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SUMMARY 

The next generation of space propulsion systems 
will be designed to incorporate advanced health moni
toring and nondestructive inspection capabilities. This 
report provides an overview of background andinfor
mation on space propulsion systems at both the 
programmatic and technical levels. Feasibility experi
mental studies indicate that nondestructive evaluation 
tools suoh as ultrasonic, eddy current and x-ray may 
be successfully used to monitor the life limiting 
failure mechanisms of space propulsion systems. 
Encouraging results were obtained for monitoring the 
life limiting failure mechanisms for three space pro
pUlsion systems; the degradation of tungsten arcjet 
and magnetoplasmadynamic electrodes; presence and 
thickness of a spaUable eleotrically conducting molyb
denum films in ion thrusters; and the degradation of 
catalyst in hydrazine thrusters. 

INTRODUCTION 

The next generation of space propUlsion systems 
will be designed to incorporate advanced health moni
toringand nondestructive inspection capabilities. The 
nondestructive evaluation (NDE) community identi
fied several questions that should be addressed. The 
following key questions were raised during the 
April 2-5, 1990 meeting of the Joint Army-Navy
NASA-Air Force (JANNAF) Nondestructive Evalua
tion Subcommittee (NDES): 

( 1) What types of space propUlsion systems are 
being considered? 

(2) What are the principles of operation of these 
systems? 

(3) Who is developing andlor researching space 
propUlsion systems? 

(4) How are inspections and reliability assess
ments performed on the ground and in orbit? 

(5) Do the space propUlsion systems require 
health monitoring? 

(6) What ,are the possible failure modes for these 
systems? 

(7) Have the reliabilities of these space propul
sion systems been determined? 

This report describes teohnological driver mis
sions suppolting space programs that are developing 
chemical, electric and nuclear propulsion systems. 
The types of propulsion systems being considered, 
their principles of operation and known failure modes, 
and the developers are identified. The propUlsion 
systems characteristics are desoribed in sufficient 
detail to identify life-limiting features and opportuni
ties for nondestructive testing and health monitoring. 
However, the reader should be aware that not all 
aspects of the propulsion system that required health 
monitoring and nondestructive evaluation are covered. 
For example, the failure modes of space-based nuclear 
generators or solar panels that supply power in the 
form of electric energy for electric propulsion systems 
are not discussed. Space propulsion systems are at 
various stages of development; therefore, many ques
tions, such as those concerned with reliability and 
failure modes, remain unanswered. Three feasibility 
experiments were performed for evaluating the capa
bilities of NDE tools for monitoring the health of 
chemical and electrical propulsion systems. 

TRANSPORTATION FOR FUTURE SPACE 
SCIENCE MISSIONS 

The actual vehicles and propulsion systems that 
are to be used for future space missions have, in most 
cases, not been determined. The specific propulsion 
system and vehicle being considered for a particular 
mission changes as the mission develops and matures. 
Therefore, these propUlsion systems are not predeter
mined and fixed but are essentially moving targets. 
Before the NDE community can assist and affect the 
development of these advanced propulsion systems, 
they must latch onto these moving targets by under
standing the programmatic thrusts, the path of the 
development, and current status of these systems. 
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Technological challenges have been identified (Ref. 1) 
that are dri ving the development of advanced space 
propulsion systems. The following set of missions 
presents technological challenges that must be 
addressed to meet national space transportation needs: 

(1) Modern expendable launch systems of small 
and medium capacity 

• Payload weight: 20 000 to 50 000 lb low 
Earth orbit (LEO) 

• High reliability 
• Low cost 
• Improved payload-to-lift mass 

(2) Unmanned heavy-lift launch capability to 
LEO 

• Payload weight: greater than 100 000 lb 
• Payload envelop: as unrestricted as feasible 
• Cost: substantial reduction over current 

systems (full or pattia1 reusability will be 
determined by economic tradeoffs) 

(3) Reusable orbital transfer system to raise pay
loads from LEO to higher altitude, sunsynchronous or 
geostationary orbit and to return them 

• Geostationary payload weight: greater than 
20000lb 

• Payload envelope: as unrestricted as 
feasible 

• Robotics: capable of interfacing with 
intelligent front-end for routine servicing 
operations 

(4) Advanced space transportation system to 
replace the space shuttle after the turn of the century 

• LEO payload weight: from 20 000 lb to 
potentially greater than 100 000 lb 

• Payload envelope: as unrestricted as 
feasible 

• Automation and ropotics: used to reduce 
turnaround time and mission costs, with 
special emphasis on self diagnostics 

• Tradeoffs will be made between "Shuttle 
II" and the transatmospheric 

• Aerospace Plane 
(5) High-energy interplanetary transfer system to 

meet objectives of the National Commission on Space 
• High specific impulse, high-thrust, long-life 

propulsion systems to minimize duration of 
trips to Mars (e.g., IO 000 lb (44000 N) 
or greater thrust, 800-sec specific impulse) 

• High specific impulse, long-life propulsion 
systems for planetary scientific missions 
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(e.g., very low thrust, greater than 
IOOO-sec specific impulse) 

• Nuclear-electric or direct thrust engines are 
candidates for these missions 

• Hybrid power and propulsion systems are 
another attractive option 

Some of the specific technology-driver missions 
for space science for the mid-1990's follow: 

The Earth Observing System (EOS) (Fig. 1), 
with three EOS platforms in sun-synchronous orbits, 
is designed to study the Earth's atmosphere. It is be
lieved that automated or robotic servicing will be 
required at the operational altitude of the platform 
during its 20-yr life. 

The Large Deployable Array (LDR) (Fig. 2) is 
an astronomical observatory design that will operate 
in the 30-to IOOO-I..lm range. 

It is expected that maintenance will occur on a 
3-yr schedule. 

During a Mars Sample Return Mission (MSR) 
(Fig. 3), samples at several depths and at widely 
dispersed sites on the Martian surface will be 
obtained and returned to Earth in a pristine condition. 

SPACE EXPLORATION INITIATIVE 

On February 16, 1990, President Bush approved 
policy for the Space Exploration Initiative. Thle goal 
of this initiative (Ref. 2) is to place Americans on 
Mars by the year 2019. The initiative includes both 
lunar and Mars program elements, as well as robotic 
science missions. The near-term focus will be on 
technology development. This will be done by 
searching for new and iimovative approaches and 
technology, and by investing in high-leverage, innova
tive technologies with potential to make major impact 
on cost, schedule, and performance. Mission, con
cept, and analysis studies will be done in parallel with 
the technology development. 

A baseline program architecture will be selected 
after several years of defining two or more ref(~rence 
architectures while developing and demonstrating 
broad technologies (Refs. 3 and 4). NASA will be 
the principle implementing agency, whereas the 
Department of Defense and Department of Energy 
will have major roles in technology development and 
concept definition. Some of the space programs 
discussed below have been absorbed or replaced by 
this Space Exploration Initiative. 
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SPACE PROGRAMS 

T~e National Aeronautic and Space Administra
tion (NASA) has several programs that require ad
vanced, space-based propulsion systems. These pro
pulsion systems may be quite different from those 
used in Earth-to-orbit launch vehicles. Each program 
has a different set of mission requirements that drives 
the development of different space propulsion systems 
(Refs. 5 to 7). For example, the propulsion system 
used to keep the Space Station Freedom (Fig. 4) in 
orbit will be quite different from that used for a 
manned Mars mission. To answer the questions pre
sented earlier, we must examine the NASA space 
programs that have advanced space propulsion needs. 
Each program identifies specific mission requirements 
to be met by the propUlsion system (Ref. 8). 

During the development of a space transporta
tion system, propulsion studies and vehicle studies 
must be iterated until the propUlsion requirements are 
defined for the vehicle. Following the definition of 
the propulsion requirements, mission-focused propul
sionsystem studies identify the specific required 
propulsion system. Depending on the acceptable 
mission scenario, very different propUlsion systems 
and vehicles can result in successful space transfer. 
However, since studies have not matured sufficiently, 
we are unable to specify what propulsion system will 

be used for an actual mission. Mission scenario stud
ies indicate .that advanced, reliable, long life, low 
weight, efficient, high power, and variable~thrust 
space propulsion systems are needed. 

Space propulsion systems may be based on elec
trical, chemical, or nuclear processes (Table I). The 
design, operation, maintainability, reliability, failure 
modes, health monitoring, and mission requirements 
for these propulsion systems will vary considerably. 
Therefore, it is natural to examine each of these sys
tems on the basis of the physical process used to 
produce thrust. Before the types of propulsion sys
tems being considered, developed, or used are 
described, it is appropriate to identify the programs 
that support the development of these propulsion 
systems. 

Chemical Propulsion Program 

Project Pathfinder (Ref. 9) from the NASA 
Office of Aeronautics and Space Technologyl 
(OAST) is a research and technology program 
designed to make new missions in space exploration 
possible and strengthen the technology base in sup
port of the civil space program'. Pathfinder has a 
distant horizon that is reached by building on the 
space shuttle .and space station programs. Pathfinder 
addresses technologies that support a range of space 

TABLE I. - SPACE PROPULSION SYSTEMS 

Engine type Principle of 'Propulsion system 
operation 

Chemical Recomposition Liquid oxygen! 
liquid hydrogen 
(LOXIH2) thruster 

Decomposition Hydrazine thruster 

Electrical Electrostatic Ion thruster 

Electrothermal Resistojet, arcjet, 
mi~rowave thruster 

. . , 

Electromagnetic Magnetoplasmadynamic 

_:'!:,;~ Nuclear Nuclear fission Solid core rocket 
! . Gas core rocket 

INow NASA Office of Aeronautics and E](plor~tion Technology (OAET). 
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missions including: a return to the Moon to build an 
outpost (Fig. 5), piloted .missions to Mars (Fig. 6), 
and continuing exploration of Earth and the other 
planets. 

Project Pathfinder has four major components: 
(1) Exploration Technology, (2) Space Operations, 
(3) Humans-in-Space, and (4) Transfer Vehicle Tech
nology. The Exploration Technology, Space Opera
tions, and Humans-in-Space components include 
planetary rover development, surface power, remote 
sample acquisition, optical communications, autono
mous rendezvous and docking, resource processing, 
in-space assembly and construction, cryogenic fluid 
depots, space nuclear power, extravehicular suits, 
human performance, and closed-loop support systems. 
The Transfer Vehicle Technology is of particular 
interest because it supports transportation to and from 
geostationary Earth orbit, the Moon, Mars, and other 
planets. Specific goals of the Transfer Vehicle com
ponent include significant reduction in the mass that 
missions require for launch into low Earth orbit and 
in transit, as· well as reductions in the time required 
for transit. The key elements of the Transfer Vehicle 
Technology thrust are the chemical transfer propul
sion research, cargo vehicle propulsion development, 
high-energy aerobtaking development (Fig. 7), auton
omous lander development, and fault-tolerant systems. 

.The Transfer Vehicle Technology thrust led to 
the initiation of the NASA OAST Pathfinder 
Chemical Transfer Propulsion Program (Refs. 10 
and 11). This program was initiated to provide 'the 
technology to design and develop highly reliable, 
reusable cryogenic transfer vehicle enginC?s that are 
fault tolerant, and have long lives. They will be 
high-performance, liquid oxygenlIiquid hydrogen 
(LOXt'Hz) expander cycle engines for space-based 
transfer vehicles and Moon and Mars landers. 

Electric PropUlsion Program 

NASA OAST's PropUlsion, Power, and Energy 
Division supports an electric propulsion program. 
(Refs. 12 to 15) for a broad class of missions. Three 
types of electric propUlsion systems are being devel
oped (Refs. 12 to 29): . electrostatic (ion),electro- -
thermal (resistojet, arcjet, microwave, and radiowave),' 
and electromagnetic (magnetoplasmadynaillic, or 
MPD). Resistojets are currently used on geosynchro
nous communications satellites. 
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Nuclear Propulsion Program 

In 1987 the Air .Force Systems Command reini
tiated a Direct Nuclear PropUlsion Program (Refs. I, 
30, and 31). The goals of this program are to 
develop a high-impulse, high-thrust, low-weight pro
pulsion system. This propulsion system would be 
used for orbital transfer vehicles, fast launch intercep-

. tors, intercontinental ballistic missiles, and other mis
sions. In October 1990 NASA's Propulsion, I'ower 
and Energy Division initiated a Nuclear Thermal 
PropUlsion Program. A Nuclear Elect~ic PropUlsion 
Program will begin October 1991. 

PROPULSION SYSTEM CHARACTERISTICS 

The operating characteristics of chemical, electri
cal and· nuclear propulsion systems are quite different 
(Ref. 32). Thrust and specific impulse can be used 
for making general comparisons between propUlsion 
systems. Table II indicates the range of thrust: T 
and specific impulse Ispfor electrical, chemi1cul, and 
nuclear propulsion systems. Thrust is the amount of 
force that a propUlsion system generates. The greater 
the thrust, the greater the acceleration of the vehicle. 
Specific impulse (in seconds) is the thrust (in 
Newtons) that can be obtained from an equivalent . 
rocket which has.a propellant weight flow rate~ (in 
Newtons per second) of unity. (Specific impulse is 
somewhat analogous to the number of miles per gal
lon of fuel for automobiles.) Electric propulsion 
systems have lower thrust capabilities than chc,mical 
or nuclear propulsion systems do. Chemical propul
sion systems yield the highest thrust levels available 
to date. However, direct nuclear propulsion is, 
expected to yield greater thrust levels than che~mical 
propUlsion. The specific impulse for electrical resis
tojets and arc jets are comparable to chemicalll.OXIH2 
and hydrazine propulsion systems. The ion, MPD, 
and nuclear propulsion systems have the highe~st spe
cific impulses, and they can exceed those of other 
systems by an order of magnitude. 

Classes of propulsion systems that will be 
needed to meet mission requirements can be identified 
from table 11 and from preliminary mission pmpulsion 
requirements. High specific impulse engines, such as 
ion, MPD, and nuclear propulsion systems, will be 
needed for interplanetary transfer. Low thrust 
engines, such as resistoJet, arcjet, and hydrazine 
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requirements. High specific impulse engines, such as 
ion, MPD, and nuclear propulsion systems, will be 
needed for interplanetary transfer. Low thrust 
engines, such as resistoJet, arcjet, and hydrazine 



TABLE II. - THRUST AND SPECIFIC IMPULSE 

Engine type Propulsion system Specific impulse, Thrust, 

Chemical LO~ thruster 

Hydrazine thruster 

Electrical Ion thruster 

Resistojet 

Arcjet 

Microwave thruster 

Magnetoplasma-
dynamic (MPD) 

Nuclear Nuclear thermal 
rocket (NTR) 

engines, arenetxled for station keeping and drag 
makeup for orbiting systems and for manned maneu
vering units. High-thrust engines are needed for 
cargo orbit and orbital maneuvering vehicles (Fig. 8). 

BASIC PRINCIPLES OF SPACE 
PROPULSION SYSTEMS 

In this section, each of the candidate propUlsion 
systems is discussed, the operating principles and 
current developmental status of each system are indi
cated, and any system features that limit the useful 
lifetime of these propulsion systems are highlighted. 
The specific researchers that aredeveIoping these 
systems can be identified in the refetences quoted. 

Chemical Propulsion 

Hydrogen/oxygen thruster. - The hydrogen/ 
oxygen (LO~) thruster uses chemical recomposi
tion to produce thrust. Hydrogen and oxygen are 
injected, mixed and ignited in the combustion cham
ber (Fig. 9, Refs. 33 to 40). The ignited mixture 
burns to form hot gaseous reaction products that are 
accel~~ated via the throat and nozzle assembly to 
prodrlce thrust. The RLl OA-3-3A engine, which is' : 
the only upper-stage, LO~ thruster in operation, 
was designed to be expendable. Life-limiting failure 
modes have not been observed for reusable, space-

Isp' T, 
seconds Newtons 

300 to 500 (0.100 to 2222) x 103 

280 to 300 (180 to 360) x 10-3 

3500 (65 to 51O)x 10-3 

290 to 380 (180 to 490) x 10-3 

400 to 1100 (10 to 212)XIO-3 

200 to 600 

1500 to~OOO 50 to 200 

800 to 1200 (333 to lOOO)XI03 

5 

based, gaseous OIH thrusters (Fig. 10), therefore, the 
lifetimes are not known. 

Hydrazine thruster. - The hydrazine thruster is 
based on the principle of chemical decomposition 
(Fig. 11). The propellant, hydrazine, is injected into 
the catalyst bed (Refs. 41 to 46), and the catalyst 
causes the hydrazine to spontaneously decompose into 
NH3, N2, and H:z gases. The gases are exhausted via 
the nozzle to produce thrust. In an augmented hydra
zine thruster (Fig. 12), the gases are heated further 
before exiting. The service life of these thrusters is 
limited by the useful life of the catalyst bed. The 
failure is due to a break down of the catalyst into fine 
particles that are eliminated via the exhaust. 

Electric PropUlsion 

Resistojet. ~ A schematic diagram of a resistojet 
is shown: in Fig. 13. Propellant is heated via a resis
tively heated heat exchanger. The heated propellant 
(l400°C) is expanded and exhausted via the nozzle 
to produce thrust (Refs. 47 to 66). The propellant 
may be introduced to create a vortex flow pattern 
within the heat exchanger. The candidate propellants 
are CO2' (carbon dioxide), CH4 (methane), H2 (hydro
gen), NH3 (ammonia),N2 (nitrogen), steam, and 
N2H4 (hydrazine). State-of-the-art resistojets are 
shown in Figs. 14 to 18. Heater mass, and material 
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surface changes, and grain growth rates affect the life 
of these systems. The thruster Hfe also depends on 
the propellant used. 

Arcjet. - The arcjet (Fig. 19) uses an electric arc' 
to heat the propellant directly. Here the propellant is 
passed between two electrodes while an arc is struck 
and maintained to heat and expand the propellant. 
Then the heated propellant (hydrazine, hydrogen, or 
ammonia) is exhausted through the nozzle to produce 
thmst (Refs. 67 to 89). Several designs using differ
ent materials have been studied (Figs. 20 to 23). 

The lifetime of an arcjet is limited by electrode, 
nozzle, and injector wear. The electrode wear may be 
in the form of spalling due to thermal shocks or local
ized melting from high current densities. Electrode 
wear may also occur when there are chemical incom
patibilities. The arcjet reliability is not known; how
ever, the starting reliability indicates that a large 
number of starts does not affect the steady state 
performance. 

Microwave thmsters. - Microwave and radio
wave thmsters heat the propellant without the use of 
electrodes (Refs. 90 to 96). The microwaves heat the 
propellant (argon, nitrogen, or helium) in the dis
charge chamber (Fig. 24), and the heated propellant 
(2000 K)exits via the nozzle to produce thmst. 
Nozzle melting. and erosion have limited the thruster 
life. 

Ion thruster.- An ion thruster is shown in 
Fig. 25. Xenon or mercury vapor is ionized in an 
ionization chamber, and the positively charged parti
cles are accelerated via the accelerator grid. Then, 
neutralizer injects electrons to neutralize the accelerat
ed, positively charged partiCles. This accelerated, 
neutralized mass produces the thrust (Refs. 97 
to 124). The magnets, the screen, and accelerator 
grids make up the ion optic system (Figs. 26 and 27) 
that collimates the accelerated particles. The typical 
path that the ions follow is also shown in Fig. 25. 
Unexpected extinctions of the discharge are due to 
thermal design and lack of ignition control. Sputter 
erosion of the discharge chamber, screen, baffle, and 
cathode limits the life of ion thmsters. Metallic 
flakes, which form as a result of this sputter erosion, 
may spall and short out the ion optics by bridging the 
gap between the screen and accelerator grids. The 

. ; 
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cathode tubes also oxidize and deform during thruster 
operation. 

Magnetoplasmadynamic (MPD) thruster. - The 
magnetoplasmadynamic thruster (Figs. 28 to 31) looks 
similar to the arcjet; however, the principles of opera
tion are quite different. The MPD thruster is based 
on electromagnetic principle as opposed to the arcjet, 
which is based on electrothermal principle. The pro
pellant is ionized by the current flow between the 
anode and cathode. This current flow induces a mag
netic field that causes expansion of the arc and accel
eration of the ionized gas to produce thrust (Refs. 125 
to 136). The propellants used are xenon, argon, 
hydrogen, helium, ammonia, neon, nitrogen, and 
lithium. The lifetimes Of these propulsion sysf:l~ms are 

. limited by erosion of the cathode and insulator. 

Nuclear Propulsion 

Two types of nuclear propulsion systems are 
being developed: a nuclear thermal propulsion (NTP) 
system and a nuclear electdc propulsion (NEP) sys
tem (Refs. 102 and 136). The NEP system use~s a 
nuclear reactor to provided electric power to an elec
tric propUlsion system (e.g., an MPD or ion thruster). 
The NTP systems may use either a solid core reactor 
(SCR) or a gas core reactor (GCR). 

Solid core nuclear thermal rocket. - A solid core 
nuclear propulsion system (Refs. 137 to 146) uses 
fissioning solid lInlni111TI carbide palticles to heat 
hydroge'n (Figs. 32 to 36). The hydrogen is heated as 
it flow~ down the coolant tubes of the fuel elements. 
Then it is accelerated· via the nozzle to prodllce~ thrust. 
Both fuel and support element/! are used in forming 
the SCR. The rate of reaction in the SCR is con
trolled by the graphite matrix supporting the uranium 
carbide particles that make up the fuel elements and 
by ZrH moderators contained in the support elements. 
Corrosion of the graphite moderatorlheat exchanger 
by hot hydrogen limits the life of the SCR propulsion 
systems. 

Gas core nuclear thermal rocket. :-. Gas core 
nuclear propulsion systems (Refs. 147 to 152) use 
fissioning uranium gas/plasma to heat hydrogen. Two. 
types of gas core (open- and closed-cycle) rockets are 
being considered. An open cycle, porous wall, . 

surface changes, and grain growth rates affect the life 
of these systems. The thruster Hfe also depends on 
the propellant used. 

Arcjet. - The arcjet (Fig. 19) uses an electric arc' 
to heat the propellant directly. Here the propellant is 
passed between two electrodes while an arc is struck 
and maintained to heat and expand the propellant. 
Then the heated propellant (hydrazine, hydrogen, or 
ammonia) is exhausted through the nozzle to produce 
thmst (Refs. 67 to 89). Several designs using differ
ent materials have been studied (Figs. 20 to 23). 

The lifetime of an arcjet is limited by electrode, 
nozzle, and injector wear. The electrode wear may be 
in the form of spalling due to thermal shocks or local
ized melting from high current densities. Electrode 
wear may also occur when there are chemical incom
patibilities. The arcjet reliability is not known; how
ever, the starting reliability indicates that a large 
number of starts does not affect the steady state 
performance. 

Microwave thmsters. - Microwave and radio
wave thmsters heat the propellant without the use of 
electrodes (Refs. 90 to 96). The microwaves heat the 
propellant (argon, nitrogen, or helium) in the dis
charge chamber (Fig. 24), and the heated propellant 
(2000 K)exits via the nozzle to produce thmst. 
Nozzle melting. and erosion have limited the thruster 
life. 

Ion thruster.- An ion thruster is shown in 
Fig. 25. Xenon or mercury vapor is ionized in an 
ionization chamber, and the positively charged parti
cles are accelerated via the accelerator grid. Then, 
neutralizer injects electrons to neutralize the accelerat
ed, positively charged partiCles. This accelerated, 
neutralized mass produces the thrust (Refs. 97 
to 124). The magnets, the screen, and accelerator 
grids make up the ion optic system (Figs. 26 and 27) 
that collimates the accelerated particles. The typical 
path that the ions follow is also shown in Fig. 25. 
Unexpected extinctions of the discharge are due to 
thermal design and lack of ignition control. Sputter 
erosion of the discharge chamber, screen, baffle, and 
cathode limits the life of ion thmsters. Metallic 
flakes, which form as a result of this sputter erosion, 
may spall and short out the ion optics by bridging the 
gap between the screen and accelerator grids. The 

. ; 

6 

cathode tubes also oxidize and deform during thruster 
operation. 

Magnetoplasmadynamic (MPD) thruster. - The 
magnetoplasmadynamic thruster (Figs. 28 to 31) looks 
similar to the arcjet; however, the principles of opera
tion are quite different. The MPD thruster is based 
on electromagnetic principle as opposed to the arcjet, 
which is based on electrothermal principle. The pro
pellant is ionized by the current flow between the 
anode and cathode. This current flow induces a mag
netic field that causes expansion of the arc and accel
eration of the ionized gas to produce thrust (Refs. 125 
to 136). The propellants used are xenon, argon, 
hydrogen, helium, ammonia, neon, nitrogen, and 
lithium. The lifetimes Of these propulsion sysf:l~ms are 

. limited by erosion of the cathode and insulator. 

Nuclear Propulsion 

Two types of nuclear propulsion systems are 
being developed: a nuclear thermal propulsion (NTP) 
system and a nuclear electdc propulsion (NEP) sys
tem (Refs. 102 and 136). The NEP system use~s a 
nuclear reactor to provided electric power to an elec
tric propUlsion system (e.g., an MPD or ion thruster). 
The NTP systems may use either a solid core reactor 
(SCR) or a gas core reactor (GCR). 

Solid core nuclear thermal rocket. - A solid core 
nuclear propulsion system (Refs. 137 to 146) uses 
fissioning solid lInlni111TI carbide palticles to heat 
hydroge'n (Figs. 32 to 36). The hydrogen is heated as 
it flow~ down the coolant tubes of the fuel elements. 
Then it is accelerated· via the nozzle to prodllce~ thrust. 
Both fuel and support element/! are used in forming 
the SCR. The rate of reaction in the SCR is con
trolled by the graphite matrix supporting the uranium 
carbide particles that make up the fuel elements and 
by ZrH moderators contained in the support elements. 
Corrosion of the graphite moderatorlheat exchanger 
by hot hydrogen limits the life of the SCR propulsion 
systems. 

Gas core nuclear thermal rocket. :-. Gas core 
nuclear propulsion systems (Refs. 147 to 152) use 
fissioning uranium gas/plasma to heat hydrogen. Two. 
types of gas core (open- and closed-cycle) rockets are 
being considered. An open cycle, porous wall, . 



spherical gas core rocket engine uses the nuclear 
thermal energy of the fission gas/plasma to heat an 
envelope of hydrogen propellant (Fig. 37). The 
hydrogen expands and flows out of the nozzle to pro
duce thrust. Both uranium and hydrogen are 
exhausted in this open-cycle system. A closed-cycle 
nuclear light bulb (NLB) rocket heats hydrogen that is 
behind thermally transparent and cooled SiO or BeO 
walls (Figs. 38 to 40). This arrangement isolates the 
uraniufu fuel and fission products from the propellant 
exhaust. 

HEALTH MONITORING SCHEME FOR SPACE 
PROPULSION SYSTEMS 

There are three levels of monitoring (Fig. 41) 
that needs to be done for successful health monitoring 
of space propulsion systems (Ref. 153.). At the first 
level, system wide global monitoring is done continu
ously with a limited amount of sensors. This level of 
monitoring is used to identify global changes in the 
response of the propulsion system. If a significant 
variation is identified or flagged then additional sen
sors are activated for Level 2 monitoring. Here anal
ysis of the sensors response is used to identify areas 
that require local inspection (Level 3). Specialized 
tools are then used to fully characterize the suspect 
area. These tools may be operated manually or 
remotely and they may be deployable. 

A list of nondestructive evaluation tools that 
may be used at any monitoring level is sh()wn in 
Fig. 42. The variable that each of these tools can 
monitor is also shown. The most common NDE tools 
are acoustic emission, borescope, computed tomogra
phy, eddy current, holography, sherography, thermog
raphy, ultrasonic and x-ray radiography. Many of 
these tools can monitor the same variable. For exam
ple, when looking for cracks, acoustic emissions, 
borescope, computed tomography, eddy current, strain 
gauge, ultrasonic and x-ray radiography can be used 
successfully. In practice, however, only one or two 
of these techniques will be used. A good example is 
a long narrow width crack in a nonconducting 
ceramic. Eddy current, x-ray, borescope, and com
puted tomography techniques will be of limited value. 
Ultrasonic evaluation will yield superior results 
because it is sensitive to the acoustic impedence dif
ference of the crack boundary. 

Figure 42 also indicates that anyone tool is 
sensitive to several variables. In patticular, ultra-
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sound is sensitive to the presence of cracks, delamina
tions, stress, porosity, thickness, grain size, recrystal
lization, interlaminar and fiber-to-matrix bond quality. 
Again, in practice only a few of these variables will 
be affected. For example, a monolithic material 
mechanical cycled at low temperatures (a temperature 
below grain growth or recrystallization) should not 
exhibit porosity, grain size, recrystallization, delamin
ations, interlaminar and fiber-to-matrix bond quality 
variations. However, residual stress and cracking will 
be expected. 

In general, the expected failure modes will guide 
the selection of the appropriate NDE tools. 

APPLICATIONS OF NDE FOR SPACE 
PROPULSION SYSTEMS 

Ultrasonic Monitoring Electrode Shape for Arcjet 
and Magnetoplasmadynamic Thrusters 

It has been shown previously that the life of the 
arcjet and magnetoplasmadynamic thrusters is limited 
by the degradation of the electrodes. The tips of 
these electrodes tend to melt at the high current densi
ties used. In a feasibility study an ultrasonic signal is 
used to monitor the condition of the electrode tip. 
The experimental setup is shown in Fig. 43. An 
ultrasonic signal is sent down the length of the elec
trode to interact with the tip. The signal echoes off 
of the tip and returns to the same ultrasonic trans
ducer. In an effort to simulate electrode wear due to 
melting, the tip is ground away while being moni
tored with ultrasonics. (Note: It has been observed 
in a separate study that there is a slight change in the 
ultrasonic signal due to increased electrode tempera
tures up to 2100 °C.) The damaged area of the tip is 
characterized by the diameter D of the ground region 
(Fig. 43). An increase in damage corresponds to an 
increase in the diameter D of the ground region. 

The ultrasonic amplitude and change in transit 
time are shown in Fig. 44. A typical wave form is 
also shown. The amplitude increases while the transit 
time decreases as diameter of the damage zone 
increases. The increase in amplitude is due to the 
decreased focal scattering at the tip. That is the 
ultrasound is now being backscattered in a planar 
manner due to the flatness of the ground region. The 
decrease in transit time is due to the decreased 
length of the electrode. The length of the electrode 
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(12.7 cm) decreased by 70 /Jm or about 
0.0006 percent. 

Eddy Current Monitoring of Molybdenum Film 
Thickness for Ion Propulsion Systems 

The ion propulsion systems life is limited by the 
spalling of metallic flakes that shOlt out the electric 
potential between the accelerating and screen grids. 
The growth, thickness and presence of these flakes 
may be monitored with eddy cunents. As a demon
stration, a molybdenum wedge shaped slab was 
formed on a glass substrate (Fig. 45). A 3 MHz eddy 
current probe was scanned across the substrate side as 
shown. The eddy cunent response increases with 
increasing thickness. Here, the molybdenum thick
ness varied from 150 to 1000 /Jm. The increase in 
the eddy current for increased thickness is due to the 
increased loading that the additional molybdenum 
mass puts on the probe. The frequency of the eddy 
currents can be increased to be sensitive for thinner 
films a few 100 A thick. 

X-ray or Radiation Monitoring of Catalyst 
Loss for Hydrazine Thruster 

The life of hydrazine thrusters is limited by loss 
of the catalyst material during use. The catalyst bed 
is made up of particles that have been coated with a 
catalyst material. Representative materials are alumi
num oxide particles coated with platinum. The 
weight percent of the catalyst ranges from about 0.3 
to 50.0 depending on the materials used. 

An aluminum oxide pellet (Fig. 46) was formed 
by mechanically pressing aluminum oxide - platinum 
power mixtures. One half of the pellet mold was 
loaded with 10 percent weight of platinum and the 
other half was loaded with 15 percent weight plati
num. This all'angement represents a hydrazine 
thruster that has lost approximately one-third of its 
catalyzing material. 

An x-ray radiograph clearly shows the variations 
in the amount of the catalyst present. The left side 
(the lighter half) of the pellet corresponds to the low
er platinum catalyst weight percent. This intensity of 
the x-ray is sensitive to both the x-ray absorption 
properties and the total mass. Here the decreased 
loading of 5 percent weight of the catalyst shows a 
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dramatic decrease in absorption of x-rays. This type 
of monitoring may also be done by making inltensity 
measurements at a point at a fixed distance from a 
radioactive or x-ray source. That is, x-ray imaging is 
not required. 

DISCUSSION AND SUMMARY 

There are many space propulsion systemH that 
are being developed. The principles of operation vary 
considerably between systems. Each system has its 
own particular types of failure modes. However, it is 
clear that material losses and material microstructural 
changes are the dominant mechanisms that affect the 
lifetimes of these advanced systems. These material 
variations are identified as mass losses due to electri
cal sputter erosion, oxidation or chemical erosion, and 
microstructural changes such as melting and grain 
growth. Feasibility experimental studies indicate that 
nondestructive evaluation tools such as ultrasonic, 
eddy current and x-ray may be successfully used to 
monitor the life limiting mechanisms of space propul
sion systems. Encouraging results were obtained for 
monitoring the ]ife limiting failure mechanisms for 
three space propulsion systems; the degradation of 
tungsten arcjet and magnetoplasmadynamic elec
trodes; presence and thickness of a spallable electri
cally conducting molybdenum films in ion thrusters; 
and the degradation of catalyst in hydrazine thrusters. 

The difference between past propulsion systems 
and the next generation of space propulsion systems 
will be the incorporation of health monitoring strate
gies. Lifetime estimates have been obtained for some 
of these space propulsion systems. However, non
intrusive methods for. monitoring and verifying the 
propulsion system's "age" and health need to be 
developed. In addition, the reliabilities for most of 
these propulsion systems remain in question, and 
methods of determining these reliabilities at a reason
able cost have not been developed. 

These space-based propUlsion systems provide a 
rich field of OPPOltUnity for nondestructive evaluation 
and health monitoring researchers. Nondestruc;tive 
evaluation and health monitoring researchers will 
impact the development of space propulsion systems 
as they become active in the development of future 
directions. 

(12.7 cm) decreased by 70 /Jm or about 
0.0006 percent. 

Eddy Current Monitoring of Molybdenum Film 
Thickness for Ion Propulsion Systems 

The ion propulsion systems life is limited by the 
spalling of metallic flakes that shOlt out the electric 
potential between the accelerating and screen grids. 
The growth, thickness and presence of these flakes 
may be monitored with eddy cunents. As a demon
stration, a molybdenum wedge shaped slab was 
formed on a glass substrate (Fig. 45). A 3 MHz eddy 
current probe was scanned across the substrate side as 
shown. The eddy cunent response increases with 
increasing thickness. Here, the molybdenum thick
ness varied from 150 to 1000 /Jm. The increase in 
the eddy current for increased thickness is due to the 
increased loading that the additional molybdenum 
mass puts on the probe. The frequency of the eddy 
currents can be increased to be sensitive for thinner 
films a few 100 A thick. 

X-ray or Radiation Monitoring of Catalyst 
Loss for Hydrazine Thruster 

The life of hydrazine thrusters is limited by loss 
of the catalyst material during use. The catalyst bed 
is made up of particles that have been coated with a 
catalyst material. Representative materials are alumi
num oxide particles coated with platinum. The 
weight percent of the catalyst ranges from about 0.3 
to 50.0 depending on the materials used. 

An aluminum oxide pellet (Fig. 46) was formed 
by mechanically pressing aluminum oxide - platinum 
power mixtures. One half of the pellet mold was 
loaded with 10 percent weight of platinum and the 
other half was loaded with 15 percent weight plati
num. This all'angement represents a hydrazine 
thruster that has lost approximately one-third of its 
catalyzing material. 

An x-ray radiograph clearly shows the variations 
in the amount of the catalyst present. The left side 
(the lighter half) of the pellet corresponds to the low
er platinum catalyst weight percent. This intensity of 
the x-ray is sensitive to both the x-ray absorption 
properties and the total mass. Here the decreased 
loading of 5 percent weight of the catalyst shows a 
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dramatic decrease in absorption of x-rays. This type 
of monitoring may also be done by making inltensity 
measurements at a point at a fixed distance from a 
radioactive or x-ray source. That is, x-ray imaging is 
not required. 

DISCUSSION AND SUMMARY 

There are many space propulsion systemH that 
are being developed. The principles of operation vary 
considerably between systems. Each system has its 
own particular types of failure modes. However, it is 
clear that material losses and material microstructural 
changes are the dominant mechanisms that affect the 
lifetimes of these advanced systems. These material 
variations are identified as mass losses due to electri
cal sputter erosion, oxidation or chemical erosion, and 
microstructural changes such as melting and grain 
growth. Feasibility experimental studies indicate that 
nondestructive evaluation tools such as ultrasonic, 
eddy current and x-ray may be successfully used to 
monitor the life limiting mechanisms of space propul
sion systems. Encouraging results were obtained for 
monitoring the ]ife limiting failure mechanisms for 
three space propulsion systems; the degradation of 
tungsten arcjet and magnetoplasmadynamic elec
trodes; presence and thickness of a spallable electri
cally conducting molybdenum films in ion thrusters; 
and the degradation of catalyst in hydrazine thrusters. 

The difference between past propulsion systems 
and the next generation of space propulsion systems 
will be the incorporation of health monitoring strate
gies. Lifetime estimates have been obtained for some 
of these space propulsion systems. However, non
intrusive methods for. monitoring and verifying the 
propulsion system's "age" and health need to be 
developed. In addition, the reliabilities for most of 
these propulsion systems remain in question, and 
methods of determining these reliabilities at a reason
able cost have not been developed. 

These space-based propUlsion systems provide a 
rich field of OPPOltUnity for nondestructive evaluation 
and health monitoring researchers. Nondestruc;tive 
evaluation and health monitoring researchers will 
impact the development of space propulsion systems 
as they become active in the development of future 
directions. 
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FIGURE 3. - ARTI ST'S CONCE PT OF TIlE LANDER, ROVER, AND COMOINED SAMPLE RETURN SYSTEM AND LAUNCHER ON lHE SURFACE OF MARS . 

19 

FIGURE 3. - ARTI ST'S CONCE PT OF TIlE LANDER, ROVER, AND COMOINED SAMPLE RETURN SYSTEM AND LAUNCHER ON lHE SURFACE OF MARS . 

19 



FIGURE q. - SPACE STATION FREEDOM. 

20 

FIGURE q. - SPACE STATION FREEDOM. 

20 



FIGURE 5. - ~RII S T' S CONCEPT OF LUN~R n~SE. 

FIGURE G. - ARTIST'S CONCEPT OF MARS MI SS ION . 

21 

FIGURE 5. - ~RII S T' S CONCEPT OF LUN~R n~SE. 

FIGURE G. - ARTIST'S CONCEPT OF MARS MI SS ION . 

21 



FIGURE 7. - ARTI ST'S CONCEPT OF ACROBRAKING VCHICLE. 

22 

FIGURE 7. - ARTI ST'S CONCEPT OF ACROBRAKING VCHICLE. 

22 
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FIGURE 31 . - 100-kW SUBSCALE MAGNETOPLASMADYNAMI C THRUSrER . 
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FIGURE 33 . - NERVA "FLIGHT ENGINE" CONFIGURATION. 
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