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1 Introduction

This is the semi-annual status report for NASA grant NAG2-513, "The Sym-

bolic Computation and Automated Analysis of Trajectories." This report

covers the period July 1, 1990 through December 31, 1990. The research

supported by this grant is broadly concerned with the symbolic computa-

tion and mixed numeric-symbolic computation of trajectories of dynamical

systems, especially control systems. The NASA Technical Officer for this

grant is Dr. George Meyer, NASA Ames Research Center, Mail Stop 210-3,

Moffet Field, California, 94035. In Section 2, we review the progress dur-

ing the past six months. Section 3 contains bibliographic references for the

articles related to this grant that were completed during this period.

2 Review of Work During Report Period

2.1 Symbolic computation of vector fields and analytic algo-
rithms

This section is the introduction to [1], with a few minor modifications.

During the report period, we further developed the algorithms in [7] and

[10] for rewriting expressions involving differential operators. The differen-

tial operators that we have in mind arise in the local analysis of nonlinear

control systems. During this period, we extended these algorithms in three
different directions:

, We generalize the algorithms so that they apply to differential opera-

tors on groups. This generalization is important for applications. For

example, the nonlinear system describing a robotic joint or a satellite

evolves on the group G = SO(3) of spatial rotations. The local study

of such systems requires the computation of expressions consisting of

differential operators on G.

, We develop the data structures and algorithms to compute symboli-

cally the action of differential operators on functions. Again, this is

crucial for applications. For example, it is crucial to our approach

for deriving the conditions for a numerical algorithm to remain con-

strained to a group. In other words, if xn+t = T(xn) is the update

rule for a numerical algorithm evolving on a group G, we would like

to choose T so that xn E G implies xn+l E G.



3. We showed that the algebraic formalism uderlying computations of

this type can be given the structure of a quantum group.

For a further discussion of applications of these algorithms, see [4] and [6]

and the references given there.
Here is the

Setup.

1.

2.

Let k denote either the real or complex numbers.

Let G denote a finite dimensional Lie group over k, g denote its Lie

algebra, and Y1, ..., YN a basis for g of left-invariant vector fields.

3. Let R = C°°(G) denote the algebra of smooth functions on G taking
values in k.

4. Fix M derivations of R of the form

N

= ajY,, a t E R, j=I,...,M, (1)
/J=l

and let A denote the free associative algebra k<F1, ..., FM> of dif-

ferential operators generated by F1,..., FM, with coefficients from
k.

We are concerned with the following

Problem. Given a differential operator p E A and a function f E R,

substitute the Equations (1) and compute p • f using as few operations as

possible. This problem is interesting since in many cases cancellations take

place.

Example 1. Let G = R N denote the abelian group,

#

Y,-= j= I,...,N,

the (leftinvariant)coordinatevectorfields,and FI, F2, F3 threefixedvec-

tor fieldsdefinedin terms of the Y_,via Equations (1). Then the naive

substitution of (1) and simplification of p-f, where

p = F3F2F1 - F3FiF2 - F2F1F3 + F_F2F3 _ A, I e R,

yields 24N 3 terms, while more specialized algorithms need only compute the

6N 3 terms which don't cancel. These types of examples are considered in

[7] and [10].

¢
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Example 2. Consider the local analysis of a nonlinear system of the form

z(t)= F(z(0), z(0)= _o _ G, (2)

where
M

j=l

In practice, the uj are constants, functions of time, or perturbation parame-

ters. The study of this system typically involves the computations of various

series in the algebra A of differential operators. For example, the local flow

of the system is determined by the Taylor series

h2F2 h 3
exp hF = 1 + hF + 2!- + +... e A[[h]].

An alternative to computing higher derivatives F k is to choose constants

ci, eij, i = 1, ..., k, j < i, so that the expression

where

exp hck_'k•••exp hclF'I,

N

#--l

N

N

a"(x°)Y. _ g

atJ(exp(hc211_i).z°)Y_, E g

aU(exp(hc32F2)' exp(hc31/_I)"z°)Yu E g,

is equal to exp hF to order k. Notice that the left invariant vector fields Fj

arise by "freezing the coefficients" of F at various points along its flow.

Expanding these expressions around the common base point z° E G

yields many terms, which must cancel in the end if the algorithm is going

to approximate the flow of the underlying nonlinear system. The action

of the differential operators F'j on the coefficient functions a_ must also be

computed. Notice, that unlike Example 1, the Yu here do not commute.

The computations in both examples are easily kept track of by using

finite rooted trees, labeled with the symbols F1, ..., FM. It turns out the



the vector space, with basis the set of such trees, has an algebraic structure

B which is crucial to efficiently organizing the computation. The advantage

of working with the trees B is that many terms which cancel in the end need

not be computed. See [6] for an expository treatment of this idea. The key

observation required for this work is that it is possible to define an action of

the algebra B of finite rooted trees, labeled with F1, ..., FM, on the ring of

functions R which enjoys essentially all the properties of the familiar action

of the algebra A of differential operators generated by F1, ..., FM on R. It

turns out that B is a Itopf algebra, just as A is, and that both actions give

R the structure of what is called an H-module algebra. It also turns out

that it is possible to define an alternative structure on both A and B which

gives these algebras the structure of a quantum group.

2.2 Very Large Databases of Control Trajectories

During the reporting period, we completed an initial design of the system

architecture for software to analyze nonlinear control systems using database

computing, as described in [3] and [5]. The system will support a variety of

objects suitable for analyzing nonlinear systems, including

1. trajectory segment

2. state

3. and control system.

The software will consist of the following components:

1. a storage manager responsible for managing the storage, retrieval and

update of the objects supported by the system;

2. an object manager responsible for keeping track of the various objects

• recognized by the system and their relations;

. a query manager responsible for parsing queries and generating the

necessary code for the object manager so that the appropriate objects
can be retrieved.

We expect software providing a "proof of concept" for this approach to be

completed sometime during the coming _ear.



3 Articles Written During the Reporting Period

In this section we include the title pages of the articles resulting from the

research supported by this grant during the reporting period.



Using Trees To Compute Approximate Solutions to

Ordinary Differential Equations Exactly

October, 1990

Abstract

In this paper, we review some recent work relating families of trees

to symbolic algorithms for the exact computation of series which ap-

proximate solutions of ordinary differential equations. It turns out that

the vector space whose basis is the set of finite, rooted trees carries a
natural multiplication related to the composition of differential opera-

tors, making the space of trees an algebra. This algebraic structure can
be exploited to yield a variety of algorithms for manipulating vector

fields and the series and algebras they generate.

Acknowledgments

Robert Grossman was supported in part by NASA Grant NAG 2-513 and

by NSF Grant DMS-8904740.

Status

Computer Algebra and Differential Equations, M. F. Singer, editor, Aca-

demic Press, New York, 1991, in press.
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Bialgebra deformations of certain universal

enveloping algebras

Robert Grossman, University of Illinois at Chicago

Dave Radford, University of Illinois at Chicago

October, 1990

Abstract

Let A denote a bialgebra over a field k and let At = A[[t]] denote

the ring of formal power series with coefficients in A. Assume that A

is a free algebra over k with a basis of primitives. We give a simple

construction which makes At a bialgebra deformation of A. Usually At
is neither commutative nor cocommutative. This construction yields

deformations of bialgebras associated with families of trees.

Acknowledgments

Robert Grossman was supported in part by NASA Grant NAG 2-513 and

by NSF Grant DMS-8904740.

Status

Submitted for publication.



Computations involving differential operators and

their actions on functions

Peter Crouch, Arizona State University

Robert Grossman, University of Illinois at Chicago

Richard G. Laxson, University of Illinois at Chicago

December, 1990

Abstract

In this paper, we further develop the algorithms described in the pa-
per "The symbolic computation of derivations using labeled trees," R.
Grossman and R. Larson, 3. of Symbolic Computation, to appear, for
rewriting expressions involving differential operators. The differential
operators that we have in mind arise in the local analysis of nonlinear
dynamical systems. In this work, we extend these algorithms in two
different directions: We generalize the algorithms so that they apply to
differential operators on groups and we develop the data structures and
algorithms to compute symbolically the action of differential operators
on functions. Both of these generalizations are needed for applications.
This paper is preliminary: a final paper containing proofs and a further
analysis of the algorithm will appear elsewhere.

Acknowledgments

Peter Crouch was supported in part by the NSF grant INT-8914643. Robert

Grossman was supported in part by NASA Grant NAG 2-513 and by NSF

Grant DMS-8904740. Richard Larson was supported by NSF Grant DMS-
8904740.

Status

Proceedings of 1991 International Symposium on Symbolic and Algebraic

Computation, ACM, 1991, in press.
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Using Trees To Compute Appro:dmate Solutions to

Ordinary Differential Equations Exactly

Robert Grossman"

L'niversity of Illinois at Chicago

October, 1990

Abstract

[I1 this paper, we review some recent work relating farmlies of trees

to symbolic algorithms for the exact computation of series which ap-

proximate solutions of ordinary differential equations. It turns out that

the vector space whose basis is the set of finite, rooted trees carries a
natural multiplication related to the composition of differential opera-

tots, making the space of trees an algebra. This algebraic structure can

be exploited to yield a variety of algorithms for manipulating vector

fields and the series and algebras they generate.

1 Introduction

In this paper, we review some recent work relating families of trees to sym-

bolic algorithms for the exact computation of series which approximate so-

lutions of ordinary differential equations. It turns out that the vector space

whose b_is is the set of finite, rooted trees carries a natural multiplication

related to the composition of differential operators, making the space of trees

an algebra. This algebraic structure can be exploited to yield a variety of

algorithms for manipulating vector fields and the series and algebras they

generate, j

In Section 3, we introduce and explore the algebraic structure of trees.

Section 4 describes a simplification algorithm for the rewriting of symbolic

*Laboratory for Advanced Computing, Department of Mathematics, Statistics, and
Computer Science, Mail Code 249, University of Illinois, Chicago IL 60680, gross-
man,_uicbert.eecs.uic.eda. This research was supported in part by the grants NASA
NAG2-513 and NSF DMS-8904740.
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expressionsinvolvingvector fields. Section5 describesan algorithm for
generatingexplicitlyintegrableflowsassociatedwith nilpotentLiealgebras.
Section6 exploits the relation between Taylor series and trees to study a

class of intrinsic numerical integrators. We begin in Section 2 with some

background.

The results surveyed here are the work of a variety of mathematicians:

[ especially want to mention the contributions of my collaborators Peter

Crouch, Matthew Grayson and Richard Larson. The work on algebras of

trees and its applications to symbolic computation is joint work with Richard

Larson. All of the algorithms described here rest upon this foundation. "Fhe

work on explicitly integrable flows and nilpotent Lie algebras is joint work

with Matthew Grayson. The work on numerical algorithms evolving on

groups is joint work with Peter Crouch.

2 Background

Consider a differential equation

i(t) = E,(x(t)) + u &(x(t)), _:(0) = zo E p,N (1)

where El and E2 are vector fields and u is a parameter. In applications,

u will be either a small perturbation u = e, a control t ---* u(t), or simply

the constant u - I. Unless the vector fields £'1 and E2 are very special, no

algorithm is known which will return the general solution to the system in

closed form. Our objective is to find efficient algorithms to compute various

approximate solutions of the differential equation exactly using symbolic

computation.

Although the impact of symbolic computation in this area is recent, the

connection between the existence of closed form solutions and the approxi-

mation of general solutions is a traditional theme, dating back to at least the

the nineteenth century. One can distinguish two approaches. One, cham-

pioned by Lie, is based upon algebra and geometry and concerns us here;

the other, championed by Weirstrass and Poincar4, is based upon complex

function theory.

Consider a group of transformations acting on RJ v of the form

dp, : a:_ = f,(Xl,... , ZN; Sl,..., St), fl = 1,..., N,

with the property that the group permutes the solutions of the nonlinear

system (1). Lie asked the question [51] and [52], How can information about



the tranformatzon9roupbeusedto help integrate the differentzal equataon._

To answer this question, Lie introduced the infinitesimal 9enerators of the

group

N a]'_, g9 1 <k<_r
= ask Oz.' -

and showed that the .4_ satisfy

k=l

where [., 1 is the commutator, or Lie bracket,

[Ai,.'t_] = A,Aj - A:Ai,

and the c,_3 are constants. For example, Lie showed that if there is a one

parameter group of transformations permuting the solutions of a nonlinear

system in the plane (x,t), then the integrating factor for the equation may

be read off from the infinitesimal generator.

Since Lie's time, this basic question has contributed to the development

of a number of different fields:

• The vector fields Aj generate a filtered Lie algebra, which is usually

infinite dimensional, and is the infinitesimal version of the continu-

ous pseudogroup of transformations generated by the _,. Prior work

has focused on the geometry and structure theory of these algebras;

important contributions have been made by Guillemin and Sternberg

[37] and [36], and llermann [52], [53], building upon the earlier work

of Caftan, Ehresmann and Spencer.

• Formal sums of iterated powers of vector fields, or Lie series, have

been developed by GrSbner [25], [26] and Knapp and Wanner [46],

[47] into an operational calculus and used to approximate the solu-

tions of differential equations. Lie transform methods have also been

used in perturbation theory by Rand [59] and Meyer [54], in celestial

mechanics by Deprit [18]', and in particle physics by Dragt [20].

• Explicit series computations of solutions of differential equations have

a number of interesting connections with combinatorics. Chen [13]

makes uses of the shuffle product, Joyal [45], Labelle [49], Leroux [50],

and Viennot [71] employ trees and species, while Rota, Krahaner and

Odlyzko [62] exploit the umbral calculus.



• Ritt and Kolchin, building upon earlier work of Picard and Vessiot,

developed the field of differential Galois theory. The goal is to obtain a

theory describing the solvability of differential equations analogous to

Galois' theory describing the solvability of algebraic equations. The

survey by Singer [67] provides a good description of this field from

the viewpoint of symbolic computation. Other relevant contributions

include the beginnings of a differerential Gr6bner theory [3], [38], anal-

ogous to the Gr6bner theory in commutative algebra; and a llopf al-

gebraic interpretation of Picard-Vessiot theory by Takeuchi [70].

• There is now a resurgence of interest in using symmetry groups to

help integrate differential equations. This direction of research has

been active in the Soviet Union for some time, but during the past

decade there has been increased interest in the United States. Impor-

tant contributions have been made by Olver [57], Schwarz [64], and

Bluman and Cole [5]. Closely related is the study by Caviness [66] of

conservation laws for differential equations.

During the past several years, there has been increasing interest in sym-

bolic computation and differential equations. Work has proceeded in a num-

ber of directions, and is based upon both the Lie and the Weiistrass and

Poincare traditions:

• Zippel [73] is writing a modular symbolic computation system which

supports the ability to call high quality numerical routines. Using such

a system, he has shown how symbolic algorithms can be used to select

appropriate numerical algorithms.

• Guckenhemier [35] has produced the program kaos which allows the

user to access a variety of algorithms to investigate a differential equa-

tion from the point of view of modern dynamical systems.

• There are a number of programs to compute symmetry groups of differ-

ential equations, including one written by Char [12], and the programs

SODE and SPDE written by Schwarz [64].

• Abelson and Sussman anJd their group at MIT [1], [2] have combined

techniques in artificial intelligence to produce software which automat-

ically analyzes the qualitative features of a differential equation.

• Wang [72] and Steinberg [68] have developed systems which use sym-

bolic computation to produce high quality, optimized Fortran code to

solve differential equations.



E1
I' E2 _--'_ I' E3 _'-_ I

E 1 E2 E3

Figure 1: The trees associated with the vector fields Ej.

• Della-Dora and Tournier [17] have used the fundamental ideas of Ramis

[58] to produce a system to analyze linear ordinary differential equa-

tions. They are now turning their attention to nonlinear systems.

Point of view. The point of view taken here is to focus on the algorithmic

aspects of the computation of the vector fields :1 i and their brackets and

to use this illformation to develop appropriate algorithms which use exact

symbolic techniques to approximately integrate the trajectories of the dif-

ferential equation. ,ks will become clear, there are a number of interesting

points of contact between this approach and the approaches just described.

In the following sections, we review data structures and algorithms for

the symbolic computation of the flows of vector fields, and for the symbolic

approximation of general flows by flows which can be studied symbolically.

3 Vector fields and the algebra of Cayley trees

In this section, we describe a data structure which is central to the algo-

rithms we give for the symbolic computation of series which approximate

the solutions of differential equations. The basic idea is to assign trees to

vector fields as illustrated in Figure 1, and then to impose a multiplication

on trees which is compatible with the composition of vector fields.

Consider three vector fields

E1 = aiD1 +.''aNDN, E2 = biD1 +".bNDN,

E3 : Cl D1 t- ... CN DN

where D, = 0tOzi, and ai, bi and ci are smooth functions on R N. Now

E2 . Et = _ bj(Djai)Di + _., bjaiOjDi

and E3' E; • El is equal to

ck(Dkbj)(D,a,')D_ + _ ckbj(DkDja,)D, + _ c_,b,(D,a,)DkD,



El

E2

E3 E3 E3

+

E1

Figure :2 The trees associated with Equation 2.

+ ___ ckb, a,D_DjD, + _-:ckbj(Dka,)D,D, + _ck(Dkb,)a, DjD.. (2)

Here the sum is for {,j,k = 1 .... ,N and hence involves O(N 3) differentia-

tions. It is convenient to keep track of the terms that arise in this way using

labeled trees: we indicate in Figure 2 the trees that are associated with the

six sums in this expression.

An expression such as

[E3, [E2, Eli] : E3E2Ei - E3EI E2 - E2EIE3 + El E2E3 (3)

gives rise in this fashion to ')4 trees corresponding to the 24N 3 differenti-

ations that a naive computation of this expression requires. On the other

hand, 18 of the trees cancel, saving us from computing 18N 3 terms. We

are left with 6N 3 terms of the form (junk)Du_. A careful examination of

this correspondence between labeled trees and expressions involving the Ej's

shows that the composition of the vector fields E,'s, viewed as first order

differential operators, corresponds to a multiplication on trees. This multi-

plication is illustrated in Figure 3. It turns out that this construction yields

an algebra, which we call the _gebra of Cayley trees.

Here is a more precise description for the specialist, following [27] and

[30]. Let k denote a field of characteristic 0. We say that a finite rooted

tree is labeled with {El,... ,EM} in case each node, except for the root, is

assigned a element from this set. Let fJl'(El, ..., EM) denote the set of

labeled trees and let k{f,T(El, ..., EM)} denote the vector space whose

basis consists of labeled trees in £T(E1, ..., F-,M) . Suppose that tl,



o -- E1 -'l"

E2 E1 E2 E2

Figure 3: An example of multiplying two trees.

t_ 6 £T(EI, ..., F-,M) are trees. Let st, ..., s, be the children of the root

oftl. If t2 has n+ 1 nodes (counting the root), there are (n+ 1)" ways to

attach the r subtrees of tl which have sl, ..., s, as roots to the tree t2 by

making each si the child of some node oft2. The product tit2 is defined

to be the sum of these (n + 1) r trees. It can be shown that this product is

_sociative. and that the trivial tree consisting only of the root is a right and

left unit for this product. In [27], we defineacomultiplicationon k{£T(Ei,

.... EM)} and show that

Theorem 3.1 The _'ector space k{f_Tr(El, ..., EM)} with basis all equsva-

lence classes of finite rooted trees is a cocommutative graded connected Hopf

algebra.

We call this algebra the algebra of Cayley trees generated by the set of

labeled trees t:T(El, ..., EM) . The relation between trees and differential

operators goes back to Cayley [8], [9]. The coalgebra structure on this space

is very similar to the coalgebra structure defined by Joni and Rota [44].

llowever, the coalgebra structure defined there was defined for individual

combinatorial objects, rather than for a class of objects such as the family

of rooted trees. Butcher [6] and [7] has also defined a multiplication on the

_ector space which is dual to the space of trees. This multiplication is closely

related to the one just defined.

4 Symbolic evaluation of vector field expressions

When expressions involving vector fields, such as Lie brackets, are written

out in coordinates, there is typically a lot of cancellation. Similar cancel-

lation occurs in expressions involving Poisson brackets and when flows are

concatenated, as in CampbelI-Baker-Hausdorf expansions. In this section,

we use the algebra of Cayley trees to exploit this cancellation in order to

compute more efficiently formal expressions involving vector fields.

This is the set up. Let R denote a ring of functions. In applications, /_

is usually either the ring of polynomial functions, rational functions, or C °o



functzons.Fix severalfirst orderdifferentialoperatorswith coefficients from

R
N

Ej = E a j aj e R, j= I,...,M (4)
_.._1

that are defined in terms of a basis of first order differential operators

0
D.= _, #=l .... ,N.

Oz.

Simplifying any expression in the Ej's using Equation (4) yields a differential

operator, which we can view as an element of End R.

We now define a homomorphism from the algebra of expressions in the

£'j's to the algebra of trees. Indeed, the assignment in Figure l extends to

an algebra homomorphism from the free associate algebra in the symbols E 3

to tile algebra of Cayley trees k{f..T(El,..., EM)} • It is straightforward to

define a downward-pointing arrow so that the following diagram commutes:

k<EI,...,EM> ---* k{£:T(E1,..., EM)}

\ [ (5)

End R

Algorithm 4.1 To rewrite ezpressions in the first order differential opera-

tors Ej in terms of the basis

0 0 2

0Xta I OqXtal 0Xu2 , Pl,P2, = 1 ,N,

compute the compositzon of the r_ghtward and downward pointing arrows _n

the diagram above.

In [28], [29] and [33], we show that the algorithm is much more efficient than

naive substitution, which corresponds to computing the diagonal arrow di-

rectly. In some common cases, the improvement in efficiency is exponential.

We have implemented this and related algorithms in Maple, Mathematica

and Snobol.

We illustrate this algorith_ by working the example of the last section

following [31]: consider a higher order derivation of the form

p = E3E2EI - E3EIE2 - E2EIE3 + ElE_E3.

Naive simplification requires computing 24N 3 terms of the form described

in Table I. The image of p in the algebra of Cayley trees contains 24



No. of terms Form of terms

8N 3 coeff. D m

12N 3 coeff. D,2 Dr,

4N 3 coeff. Dr3 Du2 D m

Table 1 Naive computation of the differential operator corresponding to p.

o o t iE2 - E1 - E1 "t'- E2

E3 E3 E2 E1

"t-

_E3 -
E3

Figure 4' The surviving labeled trees.

trees, six for each of the four terms of p. For example, the six labeled trees

corresponding to the first term are given in Figure 2. Eighteen of these

trees cancel, leaving the six trees in Figure 4. The corresponding differential

operator is equal to

"_ D,2a 2 )D.,% (D. 3 *.2 "' - a 3 (Or3at)(% )(Dr,a , )D., _ "' m r,

- "' _" a, (D.,a_)(Du2a 3 )D.,y"a_ (D_,3% )(D.2a_t)Dr, + _ "' u_ r,

., _,_ m a_=(Dr, D.2 )Dr, '+_% % (Or, O.=a , )Dm - __.a_' a;'

and contains 18N 3 fewer terms_of the form indicated in Table 2 than does

the naive computation of p. An example of the cancellation of labeled trees

is given in Figure 5.

To summarize: we have defined an algebraic structure on families of trees

which mirrors the algebraic structure of formal expressions in the variables

Ej, but which alleviates the need for computing intermediate expressions

which cancel when the noncommuting E./'s are expressed in terms of the

10



_E3 + _E3
= 0

Figure 5" The term E3EI E2 contributes the first labeled tree and the term

EIE2E3 contributes the second, which cancel.

No. of terms Form of terms

2N 3 coeff. D.I

12N 3 coeff. D.2 D m

4N 3 coe|f. D._ D_,_ D.,

Table 2: Terms in the computation p which cancel.

commuting D,'s. In the following sections, we will see other expressions of

this simple idea.

Algorithm 4.1 can be extended in several different directions.

1. The examples above concern vector fields defined on r_ N. It is possible

to work out similar algorithms for vector fields defined on more general

objects, such as Lie groups. This is important for applications in

robotics and rigid body dynamics. For example, the group G = SO(3)

is the appropriate configuration space for a rotating rigid body. To be

more specific, assume the vector fields are of the form

N

z, = E 4v.,
_=1

where the Y. are left-invariant vector fields on G and the aj are smooth

functions on the group. In this case, the Cayley algebras are generated

by ordered, labeled trees t16]. Roughly speaking, the trees are ordered

since the vector fields Y. no longer commute.

° The natural action of differential operators on functions turns the ring

of functions R into a module. In this same way, the trees have a natural

action on R, as indicated in the Diagram 5. It turns out [:34] that this

gives R the structure of K/k-bialgebra, as introduced by Nichols [55]

11



and [56]. These types of algebras are closely related to differential

algebras.

. It is a basic fact that the local properties of the nonlinear system ( 1) are

determined by the algebraic properties of the higher order iterated Lie

brackets; see, for example, [40]. Unfortunately, due to intermediate

expansion swell, it is often difficult to compute these using current

computer algebra systems. It turns out that higher order Lie brackets

not only involve the cancellation of all terms above the first order but

also the cancellation of some of the first order terms. Algorithm 4.1

can be used so that the terms arising in these first order cancellations

need not be computed.

5 Exponentials, Lie brackets, and nil flows

Some differential equations have the property that their flows can be inte-

grated symbolically in closed form. For example, this holds for differential

equations of the form (1), if E1 and E2 are homogeneous in the appropriate

sense and generate a graded, nilpotent Lie algebra. In this section, we give

an algorithm which, given an appropriate nilpotent Lie algebra, returns vec-

tor fields on l'_ N with polynomial coefficients which generate the Lie algebra.

This leads to an interesting class of differential equations whose flows can

be integrated symbolically in closed form. At the end of the section, we look

at several applications of this algorithm.

By the third fimdamental theorem of Lie [63], we know that a nilpotent

Lie algebra arises from some Lie algebra of vector fields. What is not obvious

is how to construct such vector fields. Nilpotent Lie algebras of vector fields

have been used as an important tool in partial differential equations by

Folland and Stein [21], Rothschild and Stein [60], and Rockland [61]; and in

control theory by Krener [48], llermes [41], [42], and Crouch [15], [14]. We

will see below how they are also a useful tool in developing symbolic-numeric

algorithms to integrate flows.

Our goal is to describe a natural representation of nilpotent Lie algebras
l

on vector fields on Euclidean space with polynomial coefficients. To define

this represenation, we define a basis of Hall trees on generators E1 and E2

recursively as follows:

1. basis elements consist of rooted, binary trees, with all nodes, except

the root, labeled with El, E_, E3, ... satisfying

12



(a) all right children are leaves and labeled with either E_ or E2

(b) the sequence formed by the labels of the right leaves at increasing

distance from the root is nonincreasing

2. the two rooted trees consisting of a root and a single (left) child labeled

Ei, for i = 1,2 are in the basis and of length 1

. if we have defined basis elements t, of length 1 .... , r - I, they are

simply ordered so that t, < tj in case the length of ti is less than the

length of t i.

4. a tree consisting of a root with a single (left) child labeled Ei is in the

basis provided that E,'s left child is in the basis and of lower order.

To each such tree corresponds an element E, in the llall basis [39] of the

free, nilpotent Lie algebra on two generators. Figure 6 illustrates how the

basis of Ilall trees leads naturally to a representation of the free nilpotent

Lie algebra generated by E1 and E2 on the space of vector fields on Pt, N

with polynomial coefficients. See [22] for further details of the following

algorithm:

Algorithm 5.1 Fir r > I and say that the free, nilpotent Lie algebra of

two generators of rank r has dimension N. Let El, ..., EN denote the Hall

basts. Then the vector fields on R N defined as in Fifure 6 satisJry

1. the Lie algebra they 9enerate is isomorphic to the free, nilpotent Lie

algebra on two generators of rank r

2. any tralectory of the nonlinear system

i(t) = + u(t) E2(x(t)), = rtU

can be computed in closed form in terms of quadratures of the function

t - u(t)

3. there e_ist constants cq, ..., etN such that
¢

exp( E2 ) exp( El ) = exp oriel ,

and the tri can be computed by solving a lower triangular linear system.

13
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oE2 _ I 4" -I'-
2

I

+

+ 1 + 2 +

1

Figure 6 The vector fields arising from the basis of Hall trees. The first

t 2D4tree is sent to Ol, while the sum of the trees is sent to D2- ziD3 +_z l

+z, z2Ds- g'z 3106-½z_z2D_'-_z,' z_Ds.
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Asa note,this algorithmwasfoundonly afterseveralmonthsofexperimen-
tation with Mapleand requiredthe carefulstudyof the free, nilpotent Lie

algebra on two generators of rank 5, which is 2:3 dimensional.

We conclude this section with some remarks describing several applica-

tions of this algorithm and related work.

1. Locally approximating a nonlinear system by an explicitly integrable

nilpotent one yields a number of integration algorithms, which we re-

fer to as piecetcxse nzlpotenl integration algorithms (PWNI). The basic

idea [23], [24] is to approximate locally a nonlinear system at a given

point by an explicitly integrable nilpotent one in which the computa-

tions can be clone symbolically in closed form, and to patch together

the vartous nilpotent approximations at nearby points using a stan-

dard numerical algorithm. Preliminary work indicates that this leads

to symbolic-numeric algorithms for the path planning problem and ef-

ficient algorithms to integrate neighborhoods of trajectories around a

given fixed reference trajectory.

2. Algorithm 5.1 also provides an efficient means for computing the con-

catenation of flows. Write z(t) = exp E.z ° for the flow of the nonlinear

system

= E(x(t)), = x0 (6)

The Campbell-Baker-Hausdorff formula expresses the concatenation

of two flows as a single flow:

exp(tE2) exp(tE1) = exp(tE2 + tel + l/2t2[E2, El]

+ 1/12[[E2, E,], El] - 1/12[[E2, E,], E2] +...). (7)

Consider the equation

N

exp(E_) exp(El) = Z c,E_,
i=l

where E, are the vector _ields produced by the algorithm. Since all

flows of the vector fields El and E2 are explicitly integrable in closed

form, this reduces the computation of the cl to the solution of a linear

system, which is lower triangular.

3. We can also use Algorithm 5.1 to derive a class of numerical integra-

tors, which are sometimes known as splitting methods. For example,

15



supposethat El and E2 are separately integrable in closed form, but

E1 + E2 is not. Then using the algorithm, we can compute constants

ri such that

exp(r_El) • exp(r6E2) • exp(rsEl), exp(r4 E2)

• exp(r3E_), exp(r2 E2). exp(rl El )' = exp(Ei + E2) + O(tS). (8)

This formula yields a numerical integrator for our original nonlinear

system (1) (with u _-- 1). This algorithm is used in accelerator physics

[65].

4. Recently, Strichartz [69] has shown that the solution of the initial value

problem

= = o

can be written as

with

z(t) = exp(G(t))z °,

.

oo

c¢,)~ZZc,,o
r=i O

f[. E(s,m]...]E(s,i, ds,

and where o- ranges over the symmetric group on r symbols, the inte-

gration region is a simplex in R', E(s) denotes the vector field E(s, .),

and exp is defined as in Equation 6. Formulas of this type date back

to Chen [13] and appear to be related to Algorithm 5.1.

F. Bergeron, N. Bergeron, and A. M. Garsia have also exploited a rela-

tion between trees and polynomials in their study of free Lie algebras;

see [4] and the references cited there.

6 Taylor series and intrinsic integrators

Although nonlinear systems often conserve quantities such as energy or an-

gular momentum, most numerical integrators do not. Similarly, nonlinear

systems typically evolve on some underlying geometric space, such as a Lie

group or homogeneous space, but most numerical integrators do not remain

in such a space.

Recently, there has been a flurry of activity related to numerical in-

tegrators preserving the symplectic structure, sparked off by the work of
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Channe_l[|0] andScovel[11],and baseduponearlierworkof deVogeleaere
[19].Thesetypesof numericalschemeshavefoundimportantapplicationsin
the longterm studyof orbits in acceleratorphysicsandin other areas[65].
Thederivationof theseintegratorstypically involvesthesymboliccomputa-
tionof Taylor seriesandgeneratingseriesfor thesymplectictransformation
whichis the updatefor the numericalintegrator.

Considera numericalintegratorfor a differentialequation

= ,z(x(t)), ,:(o) = p M

evolving on a space M. Call a numerical integrator intrinsic in case zn E M

implies z,_+l E M, for n > 1, where z,, is the approximation to the trajectory

,r(t) at time t,_. One means of deriving intrinsic numerical integrators is

to mimic the derivation of standard numerical integrators, but to impose

additional constraints on the scheme to satisfy the added condition that the

points z,_ remain in the space M. This typically involves the careful study

of the Taylor series of the solution.

This can be done by using the Cayley algebra of trees, as briefly indicated

in [32]. As an illustration of this, we consider intrinsic Runge-Kutta type

algorithms evolving on a Lie group G, following [16]. Let g denote its Lie

algebra, and let Yt, -.-, YN denote a basis of g . We give an algorithm to

approximate solutions to differential equations evolving on G of the form:

where

_(t) = E(z(t)), z(0) = p E G,

N

E = Z aUY u,

and the = a u are analytic functions on G. Let exp(tE) • z denote the

solution z(t) at time t. The algorithms depends upon constants c, and c,i,

for i -- 1, ... ,k and j < i. For fixed constants, define the following elements

of the Lie algebra g

N

tJ=l

N

N

E3 --

o
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Figure 7: Trees associated with third order terms in a Taylor series.

These arise by "freezing the coefficients" of E at various points along the

flow of E.

Algorithm 6.1 Given an znzt_ai pomt xo on the group, define

zn+l = exphckl_l¢...exphc 1E,Ixn,

forn > 0.

Notice that if we assume the exponential exp(h/_i) maps the Lie algebra

to the Lie group exactly, then this algorithm is intrinsic. For a group such as

G = SO(3), there are classical closed form expressions for the exponential

map and Algorithm 6.1 yields an intrinsic integrator. Notice also that if G

is the abelian group I1.N, then the algorithm becomes the classical Runge-

Kutta algorithm.

The first step is to derive the equations that the coefficients c,. and cij

must satisfy in order for the algorithm to yield an rth order numerical in-

tegrator. This can easily be done using the Cayley algebra of ordered trees

[16]. The trees are ordered since the vector fields Y_ do not commute.
Assume for the moment that G = I1. N and consider the terms in the

Taylor series

_(t + h) - z(t)
h 2 .. h a

= hi(t) + -_.x(t) + -_-t{'"I(t) +...3.
h 2

= hE + -6-(DE • E

h a

(oe. oE. E+o E(e,e)) + ...
Notice that there is a natural correspondence between trees and terms in

the series. For example, the h3/3! terms are associated with the two labeled

trees in Figure 7. This observation goes back to at least Cayley [8], [9].

We now generalize this to a Lie group following [16]. Recall that Dia-

gram 5 induces an action of trees on the ring of analytic functions on G.

Using this action, we can now state the

18



Lemma 6.1 Let ct denote the tree consistin 9 of a root with a single chdd

labeled F. Then for any analytic functlon f on the group and[or sufficiently

small t,

f(exp(tF), z) = exp(to 0 • Jr b: -

Notice that if G is Euclidean space, and if the functions / are the coordinate

functions zl, ..., z,, then this becomes the familar Taylor series.

Using this lemma, it is now easy to compute the equations that the

coefficients ci and c,j must satisfy. In spirit, this is similar to Butcher's use

of trees to analyze higher order Runge-Kutta algorithms in Euclidean space

[6],[7].
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"This is an extended abstract; a final report will be published elsewhere.

tThis research was supported in part by the NSF grant INT-8914643.

IThis research is supported in part by NASA grant NAG2-513 and NSF Grant DMS-

8904740.

SThis research is supported by NSF Grant DMS-8904740.



1 Introduction

This extended abstract further develops the algorithms in [8] and [9] for

rewriting expressions involving differential operators. Tile differential oper-

ators that we have in mind arise in the local analysis of nonlinear dynamical

systems. In this work, we extend these algorithms in two different directions:

I. We generalize the algorithms so that they apply to differential opera-

tors on groups. This generalization is important for applications. For

example, the nonlinear system describing a robotic joint or a satellite

evolves on the group G = SO(3) of spatial rotations. The local study

of such systems requires the computation of expressions consisting of

differential operators on G.

'2. \Ve develop tim data structures and algorithms to compute symboli-

cally the action of differenttal operators on functions. Again, this is

crucial for applications. We illustrate this by deriving conditions for a

numerical algorithm to remain constrained to a group. In other words,

if x,_+l = T(xn) is the update rule for a numerical algorithm evolv-

ing on a group G, we would like to choose T so that x, E G implies

x,_+ l E G.

For a further discussion of applications of these algorithms, see [5] and [6]

and the references given there.

Here is tim

Set Up.

I. Let k denote either the real or complex numbers.

'2. Let (_; denote a finite dimensional Lie group over k, g denote its Lie

algebra, and )'1, ..., _ a basis for g of left-invariant vector fields.

3. Let R -" C'_(G) denote the algebra of smooth functions on G taking
values in k.

4. Fix it[ derivations of R of the form
I

N

: aj Y., aj E R,
taml

j= I,...,M, 1)

and let A denote the free associative algebra k<Fl, ..., FM> of dif-

ferential operators generated by F1, ..., FM, with coefficients from

k.



We are concerned with the following

Problem. Given a differential operator p E A and a function f E tL

substitute the Equations (l) and compute p. f using as few operations as

possible. This problem is interesting since in many cases cancellations take

place.

Example I. Let G = R N denote the abelian group,

0

= j =

the (left invariant) coordinate vector fields, and FI, F2, /;'3 three fixed vec-

tor fields defined in terms of the _, via Equations (1). Then the naive

substitution of (1) and simplification of p . f, where

;, = F_ F2F_ - Y_F1F2 - F2F_/:'3 + F_F_F3 E A, f E R,

yields 2,1N 3 terms, while more specialized algorithms need only compute the

6N 3 terms which don't cancel. These types of examples are considered in

[s]and [9].

Example 2. Consider the local analysis of a nonlinear system of the form

._(t)= r(.(t)), ._(o)= _o _ G, (2)

where
M

F= ZujFj.
j=l

[n practice, the uj are constants, functions of time, or perturbation parame-

ters. The study of this system typically involves the computations of various

series in the algebra A of differential operators. For example, the local flow

of the system is determined by the Taylor series

h 2 h a F 3
exphF = I+hF+t_.F2+-_. + ... e A[[h]].

An alternative to computing higher derivatives F k is to choose constants

ci, cij, i = 1, ..., k, j < i, so that the expression

exp hck/;'k . • • exp hcl ['1,



where

N

Ct -- g

N

F2 = E a"(exp(hc2,¢,), c°)Y. e g

N

¢3 = _ n_'(exp(t'c:_2P2) " exp(hc._, F, ). c°)Y. e g,
_.=l

is equal to exphF to order _:. Notice that the left invariant w_ctor fields t-i_

arise by "freezm_ tile coefficients" of F at various points along its flow.

1'2xpanding these expressions around the common base point c ° E (-;

yields many terms, which must cancel in the end if the algorithm is going

to approximate the flow of the underlying nonlinear system. The action

of the differential operators /Sj on the coefficient functions a_. must also be

computed. Notice, that unlike Example 1, the Y_, here do not commute.

This example will be considered in more detail in Section ,t.

The computations in both examples are easily kept track of by using

finite rooted trees, labeled with the symbols FI, ..., FM. It turns out the

the vector space, with basis the set of such trees, has an algebraic structure

B which is crucial to efficiently organizing the computation. The advantage

of working with the trees B is that many terms which cancel in the end need

not be computed. See [6] for an expository treatment of this idea. The key

observation required for this work is that it is possible to define an action of

the algebra B of finite rooted trees, labeled with Fl, ..., FM, on the ring of

functions R which enjoys essentially all the properties of the familiar action

of the algebra A of differential operators generated by F1, ..., FM on R. It

turns out that B is a Hopf algebra, just as A is, and that both actions give

R the structure of what is called an H-module algebra.

[n Section 2, we review the relevant material from algebra. This material

may be skimmed on a first reading. In Section 3, we define the Hopf algebra

of Cayley trees and its action on the ring of functions R. In Section 4, we

continue the discussion of Example 2.

4



2 //-module algebras

[n this section we review the basic facts about bialgebras and //-module

algebras which will be used in the remainder of this paper.

[n this section, k can be any field of characteristic 0. By an alqebra we

mean a vector space A over tile field k with an associative multiplication and

unit. The multiplication can be represented by a linear map p : ..I®_A _ .41

the unit can be represented by a linear map k _ A (the map sending 1 C/¢

r.o 1 E A). The facts that the multiplication is associative, and that l C A

is a unit, can be expressed by tile commutativity of certain diagrams. For

example, the commutativitv of the diagram

A®kA,_kA _ A®kA

J
..I ®_ ,.t _ A

where the upper horizontal arrow is the map p @ I, the left vertical arrow is

the map I 0 p, and tile remaining two arrows are the map p, expresses the

associativity of multiplication.

The dual notion to an algebra is a coalgebra: a vector space C over the

field k together with a coassociative coproduct A : C _ C®kC and a counit

e : C _ k. The fact that A is coassociative and that e is a counit is expressed

by diagrams which are dual to the diagrams which express the facts that the

multiplication of an algebra is associative, and that 1 E A is a unit: thev are

the same diagrams, with the direction of all arrows reversed. For example,

coassociativity is expressed by the commutativity of the diagram

C _k C _k C _ C ®k C

T
C®kC _ C

where the upper horizontal arrow is the map A ® I, the left vertical arrow

is the map I Q A. and the remaining two arrows are the map A. Often the

element A(c) E C @k C is written _]c0) ® c(2 }.

A bialgebra is a vector spacd H over k which has both an algebra and

a coalgebra structure, such that the coalgebra structure maps are algebra

homomorphisms, or equivalently, the algebra structure maps are coalgebra

homomorphisms. (This equivalence can be seen by expressing the assertion

that the coalgebra structure maps are algebra homomorphisms as a set of

commutative diagrams: this set of diagrams is self-dual.)

Some examples of bialgebras are the following:



I. Let G be a group, and let kG be the group algebra of G: the vector

space kG has the elements of G as a basis, with multiplication defined

by extending the multiplication on G linearly. The coproduct and

counit of kG are defined by

= g®g ],
e(g) ---- 1 ] gEG.

2. Let G be an atfine algebraic group, and let k[G] be the algebra of

representative functions on G. The algebra structure of k[G] is the

usual algebra structure of functions with point-wise multiplications.

The coproduct arises from the group multiplication G x 67 -- G, wilich

induces tile map k[G] -- k[G x G] "_ k[G] Ok k[G]. The counit arises

from tile map {e} -- (;, where {_;} is the single-element group.

3. Let L be a Lie algebra over k, and let U(L) be the universal enveloping

algebra of L. The coproduct and counit of U(L) are defined by

.:X(x) = IQz+x®I }_(z) = 0 zEL,
J

and extended to all of U(L) using the fact that A and e are algebra

homomorphisms.

Usually, in studying bialgebras, an additional condition is imposed which

is analogous to the assertion that a semigroup is a group. Such bialgebras are

called Hopf algebras. The bialgebras which we consider in this paper (such

as the universal enveloping algebra of a Lie algebra) satisfy this condition

automatically.

A coalgebra is said to be cocomrnutalive if it satisfies A = To A, where

T is the map T : C®k C -- C ®k C defined by T(x ® y) = y® x. Note that

the bialgebras in Examples 1 and 3 are cocommutative.

A vector space V over k is said to be graded if there is a sequence of

subspaces Vo, VI, ... such that !

n=O

A graded vector space V is said to be connected if Vo _ k.



Let H be a bialgebra. A H-module alqebra is an algebra R which is an

H-module such that the action satisfies

h. (yg) =  (hla I •/)(hi21 • ,j), for all h E 1f, f,9 E R.

Remark 2.1 If9 E tt satisfies A(g) = 9®g and R is an H-module algebra,

then g acts as an endomorphism of R; if z E H satisfies _(z) = 1®x +Jr6) 1

and R is an H-module algebra, then x acts as a derivation of/2.

3 //-module algebras and Cayley trees

In this section we describe a bialgebra structure on the vector space with

basts all equivalence classes of rooted trees. The relation between trees

and differential operators goes back at least ,as far as Cayley [3] and [,I].

Important use of this relation has been made by Butcher ira his work on

higher order Ftunge-l(utta algorithms [1] and [2]. In this section and the

next, we follow the treatment in [8] and [9]. By a tree we mean a nonempty

finite rooted tree, atld by a forest we mean a finite family of finite rooted

trees, possibly empty.

Suppose {Fi, ..., FM} is a set of formal symbols (which later will be the

names of differential operators). By a labeled tree we mean a tree for which

we have assigned an element of {FI, ..., FM} to each node, other than

the root, of the tree. We say that a tree is ordered in case there is a partial

ordering on the nodes such that the children of each node are non-decreasing

with respect to the ordering.

We now describe the bialgebra structure on spaces of trees. Let

k{7(F1, ..., FM)}

denote the vector space which has as basis all equivalence classes of labeled.

ordered trees. The vector space k{7-(Fa ..... FM)} is graded, with the grad-

ing given as follows: if the tree t has n + 1 nodes, then

t e .,., FM)},.

We now define the multiplication on k{7"(F1,..., FM)}. Since the set of

labeled, ordered trees form a basis for k{T(FI, ..., FM)}, it is sufficient to

describe the product of two such trees. Suppose that ta and t2 are labeled,

ordered trees. Let sa, ..., s_ be the children of the root oft1. If t2 has n+ 1

nodes (counting the root), there are (n + I) _ ways to attach the r subtrees



of tl which have sl .... , sr ,as roots to the labeled tree t2 by making each

si the child of some node of t2, keeping all the original labels. Order the

nodes in the product so that the nodes which originally belonged to each tree

retain the same relative order to each other, but all the nodes that orginally

belonged to tl are greater in the ordering than the nodes that originally

belonged to t2. The product t1£2 is defined to be the sum of these (n + 1) r

labeled trees. It can be shown that this product is associative, and that the

trivial labeled tree consisting only of the (unlabeled) root is a right and left

unit for this product. For details, see [7].

We now define the comuitiplication on k{T(Fi, ..., FM)}. If t is a tree

whose root has children sl, ..., s_, the coproduct A(t) is the sum of tile 2 r

terms tl ¢.'_t2, where the children of the root oftl and the children of the root

of t2 range over all 2_ possible partitions of the children of the root of t into

two subsets. The labels remain tile same, and the ordering is handled ill the

same way as in the product. Tile map E which sends the trivial labeled tree

to 1 and every other tree to 0 is a counit for this coproduct. In [7], it is

shown that these algebra and coalgebra structures are compatible, proving

the

Theorem 3.1 The space k{T(FI, ..., FM)} is a graded connected cocom-

mutative bialgebra.

We call this algebra the algebra of Cayley trees.

We now define an action of the algebra of Cayley trees

B= k{T(F1,..., FM))

on the ring R. making R a B-module algebra, which captures the action of

trees as higher derivations. The action is defined using the map

_;,: k{T(Ft, ..., FM)} --. End_ R,

as follows:

1. Given a labeled, ordered tree £ with m + 1 nodes, assign the root

the number 0 and assign the remaining nodes the numbers 1, ..., m.

We identify the node with,the number assigned to it. To the node k

associate the summation index pk. Denote (pl, ..., /_m) by p.

2. For the labeled tree t, let k be a node of t, labeled with F.yk if k > 0,
and let l ..... Ir be the children of k. Define

R(k;_) = Yu,...Yu,,a"_, if k > 0 is not the root;
¢.

= Ym "" " }",,, if k = 0 is the root.



Note that if k > O, then R(k;p) E R.

3. Define
N

_ I ,...,p.tt, = 1

4. Extend _b to all of k{T(Fl, .., FM}} by linearity.

It is straightforward to check that this action of B on R makes R into a

B-module algebra

We summarize with the following theorem.

Theorem 3.2 Let G denote a finite dimensional Lie group and R the alqe-

bra of smooth f_nclwns on G, as detailed in the Set Up. Let B denote the

algebra of Cayley trees k{T(FI, .., FAt)}. Then R is a B-module alqebra

with respect to the actwn defined by _p.

Remark 3.1 'File standard action of the algebra A of differential operators

generated by FI, ..., FM on the algebra of smooth functions R gives R the

structure of a A-module algebra. [t is easy to relate these two H-module

algebra structures on R and this observation is the basis for our algorithms.

Let

¢:A_B

denote the map sending tile generator Fj of the algebra A to the tree con-

sisting of two nodes: the root and a single child labeled Fj. Extend _ to be

an algebra homomorphism. Let _:"denote the map

A --- End_ R

defined by using the substitution (1) and simplifying to obtain an endomor-

phim of R.

Theorem 3.3 (i) The maps _f, ca and _ are related by X = Vao o. {ii) Fix

a function f C g and a differential operator p E A. Then
t

p" f -.- ¢(p). f.

Here the action on the left views t2 as an A-module algebra, while the action

on the right views R as B-module algebra.



The tirst assertion is proved in [9] and the second assertion follows from the

tirst assertion and the definitions.

Using this theorem, it is easy to give an algorithm to solve the Problem

posed in Section I. We defer to later paper a complete analysis of tile

complexity of the algorithm and simply remark here that in many examples

the algorithm results in a savings which is exponential in the degree of the

differential operator.

Algorithm. Given a smooth function f E R and a differential operator

p E A, compute the function p. f via _(p) . f.

,1 Applications

We use the notation of the Set Up from Section 1. Letexp(hF)z denote the

resulting of tlowing for time h along the trajectory of the nonlinear system

(2) through the initial point z ° E G. We require a theorem concerned with

the explicit computation of terms in the Taylor series expansion of a solution

of (2). This is one of the main applications of the symbolic calculus described

in the sections above.

This theorem is most easily stated if we introduce two additional oper-

ations on the algebra of Cayley trees /3. Given cr,fl E B, define the meld

product fl @ c_ to be the labeled, ordered tree obtained by identifying the

roots of the two trees. The meld product is then extended to all of B hv

linearity, Given a derivation F E Der(R), let L/ be the tree _(F) and let

_ E /3. Recall d is a tree consisting of a root and a node labeled F. We

define the composition product _o or to be the tree formed by attaching the

subtrees whose roots are the children of the root of a to the node labeled F

of the tree d. If _ E /3 is a tree, define the e_ponentialand Meld-ezponenttal

of a tree by the formal power series

h2 h3 3

exp(hor) = 1 + hc_ + _-.T,_2 + _-.I_ +...

j h 2 h 3

Mexp(hor) = 1 + hor + "_'.1or 63 or + -_.Tor 63 or Q or + ....

Theorem 4.1 (i) Assume f E R and F E Der(R). If f is analytic near r,

then for sufficiently small h,

f(exp(hF)z) = exp(h6(F)), fl_.

10



(ii) Let F N= _,=t a"(exp(hG)zU)Yj,, where G G Der(R), and z ° E G.
Then

F. f = (¢(F)o Mexp(hG)). f.

Using this theorem, it is easy to analyze the numerical algorithm de-

scribed in Example 2 of Section 1. For typographical reasons, we use the

following one dimensional notation for treesl: the tree consisting of a root

and a single child labeled Fi is denoted I[F1]; the tree consisting of a root

and two children labeled F1 and F: is denoted I[Fi,/:'2]; the tree consisting

of a root, with a single child labeled FI, which itself has two children labeled

F2 and F3 is denoted I[FI[F2,F_]], etc. Note that the labels need not be

,listinct, but their order is important.

Consider tim expression

,_xp he3 b'3 exp he2 t;'2 exp he1FI

computed to order h 3

image O(p) G B contains tile following terms:

3 2 3 o
It C3C,_ 1 h3c3c22h _c_ t[F[F, ell + _I[F[F, F]] +

2! 2! 2!

+h%_at_2/[F[F, F]].

Our goal is to choose the constants ci and c 0 so that that

Let p E el denote the resulting expression. The

I[F[F, F]]

exp hF = p + O(h4).

h 3
One of the third order term arising from O(exp hF) is -STI[F, iF, F]]. Setting

the coefficients of these trees equal to each other yields the constraint:

c_c_l c3c_1 c3c_2 I

2--7 + --7-.' + _ + _aca_c= = 3-7

Other constraints arise from the other trees. We have coded this algorithm

in Maple, Mathematica, and Srmbol and are currently experimenting with
it.

IThe notation is due to Peter Olver, as is some of the Mathematica code used to

generate these examples.
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Bialgebra deformations and algebras of trees*

Robert Grossman t and David Radford

Abstract

Let A denote a bialgebra over a field k and let At = A[[t]] denote
the ring of formal power series with coefficients in A. Assume that A is
also isomorphic to a free, associative algebra over k. We give a simple
construction which makes At a bialgebra deformation of A. In typical
applications, At is neither commutative nor cocommutative. In the

terminology of [1], At is a quantum group. This construction yields
quantum groups associated with families of trees.

1 Introduction

Let A denote a bialgebra over a field k and let At = A[[t]] denote the ring of

formal power series with coefficients in A. Assume that A is also isomorphic

to a free, associative algebra over k. %re give a simple construction which

makes At a bialgebra deformation of A. In typical applications, At is neither

commutative nor cocommutative. In the terminology of [1], At is a quantum

group. This is an extended abstract. The final detailed version of this

paper [6] containing proofs and additional examples has been submitted for

publication elsewhere.

An interesting class of examples is obtained by taking the biaigebra A

to be the Hopf algebra associated with certain families of trees as in [4].

In fact, these examples are closely related to each other and to algorithms

pertaining to differential operators [5].

Formal deformations of bialgebras and quantum groups has also been

studied from related viewpoints by Drinfeld [1], Gerstenhaber [2], and Ger-

stenhaber and Schack [3]

*This is an extended abstract. The final detailed version of this paper has been sub-
mitted for publication elsewhere.

tThis research is supported in part by NASA grant NAG2-513, NSF Grant DMS-
8904740, and by the Laboratory for Advanced Computing at the University of Illinois at
Chicago.



2 Power series and the completed tensor product

Suppose that k is a field and A and B are k-algebras. We let At = A[[t]]

denote the ring of formal power series over A with its usual multiplication.

Let f • A ----, B, be a k-linear map and write f(a) = _,,_--0 cs(a, n)t" for

a E A. Define a k-linear map f: At _ Bt by

OO

f(a) = Z( _ c/(a''j))tn, for a= _ ant '_ e A,.
n=0 i+j=n n=O

Observe that we can define a cateogy (Aigk)t, whose objects are At and

whose morphisms are k-linear maps f • At _ Bt satisfying f = flA, where

flA is the restriction of f to A.

We define the completed tensor product At_k, Bt of At and Bt over k t ill

this category to be (A(_B)t. For a = _,,_=oa,J '_ E At and b = _--_,_=0b,_tn E
Bt we let

oo

a@b = Z( Z ai(_bj)t n.
n=O iTj=n

Suppose that f : At _ A_ and 9 : Bt _ B_ are morphisms. We define

a morphism of completed tensor products f_g : At_k, Bt _ at_k ,I^ Btt by
setting (fSg)lA._B(a ® b) = f(a)6g(b) for a E A and b E B. The usual

formalism for the linear tensor product of maps translates to

(f_9)(a_b) = f(a)_9(b )

for a E At and b E Bt in this category. Note that if f and 9 are also algebra

maps, then the morphism f_g: At_k, Bt _ A_k,B_ is an algebra map.

Now let C be any coalgebra over k. A sequence of elements co, c:, c2, ... E

C is called a sequence of divided powers if

A(c,)= __, ci®cj and e(cn)=60,, for alln>0.
i+j=n

Probably the most basic example of a sequence of divided powers arises

from a primitive element in a bialgebra. Suppose that A is a bialgebra over

k and that/? E A is primitive. Since A is multiplicative, we calculate by the

binomial theorem that A(g_) = (A(g)) n = (g®l+l®g) n = }-'_i=o('nn)(U_i _)g,)
in

for n > 0. Thus co, cl, c2, ... is a sequence of divided powers, where en =
for n > 0.



3 Deformations of certain enveloping algebras

The notions of algebra, coalgebra, bialgebra and tlopf algebra in the category

(Algk)t are the same as those in the category of vector spaces over the field

k except, of course, the structure maps are required to be morphisms. Let

(A, m, r/) be an algebra over k, where m : A ® A ----. A is multiplication and

r/ : k -----* A defines the unity of A. Then (At, ffa, _) is an algebra in (Algk)t.

It is easy to see that _(a_b) = ab for a, b E At. A morphism f : At _ Bt

is a morphism of algebras if and only fla : A -- Bt is a map of k-algebras.

The proof of the proposition below is really a matter of unravelling def-
initions.

Proposition 1 Suppose that A is an algebra over a field k with a k-coalgebra

structure (A, A,c). Then (At,_x,?) is a coalgebra in (Algk)t. Furthermore

OG OO

z_(a) = Z(A(an))tn and _'(a) = Z E(an)tn
n=O n=O

for a = _-_°°=o ant n E At.

Suppose that (At, A,e) is a coatgebra in (Algk)t. We say that N E At is

grouplike if

A(I£) = 14_I( and e(I£) = 1.

We say that g E At is nearly primitive if

 x(e) = eSK + H@e

for some grouplike elements K, H E At. If K = H = 1 then £ is said to be

primitive.

For an algebra A over a field k of characteristic 0 we let exp(at) =

_°=0(_.,)t'_ E At. The following corollary gives the relationship between

sequences of divided powers and grouplike elements.

Corollary 1 Suppose that A is an algebra over a field k which has a k-

coagebra structure (A,A,,). Let (At,_X,'g) be the resulting coalgebra in

(Algk)t. Then:

(a) Let I( = _-_.n°°=oa, tn E At. Then K is grouplike if and only if ao,al,a2, ...

is a sequence of divided powers in A.

(b) Suppose that the characteristic of k is O. If a E A is primitive, then

I( = exp(at) is a grouplike element of At.



Now we construct deformations of enveloping algebras over a field of

characteristic 0 which are free as associative algebras on a space of primitives.

Theorem 1 Suppose that V is a vectoi" space over a field k of characteristic

O. Turn the tensor algebra (A, m, _7) of V into a bialgebra (A, m, 77,A, e) by

defining A(i) = i® l + l ®g and e(g) = O for g E V. Let p, q E V and write

V as a direct sum of subspaces V = P O__.P', where P = span(p,q). Then

there is bialgebra deformation (A,, _a, _, z_, 7) of (A, m, q, A, e) such that

a) X(g) = £_1 + l_g for £ E P,

b) K = exp(pt) and H = exp(qt) are grouplike elements of (A,,_,F),
and

c) X(g) = eSI( + H6g for t G P'.

We comment that K = ezp(tp) = 1 when p = 0. Ifp ¢ 0 and q = 0,

for example, then the deformation of the theorem is not cocommutative. If

dim(V) > l then the free algebra A is not commutative. In this case the

deformation of the theorem is not commutative.

4 Deformations of bialgebras trees

In this section we give an example from [4] involving biaigebras of trees to

which Theorem l applies. Let k be a field of characteristic 0. Let 7- be the

set of finite rooted trees, and let k{T} be the k-vector space which has 7-
as a basis.

We first define a coalgebra structure on k{7-}. If t E 7- is a tree whose

root has children sl, ..., st, the coproduct A(t) is the sum of the 2 r terms

tl®t2, where the children of the root of Q and the children of the root oft2

range over all 2_ possible partitions of the children of the root of t into two

subsets. The map e which sends the trivial tree to 1 and every other tree

to 0 is a counit for this coproduct. It is easy to see that comultiplication is
cocommutative.

We now define an algebra structure on k{7-}. Suppose that tl, t2 G 7

are trees. Let Sl, ..., s. be the children of the root oftl. If t2 has n+ 1

nodes (counting the root), there are (n+ 1) _ ways to attach the r subtrees of

tl which have sl, ..., s_ as roots to the tree t2 by making each si the child of

some node oft2. The product tit2 is defined to be the sum of these (n+ I) r

trees. It turns out that this product is associative, and that the trivial tree

e consisting only of the root is a right and left unit. It can also be shown



that the mapsdefiningthecoalgebrastructurearealgebrahomomorphisms,
sothat A = k{7"} is a bialgebra.

For technical reasons, we require that nodes of the tree be ordered. We

say that a rooted finite tree is ordered in case there is a partial ordering

on the nodes such that the children of each node are non-decreasing with

respect to the ordering. To define the product of two ordered trees tl and

t2, compute the product of the underlying trees, and order the nodes in the

product so that the nodes which originally belonged to each tree retain the

same relative order to each other, but all the nodes that orginally belonged

to tl are greater in the ordering than the nodes that originally belonged to
t2.

Let X be the set of of trees whose root has one child. Then A

k<I(X)> as an algebra [4]. Applying Theorem 1 yields a bialgebra de-
formation At of A which is neither commutative nor cocommutative.
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