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INTRODUCTION

This research project deals with the development of efficient iterative

solution methods, for the numerical solution of two- and three-dimensional

compressible Navier-Stokes equations. The work during the present research

period (February 14 - August 13, 1991) focuses on two-dimensional applications.

Iterative time marching methods have several advantages over classical

multi-step explicit time marching schemes, and non-iterative implicit time

marching schemes. Iterative schemes have better stability characteristics than

non-iterative explicit and implicit schemes. Thus, the extra work required by

iterative schemes per time step per node may usually be offset by the use of a

larger time step. Iterative schemes can also be designed to perform efficiently on

current and future generation scalable, massively parallel machines.

An obvious candidate for iteratively solving the system of coupled non-

linear algebraic equations arising in CFD applications is the Newton method.

Many investigators have implemented Newton's method in existing finite

difference and finite volume methods. Depending on the complexity of the

problem, the number of Newton iterations needed per step to solve the

discretized system of equations can, however, vary dramatically from a few (3 to

5) to several hundred.

In this work, another popular approach based on the classical conjugate

gradient method, known as the GMRES (Generalized Minimum Residual)

algorithm is investigated. The GMRES algorithm has been used in the past by a

number of researchers for solving steady viscous and inviscid flow problems.with

considerable success. Here, we investigate the suitability of this algorithm for

solving the system of non-linear equations that arise in unsteady Navier-Stokes

solvers at each time step.

Unlike the Newton's method which attempts to drive the error in the

solution at each and every node down to zero, the GMRES algorithm only seeks



to minimize the L2 norm of the error. In the GMRES algorithm the changes in the

flow properties from one time step to the next are assumed to be the sum of a set

of orthogonal vectors. By choosing the number of vectors to a reasonably small

value N (between 5 and 20) the work required for advancing the solution from

one time step to the next may be kept to (N+I) times that of a non-iterative

scheme. Many of the operations required by the GMRES algorithm such as

matrix-vector multiplies, matrix additions and subtractions can all be vectorized

and parallelized efficiently.

progress During the ReDortinq Period

During the reporting period, the following tasks were completed:

a_ Addition of GMRES solver to an existing code

The GMRES solver was added to an existing time-accurate 2-D ADI

Navier-Stokes code, which optionally utilizes Newton iteration to ensure accuracy

at each time step. The GMRES solver was coded such that it can solve both

time accurate and steady state flow problems. The numerical and mathematical

formulation is given in Appendix A. In order to validate the solver and gain

experience, it was applied to a variety of steady cases before being used for

unsteady calculations.

b) Steady Calculations

The GMRES code was tested on several subsonic and transonic, viscous

and inviscid cases.

The first case was an inviscid subsonic problem. The airfoil was a NACA

0012 section at a 2 degree angle of attack. The freestream Mach number was

0.63. Figure 1 shows the L2 norm of the residual plotted against the CPU time

used. For a given level of convergence, GMRES (with N=10) required only 50%

of the CPU time that the original ADI solver used. Figure 2 shows the C I histories

of the two _olvers. It may be seen that the GMRES solver does not oscillate

nearly as much about the final result as does the ADI solver.

The second case was more challenging. In this calculation, a NACA 0012

airfoil is in an inviscid, transonic (M = 0.8) flow at a 1.25 degree angle of attack.



This problem was chosen to evaluate the ability of the GMRES solver to capture
strong shock waves. Figures 3 and 4 give the residual and lift coefficient history

comparisons between the original ADI solver and the GMRES (N=40) code.

Again, the GMRES (N=40) solver requires only 50-55% of the CPU time

necessary for the ADI code. Also, the lift coefficient converges much more

rapidly.
The interesting part of this problem was in choosing the number of

GMRES directions to use. Figure 5 shows a comparison of the global residuals

for runs where the number of conjugate directions N was varied. Notice how the

N=10 and N=20 runs converge very quickly initially, but completely stall after a

certain level of residual is attained. Only the N=40 run gave a reasonably low

residual before stalling at a global residual of 10-8. A run with N=80 proved that

there was a limit to the speedup and accuracy obtainable before the cost of the
GMRES routine outweighed the benefits. Figure 6 shows the CI histories of

these runs. Note the inaccurate results from the N=10 and N=20 runs. This

shows that the GMRES scheme with very few directions can actually perform
worse than a non-iterative ADI method. However, the 40 direction run locks on to

the final CI result very quickly. Figure 7 is the correlation between the lift

coefficient and the global residual for the 40 direction run. From this graph, it

appears that a residual of 10-7 or less is necessary to get accurate lift valuesfrom
GMRES for an inviscid case.

The last steady case was a NACA 0012 airfoil at a 5 degree angle of

attack. This was a viscous run, with a Reynolds number of 3,450,000. This case

compared N=10 with N=40. Figure 8 shows the residual histories of the two
runs. This plot shows that, up to the point where it stalls out N=10 run takes 67%
of the CPU time compared to a N=40 run. Figure 9 shows the CI histories. Both

solvers reach the same lift coefficient, with the two solvers taking about the same

CPU time to reach a steady lift. Comparison of Figures 8 and 9 indicates that a
residual of 10-8 is necessary for the lift coefficient to stabilize. This is the only
steady viscous run performed, so it may not be a good rule of thumb. The Cp

distribution on the airfoil is compared to the original ADI result in Figure 10.

Excellent agreement was obtained.



c_ Unsteady Calculations

Two cases were studied using the time-accurate GMRES method: a

plunging NACA 64-A010 airfoil in inviscid transonic flow, and a pitching NACA

0012 airfoil in subsonic flow.

The first case to be studied was a sinusoidally plunging NACA 64-A010

airfoil in transonic flow, previously studied by Yoshihara and Magnus, and by

Steger. The freestream Mach number was 0.8, and the reduced frequency was

0.2. This case was run in the Euler (inviscid) mode.

At first, a time step 20 times that of the original ADI scheme was'used.

The lift coefficients correlated well for both 10 and 20 directions compared to the

ADI solver. Problems became apparent when the moment coefficients were

plotted. The GMRES (20/20) [# of directions/time step multiplier] run gave the

correct magnitude of the C m, but the phase was shifted by 30 degrees. The

10/20 run gave even worse results: the magnitude was extremely bad, and the

phase shift was also large. Figures 11 and 12 show the lift and moment

coefficient histories for these runs.

At this point, reducing the time step was tried. Since a time factor of 20

meant that one GMRES step corresponds to 3.5 degrees of phase angle, it was

thought that a smaller time step would help resolve the shock motion. A GMRES

(10/10) run gave much better results for the phase of the moment, but

overpredicted the magnitude. When a GMRES (5/5) run was tried, it was found

that 5 directions were not enough to ensure stability, and the solver blew Up.

The next run was a GMRES (5:5/10) (two 5 direction iterations per step

with 10 times the ADI time step). This run was performed to see if the

nonlinearities of the transonic flow could be causing some of the difficulties (in

other words, trying to let the GMRES have a chance to correct itself). This is

apparently not the case, as the results for the (10/10) and (5:5/10) run are almost

identical. Figures 13 and 14 compare these results with the ADI and the GMRES

(20/20) results.

To test finally whether the time step was too large, a GMRES (10/5) run

was performed. Note that this run takes twice as long as the original ADI code.

The results were greatly improved over the previous calculations. Figures 15 and

16 give the lift and moment coefficients results. From these runs, it is seen that a



time step of 5 times the ADI step is small enough to capture the physics of the

flow, while a time step 10 times as large is not.

From the above studies, it appears that a time step which is very large can

give very poor results, particularly for unsteady transonic applications, where the

pitching moments are governed by shock speeds and shock locations. A very

large time step, which requires the shock to traverse several mesh widths can

give incorrect shock speeds and shock locations, even when a temporally and

spatially conservative scheme is used.

The above difficulty in using large time steps relative to an ADI method

may, however, be peculiar only to inviscid transonic calculations. In viscous

flows, the time steps for the ADI scheme are small. Even when a time step 20 to

40 times that of an ADI scheme is used, the shock is not likely traverse more

than one or two streamwise cells per time step. Thus, the GMRES method may

give good results in unsteady transonic, viscous flows, and permit use of very

large time steps relative to an ADI scheme. This hypothesis remains to be tested

using an unsteady transonic viscous flow case.

The dynamic stall of a NACA 0012 airfoil was the last case studied to

evaluate the time-accurate GMRES method. The airfoil was pitched about the

quarter chord point from 5 degrees to 25 degrees, at a reduced frequency of

0.151. Freestream Mach number is 0.283, and Reynolds number is 3,450,000.

Many runs were performed on this case to evaluate the effects of changing the

time step and the number of directions.

A time step 20 times that of the original ADI scheme was tried initially. To

get a comparison, 20 directions were run (20/20). Note that this takes slightly

longer than the original ADI code to run, mainly due to a 20x20 matrix inversion

required by the algorithm. Figures 17,18 and 19 compare the GMRES results

with the experiment. Figure 20 shows the L2 norm residual variation with time for

the GMRES (20/20) run. The 20/20 run is seen to give good qualitative

agreement with the experiments. For this reason, the GMRES (20/20) run was

chosen as the baseline for the later runs.

The next series of runs were performed to see what sort of speedups were

likely from GMRES. For this set, a time step of 20 times the ADI time step was

used (i.e., GMRES (x/20)). The number of directions were set at 10 and 5.

Results for lift, moment, and residual are shown in Figures 21, 22, and 23.

These are plotted against time as it is easier to judge results in this way. The



output shows that GMRES (10/20) is very nearly as good as (20/20), while

accuracy falls off in the (5/20) run.
The last series of runs were done to see the effect of the time step on the

GMRES solver. From the results of the last series, GMRES (x/2x) was chosen

(number of directions equal to half of the time step factor). These results are
shown in Figures 24, 25, 26, 27, 28, and 29. The results were split into two

groups to keep the graphs legible. From these graphs, it can be seen that there
is a tradeoff between accuracy of the GMRES iteration (which goes up with

number of directions) and the time step necessary to resolve flow phenomena.

From this series of runs, it appears that a time factor of 20 is the best choice in
this case.

Multigrid Unsteady Runs:

The GMRES algorithm requires storage of the conjugate correction

vectors at every time step. For a N direction scheme, 4 N additional words must

be stored per node. The amount of storage can be reduced if some of the
correction vectors are computed and stored on a coarse grid, and only the rest of

the vectors are stored on a fine grid. This requires a multi-grid method, where the

original non-linear system of equations on a fine grid are transferred to a coarse

grid in the "Full Approximation Scheme (FAS)" sense.

Two algorithms were tried: a Fine-Coarse pattern, and a Fine-Coarse-

Fine pattern. In Figures 30, 31, and 32, a (20/20) run is compared to: a normal,

fine-grid-only (10/20) run, a F-C (10/20) run (10 directions on both fine and

coarse grids), and a F-C-F (5:5/20) run (5 fine, then 5 coarse, then 5 more fine).

No gain due to multigrid is apparent; in fact, the multigrid solver made the
GMRES solver less stable, and both multigrid runs blew up halfway around the

cycle.

CONCLUDING REMARKS

The GMRES algorithm has been implemented in an existing unsteady 2-D

compressible Navier-Stokes solver. Encouraging preliminary results for steady

and unsteady, viscous and inviscid calculations have been obtained. Our



attempts to reduce the memory requirements of the GMRES scheme through

multigrid techniques have not been successful to date.

The above results, and additional dynamic stall calculations on a fine grid,

will be presented at the forthcoming AIAA Aerospace Sciences Conference in

Reno, Nevada, in January 1992.



Aooendix A

Mathematical and Numerical Formulation

Underlying Newton Based Formulation

For the sake of simplicity, the Newton iteration time marching scheme is

discussed here for the 2-D compressible Navier-Stokes equations on a Cartesian

coordinate system. The scheme is , however, applicable to 3-D flows on

curvilinear body-fitted coordinate systems.

The governing equations may be written formally as:

(1)

Here _ is the vector containing the flow properties such as density, u- and

v- momentum per unit volume, and total energy per unit volume. The terms F

and G represent the transport of mass, momentum, and energy by convection,

and also include pressure effects. The terms R and S represent viscous stress

effects, heat conduction, and the friction-generated heat.

The objective of the calculation is to determine q at a time level 'n+l'

given the values of _ at a previous time level 'n'. On a stretched Cartesian grid,

at a typical node (i,j), this equation may be discretized as:

At (2)



The above discretization is first order accurate in time if 'm' is set to zero

or one, and second order accurate if 'm' is set to 1/2. The operators 8x and

represent second order accurate or fourth order accurate spatial differences.

The terms F and G are numerical fluxes that differ from the physical fluxes F and

G in that they incorporate artificial viscosity terms, or changes to F and G needed

to make the scheme upwinded. In the present studies, which primarily deal with

subsonic and transonic applications, the numerical viscosity model proposed by

Jameson, Turkel, and Schmidt and modified by Swanson and Turkel is used

[Ref. 15].

In the past, equation set (2) was solved by non-iterative time marching

schemes (e.g., Ref. 10).

A variant of the non-iterative time marching schemes is an iterative time

marching scheme. Several researchers have used Newton-iteration schemes in

steady and unsteady Navier-Stokes calculations [e.g., Ref. 16]. In this approach,

a sequence of sub-iterations (k = 0,1,2,...) are used within each time step.

Equation (2) is rewritten as follows:

qi,j
I- 8xFn+m'k+SyGn+m'k= (T)xRn+m'k+iThTSn+rn'k

At (3)

The terms F, G, R, and S at time-iteration level (n+m,k) are expanded

about their values at the time level 'n+m' and at the previous iteration level 'k-l'.

This leads to a system of coupled, linear equations for the changes in q between

two successive iterations:

[M]{Aq} = {R} (4)

where



Aq = qn+l,k _qn+l,k-1 (5)

and {R} is the residual:

+ _Fn+m,k-1+_n+m,k-I = _XRn+rn,k-1+_jsn+m,k-I
At (6)

The objective of the Newton iteration scheme is to solve equation set (3)

by repeated application of equation set (4). The matrix [M] is a banded 5- or 9-

diagonal matrix whose individual elements are 4x4 matrices. This matrix is

usually approximately factored into tri-diagonal matrices and inverted. Equation

set (4) is solved until the residual R is driven to zero. In a full Newton iteration

scheme, the elements of the coefficient matrix will be recomputed every iteration,

based on qn+l,k_. When R approaches zero, equation (2) is exactly satisfied.

The advantage of a Newton iteration scheme, particularly in the context of

approximate factorization schemes, is that the errors associated with the

factorization method can be reduced or removed. That is, as Aq goes to zero,

the errors associated with the approximate factorization of [M] do not affect the

solution. By specifying a convergence criteria for Aq, one can also ensure that

equation set (2) is satisfied at every time step to within a user-specified tolerance.

The disadvantage of the above type of Newton iteration schemes is that each

Newton iteration requires approximately the same amount of CPU time as a

single step using a non-iterative time marching scheme. To be cost-effective, a

Newton-iteration based scheme that uses, say, 5 iterations per time step should

use a CFL dumber that is, on the average, 5 times larger than the CFL number

associated with a non-iterative scheme.



GMRES Formulation

The objective of the GMRES method is to accelerate the convergence rate

of the existing Newton iterative solver.

In each Newton iteration, the Newton solver takes an approximation to the

correct solution and uses it to obtain an improved approximate solution:

_in+l,k = A(_+L k-_) (7)

where_ +Lk is the vector containing the all of the flow properties at the 'n+l' time

level and the new ('k') iteration level. This vector is, in 2-D, (4 x imax x jmax)

long.

The solution is converged when

_n+l,k =_n+l,k4 (8)

or

_in+l"k-1- A(_ n+l'k'l) = 0 (9)

GMRES solves the system of linear equations:

0



by minimizing the L2 norm of the residual F. The original Newton iterative

scheme is used to evaluate F given a value of_.

In order to accomplish this, GMRES computes J orthonormal search

directions and finds the gradient of the residual in each direction. With this, a

least squares problem is solved to minimize the residual in the Krylov subspace

defined by the J orthonormal direction vectors.

The GMRES algorithm works as follows:

First, the initial direction is computed by the Newton solver from the initial

guess for q at the 'n+l' time level:

dl= l_+!'_ (11)

and normalized as

-,-I*

"" dl
dl = _.,

ld, I (12)

To compute the remaining search directions (j = 1,2,...,J-1 ), take:

E
i--1 I (13)

where



(14)

and

(15)

Here, e is taken to be some small number.

.-.e.

The new direction dj+l is normalized before the next direction is computed:

(16)

After the search directions are known, the solution vector is updated using

Cin+l'new= Cin+l"0 + __, ajd'j

j=l
I (17)

where the coefficients aj are chosen to minimize:



,  ,112+X
j=l (18)

One of the most important features of the GMRES method is its portability

between existing flow solvers. In this formulation, the original Newton solver is

used only to evaluate the residual F, and does not directly affect the correction

applied to the flow variables. Therefore, this procedure is applicable to any

iterative flow solver that can compute F for any given q and send it to the

GMRES routine. This is a significant advantage over other methods such as

multigrid analyses which are closely tied to the flow solver.

GMRES has similar advantages and disadvantages as the Newton

scheme over the original ADI code. For one step using 'J' directions, GMRES

calls the Newton solver J+l times, and also must invert a full JxJ matrix. Thus, to

gain an improvement in CPU time, the time step must be at least a factor of J+l

times larger than the original ADI time step.

The major disadvantage that GMRES has compared to the Newton

scheme is the required memory. Each direction is equivalent to storing the entire

flow field, and GMRES requires that all J directions be stored as well as the last F

derivative.
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