PROBABILISTIC STRUCTURAL ANALYSIS METHODS
FOR N91-28238
SPACE TRANSPORTATION PROPULSION SYSTEMS

C. C. CHAMIS
NASA Lewis Research Center
Cleveland, Ohio

Prepared For The
Space Transportation Propulsion Technology Symposium
Penn State University, June 25-29, 1990

PROBABILISTIC STRUCTURAL ANALYSIS

COORDINATOR: C. CHAMIS NASA-LERC
CLEVELAND, OHIO

CONTRIBUTORS: N. MOORE NASA-JPL
PASADENA, CALIFORNIA
C. ANIS UTC-P&W
WEST PALM BEACH, FLORIDA
J. NEWELL ROCKWELL INT'L, ROCKETDYNE
CANOGA PARK, CALIFORNIA
V. NAGPAL SVERDRUP TECHNOLOGY
BROOK PARK, OHIO
S. SINGHAL SVERDRUP TECHNOLOGY
BROOK PARK, OHIO

895
PRESENTATION OUTLINE

• ISSUES

• STATE-OF-THE-ART

• NEEDS IDENTIFIED

• PROPOSED PROGRAM

• SUMMARY

ISSUES

CERTIFICATION OF SPACE TRANSPORTATION PROPULSION SYSTEMS:

• IS COSTLY.

• IS TIME CONSUMING.

• IS DIFFICULT DUE TO UNCERTAINTIES IN ACTUAL OPERATING CONDITIONS.

• NEEDS TO BE REPEATED FOR:
 - MODIFICATIONS TO EXISTING SYSTEMS.
 - UPDATED CHANGES IN OPERATING CONDITIONS.
CERTIFICATION: STATE-OF-THE-ART

* CERTIFICATION OF PROPULSION SYSTEMS IS DONE ON THE BASIS OF:
 - MEETING LIMIT LOAD CONDITIONS.
 - AVAILABILITY OF TECHNOLOGY BASE THAT CAN BE SAFELY EXTRAPOLATED WITHIN THE LIMITS.

* THE RELIANCE IS ON
 - DETERMINISTIC STRUCTURAL RESPONSE.
 - EXTENSIVE TESTING FOR VERIFICATION.
 - PROOF TESTING FOR CERTIFICATION.

* THE CERTIFICATION METHODOLOGY PROVIDES LITTLE GUIDANCE FOR HEALTH MONITORING.

DETERMINISTIC CERTIFICATION METHODS: STATE-OF-THE-ART

CURRENT DESIGNS ARE BASED ON DETERMINISTIC STRUCTURAL ANALYSIS WITH TEST-INTENSIVE VERIFICATION AND PROOF TESTING FOR CERTIFICATION.
PROBABILISTIC SIMULATION IS THE RATIONAL ALTERNATIVE IN THE ABSENCE OF TRADITIONAL TECHNOLOGY BASE FOR ADVANCED VEHICLE SYSTEMS WHICH ARE DRIVEN BY:

- High Risk
- Quantum Performance Improvements
- Short Schedules
- Limited Resources

PROBABILISTIC STRUCTURAL ANALYSIS METHODS
ON-GOING PROGRAMS AT NASA LEWIS RESEARCH CENTER
PROBABILITY OF FAILURE - DAMAGE INITIATION

\[P_f = P (\sigma \geq S) \]

\[P_f = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{X} f_S(s) \, ds \right) f_\sigma(x) \, dx \]

STRESS-\(\sigma \) (FROM NESSUS)

STRENGTH-S (FROM GENERIC PROBABILISTIC MATERIAL PROPERTY MODEL)

RESPONSE SCATTER

PROBABLE DAMAGE INITIATION

RESISTANCE SCATTER
Component Response Analysis Using CLS Coupled With PSAM

Turbine Blade Loading

Nessus Turbine Blade Coarse Model

Probabilily of Occurrence

Operating Stress

Structural Response

Input Variables

Geometry and Material Variations

LeRC Contracts

CLS – Composite Loads Spectra
PSAM – Probabilistic Structural Analysis Method – SWRI
Random Variables Considered and Their Statistics

<table>
<thead>
<tr>
<th>No.</th>
<th>Random Variable</th>
<th>Type</th>
<th>Affected FEM Quantities</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material axis Z</td>
<td>Material</td>
<td>Anisotropic material</td>
<td>-0.087266 rad</td>
<td>0.007644</td>
</tr>
<tr>
<td>2</td>
<td>Material axis Y</td>
<td>orientation</td>
<td>Orientation material</td>
<td>-0.034907</td>
<td>0.087644</td>
</tr>
<tr>
<td>3</td>
<td>Material axis X</td>
<td>Effects</td>
<td>Orientation angles</td>
<td>-0.062360</td>
<td>0.087644</td>
</tr>
<tr>
<td>4</td>
<td>Elastic modulus</td>
<td>Material</td>
<td>Elastic constants</td>
<td>18.36E6 psi</td>
<td>0.4605E6</td>
</tr>
<tr>
<td>5</td>
<td>Poisson's ratio</td>
<td>properties</td>
<td>0.386</td>
<td>0.00955</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Shear modulus</td>
<td></td>
<td>18.63E6 psi</td>
<td>0.046676E6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Geometric lean</td>
<td>Geometrical</td>
<td>Node coordinates</td>
<td>0 deg</td>
<td>0.14 deg</td>
</tr>
<tr>
<td>8</td>
<td>Geometric III</td>
<td>variations</td>
<td>0 deg</td>
<td>0.14 deg</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Geometric twist</td>
<td></td>
<td>0 deg</td>
<td>0.30 deg</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mixture ratio</td>
<td>System</td>
<td>Pressure, temperature, centrifugal force</td>
<td>0.0</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>Fuel inlet pressure</td>
<td>Independent</td>
<td>30.0 psi</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Oxidizer inlet pressure</td>
<td>loads</td>
<td>100.0 psi</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fuel inlet temperature</td>
<td></td>
<td>37°F</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Oxidizer inlet temperature</td>
<td></td>
<td>-104°F</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pump efficiency</td>
<td>Component</td>
<td>Pressure, temperature, centrifugal force</td>
<td>1.00</td>
<td>0.008</td>
</tr>
<tr>
<td>16</td>
<td>Head coefficient</td>
<td>Independent</td>
<td>1.024</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Coolant seal leakage</td>
<td>Local effects</td>
<td>Temperature</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>18</td>
<td>Hot gas seal leakage</td>
<td></td>
<td>1.0</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL STRESS RESPONSE FOR

2nd STAGE BLADE
NATURAL FREQUENCIES DECREASES AS FRACTURE PROGRESSES

PROBABILITY OF COMPONENT DAMAGE PROPAGATION PATH CAUSED BY 100,000 FATIGUE CYCLES

PROBABILITY OF PATH A OCCURS = 0.00001

PROBABILITY OF PATH B OCCURS = 0.0002
PROBABILISTIC RISK-COST ASSESSMENT

TOTAL COST

\[\text{Total Cost} = \text{Cost for Components} + \text{Service Readiness} \]

\[\text{Total Cost} = \text{Consequential Cost Due to Damage Initiation} \]

THE TOTAL COST TO IMPROVE THE STRUCTURAL RELIABILITY CAN BE QUANTIFIED IN TERMS OF MEAN STRENGTH (GIVEN QUALITY)
THE TOTAL COST TO IMPROVE THE STRUCTURAL RELIABILITY CAN BE QUANTIFIED IN TERMS OF QUALITY CONTROL (GIVEN MEAN STRENGTH)

\[\begin{align*}
\text{TOTAL COST} & \quad \text{FAILURE PROBABILITY} \\
\text{TOTAL COST} & \quad \text{PROBABILITY OF FAILURE}
\end{align*} \]

QUALITY (SCATTER)

PROBABILISTIC STRUCTURAL ANALYSIS METHODS DEVELOPMENT

FY90 Add component risk assessment capability
 - State-of-the-art method
 - Incorporate uncertainties in a multifactor interaction equation for material strength degradation
 - Probabilistic nonlinear constitutive relationships

FY91 Add system risk assessment capability
 - Fault tree concepts
 - Global model concepts

FY92 Develop qualification/certification capability
 - Incorporate structural fracture concepts
 - Probabilistic progressive fracture
 - Probabilistic life/durability

FY93 Develop system health monitoring criteria
 - Inspection criteria/intervals
 - Updated life
 - Retirement for cause

905
NEEDS IDENTIFIED

FOR MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

* Computational methods need to be developed for conducting probabilistic analyses at various levels of the system (sub-component, component, system).

* Smart decision-oriented codes need to be developed for automated, fast, and efficient probabilistic analysis at all levels of the system.

* Automated self-adaptive codes need to be developed for performing global/local nonlinear analyses.

* A global/local damage initiation library is needed with capability for automatic identification of applicable damage initiation mechanisms.

* Computational methodologies need to be developed for probabilistic assessment of progressive damage growth and global/local damage coalescing.

* Risk models need to be developed for probabilistically quantifying reliability, risk, and cost.

* Simulation methods are needed for developing data/results required for system verification.

* Probabilistic methods need to be developed for determining criteria and selecting minimum number of tests required for system verification.

* Methodologies are needed for system verification using existing/new techniques/equipment.

* Quantifiable certification criteria must be developed. Probabilistic simulation will accomplish this goal.

* Methodologies need to be developed for health monitoring based on probabilistically quantified reliability and risk.

PROPOSED PROGRAM

MAJOR OBJECTIVE:

SOFTWARE SYSTEM TO PROBABILISTICALLY SIMULATE CERTIFICATION OF SPACE TRANSPORTATION PROPULSION STRUCTURAL SYSTEMS.
PROPOSED PROGRAM: BLOCK DIAGRAM
MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

SYSTEM UNCERTAINTIES
- LOADING
- STRUCTURAL
- MATERIALS
- FABRICATION
- OTHERS

GLOBAL/LOCAL NONLINEARITIES

DAMAGE INITIATION LIBRARY

DAMAGE GROWTH MODELS

SIMULATION METHODS FOR VERIFICATION

EXISTING VERIFICATION SYSTEM CONSTRAINTS

SOFTWARE/HARDWARE ADVANCES

REAL TIME MONITORING AND FIELD EXPERIENCE

ANALYSIS BASED ON AVAILABLE METHODS

RISK MODELS

TEST UNCERTAINTIES

MULTI-LEVEL (SUB-COMPONENT, COMPONENT, SYSTEM) PROBABILISTIC METHODS

(SMART DECISION-ORIENTED CODES)

COARSE SYSTEM (GLOBAL) ANALYSIS

PROBABILISTIC STRUCTURE RESPONSE

POSSIBLE DAMAGE INITIATION SITES

QUANTIFIED RELIABILITY/RISK/COST

CRITERIA/ MIN NUMBER OF TESTS SELECTED

COMM IT TO FABRICATION

ESTIMATE OF REMAINING SERVICE LIFE

IDENTIFY CRITICAL AREAS

ESTABLISH DAMAGE GROWTH/COALESCEING

COMPONENT VERIFICATION

SYSTEM VERIFICATION

CERTIFICATION

GUIDELINES FOR HEALTH MONITORING

INSPECTION AND MAINTENANCE PLANS

MONTHS FROM START
3 6 9 12 15
PROPOSED PROGRAM

MULTI-LEVEL PROBABILISTICALLY SIMULATED
CERTIFICATION OF PROPULSION SYSTEMS

OBJECTIVE: Automated software packages for multi-level system probabilistic structural integrity, progressive damage and risk analyses required for testing, verification, certification and guidance for health monitoring of propulsion systems.

JUSTIFICATION: Propulsion systems are presently certified based on deterministic structural analysis, local failure models, a large experimental database, and gradually increasing confidence based on qualitative judgement and continually increasing in-flight experience. This results in certification of designs which do not account for realistic load, material characteristics and responses. Such a practice is very expensive and inefficient. An economically attractive alternate based on modelling for actual operating conditions is by probabilistic analysis.

APPROACH: Research will be conducted to develop efficient, automated, cost-effective probabilistic structural analysis methods. The research activities will consist of (1) telescopic analysis capability for analyzing propulsion systems at various structural detail levels, automatically with a minimum number of system parameters, (2) smart solver codes for efficient solutions with automated identification of minimum number of degrees of freedom required to capture the physics of the system, (3) automated nonlinear global/local structural analysis with user-independent decision making for solution of nonlinearities and damage-critical areas, (4) damage initiation library for identifying material/structure/load-specific damage sites/types, (5) damage growth and pattern for predicting site and type of failure, (6) risk models for predicting cost/reliability/insurance, (7) simulation methods for generating data/results required for verification, (8) criteria and test selection for identification of suitable minimum experiments, (9) verification using existing systems, (10) certification based on quantifiable reliability and risk levels, and (11) guidance for health monitoring based on probabilistically quantified risk.

RESOURCES: $25M over a 5-year period (See attached time schedule chart)
PROPOSED PROGRAM: TIME SCHEDULE AND RESOURCES

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

<table>
<thead>
<tr>
<th>RESEARCH ACTIVITY</th>
<th>YEARS FROM START ($ M)</th>
<th>TOTALS PER ACTIVITY ($ M)</th>
<th>TARGET GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TELESCOPIC ANALYSIS CAPABILITY</td>
<td>0.5 1 0.5</td>
<td>2</td>
<td>MIN HUMAN INTERACTION</td>
</tr>
<tr>
<td>2. SMART SOLVERS</td>
<td>0.3 0.7 0.8 0.2</td>
<td>2</td>
<td>MIN TURNAROUND TIME</td>
</tr>
<tr>
<td>3. AUTOMATED NONLINEAR GLOBAL/LOCAL ANALYSIS</td>
<td>0.8 0.8 0.4</td>
<td>2</td>
<td>USER-TRANSPARENT COMPLETE ANALYSIS</td>
</tr>
<tr>
<td>4. DAMAGE INITIATION LIBRARY</td>
<td>0.2 0.8 0.7 0.3</td>
<td>2</td>
<td>AUTOMATED FAILURE MODE IDENTIFICATION</td>
</tr>
<tr>
<td>5. DAMAGE GROWTH AND PATTERN</td>
<td>0.5 1 0.5</td>
<td>2</td>
<td>DEVELOPMENT OF INSPECTION AND MAINTENENCE PLANS</td>
</tr>
<tr>
<td>6. RISK MODELS</td>
<td>0.5 1.5 1</td>
<td>3</td>
<td>MORE RELIABLE ESTIMATE OF REMAINING SERVICE LIFE</td>
</tr>
<tr>
<td>7. SIMULATION METHODS FOR VERIFICATION</td>
<td>1.5 0.5</td>
<td>2</td>
<td>COMPONENT VERIFICATION</td>
</tr>
<tr>
<td>8. CRITERIA & SELECTION OF TESTS</td>
<td>0.8 0.9 0.3</td>
<td>2</td>
<td>CRITERIA AND MIN NUMBER OF TESTS</td>
</tr>
<tr>
<td>9. VERIFICATION USING EXISTING SYSTEMS</td>
<td>1 2</td>
<td>3</td>
<td>DEMONSTRATION OF METHODS/RESULTS</td>
</tr>
<tr>
<td>10. CERTIFICATION METHODOLOGIES</td>
<td>1 2</td>
<td>3</td>
<td>CERTIFICATION</td>
</tr>
<tr>
<td>11. HEALTH MONITORING</td>
<td></td>
<td>2</td>
<td>GUIDANCE FOR HEALTH MONITORING</td>
</tr>
<tr>
<td>TOTALS PER YEAR ($ M)</td>
<td>1 4.3 6.1 6.8 6.8 25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM IMPLEMENTATION

* MULTI-INSTITUTION PARTICIPANT DEVELOPMENT. (DIFFERENT INSTITUTIONS DEVELOP DIFFERENT PARTS.)

* ANNUAL RELEASES WITH PROGRESSIVE SOPHISTICATION CAPABILITY.

* WORKSHOPS FOR NEW CAPABILITY USER INSTRUCTIONS.

* EARLY-ON ADAPTATION INTO PRELIMINARY AND FINAL DESIGN ENVIRONMENTS.

* VERIFICATION/COMPARISON WITH PAST DESIGN AND FIELD EXPERIENCE AT USERS FACILITY.

* FORMATION OF PARTICIPANTS' USERS GROUP.

* FORMATION OF SOFTWARE MAINTENANCE INSTITUTION.

SUMMARY

CERTIFICATION OF SPACE TRANSPORTATION PROPULSION SYSTEMS:

* ISSUES:
 - COST/TIME/ACTUAL OPERATING CONDITIONS.

* STATE-OF-THE-ART
 - CERTIFICATION/DETERMINISTIC METHODS/PROBABILISTIC STRUCTURAL ANALYSIS METHODS.

* NEEDS IDENTIFIED
 - PROBABILISTIC METHODS FOR UNCERTAINTIES IN LOADING/STRUCTURE/MATERIAL/DAMAGE/FABRICATION.
 - PROBABILISTIC RISK MODELS/TEST SELECTION/VERIFICATION/CERTIFICATION.
 - GUIDANCE FOR HEALTH MONITORING.
SUMMARY (CONTINUED)

* PROPOSED PROGRAM

- OBJECTIVE: PROBABILISTICALLY SIMULATED CERTIFICATION.
- JUSTIFICATION: ACTUAL OPERATING CONDITIONS/QUANTIFIABLE RISK/
 DECISION-ORIENTED SMART CODES/LESS COST/
 GUIDANCE FOR HEALTH MONITORING.
- APPROACH: 11 RESEARCH ACTIVITIES.
- TIME SCHEDULE AND RESOURCES: $25M OVER A 5-YEAR PERIOD.

* IMPLEMENTATION

- INCORPORATION INTO A DESIGN ENVIRONMENT.
- EDUCATION TO USERS.
- VERIFICATION/COMPARISON WITH PAST DESIGN AND FIELD EXPERIENCE.

LIQUID ROCKET PROPULSION

CURRENT DETERMINISTIC APPROACH

ENGINE TESTING/FLIGHTS

- ENGINNEERING ANALYSIS
- FAB & TEST
- F.S. & LIFE

- DEMONSTRATED LIFE
 - FLEET LEADER
 - TIME OR CYCLE LIFE
 - UNDERLYING RELIABILITY

- RISK & COST
 - FLIGHTS
 - GROUND TEST

QUALITATIVE JUDGEMENTS

ADDED CONFIDENCE

ADDED CONFIDENCE

911
PROPOSED PROGRAM
MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

OBJECTIVE: AUTOMATED SOFTWARE PACKAGES FOR INTEGRATED SYSTEM LIFE CYCLE MULTI-LEVEL PROBABILISTIC STRUCTURAL INTEGRITY, PROGRESSIVE DAMAGE AND RISK ANALYSES REQUIRED FOR CERTIFICATION AND HEALTH MONITORING OF PROPULSION SYSTEMS.

JUSTIFICATION:
- DESIGN FOR REALISTIC IN-FLIGHT ENVIRONMENT
- QUANTIFIABLE RELIABILITY/RISK/COST
- DECISION-ORIENTED SMART CODES
- LESS COST
- GUIDANCE FOR HEALTH MONITORING
PROPOSED PROGRAM (CONTINUED)

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

APPROACH:
- TELESCOPIC ANALYSIS CAPABILITY
- SMART SOLVER CODES
- AUTOMATED NONLINEAR GLOBAL/LOCAL STRUCTURAL ANALYSIS
- DAMAGE INITIATION LIBRARY
- DAMAGE GROWTH AND PATTERN
- RISK MODELS
- SIMULATION METHODS FOR VERIFICATION
- CRITERIA AND TEST SELECTION
- VERIFICATION USING EXISTING SYSTEMS
- CERTIFICATION
- HEALTH MONITORING

RESOURCES: $26M OVER A 5-YEAR PERIOD

PROPOSED PROGRAM

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

OBJECTIVE: AUTOMATED SOFTWARE PACKAGES FOR INTEGRATED SYSTEM LIFE CYCLE MULTI-LEVEL PROBABILISTIC STRUCTURAL INTEGRITY, PROGRESSIVE DAMAGE AND RISK ANALYSES REQUIRED FOR CERTIFICATION AND HEALTH MONITORING OF PROPULSION SYSTEMS.

JUSTIFICATION:
- DESIGN FOR REALISTIC IN-FLIGHT ENVIRONMENT
- QUANTIFIABLE RELIABILITY/RISK/COST
- DECISION-ORIENTED SMART CODES
- LESS COST
- GUIDANCE FOR HEALTH MONITORING

APPROACH:
- TELESCOPIC ANALYSIS CAPABILITY
- SMART SOLVER CODES
- AUTOMATED NONLINEAR GLOBAL/LOCAL STRUCTURAL ANALYSIS
- DAMAGE INITIATION LIBRARY
- DAMAGE GROWTH AND PATTERN
- RISK MODELS
- SIMULATION METHODS FOR VERIFICATION
- CRITERIA AND TEST SELECTION
- VERIFICATION USING EXISTING SYSTEMS
- CERTIFICATION
- HEALTH MONITORING

RESOURCES: $26M OVER A 5-YEAR PERIOD
PROBABILITY STRUCTURAL ANALYSIS METHODS FOR SPACE TRANSPORTATION PROPULSION SYSTEMS

ISSUES:
* Certification of Space Transportation Propulsion Systems:
 * Is costly and time consuming.
 * Is difficult due to uncertainties in actual operating conditions.
 * Needs to be repeated for modifications to existing systems and for enhanced capability in operating conditions.

PROPOSED ACTIONS/PROGRAM:
* Continuation/augmentation of on-going NASA programs.
* Multi-level self-adaptive software for global/local nonlinear analysis.
* Library of possible failure modes.
* Decision logic for damage initiation/coalescing/growth.
* Risk models/probabilistically selected testing/verification/certification.
* Guidelines for health monitoring.

MAJOR OBJECTIVE:
* Multi-level probabilistically simulated certification for space transportation propulsion structural systems.

MAJOR MILESTONES:
* Multi-level probabilistic structural analysis methods.
* Library of possible failure modes.
* Logic for damage initiation/coalescing/growth.
* Software for component/system testing/verification/certification.
* Streamlined software for in-service health monitoring.
* Software validation.