HISTORICAL PROBLEM AREAS - LESSONS LEARNED

EXPENDABLE AND REUSABLE VEHICLE PROPULSION SYSTEMS

STPSS PANEL ON DEVELOPMENT, MANUFACTURING AND CERTIFICATION

June 25 - 29, 1990

Dale A. Fester
Martin Marietta Astronautics Group

Expendable Launch Vehicle Lessons Learned

• Avoid Single String Systems

• Design Must Be Inspectable

• Qual By Flight Usage Not Acceptable
 - No Margin Demonstrated
 - Must Qualify All Components to Needed Level
 - Either Meet Specs or Change Specs

• Use All-Welded Feed Systems
 - Maintenance of Cleanliness During Changeout
 - Scavenging Components as Source of Spares
 - Multiple Checking Wears Things Out
Expendable Launch Vehicle Lessons Learned (concl)

• **Dynamic Envelope Must Accommodate**
 - Stacking of Tolerances
 - Deflections
 - Margin

• **Provide Needed Instrumentation**
 - Must Know Flight Environments for Every System

• **Overall Systems Integrator Needed (Also Applies to Reusable Systems)**
 - Interfaces Between Independent Contractors
 - Integrate 2 to 3 Sigma Parts

• **Concerns**
 - Pogo Suppression
 - Pyrotechnics Checkout
 - Proper Circuit Testing

Upper Stage/Transfer Vehicle Lessons Learned

• **Must Meet Safety Requirements**
 - Difficult for New Vehicle & Almost Impossible for Prior Design ELV-Launched Vehicle
 - Vehicle Really a Space-Operating LV
 - Across Board Two Failure Tolerance May Not Be Reasonable

• **Should Not Let Politics Drive Systems**
Shuttle Systems - Dynamics

• External Tank
 - Propellant Dynamics During ET/Orbiter Separation for RTLS
 - Required Low-g Drop Tower & KC-135 Testing
 - RCS Orbiter Translation & Aerodynamic Forces Sufficient For Separation

• External Tank
 - Had Natural Convection Recirculation System
 - Replaced With Bubbling Helium Up Feedline (Saved 400 lbm)

• RCS Tanks
 - Extensive Ground Development Program (Element, Subsystem, System)
 - Structural Fatigue and Flow Dynamics
 - Vibration Testing
 - Flow Splitting In Multiple Paths
 - Simultaneous Thruster Firing

Shuttle Systems - Reuse

• External Tank
 - One of Best Performers Since Not Reused

• RCS Tanks (OMS Tanks)
 - Specifically Developed for Orbiter
 - Extensive Ground Development Program (Element, Subsystem, System)
 - Qualified for Full 100-Mission Life
 - Included Structural Fatigue & Flow Dynamics Testing
 - Excellent Reuse History
 - N2O4 Flow Decay No Problem
 - Use Proper Purity & Handling
 - Follow Established Processes & Procedures

• Components
 - Many Were Really Expendable Component Designs
 - Others Were Exponential Extrapolations (e.g. SSME)
 - Usually Not Qualified for Full Duration & Operating Environments
 - Result: Rebuild Rather than Reliable Reuse
HIGH PRESSURE OPERATION REDUCES WEIGHT, COST

3000 PSIA

2000 PSIA

1000 PSIA

CHAMBER PRESSURE

ATLAS SATURN V SECOND & THIRD STAGE SATURN V FIRST STAGE SSME

Reusable System Issues & Lessons Learned

- Material Property Database Lacking for Operational Environments
 - Both Fatigue & Flow Life
 - Data Was Extrapolated or Estimated
 - Didn't Understand Reuse & Long Life
 - Verification/Diagnostics Not Available

- Life Unknown
 - Design to Life with Margin to Cover Unknowns
 - Margin Must Include Degradation
 - Debris
 - Wear & Tear
 - Atomic Oxygen
 - Qualify for Full Duration
 - Fleet Leader Concept Has Shortcomings
Summary

• Need Materials Property Database
 Covering Operational Environments

• Need Fault Tree
 - Does Fix Ripple Through System & Cause Problem

• Need Accurate Lessons-Learned Database
 (Must Transfer to Young Engineers)

• Two Major Issues Are Long Life & Reusability
 - Need History & Diagnostics
 - Technology Process Inadequate