"TEST VS. SIMULATION"

BY

CHARLES C. WOOD

JUNE 27, 1990

Space Transportation Systems Division

INTRODUCTION

OVERVIEW: SPACE VEHICLES REQUIRE SIMULATION CAPABILITIES

PROPULSION
STRUCTURES
LOADS
AERODYNAMICS
CONTROL
OTHER

PRESENTATION SCOPE: PROPULSION SIMULATION AND PROPULSION SYSTEM TESTING

PRESENTATION OBJECTIVE/ APPROACH: THROUGH ASSESSMENT OF SIMULATION CAPABILITIES AND REVIEW OF CONTRIBUTIONS FROM PROPULSION SYSTEM TEST PROGRAMS ILLUSTRATE THAT BOTH SIMULATION AND PROPULSION SYSTEM TESTING EACH HAVE IMPORTANT ROLES IN SPACE VEHICLE DEVELOPMENT.
Simulation Capability Assessment
(NO Propulsion System Test)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong Component Verification</td>
<td>Very High</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Instrumentation Failure</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Very High</td>
<td>Very High</td>
<td>Yes</td>
<td>Minor</td>
</tr>
<tr>
<td>Hazardous Fluid Leakage</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
<td>Very High</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>POGO Failure</td>
<td>Moderate</td>
<td>High</td>
<td>Minor</td>
<td>Minor</td>
<td>Can</td>
<td>Moderate</td>
</tr>
<tr>
<td>Thrust Vector Control Failure</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Minor</td>
<td>No</td>
<td>Minor</td>
</tr>
<tr>
<td>Propellant Loading Procedures/Operations</td>
<td>No</td>
<td>No</td>
<td>Very High</td>
<td>High</td>
<td>Yes</td>
<td>No benefit</td>
</tr>
<tr>
<td>Clustered Engine Performance</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
<td>Yes</td>
<td>Minor</td>
</tr>
<tr>
<td>Performance Margin Uncertainty</td>
<td>Minor</td>
<td>High</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>Stored Gas Mass, Loading, Operations</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
<td>Moderate</td>
<td>Yes</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Simulation Capability Assessment
(NO Propulsion System Test)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurization System Performance</td>
<td>Moderate</td>
<td>High</td>
<td>Minor</td>
<td>Minor</td>
<td>*Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>Propellant Mass Uncertainty</td>
<td>Minor</td>
<td>Moderate</td>
<td>Very High</td>
<td>Minor</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Low Level Cutoff Sensor</td>
<td>Minor</td>
<td>Minor</td>
<td>Moderate</td>
<td>No</td>
<td>Yes</td>
<td>No benefit</td>
</tr>
<tr>
<td>Engine/Feed Systems Chill</td>
<td>Minor</td>
<td>Minor</td>
<td>High</td>
<td>Minor</td>
<td>*Yes</td>
<td>Minor</td>
</tr>
<tr>
<td>Tank Insulation</td>
<td>Minor</td>
<td>Minor</td>
<td>High</td>
<td>Minor</td>
<td>*Yes</td>
<td>Minor</td>
</tr>
<tr>
<td>Hardware Thermal Control</td>
<td>Minor</td>
<td>Minor</td>
<td>High</td>
<td>Moderate</td>
<td>*Yes</td>
<td>Minor</td>
</tr>
</tbody>
</table>

* Mission Dependent

1040
ADVANCED VEHICLE SIMULATION CAPABILITY ASSESSMENT

(NO PROPULSION SYSTEM TEST)

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA</th>
<th>SHUTTLE</th>
<th>ADVANCED VEHICLE WITH SMALLER VOLUME, COMMON BULKHEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurization Systems Performance</td>
<td>Moderate/Minor</td>
<td>Much Higher/Higher</td>
</tr>
<tr>
<td>Propellant Mass Uncertainty</td>
<td>Minor/Extremely High</td>
<td>Higher/Same</td>
</tr>
<tr>
<td>Engine/Feed System Chill</td>
<td>Minor/High</td>
<td>Higher/Same</td>
</tr>
<tr>
<td>Tank Insulation</td>
<td>Minor/High</td>
<td>Higher/Same</td>
</tr>
<tr>
<td>Hardware Thermal Control</td>
<td>Minor/High</td>
<td>Higher/Same</td>
</tr>
</tbody>
</table>

Note: Risk relative to shuttle.

SYSTEMS TESTS IDENTIFIED EVENTS

**

<table>
<thead>
<tr>
<th>STAGE</th>
<th>CATASTROPHE</th>
<th>UNWORKABLE</th>
<th>TOTAL PER STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT</td>
<td>PREFLIGHT</td>
<td>FLIGHT</td>
</tr>
<tr>
<td>SHUTTLE</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>S-IC</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S-II</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>S-IVB</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>S-I/IB</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S-IV*</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

* Incomplete

** Includes Categories not included

** EXAMPLE **

** SHUTTLE **

SSME NOZZLE STERN HORN RUPTURE - H₂ DUMPED.
MARGINAL STABILITY CHARACTERISTICS - ET/ORBITER 17° O₂ DISCONNECT.

** SAT V **

F-7 ENGINE TO STAGE BOLTS STRUCTURAL FAILURES
S-II ENGINE THRUST CHAMBER CHILL FAULTY - ENGINE STALL POTENTIAL
MPTA Testing Evaluation

<table>
<thead>
<tr>
<th>Attempted Firings/Aborts</th>
<th>Inerting Purge Usage</th>
<th>Fire Water Usage (External)</th>
<th>Abort Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/9</td>
<td>5K - 12 System</td>
<td>6</td>
<td>Vehicle 2</td>
</tr>
<tr>
<td></td>
<td>30K - 3 System</td>
<td></td>
<td>Engine 8</td>
</tr>
</tbody>
</table>

Saturn V, IB, I Testing Evaluation

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Test Number</th>
<th>Aborts</th>
<th>Test Inadvertently "Cut"</th>
<th>Test Stage Destroyed</th>
<th>Acceptance Tested</th>
<th>Destroyed in Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC "All Systems"</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>S-11 Battleship All Systems</td>
<td>54</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIV B</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>SI/IB</td>
<td>23</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

1042
MPTA Hardware Replacement and Repair

<table>
<thead>
<tr>
<th>MPTA Test Number</th>
<th>Pumps</th>
<th>Major Valves</th>
<th>EJMMDS</th>
<th>Other</th>
<th>LH2 Recirculation System</th>
<th>Valves</th>
<th>Sensors</th>
<th>LH2 Delivery, Feed Line, Sockets, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-002</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-A</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-01</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-023</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-04</td>
<td></td>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-01</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-02</td>
<td>2</td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-01</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-02</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-01</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-02</td>
<td></td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | 20 | 41 | 15 | 20 | 30 | 21 | 40 | 10

Note: Hardware changes made prior to designated test number

"SPECIAL" VEHICLE SIMULATION ISSUES

(Propulsion Related)

SPACE ENVIRONMENT EFFECTS ON:

- Propellant Management
- Propellant Thermal Control
- Tank Pressure Control
- Propellant Dynamics
- Propellant Resupply

1043
"SPECIAL" VEHICLE SIMULATION ISSUES

(TANK PRESSURE CONTROL
- DESTRATIFY PROPELLANT
- SUPERHEATED VAPOR VENTING
- TANK SAFING)

PROPELLANT THERMAL CONTROL
- REUSABLE HPI

PROPELLANT DYNAMICS
- SLOSH
- RESETTLING INCLUDING BAFFLES

PROPELLANT MANAGEMENT
- START BASKET OR TANK
- RCS THRUST
- ENGINE IDLE MODE THRUST

FEED SYSTEM REQUIREMENT
- NPSP
- FLOWRATE
- START-UP SHUTDOWN SURGES

TO ENGINE

"SPECIAL" VEHICLE SIMULATION ISSUES
(Propulsion Related)

Simulation Assessment:

For some issues -

- Necessary technology does not exist
- Demonstration of technology necessary
- Orbital experimental data necessary
- Development stage ground test possible/desirable
- Special development ground facilities required
MPTA Test Schedule

<table>
<thead>
<tr>
<th>DATE SCHEDULE DEVELOPED</th>
<th>ACTUAL TEST SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/10/74</td>
<td></td>
</tr>
<tr>
<td>4/20/79</td>
<td></td>
</tr>
<tr>
<td>2/11/80</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: RL - Resonant/Loading Tests

Conclusions

- Propulsion system testing has prevented catastrophe and mission loss events and launch delays.

- The complexity of interactive characteristics of various subsystems/defies accurate simulation. System testing provides for model basing and enhances simulation.

- Some advanced/"special" vehicles may have equal or greater requirements for propulsion system testing and unusual test facilities/methods may be required.

- A ground propulsion "system test" program is the logical approach for proving design characteristics/methods where flight catastrophic failures or other failures can best be understood and controlled.

- Advancement in technology and technology demonstration in some areas is necessary to satisfy future mission requirements.