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SUMMARY

Some of the mathematical apparatus used for the representation and study of

turbulence is developed.

2.1 INTRODUCTION

In the study of turbulence one encounters physical quantities such as densities,

temperatures, forces, velocities, velocity products, and stresses. We notice that

these quantities are not all of the same type. For instance a density requires only

one number to represent it, but a velocity requires three numbers, or it has three

components. A quantity which is the product of two velocities, where each component

of one velocity is multiplied in turn by each component of the other, has nine

components.

A density is an example of a scalar, or of a tensor of order zero. It can be

represented by a symbol with no subscripts, say p. A velocity is an example of a

vector and is called a tensor of order one. It can be represented by a symbol with

one subscript, say ui, where i = i, 2, or 3. The three values of i correspond to

directions in space parallel to the directions of the three perpendicular coordinate

axes x i (i = i, 2, 3). The x i form a right-handed coordinate system, and are

often written as (x, y, z). A quantity which is the product of two velocities is an

example of a second-order tensor. It can be represented by a symbol with two sub-

scripts, say T = u u , where i = i, 2, 3; j = i, 2, 3. Similarly, products of
i' i j

more than two velocities are tensors of higher order. Thus u u u (i, j, k = i, 2,
i J k

or 3) is a third order tensor, etc. Averaged values of velocity products, written

as uiu_, ulu.u, etc. and called velocity correlations (the overbars indicate averaged

values3, ar_ important quantlt_es in the theory of turbulence.

2.2 ROTATION OF COORDINATE SYSTEMS

It should not be assumed that all quantities represented by symbols with a given

number of subscripts (0, i, 2, subscripts) are tensors as in the examples of

the last paragraph (see e.g., section 2.8). To be called a tensor, it is necessary

that a quantity obey a certain transformation law when referred to a rotated coor-

dinate system. _ In considering the transformation laws of tensors, we first note

that a rectangular coordinate system transforms under a rotation according to the law

iWe shall consider here only rectangular Cartesian coordinate systems. Tensors

defined in terms of the transformation laws of such coordinate systems are called

Cartesian tensors. When we use the term "tensor" in this series "Cartesian tensor"

will be understood.



{2-1)
X i = aijx j ,

where x* is a coordinate of a point in the rotated coordinate system x_, and xi i

is a coordinate of the same point in the unrotated system x i. (Note that x_ or x i

can designate either a coordinate system or a coordinate, since a coordinate system

is given by its coordinates.) The a form a set of nine constants. The condi-

tions under which equation (2-1) make_ sense as a transformation law will be consi-

dered later in this section.

Equation (2-1) uses the Einstein summation convention, where a repeated sub-

script in a term designates a sum of terms, with the subscript successively taking on

the values I, 2, and 3. This convention will be used throughout the text, except

where otherwise indicated. Note that the symbol used for a repeated subscript is

immaterial, so that such a subscript is often called a dummy subscript. The expres-

sion for x* written out, is
i'

x I = allX 1 + al2x 2 + al3x 3.

The symbols used for the subscripts which are unrepeated in a term of an

equation (see, e.g., equation (2-1)) are also immaterial, so long as the same symbols

are used in all terms, and so long as they differ from those used for other sub-

scripts in the equation. Thus in substituting one equation into another, the symbols

used for some of the subscripts must frequently be changed in order to avoid confu-

sion. If a subscript occurs more than twice in a term the equation is generally

ambiguous. Also, the same unrepeated subscripts must occur in all terms of an

equation. These points, while possibly obvious once they have been mentioned, are

important for carrying out meaningful tensor manipulations.

The square of the distance ds between two neighboring points is given in the

xl-coordinate system by

ds 2 = dxidxi = _ijdxidx j (2-2)

where _ij is called the Kronecker delta, defined by

%

_ij = 1 for i = Jll_ (2-3)

and

_lj = 0 for i _ j

The truth of equation (2-2) can be seen by writing out the three terms of dxldx i

(summation on i) and the nine terms of _ljdxidxj (summation on i and j) and using

(2-3). Note that _ = _ji" In order that the transformation (2-1) make physical or

geometrical sense, i_ is necessary that the distance ds be the same in the x_- and

the xi-coordinate systems. Thus

ds 2 = dx i dx i = aij aik dxj dx k (2-4)

= OjkdXjdXk

where equation (2-1) in differential form (dx[ = aijdxj) is applied twice, and

equation (2-2) is used. Equation (2-4) gives



(aljaik - _jk)dxjdXk = 0

for all values of the dxl, or
aijalk = _jk" (2--5)

Equation (2-5) gives the nine relations (six of which are different) which must be

satisfied by the a if equation (2-1) is to be a sensible transformation law
ij

(lengths remain invariant under the transformation). Multiplication of equation

(2-1) by alk and use of equation (2-5) and (2-3) give

alkx i = aikaijxj = _jkx j = Xk ' (2--6)

where the last step can be verified by writing out the terms and using equation

(2-3). In general, multiplication of a quantity containing say a subscript j or a

subscript k (or both) by _jk changes the subscript j to k, or k to j, in

that quantity.

Considering only the first and last terms of equation (2-6), and changing the

subscript k to j on both sides of the equation, gives

(2-7)
xj = aijx ± .

If we differentiate equation (2-1) with respect to

respect to x_, we get

0X$ _Xj

- - aij.

8_j ax"
1

xj and equation (2-7) with

(2-8)

A set of equations equivalent to (2-5), but of slightly different form, can be

obtained as follows:

ds 2 _- dxldx i -- ajidXjakldX k -- dxldxi_" = _jkdXjdx k

where equation (2-7) in differential form is used. Therefore

ajiaki = _jk" (2-5a)

2.3 VECTORS (FIRST-ORDER TENSORS)

A quantity u i is said to be a vector, or a first-order tensor, if it obeys the

transformation law

' (2-9)
u i = aiju j ,

where u_ is a component of a vector in the rotated coordinate system x* and ui i

is a component of the same vector in the unrotated system x i. (Note that u i (or

u[) can designate either a vector component or the vector itself, since a vector can

be specified by specifying its components.)

We note by comparing equations (2-1) and (2-9) that a vector transforms accord-

ing to the same law as the coordinates of a point. Thus the coordinates of a point

form a vector. They define a directed-line segment drawn from the origin to the



point xi. That vector is usually called a position or displacement vector.
Similarly any vector defined by equation (2-9) can be interpreted as a directed-line
segment. So the definition given by equation (2-9) agrees with the perhaps more
familiar definition of a vector as a directed-line segment, or as a quantity with
both magnitude and direction (displacement, velocity, area, force, etc.).

It is easy to show that the sumor difference of two vectors, say
is a vector. For, from equation (2-9),

ui + vi = alju j + aijv j = aij(u j + vj)

u i and v i

(2-10)

which shows that u i + v± obeys the transformation law for a vector. Equa-

tion (2-10) is another way of stating the familiar addition law for vectors

represented by directed-line segments; instead of adding directed-line segments

geometrically, we add corresponding components in either the x i or x_ coordinate

system.

2.4 SECOND-ORDER TENSORS

2.4.1 Definition and Simple Examples

A second-order tensor ulj is defined by generalization of equation

(2-9) as a quantity that obeys the transformation law

ulj = alkaj|u_|

(2-11)

where, as usual, repeated subscripts (in this case, k and Q) indicate summations.

Thus equation (2-11) represents nine equations, each with nine terms on the right

side. Tensor notation affords, among other things, considerable economy in writing.

From the definition given by equation (2-11) it follows that the product of two

vectors u± and vj is a second-order tensor. For, from equation (2-9),

* * (2-12)

UiV j = aikaj@UkV _ ,

which shows that UlV obeys the transformation law for a second-order tensor

(equation (2-11)). _e product ulvj, where the subscript on one vector is not

repeated on the other one, is called an outer product.

Another example of a second-order tensor is the spatial derivative, or gradient,

of a vector _u./Sx.. We can show that 8u./_x. is a second-order tensor as follows:
i 3 i 3

Following the rules of partial differentiation, we obtain

aul 8ul 8xk Oxk 8

_xj" = _Xk_x; _X; 8xk(a_|u|)' (2-13)

where u_ is assumed to be a function of x k, and equation (2-9) is used.

equation (2-8) for _Xk/_X _ we get

8u_ 8u_

_XI a_|ajk _xk

Using

(2-14)



which shows that _Ul/_X j obeys the transformation law (2-11) and is thus a second-
order tensor.

2.4.2 Stress and the Quotient Law

Still another second-order tensor is the stress Gij defined by

GIjAA(± ) _ AFj (no sum on i),

where _Fj is the force component in the x -direction acting on the smallJ

area element _A i whose normal is in the x -direction.' i

(2-15)

To show that aij is a tensor, first write a sum of forces of the type _Fj:

alj_A i = AFj (sum on i) (2-16)

A product of two tensors such as that in equation (2-16), where a subscript is

repeated, is called an inner product. But the area _A (where we designate the area
1

by its components) is a vector, since it can be represented by a directed-line seg-

ment normal to the plane of the area (it has magnitude and direction). Similarly the

force _F3 has magnitude and direction and is thus a vector. The quantity _Fj is

also a vector, since it is a sum of vectors of the type _Fj (equation (2-10)).

Next write equation (2-16) in the transformed coordinate system x_:

Since AA i and _Fj are vectors, we have, according to equation (2-9),

(2-17)

_ljaik_Ak = ajk_F k

-- ajkaik_A i -- ajiakiAAk,

where equation (2-16) is used in the next to last term, and the dummy subscripts i

and k are interchanged in the last term. Then, from the first and last terms,

* (2-18)
AAk(Gijaik - ajiakl ) = 0.

Since equation (2-18) holds for all values of AAk,

aikGij _ aji_kl.
(2-19)

To get this equation into the form of equation (2-11), multiply it by

aika|kalj = ajia|kGki.

a_ k' or

Finally, using equation (2-5a),

_|alj = a3ia_k(Tki

or



_j = a_kaji_ki-

(2-20)

Comparing equation (2-20) with (2-11) shows that aij is a second-order tensor.

We have shown, starting from equation (2-16), that if inner multiplication of a

quantity U by a vector with arbitrary components gives another vector, then _ijij
is a second-order tensor. This is one form of the quotient law. Once it has been

established, as has been done here, it provides in some cases a simple test for

determining whether a quantity is a tensor. Further discussion of the quotient law

will be given in section 2.5.2.

2.4.3 The Kronecker Delta, a Tensor

In the foregoing paragraphs we showed that a product of two velocities (or

vectors), a gradient of a velocity, and a stress, while representing different physi-

cal entities, are all alike in that they are second-order tensors. Next we ask

whether the Kronecker delta _ is a second-order tensor. According to the defini-

_J -_nts
tion in equation (2-3) the compo,,_ of Oij do not depend on the orientation of
coordinate axes. Thus

Using equations (2-5a) and (2-3),

_iJ = _iJ = aikajk = aikaj|_k|"

(2-21)

Comparing the first and last members of equations (2-21) with (2-11) shows that _lj
is a second-order tensor.

The Kronecker delta _ is an example of an isotropic tensor. That is, its
lJ

components remain invariant with rotation of coordinate axes. An isotropic tensor is

sometimes called a numerical tensor, since its components have the same numerical

values for all rotations of the coordinate axes.

We now show that the most general second-order isotropic tensor is I_ij , or

that any second-order isotropic (numerical) tensor can be written as I_ , where I

is a scalar. The transformation law for a second-order tensor is given b_ equation

(2-11). Let I be any (the most general) second-order isotropic tensor, so that

I* . ThenJequation (2-11) becomes
iJ = Iij

Iij = Iij = aikaj|Ik|.

Multiplying the last two members of this equation by ajm and using equation (2-5)
give

ajmIij = aikaj|ajmIk| = aik_|mIk| = aikIkm.

The first and last members of this equation give



_kmajkIij = _ijajkIkm,

or

ajk(_kmIij - _ljIkm) = 0.

Since the relation for Iij cannot depend on the a (on the orientation of thejk o
coordinate axes), the quantity in parentheses is zero," and we get, after contract-

ing the indices k and m (setting m = k),

Iij = (Ikk/3)_ij

where Ikk is a scalar (see section 2.6). Any value of Ikk satisfies this

equation, as can be seen by contracting the indices i and j, so that

Iij = I_lj.

That is, any (the most general) second-order isotropic tensor can be written as

I_±j, where I is an arbitrary scaler.

2.5 THIRD- and HIGHER-ORDER TENSORS

The generalization of equation (2-11) to tensors of higher order is obvious.

For instance a third-order tensor ulj k is defined by

* (2-22)
Ulj k = a_|ajmaknU_m n

which represents 27 equations, each with 27 terms on the right side. An example of a

third-order tensor is the product of three velocities uluju k. The product of four

velocities forms a fourth-order tensor uiujuku_, etc.

2.5.1 Vorticity and the Alternating Tensor

An important third-order tensor is the alternating tensor

_iJk -- _il _J2_k3 + _i2_j3_kl + _i3_Jl_k2

- _i16j36k2 - _i26j1_k_ - _i36j26kl.

_lgk' where

(We call el k a tensor in anticipation of showing that it is such later in this

section.) _aluation of equation (2-23) shows that

(2-23)

and

_ijk ----0 if tWO subscripts are equal,

e123 = _231 = _312 = 1,

_132 ---- _321 = _213 --- --i.

(2-23a)

2If, however, Ilj were not an isotropic tensor, then ajk(_kmIlj - _ijIkm) = 0,

and we could not set the quantity in parentheses equal to zero; the relation between

Ilj and Ikm would not be independent of the akj.



The alternating tensor _ljk is usually defined by equation (2-23a), but equation
(2-23) is more convenient for our purposes (and maygenerally be preferable).

Wedefine a quantity W i
as follows:

8u k

W i = _ijk_xj'

(2-24)

where u k is a vector and x is a coordinate (also a vector). Equation

(2-24) becomes, on using (2-2_),

W i = (_il_j2_k3 - _il_j3_k2 + _i2_j3_kl - _i2_Jl_k3

8u k

+ _i3_jl_k2 -- _i3_j2_kl) _X_

fou 1 fou 1 ou ]= 6_[_ - b__j +6_[_x_ - _j +6_ __[_- _x_l"

Therefore, the three components of the quantity W i are

(2-25)

8u 3 8u2 8u I 8u 3

:8x- -8x-q' :8x-q-8x-q' (2-26)

_U 2 _U 1

and W3 = _ - _x 2 "

If u I is the velocity at a point in a fluid, W is called the vorticity and is a
1

measure of the local swirl or rotation. Equations (2-26) show that each component

W± has the magnitude of the rotation of the fluid in an xj - x k plane (j, k _ i)

and is perpendicular to that plane. Thus the quantity W i has both magnitude and

direction and so is a vector. The vector W i (or W) is also called the curl of u i

and, in vector notation, is written as V × u. The quantity _Uk/_X j in

equation (2-24) is the gradient of a vector and, as shown in section 2.4.1, is a

second-order tensor. Since W i is a vector, _iJk is a third-order tensor by a

slightly more general form of the quotient law than that in section 2.4.2. (See the

next section.) By equation (2-23) it is isotropic (or numerical), since its

components remain invariant with rotation of coordinate axes.

2.5.2 A More General Quotient Law

In order to prove the quotient law used in the last section, we note that

equation (2-24) is of the form



Vi = VljkVkjt (2--27)

where vi is a vector and vk is an arbitrary second-order tensor (its components
can have arbitrary values). Wewant to prove that vii k is a third-order tensor.
In a rotated coordinate system equation (2-27) becomes

' _ _ (2-28)
vi = ViJkVkj,

or, since v i and Vkj

(2--11),

are tensors, we can write, using equations (2-9) and

a_|v| = vljkak|ajmV|m.

Substituting for v_
from equation (2-27),

vijkak|ajmV|m - aj_v_jkVkj = 0.
(2--29)

We factor out v_ after making a change of dummy subscripts in the second term of

equation (2-29).qmThis gives

(ak|ajmV_jk - alnVnm |)v|m = O.

Since V_m is arbitrary, the quantity in parentheses is zero, or

ak|ajmVij k = alnVnm | •

TO get this equation into the form of equation (2-22) we multiply it by ar_aqm, or

(2-30)

ak|ar|ajmaqmVij k -- ainaqma r |Vnm| •

Finally, using equation (2-5a) on the left side of (2-30) gives

_kr_jqvijk = alnaqmar|Vnm_

or

Viq r ----ainaqma r @Vnm @ •

(2-31)

Comparison of equation (2-31) with (2-22) shows that vlj k is a third-order tensor.

Thus if, in equation (2-27), v i is a vector (first-order tensor) and Vkj is an

arbitrary tensor, then vij k is a tensor. This proves a rather general form of the

quotient law. As mentioned earlier, a product such as that in equation (2-27), in

which a subscript or subscripts in one factor is repeated in the other one, is called

an inner product. In general the quotient law states that a quantity is a tensor if

an inner multiplication of that quantity with an arbitrary tensor (its components can

have arbitrary values) is itself a tensor.

2.6 ZERO-ORDER TENSORS AND CONTRACTION

We notice in the definitions of first-, second-, and third-order tensors

(equations (2-9), (2-11), and (2-22)), that the number of a 's in the transforma-

tion law equals the order of the tensor. Also, of course, th_ number of subscripts



on a tensor equals its order. Thus for a tensor of order zero or a scalar, say u,
we should have in place of equation (2-9) or (2-11),

• (2-32)
U zU.

w
So a zero-order tensor, or a scalar, has the same value in the coordinate system x i

as in x i. For that reason it is often called an invariant. Since u in equation

(2-32) can be any unsubscripted quantity, we can say that any unsubscripted quantity

is a tensor of order zero.

Multiplication of a tensor by a scalar gives a tensor of the same order. For

instance multiplication of equation (2-11) (for a second-order tensor) by a scalar u

gives

• * (2-33)

u ulj = aikaj|uuk|,

where equation (2-32) was used. Thus UUk_ transforms as a second-order tensor.

In the second-order tensor u we can set j = i. That process is called
ij

contraction. Then, according to equation (2-11), we have

ui± = aikai|Uk| -- _k|Uk| = Ukk -- Uii
(2--34)

where equation (2-5) is used. Comparison of equation (2-34) with (2-32) shows that

ull is a zero-order tensor, or a scalar. Thus contraction of the subscripts i and

j lowered the order of the tensor by two. In general the process of contraction

lowers the order of a tensor by two. As another example we contract the second-order

tensor _ul/_x j to form the scalar _ul/_x i, which is called the divergence of U i ,

and which, according to equations (2-14) and (2-5) is a scalar. In vector notation

the divergence of u i is written as V.u. As a final example of contraction, con-

tract the second-order tensor ulv j to form uiv i . The quantity uiv i is a scalar,
since

uiv i _ alkai|ukv | -- _k@UkV_ -- UkV k = UlV i.

(2-35)

It is called the dot or inner product of the vectors u and v and is often written

as u.v.

We can show that the gradient of a scalar , say

ing as in obtaining equations (2-13) and (2-14),

8u* 8u*SXk

--_ ,
_xj _ixk8xj

which is the transformation law for a vector.

is written as Vu.

u, is a vector. For, proceed-

(2-36)

In vector notation the gradient of u

2.7 OUTER AND INNER PRODUCTS OF TENSORS OF HIGHER ORDER

It is shown in sections 2.4.1 and 2.6 respectively that outer and inner products

of vectors are tensors of some order. It is straightforward to show that outer and

inner products of tensors of any order are tensors. For example the outer product

UlUjk is a third order tensor, since

i0



Also, the inner product
equation (2-5),

uluik

_ (2-37)
UiUjk = aj|ajmaknU@Umn

is a first-order tensor (vector), since, using

uluik -- a1|aimaknU_Umn= _|maknU|Umn

= aknUmUmn.

2.8 SUBSCRIPTEDQUANTITIESTHATARENOTTENSORS

In order to give a better understanding of what tensors are, we give here some
examples of quantities which, although subscripted, are not tensors. First consider
the quantity . Recall that the aij(2_l)aij form a set of nine constants defined byequation • Assumefirst that a is a second-order tensor. Thenij

(2-38)alj = alkaj_a_ = aik_jk = aij

where equations (2-ii), (2-5a), and (2-3) were used. Thus if alj is a tensor, it

must be isotropic. But we showed in section 2.4.3 that the most general second-order

isotropic tensor is IOij, where i is a scalar. So aij is a tensor only if it is

equal to I_lj. If aij = I_lj, equation (2-1) becomes

x i = I_ijx j = Ix_.

* are not proportional toBut in contrast to the statement of this equation the x i

the x i for arbitrary rotations, so that aij @ IOij , and according to our argument
a is not a tensor.
lj

We showed in the last paragraph that a i is not a tensor, since a @ IOlj.

More generally we can say that any quantity 4 whose components have th% same
13

numerical values in all rectangular coordinate systems is a nontensor if h # I_ij ,

since I_ij is the most general isotropic (numerical) tensor (section 2.4.3ii.

As another example consider a quantity w i = u(i)v i (no sum on i), where u i and

v i are both vectors. One might imagine that w i = u(1)v i is also a vector (first

order tensor), since it has one assignable subscript. But u* and v* =

aikVk, SO that i = aijuj i

' ' ' (2-39)
w i = u(i)v i = a(_)jaikujv k.

If w = u v were a first-order tensor it would transform as w* = a w
i (i) i ..

= a.ljuv(37 J ' which is considerably different from equation (2-39). iSinc_ _oth of

these expressions cannot be true, w i = u(1)v i is not a tensor. Similarly quantities

such as wij = u(1).ulj and Wijk = U(i_ij k are not tensors. Note that all of these
quantities are proaucts which are nelnner inner nor outer.

II



2.9 CLOSING REMARKS

It has been shown (eq. (2-10)) that the sum or difference of two vectors is a

vector. Similarly the sum of any two tensors of the same order is a tensor of that

order. No meaning is attached to the sum of tensors of different orders, say

u i + ulj ; that is not a tensor.

In general, an equation containing tensors has meaning only if all the terms in

the equation are tensors of the same order, and if the same unrepeated subscripts

appear in all the terms. These facts will be used in obtaining appropriate equations

for fluid turbulence.

This explanation of Cartesian tensors should contain what is needed for our

purposes. It is hoped that it has been reasonably clear. Other treatments of

tensors are given, for instance, in books by Jeffreys, Spain, Arfken, Lass, Langlois,

and Goodbody (refs. 1 to 6).

With the foregoing background the derivation of appropriate continuum equations

for turbulence should be straightforward. Before deriving them, however, a justifi-

cation for calling the fluid a continuum for the study of turbulence will be given.
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