s='. The maxi-
mum velocities associated with the centrifugal acceleration
were, respectively, 40 and 35 um s~! for the large and small
diameter cylinders.

Experiments involving free surfaces of liquids have a high
probability of responding to residual accelerations. Indeed,
unexpected results have been attributed to residual accelera-
tions in several cases {40, 36-88]. Particular exampies of such
experiments involve liquid (float) zones. Three types of lig-
uid zones are typically the subject of low-gravity expeniments
[89]: isothermal and non-isothermal zones suspended be-
tween inert solids (i.e. liquid bridges), and non-isothermal
zones suspended between a feed rod and a growing crystal.
The dimensionless group associated with the shape of iso-
thermal static liquid zones is the Bond number, Bo, defined
earlier. It expresses the relative importance of gravitational
and surface forces. A comprehensive description of stable
zone shapes in zero gravity, and as a function of Bo. is given
by Martinez etal. [41]. Fig. 10 displays their results for the sta-

20

0 i L/2R 2 3

Fig. 10. Stability limits of an isothermal liquid bridge of volume V and
length L suspended between discs of radius R and subject 10 a steady
axial acceleration defined bv a Bond number Bo. after Mariinez etal.
[41]. The angle @ is defined in the insel
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Fig. 11. The maximum stable zone length of an isothermal liquid zone
suspended berween inert solids of radius R as a function of Bond num-
ber: Comparison of theory and experiment. After Coriell etal. [90]

bility of static zones with a steady acceleration parallel to the
zone axis. In order to relate the Bond number to a given ac-
celeration level they give the value of Bo = 1.4 fora 11 vol-
ume of water subject to an acceleration of 1 cm s~2. For
Bo = 0, the zone volume ¥V = V* = 1 R*L and contact
angle @ = 90° the maximum stable length is 2 R (the Ray-
leigh limit). Coriell etal. [90] investigated the effect of Bo on
the myximum length of such zones and compared theoretical
predictions with experimental results (see fig. 11). The actual
length of the equilibrium zone is determined by the volume,
the contact angle @ and the static Bond number.

Estimates of the effect on the free surface shape of oscilla-
tory residual acceleration parallel to the axis of an isothermal
liquid bridge have been made by Langbein [55]. Not supri-
singly, his calculations suggest that the sensitivity of the sur-
face is highest for disturbances with frequencies close to the
natural frequency of the bridge, typically in the 0.001-10 Hz
range. For the example given in [55], the maximum accelera-
tion magnitudes that can be tolerated by a bridge less than
90% of the maximum stable bridge length (given by the Ray-
leigh limit) range from 5-107% to 5.10~% g. The criterion
used to determine the tolerable residual acceleration was that
the amplitudes of all surface shape excitations with frequen-
cies other than the resonance frequency be kept to 0.1% of
the radius of the column. Examples of the results of this
analysis are shown in fig. 12. The curves represent the maxi-
mum tolerable axial acceleration for a given aspect ratio (fig.
12a), and for a surface response with a given number of
nodes (fig. 12b). The results express the maximum tolerable
frequency a, in terms of the g-jitter frequency w, the reso-
nant frequency, @, of the liquid zone associated with the
m'™ node of the deformation of the zone surface, the viscosity
of the liquid v and the spatial wavenumber

a, < min [V’col - L) - oV q,,,] , )]

where w2, = 7 ¢ [(gm R)* — 1//@R, and
Gm = (m+ )/ H.
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Fig. 12. Tolerable residual accleration fin units of g = 9.8 m 577 for experiments investigating resonance frequencies of liquid columns subject to

axial acceleration, following Langbein [55]
aj Sensitivity for different aspect ratios A =

R is the column radius, and
H the column height.

Note that the global minimum, and local minima of the
tolerable acceleration curve occur at disturbance frequencies
equal to the natural frequencies of the system.

Zhang and Alexander(91] have also analyzed this problem
using a slender-body approximation. The problem of deter-
mining the axisymmetric response of the shape of the free
surface of a cylindrical liquid column bounded by two solid
regions is modelled by a 1-D system of non-linear equations,
It is found that the sensitivity of the zone to breakage and

107

TOLERABLE ACCELERATION [g]

1077 + -~ ,
10 10?107 1Q° 10

FREQUENCY [Hz]

Fig. 13. Curves of rolerable acceleration tin units of g = 9.8 ms=°) vs.
Jfrequency for a maximum liquid bridge shape change of 10% at Bo =
0.002, g. = 1.42.107° g and C = 0.001. The solid curve, the dotted
curve, and the dotted-dashed curve are the results for aspect ratios L- 2
R = 2.6. 1826, and 3.024. respectively. From Zhang and Alexander

192
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2 1 R, bj Change in sensitivity with number of nodes in the deformation for A = 0.9999

shape changes depends on the static Bond number, aspect ra-
tio and viscosity as well as the amplitude and frequency of
the disturbance. The general trend is an increase in tolerable
residual acceleration with increasing frequency. At the eigen-
frequencies of the zone, however, there are strong deviations
from this trend. At these frequencies this model also shows
that the tolerable residual gravity level can be two orders of
magnitude lower. These most sensitive frequencies have been
found in the 107>~ 10~ Hz range (see for example fig. 13).
For the cases examined, maximum tolerable residual gravity
levels as low as 10~¢ g have been calculated. For higher vis-
cosities the tolerable acceleration level is increased for all fre-
quencies. The equilibrium shape, as determined by the
steady background acceleration, has a prounounced effect
on the response at low frequencies. A change in slenderness
of the bridge markedly changes the sensitivity to residual ac-
celeration as the Rayleigh limit is approached. It is clear that
for liquid bridges, small magnitude accelerations cannot be
ignored.

For non-isothermal zones, the dimensionless groups intro-
duced earlier in sec. 3.1 govern the problem. For molten sili-
con Sekerka and Coriell [89] have calculated the values of
these groups. They are presented in table 4. The relative mag-
nitudes of the terms suggest that on earth the zone shape will
be dominated by the capillary effect (large Bo) for typical
Zone sizes, while under low-gravity conditions the zone
shape will be influenced mainly by the temperature gradient
along the interface. In addition (as discussed earlier) dynam-
ic distortions may also be important. Considerations of the
float zone crystal growth process introduge further complica-
tions which ultimately require independent analysis. In the
previous cases, the surfaces of the inert solids between which
the zone is suspended are usually planar. This is generally
not the case for the crystal growth process. The actual shape
depends primarily on the thermal conditions. The influence
of the meniscus angle at either of the crystal-melt-vapor tri-
junctions can also be important and has been analyzed by
Heywang [93] and Coriell etal. [94]. In addition to zone fail-
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Table 4. Values of dimensionless groups Jfor silicon calculated from the data of Chang and Wilcox [92]. The length scale is taken to be the zone radi-

us R: f3; is estimated ar 1.6- 10~

K-!. For space, g, is taken as 10~" g. AT is assumed 10 be 10 °C {after Sekerka and Coriell [89])

Bo Bo Gr A Rs N: = ﬂj_}’_r: Pr Rs
Ry Y
earth
R=1cm 3.4 1.3-10° 43-107% 61072 23.1072 1.4-10°
R=10""cm 34.107° 1.3-107! 43.10°™® 6-10-3 231072 1.4-10°
space
R=1lcm 34107 1.3-10 3. 10-¢ 6-10-3 23.1072 1.4-10°

ure due to the classical capillary instability (or Rayleigh in-
stability), a “dewetting” instability is found to be important.
The instability arises when the angle between the meniscus
and the meli-crystal interface is less than the wetting angle
for the liquid melt on the solid crystal. For Si zones of greater
than 1 cm radius, zone failure on earth occurs due to the
Heywang instability [94, 95]. Zone failure by this mechanism
is unlikely under low-gravity conditions.

Feuerbacher etal. [56] developed an ad hoc model to de-
scribe experiment sensitivity to residual accelerations. The
model is based on the motion of a body in response to an ap-
plied sinusoidal oscillation. The governing equation is that of
a damped harmonic oscillator. The tolerable residual acceler-
ation are (as expected) found to increase with increasing fre-
quency of the disturbance. Furthermore, there is a minimum
tolerable acceleration at disturbance frequencies correspond-
ing to the natural frequency of the system.

The effect of time dependent accelerations on experi-
ments involving drops and bubbles has been examined for
the cases of sinusoidal and Heaviside-function disturbances
[57]. The criterion used to define the sensitivity is that the dis-
placement of the drop not exceed 10% of the drop radius.
For a given set of physical properties, the admissible acceler-
ations can be expressed as a function of frequency (fig. 14).

7
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o 2
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Log S
Fig. 14. Threshold intensity g* = g; R /v d, as a function of normal-
ized frequency S = @ R°-2v after Dewandre (57]. Here gy is the maxi-

mum tolerable acceleration. d, the admissible displacement and r is the
ratio of the drop density 1o that of the surrounding fluid

Microgravity sci. technol. 11T (1990) 2

The tolerable acceleration levels exhibit trends similar to
those depicted in figs. 4-6. )

The influence of the gravity gradient, atmospheric drag
and spacecraft attitude motion on the motion of a spherical
solid particle immersed in viscous fluid has also been consid-
ered [5, 6]. The extent and nature of the influence of the grav-
ity gradient and the atmospheric drag on the trajectory of the
particle are, for a given value of the Stokes drag coefficient,
shown to be dependent on the characteristic orbital attitude,
the magnitude of the atmospheric drag accelerations and the
distance of the particle from the mass center of the space-
craft. 7

Amin [59] has investigated the influence of g-jitter on heat
transfer from an isothermal sphere maintained at a constant
temperature greater than the ambient fluid temperature. The
body force was taken to have a single frequency sinusoidal
time dependence and a small amplitude. A significant result
of the analysis is that the Reynolds stresses associated with
the fluctuating flow result in a steady streaming motion. This
has implications for both heat and mass transport in oscillat-
ing flows. For the low Prfluids examined, it was concluded
that buoyancy induced convection caused by high frequency
g-itter (with amplitudes 1072 g) will result in heat transfer
conditions significantly different from pure conduction.
However, it was found that in high Prandtl number fluids
with small kinematic viscosities, low frequency g-jitter will
influence on heat transfer.

Analyses of heat transfer in (laminar) oscillating flows in
cylinders and between parallel plates [27-33] have shown
that at high frequencies the effective thermal diffusivity is
proportional to

L7

® Ax*
L ede 10
Wo (19

while for low {requencies
Ky~ @ Ax" Wo. (1)

Here o is the circular frequency,

Ax is the cross-stream average displacement of a fluid ele-
ment over half the period of the osciilation, and

Wo = L(w-v) *is the Wormsley number which represents
the ratio of the viscous response time to the period of the os-
cillation.

For a given frequency the heat transfer process was found
to be most efficient for Pr = n/ Wo? i.e. when the character-
istic time, 1; = L°/« associated with heat diffusion is equal
to half the period of the oscillation. Fig. 15 illustrates this re-
sult for fluids with different diffusivities and L = 1 cm.
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Fig. 15. Plot of effective diffusivity, k., vs. Wormsely number Wo, after
Kurzweg [31]

3.3 Linear Stability and Gravity Modularions

The stability of a heated fluid layer of infinite lateral extent is
affected by gravity modulation and has received a limited
amount of attention for the case of sinusoidally modulated
gravity {74-77]. The static case, where the gravity vector is
perpendicular to the layer and paraliel to the temperature
gradient, is stable unless the critical Rayleigh number is ex-
ceeded. The effect of gravity modulation is to introduce sta-
bility for given combinations of modulation amplitude and
frequency for situations which in the absence of modulations
would exhibit instability. In contrast, for the case where the
gravity vector and the temperature gradient are anti-parallel
(which is stable for a steady gravity vector), instability can
occur due to gravity modulation.

The work of Biringen and Peltier {77} focused on the be-
havior of a 3-D Rayleigh-Bénard system subject to spatial
and temporal gravity modulation. They used a pseudo-spec-
tral method to examine the system numerically and studied
the effects of sinusoidal and random gravity modulations
with the gravity vector oriented perpendicular to the fluid
layer. It was found that when the base acceleration was re-
duced from | g to zero, the system parameters that had re-
sulted in a synchronous response at 1 g led to a conductive
state for the modulated zero g case. The spatially random
modulations about a zero g base acceleration led to excita-
tions of the 3-D temperature field. These excitations were
less pronounced than for the 1 g case. For temporally ran-
dom modulations about zero g, the cases considered that
where excited at 1 g no longer exhibited excitation.

The effect of oscillating accelerations and impulse forcing
of an interface separating two immiscible fluids has recently
been considered [78, 79]. Both these analyses are restricted to
time-dependent accelerations with zero mean which are
oriented perpendicular to the interface between the fluids.
The linear stability of a basic state characterized by a planar
interface and an oscillating pressure. For the case of an arbi-
trary oscillating disturbance it is shown that the linear evolu-
tion of an infinitesimal perturbation of the interface is go-
verned by a single integro-differential equation. Except in the
limit of zero surface tension the effect of viscosity is shown
to be small. As surface tension becomes dominant, resonant
instabilities are excited at lower and lower wavenumbers.
The interface is found to be more unstable to impulse type
forcing than to sinusoidal forcing [79].
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3.4 Direct Numerical Simulation

The effects of low-gravity on the transport of heat and mo-
mentum have been examined in a number of articles [37,
60-71]. Roberison etal. [60, 61] found that for convection in
circular cylinders with azimuthal variations in temperature at
the boundary and the gravity vector applied perpendicular to
the cylinder axis, the intensity of convection follows the pre-
diction of Weinbaum’s first order theory [96] for low Ray-
leigh numbers. Weinbaum’s first order theory predicts a sim-
ple sinusoidal dependence of the maximum velocity as a
function of orientation of the gravity vector. The effects of a
variety of acceleration vectors (sinusoidal, cycloidal and lin-
ear periodic) on motion in three fluids corresponding to mer-
cury, helium and water (1072 < Pr < 10) were studied by
Spradley etal. [62]. They found that the steady mean part of
the applied disturbance is more important than the oscillato-
ry part (frequency = 1 Hz) in determining the flow field and
heat transfer. Kamotani etal. [37] solved a linearized approxi-
mation of the Boussinesq equations and investigated the ef-
fect of an applied acceleration consisting of a time mean part
and an oscillatory part on the temperature and flow fields in
a rectangular enclosure. They found that the thermal convec-
tion was predominantly oscillatory in nature. In addition
they found that the acceleration perpendicular to the temper-
ature gradient is the most important for the generation of
fluid motion.

The response of natural convection of a Boussinesq fluid
in a cylinder to residual acceleration has been examined by
Heiss etal. [64], and Schneider and Straub [97]. In the work of
Heiss etal. the calculations are three-dimensional and in-
volve gravity pulses and a rotating gravity vector. The ends of
the cylinder are held at different temperatures. The cylinder
walls are taken to be either perfectly insulating or perfectly
conducting. The results are presented in terms of the relevant
dimensionless parameters in the original papers. Fig. 16 illus-

Maximum Velocity

1000

0.02 0.04

Fourier Number

Fig. 16. Dimensionless maximum velocity caused by impulse distur-
bances as a function of Fourier pumber F, = 1 x°.7d, after Heiss etal.
[64]. Here t is the time [s]. K is the thermal diffusivity ferr 577), d is the
diameter of the cvlinder {cm]. The parameter Ra* is the Ravleigh num-
ber associated wiih the disturbance which is of dimensionless durarion
F* = 55-1077. Ra* = frg L' AT/v k, where L is the cylinder
length fcm], AT is the temperature difference between the ends of the
cylinder [K]. B; is the coefficient of thermal expansion [K~], g is the
[magnin?cl]e of the acceleration [em s=°] and v is the kinematic viscosity
cnr s
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trates their results for impulse disturbances. The physical
conditions were taken to correspond to: a cylinder of aspect
ratio 1, with diameter = 1 cm, v = 51077 ecm" s, x =
7141073 cm” s~ !, f = 2.5-107% and a temperature differ-
ence, AT, of 25 K. The magnitude of the acceleration pulse
(duration = 0.7 s) corresponding to a Rayleigh number,
Ra*, of 2,000 is ~ 3-10-3 gresults in a maximum velocity of
approximately 5.8 cm s~!. The decay time for the flow field
is about 5.6 s. Notice that for all the results, the decay time of
the pulse is independent of the magnitude of Ra*. For a ro-
tating gravity vector of a given magnitude, the maximum ve-
locity of the system is independent of the dimensionless fre-
quency f = f* d*/x, up to f ~ 10 whereupon it decreases
rapidly with increasing frequency. For the fluid with the
physical properties described in the previous example, f*
corresponds to 7.14-10-% s~ 1,

Schneider and Straub [97] examined the effect of Prandtl
number on the response to g-jitter for the same system as
Heiss etal. They examined the response of the system to
pulses of infinite length and sinusoidally varying pulses. For
sinusoidal pulses they found for systems with Pr = 0.71 and
7.0 (air and water) that the maximum velocity decreased with
increasing frequency for dimensionless frequencies, F = f
L*/k, greater than 10. At Pr = 7 a maximum in the velocity
was observed between F = 10 and 100 for the maximum am-
plitude pulse examined (Ra = 2-10% or |g} =~ 3-1077 g for
a fluid with the properties of water, a | cm diameter cylinder
and a temperature difference of 10 K). They determined that
the system was least sensitive when the transient accelera-
tions acted along the cylinder axis.

The extent to which gravity causes buoyancy-driven fluid
motion (and thus, solute redistribution) during directional
solidificaiton has been examined using numerical models of
buoyancy-driven convection in cylindrical and rectangular
geometries [9, 65-69, 84, 98-101]. Except for [9, 65-69] these
studies are restricted to axisymmetric situations in which a
steady gravity vector is oriented parallel to the axis of a cylin-
drical ampoule. McFadden and Coriell {66] have undertaken
2-D calculations of the effects of time-dependent accelera-
tions on lateral compositional variations during directional
solidification. The gravitational acceleration was assumed to
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Fig. 17. Maximum lateral solute segregation Ac/c, iwhere ¢ Is the
far-field solute concentration in the melt in the crysial as a junction of
the period of the gravitational oscillation. After McFadden and Coriell

[66]
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have a uniform magnitude and rotation rate. The amount of
compaositional non-uniformity was found to increase with de-
creasing rate of rotation (see fig. 17).

Two- and three-dimensional models of directional solidift-
cation from dilute gallium-doped germanium melts have
been used to determine the sensitivity of crystal composition-
al uniformity to both time-dependent and steady residual ac-
celerations [9, 67, 69]. The specific boundary conditions, ther-
mo-physical properties of the melt, growth rates and am-
poule size are all found to play a role in the determination
of the experiment sensitivity. For a given set of operating
conditions, it is found that at growth rates on the order of
6.5 mm s~ the orientation of the experiment with respect to
the steady component of the residual gravity is a crucial fac-
tor in determining the suitability of the spacecraft as a means
to suppress or eliminate unwanted effects caused by buoyant
fluid motion. The worst case appears to be when the acceler-
ation vector is parallel to the crystal interface. At growth
rates on the order of microns per second, this orientation
leads to compositional non-uniformities of 10-20% when the
magnitude of the acceleration is of the order 10~ g. If, how-
ever, the growth rate is lowered by an order of magnitude,
the non-uniformity is reduced significantly (down to 1-5% in
this case). Table 4 summarizes the results obtained for steady
accelerations.

The directional solidification (Bridgman-Stockbarger)
process is also extremely sensitive to transient disturbances.
The response of the system to a variety of impulses will be
discussed. For example, a 3-10~? g impulse of one second
duration acting parallel to the interface of a growing crystal
produces a response in the solute field which lasts for nearly
2,000 s. Consequently lateral and longitudinal compositional
variations occur over a length of nearly 6 mm in the grown
crystal.

The response of the solute field and the lateral non-uni-
formity to oscillatory accelerations varies from no response
at all (at frequencies above 1 Hz with amplitudes below
10~ g) to a significant response at 10~ Hz at amplitudes on
the order of 107% g. In addition, additive effects were ob-
served for combinations of a steady and a low frequency re-
sidual acceleration component. These additive effects gave
rise to significant lateral and longitudinal non-uniformities in
concentration. A number of different types of periodic dis-
turbances were employed. Single frequency disturbances of
the form g(r) = g + g, cos(2nf,t) were examined with g, = 0,
V2-10"%and \2-10~° g, oriented parallel, perpendicular
and at 45° to the crystal-melt interface. The frequency range
examined was £, = 10~4 10-%, 1072, 10~', 1 and 10 Hz. For
frequencies greater than 1072 Hz, there were no discernable
effects on the solute fields. The velocity field did, however,
respond to the oscillatory disturbances. For the case of 10~
Hz (at 5-10~% g) the response of the solute field was signifi-
cant. Lateral and longitudinal non-uniformity levels in excess
of 15% were calculated. Fig. 18-20 show the lateral non-uni-
formity as a function of time and highlights the additive ef-
fect of oscillatory and steady components of the residual ac-
celeration.

The effect of a multiple frequency disturbance is illustrat-
ed in fig. 20. The acceleration consists of steady and periodic
contributions with the form: g(1) = go + g1 cos(2n 107%7)
+ g cos(2m 10771). Here [go | = V2-107% g, |g/ | =
3y2-107% g and lg,| = 3 /2 -10~* g. The magnitude of
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Fig. 18. Lateral non-uniformity in composition, &, plotted as a function
of time for an oscillatory residual acceleration with a maximun magni-

tude of 3+/2- 10~ g and a frequency of 10”7 Hz, acting parallel to the
crystal-melt interface [67]. The initial state was purely diffusive

Fig. 19. Lateral non-uniformity in composition, &, plotted as a function
of time for a residual acceleration consisting of a steady part with mag-
nitude \/'—2- 10 g and an oscillatory par! with @ maximum magnitude
of 3\2-107% g and a frequency of 10=° Hz, acting parallel to the
crystal-melr interface [67]. The calculation was started from a steady

the compositional non-uniformity & is seen to vary with the
frequencies of the acceleration. More recently, it has been
shown [67] that, particularly at high frequencies, it is impor-
tant to consider the long time behavior of the system, be-
cause for high frequency disturbances (=~ 0.1-1 Hz) the tran-
sient behavior of the system is more sensitive than the long
time behavior. For example, the response to a | Hz 107° g
acceleration was found to exhibit a concentration non-uni-
formity on the order of 10% during the first 80 s whereupon
it decayed slowly to 1% of over a period of 2,500 s. In addi-
tion, calculations have been made using sample acceleration
time histories obtained on Spacelab 3 (SL-3). The results var-
ied according to the type of SL-3 data that were input. For

flow associated with a 2+ 10~° g acceleration acting parallel 10 the
inrerface

Fig. 20. Lateral non-uniformity in composition, £, plotted as a function
of time for a multi-component disturbance consisting of a steady low g
background plus two periodic components: g(tj = gy + & cos (2 7
107 1) + g cos 2w 107 1), where)g{,[ =/2.10° |g]| =
3/2-10°% and | g;| = 32107 [67]. The calculation was siarted
Jrom a steady flow associated with a V' 2-10°° g acceleration acting
perpendicular 1o the interface

the example shown in fig. 21. The response of the solute field
was negligible, although the velocity field fluctuated on the
order of the crystal growth rate. The system exhibited some
response to transient disturbances (for example the struc-
tural response to thruster firings) that were superimposed on
background low frequency acceleration. Low frequency
{< 10! Hz) acceleration components with amplitudes of
10~* g or more were also found to give rise to undesirable
non-uniformity.

Griffin and Mokatef [72, 73] modelled the nature of melt
convection in a Bridgman system subject to steady and un-
steady axial acceleration. They also found that at conditions
corresponding to low-gravity, the response time of the melt
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Fig. 21. Lateral non-uniformity | £ | as a func-
tion of time for accelerations taken from a
sample time series (see inset) constructed from
data obtained on Spacelab 3 [69]. The accel-
| eration consists of a repeated “noise” segment
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1500 flength 10 s, 10~' Hz < f < 1 Hz) and a

thruster firing event (length 105, 107" Hz < f
< 13 Hz). The latter is introduced at 10 and
80s
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Table 5. Compositional non-uniformity & [%] for Ge:Ga [9,80]: & =
(Conus - Comn)Coasn Where ¢, denotes the crystal composition at the melt-
crystal interface

! residual orientation ampoute width [cm]
acceleration i 0.5 2.0
magnitude growth rate {mm s~ ']

(g] N g 6.5 0.65 6.5 6.5
A) 107 1 — 80
10-* — 92.7 1.9 12.0
/ 70.9 113
| 6.4 0.95
5.10-% | 32
7 39
— 54.2
10-° — 1.3 20
7 8.0
| 0.7 0.0
' B) 1035 — 226 64.5
[ 10-¢ - 23

e, is the unit vector parallel to g, Vis the normal vector to the crystal.
I = 1 cm for all cases. Values in parentheses indicate 3-D results.
All calculations were undertaken using the thermo-physical proper-
ties of gallium-doped germanium (9) and A) and B) refer to the oper-
ating conditions listed below.
Operating conditions
A) hot zone temperature (7;) 1,331 K

distance between inlet and interface (L) 1.0 cm

height of adiabatic zone (L,) 2.5 mm

ampoule width (diameter) 1.0 cm
B) hot zone temperature (7;,) 1,251 K

velocity is proportional to the momentum diffusion time (i.e.
it is controlled by the characteristic system length scale and
melt viscosity). In accord with the general trend exhibited by
most physical systems discussed in this article, they found
that the velocity response to sinusoidal g-jitter decreased as
the inverse square of the momentum diffusion time.

A general conclusion that can be drawn from all attempts
to characterize gravity-driven convective effects on direction-
al solidification from two component melts is that the maxi-
mum lateral solute non-uniformity (radial segregation for the
axisymmetric cases) occurs near the transition from diffusion
dominated to convection dominated growth conditions [52,
84, 9]: that is, when convective velocities are of the same or-
der of magnitude as the diffusive velocities. The conditions
under which this “transition” takes place will depend on the
specific nature of the forces driving convection. The orienta-
tion of the steady component of the gravity vector is crucial
in determining the magnitude of the gravity vector at which
this transition occurs. Thus, for a given set of operating con-
ditions the orientation of the gravity vector determines the
suitability of a low-gravity environment for directional solidi-
fication experiments.

Motivated by the growth of rriglycine sulfate (TGS) crys-
tals on Spacelab 3, [11], Nadarajah etal. [102] have examined
the acceleration sensitivity of crystal growth from solution.
Thermal and solutal convection were included in their analy-
ses and the crystal growth rate was chosen as the sensitivity
parameter for the response to convective transport. Simula-
tions were carried out for steady, impuisive and periodic ac-
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celerations in order to determine tolerable acceleration lev-
els. Long-time simulations of the experiment were conducted
with steady background accelerations of 10~ and 1077 g.
Impulsive and periodic disturbances of higher magnitudes
were imposed at intermediate points. For steady accelera-
tions the system was shown to have diffusion dominated
transport at 10~¢ g but for 10~ g a transition to convection
dominated transport occurs. Fig. 22 summarizes the results
for oscillatory disturbances. For each case, the numbers
correspond to the ratio g § Ac/f v*, which is an estimate of
the ratio of buoyancy to inertial forces. Here f§ is the solute
expansion coefficent, Ac the characteristic concentration dif-
ference, fis the frequency of the acceleration and v* is the
calculated characteristic fluid velocity. Clearly, for this exam-
ple, a simple estimate alone will not suffice to determine the
system sensitivity. The system is relatively stable to impulsive
and periodic disturbances unless their magnitudes are very
large.

i
(Y]
3
= 10’ 154
3 Intolerable
E
< 3
c 10°F 5Q & 50 & 150
L2
et
@©
e
2 104 50 O 50 0 060D
[1]
Q
Q Tolerable
-9
105 L A i
10° 10° 0° 107 10°

Frequency [Hz]

Fig. 22. Sensitivity of crystal growth from solution to various periodic
disturbances. The solid line separates tolerable responses (10% or less
growth rate fluctuations) from intolerable ones. For each case, the num-
bers correspond to the ratio g B A ¢/f v*, which is an estimate of the the
ratio of bouyancy and inertial forces. After Nadarajah etal. [102]

4 Summary and Discussion

The work described in this paper examines the sensitivity of
a variety of space experiments to residual accelerations. In
all the cases discussed, the sensitivity is related to the dynam-
ic response of a fluid. In some cases the sensitivity can be de-
fined by the magnitude of the response of the velocity field.
This response may involve motion of the fluid associated
with internal density gradients, or the motion of a free liquid
surface. For fluids with internal density gradients, the type of
acceleration to which the experiment is sensitive will depend
on whether buoyancy-driven convection must be small in
comparison to other types of fluid motion (such as thermoca-
pillary flow), or fluid motion must be suppressed or elimi-
nated (such as in diffusion studies, or directional solidifica-
tion experiments). In the latter case, the experiments (for
example diffusion experiments and directional solidification
experiments) are sensitive to steady and low frequency accel-
erations (< 10" Hz). For experiments such as the direction-
al solidification of melts with two or more components, de-
termination of the velocity response alone is insufficient to
asses the sensitivity. The effect of the velocity on the compo-
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sition and temperature field must be considered, particularly
in the vicinity of the melt-crystul interface. As far as the re-
sponse to transient disturbances is concerned the sensitivity
is determined by both the magnitude and frequency the ac-
celeration and the characteristic momentum and solute diffu-
sion times.

The directional solidification of doped germanium crys-
tals has been carried out on Skylab [17, 18,103, 104] and the
Apollo-Soyuz Test Project (ASTP) [105, 106]. The latter in-
volved the directional solidification of seeded Ge melts.
Melts were doped with gallium and some were doped with
1% Si and 0.001% Sb [105]. The results of these experiments
revealed strong asymmetric non-uniformities in the space
grown crystals. Lateral variations were also observed in sam-
ples grown under terrestrial conditions but were much less
pronounced {25]. It has been argued that the asymmetric re-
distribution of the dopant can be ascribed to “barometric dif-
fusion” of the solutes due to the acceleration gradient in the
melt arising from the rotational motion of the spacecraft
[105, 106]. The basis of the argument, however, appears to ig-
nore the presence of gravity gradient and atmospheric drag
effects and does not explicitly account for the spacecraft atti-
tude motions. It has been demonstrated [9] that melt convec-
tion can occur in response to a low magnitude steady residu-
al acceleration, and that whenever the acceleration vector is
not aligned with the ampoule axis strong asymmetries in
composition can occur. Since there is a non-linear depen-
dence of compositional uniformity on convection, there is al-
ways the possibility that the observed non-uniformities in the
terrestrially grown samples will be smaller than those ob-

residual acceleration cannot be discounted as the origin of
the non-uniformities.

Thermocapillary flow experiments require that buoyancy
effects are small in comparison to capillary effects. The esti-
mated range of accelerations to which they are sensitive lies
between 5-10~% Hz and 2 Hz for the most sensitive cases.
Unless the magnitude of the effective buoyancy force (ex-
pressed through the Grashof number) associated with a given
acceleration is on the order of or greater thun Rs (1 +
S, "2, buoyancy effects are not likely to be significant. It is
possible that more subtle effects of the acceleration environ-
ment might occur (for example influencing the transition
from steady to oscillatory flow) but this cannot be deter-
mined by order of magnitude analysis. It is more likely that
thermocapillary flow experiments will be most sensitive to
the motion of the free surface in response to g-jitter.

The response of free surfaces to gjitter has been ex-
amined through analytical and numerical models. For cylin-

drical liquid bridges this has been undertaken only for axial
accelerations. The shape of the surface is most responsive to
disturbances close to the natural frequency of the bridge and
its harmonics. The sensitive frequencies lie in the 5- 1077 -
10 Hz range, with maximum tolerable magnitudes from
10-% - 10~* g depending on the sensitivity criterion and the
particular model employed.

Fig. 23 depicts the range of measured acceleration ampli-
tudes (courtesy of Dr. H. Hamacher. DLR, and M. J. B. Rog-
ers, University of Alabama in Huntsville) as a function of fre-
quency for several Shurtle missions. It should be remembered
that in addition to the accelerations shown here there are

gravity gradient and atmospheric drag accelerations with
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Fig. 23. Residual accelerations measured on orbit (in units of g =
9.8 m 57-J. t Data courtesy of Dr. H. Hamacher, DLR, and M. J. B.
Rogers Univ. of Alubama in Hunsville). The Spacelab 3 (SL-3) data
are restricted to measured frequencies between 10~ and | H:z. The
points corresponding to Sled, Hop, Drop, Treadmill, Quiet, FPM ops.
Stowage, refer to activities and experiments on the D-1 mission. FPM
ops stands for Fluid Physics Module operations, P RCS and V RCS
refer to the primary and vernier thrusters. The drag and rotation entries
correspond to accelerations arising from slow variations in atmospheric
drag during an orbir and attitude changes involving rotation

magnitudes on the order of 10~% - 10~7 g which can be
steady (for gravity gradient stabilized type attitudes) or have
frequencies that are twice the orbital frequencies (for a solar
inertial attitude). In fig. 24 we depict these together with g-
tolerance curves selected from the examples discussed ear-
lier. There is some overlap between the sensitivity curves and
measured accelerations. Even if the fact that most of the
curves are obtained for order of magnitude estimates is taken
into account, it is clear that a careful evaluation of the inter-
action between experiments and the residual acceleration en-
vironment is necessary. One the experiment sensitivity has
been determined (which may sometimes require a more de-

' '
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Fig. 24. Acceleration sensitivity curves from selected examples discussed
earlier superimposed on tig. 23. Curves | and 3 correspond to the cases
n=1A=099andn =1, A = 09in fig. 12a. curve 2 corre-
sponds ton = 2and A = 0.9999 in fig. 12b. Curve 4 corresponds 1o
the most sensitive case of -one shape change in fig. 13. and curves 5
and 6 respectively correspond to the semi-conductor and metal melt
growth experimenis from fig. 4. Curve 7 represenis the thermo-diffusion
experiment of fig. 5
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tailed analysis than any discussed in this review) it should be
possible for the experimenter to choose operating conditions
which will minimize the effect of the predicted acceleration
environment. Since flight opportunities are limited, it is par-
ticularly important that the chances of success for any given
experiment be greatly improved by detailed modelling prior
to flight. This will allow investigators to better anticipate un-
desirable effects of the prevailing residual acceleration con-
ditions, and will ultimately lead to a better overail under-
standing of the physical system.
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Sensitivity of liquid bridges subject to axial residual acceleration
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It has become evident that the float zone crystal growth method and isothermal liquid bridges
may be very sensitive to the residual acceleration environment of a spacelab. Indeed, the shape
equilibria show a high degree of sensitivity and, thus, even the small steady acceleration
associated with the effective low gravity environment of a spacecraft cannot be ignored. Using
a slender-body approximation, the problem of determining the axisymmetric response of the
shape of the free surface of a cylindrical liquid column bounded by two solid regions is
modeled by a 1-D system of nonlinear equations. It is found that the sensitivity of the zone
shape depends on the static Bond number, B,, aspect ratio, and viscosity, as well as the
amplitude and frequency of the disturbance. The general trend is an increase in tolerable
residual gravity with increasing frequency. At the eigenfrequencies of the zone, however, there
are dramatic deviations from this trend. At these frequencies the tolerable residual gravity level
can be two orders of magnitude lower at this frequency. For the cases considered the values of
B, were taken to be 0.002 and 0.02 and the dimensionless viscosities, C = v(p/¥R,)'"?, used
were in the range 0.001-0.01. Aspect ratios ranging from 96.3% to 82.7% of the Rayleigh
limit were examined. For these cases, the frequencies associated with the lowest tolerable
acceleration have been found in the 10~ >-10~" Hz range. In terms of previously recorded and
predicted residual accelerations, the sensitive frequency ranges for the cases examined are
10~2-10~' Hz and 1-10 Hz. Maximum tolerable residual gravity levels as low as 107° g have
been calculated. The effect of viscosity is seen to increase the tolerable acceleration level for all
frequencies. The equilibrium shape, as determined by the steady background acceleration, has

a pronounced effect at low frequencies. A change in slenderness of the bridge markedly
changes the sensitivity to residual acceleration as the Rayleigh limit is approached.

1. INTRODUCTION

The low gravity environment of a spacecraft affords the
opportunity to eliminate or minimize the often undesireable
effects of gravity on fluid behavior. Both the fluid physics
and the materials preparatiotri community have an interest in
the sensitivity of liquid zones to residual accelerations. A
truly zero-gravity environment is never achieved and the re-
sidual acceleration that arises due to gravity gradient, atmo-
spheric drag, crew motion, structural vibration, etc.,'? is
characterized by an ever changing magnitude and orienta-
tion and affects the relative motion of any mass in the space-
craft reference frame. Whether a particular space flight ex-
periment involves the study of isothermal zone shapes, or
attempts to utilize the low gravity environment to maximize
the length of the liquid zone in a float-zone crystal growth
experiment, the effects of residual acceleration must be con-
sidered.* Experiments involving free surfaces of low viscos-
ity liquids are sensitive to acceleration. Indeed, for some
space experiments, unexpected results have been attributed
to residual accelerations in several cases.*® Martinez® and
Haynes® comment on the effects of an attitude change dur-
ing the study of liquid column stability and liquid spreading
kinetics on Spacelab-1. The residual acceleration environ-
ment also had a noticeable effect on stationary fluid masses.
Roll rates of 0.13°/sec were apparently “...sufficient to inter-
fere strongly with some of the fluid configurations stud-
ied... .”® Later experiments on D-1 that involved static and
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rotating liquid columns also experienced some interference
that has been attributed to the residual acceleration environ-
ment.” In particular, Martinez recorded the following inter-
ference apparently caused by the residual acceleration envi-
ronment. During the initial stages of the establishment of a
long cylindrical column by liquid injection, a large ampli-
tude deformation of the bridge was observed in response to
shuttle maneuvers. Following this, a 10 cm liquid column
exhibited a pronounced random oscillation.

In an experiment seeking to excite a c-mode deforma-
tion of the bridge an amphora mode’ resulted. The residual
acceleration environment seems to have caused a shift in the
stability limits. The maximum residual acceleration record-
ed during these experiments was 10~ g.

In Table I we have expressed the Bond number
B, = (pgR }/v)g./8 where v is the surface tension, R, is
the radius of the ends of the zone, p is the liquid density, g, is
the acceleration magnitude, and g = 980 cm sec ™2, for the
physical properties of liquid columns used in two of the
space experiments discussed earlier. These estimates indi-
cate that the experiment involving the long liquid bridges
should be more sensitive. In contrast to Martinez, none of
Padday’s experiments were reported to have been affected by
the residual accelerations.

The numerical modeling of the response of a free liquid
surface to time-dependent residual accelerations is compli-
cated by the nonlinearity introduced by the free boundary
motion. Few studies have been conducted on this subject.
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TABLE 1. Dynamic Bond numbers estimated for two D-1 liquid zone ex-
periments in which 5 ¢S silicone oil was used.

Martinez® Padday®
plgem”™ 3 0.92 0.92
L(cm) 10 1.5
y{dynem ") 0.2 0.19
B, 4.5(10) *g./g 7.1(10) *g, /g

Furthermore, the models to date are based on the assump-
tion of an inviscid bridge,'>"" or have dealt with a linearized
1-D model.”” Thus, we have formulated a simple nonlinear
1-D model of a viscous isothermal liquid zone and used it to
examine the effect of g jitter oriented parallel to the zone
.axis. This allows an examination of interaction between var-
ious components of a typically complex residual acceleration
without the restriction that the response necessarily be lin-
ear. The model is based on a formulation developed by
Lee,'* which has been successfully applied to several types of
liquid bridge problems.'®!" !+ 18
We have examined the effects of single frequency g-jitter
disturbances. The zone response is described in terms of its
deviation from its equilibrium shape. The equilibrium shape
depends on the value of the steady background acceleration.
The sensitivity is expressed in two ways: first zone breakage,
defined in terms of the conditions under which the zone radi-
us goes to zero, and second in terms of a shape change crite-
rion, which indicates when the zone deviates more than 5%
from its equilibrium shape. An optimal searching scheme is
used to find the sensitivity limits of the bridge.

Il. FORMULATION OF THE MODEL EQUATIONS

Consider a slender liquid bridge (see Fig. 1) held
between two parallel rigid circular disks of radius R, sepa-

g(t)

WU ]

Rigid Disk

———Rigid Disk

FIG. 1. Idealized liquid zone configuration.
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rated by a distance L. The disks are aligned coaxially. The
liquid is an isothermal incompressible Newtonian fluid with
constant physical properties. It is held in place by capillary
forces. Consistent with our aim to isolate the mechanical
response of the surface to an acceleration g(z) acting along
the cylinder axis we make the following additional assump-
tions:

(1) Internal motion of the liquid bridge is caused only by
capillary pressure gradients caused by deformation of the
surface.

(i1) The effect of the atmosphere around the bridge is
negligible.

(iii) The interaction of the residual acceleration envi-
ronment with the experiment apparatus is such that the top
and bottom disks vibrate in phase and the frame of reference
for the calculations is then conveniently taken to be attached
to the disks.

The governing equations are rendered nondimensional
using Ry, (pR 3/¥)'%, and Ro(pR §/7) ~ ' to, respectively,
scale distance, time, and velocity. Here p is the mass density
and y is the surface tension. The dimensionless equations for
mass and momentum transfer then take the following form.

In the liquid (O<r< R(z,1), — A<z<A),

1 d(ru)  Jw

—_——l ==, 1
r or + dz (D
du +u du +w du

ap* (azu 10 Jd°u u)
e — y 2
or + art rdr 92 r? @
ow Jw du
_+ _ _
ar “ ar + dz
* 2 2
_ _Op +C(6 w  ldw 2 I;U) 3)
Jz ar*  ror 37

where p* is a reduced pressure given by p* = p + Byg(1)z,
and C = v(p/yR)"? (with ¥ the kinematic viscosity) is a
measure of the relative strength of viscous and capillary
forces. The function  g(#) is given. by
g(t) = 1 4+ (B,/B,)sin wt, where w is the dimensionless cir-
cular frequency. Here, B, = goR2/y is the usual static
Bond number and B, = g pR }/y is a dynamic Bond num-
ber. We define the aspect ratioas A = L /2R,,, where L is the
zone length. The magnitudes of the steady and time-depen-
dent acceleration components are given by g, and g,, respec-
tively. The linear frequency (Hz) of the disturbance is given
by f=w(pR}/y) /27

The boundary conditions at the surface r = R(z,t) are

2C du Jw (Hw (914)}
*x__ _ L 1 re 27 fadndl Pniudl
? (I+Rf)[ar+ iy : 8r+c?z
1+ R?
L (1+ Z—RH)+BUg(t>z, (4)

T U+RHV\ R

du Jw Jdw  du
C|2R,[Z£ 2L 1—R§(—— —)zo, 5
[ (8r az)]+( ) 6r+az )

which, respectively, represent the balance of normal and tan-
gential force components at the surface. In addition, there is
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the kinematic condition

JR JR

2 _utrwZ==0. 6

a Yz (©)
The conditions at z = 4 A are

R(z,t) =1, w(rzt) =u(rzt) =0, N

which fixes the contact line between the disk and the liquid
and ensures no slip of the fluid in contact with the disk. At
r = 0 the conditions

4020 =0, 220,20 =0, (8)
ar

ensure axisymmetry. The formulation is complete upon spe-
cifying suitable initial conditions that we take in the form

R(z,0) =R, (2), w(rz0)=u(rz0)=0, &)
along with the constraint that the volume remain constant,
i.e.,

t A tA
j Rﬁ(z)dz:f R%(z,0)dz =2A. (10)

A — A
The above system of equations defines an unsteady free
boundary problem since the location (and hence the shape)
of the oscillating surface is @ priorf unknown and must be
determined as part of the solution.

In order to calculate the response of the shape of the
liquid zone to time-dependent axial accelerations, we ap-
proximate the system of equations presented in the last sec-
tion and formulate a one-dimensional model. This consider-
ably reduces the complexity of the problem and allows an
examination of a relatively wide range of parameters without
excessive computation times. Meseguer'? used a one-dimen-
sional model that is valid provided the slenderness A is large.
(Recall that the slenderness of a static bridge is bounded
from above by the Rayleigh limit, i.e., A,,,, = 7.) If radial
momentum effects are neglected15 then Eqs. (2) and (3)
become decoupled and the following system of equations
results:

1 d(ru)  Jw

27 =2 =0, 11
r or + dz (b
Jw Jw ap* d*w

L L cov, 12
ot +tw oz oz + az? (2

Since w is now depends only on z, Eq. (11) is easily integrat-

ed and yields

row

20z
Following Lee'* and Meseguer'® we take S = R (z,1)

and Q = S(z,1)w(z,¢) and substitute (13) into the kinematic

boundary condition (6). This yields

as a0
P L% o, 14
at dz (14

which expresses conservation of mass at the surface. Similar-
ly, Eq. (12) can be recast in the form

2. 5(8)- 52159
i |=)= -S=—+85C—|=], 15

dr  dz\' § oz I\ § (1)
which expresses the conservation of momentum in the axial

direction for each cross section of the zone. At the surface,

u(rz,t) = — (13)
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the component of force balance normal to the surface re-

(@) s ()T
25— —{= 4145 + (—
+ 3z IP\S + + dz

p*=

as\? aws
><2S+(—) - S ]—I—B 1)z, 16
[ Jz oz 7 og (1) (16)
where Eq. (14) and the expressions for .S and Q have been
used to replace u and w. Together with the following bound-
ary and initial conditions, Egs. (15) and (16) complete our
approximate description of the physical system

S(xAn=1 Q(£AnN=0,

(17)
S(+A0) =S(2), (A0 =0

1ll. SOLUTION METHOD

The time-dependent response of the shape of a liquid
zone to axial residual accelerations was calculated and
curves describing the tolerable acceleration as a function of
the frequency of the axial acceleration were obtained for a
variety of conditions. The initial shape was determined from
computed static shapes corresponding to the static Bond
number B, using a method similar to that employed by Me-
seguer and Sanz."®

A. Iteration procedure

In order to facilitate the solution of the system of equa-
tions (14)—(17) it is convenient to recast (15) and (16) in
the form

20, 9(0)
at +az S
2 1 cais) £ E)+ 8o 3(3)
- Sc?z+ ()8zzS+ ()azS
(18)
S 9 )
45 + (88 /dz)* 9z 32\ S
aS 27 - 3/2
4las+ [
+ [ +(az)]
as\? BZS]
2S+|—) =S B , 19
x[ +(5z) P + Bg()z (19)
where
sl ()l ()] ] e
dz Jz
and
AR as a*s
= 12—} — 245 —
BS) SH («92) dz 822]
x[4s+(§£>2] ] 1)
Jz

The solution scheme is based on a fully implicit time
stepping procedure. However, since the position of the sur-
face is unknown an iterative procedure is required to obtain
solutions to the differential equations and the location of the
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surface at each time. At the (# + 1)th time step the itera-
tions proceed as follows.

(i) Guess the surface shape for the initial iterate
(m=1).

(ii) The pressure p* at the (m + 1)th iterate is calculat-
ed in the following way. All terms in (19) are calculated
from the previous (mth) iterate except for the leading vis-
cous term. This is calculated from the solutions obtained at
the previous [nth, (n — 1)th] time steps using an Adams—
Bashforth two-step approximation.

(iii) Q1is then obtained upon solution of the momentum
equation ( 18) and boundary conditions (17) using a Briley—
McDonald implicit method.'?%!

(iv) The surface shape at the (m + 1)th iterate is then
obtained from a time-centered discretization of (14).

(v) The surface shape is then compared with the initial
guess (or the shape calculated at the mth iterate). The pro-
cedure is repeated until the condition

max(|S7 " —-8S"/S7) <&, (22)
where £<1, is satisfied. Here a subscript “/* denotes the
value of s at the /th point, while the superscript denotes the
iterative step. The above procedure is repeated at each time
step.

The Briley-McDonald method used to solve (18) in-
volves the evaluation of the nonlinear advection term at the
(n + 1)th time step using

(a(Qz/’S))"*“l (B(QZ/S)) +At[ (c?(Qz/S))]
dz dz i Jz ar i
(23

+0[an?,

where the time derivative has been approximated using a
forward difference and the space derivative has been ap-
proximated with a centered difference. A Crank-Nicolson
scheme is used to increase the accuracy of the solution. The
discretized form of (18) then becomes
grt'-0r7 + (8(Q2/S)) At[ (a(QZ/S))]

At ' Jz i dz ar i

HeE) 6]
(@ 002G

o2 (€)emoZ(9]

where a centered difference is used for spatial discretization.
Equation (24) is unconditionally stable and has second-or-
der accuracy with a truncation error of O [ (Ax)?, (A#)?].

In addition to the boundary conditions (17) we also
need to evaluate the pressure at the disks. This is achieved as
follows. First we use the fact that ds/dt =0 atz= + A
which implies dQ /dz = 0 [from (14)] and that dQ /dr =
atz = 4 A. Wecan then obtain the pressure from (18) eval-
uated atz = 4 A. This requires the evaluation of dp/dz and
3°Q /02" at z= + A. The pressure derivative is approxi-
mated using the following standard three-point forward dif-
ference expression:

, —4p, +3
(a_p) — j:pz 0y + 3D + O(AZY,
aZ z= + A 2AZ

i

(24)

(25)
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where, Po=p( £ A), =p{ + AF Az),
P: =p( £ AF2Az), and Azis the spatial step size. Similar-
ly,atz= + A, d°Q/J2* is evaluated using

(azQ) _ 8Q| - Qz - 7Q0
C?Z2 7= % A 2Az2
where O, = Q( + AF Az), @, = Q( + A F2Az), and the
fact that dQ /dz = 0 has been employed. Upon substitution
of (25) and (26) into (18) and rearranging terms we obtain
Do with second-order accuracy.

The system of discretized equations and boundary con-
ditions is solved using a Thomas algorithm (method of fac-
torization).'®

+ O(AzY), (26)

B. Initial iterate

For this method of solution the choice of surface shape
for the initial iterate at each time step affects the speed of
convergence. For a poor choice the iteration may even fail to
converge. Toensure that the initial iterate is reasonably close
to the solution, the following formula is employed:

as 1 a8Y\"
Srrli=gn At( ) — 2( )
+ ar /i 2( & art/;

For the computations presented here the number of iter-
ations required was six or less whenever (22) was satisfied
for the initial iterate.

assume the searching
range (g,9,} at a given f

l

9,05 0.618 (9,9,)

l

calculate the evolution of a
given liquid bridge

l

if Fls1 = Rs3 then
91705 8lse g;=0q

'

n |99/ 95< 0.01

-

end

(27)

FIG. 2. Computational flow chart.
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TABLE I1. Effect of changing Ar on the tolerable acceleration g,.

TABLE IV. Comparison of the dimensionless first eigenfrequency w, com-
puted using our method, the linearized method of Meseguer'' (w¥), and
experimental results'' (@)

At @ A B, £,
0.001 25 314 2.6 0.002 0.255 A @ ot o,
0.0005 314 2.6 0.002 0.256
2.571 0.312 0.348 0.30
2.714 0.248 0.259 0.23
2.854 0.174 0.222 0.19

C. Optimal searching scheme

In order to define the sensitivity limits for the liquid
zone shape an optimal searching scheme was used to delin-
eate the boundary between the regions in parameter space
for which solutions either do or do not satisfy our sensitivity
criterion. The scheme is described in the flow chart shown in
Fig. 2. Eight to ten calculations were typically needed to
obtain each point on the sensitivity curves.

D. Accuracy of the numerical scheme

An investigation into the accuracy of the results re-
vealed that the number of time steps per period of the distur-
bance should be at least 160. Increasing the number of steps
to 400 per period did not, however, result in any significant
change in our results even at high frequencies (see Table II).

The spatial accuracy also proved to be an important
consideration. Results obtained using the MacDonald-Bri-
ley scheme required 97 spatial points.

In order to test the adequacy of the 1-D model we com-
pared results from 1-D calculations to results obtained by
Sanz'® for breaking times of an inviscid liquid bridge subject
to an initial deformation of the surface area S given by

S(z,0) =1 + e(e — 2)sin(mz/A), Q(z,0) =0.

The results of the comparison are given in Table III. Our
calculations are in reasonable agreement with those of Sanz.
Table IV lists a comparison between our results for the first
eigenfrequency, those predicted by the linearized analysis of
Meseguer,'! and experimentally obtained values.!' Our cal-
culated values lie between the linearized results and the ex-
perimentally obtained values. Finally, we note that the anal-
ysis of Langbein,'? employs an expression for a damped
linear oscillator together with natural frequencies of infinite
liquid columns obtained by Bauer”” and will overestimate
the natural frequencies of finite bridges. This has been well
documented by Sanz'® in a thorough comparison of various
methods used to simulate liquid bridge phenomenon.

TABLE II1. Comparison of breaking times (7,) and partial breaking vol-
ume (¥, ) with those ofSanz'® (TF, Vi) Here Ais the slenderness, £is the
initial perturbation amplitude, and Az is the spatial step size used in our
calculations.

A € Az T, T} v, 24
3.07 0.2 0.128 21.02 2198 0.8525 0.8554
3.14 0.2 0.130 13.71 13.62 0.8474 0.8574
320 0.2 0.134 11.82 11.52  0.8427 0.8442
3.10 0.3 0.129 7.97 84  0.8525 0.8539
3.10 0.4 0.129 441 4.84 0.85945 0.8566

1970 Phys Fluids A, Vol. 2, No. 11, November 1990

IV. RESULTS AND DISCUSSION

The calculations were undertaken for a disk radius of
0.0175 m and liquids with the following physical properties;
p=920kg m~*, ¥ =0.02N m~', and kinematic viscosities
in the range 6 10~ 7-6x 10~ > m? sec™'. These viscosities
cover a range of typical experimental materials (water, sili-
cone oils, etc., used in experiments'® ). The sensitivity crite-
ria chosen to characterize the response of the bridge repre-
sent two extremes. The first is the deviation of the the bridge
shape by more than 5% from its equilibrium radius, the sec-
ond is breakage of the bridge. The effects of viscosity, back-
ground steady acceleration (static Bond number, B,), and
slenderness (A ) wereexamined and the results are presented
below. Each point on these curves was obtained after run-
ning the calculation for times corresponding to more than
ten periods of the driving force.

Figures 3 and 4 show the effect of viscosity on the toler-
able acceleration, g,, for a frequency of 5 Hz at fixed A and
B,, for both sensitivity criteria. The tolerance increases as
the viscosity is increased. Notice, however, that for values of
the dimensionless viscosity parameter C less than 10~ " the

0.032

0.0287

0.0241

TOLERABLE ACCELERATION [g}

.02 L : L
00010" 10°? 102 10" 10°

DIMENSIONLESS VISCOSITY
FIG. 3. Dimensionless viscosity parameter C versus tolerable acceleration

for breakage of the bridge at f=5 Hz, A =256, B, = 0.0602, and
go=142x10 g
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0.006

0.0051

0.004 1

TOLERABLE ACCELERATION [g]

0.003 T y y
10°¢ 10°® 10 10" 10°

DIMENSIONLESS VISCOSITY

FIG. 4. Effect of viscosity on tolerable acceleration for the shape change
criterion at f=5Hz, A = 2.6, B, = 0.002, and g, = 1.42x 10" * g

increase in tolerance is slight even though the viscosity has
been increased by two erders of magnitude. Only when C
approaches 10~ ' does the increase in tolerance become sig-
nificant. Figures 5 and 6 further illustrate this point. The 5
Hz residual accelerations greater than 0.03 g would not nor-
mally be expected to occur in spacecraft laboratories so we
have not examined cases with C> 0.1.

10"

w—
o
[

TOLERABLE ACCELERATION [g]
3 3

107
10°

10° 10" 10° 10
FREQUENCY [Hz]

FIG. 5. Curves of tolerable acceleration versus frequency for breakage of
the bridge at B, = 0.002, g, = 1.42X 10~ % g, and A = 2.6. The solid curve
and the dashed curve are the results for C = 0.001 and 0.01, respectively.
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10°¢

—
<

TOLERABLE ACCELERATION [g]
3 3

10°°

10° 10 107" 10° 10

FREQUENCY [Hz]

FIG. 6. Curves of tolerable acceleration versus frequency for shape chan ge
criterion at B, = 0.002, g, = 1.42x 10~ " g, and A = 2.6. The solid curve
and the dashed curve are the results for C = 0.001 and 0.01, respectively.

The value of the static Bond number has a more pro-
nounced effect on sensitivity as seen in Figs. 7 and 8. This is
limited, however, to the lower frequency range. With in-
creasing frequency the differences are less pronounced. This
is particularly so for the shape change criterion. It is interest-

10°*

-
(o]
©

TOLERABLE ACCELERATION [g]
3 3

10°°

107 10°? 107 10° 10’

FREQUENCY [Hz]
FIG. 7. Curves of tolerable acceleration versus frequency for shape change
criterion at A = 2.6 and C = 0.001. The solid curve and the dashed curve

are the results for B,=0.002 (g,=1.42x10"" g) and B,=002
(g, = 1.42x 107" g), respectively.
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10"

TOLERABLE ACCELERATION [g]

10°°

10° 10°? 10" 10° 10

FREQUENCY [Hz]

FIG. 8. Curves of tolerable acceleration versus frequency for breakage of
the bridge at A = 2.6 and C = 0.001. The solid curve and the dashed curve
are the results for B,=0002 (g,=142x10"% g) and B,=0.02
(g, = 1.42X 107" g), respectively.

ing to note the additional deviations from the general trend
for the case of zone breakage between 10~ ' and 1 Hz.

A small decrease in the slenderness A changes the mag-
nitude of tolerable acceleration markedly when A is close to

TOLERABLE ACCELERATION [g]

10°°
10°?

10°* 107 10° i0'
FREQUENCY [Hz]

FIG. 9. Curves of tolerable acceleration versus frequency for breakage of
the bridge at B, = 0.002, g, = .42 X 107° g, and C = 0.001. The solid curve,
the dotted curve, and the dot-dashed curve are the results for A = 2.6,
2.826, and 3.024, respectively.
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TOLERABLE ACCELERATION [g]

1077
10°

10 10" 10° 10’
FREQUENCY [Hz]

FIG. 10. Curves of tolerable acceleration-versus frequency for the shape
change criterion at B, = 0.002, g, = 1.42X 107 % g,and C = 0.001. The sol-
id curve, the dotted curve, and the dot-dashed curve are the results for
A = 2.6, 2.826, and 3.024, respectively.

A .- This is illustrated in Figs. 9 and 10. The change in
tolerable acceleration magnitude becomes less significant for
values of A less than 80% of the critical value.

Of most practical interest is the sensitivity of a given
zone (i.e., A, B,, and C fixed) as a function of the frequency
of the disturbance. This is shown in Figs. 5-10. For both
criteria the general trend is an increase in tolerable residual
gravity with increasing frequency. At the eigenfrequencies
of the zone there are, however, dramatic deviations from this
trend. Here the liquid zone is extremely sensitive in compari-
son to both higher and lower frequencies. The tolerable re-
sidual gravity level can be two orders of magnitude lower at
this frequency. For the values of A and B, (g,) considered
these frequencies are found in the neighborhood of 10~ 'Hz.
Associated maximum tolerable residual gravity levels as low
as 10~ to 1079 g have been calculated. In addition, at fre-
quencies higher than the most sensitive one there are less
dramatic deviations from the general trend. The frequencies
at which these deviations occur are the eigenfrequencies for

TABLE V. Most sensitive frequencies and associated tolerable acceleration
(Hz) calculated using the 1-D (f;, 8., ) model and Langbein’s (f3, g)
linear oscillator model.'? For the 1-D model B, = 0.002 in all cases. Lang-
bein’s model is independent of B,

A fo(Hz) f%(Hz) g, (8 gh (&) v(m?sec™ ")
3.024 00334 00663 632x1077 LIIxI0™® 5xt07’
2826 00070 0.1224 1.16x107° 2.18x10~7 5x1077
2.6 0.1049 0.1857 3.26x107% 3.6x107° 5x1077
2.6 0.1049  0.1857 3.53x10~% 3.6x10°* 5x10™°
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TABLE V1. Tolerable acceleration (g,) and associated eigenfrequencies (»*) for two of the cases (shape change criterion).

A=3.024B,=0002,C=0

w* 0.21 4.0
g (msec™?) 6.0x10™° 6.09x107*
A =12.826, B, =0.002, C=0

w* 0.44 4.7

g, (msec™?) 1.09x10°* 7791074

11.0 20.5 33.5
1.88x107° 5.10x107? 5.06x107*
12.56 24 385
1.96x 1073 4.76x107* 5.78x 1073

the zone. As the frequency of the forcing function ap-
proaches an eigenfrequency the zone becomes more sensi-
tive. The lowest tolerable acceleration occurs in conjunction
with the smallest eigenfrequency. We note that owing to our
assumption that the top and bottom disks vibrate in phase,
the eigenfrequencies locally exhibiting the most sensitive re-
sponse are those associated with eigenmodes having an odd
number of nodes (i.e., an even number of half waves). This is
in agreement with the analysis of Mesegeuer.'! It is interest-
ing to compare our results with linear oscillator model of
Langbein.'? Table V gives a comparison between the linear
oscillator model and our 1-D model. While the results are
qualitatively similar there are three distinct differences.
First, for the case considered the linear oscillator model
overestimates the sensitivities by almost two orders of mag-
nitude. Second, as mentioned previously, the eigenfrequen-
cies predicted by our model are smaller. The third difference
is that Langbein’s model implicitly assumes that the axial
vibration will excite deformations with a both odd and even
number of nodes (this is precluded in our model). If the top
and bottom disks do vibrate out of phase, then our results
will underestimate the response of the liquid bridge at eigen-

16 secC
1=0 12 sec )
‘ 8 sec

FIG. 11. Shape change as a function of time for a liquid zone with A = 2.6,
C=0.001, and g(t) = 1 + (B,/B,) sin {w!). The dimensional frequency,
/. is 0.06 Hz, and B,/B, = 12. For the physical properties considered, the
maximum oscillating acceleration magnitude is 1.8 X 1074 ¢.

4 sec

8sec

0" sec/

FIG. 12. Shape change as a function of time for a liquid zone with A = 2.6,
C =0.001, and g(t) = | + (B,/B,) sin (wt). The dimensional frequency,
f, is 3 Hz, and B,/B, = 916. For the physical properties considered, the
maximum oscillating acceleration magnitude is 1.3 10"2 g.
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frequencies corresponding to eigenmodes with an even num-
ber of nodes.

Table V1 lists the eigenfrequencies (which can be deter-
mined independently'' ) and the associated maximum toler-
able acceleration, g,, for selected inviscid cases. For the in-
viscid zones, we found that whenever the higher
eigenfrequency is close to an integer multiple of a lower ei-
genfrequency the sensitivity of the zone to disturbances with
the higher frequency js increased. This noticeable increase in
sensitivity is caused by nonlinear interaction and excitation
of the lower mode.

The spatial deformation of the liquid zone also varies as
a function of the forcing frequency. Figures 11 and 12 illus-
trate the evolution of the zone shape as a function of time for
selected cases. Note that, owing to the small value of B, for
these cases the initial surface shape is visually indistinguish-

2 . . . .
O Sled
* Hop
3t ] ® Drop
— O Treadmil
k=]
= 4 Quiet
_g_ A4f j = FPMops
) + Stowage
i & PRCS
8 gl ° VRCS
Q- < Drag
8 ¥ Rotation
] * SL3<iHz
6 ]
-7 * * * . t

4 3 2 4 0 1 2
LOG FREQUENCY [Hz]

FIG. 13. Residual accelerations measured on orbit (in units of g=9.8
m sec "?) and selected sensitivity curves, Curves | and 2 correspond to
A = 2.826 and 3.024 from Fig. 10. Curve 3 corresponds to A = 3.024 from
Fig. 9. (Acceleration data courtesy of Dr. H. Hamacher, DLR, and M. J. B.
Rogers, Univ. of Alabama in Huntsville.) The Spacelab 3 (SL-3) data are
restricted to measured frequencies between 107 * and 1 Hz. The points cor-
responding to Sled, Hop, Drop, Treadmill, Quiet, FPM ops (Fluid Physics
Module operations), Stowage, refer to activities and experiments on the D-
1 mission.” P RCS and V RCS refer to the primary and vernier thrusters.
The drag and rotation entries correspond to accelerations arising from slow
variations in atmospheric drag during an orbit and attitude changes involv-
ing rotation.
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able from the surface of a right circular cylinder. While high-
er forcing frequencies are associated with more nodes, the
shape of the zone is complicated by the excitations of the

fundamental mode and by nonlinear interactions.
In summary, our results indicate that the zone is most

sensitive to accelerations with frequencies close to or equal
to the lowest natural frequency of the zone. It is useful to
assess the sensitivity of the zone in terms of predicted space
station and/or spacelab environments and with previous ac-
celeration measurements. For the liquid zone cases exam-
ined we have seen that frequencies in the 107%-107' Hz
range appear to be the most sensitive. Figure 13 shows sensi-
tivity curves selected from Figs. 9 and 10 together with accel-
eration as a function of frequency taken data recorded on
orbit. The amplitudes of low-frequency ( < 1077 Hz) acce-
lerations predicted for the space station should not exceed
levels of 106 g.2° Higher frequencies can be associated with
acceleration magnitudes of up to 1072 g.* In terms of these
predicted levels, or those measured on past missions,** the
practical sensitivity range is restricted to disturbances with
frequencies in the range 1072-10~' Hz and 1-10 Hz.
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SURFACE TENSION AND BUOYANCY-DRIVEN FLOW IN
A NON-ISOTHERMAL LIQUID BRIDGE

YIQIANG ZHANG AND J. IWAN D. ALEXANDER
Center for Microgravity and Materials Research, University of Alabama in Huntsville, Hunisville, AL 35899, U.S.4.

SUMMARY

The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a non-
isothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-
function formulation together with a non-orthogonal co-ordinate transformation. The equations are
discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI
method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer
iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration;
both use the force balance normal to the free surface as the distinguished boundary condition. The first
scheme involves successive approximation by the direct solution of the distinguished boundary condition:
The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces
at the free surface which arises when the boundary condition for force balance normal to the surface is not
satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary
condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations
including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven
flow.

KEY WORDS

difference, Picard ikerntion, ADI,

1. INTRODUCTION

The computation of solutions to the steady free boundary problem of mixed thermocapillary- and
buoyancy-driven convection in a non-isothermal cylindrical liquid bridge is complicated by the
strongly non-linear boundary conditions at the unknown free surface. Most studies to date have
avoided the computation of the free surface shape and assumed that the liquid surface is a circular
cylinder’™® or have imposed a non-circular cylindrical surface shape.” These models have
involved either half-zone configurations (where the liquid bridge is held between rigid disks of
different temperature) or full zones (where the liquid bridge is held between two solids of equal
temperature). The full zone models are motivated by the floating zone crystal growth process.®
Recently, Duranceau and Brown? have approached the full zone crystal growth problem using
the finite element method and have computed the shape of the liquid surface as well as the
melt—crystal and melt-feed rod surfaces together with interacting thermocapillary and buoyant
convective flow. Lan and Kou®? have also approached the full zone problem using a finite volume
method but restricted their calculations to the zero-gravity case for which the surface deformation
from the circular cylindrical shape is minimal and buoyancy-driven flow is absent. Hyer et al.''
have used a finite element method, which is well suited to irregular geometries, to compute

TheFMOCGPiLLar:j Flow, bo")’“"“/; free surface, finik
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interacting thermocapillary and buoyant convective flow in full and half-zone configurations bu
did not consider solidification.

Recently, finite difference methods have been used to solve problems with free and moving
boundary geometriés using various mapping techniques.'? These methods are also applicable tc
the free boundary problem associated with liquid bridges and floating zones. Kang and Leal"
used the finite difference method with orthogonal boundary-fitted co-ordinates to study the
deformation of a bubble. The boundary-fitted mapping scheme requires the solution of a couplec
set of Laplace equations to determine the new grid to be generated at each outer iteration.

In the present investigation the governing equations are recast in terms of a vorticity-stream
function formulation together with a non-orthogonal co-ordinate transformation. The latte
allows an irregular free boundary to coincide with a co-ordinate line {or surface) without the neec
to solve a coupled set of Laplace equations. The resulting equations are discretized using
a pseudo-unsteady semi-implicit difference scheme and solved by the ADI method. The combina
tion of the above methods provides a reasonably accurate and economical solution procedure
Four boundary conditions are specified at the free surface: the kinematic boundary condition, th:
balance of energy across the surface and the balance of force normal and tangent to the surface
The energy balance, tangential force balance and kinematic conditions at the free surface ar.
solved together with the Navier-Stokes and continuity equations, while the normal force balanc
condition is distinguished'* to determine the free surface shape. In addition, an "outer’ iterativ:
procedure is needed to locate the free surface. In this paper two outer iterative schemes ar
reported, The first scheme involves successive approximation by the direct solution of the forc
balance notmal to the free surface. The second scheme, after Ryskin and Leal,!® uses the forc
imbalance between the fluid pressure, viscous and capillary forces at the free surface which arise
when the boundary condition for force balance normal to the surface is not satisfied. Thi
artificial imbalance is used to drive the surface shape towards its equilibrium position (i.e. unt
the force balance condition is satisfied). These schemes are used to examine a variety of mode¢
liquid bridge situations including purely thermocapillary-driven flow situations and mixe:
buoyancy-thermocapillary-driven flow.

L oo s '»‘i/b sin pmccted |
e panud HGS 2. FORMULATION OF THE PROBLEM

maFA

2.1. Governing equalions

Consider a cylindrical liquid bridge (see Figure 1) held between two parallel coaxial circule
rigid disks of radius R, separated by a distance L. The liquid is a non-isothermal incompressibi
Newtonian fiuid. The bridge is held between the disks by surface tension. The free surface of tk
bridge is a gas-liquid surface and the steady surface shape is described by r=R(2). Each disk
maintained at a constant temperature To. Surface heating is provided through an ambier
temperature T (2). Radiative and convective heat transfer at the free surface are accounted for t
a heat transfer coefficient h. In addition, we assume that the gravitational acceleration is paralle
10 the cylinder axis andghe velocitys andihatshe temperature field and the deformation of the fre
surface are axisymmetric. Furthermore, we let the surface tension at the free surface vary linearl
with temperature and assume that the Boussinesq approximation holds.

The governing equations are made dimensionless by scaling length, time and velocity with R,
Ro,U* and U* respectively. Here U * is a characteristic velocity given by

=I'/IAT
=

U+
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e
2Ro

Figure 1. Liquid bndge model

where AT = Tmax— Tmin represents the maximum temperature differe
absolute value of the derivative of the surface tension with respect to tem

dynamic viscosity.
We shall refer to a ‘half-zone' model when the

minimum temperatures respectively and a ‘{ull zone' when the temperature

003

nce at the surface, |y is the
perature and p is the

end disks are held at the maximum and
maximum OcCurs

between the disks. For a full zone we shall take the ambient temperature T (z) to be parabolic

and take T t0 be T.(0) and Thin
The non-dimensional pressure is

p*+podZ p
PQU‘Z [ 3]

where p* is the dimensional pressure, g is the gravitationa
axial co-ordinate and po is the density corresponding to the referen

ature is rendered dimensioniess using Toae = Tmin- With

¢ 0
c(ru)"___w_=

10 be T(+A/2), where A=

L/R, is the aspect ratio.

1 acceleration, z is the dimensionless
ce temperature. The temper-

these scales the dimensionless steady
state equations in a cylindrical co-ordinate system can be written as

i
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where the Reynolds number Re, Marangoni number Ma and Grashof number Gr are respectively

R U™ vIATR ATR}
_Ne ‘ Ma=]” T. o‘ Gr=yﬁ - o
v UK v

Re

Here v is the kinematic viscosity, x is the thermai diffusivity, B is the volumetric thermal
expansion coefficient and g is the gravitational acceleration.

2.2. Boundary conditions

At the disks the boundary conditions are

u=w=T=0 at:z=1A/2, {5)

and the symmetry conditions at the centreline r=0 are
u _a_w_c‘_T_ 6
Tor o 6)

The boundary conditions at the free surface r=R(z) take the form

—Gz+,i—————?'Re_l %+!E—R Za—w CR @_w+§g

P T 1 +(6R/Bz)? | Or (E: dz édz\ér Oz
Re~YCq'=T) [1+(3R/6z)* R

+ - —n_' A
[1+(6R/02)* 1" R ¢z2

(IR (e, e R (3 w) [ (ERV)E (ST RETY
3z Gz or) Taz\or eéz) dz oz dz ér )’

U]

‘R
utw =0, ©)
] 0T ¢éRET
—_ | ——— i - =0
(l+(éR/éz)2)“2(6r oz 5:>+BK(T T)=0, (19)
where
AT . hR, gRo
Co=l—};—. BI=T, G=F

are the capillary number, Biot number and dimensionless gravitational acceleration respectively
and 7, is the mean surface tension. The force balances at the free surface in the normal and
tangential directions are given by equations (7) and {8) respectively. Equation (9) is the kinematic
poundary condition at the liquid-gas surface. The thermal boundary condition at the surface is

given by equation (10) with th eat transfer coefficient Bi. The constant 1 on the
left-hand side of (7) represe dimensionless reference pressure difference® across the surface. In
liquid bridge mode ¢ms with fixed rigid disks such as the one discussed here, A is determined

by the co volume constraint

Aj2
. . Vo= ‘. nR2(z)dz=constant. (In
dimensionless R PV (
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Finally, the condition that the contact lines between the liquid end disks are fixed is
R=1 atz=%A/2. (12)

3. NUMERICAL METHOD

Forthecaseof a two-dimensional axisymmetric flow the governing equations can be simplified
by introducing the streamfunction ¥ and vorticity w as new dependent variables:

Ly -3y
u—r zs w= r @rv (13)
cu Ow
w5 ar a4

From (13), (14), (2) and {3) one obtains for w

o _ou_| (o 100 F0 Lo Grol (15
“r 2z r Re\ér* rcr 322 ) Rer® Reor
Substitution of {13) into (14) yields
2 i .3 62
L v, (16)

a2 ror ozt

The original set of three equations governing mass and momentum has thus been reduced to two
equations governing the streamfunction and vorticity. .

The steady free boundary problem fora cylindri&il_liquia—brid_g? is solved iteratively, since the
location of the free surface is a priori unknown. To obtain a solution, we adopt a Picard iterative

procedure’? as follows.

1. Guess the free surface shape for the initial iterate.

3. Obtain the approximate temperature and velocity fields by transforming the governing

equations and boundary conditions 1o a circular cylindrical domain via a non-orthogonal

transformation and solve them using a pseudo-unsteady semi-implicit method.

_ Obtain the pressure at the free surface by integrating the transformed momentum equation.

4 Use the normal force balance condition at the free surface to decide how to update the frec
surface location.

5. Return to step 2. Repeat until convergence is obtained by satisfing all equations and
boundary conditions 10 a specified degree of accuracy.

(98]

The details of this numerical procedure are discussed below.

3.1. Non-vrthogonal ransformation

At each outer iteration the region occupied by the liquid bridge is transformed into a fixed «
rectangular computational region using a non-orthogonal co-ordinate transformation, i.e. -

r

=-—_R(z, nt an

n=:z &

For each iteration time 1 this transforms the domain

—A2<z<A/2 0<r<R(z, 1)
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onto the rectangle

—A2<z< A2, O0<é<l.

It then follows that
9.1 g i_,_a__iﬂﬂ (18)
or R 0z & Ry é

The advantage of this transformation is that the free boundary coincides exactly with a co-
ordinate line in a computational grid and regeneration of mesh during the outer iteration is
avoided. The transformed governing equations now take the form

I (Wéo &éw\ ww 1 (3% Fw dw Fo I w G, | ér
ol ——= — |——=_ (Y% 5 +B—+C—— —— L _ " 19
ch(aq Far: an) RC Re(aq2+A T xR RR 1
L /&y 0T 3y ¢ L /a*r 3t Gr 3T
T rw.———'/”f—r = 7+A.—2+BC.-+ 22 . (20)
R \én 60 o cn) Malén o ol ond
%y e . ¥ &y i
ik A = —=R{w, 21
5n2+A _(2+B 5C+C5055 {w (21
where v oapN\2
A= iﬁ +L
. “\Rag) TRY
1 éR\?* 1 R 1
B=[2(E E) —EC.,_];]C-FR—ZC,
2
*«._p__“
B*=38 R
L
=% n
The boundary and symmetry conditions (5)-(10) are now:
atn=+A;2,
1 é?
y=0, o=!2¥ T=0; 22)
s o
at =0,
¥=0, w=0, éT/of =0; (23)
atJ=1,
=0, (24)

A 2 5 3 A 2 : -} L] dR\212 oT
o=t (RY'lw_joRw T, ﬁ) @+1(ﬂ—R) f—'f+r1+(—)] =, (29)
R\én/) & on én on on R\on/) & !_ on on

ST AR /A SR 3
[ LT R E—T—iﬁg) + BT~ T,)=0, (26)
(L+(R/ény*) 2 | R &¢ n\én R én &
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e 2R 1o (IR (o 1 2R on _OR(1éw du_1iRdu
Pt TR R\ ) G ramw) m\R T an Rén ot
1 <1+(6R/5r])2 aZR)

=Re YC7'—
¢ & =D R R o

@7

Equations (24) and (25) are the kinematic condition for the surface (i.e. the conditien that a point
on the surface remain on the surface) and the balance of tangential forces respectively. The
complete streamfunction, velocity and temperature fields can be determined for a given axisym-
metric surface shape (e.g. starting with an initial guess) using only (19)—(26). Then, as long as the
balance-of-force condition (27) is not well satisfied, the force balance residual provides a basis for
determining an improved estimate of the free surface shape. This procedure continues until the
convergence criteria (to be defined later) are satisfied.

3.2. Solution method 19 24

Various methods can be devised to obtain a steady solution of equations 1265-123/) For the sake
of simplicity a pseudo-unsteady method in association with a semi-implicit time discretization is
used.

We first consider the following system of equations:

T L, B
E+(L,—-;!—a‘7 )T+Sl —0, (28)
“__“’+(L,_Lv2)w+sz=o, 29)
€T Re
8
E'f—v*2¢+s,=o, (30)
where
I fey 6 &y d°
- c_vo 31
b R’C(C’n T én)’ Y
1 [y &3\ u
= s — |—— 32
L. Rz':(c“'r, & en) Ry (32)
-2 2 (3
128 L AN 3O 3
ViesitA g ,é 55 33)
@ /B*‘a} >
V‘l——-,*'{-.‘{_— l_— 2 ‘_a_ (34)
et et *\ﬁ, 8 azg
1 ¢iT 1 {w w Gr 1 0T
- =—|-cl@), 2 _ 0L 35
=3k C e : Re(R2{ C@né(>+Re2Réc 33
oy
Sy=— , 36
3 Cenac+RCw (36)

We then proceed to solve this system as the (pseudo) time derivatives of T, ¥ and w—0. For
clarity we present the solution method only for the vorticity (w) transport equation. The
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discretization in time employs an explicit Adams-Bashforth scheme for the non-linear convective
terms and the implicit scheme for the viscous terms. Other terms in the equation are treated
explicitly. For spatial discretization, central differences are used. The ADI form for the vorticity
equation is then

2( .. a L B O A Fo  ltw\rT? ,
E(‘UU m—wij)‘*‘%(l-zw)ij—iu-zwhj l—R_e (?)—ﬁ (A &7 —7+B— & >U +(8:)5=0,
37

2 (LA ol
Ati_ n‘rXZ n=1 —— — o
At ((l) +;tl‘2w)u %(LZUJ) Re( ) Re (A L:;l +B C‘.;)U +(S2)U 0.
(38)

Here the superscript n+ 1;2 denotes the intermediate step associated with the ADI method.'® The
velocities of (25) (at the nth step) are taken from the values at the previous step. Thus, except for
the thermal condition at the free boundary, these are Dirichlet boundary conditions. The heat
transfer equation is also discretized in an ADI form. The resulting system of discretized equations
is solved using a factorization method.'®

We define a steady state to occur when the residuals (dw/dt, éT/ét, éy/dt) of the vorticity,
energy and streamfunction equations are less than 1077, ie.

n*l
u

|F
max i < 1077, (39)

f
Here F represents the vorticity, temperature or streamfunction. the subscript refers to the spatial
location and the superscript refers to the iterative step. The numerical solution is second-
order-accurate in space.

We have verified this solution method for steady 2D axisymmetric incompressible flow. Table |
shows four examples of a comparison between the results of our code and a finite element code
(FIDAP): two for buoyancy- and two for thermocapillary-driven flow. Figure 2 shows a com-
parison of the surface velocities using our method and the finite element method. One sees that
the numerical method described here provides a reasonably accurate algorithm for computing
steady 2D axisymmetric incompressible flows in rigid cavities and for mixed buoyancy- and
surface-driven flows with free boundaries for the range of surface Reynolds numbers examined,
0<Re<21740.

Having computed the vorticity and streamfunction for a given surface shape, it remains to
iterate on the condition for the jorce balance normal to the surface in order to obtain the final
steady surface shape. In addition, the shape must satisfy the volume constraint (11) and boundary

_ Eornditiqnsr(IZ).

Table I. Comparison of finite difference method with results obtained using finite element code FIDAP

This method FIDAP
A Pr Ra Re u,m“ Umu ‘le Umu
2 1 100 0 [-81x 107" 427x 1072 1-80x 107! 428 x 1072
2 1 130 0 284x 107! 664 x 1072 2:66x 107! 664 x 1077
2 00127 0 3150 339 -7 349 1-82
5 0

2 00127 3905 295 1-33 278 129
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Figure 2. Companson of surface velocities calculated for Re=1150, Gr =0and Pr=00127 using FIDAPand our method
N, x N, =25x49)

Two iterative schemes for determining the surface are discussed in this section. In both schemes
the new velocities and temperatures are taken from the current calculated values and the pressure
at the surface can be obtained by taking the n-component of the momentum cquation and
integrating with respect 10 1. This yields

[y fowew cpew) L [(Ew stw _ow . dw\ Gr aR\P\ M2
i W (s A Bt ) TR b ds
P Jo[.R(@s qT® &)*m(aﬁ” R AT *ra T\ NG

(40)

Scheme 1 is based on the following principle. A shape is assigned to the free surface with the
calculated pressure, velocity and temperature. An initial guess for the pressure constant 4 is
made. The new surface shape is then determined directly from (27)using finite diflerences in con-
junction with Newton’s method. The integral (11) is then evaluated to check whether the

volume constraint has been satisfied. If it is not satisfied, an inner iteration is made using a
Newton-Raphson procedure to calculate the following improved estimate of &

-1
/'.“”:).“—(gi,jj AV, 41)
CA -
where
Al2
AV:J. nR¥dn— V. 42)
-Ai2

The above procedure for determining 4 is quite effective and is repeated until the volume
constraint is satisfied. R(n) is then updated. New velocity, pressure and temperature fields are
calculated using the updated value of R(n). The outer iteration is repeated until

RM‘? 1 — RM‘

ER =max

R™ |

where we took ¢=10""%

Scheme I, after Ryskin and Leal,'® uses the residual of the force balance condition normal to
the surface to drive the shape to its steady position. This is equivalent to equating the residual
with an artificial capiilary force. This effective force causes a local displacement of the surface in

<, @3) -
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the direction of the force. The magnitude of the local displacement is proportional to this force.
The surface shape at each iteration is thus modified so as to reduce the residual until condition
{27) is met. It follows that at each iteration the new position of the surface is given by

RP*' =R +aEx;, (44)

where Ex; is the residual of the force balance equation at the jth surface location and the constant
coefficient « is determined by numerical experiment. In order to ensure convergence, 2 should be
small. If « is chosen to be too small, the convergence is slow and the amount of CPU time used
increases substantially. If x is too large, the solution will diverge. We found that the values of
x which led to rapid convergence depend on the product of Re™! and Cg' (see Table II).
The change in volume between the mth and (m+ 1)th iteration can be found from the volume
constraint (11) and equation (44) and neglecting higher-order terms, i.e.
A2
Ex;RIdn=0. (43)
v —A2
The pressure constant 4 is contained in Ex; and is obtained by satisfying (45). Even then the liquid
bridge may still change the volume slightly at each iteration owing to numerical error and
higher-order effects. These small changes can accumulate and eventually result in a gross error.
To prevent this, formula (44) is modified to

m+1 m Vo 2
R! =RJ - +1EXJ- (46)

| Vm

3.3. Convergence behaviour

The rate of convergence of the two methods is shown in Figure 3 for Re =695 and 2082. In both
cases the shapes of the curves clearly reflect the procedure used. The curves show two distinct
segments. The abrupt rise in the residual in the late stages of the calculation is caused by requiring
a more accurate solution (smaller residual) for the vorticity and streamfunction.

For the calculations carried out here, the first outer iteration scheme converged slightly faster
than the second. This is shown in Table IIl. If the guess for the initial iterate is good, the
computation times are about equal. For a poor guess, however, the first scheme is 1-5 times faster.
While we were able to obtain convergence for all cases attempted using scheme II, this was not the
case for scheme I. We found the first scheme to be quite sensitive to the initial choice of the
pressure constant 4. [f the value of 4 1s "physically unreasonable’, the solution diverges. In order to
take advantage of the speed afforded by scheme I, we employed the second scheme to calculate
the value of 4 for the first few iterations. This value is then taken as an initial guess for the first
scheme, which is used for the remaining outer iterations.

The convergence of the solution was also checked by varying the spatial resolution of the mesh.
This was particularly important at higher values of Re where, owing to the space-centred
differences, the streamfunction was prone to exhibit ‘wiggles’ if the grid Peclet number
Pea=U®A/x (where A is the interval between two grid points) exceeded 2 in the vicinity of the

Table 1. Op(in;al v—aﬁx;s al_'_a_as a function of Re~ ‘-C.',:' o

(9]

Re™'Cgt 0 02 01 006

x 1073 1074 10-3 3x107° 33x1073
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Figure 3. Comparison of convergence rates for {(a) scheme I and (b} scheme II

Table 1. Sample comparison of CPU times for schemes I and II and

for the type of initial guess. The parameters are A=2, Pr=0023,

Ma=48, Gr=76, Co=45x 1072 and Bi=100. A ‘good guess’ refers

to the equilibrium shape of the bridge and a ‘poor guess’ specifies the
surface shape as R(z)=1+0006sin[n{z+ 1)].

Computation time (s)

Initial guess Scheme | Scheme 11
Good 70 72
Poor 130 332

disks. The wiggles are present for ¥, x N, =26 x 61 and are not eliminated untd N, =101. As
observed by Ryskin and Leal,!? an increase in the mesh resolution was found toeliminate this
problem. We attempted to eliminate the wiggles and avoid the need for mesh mfinement by
employing second- and third-order upwind schemes for convective terms. We fouad that while
the wiggles were certainly eliminated for N, x N, =26 x 61 (see Figure 4), the mesh still needed to
be refined in order to obtain grid convergence. Since the end result was the same, we concluded
that the centred difference scheme was preferable. A mesh of N, x N; =26 x 51 was found to be
sufficient for the results presented here with Reynolds numbers in the range 0 < Re < 10000

We have used the method described earlier to examine the influence of various parameters on
momentum and heat transport and meniscus shape. In addition, a favourable comparison for full
and half-zones has been made between the results obtained using the combined scheme and those
of Hyer et al.'* who employed a finite element scheme,

-
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Figure 4. Companison of results obtained using (a) N. =61, central finite differences, (b} N, =61, third-order upwinding,
(¢} N: =101, central finite differences and (d) N, = 101, third-order upwinding

The effects of varying the temperature difference AT (keeping Gr/Re fixed), the Reynoids
number Re, the Biot number Bi, the aspect ratio A and the Grashof number Gr are presented in
the following section.

4. RESULTS

4.1. Effects of an increase in AT ut fixed Gr/Re

Figure 5 shows the meniscus shape, dimensioniess streamlines and isotherms calculated for
a fluid with the properties of GdsGasO,,, Pr=467, Bi= 100, Re=21'4, 107, 215 and 1073
(Ma= 100, 500, 1002 and 50!0) and Gr/Re=0-025. In all cases the surface tension decreases with
increasing temperature. This creates a force tangent to the surface which drives the melt towards
the disks and results in the formation of two toroidal rolls with opposite senses of rotation. The
gravitational acceleration results in a surface shape that buiges out below z=0 and necks in
above it. This causes an asymmetry in the structure of the two rolls, with the lower roll being more
intense.

At Re=21-4 (Ma=100) heat transport is governed by conduction. In the centre, heat is
iransported through and along the surface (Bi = 100), which results in a significant component of
the temperature gradient perpendicular to the surface. In the vicinity of the disks the transport of
heat is mostly through conduction along the surface. At higher values of Re convection is
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OF POOR QUALITY



FLOW IN A NON-ISOTHERMAL LIQUID BRIDGE 013

Tue=0 Tua=0

o =8.71x10?
Tux=0.981. 11 Yuu

Vi = +1.28010*

U = 7.83010° Viuas = 5.57x10°

Vi = -7-49x107

oL Ve = -1.15210°

Toe =0
(c) (d)
Figure 5. Meniscus shape, streamlines and isotherms caiculated for a fluid with the properties of GdsGasO1,, Pr =467,
Bi—100and Gr Re =\0025: (a) Re=21-4,c;=008%.¢c, = 2.2 x 1073 (b) Re=107, c; =0086,¢c, = 1-9x 107 3. (c) Re=2146,
cr=0084,c,=18x 107 3. 1d) Re= 1073, c7 =0-084, ¢, = 1-2 x 1073, The temperature and streamfunction contour inter-
vals are ¢ and c, respectively

intensified. The flow velocities reach their maximum values at locations intermediate between the
central portion of the surface and the disks. In the central region of the melt the outward flow
Lowards the surface brings cooler melt from the interior and causes a steep temperature gradient
perpendicular to the surface. Towards the end wails the frequency with which isotherms intersect
the surface increases. This indicates a steeper temperature gradient parailel to the surface.

Figure 6 shows the effect of increasing Gr and Re at fixed Gr/Re (=0-036) for a fluid with the
properties of molten silicon. As AT is increased, the increase in buoyancy-driven flow in the upper
region results in a larger upper cell which extends into the lower half. Note that the ratio of the
magnitudes of Ymax L0 Ymin iNCrEAses as Gr and Re are increased. It is interesting that, even though
Gr/Re is small, if the ratio remains constant but the magnitudes of Gr and Re are increased, the
buoyancy-driven effect manifests itself more at higher Gr- and Re-values. There is an increase in
buoyancy etfect due to the (vertically) thermally unstable situation in the upper half which acts
together with the radial temperature gradients throughout the liquid bridge to produce a down-
ward motion of colder fluid in the region midway between the axis and the surface. As a result,
buoyancy-driven flow becomes pervasive throughout the system and confines the more intense
(thermocapillary-driven) ceil to a small region in the lower half.

The effect of increasing AT on the free surface shape is insignificant for these cases.
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Tun=0

Wiy = -1.69x102

Wuax = 6.29x103

Yhau = -9.20x107

Figure 6. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon,
Pr=0023, Bi=100 and Gr Re=0036: (@) Re=139. ¢,=23x10"% (b)Re=1390, c¢,=14x10"% (c) Re=2082,
cg= 11 x 107% ¢r =009 for all three cases

4.2. Effect of Biot number

The eflect of Bi on the liquid bridge shape is slight for the cases examined. The isotherm
distribution is modified, however, when Bi is increased from 10 to 100 (see Figures 5(b}and 7). In
the central part of the surface the temperature gradient is almost perpendicular to the surface in
both cases. For Bi= 100 the gradient is steeper and the temperature in the central region is higher,
which results in a steeper temperature gradient parallel to the surface near the disks. There is
a slight decrease in flow intensify for the Bi= 10 case.
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Figure 7. Effect of Bi (compare with Figure 5) for Bi=10, Pr=4667, Re=107, C; ' =70, G =0468 and Gr=2-7. The
streamfunction and lemperature contour intervals are 19 x 107 and 0-086 respectively

4.3. Effect of aspect ratio (A)

For otherwise identical physical conditions a change in aspect ratio of the liquid bridge has
a significant effect on the meniscus shape. This is illustrated in Figure 8 by a comparison of liquid
bridges with A=2.3 and 3. The shapes are qualitatively similar but the amplitude of the
deformation from a right circular cylinder is much larger for the higher aspect ratio. For the
large-aspect-ratio bridge thereis a relative decrease in flow intensity in the upper part as the flow
conforms to the increased curvature of the surface of the longer liquid bridge. The flow intensity
of the lower cell is greater for the longer aspect ratios and the isotherms exhibit correspondingly
more distortion. Resuits obtained for A= gconﬁrm this trend (note that with a Bond number
Bo=pgR?/yo=07 the A=3.2 bridge is close to the stability limit!7).

4.4, Pure thermocapullary flow

In the absence of gravity Gr= By =0 and the flow is driven only by surface tension gradients.
Figure 9 shows the isotherms and streamlines computed for a fluid with the properties of molten
silicon for values of Re up to 21 740. We computed cases with Re = 1390, 4350, 8695 and 21740.
At Re 24350 we found secondary cells. There is an increase in secondary flow intensiy at higher
values of Re (see Figures 9(b) and 9(c)). Even at the higher values of Re the isotherms are only
slightly distorted.

For the finite gravity case (Gr =76) the effects of surface shape and buoyancy-driven flow are
manifested (see Figure 10). Only two cells are evident in the finite gravity case. The larger cell
appears to be a combination of a primary thermocapillary cell and a downward flow due to
buoyancy near the axis, which extends into the central region of the lower half and interacts with
a secondary flow ceils associated with the thermocapillary flow. The primary thermocapillary-
driven cell in the lower half is considerably smaller in extent than it is for the zero-gravity case.
A comparison between zero-gravity and finite gravity conditions illustrates the interaction
between the weaker buoyancy-driven flow, the secondary thermocapillary cells (see Figures 9
and 10) and the surface shape. I
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Figure 8. Effect of aspect ratio; (a) A=25:({b)A=3; Bi= 100, By =07, Pr=4:667, Re= 107, Cy '=70,G=0468, Gr=21.
The streamfunction contour intervals are 12 x 102 and 23 x 10°? for {a) and (b) respectively and the temperature
contour tnterval is 0-087 for both cases

5. CONCLUSIONS

Steady solutions to the free boundary problem for a non-isothermal liquid bridge have been
obtained using a Picard-type iterative scheme with a semi-implicit space-centred finite difference
scheme. The method was applied to a variety of problems with Reynolds numbers in the range
0 < Re < 22000 and for Pradtl numbers of 0-023 and 4-67. The method was found to perform well
for this range of parameters examined and compared well with results obtained for buoyancy-
driven and surface-tension-driven flow using a finite element method. At high Re we found that
the solution was sensitive 1o the spatial resolution and that a larger number of grid points were
necessary in order to avoid ‘wiggles’ in the solution. For Re < 10000 we found N, x N.=26 x 51
points to be sufficient, but required up to 101 points in the z-direction for Re=21740. While it
was possible to remove the wiggles using upwind differences, the mesh refinement was stil]
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Figure 9. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon,
Pr=0023, Bi= 100, Gr =0 and Re =1a) 1390, (b) 8695 and (c) 21740. The sireamfunction contour intervals are 7:7 x 107%,
37x107% and 25 x 10~ * for (a}, (b} and (c) respectively and the temperature contour interval is 0-087 for all three cases

necessary in order to obtain grid convergence. Thus no advantage was obtained by using upwind
differencing.

While the parametric study is by no means exhaustive, the results indicate some interesting
trends. Perhaps the most interesting behaviour is the response to an increase in the effective
maximum temperature difference AT. It was found that for a non-zero Grashol number an
increase in A7 caused an increase in intensity of the cell in the lower half of the bridge. For the
low-Prandtl-number case it was found that at higher values of AT the spatial extent of the lower
cell actualy decreased as the less intense upper cell penetrated into the lower part. This can be
¢xplained by the increasing importance of radial temperature gradients in driving buoyant flow as
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Figure 10. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon.
Pr=0023, Bi=100, Gr=76 and Re=18695. The streamfunction contour interval is 46 x 10~% and the temperature
contour interval is 0-087

AT is increased. As expected from the results of previous work, the eflect of changing the aspect
ratio was also seen 1o significantly affect the flow behaviour. For non-zero gravity the increase in
convexity of the lower portion of the larger-aspect-ratio bridge has a pronounced effect on the
flow pattern, which is more intense for the longer liquid bridge. This increase in flow intensity
appears to occur as a result of a decrease in the form drag of the surface. A comparison between
the difference in flow intensity between the upper and lower halvcs reveals that the difference
increases with increasing A. The form drag in the upper half increases as the magnitude of the
negative curvature increases. This M the flow in the upper half relative to the lower half of the
bridge. -
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The sensitivity of a non-isothermal liquid bridge to residual
acceleration

J. Iwan D. Alexander and Yiqiang Zhang
Center for Microgravity and Materials Research
University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

Abstract

Liquid bridges appearin a variety of industrial processes, forexample in the well-known floating-zone
crystal growth technique. This crystal growth method has received much attention in recent years.
In particular, there have been a variety of experiments on spacelab missions. These experiments are
motivated by the fact that the microgravity environment affords the possibility of an increase in the
stability of the melt meniscus and a reduction in buoyancy-driven convection. However, within the
spacecraft there is a residual acceleration with variable magnitude and orientation. Under certain
conditions, the response of the free surface of aliquid bridge to time-dependent residual accelerations
will lead to zone breakage. In this paper the steady and unsteady behavior of isothermal and non-
isothermal liquid bridge systems under normal and low gravity conditions is examined. The full non-
linear governing equations are recast in terms of a stream-function vorticity formulation together with
a non-orthogonal coordinate transformation. The latter allows an irregular free boundary to coincide
with a coordinate line (or surface) without the need to solve a coupled set of Laplace equations. The
resulting equations are discretized usinga centered finite difference scheme for space, and an Adams-
Bashforth-Crank-Nicolson scheme is used for time. The equations are solved by the A.D.I. method
and a Picard type iteration is used on the boundary condition for the balance of force normal to the
free surface. For non-isothermal bridges, residual acceleration affects the system by causing internal
buoyancy flows and fluctuations in the shape of the bridge which interact with the thermocapillary
flow caused by surface tension gradients. For the cases examined, the shape of the bridge is found
to be more sensitive to typical spacecraft accelerations than the buoyancy driven flow. The effect of
thermocapillary flow on the surface shape is found to be small for the range of capillary and Reynolds
numbers considered.

1. Introduction

Liquid bridges appear in a variety of industrial processes, for example the well-known
floating-zone crystal growth technique [1]. This crystal growth method has received much attention
inrecent years [2-10]. In particular, there have been several related experiments on spacelab missions
[11-14]. These experiments are motivated by the fact that the microgravity environment affords the
possibility of an increase in the stability of the melt meniscus and a reduction in buoyancy-driven
convection. However, within the spacecraft there is a residual acceleration with variable magnitude
and orientation. Undercertain conditions, the response of the free surface of an isothermal liquid bridge
to time-dependent residual accelerations will lead to zone breakage [13-15]. In this paper we examine
the interaction between convection caused by the response of the free surface of the zone to oscillatory
axial residual acceleration and convection due to thermocapillary and internal buoyancy forces.
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Fig. 1. The model liquid bridge.

2. Formulation

2.1 Description of the Model

A cylindrical liquid zone (see Fig. 1) is contained between two parallel coaxial circular rigid
disks (radius =R,,) separated by adistance L. The liquidis a non-isothermal Newtonian fluid for which
the Boussinesq approximation holds. The bridge is held between the disks by surface tension. The
free surface of the bridge is a gas-liquid interface and isdescribed by r=R(z,t). Eachdisk is maintained
at a constant temperature To. Surface heating is provided through a parabolic function, io, which is
a function of the axial coordinate and is an approximation to the heating profile associated with typical
floating zone crystal growth experiments. The heat transfer coefficient at the free surface is denoted
by h. In addition, we make the assumptions that the residual acceleration is parallel to the cylinder
axis, the velocity and temperature field and the deformation of free surface are axisymmetric, and we
take the surface tension at the free surface to be a linear function of the temperature. Motion of the
end disks perpendicular to the axis may also occur in practice. The restriction to axial acceleration
precludes an analysis of the effects of such motions.

The governing equations are made dimensionless by scaling length, time and velocity with
Ro, Ro/U* and U™, respectively. Here U* is a characteristic velocity given by

b [LhT
7l

where AT = Ty AX — TMlN represents the maximum temperature difference along the surface, v is
the absolute value of the derivative of the surface tension with respect to temperature, and W is the



dynamic viscosity. The difference AT is used to non-dimensionalize temperature.

The temperature maximum in a floating zone occurs between the two ends of the zone. We
shall take the dimensionless ambient temperature Tyax to be Tw(0), and Tminto be To(XA/2), where
A =L/R, is the aspect ratio.

The non-dimensional pressure is

* *
p=P + Pog*z(t) Z Ro
poU

where p* is the dimensional pressure, z is the dimensionless axial coordinate, pg is the density cor-

b

responding to the reference temperature and g*(z) =go+ glsin(ZthE) is the residual gravitational

acceleration.

2.2 Basic Equations
With the scales presented in 2.7 the goveming dimensionless equations in a cylindrical

coordinate system can be written as

19ru) oW _ 1
for oz 0. )
§£+u8_u+w8_u=_a_p+_1_ QZ_’J..,.La_u.;.&_lL i 2)
ot or 0z or Relg? Tor 022 r?
a_w+u_a_l+wél=-ég+_l_ zw_+l§ﬁ+& +_GLTg(t), 3)
at or 0z 9z Re\y2 T or 0z2] Re?
T 9T . _oT _ 1 (0T 19T dT
—tu—tW—=—|—tr——+—], 4)
ot or dz MaipgR T or gz

where g(t) = g*(;)/go is a time-dependent dimensionless residual acceleration, and

* A 3
Rc = ROU , Ma =| Y] l 'I‘Ro , Gr =!gOIBATRO ,
v 1K v2
are, respectively, the Reynolds number, Marangoni number and Grashof number. Here, v is the ki-
nematic viscosity, K is the thermal diffusivity, B is the volume thermal expansion and coefficient.

The boundary conditions at the rigid end disks are
u=T=O,w=w‘—‘(t),atz=i121, (5)

where wi(t) is zero if the two disks vibrate in phase (this will admit only odd mode deformations of
the zone surface [15] ). The symmetry conditions at the centerline r =0 are
ow OoT
y=s—s=—= O, 6
or or (©)
The boundary conditions a the free surface r = R(z) take the form
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where the capillary number, Biot number and Froude number are, respectively,
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and 7, is the mean surface tension and k is the thermal conductivity. The force balance conditions
normal and tangent to the free surface are given by egs. (7) and (8) respectively. Equation (9) is the
kinematic boundary condition at the liquid-gas interface. The thermal boundary condition at the
interfaceis givenbyequation (10)in whichthe equivalent heattransfercoefficient, h, modelstheeffect
of the radiant and convective heat transfer between the bridge and the surrounding environment. The
constant A in (7) represents a dimensionless reference pressure difference across the interface which

for this system is determined by the following constant volume constraint {9,16]

A
2
A% =J n Rq{z)dz = V, =constant .

2

Finally, the condition that the contact lines between the liquid end disks are fixed is
R=latz=+A/2.
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Fig. 4. The dimensionless temperature field with Re = 2899, Gr=0.98, A =4 and
Pr=0.0127,at (a) 0.52s, (b) 0.59's,(c) 1's, (d) 1.5 (e) 1.56 s, (f) 25, after
application of an additional 2.5x10-2 g, 0.5 Hz, axial acceleration.
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2.3 Solution Method
In the present investigation, the governing equations are recast in terms of a stream-function
vorticity formulation. The stream-function is defined by

19¥% | __19¥
T oz Y r or (13)

u

A non-orthogonal coordinate transformation,
=z , =TI 14
n g R (14)

allows an irregular free boundary to coincide with a cylindrical coordinate line (or surface) withoutthe
need to solve a coupled set of Laplace equations [17,18]. The resulting equations are discretized
following a semi-implicit difference scheme and solved by the A D.I. method. The conditions for force
balance tangent to the surface and kinematic condition at the free surface are solved along with the
Navier-Stokes and continuity equations. The condition for the force balance normal to the surface is
used together with an “outer” iterative procedure to determine the free surface shape.

The unsteady free boundary problem for a cylindrical liquid zone is solved as follows. The
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Fig. 5. The instantaneous dimensionless stream- predicted by the 1D model [15] for (1) breakage and
function, with Re =0, Gr= 0, A = 4 and Pr = 0.0127, (2) 10% shape change, for an isothermal liquid zone
at (2) 0.59s,(b) 1, (d) 1.5 s (e) 2 s, after application ~ With A =4 and the thermophysical properties of
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initial conditions correspond toeither zero or finite steady residual acceleration situations with a steady

thermocapillary flow. These states are calculated using a method close to that described below [16].

For the unsteady calculation our solution scheme is similar to that used by Kang and Leal [17] and

Ryskin and Leal [18]. The following Picard iterative procedure [19] is adopted:

1. guess the free surface shape for the new timestep;

2. obtain the approximate temperature and stream-function, vorticity and velocity fields by transform-
ing the governing equations and boundary conditions to a circular cylindrical domain via a non-
orthogonal transformation and solve them using a semi-implicit method;

3. obtain the pressure at the free surface by integrating the transformed momentum equation;

4. use the condition for the balance of force normal to the free surface to decide how to update the free
surface location;

5. return to step 2. Repeat until convergence is obtained by satisfying all equations and boundary
conditions to a specified degree of accuracy for this timestep.

3. Results and Discussion

The following results were obtained for aliquid zone corresponding to the physical properties
of molten indium subject to an axial acceleration with a frequency of 0.5 Hz. Fig. 2 depicts the initial
state of the system. A steady axial accelerationof magnitude 104 g (10-3ms2) acts along the negative
z-direction. Two equidimensional toroidal rolls indicate that surface-driven flow is dominant (Re =
2899, Gr=0.98). The isotherm distribution shows that heat transfer is mainly by conduction, although
some distortion of the isotherms by the flow is evident. For indium, Lind [20] has reported that the
surface tension increases with increasing temperaturei.e. yr>0. (Note that surface contamination may
have affected the measured temperature dependence of surface tension in this case.) Thus, the flow
direction at the surface is toward the center (i.e. the higher temperature region). Figs. 3 and 4 illustrate
the effect of an additional acceleration component which varies sinusoidally with a frequency of 0.5
Hz. Figure 5 depicts the response of the zone to the same disturbance, but with Gr =Ma =0. (Note
that, for this case, /L rather than fy.[{ AT/ was used as the velocity scale.) In another case with Re =
2899, Gr=0.98 and the surface constrained to be acircular cylinder, noobservable response occurred.
Clearly the systemis more sensitive to the effects of free surface motion than internal buoyancy. Given
that the value of steady acceleration used is extreme for spacecraft acceleration environments[21], we
may conclude that for systems where internal buoy;cincy-driven effects are not manifested (in this case
because they are swamped by the surface-driven flow) it suffices to examine the response of the free
surface only. Furthermore, a comparison of our full axisymmetric results with those obtained with a
simplified 1D isothermal model indicates that, at least for the conditions examined, the 1D model may
be used to reliably predict liquid zone (isothermal and nonisothermal) sensitivity. The 1D model is
described in detail in [15]. Fig. 6 shows the sensitivity of an indium liquid zone to axial acceleration.
The curves are based on results obtained using two sensitivity criteria. The first is determined by
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breakage of the bridge, the second is whenever the bridge shape changes by more than 10% of its static
shape, i.e. R(z,t) - R(z,0) =.1R(z,0).
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The sensitivity of a non-isothermal liquid bridge to residual
acceleration

J. Iwan D. Alexander and Yiqiang Zhang
Center for Microgravity and Materials Research
University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

Abstract

Liquid bridges appearin a variety of industrial processes, forexamplein the well-known floating-zone
crystal growth technique. This crystal growth method has received much attention in recent years.
In particular, there have been a variety of experiments on spacelab missions. These experiments are
motivated by the fact that the microgravity environment affords the possibility of an increase in the
stability of the melt meniscus and a reduction in buoyancy-driven convection. However, within the
spacecraft there is a residual acceleration with variable magnitude and orientation. Under certain
conditions, the response of the free surface of aliquid bridge to time-dependent residual accelerations
will lead to zone breakage. In this paper the steady and unsteady behavior of isothermal and non-
isothermal liquid bridge systems under normal and low gravity conditions is examined. The full non-
linear governing equations are recast in terms of a stream-function vorticity formulation together with
a non-orthogonal coordinate transformation. The latter allows an irregular free boundary to coincide
with a coordinate line (or surface) without the need to solve a coupled set of Laplace equations. The
resulting equations are discretized using a centered finite difference scheme for space, and an Adams-
Bashforth-Crank-Nicolson scheme is used for time. The equations are solved by the A.D.I. method
and a Picard type iteration is used on the boundary condition for the balance of force normal to the
free surface. Fornon-isothermal bridges, residual acceleration affects the system by causing internal
buoyancy flows and fluctuations in the shape of the bridge which interact with the thermocapillary
flow caused by surface tension gradients. For the cases examined, the shape of the bridge is found
to be more sensitive to typical spacecraft accelerations than the buoyancy driven flow. The effect of
thermocapillary flow on the surface shape is found tobe small for the range of capillary and Reynolds
numbers considered.

1. Introduction

Liquid bridges appear in a variety of industrial processes, for example the well-known
floating-zone crystal growth technique {1]. This crystal growth method has received much attention
inrecent years [2-10]. In particular, there have been several related experiments on spacelab missions
[11-14]. These experiments are motivated by the fact that the microgravity environment affords the
possibility of an increase in the stability of the melt meniscus and a reduction in buoyancy-driven
convection. However, within the spacecraft there is a residual acceleration with variable magnitude
and orientation. Under certain conditions, the response of the free surface of an isothermal liquid bridge
to time-dependent residual accelerations will lead to zone breakage [13-15]. In this paper we examine
the interaction between convection caused by the response of the free surface of the zone to oscillatory
axial residual acceleration and convection due to thermocapillary and internal buoyancy forces.
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Fig. 1. The model liquid bridge.

2. Formulation

2.1 Description of the Model

A cylindrical liquid zone (see Fig. 1) is contained between two parallel coaxial circular rigid
disks (radius=R,) separated by adistance L. The liquidis a non-sothermal Newtonian fluid for which
the Boussinesq approximation holds. The bridge is held between the disks by surface tension. The
free surface of the bridge is a gas-liquid interface and isdescribed by r=R(z,t). Eachdisk is maintained
at a constant temperature To. Surface heating is provided through a parabolic function, "fm, which is
afunction of the axial coordinate and is an approximation to the heating profile associated with typical
floating zone crystal growth experiments. The heat transfer coefficient at the free surface is denoted
by h. In addition, we make the assumptions that the residual acceleration is parallel to the cylinder
axis, the velocity and temperature field and the deformation of free surface are axisymmetric, and we
take the surface tension at the free surface to be a linear function of the temperature. Motion of the
end disks perpendicular to the axis may also occur in practice. The restriction to axial acceleration
precludes an analysis of the effects of such motions. o

The gO\}eming equations are made dimensionless by scaling length, time and velocity with

Ro, Ro/U* and U*, respectively. Here U* is a characteristic velocity given by

U‘=M.
U

where A’NF' = TM AX — TMIN represents the maximum temperature difference along the surface, m is
the absolute value of the derivative of the surface tension with respect to temperature, and |1 is the



dynamic viscosity. The difference AT is used to non-dimensionalize temperature.

The temperature maximum in a floating zone occurs between the two ends of the zone. We
shall take the dimensionless ambient temperature Tmax tobe T.o(0), and Tymin to be Te(£A/2), where
A =1/R, is the aspect ratio.

The non-dimensional pressure is

P+ pog*(t) ZRo.
poU™2
where p* is the dimensional pressure, z is the dimensionless axial coordinate, pg is the density cor-

responding to the reference temperature and g*(t) =go+ glsm(Zth t) is the residual gravitational
acceleration.

2.2 Basic Equations
With the scales presented in 2.1 the governing dimensionless equations in a cylindrical

coordinate system can be written as
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For Tar @
du, du, du_p, (P, 13, Py @)

ot ar dz odr Relpgg Tor a2 r2
ow , dw  aw_ 9p, 1 (O 13w Fw|, Gr 1y, 3)

ot or oz az Relg2z T or 0z2] Re?
oT, oT L oT _ | T 19T , oT @)

ot or 0z Malg? T o oz

where g(t) = g* (E)/go is a time-dependent dimensionless residual acceleration, and

3

Re _RU  Ma !YIl  Gr= IgolBATRo
v HK 2

are, respectively, the Reynolds number, Marangoni number and Grashof number. Here, v is the ki-
nematic viscosity, K is the thermal diffusivity, B is the volume thermal expansion and coefficient.
The boundary conditions at the rigid end disks are

u= T=o,w=wi(t),atz=i12l, (5)

where wx() is zero if the two disks vibrate in phase (this will admit only odd mode deformations of
the zone surface {15] ). The symmetry conditions at the centerliner =0 are

The boundary conditions at the free surface r= R(z) take the form
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and 7, is the mean surface tension and k is the thermal conductivity. The force balance conditions
normal and tangent to the free surface are given by egs. (7) and (8) respectively. Equation (9) is the
kinematic boundary condition at the liquid-gas interface. The thermal boundary condition at the
interfaceis givenbyequation (10)in whichtheequivalent heat transfer coefficient, h,models the effect
of the radiant and convective heat transfer between the bridge and the surrounding environment. The
constant A in (7) represents a dimensionless reference pressure difference across the interface which
for this system is determined by the following constant volume constraint [9,16]

A
2

A% =J nRz(z)dz=VoEconstant. (11)
A
2

Finally, the condition that the contact lines between the liquid end disks are fixed is

R=1atz=%A/2. (12)
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Fig. 4. The dimensionless temperature field withRe = 2899, Gr=0.98, A =4 and
Pr=0.0127, at () 0.52s, (b) 0.59s,(c) 1s,(d) 1.5s(e) 1. 56, () 2 s, after
application of an additional 2.5x10- 2 g, 0.5 Hz, axial acceleration.



2.3 Solution Method
In the present investigation, the governing equations are recast in terms of a stream-function
vorticity formulation. The stream-function is defined by

u=1?a\P,v=—La—\P. (13)

A non-orthogonal coordinate transformation,

n=z, §=E(;,T)’ (14)

allows anirregular free boundary to coincide with a cylindrical coordinate line (or surface) withoutthe
need to solve a coupled set of Laplace equations [17,18]. The resulting equations are discretized
following a semi-implicit difference scheme and solved by the A.D.1. method. The conditions for force
balance tangent to the surface and kinematic condition at the free surface are solved along with the
Navier-Stokes and continuity equations. The condition for the force balance normal to the surface is
used together with an “outer” iterative procedure to determine the free surface shape.

The unsteady free boundary problem for a cylindrical liquid zone is solved as follows. The
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Fig. 5. The instantaneous dimensionless stream- predicted by the 1D model [15] for (1) breakage and
function, withRe=0,Gr=0,A =4 and Pr=0.0127, (2) 10% shape change, for an isothermal liquid zone
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initial conditions correspond toeither zeroor finite steady residual acceleration situations with a steady

thermocapillary flow. These states are calculated using a method close to that described below [16].

For the unsteady calculation our solution scheme is similar to that used by Kang and Leal [17] and

Ryskin and Leal [18]. The following Picard iterative procedure [19] is adopted:

1. guess the free surface shape for the new timestep;

2. obtain the approximate temperature and stream-function, vorticity and velocity fields by transform-
ing the governing equations and boundary conditions to a circular cylindrical domain via a non-
orthogonal transformation and solve them using a semi-implicit method,

3. obtain the pressure at the free surface by integrating the transformed momentum equation;

4. use the condition for the balance of force normal to the free surface to decide how to update the free
surface location;

5. return to step 2. Repeat until convergence is obtained by satisfying all equations and boundary
conditions to a specified degree of accuracy for this timestep.

3. Results and Discussion

The following results were obtained for aliquid zone cormresponding to the physical properties
of molten indium subject to an axial acceleration with a frequency of 0.5 Hz. Fig. 2 depicts the initial
state of the system . A steady axial acceleration of magnitude 104 g (10-3ms2) acts along the negative
z-direction. Two equidimensional toroidal rolls indicate that surface-driven flow is dominant (Re =
2899, Gr=0.98). The isotherm distribution shows that heat transfer is mainly by conduction, although
some distortion of the isotherms by the flow is evident. For indium, Lind [20] has reported that the
surface tension increases with increasing temperature i.e. yr>0. (Note that surface contamination may
have affected the measured temperature dependence of surface tension in this case.) Thus, the flow
direction at the surface is toward the center (i.e. the higher temperature region). Figs. 3 and 4 illustrate
the effect of an additional acceleration component which varies sinusoidally with a frequency of 0.5
Hz. Figure 5 depicts the response of the zone to the same disturbance, but with Gr=Ma =0. (Note
that, for this case, x/L rather than er AT/u was used as the velocity scale.) In another case with Re =
2899, Gr=0.98 and the surface constrained to be a circular cylinder, no observable response occurred.
Clearly the system is more sensitive to the effects of free surface motion than internal buoyancy. Given
that the value of steady acceleration used is extreme for spacecraft acceleration environments [21], we
may conclude that for systems where internal buoyancy-driven effects are not manifested (in this case
because they are swamped by the surface-driven flow) it suffices to examine the response of the free
surface only. Furthermore, a comparison of our full axisymmetric results with those obtained with a
simplified 1D isothermal model indicates that, atleast for the conditions examined, the 1D model may
be used to reliably predict liquid zone (isothermal and nonisothermal) sensitivity. The 1D model is
described in detail in [15]. Fig. 6 shows the sensitivity of an indium liquid zone to axial acceleration.
The curves are based on results obtained using two sensitivity criteria. The first is determined by



breakage of the bridge, the second is whenever the bridge shape changes by more than 10% of its static
shape, i.e. R(z,t) - R(z,0) = .1R(z,0).
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