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1 Introduction

After its introduction as an aircraft simulator, the Stewart Platform [1] has been employed in

the design of various robot manipulators, robotic end-effectors and robotic devices [2,27] for high

precision assembly tasks where the requirements of accuracy and sturdiness are more essential

than these of large workspace and maneuverability. A Stewart Platform-based manipulator con-

sists mainly of two platforms coupled together by six parallel linear actuators driven by electrical

drives such as servomotors or fluid power drives such as hydraulic or pneumatic systems. The

motion of one platform with respect to the other can be produced by shortening or extending

the actuator lengths. Conventional robot manipulators are anthropomorphic open-kinematic

chain (OKC) mechanisms whose joints and links are actuated in series. OKC manipulators

generally have long reach, large workspace and are capable of entering small spaces because

of their compactness. However they have low stiffness and undesired dynamic characteristics,

especially at high speed and large payload mainly due to the cantilever-like structure. More-

over, the nonuniform distribution of payload to actuators causes OKC manipulators to have low

strength-to-weight ratios. Finally serial accumulation of joint errors throughout the OKC mech-

anism results in relatively large position error on the last link of the manipulator and suggests

that OKC manipulators are not suitable for high precision tasks. On the other hand, Stewart

Platform-based manipulators whose mechanism are parallel, have been proven to be capable of

high precision positioning due to their high structural rigidity and non-serial accumulation of

joint errors.

One of the first Stewart Platform applications is reported in [2], where an aircraft simulator

was built at NASA Langley Research Center to train operators and kinematic transformations

were developed for the motion control of the simulator. A finite element program was employed

in [3] to simulate the motion of the Stewart Platform whose mechanism was later applied in [4]

to design an automatic assembly table. A systematic study of in-parallel-actuated robot ma-

nipulators was conducted in [5] and the structural kinematic problem this type of manipulators

was presented in [7]. A general technique was obtained in [6] to describe the instantaneous link

motion of a single closed-loop mechanism by applying linear algebra elements to screw systems.

In [8], the Stewart Platform mechanism was applied to construct a passive compliant robot

end-effector which served as a testbed for studying autonomous part assembly. The problem

of active compliance control of this end-effector was later investigated in [9]. The kinematic

problems and practical construction of the Stewart Platform were considered in [10,11] and in

[12], respectively. Kinematics and dynamics of parallel manipulators were studied in [13] and

dynamical equations for a 3 degree-of-freedom (DOF) parallel manipulator were derived in [14].

Static force analysis using screw theory was applied in [15] to treat Stewart Platform-based

manipulators. The Stewart Platform mechanism was applied to design a micromanipulator [17]

performing fine motion, and to manufacture a force/torque sensor [19]. Other problems of Stew-

art Platform-based manipulators such as adaptive force/torque control, kinematics, dynamics

and workspace computation were treated in [20,23]. Closed-form solutions of forward kinematics

were derived in [21] and [24] for a class of Stewart Platforms. Learning control scheme and tra-

jectory planning schemes were developed in [25] and [26], respectively for parallel manipulators.

Experimental results obtained for a Stewart Platform manipulator were reported in [27].

This report deals with the trajectory planning and motion control of a Stewart Platform-

based robotic end-effector built to study robotic assembly of part in space. This report is



organizedasfollows. The next sectionpresentsthe main componentsof the end-effectorand
describesbriefly their operations. Forwardand inversekinematic transformationsare then
developedfor theend-effector.After that, thedevelopmentof threetrajectoryplanningschemes,
twofor finemotion andonefor grossmotion,arepresented.Resultsof experimentsconducted
to evaluatethe performanceof the developedtrajectoryplanningschemesin trackingseveral
testpathsarefinally presentedand discussed.

2 The Passive Compliant End-Effector

This section is devoted to briefly describe the main components of the end-effector. As illustrat-

ed in Figures 1-2, the end-effector, a prototype whose size is about ten times the size that of an

end-effector proposed in [22,23] for in-space assembly of NASA hardwares, mainly consists of a

lower base platform, an upper payload platform, a compliant platform, a gripper and six linear

actuators. The movable payload platform is supported above the stationary base platform by six

axially extensible rods with ballnuts and bailscrews providing the extensibility. The ballscrews

are driven by stepper motors to extend or shorten the actuator legs whose variations will in

turn create the motion of the payload platform with respect to the base platform. Each end

of the actuator links is mounted to the platforms by 2 rotary joints whose axes intersect and

are perpendicular to each other. As seen in Figure 2, passive compliance is provided through

the compliant platform, which is suspended from the payload platform by six spring-loaded pis-

tons arranged in a geometry similar to the Stewart Platform mechanism, by permitting strain

on two opposing springs acting in the pistons. Thus the pistons are compressed and extended

when resistive and gravitational forces are applied on the gripper. The rotation of each stepper

motor is controlled by sending out proper commands to an indexer which then transmits proper

pulse sequences to the stepper motor drive. Therefore, the motion of the gripper attached to

the compliant platform can be precisely produced by properly controlling the motions of the

six end-effector legs. The planning and control scheme employed to control the motion of the

end-effector gripper is presented in Figure 3. A Cartesian trajectory planning scheme converts

a desired Cartesian path specified by desired starting and ending velocities and accelerations

is converted into 6 Cartesian trajectories. Then based upon the desired Cartesian trajectories,

joint-space trajectories will be determined by a joint-space planner which sends proper com-

mands through the RS232 port of a personal computer to the indexers. The indexer will then

transmit pulses to the stepper motor drives where microstepping permits each revolution (360 °)

of the stepper motor to be equivalent to 25,000 steps. The drive rotates the stepper motor

one angular increment of _ = 0.0144 °, each time it receives one step pulse. Furthermore,

through the linear motion converter system consisting of the ballnut and the ballscrew, each

angular increment (=lstep) is converted into 8 #-inches of linear translation of the end-effector

leg. Consequently a revolution corresponds to 0.2 inch of linear translation.

3 Kinematic Transformations

This section presents the development of the kinematic transformations for the end-effector.

First using vector analysis, a closed-form solution for the end-effector inverse kinematic trans-

formation is obtained. Then Newton Raphson iterative method will be employed to obtain a

numerical solution for the end-effector forward kinematic transformation.



3.1 Inverse Kinematic Transformation

The inverse kinematic transformation deals with the determination of the required actuator

lengths for a given pose 1 of the payload platform with respect to the base platform. As seen in

Figure 4, two coordinate frames {P}, and {B} are assigned to the payload and base platforms,

respectively. The origin of Frame {P} is located at the centroid P of the payload platform,

the zp-axis is pointing outward and the xp-axis is perpendicular to the line connecting the two

attachment points P1 and P6. The angle between P1 and P2 is denoted by 0p. A symmetrical

distribution of joints on the payload platform is achieved by setting the angles between P1 and

P3 and between/°3 and P5 to 120 °. Similarly, Frame {B} has its origin at the centroid B of the

base platform. The xs-axis is perpendicular to the line connecting the two attachment points

B, and/36 the angle between B1 and B2 is denoted by 8B. Also the angles between B1 and B3

and between B3 and B5 are set to 120 ° in order to symmetrically distribute the joints on the

base platform. The Cartesian variables are chosen to be the relative position and orientation

of Frame {P} with respect to Frame {B} where the position of Frame {P} is specified by the

position of its origin with respect to Frame {B}. Now if we denote the angle between PP_ and

xp by Ai, and the angle between BBi and XB by hi for i=1,2,... ,6, then by inspection we obtain

and

0B 0p for i = 1, 3, 5
Ai = 60i - -_-; Ai = 60i - -_,

A_ = Ai-1 +0s; A_ = Ai_l +Op, fori = 2,4,6

(i)

(2)

where all angles are expressed in degrees (o).

Furthermore, if Vector Ppl = (pix piu plz) T describes the position of the attachment point

Pi with respect to Frame {P}, and Vector Bbi = (blx bi_ biz) T the position of the attachment

point Bi with respect to Frame {B}, then they can be written as

= ITPPi [rpcos(Ai) rpsin(Ai) 0 (3)

and

= ]rBbi [rsco (ii) rB in(Ai) 0 (4)

for i=1,2,... ,6 where rp and rB represent the radii of the payload and base platforms, respec-

tively.

We proceed to consider the vector diagram for an ith actuator given in Figure 5. The

position of Frame {P} is represented by Vector Bd = [z y z]T which contains the Cartesian

coordinates x, y, z of the origin of Frame {P} with respect to Frame {B}. The length vector

Bqi = (qix q_u qi*) T, expressed with respect to Frame {B} can be computed by

B qi = Bx i + Bpi (5)

where

Bx i = Sd - Bb i (6)

1In this report pose means position and orientation.



x -bix x -bit

= y - biy = y - bi_
z - biz z

which is a shifted vector of Bd and

Bpi = BR PPi

= gi

It1rlT3][p][rllp+r12p][.]-- r21 r22 r23 Ply -- r21Pix + r22Piy = vi

r31 r32 r33 Piz r31Pix + r32Piy wi

(7)

(8)

(9)

which is the representation of Bpi in Frame {B} and pSR is the Orientation Matrix representing

the orientation of Frame (P} with respect to Frame {B}.

Thus the length li of Vector Bqi can be computed from its components as

li = _/q_z + q2y + q2z. (10)

or

We obtain from (3)-(4)

t, = x/(_ + u_)=+ (_ + v;)2+ (_ + w;)_

2 + 2 :r2p,Pi_ +Piy Piz

b,_+ b_+ qz = r_.
and from the properties of orientation matrix

r21 + r221 -4- r21 ---- r122 + r222 + r22 ---- r123 + r23 + r2 ---- 1

(ii)

(12)

(13)

(14)

and

rllrl2 at- r21r22 -4- r31r32 = 0

rllrl3 + r21r23 -4- r31r33 : 0

rllrl3 3t- r22r23 at- r32r32 = 0. (i5)

Employing (12)-(15), (10) can be rewritten as

li2 = x2 + y2 + z 2 + r_ + r2B+ 2(rnpiz + r12piu)(x _ bix)

+2(r21Pix + r22piy)(Y - bi_) + 2(r3tpix + r32Piu)z - 2(xbi_ + ybiu), (16)

for i=1,2,... ,6.

Equation (16) represents a closed-form solution to the inverse kinematic problem in the

sense that required actuator lengths li for i=1,2,... ,6 can be determined using (16) to yield

a given Cartesian configuration composed of Cartesian position and orientation of Frame {P}

with respect to Frame {B}.

The orientation of Frame {P} with respect to Frame {B} can be described by the orientation

matrix pR as shown in (9) which requires nine variables rij for ij=1,2,3 from which six are

redundant because only three axe needed to specify an orientation [29]. There exist several ways

to specify an orientation by three variables, but the most widely used one is the Roll-Pitch-Yaw

angles a,/_, and 7, which represent the orientation of Frame {P}, obtained after the following

sequence of rotations from Frame {B}:



1. First rotate Frame {B} about the xB-a_is art angle 7 (Yaw)

2. Then rotate the resulting frame about the ys-axis an angle/3 (Pitch)

3. Finally rotate the resulting frame about the zB-axis an angle a (Roll).

The orientation represented by the above Roll-Pitch-Yaw angles is given by 2

_R = RRpy =

ca c/3 ca s8 sT- sa c7 ca s_ cT + sa s7 ]
sac8 sa sS sT + ca c7 sa sS cT - ca s7 ]-s/3 c8 s7 c_ c7

3.2 Forward Kinematic Transformation

(17)

f_(a) = (:e_ + u_)_ + (_ + vO 2 + (e_ + w_)_ - t_2 = 0 (18)

for i=1,2,... ,6, where the vector a is defined as

IT[a= [al a2 a3 a4 as a6 = x y z a 8 7 , (19)

and then employ the following algorithm [28] to solve for a:

Algorithm 1: Forward Kinematic Transformation

1. Select an initial guess a.

2. Compute the elements rij of pBR using (17) for i, j=l,2,... ,6.

3. Compute zi,yi, zi, using (7) and ui, vi, wi using (9) for i=1,2,... ,6.

4. Compute fi(a) and Aij = °_a_. using (18) for i, j=l,2,... ,6.

5. Compute Bi = -fi(a) for i=1,2,...,6. If 6_j=l I Bj I< tolf (tolerance), stop and select a
as the solution.

6. Solve _ = _j=l_aj <_-,j=l Aij_aj Bi for 6aj for i_j=1,2,...,6 using LU decomposition. If s

tola (tolerance), stop and select a as the solution.

_ca= cosa,and sa = sina.

This section considers the development of the forward transformation which transforms the

actuator lengths li for i=1,2, .. ,6 into the pose of the payload platform with respect to the base

platform. The forward kinematic problem can be formulated as to find a Cartesian position

specified by x, y, z and an orientation specified by Roll-Pitch-Yaw angles _, 8, and 7 to satisfy

Equation (16) for a given set of actuator lengths li for i=1,2,...,6. In general, there exists
no closed-form solution for the above problem since Equation (16) represents a set of 6 highly

nonlinear simultaneous equations with 6 unknowns. Consequently iterative numerical methods

must be employed to solve the above set of nonlinear equations. In the following we will present

the implementation of Newton-Raphson method for solving the forward kinematic problem.

In order to apply the Newton-Raphson method, first from (11) we define 6 scalar functions



7. Selecta new = a + _fa and repeat Steps 1-7.

In order to minimize the computational time of Algorithm 1, the expressions needed for

computing the partial derivatives in Step 4 of the algorithm should be simplified. First using

(9) and (17), the partial derivatives of ui, vi, and wi with respect to the angles ot, fl, and 7 can

be computed as follows:

Oui Ou_ Oui
---- --Vi; -- = COt Wi; -- = piy r13, (20)

Oot O_ 07

Ov_ Ovi Ovi
= -- = (21)-- ui; sot wi; Piy r23,

Oot Off 07

Owi Owi
Oot - 0; 0_ -(c_ pi_ + s_ s7 p_y); Ow---i=- _ = 07 Piu r33. (22)

From (7), we note that

Employing (20)-(23), we obtain

oe, = o9, = o_, = 1.
Oz Oy Oz

after intensive simplification

Oax Oz Oii
- 2(_ + u_),

of,
Oa5

of_ of` of_
= _ = o9, = 2(9, + ,,),

of_ oy_ oy_ 2(_+w_),
Oa3 -- Oz -- O"_i =

Of` Ofi = 2(-_ivi + ffiui),
-g_a_= -g-d

Of__ 2[(-_ cot+ 9i sot)wi- (p_ cfi + p_ sZ s'r)_d
oZ

of_ oA
oa---_= _-7 = 2P_de_n3+ g_23+ a_33).

(23)

(24)

(25)

(26)

(27)

(28)

(29)

4 Trajectory Planning Schemes

Two types of motion occur in an assembly task, fine motion and gross motion. While fine motion

requires very high positioning tolerance, up to thousands of an inch, gross motion allows rela-

tively low positioning tolerance, e.g. in obstacle avoidance. Three trajectory planning schemes

developed to control the motion of the end-effector gripper are presented in this section. The

first two schemes, one for tracking straight lines and the other for arbitrary paths, are intended

for fine motion while the third scheme is developed for gross motion.

6



4.1 Trajectory Planning For Straight-Line Motion

The stepper motor indexer has two main modes of operation: the normal mode and the contin-

uous mode. In the normal mode, based on the information about the velocity vf, acceleration

a, and the distance to be traveled Al, which are requested by the user and coded using the

indexer commands, the indexer will determine the appropriate leg velocity profiles which are

either a trapezoid or a triangle depending on the relationship between the given information.

The trapezoidal profile is utilized in the development of the straight-line trajectory planning

scheme. A typical trapezoidal velocity profile is shown in Figure 5, where ta, to, and t d denote

the acceleration time, the constant velocity time, and the deceleration time, respectively. In

addition, the indexer requires that to = td. By inspection, we found that

= v1(tc+ td) (30)

and

v/= aG. (31)

To track a path in a 3-dimensional space, the positions of x- y- and z-coordinates must always

be linearly related to each other anytime during the tracking. Intuitively, if the end-effector

leg displacements are planned such that their velocities are linearly related to each other, then

the resulting Cartesian motion of the end-effector gripper should be a linear path. Computer

simulation utilizing the end-effector forward kinematic transformation developed in Section 3 was

performed to verify the above fact and the simulation results have agreed with our intuition.

As a result, the following algorithm is developed to plan the leg trajectories for straight-line

motion.

Algorithm 2: Straight-Line Motion Trajectory Planning Scheme

1. Use the end-effector inverse kinematic transformation given in (16) to compute the leg

lengths corresponding to the starting point Ps and the final point P/of the straight line,

namely lis and lif for i=1,2,...,6.

2. Compute Ati = lif - l_s for i=1,2,...,6 and find Ark which has the largest absolute value.

3. Select ak and vfk for the k-th leg such that ak <_ am_x; and vlk <_ vma::; vlk <_ akv/_-_

to ensure trapezoidal profile where a,n_z and Vma_ denote the maximum acceleration and

velocity of the stepper motor, respectively, and then compute t_ = _ = td and tc =

-_- - t_.
Vfk

A, and vfi=taai .4. For iCk; i=1,2,..,6 compute ai = t_(t_+tc)

5. Use indexer commands to code vfi, ai, Ali for i = 1,2,...,6.

4.2 Trajectory Planning Scheme For Arbitrary Paths

In the continuous mode of operation, in addition to the acceleration a and the final velocity vf,

the stepper motor indexer must know about the rotation direction of the stepper motor, which

determines the direction of the linear leg displacement. The indexer will transmit proper pulses



to the steppermotor drive whichacceleratesthe steppermotor to velocity v/. The stepper

motor continues to run at this velocity until a new velocity and new acceleration are given

in the same rotation direction. Leg trajectory planning for an arbitrary path is done by first

dividing a the path into n segments and then planning the velocity profiles of the end-effector

legs in the continuous mode so that each segment will be reached within a specified time. The

planning is facilitated by using the following algorithm:

.

2.

.

4.

Algorithm 3: Arbitrary Path Trajectory Planning Scheme

Divide the desired path into n segments.

Use the end-effector inverse kinematic transformation given in (16) to compute the leg

lengths corresponding to each segment point on the curve, namely lij for i=1,2,...,6 (leg

number) and j=l,2,...,n+l (segment point number)

Compute Aij = li,j+l - li,j for i=1,2,...,6 and j=l,2,...n.

For each segment, select an appropriate travel time tj for j=l,2,...,n, and compute the

corresponding acceleration and final velocity at the end of each segment.

In general, the travel times for the segments are constant and equal to each other during the

tracking of curves which do not require the change of leg direction. However when direction of

any leg has to change, the travel time can be selected efficiently using the look ahead method.

Using this method, the algorithm looks at the next segment point and determine if any change in

leg direction is necessary. For example if the direction of a leg requires direction change, then its

travel time will be recomputed to ensure that the velocity at the end of the segment will be zero

to allow direction change. After that, the recomputed travel time will be set for the remaining

legs for the next two segments. Finally the travel time of all legs will be set back to the old

value before the leg direction change occurs. The above process can be repeated whenever a leg

direction change is necessary.

4.3 Trajectory Planning Scheme for Gross Motion

We notice that Algorithm 3 requires a relatively large number of segments, n, and therefore is

computationally intensive. To track a gross motion which does not require a very high posi-

tioning accuracy, the number of segments should be reduced so that the computation time of

the trajectory planning scheme can be minimized. Unlike the development of Algorithm 2, the

gross motion planning will use the triangular velocity profile in the normal mode of the stepper

motor indexer. The following algorithm will facilitate the trajectory planning for gross motion.

Algorithm 4: Gross Motion Trajectory Planning Scheme

1. Divide the desired path into n segments.

2. Use the end-effector inverse kinematic transformation given in (16) to compute the leg

lengths corresponding to each segment point on the curve, namely lik for i=1,2,...,6 (leg

number) and k=l,2,...,n+l (segment point number).



3. Forthe ith leg,locatetheextreme(maximumandmaximum)segmentpointsandidentify
its sectionseachof which is locatedbetweentwo consecutivemaximumand minimum
points.

4. Computethe sectionlengthsAlij, for i=1,2,...,6 (leg number) and j=l,2,...,mi where mi

is the number of sections in the ith leg and the section length is the absolute value of the

difference between the extreme points of the section.

5. Select a travel time t_ for the desired path and compute

Alij tt (32)
-  Xl,p

for i=1,2,...,6 and j=l,2,...,m_.

6. Compute

4 Atij (acceleration) (33)
aij -_ _ij

and

vmaX tij (maximum velocity) (34)
ij = aij -_

for i=1,2,..,6, and j=l,2,...,mi, to ensure that triangular velocity profile is used for each

section.

7. Use indexer commands to code v_ ax, aij, and AIij for i = 1,2,...,6.

5 Experimental Study

In this section, we present the results obtained from experiments conducted to study the perfor-

mance of the trajectory planning schemes developed in previous section. In particular, Algorithm

2 is used to plan the end-effector leg trajectories for tracking a triangle, Algorithm 3 for tracking

a circular path and Algorithm 4 for tracking a spiral path. In the experiments, since the test

paths are those to be tracked by the end-effector gripper and expressed with respect to the

base platform Frame {B}, the test paths must be transformed to the payload platform Frame

{P} before Algorithms 2-4 can be applied. Moreover, the homogeneous transformation matrix

PT which represents the pose of the gripper with respect to the {P} can be assumed to beG '

invariant because the test paths are planar path in the x-y plane of the base platform Frame

(B}. Thus the pose of the payload platform with respect to the base platform specified by pBT,
B

which corresponds to a desired gripper pose specified by GTdes, can be computed by

The end-effector parameters are given below:

• Base Platform Radius rs = 29.267 inches, 0B = 52.14 °

• Payload Platform Radius rp -- 22.238 inches, Op = 12.05 °

(35)

• Gripper Platform Radius = 8.06 inches



5.1 Study Case 1: Tracking Straight Lines

Figures 7-8 present the results of tracking a triangle lying in the x-y plane of {B}. The path

consists of three straight line segments modeled by

Bxg(t) = 0.4896 t; Byg(t) = Sxg(t)

Bxg(t) = -0.823 t Jr 10.72; Syg = 4

Sxg(t) = 0.5304 t - 13.49; Byg = _Sxg(t )

; for 0 sec < t < 8.17 sec

; for 8.17 sec < t < 17.89 sec

; for 17.89 sec < t < 25.43 sec. (36)

Using Algorithm 2, the trapezoidal velocity profiles of the six legs are determined and illustrated

in Figure 7. The path that the end-effector gripper actually tracked, is presented in Figure 8

together with the desired path. The average and maximum tracking errors were 7.79x10 -3

inches and 10.5x10 -3 inches, respectively.

5.2 Study Case 2: Tracking a Circular Path

The results of tracking a circular path modeled by

Sxg(t) = 1.6 cosa(t) ]

Byg(t) = 1.6_no_(t) / for 0sec < t < 10sec (37)= t

are showed in Figures 9-10. Figure 9 illustrates the leg velocity profiles determined by Algorithm

3 and Figure 10 shows the actual and desired paths. The average and maximum tracking errors
were found to be 0.469x10 -3 inches and 1.2x10 -3 inches, respectively.

5.3 Study Case 3: Tracking A Spiral Path

Figure 11 presents the triangular leg velocity profiles which were determined using Algorithm

4, and Figure 12 shows the actual and desired responses of tracking a spiral path modeled by

Bxg(t) = R(t)cosa(t) ]

Byg(t) = R(t)sin a(t)
_ 6,r for 0 sec < t < 45 sec. (38)- t

It(t) = 0.16e_/'_'_

Experimental results showed that the average and maximum tracking errors were 0.125 inches

and 0.514 inches, respectively, as expected for gross motion trajectory planning.

6 Concluding Remarks
_ _ L _ _ C _'r

In this report, we presented the kinematic and trajectory planning_or a 6 DOF end-effector

whose design was based on the Stewart Platform mechanism. The end-effector h_ used

as a testbed for studying robotic assembly of NASA hardwares with passive compliance. Vector

analysis was employed to derive a closed-form solution for the end-effector inverse kinematic

transformation. A computationally efficient numerical solution was obtained for the end-effector

forward kinematic transformation using Newton-Raphson method. Three trajectory planning

10



schemes, two for fine motion and one for gross motion, were developed for the end-effector.

Experiments conducted to evaluate the performance of the trajectory planning schemes showed

excellent tracking quality with minimal errors. Current activities focus on implementing the

developed trajectory planning schemes on mating and demating space-rated connectors and

using the compliant platform to acquire forces/torques applied on the end-effector during the

assembly task.
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Figure 1: The Stewart Platform-based end-effector

Figure 2: The compliant platform
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