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ABSTRACT

An investigation of the effects of small mistuning on the aeroelastic modes of bladed-disk assemblies

with aerodynamic coupling between blades is presented. The cornerstone of the approach is the use

and development of perturbation methods that exhibit the crucial role of the interblade coupling

and yield general findings regarding mistuning effects. It is shown that blade assemblies with

weak aerodynamic interblade coupling are highly sensitive to small blade mistuning, and that their

dynamics is qualitatively altered in the following ways: the regular pattern that characterizes the

root locus of the tuned aeroelastic eigenvalues in the complex plane is totally lost; the aeroelas_ic

mode shapes become severely localized to only a few blades of the assembly and lose their constant

interblade phase angle feature; curve veering phenomena take place when the eigenvalues are plotted

versus a mistuning parameter.

*Work funded by Space Act Agreement C-99066-G.
_NASA Resident Research Associate at Lewis Research Center.
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1. INTRODUCTION

Perfect periodicity, or cyclic symmetry, is a convenient, frequent assumption when analyzing the

dynamics of bladed disk assemblies. A primary reason for taking advantage of cyclic symmetry

is that the blade response and excitation can always be expressed in terms of constant interbIade

phase angle modes that uncouple the equations of motion, thereby reducing the size of the problem

to that of one blade. This simplification yields drastic reductions in computational cost. Such ideal

regularity, however, holds true only if all the blades are identical and uniformly spaced and if the

disk is symmetric. However, periodicity is always disrupted by differences in the blade structural

properties and modes of vibration, which result from manufacturing and material tolerances. Cyclic

symmetry of the unsteady aerodynamic loading may also be destroyed by a slightly unequal spacing

of the blades. This phenomenon, known as mistuning, not only increases tremendously the size and

cost of the analysis of blade assemblies such as engines and fans, but may also alter qualitatively

their dynamics.

Numerous studies have been conducted in an attempt to understand the effects of mistuning

on the dynamics of blade assemblies. Many of these works are reviewed in the survey paper by

SrinivasanJ These studies have led to some common conclusions. For example, it has been suggested

that while mistuning has often a beneficial (stabilizing) effect in a flutter situation, 2-s it may have

an undesirable effect on the forced response through a possibly very large increase in the maximum

amplitude experienced by some blades. 6 It has also been shown that blade mistuning results in the

appearance of new peaks in the frequency response/Besides these general findings, though, there

are quantitatively and even qualitatively different results among these studies. For instance, the

increase in maximum amplitude due to mistuning, the blade with the largest amplitude, and the

effect of mistuning standard deviation on the rotor's largest amplitude were all found different by

various researchers.

We believe these discrepancies originate from the widely different models and parameter values

used in the various studies. This was suggested and substantiated in a series of papers by Bendiksen

and coworkers (for example, see references 5 and 8) and Pierre and coworkers (for example, see

references 9 and 10). These studies showed that the sensitivity to mistuning can vary by several

orders of magnitude depending on the strength of the interblade coupling, the excitation frequency,

and the number of blades. Specifically, in the weak interblade coupling case, small random mis-

tuning drastically alters both the free and forced responses by localizing the vibration to a small

geometric region of the structure (or to a few blades) and by increasing severely the amplitudes of

some blades--a phenomenon referred to as mode localization.

These investigations led to a fundamental understanding of mistuning effects. However, except

for the pioneering work by Bendiksen s that evidenced the high sensitivity of closely-spaced aeroe-

lastic modes to mistuning (although not localization), the localization studies cited above were

conducted for simple structural models that did not include any aerodynamic effects.

In this paper, motion-dependent unsteady aerodynamic loads are included in the formulation,

leading to a free vibration a_roelastic eigenvalue problem that governs the stability of the blade

assembly. Our primary objective is to reach general conclusions regarding the effects of small

structural mistuning on the aeroelastic mode shapes, eigenvalues, and stability of typical high-

solidity blade assemblies, such as those in turbomachinery. The cornerstone of our approach is the

development and use of perturbation schemes that enable us to predict mistuning effects and that

yield important physical insights into the dynamics of mistuned assemblies.
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To achieve structural mistuning without altering the aerodynamic terms, we consider small,

random mistuning of the blade frequencies. Moreover, to highlight the role of aerodynamic coupling

on the sensitivity to mistuning, we consider an assembly with no structural coupling between blades.

This enables us to demonstrate the key roles of aerodynamic coupling and damping. We show

in the paper that aerodynamic coupling has an effect qualitatively similar to that of structural

interblade coupling 9 (although it has a vastly different quantitative effect). In particular, we find

that assemblies with weak aerodynamic interblade coupling (e.g. high-solidity assemblies, for which

aerodynamic forces are small compared to structural forces) are highly sensitive to mistuning, and

that their dynamics is qualitatively altered: for example, aeroelastic modes become localized and

the locus of the eigenvalues loses its structure when small mistuning is introduced.

The paper is organized as follows. Section 2 presents the structural and aerodynamic models

and the formulation of the aeroelastic eigenvalue problem. The properties of circnlant matrices,

which characterize structures with cyclic symmetry, are reviewed in Section 3. In Section 4 we

discuss the nature of two parameters that are key to our study: the aerodynamic coupling and the

structural mistuning. Perturbation schemes that predict and provide insight into mistuning effects

are developed in Section 5. Section 6 presents the results of a parametric study of a blade assembly
and their interpretation. Finally, Section 7 concludes the paper.

The primary original contributions of the paper lie (1) in the evidence of new phenomena

(e.g. localization of aeroelastic modes, loss of structure of the root locus) occurring in mistuned

aeroelastic systems and (2), in the generality of the mistuning trends and phenomena uncovered

by our perturbation approach: we expect our results to be qualitatively valid for typical blade

assemblies, such as those in turbomachinery.

2. EQUATIONS OF AEROELASTIC MOTION

The structural and aerodynamic models we use in our study are those introduced by Kaza and

Kielb. 11 In this section we briefly describe these models. The reader is referred to reference 11 for

a full description.

The structure we examine consists of N blades equally spaced on a disk. Each blade is modeled

as a straight, slender, twisted, nonuniform elastic beam with a symmetric cross-section. The elastic,

inertia, and tension axes are taken to be noncoincident, and the effect of warping is considered.

Nonlinear strains are used to derive consistently the linear equations of (bending-torsion) motion of

a blade. The equations of motion of a rotating blade are discretized by a standard assumed-mode

procedure. The comparison functions in the expansion of the blade deflection are chosen to be the

mode shapes of the associated nonrotating blade. Thus, each blade is effectively modeled by an

m-degree of freedom system, where m is the number of nonrotating blade modes. In this paper,

we report results using only one component mode per blade (i.e. m = 1), namely the first torsion

mode of a nonrotating blade.

X,Ve do not consider blade root flexibility and assume that the blades are clamped to the disk.

Moreover, as in reference 11, we take the disk to be rigid. This means that there is no structural

coupling between blades in our assembly. Thus, the interblade coupling arises solely from aerody-

namic effects. This allows us to highlight the effects of aerodynamic coupling, as those of structural

coupling have been studied previously. 9

The unsteady, motion-dependent aerodynamic forces are calculated by applying two-dimensional,

linear, unsteady, cascade aerodynamic theories in a strip fashion for both subsonic 12 and supersonic 13
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regimes. This results in a (complex) matrix of generalized aerodynamic forces. Unsteady, motion-

independent aerodynamic loads are not considered here, since we restrict our investigation to the

aeroelastic eigenvalue problem. Furthermore, to highlight the effect of aerodynamic damping, no

structural energy dissipation is included in our model (although linear structural damping could

be added easily).

We apply component mode analysis to the N-blade assembly, where the motion of each blade

is described by m component modes. This yields a set of Nm homogeneous, linear, ordinary

differential equations in the modal amplitudes of the blades. We look for motions such that all the

blade coordinates oscillate with the same frequency and/or decay or grow at the same rate. This

yields the aeroeIastic eigenvalue problem:

{-AM + K - A(w=)} u = 0 (1)

where

• U : [Ull,''" , Ulm , U21,--" , U2m,--- , UN1,. • ', UNrn] T is the Nm-dimensional complex eigen-

vector of the blade modal amplitudes, where T denotes a transpose; In the following we refer

to the elements of u as the physical coordinates.

• M and K are Nm x Nm real inertia and stiffness matrices, respectively.

• A is the Nm x Nm complex aerodynamic matrix, calculated at the assumed frequency w_.

• A is the complex eigenvalue.

The matrices A, K, and M consist of N 2 blocks, each of size m x m. Since there is no structural

coupling between blades, K is a block-diagonal matrix, where each block is the stiffness matrix of

an individual blade (for a nonrotating assembly these blocks themselves are diagonal). The absence

of structural coupling also means that M is block-diagonal. For a one-component mode per blade

model M is diagonal, with the modal masses of the individual blades as diagonal elements. If we

normalize the modes consistently such that all modal masses are equal, the mass matrix becomes

proportional to the identity matrix, even if the blades are not identical.

The aerodynamic matrix A is fully populated. The off-diagonal blocks provide aerodynamic

coupling between the blades, while the off-diagonal elements for each block account for the coupling

between the (nonrotating) blade modes. The matrix A depends on the assumed frequency of blade

vibration, w_, and the flow parameters.

For a tuned system the blades are identical and thus all matrices in Eq. (1) are block-circulant.

These block-circulant matrices have special properties that result in a mostly analytical description

of the eigensolution of the tuned assembly (this is discussed in detail in Section 3 for the circulant

matrices of the single-mode per blade model). The stiffness matrix of the tuned assembly consists

of identical blocks on the diagonal. For example, for a one-component mode per blade representa-

tion, K is proportional to the identity matrix. For a mistuned assembly with arbitrarily different

blades, the stiffness matrix consists of distinct blocks and is no longer block-circulant, but with the

assumption of frequency mistuning, the mass and aerodynamic matrices remain block-circulant. In

fact, the aerodynamic matrix is left unchanged by the introduction of frequency mistuning (if there

is no mode shape mistuning).

The solution of the aeroelastic eigenvalue problem, Eq. (1), dictates the nature and stability

of the assembly's motion in an aeroelastic mode. For an eigensolution (A, u), the blade assembly's

motion is given by uexp(iwt), where w is the complex frequency defined by A = w 2 (and i 2 = -1).

Writing w = wR+iwl, where wR is the frequency of oscillations and w1 the damping in the aeroelastic
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mode considered, one can easily show that Re ), = w_ - w} and Im )_ = 2,_twR, where Re and Im

denote real and imaginary parts. This means that for small damping the real and imaginary parts

of _ can be associated with the natural frequency and the damping in a mode, respectively. Note

that instability, or flutter, occurs when Wl < 0 or, equivalently, when the imaginary part of tile

eigenvalue _ is negative. The flutter boundary is defined by wl = 0, or Im)_ = 0.

Most of the numerical parameters used for generating the results reported in this paper are

the same as those in the work of Kaza and Kielb. 11 Only the differences are mentioned here, as

follows. In most calculations the number of blades is N = 56. The axial Mach number and the

assumed vibration frequency used for aerodynamic computations are 0.641 and w_ = 238.08 Hz,

respectively. The rotational speed of the blade assembly is 3000 rpm. These parameters result

in a tip Mach number of 1.103, and thus both subsonic and supersonic aerodynamic theories are

used. Only one component blade mode, namely the first torsion mode, is considered. This results

in diagonal mass and stiffness matrices for the blade assembly and in a circulant aerodynamic

matrix A. Furthermore, the mass matrix is proportional to the identity matrix, since in this study

mistuning is introduced only in stiffness. For a tuned system the stiffness matrix is proportional

to the identity matrix.

In the remainder of the paper we examine how the aeroelastic modes of the assembly obtained

by solving Eq. (1) are affected by the introduction of small random blade mistuning. To achieve

this we must first understand the dynamics of the perfectly tuned assembly. This is discussed in

the next section.

3. CYCLIC SYMMETRY AND CIRCULANT MATRICES

A tuned bladed-disk assembly features perfect cyclic symmetry in the sense that all blades are

identical and the first blade (i.e. the reference blade) is adjacent to the Nth blade (i.e. the last

blade). In the tuned case all matrices in Eq. (1) are block-circulant and the aeroelastic eigensolut!on

has remarkable features. For a single-component mode per blade model the matrices become simply

circulant. In this section we discuss the properties of circulant matrices and those of the tuned

aeroelastic modes.

3.1 Properties of Square Circulant Matrices

Circulant matrices arise in the study of systems with perfect cyclic symmetry. The book by Davies TM

contains a nice account of the properties of circulant matrices.

The general form of a square circulant matrix with complex elements is

C = circ(cl, c2,..., ON) ----

Cl C2 • •. C N

eN el ... CN_I

: : ".. :

C2 C3 • • • Cl

, ci e c. (2)

Every line in the matrix is a permutation of the first line, each line being generated by shifting the

previous line one position to the right, where all indices are modulo N. We note that a circulant

matrb: has only N distinct elements. When several component modes are used to model a blade,

the elements ci become themselves matrices and C is said to be block-circulant.
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Important properties of circulant matrices are (1) the set of circulant matrices of order N is a

subspace of the space of matrices, (2) the inverse (if it exists), transpose, and conjugate transpose

of a circulant matrix are also circulant and (3), circulant matrices commute.

Circulant matrices of order N possess N independent eigenvectors. Furthermore, all circulant

matrices share the same set of eigenvectors:

1 [ _ _ _..N ]Tej= _ 1,e _, ,e N ,...,e 3 )¢j-') j= 1,...,N (3)

where the eigenvectors have been normalized such that [lejll = 1. An important property of the

eigenvectors is that _j = eN-j+2, for j = 2,..., N (where an overbar denotes a complex conjugate);

thus, most eigenvectors occur in pairs of complex conjugate, although el is real and for N even

eN/2+ 1 is real.

The eigenvalues of a circulant matrix can be written in closed-form as:

N

Aj = Ck e _, j = 1,...,N (,1)
k=l

A proof of the eigensolution of circulant matrices, Eqs. (3) and (4), is given in Appendix A.

We can arrange the N eigenvectors of a circulant matrix in an N x N modal matrix whose

columns are the eigenvectors:

1

1 1 1 ... 1

1 w w 2 ... w N-1

1 w 2 w4 ... w 2(N-O

: : : ".. :

1 w N-1 w 2(N-i) ... w (N-1)(N-O

(5)

2fi
where we define w = e"_-. The modal matrix E is commonly referred to as the Fourier matrix.

It is a unitary matrix, i.e. E -1 = E*, where a * denotes a conjugate transpose (see the proof'in

Appendix A). The modal matrix E diagonalizes any circulant matrix C through the similarity (and

unitary) transformation:

E* C E = diag(A,,...,Ai,...,AN) (6)

where the eigenvalues of the diagonal matrix are given by Eq. (4).

An interesting special case of the general results given above is that of a symmetric, real, circu-

lant matrix. This would occur in a cyclic structural system without aerodynamic forces included.

In this case C has only _ + 1 (resp. __A) distinct elements for even N (resp. odd). The eigenvalues

of C are, from Eq. (4):

( )( - ) ?a_+lw(N/2)(J-1)
Aj = al + a2 w (j-l) + w (N-1)(j-1) .4_ a3 w2(3 1) + w(N-2)(j-1) + ... (7)

only for even N

but w k(j-1) + w (N-k)(j-1) = 2 COS(-2-_-(j - 1)), so

(2 (k -

al + 2 _ akcos 1)(j_ I)) for oddN

Aj = k=2 \ N
N/2

+ Xa, - 1)(j_
k=2

j = 1,...,N (8)

for even N
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As expected, the eigenvalues of this real symmetric matrix are real. Furthermore, Eq. (8)

tells us that )_j = )_g-j+2. This means that ,k2 = ,kg, A3 = ,kN-1, etc., are double eigenvalues,

each of which is associated with two complex conjugate eigenvectors, ej and ey_j+ 2 -----e'j. Tile

corresponding eigenspaces have dimension two, and in such an eigenspace any linear combination

of ej and _j is an eigenvector. Thus, we can obtain real eigenvectors for this symmetric matrix

by simply taking the real and imaginary parts of ej. We also note that A1 is a single eigenvalue

associated with the real eigenvector el = [1, 1,..., 1]T/v/_/and that, for N even, ,k_+ 1 is a single

eigenvalue with the real eigenveetor eN/2+ 1 = [1,--1, 1,...,--1]T/v/IV. Thus, all eigenvalues are

double except the first for any N and the (N/2 + 1)th for even N.

3.2 Aeroelastic Eigensolutions of Tuned Assemblies

The properties of circulant matrices determine the aeroelastic modes of tuned assemblies. Since M,

K, and A in Eq. (1) are circulant, they share the same set of eigenvectors and thus the aeroelastic

mode shapes of the tuned assembly are the ej, j = 1,..., N, given in Eq. (3). (This is true whether

or not aerodynamic effects and/or structural coupling are included in the model.) This means that

for a motion in the jth mode all blades in the assembly vibrate with equal amplitudes but with a

constant phase difference between adjacent blades. We rewrite this mode shape as

1 [1,e i_j aj -ej =-_ ,...,ei(Y-1)_J] T 2r(J-N 1) (modulo2jr) j= 1,...,N (9)

where aj is the interblade phase angle for the jth mode, which takes the same value for any two

adjacent blades. Consequently, the normal modes of the tuned assembly are referred to as constant

interblade phase angle modes. There are N such modes, one for each interblade phase angle aj,

j=I,...,N.

A motion in the jth mode is that of a wave traveling through the assembly with a phase

change aj at each blade. We have shown in Section 3.1 that eN-j+2 =- ej, hence a motion in the

(N - j + 2)th mode is characterized by an interblade phase angle trN_j+ 2 = --orj (modulo 2jr),

corresponding to a wave traveling in a direction opposite to that of the jth mode, with the same

phase change at each blade in absolute value.

Hence we have the following description of the mode shapes:

• The first mode shape, el, corresponds to a zero interblade phase angle: all blades vibrate in

phase with the same amplitude.

• For even N, the (N + 1)th mode has an interblade phase angle equal to Jr: adjacent blades

vibrate out of phase with equal amplitudes.

• Motions in the modes ej corresponding to interblade phase angles aj El0, 7r[ are waves that

travel backward through the assembly.

• Motions in the modes ej such that aj E]Jr, 2_'[ are forward traveling waves related to their

backward traveling counterparts by eN-j+2 = ej. A pair of forward and backward traveling

waves have the same number of (traveling) nodal diameters.

The aerodynamic matrix A is complex and thus, from Eq. (4), its eigenvalues are complex.

This means that if aerodynamic effects are included in the model, the aeroelastic eigenvalues of the

system (1) are complex (recall that M and K are real). In addition, each pair of backward and

forward traveling waves, ej and _j, is associated with two distinct eigenvalues. We can explain this

by noting that unsteady aerodynamic forces depend on the direction of rotation of the rotor. For
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example, assuming that the forward traveling direction coincides with that of the rotor rotation,

the aerodynamic interaction forces between two blades are different for a forward wave motion and

a backward wave motion. This asymmetry results in distinct eigenvalues for the aeroelastic system.

If aerodynamic effects are not included in the model, then A = 0 and the eigenvalue problem

(1) is real symmetric. According to Eq. (8), the elgenvalues are real and most eigenvalues have

multiplicity two, such that Aj = /_g-j+2, except for the zero-interblade phase angle mode (j = 1)

and, for N even, for the _--interblade phase angle mode (j = N/2 + 1). The structural-only model

has double eigenvalues because the direction of rotation of the assembly has no effect on its dynamics

and thus backward and forward traveling waves cannot be distinguished. For each double eigenvalue

these two traveling waves combine into standing waves with fixed nodal diameters obtained, for

example, by taking the real and imaginary parts of ej. This makes perfect sense because the (real

symmetric) structural system must admit real normal mode solutions, or standing waves. These

mode shapes are:

+ N N+I

Reej = [1,cosaj,..-,cos(N - 1)aj] j = 1,..., _- + 1 or 2

N N+I

Imej = -_[O, sinaj,...,sin(i- 1)aj] j = 2,...,_- or -_

(10)

Note that Re ej and Im ej are mode shapes with (j - 1) fixed nodal diameters.

The degeneracy that occurs in the cyclic structural system is removed by aerodynamic forces. It

would also be removed by Coriolis forces if these were included in the formulation, since they depend

on the direction of rotation (these forces are not considered here). Similarly, any infinitesimal

amount of mistuning in one blade would also split the double eigenvalues of the structural system.

The conclusion is that real physical rotors do not feature double eigenvalues.

Examples of motions in constant interblade phase modes are shown in Fig. 1 for an aeroelastic

system. The waves travel along the assembly in the directions shown, except for the two standing-

wave modes.

3.3 Physical and Interblade Phase Angle Coordinates

All matrices in Eq. (1) admit the N, independent, interblade phase angle modes as eigenvectors.

Thus, we can diagonalize the tuned aeroelastic eigenvalue problem by introducing the coordinate

transformation defined with the modal matrix E given in Eq. (5). We write

N

u= _-_Tljej = Erl (11)
j=l

where we refer to the elements of u as the physical coordinates and where rI = [_71," " ", _N] T is the

vector of modal coordinates, or "interblade phase angle" coordinates: _Tjrepresents the contribution

of the mode with interblade phase angle aj to the total motion of the assembly. The matrix E

defines the transformation from interblade phase angle to physical coordinates.

First we apply this modal transformation to diagonalize the aerodynamic matrix. We have

A. = diag (_4,,. . .,_4j,. . .,_4N) = E*AE (12)
\ /
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because E is unitary. The diagonal matrix .4. is the matrix of eigenvalues of A, made of the

modal aerodynamic coefficients: _lj is the aerodynamic coefficient (e.g., a moment) for a cascade

of blades oscillating in the jth interblade phase angle mode. These modal aerodynamic coefficients

are distinct as they depend on the interblade phase angle. In fact, it is typically A, not A, that is

calculated by unsteady aerodynamic codes. This requires only N independent calculations, one for

each interblade phase angle. The generalized (modal) aerodynamic force for a motion of amplitude

_j in the jth interblade phase angle mode is f4jV]j, and the physical load on the blades is _4j_jej.

For a general motion the physical load is a linear combination of the individual modal loads, given
by QA = EAt/. From QA = Au we retrieve Eq. (11) as A = E.4,E*, where A contains the

aerodynamic influence coefficients in the physical coordinates.

Next, the transformation from interblade phase angle to physical coordinates, Eq. (11), can be

applied to the eigenvalue problem, Eq. (1), yielding

{- E'ME +E'XE- =0 (13)

where, for the tuned assembly considered here, E'ME = diag(Mj) and E*KE = diag(I(j),

where Mj and Kj are the generalized mass and stiffness for the jth interblade phase angle mode,

respectively. This gives the eigenvalues of the tuned assembly as

;_j _ I(j - [4j
Mj j = 1,...,N (14)

Equation (14) can also be obtained by looking for the values of ,_ such that the circulant matrix

(-,_M + K - A) has zero eigenvalues, by applying the general expression for the eigenvaiues Of a
circulant matrix, Eq. (4).

4. NATURE OF AERODYNAMIC COUPLING AND STRUCTURAL MISTUNING

4.1 Aerodynamic Matrix Characteristics

Previous studies of structural models of blade assemblies (for example, see reference 9) have shown

that the key parameter that determines the sensitivity of their dynamics to mistuning is the in-

terblade coupling. In our model the coupling between blades is provided solely by the aerodynamic

terms. Thus, it appears reasonable to explore further the properties of the aerodynamic matrix in

order to obtain useful insights into the effects of mistuning.

An important characteristic of A is that its elements are typically several orders of magnitude

smaller than those of K and M. This is because unsteady aerodynamic forces are very small com-

pared to elastic and inertia forces, at least for the high-solidity blade assemblies we are examining

in this paper. It immediately follows that, although aerodynamic forces add stiffness and damping

to the assembly, they do not change the natural frequencies" of free oscillations much. The negative

or positive aerodynamic damping that results is also small, although it may be sufficient to cause an

instability. More important to our study, however, the fact that the elements of A are small means

that the aerodynamic interblade coupling is weak for a typical assembly. Thus, according to earlier

studies of mistuned structural systems and of mode localization, our model has the potential to

feature a dynamics that is highly sensitive to small mistuning. The small magnitude of the elements

of A also suggests that perturbation schemes can be developed that treat the aerodynamic term

as a perturbation. This will be useful when we attempt to characterize the localized modes.
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The aerodynamic matrix is made of influence coefficients: the element Aij is the generalized

force on blade i caused by a unit generalized displacement of blade j. Clearly, the aerodynamic

interactions between two blades decrease as the distance between these two blades increases, and

we can expect the coupling between adjacent blades to be the most significant. This feature is

illustrated in Fig. 2, which displays the magnitude of the elements of one column of the matrix A.

We note the clear dominance of the terms closest to the diagonal and thus that of nearest-neighbor

interblade coupling. The aerodynamic coupling with a next-to-neighboring blade is about one order

of magnitude less than that with an adjacent blade.

This near-diagonal dominance of the aerodynamic matrix is yet another similarity with struc-

tural coupling, which is typically also strongest between adjacent blades. It suggests that the

aerodynamic matrix in the physical coordinates can be reasonably approximated by a tri-diagonal

circulant or a penta-diagonal circulant matrix. (These matrices are not strictly tri- or penta-diagonal

as they have elements near the upper-right and lower-left corners because of cyclicity.) Table 1

compares the least stable eigenvalue (the one with the smallest imaginary part) of the full matrix A

with that of the tri- and penta-diagonal approximations. The comparison suggests that accounting

for adjacent and next-to-adjacent blade coupling is sufficient to capture the assembly's dynamics

accurately. (We have confirmed this conclusion by observing that the locus of the eigenvalues

changes very little when we use the penta-diagonal approximation instead of the full matrix A.)

Such approximations of the aerodynamic matrix will be useful when we seek to characterize the

localized aeroel_tic modes in Section 5.

4.2 Structural Mistuning

In this study we examine the effects of frequency mistuning only. We assume that the individual

blade frequencies are random and uniformly distributed about the frequency of the nominal blade

with a small standard deviation. We achieve this mistuning by altering the torsional stiffness of the

blades. We only consider small random mistuning of standard deviation less than 10%, resulti'ng

from unavoidable manufacturing and material tolerances and wear.

For a mistuned assembly the stiffness matrix K is no longer circulant, but with our assumption

of frequency mistuning, the mass and aerodynamic matrices do remain circulant. We show in the

next section that this small deviation of K from perfect cyclicity results in the drastic alteration

of the aeroelastic eigensoution. This high sensitivity originates from the weak interblade coupling
terms in A.
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5. A PERTURBATION ANALYSIS OF MISTUNED ASSEMBLIES

The characteristics of the aerodynamic coupling suggest that the dynamics of our blade assembly

has the potential to be severely altered by cyclicity-breaking mistuning, e.g. through the occurence

of mode localization. In this section we attempt to predict and characterize mistuning effects on

the aeroelastic eigensolution through the use of perturbation schemes. We first apply a standard,

or classical perturbation method that predicts the high sensitivity to mistuning. Then we develop

a perturbation scheme that is able to handle large mistuning effects and thus to characterize the

mistuned eigensolutions (e.g. the localized modes).

5.1 Prediction of High Sensitivity to Mistuning

Even though classical perturbation methods fail to describe the dynamics of a mistuned assembly

when it is qualitatively different from that of the corresponding tuned system, they predict high

sensitivity and provide useful insight into the onset of mode localization. (We refer the reader

not familiar with perturbation theory for the eigenvalue problem to reference 15.) In the classical

approach the unperturbed system is the tuned assembly and the perturbation is the frequency

mistuning. The unperturbed eigenvalue problem is

{-AoM + go - A(wa)} Uo = 0 (15)

where, for the single-component mode per blade model, M - MI and Ko - KoI, where Ko is the

nominal generalized blade stiffness and M the generalized mass. From Eq. (14), the unperturbed

eigenvalues are Aoi = (I(o - _4j)/M, and the unperturbed aeroelastic mode shapes are uoj = ej

(j = 1,-.-, N). Note that the eigenvalues are clustured in a narrow band because the modal

aerodynamic coefficients are small. Also, the imaginary parts of the eigenvalues (representing the

damping) are small because the _lj's are small.

For the mistuned system the stiffness matrix becomes

K = Ko +/iK, _K = diag (_gl,. •., _K/,..., _gg) (i6)

where _fKi is the deviation of the ith blade stiffness from the nominal value Ko, such that _Ki/Ko <<

1. We assume the _Ki's are independent and identical random variables of mean zero and standard

deviation a. In this paper we consider only one (arbitrary) pattern of random mistuning, such that

_- _l_Ki -- 0
= (17)
1 N

N - 1 _ _I¢_ = _2 __ a2
/=1

i.e., the estimates of the mean and the standard deviation obtained from one realization of mistuning

are close to the mean and standard deviation of the mistuning random variable. With this notation

the mistuning is order e, and with the assumption of zero mean the average stiffness of the mistuned

assembly's blades is the nominal blade stiffness.

The perturbed (mistuned) eigenvalue problem is given by Eq. (1). We consider a second-order

perturbation expansion of the eigensolution as

,kj = Aoj + tf)tj + _2_jUj _- Uoj "[- (_Uj "]- _2Uj J = 1,''', N (18)



§5 Perturbative Mistuning Analysis Aeroelastic Localization: C. Pierre and D. V. Murthy 13

where 6Aj and 8uj (resp. tf2Aj and//_uj) are first-order (resp. second-order) terms in e. The general

perturbation formulae are given in Appendix B.

First-Order Eigenvalue Perturbation

We (;an show, using Eq. (B5):

1
6Aj : -_ (ey 6K ej)

_ 1 1 Tr(6K)-_0 j= 1,..- N (19)
M N

where Tr denotes the trace of a matrix, the sum of its diagonal elements. We make two observations.

First, 6A/is real. This means that there is no first-order effect of mistuning on the flutter boundary,

because stabifity is only affected by the imaginary part of the eigenvalues. Second, the first-order

perturbation 6Ai is independent ofj. Hence all the eigenvalues are shifted identically as a result of

mistuning, by an amount equal to the average of the deviations of the frequencies squared from the

nominal value. For small mistuning this eigenvalue shift is always small. Moreover, in this paper

the mistuning pattern has a (nearly) zero mean and thus the first-order effect on the eigenvalues is

(nearly) equal to zero. We conclude that 6lj is at most a term of order e that cannot reveal high

sensitivity to mistuning.

High Mode Shape Sensitivity

The first-order effect of mistuning on the aeroelastic mode shape is, from Eq. (BT):

_uj =-
N 1 1

_:, Aoj - Aok M (e*k _K ej)ek
k_j

N * _K ej
___ ek ek

?4k- ?4j
(2o)

where we make use of Eq. (14) to write that the distance between two eigenvalues of the tuned

assembly is proportional to the difference of the corresponding modal aerodynamic coefficients.

Equation (20) tells us that the magnitude of (Suj is determined by the ratios (e_/_Ke))/(Ak - .Aj).

If all eigenvalues are well separated, then _uj is effectively first order. However, if ]/lk --Aj[ is order

e or smaller, then/_uj is not order e any longer, but of the order of one or larger. The assumptions

for the use of asymptotic expansions in perturbation theory are then violated, and the perturbation

analysis fails, thereby indicating that the mode shapes undergo dramatic changes.

We have seen in Section 4 that the aerodynamic coupling is typically weak and thus the de-

nominators in Eq. (20), Ak - _t_, are first-order or smaller terms. (This is qualitatively similar to

the structural case where the distance between eigenvalues is also small for small interblade cou-

pling.) This means that for first-order mistuning the ratio of disorder to interblade coupling, and

thus/_uj (see Eq. (20)), is finite or large, and that the aeroelastic mode shapes are highly sensitive

to mistuning. We show in Section 5.3 that this failure of the perturbation analysis indicates the
occurrence of mode localization.

It is interesting to note that the quantity e_/fKej (k _ j) is the coupling of the unperturbed

eigenvectors through the mistuning matrix, and provides a good representation of disorder in the
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assembly. For example, if diK were proportional to the identity matrix, there would be no disorder

since e_Iej = 0.

5.2 Eigenvalue Loci Veering Phenomena

While the first-order mode shape perturbations provide insight into the sensitivity to mistuning,

interesting and useful behavior can also be observed by considering the second-order eigenvalue

perturbations. From Eq. (B6):

[e_ dig ej[ 2 j = 1,...,N (21)
1

k_j

where [.[ denotes the modulus of a complex number. The same mechanisms as those described

above for the mode shapes lead to high sensitivity. Namely, di2Aj is not second order, but first

order or larger, when the coupling of the eigenvectors through the mistuning, e_diKej, is of the

same order or larger than the aerodynamic coupling, measured by [_lk - _lj[. Then perturbation

theory fails. Note that these large mistuning effects are predicted by the second-order eigenvalue

perturbation but are completely overlooked by the first-order perturbation, Eq. (19).

From Eq. (21) we conjecture that the sensitivity to mistuning increases with the number of

blades. This is caused by two mechanisms. First, as N increases the number of interblade phase

angles increases and the difference between two adjacent ones, 27r/N, decreases. In turn, we can

reasonably expect the difference between the two corresponding modal aerodynamic coefficients to

decrease and thus the terms in the summation (21) to increase. Second, as N increases the number

of terms in Eq. (21) increases and thus the second-order eigenvalue perturbation increases. This

is readily seen for the eigenvalues such that all terms in the summation are positive or negative

(e.g. for the real part of the lowest and highest frequency eigenvalues and for the imaginary part

of the least and most stable eigenvalues). This larger effect of mistuning with increasing number

of blades is illustrated in Section 6.

Another remark is that di2Aj is complex and thus both frequencies and damping values are

affected by mistuning to the second order, unlike to the first order. Below we examine in detail

the real and the imaginary parts of the mistuned eigenvalues. Recall that they correspond to the

frequency and damping in an aeroelastic mode, respectively.

Veering Away of the Frequency Loci

From Eq. (21), the real part of the second-order perturbation is:

1 _ Re]tk-Re_lj
Re di2Aj = _ ,___, ]Ak - ]tj[ 2 [e_ dig ej [2 j = 1,...,

N (22)
k#j

Consider the locus of the real part of the jth eigenvalue, ReAj, versus the mistuning strength, where

the latter is measured for example by the estimate of the standard deviation, e. From Eq. (22),

Re di2Aj is proportional to e2, the coefficient of proportionality being equal to one-half the curvature

of the locus of Re,_j versus e. We observe from Eq. (22) that this curvature is inversely proportional

to the interblade coupling and thus is large for weak aerodynamic coupling.

Now consider the tuned eigenvalues with the smallest and largest real parts, corresponding to

the modes with the lowest and highest natural frequencies, and denote them by "_L and AH. From
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Eq. (14), these two eigenvalues are associated with the modal aerodynamic coefficients with the

largest and smallest real parts, respectively. (Note that the interblade phase angles corresponding

to the eigenvalues with extreme real parts depend upon the system studied and its parameters.)

For the lowest frequency eigenvalue all terms in the summation, Eq. (22), are negative, hence

Re _2)_ L < 0 and the locus of the real part of the lowest frequency eigenvalue has a large negative

curvature at the tuned state. Similarly, for the eigenvahe with the largest real part, all terms in the

summation are positive. Thus, Re t_2)_H > 0 and the highest frequency locus has a large positive

curvature. This means that the loci of the extreme real parts, Re )_L and Re )_H, have large and

opposite curvatures: the loci abruptly veer away from each other at the tuned state e = 0. This

eigenvalue loci veering is illustrated in Fig. 3 for the system parameters of Section 2. It indicates

the high sensitivity to mistuning and is the same phenomenon that was observed previously for the

lowest and highest frequencies of a structural assembly. 9

The phenomenon of veering away of the loci suggests that second-order eigenvalue perturbations

can be used effectively to indicate high sensitivity. It also tells us that the modes with extreme

frequencies are more sensitive to mistuning than the other modes and thus will localize first, because

the corresponding loci have larger curvatures.

Veering Toward of the Damping Loci

Now consider the effects of mistuning on the imaginary part of the eigenvalues. We have, from

Eq. (21):

1 _ Im.4j--Im_lk
Im _2Aj = _-_ _=, ]_k -- _j]j_ le_/_K ej [2 j = 1,..-,

N (23)

kS./

Recall that Im Aj determines the damping in the jth mode, with flutter occurring if Im Aj _< 0.

The least stable mode of the tuned assembly corresponds to the eigenvalue with the smallest

imaginary part, Au, which in turn is associated with the interblade phase angle that yields the

modal aerodynamic coefficient with the largest imaginary part (from Eq. (14)). Thus, all terms in

the summation, Eq. (23), are positive for the least stable eigenvalue and Im _2Aty > 0. It follows

that mistuning increases the imaginary part of the least stable eigenvalue (because 6)_j = 0 for all

j) and hence it has a stabilizing effect. This beneficial effect of mistuning on the least stable root

holds for any mistuning pattern, provided the average blade frequency is not altered by mistuning,

i.e. _N 1 6Ki = O. This finding agrees with that of Bendiksen. 5 We point out, however, that the

stabilizing effect of mistuning does not necessarily hold for the other eigenvalues, because some of

the terms (Im _tj - Im Ak) in the summation (23) are negative. For example, the most stable root

becomes less stable. It is conceivable, at least mathematically, that for some mistuning pattern an

eigenvalue near the least stable one could become unstable (although we never encountered such a

case numerically). Thus care should be exerted when exploiting the stabilizing effect of mistuning
on flutter.

Since aerodynamic forces are small, Im 62Au, although nominally a second-order term, is first

order or larger, which means that mistuning has a first-order or larger effect on the flutter speed

(again this agrees with the findings of reference 5). This makes the use of mistuning as a means

of passive flutter control attractive. However, it should be pointed out that Eq. (23) is not a valid

approximation of the least stable mistuned root in this high sensitivity case, because it is precisely

the failure of the perturbation expansion that indicates the large mistuning effects. In order to

obtain a correct approximation of the mistuned eigenvatues we must use the modified perturbation
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scheme presented in Section 5.3.

Next, we consider the loci of the imaginary parts of the eigenvalues, Im ),j, versus the mistuning

strength e. Expectedly, Im (_2)_j is proportional to the curvature of the jth locus at the tuned state.

The least and most stable tuned roots, _v and )_s, are those with the smallest and largest imaginary

parts and correspond to the modal aerodynamic coefficients with the largest and smallest imaginary

parts, respectively. From Eq. (23) we deduce readily that Im/f2Av > 0 and Im _2As < 0. Hence

for weak interblade coupling the curvatures of the loci of Im Au and Im As are large and opposite.

However, contrary to the real parts' loci, the locus of the root with the smallest imaginary part

has positive curvature and vice versa. It follows that the loci of the two extreme imaginary parts

veer toward each other with large curvature at the tuned state. This phenomenon is illustrated in

Fig. 4, which displays the imaginary parts of the least and most stable roots versus mistuning for

the parameters of Section 2. We believe the phenomenon of veering toward of the damping loci is

characteristic of highly sensitive aeroelastic systems and has never been examined before.

5.3 Analysis of Mode Localization by Modified Perturbation Methods

Once high sensitivity has been predicted by the perturbation approach described above, the next

step is to analyze the characteristics of the aeroelastic modes of the mistuned system. To do so,

perturbation methods have to be modified to handle the dramatic changes resulting from small mis-

tuning. Such an approach has been developed in reference 9 to analyze localization in structurally

coupled assemblies.

The key idea behind the modified perturbation scheme is to recognize that high sensitivity

is caused by the small interblade coupling and hence this small parameter ought to be treated

as a perturbation. However, if both mistuning and coupling are considered perturbations, the

unperturbed system consists of uncoupled identical blades and thus is N-fold degenerate. To

remove this degeneracy, we include mistuning in the unperturbed state and treat the interblhde

coupling as the perturbation. With this modified perturbation scheme the unperturbed system

is purely structural, consisting of uncoupled mistuned blades in a vaccum. It thus has distinct

natural frequencies (unless two mistuned blades happen to have the same frequency, but we shall

not consider this unlikely case). The perturbation consists of the small unsteady aerodynamic forces.

Each normal=mode of the unperturbed system features uncoupled oscillations of a single mistuned
blade, with all other blades remaining quiescent. When weak interblade coupling is introduced,

the neighboring blades participate in the modal motion, but do so with small amplitudes because

the small coupling is not sufficient to cause a resonance among the slightly different blades. Each

mode of the mistuned assembly is a perturbation of the oscillations of a single blade, and thus is

localized to that blade or to the small neighboring geometric region, depending on the magnitudes

of coupling and mistuning. In the following we formalize this description of localization.

Effect of Aerodynamic Coupling on Eigenvalues

With the modified perturbation Scheme the unperturbed eigenvalue problem is:

{-A(m)M + Ko + _fK} u! m) = 0 (2,1)

where the superscript (m) denotes a modified perturbation quantity. Since all matrices in Eq. (24)
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are diagonal, the modified unperturbed eigensolutions are simply

M

u_m)=li=[0,''-,0, I ,0,-.-,01T i= 1,.-.,N (25)

position i

corresponding to purely localized oscillations of individual blades at their (rotating) mistuned

frequencies. (Note that these eigenvalues are sorted according to blade number, not by increasing

frequency.)

The matrix (-A) is the modified perturbation that provides the aerodynamic interblade cou-

pling. From Eq. (B5) one cam show that the first-order modified eigenvalue perturbation is:

_,_!m) Aii i= 1,..-,N (26)
M

Since the aerodynamic matrix in the physical coordinates, A, is circulant, it has identical diagonal

elements and one can easily show that

1 Trh= 1 Trfik i=l,-..,N (27)

since the trace is an invariant under similarity transformation. Equations (26) and (27) mean

that to the first order the eigenvaiues are displaced by the average of the modal aerodynamic

coefficients, which provides both damping and additional stiffness to each mode. A similar finding

was obtained by Wei and Pierre, 9 who showed that for weak structural coupling the eigenvalues

are shifted approximately by an amount equal to the coupling stiffness between the blades.

To the first order in the aerodynamic effects, the eigenvalues of the mistuned assembly are:

Ai_--_ Ko+*Ki- TrA i=l,---,N (28)

This approximation holds for small values of the ratio of aerodynamic coupling to frequency mistun-

ing, that is, for not-too-small mistuning. It is not valid in the range of very small mistuning values

where curve veering phenomena and high sensitivity occur. In this region the classical perturbation

method described in Sections 5.1 and 5.2 approximates the dynamics well.

Now consider the loci of the real and imaginary parts of the eigenvalues versus mistuning

strength, c. To the first order we have Re Ai -_ (I(o + _Ki - Re (Tr_k)/N)/M. This tells us that

away from the veering region, the loci of the real parts tend to straight lines whose slopes are

determined by the individual blade mistunings. This trend is indeed observed in Fig. 3 for not-too-

small mistuning. For the imaginary parts we have Im ,Xj _'2 -Im TrA]NM and thus we expect the

loci to approach a straight line with zero slope as mistuning increases. This is indeed observed in

Fig. 4, although the imaginary parts of the eigenvalues tend to distinct values, while the first-order

result, Eq. (28), predicts identical asymptotes.

We can improve our approximation by including second-order effects in the aerodynamic cou-

pling. This yields:

2 (m) 1 _ AkiAik N (29)
ii Ai = -_ ,=, _ I_ii_-_-]i k i= 1,...,

k#i
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Note that since A is circulant there are only N distinct elements Aik. These perturbation results

are compared with numerical solutions in Section 6.

Localized Aeroelastic Mode Shapes

Using Eq. (B7), we obtain the first-order modified perturbations of the eigenvectors as

I k Ali(_u}m) r i = I,...,N (30)

Combining Eq. (30) with Eq. (25), we obtain the approximate mode shapes to the first order in

the aerodynamic coupling:

Ui --_
Ali . Ai-l,i Ai+l,i .. ANi1

)fK1-- i_fi' "" 6Ifi-1 - tiKi' "..G.," ' _/i'i+ 1 - tfl_'i' "' 6IfN -- _[(i
position i

T

i= 1,-..,N (31)

Several remarks are in order. First, the modified perturbation method is valid for small aerodynamic

coupling to mistuning ratio. This means that all but the ith element of the ith mode shape in

Eq. (31) are much smaller than one. Hence the ith aeroelastic mode shape is localized about the

ith blade. The other blades participate in the modal motion, but with much smaller amplitudes.

It is important to note that localization occurs for mistuning that is not too small, that is, away

from the veering region in the eigenvalue plots, Figs. 3 and 4. Second, we observe in Eq. (31) that

the vibration amplitude of a blade in a localized mode is directly proportional to the amount of

aerodynamic coupling between that blade and the large amplitude blade. Since we have seen in

Section 4 that the coupling between two blades decreases rapidly as the distance between them

increases, it suggests that only those blades that are close to the large amplitude blade vibrate

with an amplitude that is not negligible. In other words, there is a rapid spatial decay of the

blade amplitudes away from the large amplitude blade, and for a strongly localized mode only the

nearest neighboring blades participate in the motion. Third, in a localized mode the vibration

amplitude of a blade is inversely proportional to the difference between its stiffness and that of the

large amplitude blade. IIence two blades that are far apart but whose frequencies are sufficiently

close may experience local resonances, even though the blades between those two vibrate with very

small amplitudes. This means that depending on the mistuning pattern for the assembly a mode

may be localized about more than one blade. Fourth, Eq. (31) shows that the degree of localization

of a mode depends only upon the ratio of aerodynamic coupling to structural mistuning. Thus

localization increases as interblade coupling decreases or as mistuning increases. Finally, second-

order mode shape perturbations could be calculated but may not reveal new qualitative features.
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6. RESULTS AND DISCUSSION

The aeroelastic eigenvalue problem is solved for a tuned assembly and for several mistuning

strengths (using an IMSL subroutine), with the system parameters given in Section 2. The mistun-

ing values are obtained from a random number generator with a uniform probability distribution.

We present typical results that demonstrate the extreme sensitivity of the blade assembly dynamics

to mistuning and that confirm the general trends predicted by our perturbation analyses.

Loss of Eigenstructure

Figure 5 displays the root locus of the 56 aeroelastic eigenvalues in the complex plane for various

mistuning values. The real part of the eigenvalues is plotted against the imaginary part. Note the

regular pattern of the root locus of the perfectly tuned assembly in Fig. 5a, which is characteristic

of the existence of constant interblade phase angle modes. Also note that all the eigenvalues have

positive (although small) imaginary parts, which ensures stability in all modes. Finally, observe that

all eigenvalues have real parts clustered in a relatively narrow interval (all frequencies of oscillation

are within 5% of the assumed frequency). This is characteristic of weakly coupled systems, which

feature closely-spaced eigenvalues. Here the interblade coupling is aerodynamic and thus is weak,

leading to a narrow band of frequencies for the tuned system.

Figs. 5b-d depict the root locus of mistuned assemblies. As mistuning increases we observe that

the regularity of the root locus is gradually lost, and for small mistuning e >_ 1.9% the locus consists

of a constellation of eigenvalues with little discernable pattern. We refer to this phenomenon as

loss of eigenstrueture. It is yet another illustration of the extreme sensitivity of the eigensolution to

mistuning. Although the mistuned eigenvalues are apparently randomly scattered, we observe two

trends. First, mistuning results in the widening of the range of the real parts of the eigenvalues,

i.e. the natural frequencies move apart when mistuning is introduced. This is consistent with the

veering away of the lowest and highest frequencies shown in Fig. 3. Second, the imaginary parts

of the eigenvalues (corresponding to aerodynamic damping) come closer together as mistuning

increases. In particular, the least stable eigenvalue becomes more stable. This narrowing of the

root locus along the imaginary direction confirms the veering toward of the least and most stable

eigenvalues' imaginary parts depicted in Fig. 4.

Localization of Aeroelastic Modes

Fig. 6 displays the eigenvector corresponding to the lowest frequency eigenvalue for various mis-

tuning strengths. Both the amplitude pattern and the interblade phase angle pattern of the mode

shapes are depicted. As expected, the mode shape of the tuned system features identical amplitudes

for all blades and a constant interblade phase angle. When mistuning increases the mode shape is

altered fundamentally: the whole assembly ceases to participate in the motion and the vibration

becomes confined to a few of the blades, the others vibrating with negligible amplitudes. This in-

dicates the occurrence of the phenomenon of localization of the aeroelastic mode shapes. Note that

the constant interblade phase angle of the tuned system is lost when localization occurs, and no

pattern emerges for the phase angles of the mistuned system's mode. Also note that the transition

from extended to localized modes is very rapid in Fig. 6: substantial localization already occurs for

the very small mlstuning e = 0.19%, which is unavoidable in practice. Localization becomes severe

as mistuning increases to e = 0.47%. Although a single mode is displayed in Fig. 6, our results

show that all the mode shapes of the mistuned assembly become localized.

The discussion in Section 5.2 suggests that the modes with the lowest and highest frequency
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are most sensitive to mistuning and thus may be the first to become localized. To confirm this

conjecture, Fig. 7 displays the amplitude patterns of four aeroelastic mode shapes for a given

mistuning strength: two modes at the extremes of the frequency cluster, the lowest and highest

frequency modes, and two modes near the middle of the frequency cluster, the least and most

stable modes. Indeed, observe that the modes with the extreme frequencies are substantially more

localized than those near the middle of the frequency band. This confirms our interpretation of

Eq. (22). Although we do not show it here, we also observed that the four modes in Fig. 7 become

more localized as mistuning increases, and achieve nearly the same degree of localization.

Another finding in Section 5.2 is that the sensitivity to mistuning increases with the number of

blades. In order to illustrate this, Fig. 8 displays the amplitude patterns of the highest frequency

modes for mistuned assemblies made of 28 and 56 blades. We note that although the mistuning

standard deviation is the same for both assemblies, the mode of the 56-blade assembly is much

more strongly localized than that of the 28-blade assembly. This confirms our finding that the

degree of localization increases with the number of blades. It means that mistuning has a greater

impact on the dynamics of rotors with many blades such as turbines.

In Section 5 we showed by perturbation methods that both the sensitivity to mistuning and the

degree of localization increase as the interblade coupling decreases. In our model we can vary the

unsteady aerodynamic coupling forces simply by adjusting the air density: a decrease in air density

results in a decrease of all the elements of A by the same factor. Figure 9 displays mode shapes

of assemblies with identical mistuning strength but different air densities. Observe that the modes

become more strongly localized as the air density, and thus the interblade coupling, decreases.

Comparison of Perturbation and Numerical Results

Here we verify the validity of the perturbation results derived in Section 5 by comparing them with

"exact" numerical results. Figure 10 depicts the loci of the real parts of the lowest and highest

frequency eigenvalues versus mistuning. Both the first- and second-order classical perturbatibn

results (Eqs. (19) and (22)) and the numerical solution of the aeroelastic eigenvalue problem (1)

are shown. (The perturbation results were obtained by perturbing directly the lowest and highest

frequency eigenvalues of the tuned system, not by sorting them at each mistuning level.) As

discussed in Section 5.1, we observe that the first-order eigenvalue perturbation does not capture

the system's high sensitivity. The second-order perturbation solution provides the parabola tangent

to the exact solution. It predicts the veering away of the loci and thus the high sensitivity to

mistuning. Itowever, this approximation is valid for very small mistuning only; for e > 0.5% it

grossly overpredicts the exact solution.

Figure 11 displays the loci of the imaginary parts of the least and most stable eigenvalues,

obtained by first- and second-order classical perturbations (Eqs. (19) and (23), applied directly to

the least and most stable tuned eigenvalues) and by direct solution of Eq. (1). Again, only the

second-order eigenvalue perturbation predicts the veering toward of the loci. Neither perturbation

result approximates the exact solution adequately, except for very small mistuning (e < 0.5%).

The exact eigenvalues are compared with the first- and second-order modified perturbation

results (Eqs. (26) and (29)) in Figs. 12 and 13. For the loci of the real parts in Fig. 12, we note that

the modified perturbation method approximates the exact solution remarkably well away from the

veering region. This means that the treatment of the small aerodynamic coupling as a perturbation

in Section 5.3 is a valid methodology and that for small (but not too small) mistuning the modes
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have a localized character. As expected, the modified perturbation approximation deteriorates

for very small mistuning, that is, in the veering region. Ill this region the classical perturbation

method must be used; see Figs. 10 and ll. The mistuni.ng range where neither perturbation scheme

gives accurate results defines the transition from constant interblade phase angle modes to localized

modes.

In Fig. 13, which is for the imaginary parts of the least and most stable eigenvalues, the modified

perturbation results agree relatively well with the exact solution. ]Iowever, for a given mistutling

level, the agreement in Fig. 13 is not as good as that observed for the frequencies in Fig. 12.

Moreover, it should be noted that we had difficulties making sure that the perturl)ation and exa.c!

solutions displayed in Fig. 13 correspond to the same eigenvalues.

7. CONCLUDING REMARKS

The primary findings of our study are:

• The sensitivity to mistuning is governed by the interblade coupling strength. Weak aerody-

namic (or, for that matter, structural) coutfiing between blades results in high sensi! _:ity to

mistuning and qualitative alterations of the blade assembly's dynamics.

• The root locus of the aeroelastic eigenvalues (frequency. versus damping) loses the regular

pattern that characterizes the tuned system to become apparently randomly scattered lbr

small mistuning.

• When plotted against mistuning strength, the real parts of the eigenvalues (the frequencies)

veer away from each other with high curvature, while the imaginary parts of the eigenvalues

(the damping values) veer toward each other abruptly.

• The constant interblade phase angle aeroelastic mode shapes of the tuned assembly are severely:

altered when mistuning is present. The mistuned modes are not extended as in the t_lned

case, but each mode is strongly localized to a few blades of the asseml)ly and no pattern can

be discerned for the interblade phase angles.
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APPENDIX A: PROOFS ON CIRCULANT MATRICES

It can be shown that a matrix C is circulant if and only if CII = IIC, where rl is the N x N

permutation matrix

II = tire(0, 1,0,...,0) = 010i]0 0 1 ...

: : : ",.

0 0 0 ...

1 0 0 ...

The powers of the permutation matrix are H 2 = circ(0, 0, 1,0,..., 0), II 3

etc., until YI n = II ° = I. A general circulant may thus be written as

(A1)

= circ(0, 0, 0, 1,0,...,0),

N

C = tire(c1, c2,..., CN) = __, CkII k-1 = pc(H) (A2)
k=l

where pc is a polynomial of degree N - 1. This notation is convenient when it comes to the

diagonalization of a circulant. We introduce the matrix E such that

1 _-,o-,)_-,) i: (A3)
ELk = _ e N where = -1

First we note that E is unitary., that is, EE* = I. This is because

(EE*)j,k -= N_ e _.,(j-,)(r-,),, e_,, = __1_ e 2._tj-k)t.-,),, = {1 ifj=k (A4)
N 0 ifj_k

r-----1

which can be shown easily by calculating the sum of the roots of one.
t.

Next, we prove that the transformation E*CE diagonalizes any circulant C, which implies that

the columns of E are the eigenvectors of all circulant matrices. We do this by first showing that E

diagonahzes II by proving the relationship

H = EI2E* where fl = diag(1, w, w_,..., W N-l) (A5)

where for convenience w = exp(_). Equation (A5) holds because

1 N 1 _ w(j_k+l)(r_l) =
(El2E*)j.k = _ _ w (j-_)(_-l) w _-1 w (1-k)(r-1) --- -_ r=l

r=l 0

if j=k- 1

orj=N+k-1

otherwise
(A6)

which is precisely the form of the permutation matrix II.

Using the previously established equation for a circulant C, we have

C = pc(H)= pc(E_E*) = Epc(_)E* = Ediag(pc(1),pc(w),...,pc(wY-1))E * (A7)

or

E*CE = diag(_l,..',,_j,'-',AN) with )_j =pc(w j-l) (AS)

Hence the eigenvalues and eigenvectors of a circulant matrix are given by Eqs. (3) and (4).
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APPENDIX B: EIGENSOLUTION PERTURBATIONS

Consider the eigenvalue problem:

{Po+6P) uj =_jQuj j= 1,...,N (B1)

where Po, 6P, and Q are N x N complex matrices and (Aj, uj) an eigensolution. We denote the

eigensolution of the unperturbed eigenvalue problem (for 6P - 0) by ()_oj,Uoj), j = 1,...,N.

Furthermore, we introduce the transposed unperturbed eigenvalue problem as:

pT Voj = #oj QT voj j = 1,...,N (B2)

Note that Eq. (B2) is not the adjoint eigenvalue problem. One can easily show that #oi = Aoj and

that the two sets of eigenvectors of the unperturbed problems are biorthogonal:

Vo_Q Uo¢= 0voT Po uok = 0
j _ k (B3)

Next, we expand the eigensolution of the perturbed problem, Eq. (B1), to the second-order as

j = i,..-,N (B4)

The eigenvalue perturbations can be shown to be:

VoT _fP Uoj j = 1,---,N
_J - vo_ q uo_

(B5)

N 1 (voT_puoj)(vTojtfPuok)
_% = _., _o_--_ok (Vo5 q uok)(vo_quoj)

k,ej

The first-order eigenvector perturbation is:

j = 1,-..,N (B6)

T _pN 1 Vok Uoj

_uj = _ )%j Aok Vokk=l -- T q Uok
Uok j = 1,...,N (B7)

We do not give _f2uj since we do not make use of it in the paper. Reference 15 describes the general

approach to prove Eqs. (B5-B7).

For the aeroelastic eigenvalue problem, Eq. (1), we have #oj = )_oj, uoj = ej, and voj = _j.



Table Aeroelastie Localization: C. Pierre and D. V. Murthy 25

Matrix Re Au Im Au

Full 1.2025 0.0077
Penta-diagonM 1.2016 0.0066

Tri-diagonal 1.2041 0.0042

Table 1: Real and imaginary parts of the least stable eigenvalue of a tuned assembly, obtained

with the full aerodynamic matrix A and with the tridiagonal-circulant and pentadiagonal-circulant

truncations of A. Observe the good approximation provided by the penta-diagonal matrix, which

accounts only for nearest and next-to-nearest neighbor coupling between blades.
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Figure 1 Typical constant interblade phase angle modes of a tuned assembly of 56 blades.

The deflection pattern in the physical coordinates, u, is shown at a given instant of time.

Note the standing or traveling character of the mode shapes. Arrows indicate the opposite

directions of travel of the waves.
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Figure 2 Magnitude of the elements of the 42nd column of the aerodynamic matrix in the

physical coordinates, A, for the parameters in Section 2. Note the dominance of the near

diagonal elements.
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the lo¢i for small mistuning.

0.05

0.04

0.03 _ - _ _ c
p..<

,K

0,02

0.01

• , ' i , t , i • i

0.01 0.02 0.03 0.04 0.05

O.0O
• i , _ , i

0.00 0.06 0.07 0.08

Mistuning, •

Figure 4 Loci of the imaginary parts (damping) of the least and most stable eigenvalues

versus mistuning strength. Observe the rapid veering toward of the loci as mistuning in-
creases.
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Figure 6 Aeroelastic mode shape associated with the lowest frequency eigenvalue, AL, for var-

ious mistuning strengths. The extended mode of the tuned system becomes severely localized

for small mistuning and loses its constant interblade phase angle.
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Figure 7 Amplitude patterns of aeroelastic mode shapes of an assembly with e = 0.95%

mistuning. The lowest and highest frequency modes and the least and most stable modes

are shown. Observe that the modes near the edges of the frequency cluster (modes I and

56) are more localized than those near the middle of the frequency band (modes 26 and 34).
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Figure 8 Amplitude pattern of the highest frequency mode ()_H) for mistuned assemblies

with 28 and 56 blades. The mistuning strength is e = 2.85%. Note the more severe localiza-

tion for N = 56.
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Figure 9 Amplitude pattern of the highest frequency mode (AH) for mistuned assemblies

(a) with a nominal air density and (b) with an air density one-quarter the nominal value.

The mistuning strength is e = 4.76%. Observe the much stronger localization featured by

the assembly with the lower air density.
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tion method (- - -), and second-order classical perturbation method (---).

------........w......mwllmwommwlwmgwwll_lomwawm...mml_mem

\/"_ 11.112

I-"4

/I

...........
' I ' I ' I ' I ' I ' I ' l0.00 O.02 O.O3 o.o4 o.o6 _ o.o7

Mistuning, e

Figure 11 Loci of the imaginary parts (damping) of the least and most stable eigenvalues

versus mistuning, by "exact" numerical solution method (--), first-order classical perturba-

tion method (- - -), and second-order classical perturbation method (---).
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