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ABSTRACT

Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models,
are used with 8t -matrix that is taken from the scattering experiments to find a simple optical potential.
The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope param-
eters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown.
The eikonal approximation was chosen as our solution method to estimate the total and absorptive
cross sections for the kaon-nucleus scattering.
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KAON - NUCLEUS SCATTERING

For the scattering of the high energy incoming particle, particulary a meson, by a nucleus, it is
expected that the situation can be considered in terms of its scattering by the constituent nucleons of
the nucleus individually. This means the many body problem may be reduced to a collection of the two
body interactions.

One of the successful scattering frameworks is the multiple scattering theory. A simple picture of
the scattering of elementary particles by a nucleus is to view the scattering in terms of the projectile
interactions with each single constituent of the nucleus (single scattering). There may be other terms
contributing to the scattering such as the projectile interacting with two consecutive constituents
(double scattering). Similarly there are contributions from three, four, and more successive scatterings.
The formalisms using this picture are called multiple scattering theories.!?? It is clear from this
description that the scattering from a nucleus is determined from the amplitude for the scattering of
the projectile from a single target constituent, i.e., a two body scattering amplitude.*

A general multiple scattering theory for scattering between two nuclei (neglecting three body
interaction) has previously been developed by Wilson.*” The reaction for the heavgr ion projectile which
is the previous application of Wilson’s theory was well developed by Wilson et al.” And the application
to the antiproton, antideuteron and antinuclei was also done by Buck et al.” giving good agreement with
the available experimental data.

Asuccessful feature of multiple scattering theories manifests itself when combined with the optical
model. This allows the optical potential for elementary particle scattering from a nucleus to be
determined from more fundamental quantities such as the two body scattering amplitude and the target
number density function. '

W(R) =A | dr'pa(r'yt (e’ —R) (1)

where Ris the distance between the origin and projectile particle, r' is the separation between the origin
and the considered target constituent, A is the target mass number, e is the kaon-nucleon kinetic energy
in the center of the mass frame, p4 is the target number density, and ¢ is the energy dependent
kaon-proton transition amplitude obtained from scattering experiments. The origin was taken at the
center of the mass of the target nucleus. In the eikonal context, the scattering amplitude for the
kaon-nucleus scattering is given by

f (k,0) =% fdzbeiq.b[ei"(b'k)—l] )
where
wbk) = % [ Wby 3)
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is the eikonal scattering phase shift function, b is the impact parameter, and u is the reduced mass of
the K-nucleus system. Using the above scattering amplitude and the optical theorem, we can obtain the
total and absorption cross section expressed as follows:

Oronal =2 f db [1 — €™ ®cos (Rey (bk) | (4)
and

Oabsorption = f dzb [1 - e—-ZImx ®k) ] (5)

The number density p4 of nuclear matter can be extracted from the corresponding charge density pc
by assuming ’

pc(r) = f PN (r)pa (r +1)dY (6)

where pc¢ is the nuclear charge distribution, py is the nucleon charge distribution, and p4 is the nuclear
single particle density. py was taken to be the usual Gaussian function

N () =(2%&)3/2ap(_%) )

with the nucleon root-mean-square charge radius set equal to the proton value of 0.87 fm!2.

For nuclei with 4 <20 we used an harmonic well form of pc as

pc () =poll +7 () lewp (—j—z) (®)

with the charge distribution parameters y and a listed in Table I Substituting Eq.(7) and Eq. (8) into
Eq.(6), we get

3 2 2
_pa’ 3y _3yd®  ya? _r
rn = 1+ - + e — 9
pA() 893 [ 2 &2 1&4]xp( 452 ()
where
2
s =7 - (10)

For target nuclei with 4 =20 we choose a Woods-Saxon form of charge distribution

pc® =poll +ep CZE)1 (11)

where the parameters R and c are given by
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and

4
c = Z% (13)
and rg s is the radius at half-density with £ representing the skin thickness. Values for R and ¢, are also
shown in table L. If we substitute Egs. (7) and (11) into Eq. (6), we’ll see the nuclear single particle

density that is also of Woods-Saxon form with the same R, but different normalization coefficient, po,
and surface thickness. The latter is given (in fm ) by

ta = [5.08nIn (%QT"I}) ! (14)

and
B =ep (2547%). (15)
<
We choose the kaon-nucleon scattering amplitude to be the function of momentum transfer g as

f@ =por +aye® (16)

where k is the wave number of the kaon-nucleon system, or is the kaon-nucleon total cross section, a
is the ratio of the real to imaginary part of the forward elastic scattering, and B is the slope parameter.
Then the ¢-matrix in the coordinate space is

/ehz . 1 —r2
t(f) = — Z—p’,O'T(I + Q)WC /(2B) (17)

where e is the total kinetic energy in the c.m. frame and ¢’ is the reduced mass of the colliding particles.
We compared our scattering amplitude, Eq. (16), with the experimental data of the K*p differential
cross section taken from Ref.13 and show the results in Figs. 1 and 2. In the case of the kaon-nucleus
scattering, the comparison to our calculation utilizing eikonal scattering amplitude, Eq. (2), with the
experimental data ? for C'? are displayed in Figs. 3 and 4. The optical potentials coming from the above
informations for K* and K~ projectiles and C'? target are shown in Figs. 5 and 6.

The total cross sections of the K*- proton system may be fitted by the following form:
or =op (PK") + 2 g (PK) (18)
i

where P§® is the corresponding kaon laboratory momentum in GeV/c and the unit of o is mb. The
typical form of g; (Pf("b) is that
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i (PF®) = s 19)
& (PK™) [(PRE—Pf('ab)%]2+l (

where Pg, is the resonance momentum of the ith peak and m; and n; are the constants which have to be
determined from the data.

Eq. (18) actually corresponds to the superpostion of Breit-Wigner formulae where op (sz””) isa
non-resonant background. Our fitting constants in the resonance energy range are displayed in table
IL. The background functions are fitted by

ob (PR = 23.2¢ 00K (20)
for K~ p scattering and
ob (PE?) =168 — 71-’% 1)
K

for K p scattering. When P isless than 0.7 GeV/cin K~ p scattering, we used the following function:

or = 17238~ 200K +0D), (22)

In the more high energy region, the empirical formulae for Kp system are given by

or =20.18 + 2}1% (23)
(3
when PE® > 20GeV/c in K~ p system and
or =168 — % (24)
K

when Pk > 5GeV/cin K' p system.

The fitting formulae which we used for K* — N systems are Eq. (25) through (28).
For K™ n scattering,

-0.03
or = —1033.0 + 1060.0PK®  + 28.0InPk* (25)

when Pk = 2.5GeV/c and

b 2
or = 2391 + 17.0e-CK —107/0.12 (26)

when PE** < 2.5GeV/c. And for K n scattering,

-7.85
or = 184 +175.0PF%"  + 02nPK* — 0.75mPK* (27)
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when Pk?® = 2.5GeV/c and

oT = a (180 +3.00-CK — 127008 (28)

when P < 2.5GeV/c. The constant « is equal to 1 when P¥® = 1.2GeV/c and 0.94 when
k" < 12Gev/c.

We determined the fitting formulae of slope parameter, B, in the range of
0.1< | t | < 0.4(GeV/c)’. The resultant formulae are shown below.

B =73 (29)
for K~ p scattering and
B = -243 +7.0In (s + 50.0) 30)

fork* pinteraction. The square of the momentum transfert (GeV/c)z, ,and the invariant mass squared,
s(GeV/ c2), are two convenient Mandelstam variables.

Our parametcerized formulae, a, for K p and K p scattering, respectively, are as follows.

@ = - —932 __n2ZPE® - 02)} (31)
1.0 + 0.9Pk™
for K~ p scattering and
@ = —186e~ 7K 07041 _g 44 (32)

for K* p interaction where P%® is the kaon laboratory monentum in GeV/c.

The total and absorptive cross sections for K* —AI*" scattering using the harmonic well and
Woods-Saxon single particle densities are shown in Figs. 7and 8. Although we cannot evaluate the exact
error due to the scaricty of experimental data, we expect that our calculation reasonably represents the
situation, because of the good agreement between our calculation and the experimental data of other
quantitics such as the differential cross sections of kaon-proton and kaon-nucleus scattering.

Incase of K* pscattering our scattering amplitude was quite reasonable. Moreover, the calculation
of the diffcrential cross section gave us more accurate result as the energy of projectile went higher.
For K* —C'?scattering the differential cross sections are estimated lower than the experimental results.
It may be natural because we used a very simplified, non-relativistic optical potential. At the very forward
angle the experiments show us the differential cross sections rise very rapidly, but the calculations
converge smaller values. This comes from the fact that we have neglected the contribution of Coulomb
interaction which is the long range interaction in the optical potential.

The total and absorptive cross sections for K~ - nucleus scattering were bigger than those of K*

- nucleus scattering. This, of course, indicates that K~ meson interacts with nucleons stronger than
K meson. According to the quark model, K resonant peak requires the formation of five-quark
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objects which have never been found, but the K~ N interactions are so strong that the cross sections
are roughly comparable to those of nucleon-nucleon scattering.

K* -nucleus total cross section shows almost perfect linear dependence of 4 and K™ - nucleus
total cross section also represents linearity of A at high energies, but exhibits a little complexity at low

energies. Other things that we can give attention to are that the absorptive cross section of K* - nucleus

scattering depends on 4%# linearly, but K~ - nucleus absorptive cross section does not show fairly good

linear dependence of A%32 35 in the case of total cross section at relatively low energies. The linear

dependence of A% of absorptive cross section tells us that the nucleus is not perfectly black to the
kaon projectile.

The results of this work will be used in the hadron transport computer code at NASA Langley
Research Center (Ref. 18).
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Table 1.

Nuclear charge distribution parameters from electron scattering data taken from Ref. 8.

Nucleus Distribution y or fc (fm) a or R (fm)
H? 0 1.71
He* HW 0 1.33
Li’ HW 0.327 1.77
Bé® % 0.611 1.791
B! HW 0.811 1.69
c? oW 1.247 1.649
N:‘; HW 1.291 1.729
0] HW 1.544 1.833
Ne?® WS 2.517 2.74
AlY WS 2.504 3.05
Ar* WS 2.693 3.47
Fe*® WS 2611 3.971
cu® WS 2.504 3.05
B &,Vg , 2306 4.604

g'® WS 2.354 5.139
Ba'® WS 2.621 5.618
Pp*8 2.416 6.624
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do/dw(mb/sr)

Kp
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Table I1.

Kaon-nucleon total cross section parameters

i Pr; (GeVic) m; (mb) ni (GeVic)
1 0.8 11. 0.21
2 1.05 27. 0.2
3 1.60 9. 0.35
4 230 4, 1.

5 3.50 430 2.

1 0.80 -4, 0.40
2 1.30 2.50 1
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Figure 1. Differential cross section of K™ p scattering at 503 MeV/

154



do/dt mb/(GeV/c)?

10°

101

100

T llllllll T Illlllll T llll"ll

T T llllll'

1 IllllllI 1 llllllll i llllllll o1 L)L)

11 Illllll

t (GeV/c)?

Figure 2. Differential cross section of K *p scattering at 6324.9 MeV
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do/dw(mb/sr)

Figure 3. Differential cross section of K * 12 scattering at 800 MeV/c
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do/dw(mb/sr)

L A I S L L ! 11 L L 1 i L l 1 i '

0 10 20 30 40

bem

Figure 4. Differential cross section of K "C'? scattering at 800 MeV/c
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Figure 5. Optical potential for K *C1% at 800 MeV/c
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Figure 6. Optical potential for K "C'? at 800 MeV/c
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Figure 7. Total (solid) and absorptive (dashed) cross sections for K* A7

160



o(mb)

600

400

200

b | I LR LR T T L LR

| I O I l 1 i 1 | S N | I i 1 ] 1 L1 1.1 l
102 103 104
k(-) Lab energy(MeV)

Figure 8. Total (solid) and absorptive (dashed) cross sections for K Al
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