Technology Transfer Methodology

Rich La Botz
Director, Technology Development

Technology Transfer Methodology

- Introductory Comments
- Life and Death Issues
- Problems in Economics
- Barriers to Finding a Home
- Observations
- More Observations
- A Current Example
- Recommendations
Life and Death Issues

Conception to Maturity (Flight)
 - Typically 8-12 Years
 - Trend Is Wrong

There Are Few Survivors
 - Juvenile Mortality Rates Are High (>90%)
 - Many Deaths Are Warranted
 - Some Deaths Are Untimely
 - Technology Is Cheap, Development Costs Money
 - Orphans Always Die
 - Nurturing Parents Are Critical

Resurrection Is A Fact
 - New Missions (HIPERTHIN)
 - New Supporting Technology (E.P.)

Problems in Economics

Low Production Quantities Discourage Change
 - Amortized Cost of Change Is High
 - Products Have Long Lives
 - Few New Systems
 - No Payback for Incremental Improvements

Market for Propulsion Is Parochial (Fragmented), Short-Sighted
 - No Significant Pooling of Interests, Resources
 - Acquisition Costs Overshadow Life Cycle Costs
Observations

- Implementation is Need Driven, Not Technology Driven
- Typical Drivers
 - Failure (STS Vernier Engines)
 - New Requirements (SDI - HIPERTHIN Injectors)
 - External Influences (Vendor Disappears, Environmental)

More Observations

Inhibitors to Using Improved Technology in Development

- NIH
- Caution (Perceived Risk)
- Ineffective Marketing (Technical Superiority Loses to Technical Adequacy + Superior Marketing)
- Ignorance (Not Stupidity)
- Lack of Vision (Requirements Growth Unrecognized)
- Funding (Off the Shelf Cheaper)
Technology Transfer – A Current Example

Technology – Ir/Re Chambers For Small Bipropellant Space Engines (0.5-1000 lbf)

Benefits

- Improved Performance
 5 lbf, + 25 sec Is
 100 lbf, + 10-15 sec Is

- Longer Life (10X)
- Wider Margins

Technology Development

1984 – Present

LeRC Primary Funding Source
Also JPL, Aerojet IR&D, SBIR Contracts

Technology Application Opportunities

1987 – Proposed CRAF Mission

MM II Propulsion From FRG (MBB)

MBB 400N Engine Inadequate ($I_g = 308$)

JPL Funds Aerojet 400N Ir/Re Demo Engine

$I_g = 323$ sec

Duration = 15,000 sec (Funding Limited)

$T_{wall} = 3500^\circ F$ (800$^\circ F$ Margin)

Program Terminated

- "German Engine To Be Used"
- CRAF Slips, Lower Energy Requirements
Technology Application Status

1990 – MMII Propulsion

- FRG 400N Engine Being Replaced
- Ir/Re A Candidate If Readiness Can Be Demonstrated
- STS Vernier Engines
 - Improved Life and Margin Chambers Being Considered
 - Ir/Re A Strong Candidate

Assessment and Recommendations

• Positive Factors
 • Major Technology Improvement
 • Very Positive Results to Date
 • Concerned Parents (Byers at LeRC, Aerojet)
 • Broad Applicability With Payoff

• Negative Factors
 • Highly Fragmented Market (1's and 2's)
 • Currently Not Need Driven

• Recommendation
 • NASA Recognize and Fill Gap Between Code R Charter and Fragmented User Codes (i.e., Combine Needs)
Recommendations

- Goal - More Effective Use of New Technology
- Approach - Develop Co-Ownership of Technology (Minimize NIH, Ignorance, etc.)
- Technique - Co-Sponsorship of Technology (Code R vs. E, M, etc.)

Recommendations (Cont)

Co-Sponsorship of Technology

- Code R Budget
 - 1/3 Unrestricted "Blue Sky Technology"
 - 2/3 Restricted to Co-Signing, Co-Sponsorship With Other Codes

- Other Codes
 - Given Budget "Set-Aside" Equal to Code R Restricted 2/3, "Set-Aside" Budget Must be Spent in Code R with Co-Signing, Matching Code R Funds
Recommendations (Cont)

- Benefits of "Co-Signed" Technology
 - User Code Has Ownership
 - User Code Has Input on Technology Direction
 - Code R Sees Substantial Budget Enhancement
 - Forces Continuing Technologist/User Dialog

- Drawbacks of Suggested Approach
 - Adds Complexity to Administration
 - Nothing Is as Simple as It Appears