NASA PATENT ABSTRACTS BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY
SECTION 2 INDEXES
This supplement is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, price code A24.
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 154 citations published in this issue of the Abstract Section cover the period January 1991 through June 1991. The Index Section references over 5000 citations covering the period May 1969 through June 1991.

ABSTRACT SECTION (SECTION 1)

This PAB issue includes 10 major subject divisions separated into 76 specific categories and one general category/ division. (See Table of Contents for the scope note of each category, under which are grouped appropriate NASA inventions.) This scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in order of the ascending NASA Accession Number originally assigned for STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside front cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

- NASA Accession Number
- NASA Case Number
- Inventor's Name
- Title of Invention
- U.S. Patent Application Serial Number
- U.S. Patent Number (for issued patents only)
- U.S. Patent Office Classification Number(s) (for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
INDEX SECTION (SECTION 2)

The Index Section is divided into five indexes. These indexes are cross-indexed and are used to locate a single invention or groups of inventions.

**Subject Index:** Lists all inventions according to appropriate alphabetized technical term and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

**Inventor Index:** Lists all inventions according to alphabetized names of inventors and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

**Source Index:** Lists all inventions according to alphabetized source of invention (i.e., name of contractor or government installation where invention was made) and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

**Number Index:** Lists inventions in order of ascending (1) NASA Case Number, (2) U.S. Patent Application Serial Number, (3) U.S. Patent Classification Number, and (4) U.S. Patent Number and indicates the related Subject Category Number and the Accession Number.

**Accession Number Index:** Lists all inventions in order of ascending Accession Number and indicates the related Subject Category Number, the NASA Case Number, the U.S. Patent Application Serial Number, the U.S. Patent Classification Number, and the U.S. Patent Number.

**HOW TO USE THIS PUBLICATION TO IDENTIFY NASA INVENTIONS**

To identify one or more NASA inventions within a specific technical field or subject, several techniques are possible with the flexibility incorporated into the *NASA PAB*.

1. **Using Subject Category:** To identify all NASA inventions in any one of the subject categories in this issue of *NASA PAB*, select the desired Subject Category in the Abstract Section (Section 1) and find the inventions abstracted thereunder.

2. **Using Subject Index:** To identify all NASA inventions listed under a desired technical subject index term, (A) turn to the cumulative Subject Index in the Index Section and find the invention(s) listed under the desired technical subject term. (B) Note the indicated Accession Number and the Subject Category Number. (C) Using the indicated Accession Number, turn to the inside front cover of the Index Section to determine which issue of the Abstract Section includes the Accession Number desired. (D) To find the abstract of the particular invention in the issue of the Abstract Section selected, (1) use the Subject Category Number to locate the Subject Category and (2) use the Accession Number to locate the desired invention within the Subject Category listing.

3. **Using Patent Classification Index:** To identify all inventions covered by issued NASA patents (not including applications for patent) within a desired Patent Classification, (A) turn to the Patent Classification Number in the Number Index of Section 2 and find the associated invention(s), and (B) follow the instructions outlined in (2)(B), and (D) above.
A method for collection of fecal matter designed to operate efficiently in a zero gravity environment was invented. The system consists of a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of waste gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect fecal matter, scrub the waste collector area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple usages. Also a valve allows air to be drawn through the body, which keeps the valve from becoming plugged with the feces. A sheet feeder feeds fresh sheets of absorbent pads to a face of the piston with each actuation.

Official Gazette of the U.S. Patent and Trademark Office
Subject Categories
(1969 - 1973)

01 Aerodynamics
Includes aerodynamics of bodies, combinations, internal flow in ducts and turbomachinery; wings, rotors, and control surfaces. For applications see: 02 Aircraft; and 32 Space Vehicles. For related information see also: 12 Fluid Mechanics; and 33 Thermodynamics and Combustion.

02 Aircraft
Includes fixed-wing airplanes, helicopters, gliders, balloons, ornithopters, etc.; and specific types of complete aircraft; e.g., ground effect machines, STOL, and VTOL; flight tests; operating problems; e.g., sonic boom; safety and safety devices; economics; and stability and control. For basic research see: 01 Aerodynamics. For related information see also: 31 Space Vehicles; and 32 Structural Mechanics.

03 Auxiliary Systems
Includes fuel cells, energy conversion cells, and solar cells; auxiliary gas turbines; hydraulic, pneumatic and electrical systems; actuators; and inverters. For related information see also: 09 Electronic Equipment; 22 Nuclear Engineering; and 28 Propulsion Systems.

04 Biosciences
Includes aerospace medicine, exobiology, radiation effects on biological systems; physiological and psychological factors. For related information see also: 05 Biotechnology.

05 Biotechnology
Includes life support systems, human engineering; protective clothing and equipment; crew training and evaluation, and piloting. For related information see also: 04 Biosciences.

06 Chemistry
Includes chemical analysis and identification; e.g., spectroscopy. For applications see: 17 Materials, Metallic; 18 Materials, Nonmetallic; and 27 Propellants.

07 Communications
Includes communications equipment and techniques; noise; radio and communications blackout; modulation telemetry; tracking radar and optical observation; and wave propagation. For basic research see: 23 Physics, General; and 21 Navigation.

08 Computers
Includes computer operation and programming; and data processing. For applications, see specific categories. For related information see also: 19 Mathematics.

09 Electronic Equipment
Includes electronic test equipment and maintainability; component parts; e.g., electron tubes, tunnel diodes, transistors, integrated circuitry; microminiaturization. For basic research see: 10 Electronics. For related information see also: 07 Communications; and 21 Navigation.

10 Electronics
Includes circuit theory; and feedback and control theory. For applications see: 09 Electronic Equipment. For related information see specific Physics categories.

11 Facilities, Research and Support
Includes airports; lunar and planetary bases including associated vehicles; ground support systems; related logistics; simulators; test facilities; e.g., rocket engine test stands, shock tubes, and wind tunnels; test ranges; and tracking stations.

12 Fluid Mechanics
Includes boundary-layer flow; compressible flow; gas dynamics; hydrodynamics; and turbulence. For related information see also: 01 Aerodynamics; and 33 Thermodynamics and Combustion.

13 Geophysics
Includes aeronomy; upper and lower atmosphere studies; oceanography; cartography; and geodesy. For related information see also: 20 Meteorology; 29 Space Radiation; and 30 Space Sciences.

14 Instrumentation and Photography
Includes design, installation, and testing of instrumentation systems; gyroscopes; measuring instruments and gauges; recorders, transducers; aerial photography; and telescopes and cameras.

15 Machine Elements and Processes
Includes bearings, seals, pumps, and other mechanical equipment; lubrication, friction, and wear; manufacturing processes and quality control; reliability; drafting; and materials fabrication, handling, and inspection.

16 Masers
Includes applications of masers and lasers. For basic research see: 26 Physics, Solid-State.

17 Materials, Metallic
Includes cerments; corrosion; physical and mechanical properties of materials; metallurgy; and applications as structural materials. For basic research see: 06 Chemistry. For related information see also: 18 Materials, Nonmetallic; and 32 Structural Mechanics.

18 Materials, Nonmetallic
Includes corrosion; physical and mechanical properties of materials; e.g., plastics; and elastomers; hydraulic fluids, etc. For basic research see: 06 Chemistry. For related information see also: 17 Materials, Metallic; 27 Propellants; and 32 Structural Mechanics.
19 Mathematics
Includes calculation methods and theory; and numerical analysis. For applications see specific categories. For related information see also: 08 Computers.

20 Meteorology
Includes climatology; weather forecasting; and visibility studies. For related information see also: 13 Geophysics; and 30 Space Sciences.

21 Navigation
Includes guidance; autopilots; star and planet tracking; inertial platforms; and air traffic control. For related information see also: 07 Communications.

22 Nuclear Engineering
Includes nuclear reactors and nuclear heat sources used for propulsion and auxiliary power. For basic research see: 24 Physics, Atomic, Molecular, and Nuclear. For related information see also: 03 Auxiliary Systems; and 28 Propulsion Systems.

23 Physics, General
Includes acoustics, cryogenics, mechanics, and optics. For astrophysics see: 30 Space Sciences. For geophysics and related information see also: 13 Geophysics; 20 Meteorology; and 29 Space Radiation.

24 Physics, Atomic, Molecular, and Nuclear
Includes atomic, molecular and nuclear physics. For applications see: 22 Nuclear Engineering. For related information see also: 29 Space Radiation.

25 Physics, Plasma
Includes magnetohydrodynamics. For applications see: 28 Propulsion Systems.

26 Physics, Solid-State
Includes semiconductor theory; and superconductivity. For applications see: 16 Masers. For related information see also: 10 Electronics.

27 Propellants
Includes fuels; igniters; and oxidizers. For basic research see: 06 Chemistry; and 33 Thermodynamics and Combustion. For related information see also: 28 Propulsion Systems.

28 Propulsion Systems
Includes air breathing, electric, liquid, solid, and magnetohydrodynamic propulsion. For nuclear propulsion see: 22 Nuclear Engineering. For basic research see: 23 Physics, General; and 33 Thermodynamics and Combustion. For applications see: 31 Space Vehicles. For related information see also: 27 Propellants.

29 Space Radiation
Includes cosmic radiation; solar flares; solar radiation; and Van Allen radiation belts. For related information see also: 13 Geophysics; and 24 Physics, Atomic, Molecular, and Nuclear.

30 Space Sciences
Includes astronomy and astrophysics; cosmology; lunar and planetary flight and exploration; and theoretical analysis of orbits and trajectories. For related information see also: 11 Facilities, Research and Support; and 31 Space Vehicles.

31 Space Vehicles
Includes launch vehicles; manned space capsules; clustered and multistage rockets; satellites; sounding rockets and probes; and operating problems. For basic research see: 30 Space Sciences. For related information see also: 28 Propulsion Systems; and 32 Structural Mechanics.

32 Structural Mechanics
Includes structural element design and weight analysis; fatigue; thermal stress; impact phenomena; vibration; flutter; inflatable structures; and structural tests. For related information see also: 17 Materials, Metallic; and 18 Materials, Nonmetallic.

33 Thermodynamics and Combustion
Includes ablation, cooling, heating, heat transfer, thermal balance, and other thermal effects; and combustion theory. For related information see also: 12 Fluid Mechanics; and 27 Propellants.

34 General
Includes information of a broad nature related to industrial applications and technology, and to basic research; defense aspects; information retrieval; management; law and related legal matters; and legislative hearings and documents.
# TABLE OF CONTENTS

**Revised Subject Categories**
*(Includes 1974 and 1987 revisions)*

**AERONAUTICS** For related information see also Astronautics.

## 01 AERONAUTICS (GENERAL)

### 02 AERODYNAMICS
Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery. For related information see also 34 Fluid Mechanics and Heat Transfer.

### 03 AIR TRANSPORTATION AND SAFETY
Includes passenger and cargo air transport operations; and aircraft accidents. For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.

### 04 AIRCRAFT COMMUNICATIONS AND NAVIGATION
Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control. For related information see also 17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.

### 05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE
Includes aircraft simulation technology. For related information see also 18 Spacecraft Design, Testing and Performance and 39 Structural Mechanics. For land transportation vehicles see 85 Urban Technology and Transportation.

### 06 AIRCRAFT INSTRUMENTATION
Includes cockpit and cabin display devices; and flight instruments. For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.

### 07 AIRCRAFT PROPULSION AND POWER
Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft. For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.

### 08 AIRCRAFT STABILITY AND CONTROL
Includes aircraft handling qualities; piloting; flight controls; and autopilots. For related information see also 05 Aircraft Design, Testing and Performance.

### 09 RESEARCH AND SUPPORT FACILITIES (AIR)
Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands. For related information see also 14 Ground Support Systems and Facilities (Space).

**ASTRONAUTICS** For related information see also Aeronautics.

## 12 ASTRONAUTICS (GENERAL)
For extraterrestrial exploration see 91 Lunar and Planetary Exploration.

## 13 ASTRODYNAMICS
Includes powered and free-flight trajectories; and orbital and launching dynamics.

## 14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators. For related information see also 09 Research and Support Facilities (Air).

## 15 LAUNCH VEHICLES AND SPACE VEHICLES
Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles. For related information see also 20 Spacecraft Propulsion and Power.

## 16 SPACE TRANSPORTATION
Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques. For related information see also 03 Air Transportation and Safety and 18 Spacecraft Design, Testing and Performance. For space suits see 54 Man/System Technology and Life Support.

## 17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
Includes telemetry; space communications networks; astronavigation and guidance; and radio blackout. For related information see also 04 Aircraft Communications and Navigation and 32 Communications and Radar.

**N.A.**—no abstracts were assigned to this category for this issue.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls. For life support systems see 54 Man/Systems Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources. For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS

23 CHEMISTRY AND MATERIALS (GENERAL)

24 COMPOSITE MATERIALS
Includes physical, chemical, and mechanical properties of laminates and other composite materials. For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry. For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials. For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING
Includes space-based development of products and processes for commercial application. For biological materials see 55 Space Biology.

ENGINEERING For related information see also Physics.

31 ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications. For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety, and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry. For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling. For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY
Includes remote sensors; measuring instruments and gauges; detectors; cameras and photographic supplies; and holography. For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS
Includes parametric amplifiers. For related information see also 76 Solid-State Physics.
37 MECHANICAL ENGINEERING
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS
Includes structural element design and weight analysis; fatigue; and thermal stress. For applications see 05 Aircraft Design, Testing and Performance and 18 Spacecraft Design, Testing and Performance.

GEOSCIENCES For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL)

43 EARTH RESOURCES AND REMOTE SENSING
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography. For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism. For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY
Includes weather forecasting and modification.

48 OCEANOGRAPHY
Includes biological, dynamic, and physical oceanography; and marine resources. For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES

51 LIFE SCIENCES (GENERAL)

52 AEROSPACE MEDICINE
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

53 BEHAVIORAL SCIENCES
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
Includes human engineering; biotechnology; and space suits and protective clothing. For related information see also 16 Space Transportation.

55 SPACE BIOLOGY
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL)

60 COMPUTER OPERATIONS AND HARDWARE
Includes hardware for computer graphics, firmware, and data processing. For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS
Includes computer networks and special application computer systems.
63 CYBERNETICS
Includes feedback and control theory, artificial intelligence, robotics and expert systems. For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS
Includes topology and number theory.

PHYSICS For related information see also Engineering.

70 PHYSICS (GENERAL)
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.

71 ACOUSTICS
Includes sound generation, transmission, and attenuation. For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS
Includes elementary and nuclear particles; and reactor theory. For space radiation see 93 Space Radiation.

74 OPTICS
Includes light phenomena and optical devices. For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS
Includes magnetohydrodynamics and plasma fusion. For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS
Includes superconductivity. For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics. For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES

80 SOCIAL SCIENCES (GENERAL)
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography. For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation. For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.
SPACE SCIENCES For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL)

89 ASTRONOMY
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust. For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION
Includes planetology; and manned and unmanned flights. For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSICS
Includes solar activity, solar flares, solar radiation and sunspots. For related information see 93 Space Radiation.

93 SPACE RADIATION
Includes cosmic radiation; and inner and outer earth's radiation belts. For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL

Section 2 • Indexes

SUBJECT INDEX ................................................................. A-1
INVENTOR INDEX ............................................................. B-1
SOURCE INDEX ............................................................... C-1
CONTRACT NUMBER INDEX ............................................... D-1
NUMBER INDEX ............................................................... E-1
ACCESSION NUMBER INDEX ............................................. F-1
Typical Subject Index Listing

SUBJECT HEADING

<table>
<thead>
<tr>
<th>NOC</th>
<th>CASE NUMBER</th>
<th>SUBJECT CATEGORY</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>ABLATION</td>
<td>31</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>ABRASION</td>
<td>37</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>ABRASIVE</td>
<td>31</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>ABSORBENTS</td>
<td>57</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>ABSORPTION</td>
<td>35</td>
</tr>
</tbody>
</table>

The subject heading is a key to the subject content of the document. A brief description of the document, e.g., title, title plus a title extension, or notation of content (NOC), is included for each subject heading to index the subject heading context; these descriptions are arranged under each subject heading in ascending accession number order. The case number serves as the prime access number to the patent documents. The subject category number indicates the category in Section 1 (Abstracts) in which the patent citation and abstract are located. The accession number denotes the number by which the citation is identified under the subject category.
ACTUATOR DISKS
Cryogenic gyroscope housing — with annular disks for gas supply
[NASA-CASE-MFS-21360-1] c 37 N7-18322
Permanent magnet flux-biased magnetic actuator with flux feedback
[NASA-CASE-LAR-12785-1] c 70 N90-17403
Fluid-flow reaction system
[NASA-CASE-XMF-17290-1-CU] c 34 N90-26292
Multi-fingered robotic hand
ADAPTATION
Method and apparatus for telemetry adaptive bandwidth compression
[NASA-CASE-LEW-23169-1] c 26 N81-16209
Refractory coatings
[NASA-CASE-LAR-13169-2] c 26 N82-30071
Method of inserting predesigned diabond areas into composite laminates
[NASA-CASE-LEW-13169-1] c 24 N90-25197
ADAPTIVE TESTS
Apparatus for the determination of the existence or non-existence of a bonding between two members
[NASA-CASE-MFS-13566-1] c 15 N71-18132
ADHESIVE BONDING
Solar cell mounting Patent
[NASA-CASE-XMF-00400] c 03 N70-39898
Fixed axis mount Patent
[NASA-CASE-MFS-20249] c 15 N72-11386
ADHESIVES
ADJUSTING
Rapid, quantitative determination of bacteria in water — adhesive trap microorganisms
[NASA-CASE-GSC-12158-1] c 51 N83-27569

ADHESION
Stud-bonding gun
[NASA-CASE-MFS-20249] c 15 N72-11392
Improved refractory coatings — sputtered coatings on substrates that form refractory compounds
[NASA-CASE-LEW-23169-1] c 26 N81-16209
Refractory coatings
[NASA-CASE-LAR-13169-2] c 26 N82-30071
Method of inserting predesigned diabond areas into composite laminates
[NASA-CASE-LEW-13169-1] c 24 N90-25197

ADHESIVE MEMBRANE
In situ chemical bonding
[NASA-CASE-LAR-13225-1] c 27 N90-3175

ADJUSTABLE
Instrument support with precise lateral adjustment
Patent
[NASA-CASE-XMF-00400] c 14 N70-39898
Fixed axis mount
[NASA-CASE-MFS-20249] c 15 N72-11386

ADJUSTMENT
Instrument support with precise lateral adjustment
Patent
[NASA-CASE-XMF-00400] c 14 N70-39898
Fixed axis mount
[NASA-CASE-MFS-20249] c 15 N72-11386
SUBJECT INDEX

[A NASA-CASE-LAR-10323-1] c 12 N71-17573

[A-13]

[A-13]
A method and technique for installing light-weight fragile, high-speed rolling element bearings (NASA-CASE-NGT-03007-1)
CLEANING
d (dirt)
d Cleaning
Component without using multiple tethers

Objects in predetermined space relationship

Containerless processing

Retrodirective antenna array

Flared tube antenna

Antenna

Mechanism therefor

Pair

Chambers

Multiple reflection conical microwave antenna

Spine immobilization apparatus

Restraining mechanism

Structural panels

Foldable construction block

Foldable construction block

Ionospheric battery

Continuous wave lasers

Contamination

Containment

Continuous wave radar

Contour sensors

CONTINUOUS WAVE LASERS

CONTAMINATION

CONTAINMENT

CONTINUUM FLOW
DISTANCE MEASUREMENT EQUIPMENT

Binary coded sequence -- acquisition ranging system

[NASA-CASE-NPO-11194] c 08 N72-2509

Determining distance to lightning strokes from a single station


Terminal guidance and tracking system -- space shuttle coupling to orbiting satellites

[NASA-CASE-NPO-14521-1] c 37 N81-2751

Display system for measuring distance

[NASA-CASE-GSC-10009-2] c 36 N83-2691

Rotary target V-block

[NASA-CASE-GSC-12001-3] c 35 N84-16523

Method and apparatus for measuring distance

[NASA-CASE-MSC-20912-1] c 32 N86-2568

[DISTRIBUTION] (NASA-CASE-MSC-1848-1) c 35 N90-10415

DISTILLATION EQUIPMENT

Compact solar still Patent

[NASA-CASE-XMS-04533] c 15 N71-2306

Method and apparatus for distillation of liquids Patent

[NASA-CASE-XNP-08124-1] c 06 N73-13129

DISTILLED AMPLIFIERS

Cascaded complementary pair broadband transistor amplifiers Patent

[NASA-CASE-NPO-10003] c 10 N71-2641

DISTRIBUTED PROCESSING

Distributed multiprocessor memory architecture

[NASA-CASE-PRC-11414-1] c 60 N83-32342

Dynamic resource allocation scheme for distributed heterogeneous computer systems

[NASA-CASE-NPO-17191-1] C 62 N89-29976

Real-time simulation clock

[NASA-CASE-ARC-12465-1] c 35 N90-23713

Method of up-front load balancing for local memory parallel processors

[NASA-CASE-MSC-1348-1] c 62 N91-14769

Distributed computing system with dual independent communications paths between computers and employing split token


DISTRIBUTION (PROPERTY)

Thermoelectric amplifiers

[NASA-CASE-LEW-12443-1] c 44 N83-31275

DISTRIBUTORS

High voltage distributor

[NASA-CASE-GSC-11849-1] c 33 N76-16332

DIVERGENT NOZZLES

Aircraft liftmeter

[NASA-CASE-NPO-11409-1] c 06 N71-19932

Lithium counterdoped silicon solar cell

[NASA-CASE-LEW-14177-1] c 44 N86-32875

DOCTOR EFFECT

Doppler frequency spread correction device for multiplex transmissions

[NASA-CASE-XGS-02749] c 07 N69-39978

Laser Doppler system for measuring three dimensional vector velocity Patent

[NASA-CASE-MSC-20836] c 21 N71-29122

Doppler compensation by shifting transmitted object frequency within limits

[NASA-CASE-GSC-12607-1] c 07 N73-20174

Doppler shift system -- system for measuring velocities of radiating particles

[NASA-CASE-LEW-1740-1] c 72 N74-19310

Method and apparatus for Doppler frequency modulation of radiation

[NASA-CASE-NPO-14524-1] c 32 N80-24510

Swee memchnism for Doppler shift compensation in optical correlator for synthetic aperture radar

[NASA-CASE-NPO-14989-1] c 32 N83-18975
Basic electrical and electronic components and systems for vehicles and spacecraft.
ELECTRICAL RESISTANCE

A-50

PATENT

The patent text is not visible in the image.
ELECTROMAGNETIC SHIELDING

Electromagnetic drive for interferometers and the like

Electromechanical transducers

Electromagnetic transducers

Electromagnetic devices

Electromagnetic mirror drive system

Electromagnets

Electromechanical devices

ELECTRON BEAM WELDING

Split welding chamber Patent

Electron beam switching commutator Patent

Electron beam controller — using magnetic field to refocus spent electron beam in microwave oscillator tube

Electron beam commutator system Patent

Low energy electron magnetometer using a monoelectronic electron beam

Generation of intense negative ion beams

ELECTRON MICROSCOPES

Triode thermionic energy converter

Electron microscope system

Triode thermionic energy converter

Electromagnetic devices

Electromagnetic drive for interferometers and the like

Electromechanical devices

ELECTRON SCATTERING

Trophical analysis of scattered electrons in an merged electron-ion beam geometry

Electron-scattered analysis of an electron beam in forward direction

ELECTRON SOURCES

Triode thermionic energy converter

Electron-scattered analysis of a merged electron beam in forward direction

Doped Josephson tunnel junction (for use in a sensitive IR detector)

Three-phase power factor controller with induced EMF sensitization

Electromagnetic transmission process for the purification of molten silicon during crystal growth

ELECTROMIGRATION

Three-phase power factor controller

ELECTROMETERS

Induction heating gun

Electron gun

Sporadic variation in an electron beam excitation system

ELECTRON PHOTO CASCADES

Electromagnetic field detecting device

Electron photomultiplier

ELECTRON PHOTON CASCADES

Subject index

Electromagnetic drive for interferometers and the like

Electromechanical transducers

Electromagnetic transducers

Electromagnetic devices

Electromagnetic mirror drive system

Electromagnets

Electromechanical devices

ELECTRON BEAM WELDING

Split welding chamber Patent

Electron beam switching commutator Patent

Electron beam controller — using magnetic field to refocus spent electron beam in microwave oscillator tube

Electron beam commutator system Patent

Low energy electron magnetometer using a monoelectronic electron beam

Generation of intense negative ion beams

ELECTRON MICROSCOPES

Triode thermionic energy converter

Electron microscope system

Triode thermionic energy converter

Electromagnetic devices

Electromagnetic drive for interferometers and the like

Electromechanical devices

ELECTRON SCATTERING

Trophical analysis of scattered electrons in an merged electron-ion beam geometry

Electron-scattered analysis of an electron beam in forward direction

ELECTRON SOURCES

Triode thermionic energy converter

Electron-scattered analysis of a merged electron beam in forward direction

Doped Josephson tunnel junction (for use in a sensitive IR detector)

Three-phase power factor controller with induced EMF sensitization

Electromagnetic transmission process for the purification of molten silicon during crystal growth

ELECTROMIGRATION

Three-phase power factor controller

ELECTROMETERS

Induction heating gun

Electron gun

Sporadic variation in an electron beam excitation system

ELECTRON PHOTO CASCADES

Electromagnetic field detecting device

Electron photomultiplier

ELECTRON PHOTON CASCADES

Subject index

Hyperthermia heating apparatus — cancer therapy

Polarization of light by a function of the mechanical Q of the vibrating element Patent

Polarization of light by a function of the mechanical Q of the vibrating element Patent

Electromagnetic wave filters

Electromagnetic wave transmission

Electromagnetic shielding

ELECTROMAGNETISM

Electromagnetic wave filters

Electromagnetic wave transmission

Method and apparatus for determining electromagnetic characteristics of large surface area passive reflectors

Electromagnetic shielding

ELECTROMAGNETIC WAVE FILTERS

Electromagnetic wave filters

Electromagnetic wave transmission

Method and apparatus for determining electromagnetic characteristics of large surface area passive reflectors

Electromagnetic shielding

ELECTROMAGNETIC SHIELDING
ENGLISH CONTROL

ENGINE INLETS
Variably positioned guide vanes for aerodynamic choking
[NASA-CASE-LAR-10642-1] c 07 N74-31270
The engine air intake system
[NASA-CASE-ARC-10761-1] c 05 N77-18154
Self-stabilizing sonic inlet
[NASA-CASE-LEW-11880-1] c 05 N79-24976

ENGINE MONITORING INSTRUMENTS
System for monitoring the presence of neutrals in a stream of low Patent
[NASA-CASE-XNP-02592] c 24 N71-20518
Method and system for monitoring and displaying engine performance parameters
[NASA-CASE-LAR-14049-1] c 07 N9-23456

ENGINE NOISE
Variably positioned guide vanes for aerodynamic choking
[NASA-CASE-LAR-10642-1] c 07 N74-31270
Variably thinned nozzles for quiet turbopump engine and method of operating same
[NASA-CASE-LEW-12317-1] c 07 N78-17055
Fabricure tone elimination strut assembly -- air breathing engines
[NASA-CASE-FRC-11062-1] c 71 N82-16800
Optical combustion turbine jet engine
[NASA-CASE-ARC-10812-1] c 07 N83-33884

ENGINE PARTS
Gas turbine engine with convertible accessories
[NASA-CASE-LEW-12390-1] c 07 N78-17056
Gas path seal
[NASA-CASE-NPO-12131-3] c 37 N80-18400
Method of protecting a surface with a silicon-silurium/amidinate coating -- coatings for gas turbine engine blades and vanes
[NASA-CASE-LEW-13341-1] c 27 N82-29441
Thermal stress minimized, two component, turbine shroud seal
[NASA-CASE-LEW-14212-1] c 37 N89-23378
Composite piston
[NASA-CASE-LEW-12334-1] c 37 N89-23981

ENGINE STARTERS
Portable device for use in starting air-start-units for aircraft and marine diesel testing capability
[NASA-CASE-FRC-10113-1] c 33 N80-36599

ENGINE TESTS
Electric propulsion engine test chamber Patent
[NASA-CASE-XLE-00252] c 11 N70-34844

ENGINEERING DRAWINGS
High-temperature, high-pressure spherical segment valve Patent
[NASA-CASE-XAC-00074] c 15 N70-34817
Lifting body Patent Application
[NASA-CASE-FRC-10063] c 01 N71-12127

ENVIRONMENTAL CONTROL

ENVIRONMENTAL EXPOSURE

A-55
FLUID AMPLIFIERS

Technique for measuring gas conversion factors
[NASA-CASE-LAR-13205-1] c 34 N82-12547
Fluid flow meter for measuring the rate of fluid flow in a conduit
[NASA-CASE-MFS-28039-1] c 35 N82-25752
Fluid flow meter using fluid squeeze sensors
[NASA-CASE-LAR-13436-1-CU] c 02 N88-23759

FLUID FILMS

Jet fluid amplifier Patent
[NASA-CASE-XLE-03512] c 12 N69-21466
Multiway vortex valve system Patent
[NASA-CASE-XNP-04700] c 12 N71-15609
Shear-modulated fluid amplifier Patent
[NASA-CASE-MFS-10412] c 12 N71-15758
Conical valve plug Patent
[NASA-CASE-MFS-06101] c 12 N71-15758
Fluid pressure amplifier and system
[NASA-CASE-LAR-10704-1] c 28 N73-13773
Fluid pressure system - for liquid propellant rocket engines
[NASA-CASE-XMF-05941-1] c 20 N79-21124

FLUID DYNAMICS

Degassing and mixing apparatus for liquids — portable water for spacecraft
[NASA-CASE-MSC-19893-1] c 35 N83-29652

FLUID FILLED SHELLS

Method and apparatus for producing gas-filled hollow spheres — target pellets for inertial confinement fusion
[NASA-CASE-NPO-14596-1-C] c 31 N83-31866

FLUID FILMS

Journal bearings — for lubricant films
[NASA-CASE-LAR-11070-1] c 37 N74-21061
Journal bearing
[NASA-CASE-LAR-11070-4] c 37 N76-15461
Fluid motion
[NASA-CASE-LAR-11676-1] c 37 N76-22541

FLUID FILTERS

Liquid-gas separator for zero gravity environment Patent
[NASA-CASE-XMS-01482] c 05 N76-41297

FLUID FLOW

Air removal device — life support systems
[NASA-CASE-XNP-00732] c 28 N76-41447
Water separating system Patent
[NASA-CASE-XMC-14279] c 34 N75-33342
Quick disconnect filter coupling
[NASA-CASE-MFS-22233-1] c 34 N76-14463
Fluid sample collection and distribution system — qualitative analysis of aqueous samples from several points
[NASA-CASE-MSC-16864-1-C] c 34 N79-24285
Air removal device — life support systems
[NASA-CASE-XLA-08914-2] c 25 N82-21269
Bioreactor for monitoring and processing bacteria in water — adenosine triphosphate
[NASA-CASE-GSC-12158-1-CU] c 51 N83-27569

FLUID JET AMPLIFIERS

Conical valve plug Patent
[NASA-CASE-XNP-00732] c 28 N76-41447
Fluid valve assembly
[NASA-CASE-XMC-14279] c 34 N75-33342
Fluid pressure amplifier and system
[NASA-CASE-LAR-10704-1] c 28 N73-13773

FLUID JETS

Apparatus for establishing flow of a fluid mass having a known velocity
[NASA-CASE-MSC-28217-1] c 34 N89-14392

FLUID LOGIC

Apparatus for establishing flow of a fluid mass having a known velocity
[NASA-CASE-MSC-28217-1] c 34 N89-14392

FLUID MANAGEMENT

Shear modulated fluid amplifier Patent
[NASA-CASE-XLE-03512] c 12 N69-21466

FLUID MECHANICS

Apparatus for establishing flow of a fluid mass having a known velocity
[NASA-CASE-MSC-28217-1] c 34 N89-14392

FLUID PRESSURE

Positive isolation disconnect
[NASA-CASE-LEW-07363-2] c 35 N78-27700

FLUID TRANSMISSION LINES

Apparatus for establishing flow of a fluid mass having a known velocity
[NASA-CASE-MSC-28217-1] c 34 N89-14392

FLUID TRANSMISSION LINES

Leak detector Patent
[NASA-CASE-LAR-10323-1] c 12 N71-17573

FLUID TRANSMISSION LINES

Patent
[NASA-CASE-XLE-02351-1] c 35 N72-24740

HEAT MEASUREMENT
Thermal detector of electromagnetic energy by means of a vibrating electrode
[NASA-CASE-XAG-10766] c 09 N71-18830
Specific wavelength colorimeter — for measuring given solution concentration
[NASA-CASE-MSC-14081-1] c 35 N74-27860
Method and device for determining heats of combustion of gaseous hydrocarbons
HEAT OF COMBUSTION
Method and device for determining heats of combustion of gaseous hydrocarbons
HEAT OF VAPORIZATION
Pump—two phase heat transfer loop
[NASA-CASE-MSC-20841-1] c 34 N78-2250
HEAT FLUX
Heat flux sensor assembly
[NASA-CASE-XMS-05099] c 14 N69-27459
Heat flux measurement system Patent
[NASA-CASE-MFS-28217-1] c 34 N69-14035
Prebowed bellows flat contact heat exchanger interface
[NASA-CASE-MSC-21271-1] c 34 N90-21999
Heat exchanger with oscillating flow
[NASA-CASE-LAR-14033-1] c 34 N90-20770
Thermal power transfer system using applied potential difference to sustain operating pressure difference
[NASA-CASE-NPO-18031-1] c 44 N91-13796
HEAT RADIATORS
Capillary radiator Patent
[NASA-CASE-XAG-10037] c 33 N71-14055
Radiant deployment actuator Patent
[NASA-CASE-MSC-11817-1] c 15 N71-26611
Space simulation and radiative property testing system and method Patent
[NASA-CASE-MSC-11817-1] c 15 N71-26611
Space vehicle thermal rejection system
[NASA-CASE-LAR-13730-1] c 34 N90-23033
Convergent heat pipe pump
[NASA-CASE-LAR-13731-1] c 34 N90-23033
Convergent heat pipe pump
[NASA-CASE-MSC-11399-1] c 27 N80-25341
HEAT RESISTANT ALLOYS
High-temperature nickel-base alloy Patent
[NASA-CASE-XAG-11007] c 17 N70-33283
Nickel-base alloy Patent
[NASA-CASE-XAG-00283] c 17 N70-36816
High temperature superalloy Patent
[NASA-CASE-XAG-11389] c 17 N70-16052
Brazing alloy Patent
[NASA-CASE-XAG-11390] c 17 N70-16052
Method of forming superalloys
[NASA-CASE-LAR-10853-1] c 15 N73-13465
Method of making pressure tight super alloys
[NASA-CASE-LAR-11071-1] c 37 N74-11301
Method of forming articles of manufacture from superalloy powders
[NASA-CASE-LAR-10853-1] c 17 N70-33283
Method of forming superalloys
[NASA-CASE-LAR-10853-1] c 15 N73-13465
High-temperature superalloy Patent
[NASA-CASE-LAR-11071-1] c 37 N74-11301
Method of forming articles of manufacture from superalloy powders
[NASA-CASE-LAR-10853-1] c 17 N70-33283
Method of forming superalloys
[NASA-CASE-LAR-10853-1] c 15 N73-13465
HELMET MOUNTED DISPLAYS

HERMETIC SEALS

HELIUM IONS

HELMETS

HEMISPHERICAL SHELLS

HELIUM HYDROGEN ATMOSPHERES

A-76

HERMETICALLY SEALED ELECTRONIC DEVICES

HELMET MOUNTED DISPLAYS

HELMETS

HEMISPHERICAL SHELLS

HELIUM IONS

HELMET MOUNTED DISPLAYS

HERMETIC SEALS

HELIUM IONS

HELMETS

HEMISPHERICAL SHELLS

HELIUM HYDROGEN ATMOSPHERES

A-76

HERMETICALLY SEALED ELECTRONIC DEVICES
All-optical photographic spatial light modulators based on photoinduced electron transfer in rigid matrices

【NASA-CASE-NPC-17612-1-CU】 c 74 N90-27487

Control system for ruing blazed, aberration corrected diffraction gratings

【NASA-CASE-GSC-13240-1】 c 35 N91-13692

Real-time dynamic holographic image storage device

【NASA-CASE-LAR-13680-1】 c 35 N91-13694

HOMING DEVICES
Location and navigation system

【NASA-CASE-ERC-10224】 c 07 N72-25173

HONEYCOMB CORES
Method of forming inflatable honeycomb Patent

【NASA-CASE-XLA-02349】 c 15 N71-22713

Method of forming shapes from planar sheets of thermosetting materials

【NASA-CASE-NPO-11036】 c 15 N72-25452

Honeycomb core structures of minimal surface tube sections

【NASA-CASE-ERC-10636】 c 18 N72-25541

HONEYCOMB STRUCTURES
Method for making a heat insulating and ablative structure

【NASA-CASE-XMS-01106】 c 15 N69-24322

Inflatable honeycomb Patent

【NASA-CASE-XLA-00204】 c 32 N70-36539

Fluid flow control valve Patent

【NASA-CASE-XLE-00703】 c 15 N71-15987

Method and apparatus for making a heat insulating and ablative structure

【NASA-CASE-XMS-00209】 c 20 N71-20034

Honeycomb panel and method of making same Patent

【NASA-CASE-XMF-04002】 c 18 N71-21651

Cryogenic thermal insulation Patent

【NASA-CASE-XMF-05043】 c 20 N71-28892

Honeycomb panels formed of minimal surface periodic tube layers

【NASA-CASE-ERC-10364】 c 18 N72-25540

Structural or repairing parts

【NASA-CASE-MSC-12557】 c 15 N73-12489

Inert facing tool — manually operated cutting tool for forming slots in honeycomb material

【NASA-CASE-MFS-21485-1】 c 37 N74-25968

Vacuum pressure molding technique

【NASA-CASE-LAR-10971-1】 c 26 N76-24575

Honeycomb-laminate composite structure of Patent

【NASA-CASE-ARC-10913-1】 c 24 N78-15180

Method of making a composite sandwich laminate structure

【NASA-CASE-LAR-11898-2】 c 24 N78-17149

Low density bismaleimide-carbon microballoon composites

【NASA-CASE-ARC-11040-1】 c 24 N79-16015

Ceramic honeycomb structures and the method thereof

【NASA-CASE-ARC-11652-1】 c 27 N78-23737

HOOKS
Two fold tolerant toggle-hook release

【NASA-CASE-MSC-26217-1】 c 37 N81-13723

HOOP COLUMN ANTENNAS
Latching mechanism for deployable/re-stowable columns used in satellite deployment

【NASA-CASE-LAR-12169-1】 c 17 N66-25791

Antenna surface contour control system

【NASA-CASE-LAR-12786-1】 c 32 N79-25363

HOPPERS
Energy efficient continuous flow ash lockhopper

【NASA-CASE-NPO-18819-1-CU】 c 31 N81-15423

HORIZON SCANNERS
Electromagnetic mirror drive system

【NASA-CASE-XLA-03724】 c 14 N58-27461

Multi-beam scan horizon sensor Patent

【NASA-CASE-XMS-XG-00805】 c 21 N70-36547

Attitude, orientation of a highly stabilized space vehicles

【NASA-CASE-XMG-00201】 c 21 N70-36943

Amplifier clamping circuit for horizon scanner Patent

【NASA-CASE-XGS-01784】 c 10 N71-20782

Horizon scanner Patent with a plurality of finely positioned radiation compensated radiation sensitive detectors

【NASA-CASE-XNP-06221】 c 17 N71-21088

Infrared horizon locator

【NASA-CASE-LAR-10726-1】 c 14 N73-20475

HORIZONTAL CURVATURE LANDING
Variable-frequency varied reentry vehicle Patent

【NASA-CASE-XLA-02241】 c 31 N70-37086

HORIZONTAL TAIL SURFACES
Translating horizontal tail Patent

【NASA-CASE-XLA-08801-1】 c 02 N71-11043

HORN ANTENNAS
Antenna beam-shaping apparatus Patent

【NASA-CASE-XNP-00611】 c 09 N70-35219

Parabolic reflector horn feed with spillover correction Patent

【NASA-CASE-XNP-00540】 c 09 N70-35382

Horn feed having overlapping apertures Patent

【NASA-CASE-GSC-10452】 c 07 N71-12966

Dual mode horn antenna Patent

【NASA-CASE-ERC-10901】 c 07 N71-15907

Multipurpose antenna employing dish reflector with plural coaxial horn feeds

【NASA-CASE-XLE-10402-1】 c 32 N78-25324

Dual band horn antenna

【NASA-CASE-NPO-14519-1】 c 32 N80-23524

Collapsible corrugated horn antenna

【NASA-CASE-LAR-11121-1】 c 32 N80-29535

Multifrequency broadband polarized horn antenna

【NASA-CASE-NPO-14588-1】 c 32 N81-25278

HOSES
Self-contained, single-use hose and tubing cleaning module

【NASA-CASE-MSC-20857-1】 c 37 N87-17035

HOT CATHODES
Ion thruster cathode

【NASA-CASE-XLE-00878】 c 06 N69-39868

HOT CORROSION
Catalytic hot corrosion resistant alloy

【NASA-CASE-LEW-14134-1】 c 26 N88-14303

HOT DEFORMATION ALLOYS
One step HIP canning of powder metallurgy composites

【NASA-CASE-NPO-17141-1】 c 24 N90-23493

Process for HIP canning of composites

【NASA-CASE-LAR-14999-1-CU】 c 24 N91-17145

HOT PRESSING
Method of making a cement Patent

【NASA-CASE-LAR-10291-1】 c 18 N71-28729

Holding fixture for a hot stamping press

【NASA-CASE-GSC-12619-1】 c 37 N84-12491

HOT WORKING
Method for forming plastic materials Patent

【NASA-CASE-XMS-05516】 c 15 N71-17803

HOT-FILM ANEMOMETERS
Crossflow velocity sensor

【NASA-CASE-LAR-13436-1-CU】 c 02 N88-23759

Method of forming a multiple layer dielectric and a hot film sensor therewith

【NASA-CASE-LAR-13876-1】 c 76 N90-24166

HOT-WIRE ANEMOMETERS
Metallic hot wire anemometer — for high speed wind tunnel tests

【NASA-CASE-ARC-10911-1】 c 35 N77-20400

Method for making a hot wire anemometer and product thereof

【NASA-CASE-LAR-10900-1】 c 35 N77-24454

HOT-WIRE LEVELMETERS
Hot wire liquid level detector for cryogenic fluids Patent

【NASA-CASE-XLE-00454】 c 23 N71-17802

Flow separation point

【NASA-CASE-LAR-11046-1】 c 35 N78-14364

Hot foil transducer skin friction sensor

【NASA-CASE-LAR-12351-1】 c 35 N82-24470

HOUSINGS
Seated cabinetry Patent

【NASA-CASE-MSC-12169-1】 c 09 N71-18600

Open type urine receptacle

【NASA-CASE-MSC-12304-1】 c 05 N72-20093

Universal environment package with sectional component Patent

【NASA-CASE-KSC-10003】 c 15 N72-22486

Gas flow control device

【NASA-CASE-MSC-20910-1】 c 15 N73-13452

Cryogenic gyroscope housing — with annular disks for gas spin-up

【NASA-CASE-MFS-21136-1】 c 35 N74-18323

Heat transfer device

【NASA-CASE-NPO-11264】 c 07 N72-25363

Deformable bearing seat

【NASA-CASE-NPO-14022-1】 c 32 N78-31321

Heat transfer device

【NASA-CASE-MSC-20910-1】 c 37 N87-25582

Reflex feed system for dual frequency antenna with frequency cutoff means

【NASA-CASE-MSC-22517-1】 c 35 N76-18402

Conical horn feed having overlapping apertures Patent

【NASA-CASE-XLA-00889】 c 32 N78-25324

Selectively tuning spin chutes system

【NASA-CASE-LAR-14322-1】 c 02 N91-15138

Rolling friction robot fingers

【NASA-CASE-GSC-12619-1】 c 37 N81-17401

MOVING
Gravity stabilized flying vehicle Patent

【NASA-CASE-MSC-12111-1】 c 02 N71-11039

SUBJECT INDEX
IMPLANTED ELECTRODES (BIOLOGY)

Pocket ECG electrode
[NASA-CASE-ARC-11258-1] c 52 N80-33081
Subcutaneous electrode structure
[NASA-CASE-ARC-11117-1] c 52 N81-14612
Implantable electrical device
[NASA-CASE-ARC-12550-1] c 52 N82-29860

IMPOSITION
Hypervelocity gun Patent
[NASA-CASE-ARC-05902] c 11 N71-18578

IMPREGNATION
Composite laminate method
[NASA-CASE-ARC-12015-1] c 24 N76-17150
Insoluble polyethylene and ion-exchange hollow fiber
impregnated therewith
High temperature silicon carbide impregnated insulating
fabrics
[NASA-CASE-MSC-16832-1] c 27 N83-16908
Continuous fiber thermoplastic prepreg
[NASA-CASE-LAR-14499-1] c 24 N91-15334

IMPURITIES
Silicon material for solar cells
[NASA-CASE-MSC-12442-2] c 33 N90-20282
Reactor systems
[NASA-CASE-XGS-08121-1] c 09 N72-24526

IN-CRUSH DEFORMED THUNDER
High impact pressure regulator Patent
[NASA-CASE-NPO-14831-1] c 09 N77-26800

IN-CRUSH MACHINES
Low noise tuned amplifier
[NASA-CASE-ARC-12567-1] c 33 N84-22867
Power supply conditioning circuit
[NASA-CASE-NPO-17220-1-CU] c 33 N88-29905
Microstrip field effect transistor
[NASA-CASE-GSC-12442-2] c 33 N90-20282
Noninvasive method and apparatus for monitoring the
curves of vacuum deposit materials
[NASA-CASE-LAR-13465-1] c 27 N90-23544

IN-DUCTANCE
Insoluble polyelectrolyte and ion-exchange hollow fiber
impregnated therewith
[NASA-CASE-MSC-16832-1] c 27 N83-16908
Continuous fiber thermoplastic prepreg
[NASA-CASE-LAR-14499-1] c 24 N91-15334
LIQUID SLOSHING

- Liquid SODIUM
- Liquid SLOSHING
- LIQUID-SOLID INTERFACES
- LIQUIDS

- Patent
- Method of making same

- A-94
- Patent
- Force measuring instrument

- [NASA-CASE-XNP-0234] c 20 N90-26305
- Force-balanced, throttle valve

- Patent
- Liquid metal impervious barrier

- [NASA-CASE-XMS-01624] C 15 N71-19569
- [NASA-CASE-XLA-05749] c 15 N71-19569
- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910

- Patent
- Load relieving device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Force-balanced, throttle valve

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load relieving device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load relieving device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load relieving device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device

- [NASA-CASE-XNP-01747] c 15 N71-23024
- [NASA-CASE-XNP-00610] c 28 N70-36910
- [NASA-CASE-XLA-01499] c 15 N71-19569
- [NASA-CASE-XLA-0405] c 15 N71-19569

- Patent
- Load bearing device
MAGNETIC DISKS
MAGNETIC FILMS
MAGNETIC LENSES
MAGNETIC STORAGE
MAGNETIC TAPE TRANSPORTS
MAGNETIC TAPES
MAGNETIC MEASUREMENTS
MAGNETIC MATERIALS
MAGNETIC PERMEABILITY
MAGNETIC POLES
MAGNETIC POWER
MAGNETIC RESONANCES
MOLECULAR SPECTROSCOPY

instrumentation for sensing moisture content of material using a transient thermal pulse
【NASA-CASE-NPO-15494-1】 c 35 N82-25464
Instrumentation for sensing moisture content of material using a transient thermal pulse
【NASA-CASE-NPO-15494-1】 c 35 N82-25464
MOISTURE RESISTANCE
Process for improving moisture resistance of epoxy resins in addition of chromosome
【NASA-CASE-LAR-13226-1】 c 27 N85-34282
MOLDING MATERIALS
For making mold compounds Patent
【NASA-CASE-XLA-01091】 c 15 N71-10782
Method of making a molded connector Patent
【NASA-CASE-XMF-03498】 c 15 N71-15986
Hydraulic casting of liquid polymers Patent
【NASA-CASE-XNP-07659】 c 35 N84-34381
Hydroforming techniques using epoxy molds Patent
【NASA-CASE-XLE-05641-1】 c 27 N65-23646
Mold process for making composite polymers
【NASA-CASE-LAR-10547-1】 c 31 N74-13177
Evacuated displacement compression molding
【NASA-CASE-LAR-10782-1】 c 31 N74-14133
Molded composite pyrogon igniter for rocket motors — solid propellant Patent
【NASA-CASE-LAR-12081-1】 c 20 N78-24275
Method of making a rocket nozzle
【NASA-CASE-XMF-06884-1】 c 20 N79-21123
MOVING
Apparatus for making curved reflectors Patent
【NASA-CASE-XLE-08971-1】 c 15 N71-24636
Technique of duplicating fragile core
【NASA-CASE-XLA-07826-1】 c 15 N71-16329
Evacuated displacement compression molding
【NASA-CASE-LAR-10498-1】 c 31 N74-14133
Molding apparatus — for thermostom plastic composition
【NASA-CASE-LAR-10498-1】 c 31 N74-32920
Evacuated, displacement compression mold — of tubular bodies from thermostom plastics
【NASA-CASE-LAR-10782-1】 c 31 N75-13111
Method of making an apertured casting using duplicating mold
【NASA-CASE-LAR-11191-1】 c 37 N76-23570
MOLECULAR BEAM EPITAXY
Fabrication of nanometer single crystal metallic CoSi2 structures on Si
【NASA-CASE-NPO-17736-1-CU】 c 76 N90-14755
Mold growth technology for high quality strained III-V layers
【NASA-CASE-NPO-17723-1-CU】 c 76 N90-26695
Growth of III-V films by control of MBE growth front
【NASA-CASE-XLE-05641-1】 c 35 N71-26346
MOLECULAR BEAMS
Molecular beam velocity selector Patent
【NASA-CASE-XLE-01533】 c 11 N71-10777
Diatomic infrared gasdynamic laser — for producing different wavelengths
【NASA-CASE-XLA-01091】 c 15 N71-15986
MOLECULAR RELAXATION
Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
【NASA-CASE-NPO-14657-1】 c 74 N81-17887
MOLECULAR ROTATION
Diatomic infrared gasdynamic laser — for producing different wavelengths
【NASA-CASE-XNP-07659】 c 36 N75-34373
MOLECULAR SPECTRA
Correlation spectrometer having high resolution and multiplexing capability
【NASA-CASE-NPO-15558-1】 c 35 N84-34705
MOLECULAR SPECTROSCOPY
Dual resonant cavity absorption cell Patent
【NASA-CASE-XNP-07659】 c 36 N75-34373
Supersonic tan blading — noise reduction in turbofan engines
[NASA CASE-LEW-11402-1] c 07 N74-29226
Variable-positioned guide vanes for aeroengine choking
[NASA CASE-LAR-15842-1] c 07 N74-31270
Nonadiabatic conditions — for turbofan engine incorporating annular acoustically porous elements in exhaust and intake ducts
[NASA CASE-LAR-11411-1] c 07 N74-32418
Absorbing exhaust noises in jet engines
[NASA CASE-ARC-10712-1] c 07 N74-33218
Passing through a noise degrading device
[NASA CASE-MSC-26607-1] c 32 N75-21428
Cascade plug — noise reducing jet noise reduction
[NASA CASE-LAR-11674-1] c 07 N76-18117
Apparatus for reducing aerodynamic noise in a wind tunnel
[NASA CASE-MFS-23099-1] c 09 N76-23723
Optical noise suppression device and method — laser light-exposing film
[NASA CASE-MSC-12640-1] c 07 N76-31569
Variable thrust nozzle for quiet turbofan engine and method of operating
[NASA CASE-LEW-12311-1] c 07 N76-17055
Magnetooptical detection system with noise cancellation
[NASA CASE-NPO-11954-1] c 35 N78-29421
Totally confined explosive welding
[NASA CASE-LAR-10961-1] c 37 N78-13384
Sound-suppressing structure with thermal relief
[NASA CASE-LEW-12856-1] c 71 N78-14871
Nonflamable exhaust liner — nozzle reduction for stationary engines
[NASA CASE-ARC-11106-1] c 05 N80-14107
Support assembly for cryogenically cooled low-noise aircooled reciprocating engine
[NASA CASE-NPO-14253-1] c 32 N80-32005
Curved centerline air intake for a gas turbine engine
[NASA CASE-LEW-12301-1] c 07 N81-14909
Multiple pure tone elimination strut assembly — air breathing engine
[NASA CASE-FRC-11092-1] c 71 N82-16800
Brass shroud
[NASA CASE-LAR-12883-1] c 71 N83-17235
Noise suppressor for turbo fan jet engines
[NASA CASE-LAR-10812-1] c 07 N83-33884
Apparatus for jet noise suppression
[NASA CASE-LAR-11903-2] c 07 N84-14873
Phase sensitive guidance sensor for wire-following vehicle
[NASA CASE-MFS-15341-1] c 35 N84-33769
Comparator with noise suppression
[NASA CASE-LAR-13151-1] c 33 N87-21235
Sound attenuation apparatus
[NASA CASE-LAR-13998-1] c 71 N90-15710
Piezoelectric attenuator
[NASA CASE-MFS-28639-1] c 34 N91-14563
NOISE TEMPERATURE
Method and means for providing an absolute power measurement capability Patent
[NASA CASE-ERC-11020] c 14 N71-26774
NOISE THRESHOLD
Frequency modulation demodulator threshold extension device
[NASA CASE-MSC-12165-1] c 07 N71-33638
NONADIABATIC CONDITIONS
Dissipation and surface resistivity
[NASA CASE-LEW-1877-1] c 34 N78-27357
NONDESTRUCTIVE TESTS
Determination of spot weld quality Patent
[NASA CASE-XNP-02558] c 15 N71-18613
Space simulator Patent
[NASA CASE-NPO-12141] c 11 N71-24964
Apparatus for inspecting microminiature Patent
[NASA CASE-MFS-20240] c 14 N71-25768
Dye penetrant for surfaces subsequently contacted by liquid oxygen Patent
[NASA CASE-XMF-02221] c 18 N71-27170
Micro device for detecting voids in low density material Patent
[NASA CASE-MFS-20044] c 14 N71-29939
Holothrophic system for nondestructive testing
[NASA CASE-MFS-21704-1] c 35 N75-25124
Method and apparatus for nondestructive testing of pressurized vessels
[NASA CASE-NPO-12142-1] c 38 N76-28563
Non-destructive method for applying and removing instantaneously hardening hot toilet blades
[NASA CASE-LAR-11201-1] c 35 N76-24515
Hybrid holographic non-destructive test system
[NASA CASE-MFS-21144-1] c 37 N76-32447
Insulation bonding test system
[NASA CASE-MFS-25682-1] c 37 N85-20126
And apparatus for mapping the distribution of chemical elements in an extended medium
[NASA CASE-GSC-12081-1] c 25 N85-21279
OUTER PLANETS EXPLORERS
OSCILLATORS
PARASITIC suppressing circuit
[ NASA-CASE-ERC-10403 ]
[ 10 N73-26228 ]
Stabilization and oscillation of an acoustically isolated object
[ NASA-CASE-NPO-10686-1-CU ]
[ 71 N89-13236 ]
OSCILLATORS
Electromagnetic mirror drive system
[ NASA-CASE-XLA-03724 ]
[ 14 N69-27461 ]
Frequency control network for a current feedback oscillator
[ NASA-CASE-GSC-10541 ]
[ 10 N71-19418 ]
Static phase detector
[ NASA-CASE-XGS-05299 ]
[ 09 N71-19470 ]
Radio system utilizing voltage controlled oscillators
[ NASA-CASE-XMF-04387 ]
[ 09 N71-23545 ]
Pneumatic oscillator
[ NASA-CASE-LEW-10345 ]
[ 10 N70-25669 ]
Variable energy oscillator with temperature compensation
[ NASA-CASE-ENL-11916 ]
[ 09 N70-28810 ]
Inverter oscillator with voltage feedback
[ NASA-CASE-NPO-10760 ]
[ 09 N72-25254 ]
Controlled oscillator system with a time dependent output frequency
[ NASA-CASE-NPO-11962 ]
[ 33 N74-10194 ]
Low noise oscillator with complementary transistors
[ NASA-CASE-GSC-11513 ]
[ 33 N74-20662 ]
LC-oscillator with automatic stabilized amplitude via bias current control — power supply circuit for transducers
[ NASA-CASE-MFS-21698 ]
[ 33 N74-26732 ]
Frequency modulated oscillator
[ NASA-CASE-MFS-21881 ]
[ 33 N77-17521 ]
Distribution feedback acoustic surface wave oscillator
[ NASA-CASE-NPO-13673 ]
[ 71 N77-28919 ]
Digitally controlled oscillator
[ NASA-CASE-MSC-16747 ]
[ 33 N81-17349 ]
Laser Resonator
[ NASA-CASE-12555 ]
[ 36 N84-14509 ]
Ladder supported ring bar circuit
[ NASA-CASE-LEW-13570 ]
[ 33 N84-16452 ]
Dielectric based subminiature backward wave oscillator circuit
[ NASA-CASE-LEW-13736 ]
[ 33 N84-27974 ]
JET frequency oscillator
[ NASA-CASE-GSC-12555 ]
[ 33 N86-19151 ]
JET frequency oscillator
[ NASA-CASE-GSC-12158 ]
[ 33 N86-32024 ]
Low phase noise oscillator using two parallel connected amplifiers
[ NASA-CASE-12101 ]
[ 33 N87-21232 ]
Programmable electronic synthesized oscillator
[ NASA-CASE-NPO-16544 ]
[ 33 N87-22053 ]
Reflection oscillators employing series resonant crystals
[ NASA-CASE-13173 ]
[ 33 N90-23635 ]
Modified fast frequency acquisition via adaptive least squares algorithm
[ NASA-CASE-NPO-17845-1-CU ]
[ 61 N90-27341 ]
OSCILLATORS
Waveform simulator Patent
[ NASA-CASE-MFS-10251 ]
[ 10 N70-27365 ]
Method and apparatus for mapping the sensitivity of the face of a photodetector specifically a PMT
[ NASA-CASE-LAR-10230 ]
[ 25 N71-23712 ]
Exposure interlock for oscilloscope cameras
[ NASA-CASE-LAR-10319 ]
[ 14 N73-32222 ]
K-Y oscilloscope character generator for oscilloscopes
[ NASA-CASE-GSC-11562 ]
[ 33 N75-19157 ]
OUTER PLANETS EXPLORERS
Spectrometer integrated with a facsimile camera
[ NASA-CASE-LAR-11207 ]
[ 35 N75-19183 ]
OUTGASSING
Optical characteristics measuring apparatus Patent
[ NASA-CASE-MFS-08860 ]
[ 13 N71-16358 ]
Process for glass coating an ion accelerator grid Patent
[ NASA-CASE-LEW-10278 ]
[ 15 N73-28582 ]
Low outgassing polydimethylsiloxane material and preparation thereof
[ NASA-CASE-GSC-11358 ]
[ 06 N73-26100 ]
PIPE TUBES

Determining the accuracy of the flare on a flared tube

(SUBJECT INDEX)
POLYVINYL CHLORIDE

POLYVINYL ALCOHOL

POLYSACCHARIDES

SUBJECT INDEX


[NASA-CASE-ARC-11354-1] c 74 N83-21949

Two-dimensional scanner apparatus — flaw detector in small flat plates

[NASA-CASE-MFS-25687-1] c 35 N84-22298

Portable reflectance spectrometer

[NASA-CASE-NPO-13561-1] c 35 N84-33768

Portable pallet weighing apparatus

[NASA-CASE-GSC-12769-1] c 35 N85-20294

Portable remote laser sensor for methane leak detection


Portable 90 degree proof loading device

[NASA-CASE-MSC-20047-1] c 25 N86-15581

Acoustic guide for noise-transmission testing of aircraft

[NASA-CASE-LAR-13111-1-CU] c 71 N87-21652

PORTABLE LIFE SUPPORT SYSTEMS

Portable breathing system — a breathing apparatus using a rebreathing system of heat exchangers for carbon dioxide removal

[NASA-CASE-MSC-16128-1] c 54 N80-10799

PORTS (OPENINGS)

Evacuation port seal Patent

[NASA-CASE-XMF-03200] c 15 N71-23256

Safety shield for vacuum/pressure chamber viewing port

[NASA-CASE-GSC-12513-1] c 31 N81-19343

POSITION (LOCATION)

Position location apparatus and method Patent

[NASA-CASE-ARC-10007-2] c 21 N71-13958

Position location and data collection system and method Patent

[NASA-CASE-GSC-10067-2] c 21 N71-13958

Emergency escape system Patent

[NASA-CASE-XKS-07816-1] c 15 N71-20706

Location identification system

[NASA-CASE-GSC-10083-1] c 07 N72-12080

Location identification system

[NASA-CASE-GSC-10087-3] c 07 N72-12080

Location identification system

[NASA-CASE-ERC-10324] c 07 N72-25173

Cosmic dust or other similar outer space particles impact location detector

[NASA-CASE-GSC-11291-1] c 23 N72-33966

Collimator of multiple plates with axially aligned identical random arrays of apertures

[NASA-CASE-MFS-25046-2] c 14 N73-30389

Measuring probe position register

[NASA-CASE-LAR-10806-1] c 35 N74-32877

Vehicle locating system utilizing AM broadcasting station carriers

[NASA-CASE-NPO-12317-1] c 32 N75-26194

Impact position detector for outer space particles

[NASA-CASE-GSC-11829-1] c 35 N75-27331

Aircraft-mounted crash-activated transmission device

[NASA-CASE-MFS-16609-3] c 03 N76-32140

U-v/visible-light wave-reflective angle encoder with analog output signal

[NASA-CASE-ARC-10897-1] c 23 N77-31404

X-ray position detector

[NASA-CASE-NPO-12067-1] c 74 N81-19898

Adjustable indicating device for load position

[NASA-CASE-MFS-26008-1] c 35 N85-20200

Controlled sample orientation and rotation in an acoustic levitator

[NASA-CASE-NPO-17086-1-CU] c 35 N85-14422

Acoustic controlled rotation and orientation

[NASA-CASE-NPO-16995-1-CU] c 71 N90-12289

System and method for measuring ocean surface currents at locations remote from land masses using synthetic aperture radar

[NASA-CASE-GSC-17031-1-CU] c 43 N81-13787

Optical joint correlation for real-time tracking

[NASA-CASE-MSC-21505-1] c 74 N81-13987

Approximation focusing and positioning of a beam waist on a target

[NASA-CASE-ARC-11916-1-SB] c 74 N81-14002

Variable magnification grating monochromator x ray telescope

[NASA-CASE-MFS-26013-1] c 89 N81-14096

Aircraft mounted seismometer

[NASA-CASE-NPO-17511-1-CU] c 71 N81-14807

Remote object configuration/orientation determination

[NASA-CASE-GSC-17146-1-CU] c 35 N81-15512

POSITION INDICATORS

Scanning aspect sensor employing an apertured disc and a commutator

[NASA-CASE-XGS-08266] c 14 N69-27432

Angular measurement system Patent

[NASA-CASE-MSC-16128-1] c 54 N80-10799
PUNCHED

CONVOLVING DEVICE FOR FORMING CONVOLUTIONS AND THE LIKE

[PATENT NOS.]

PURGING

TECHNIQUES FOR INSULATING CYCLOGANIC FUEL CONTAINERS

[PATENT NOS.]

PYLONS

PUNCHES

PYROELECTRICITY

PYROLYSIS

A-134

SUBJECT INDEX

PUNCHES

CONVOLVING DEVICE FOR FORMING CONVOLUTIONS AND THE LIKE

[PATENT NOS.]

PURGING

TECHNIQUES FOR INSULATING CYCLOGANIC FUEL CONTAINERS

[PATENT NOS.]

PYLONS

PUNCHES

PYROELECTRICITY

PYROLYSIS

A-134

SUBJECT INDEX

PUNCHES

CONVOLVING DEVICE FOR FORMING CONVOLUTIONS AND THE LIKE

[PATENT NOS.]

PURGING

TECHNIQUES FOR INSULATING CYCLOGANIC FUEL CONTAINERS

[PATENT NOS.]

PYLONS

PUNCHES

PYROELECTRICITY

PYROLYSIS

A-134

SUBJECT INDEX
ROCKETS

Hydrogen fire detection system with logic circuit to analyze the spectrum of temporal variations of the optical spectrum

Rock drill for recovering samples

Rock sampling — apparatus for controlling particle size distribution

Rocks

ROD

Nuclear thermionic converter — tungsten-oxide rod

Roll alignment detector

ROLLER BEARINGS

Method of lubricating rolling element bearings Patent

Rolling friction robot fingers

ROLLING CONTACT LOADS

Rolling element bearings Patent

ROLLING CONTACT LOADS

Rolling element bearings Patent

ROOM TEMPERATURE

Coating process

Rotating cylinder

Rotection system

Rotors

ROTOR BORNE INSTRUMENTS

Scanning aspect sensor employing an apertured disc and a commutator

ROTOR WING AIRCRAFT

Control system aircraft

Roto-motor

Rotating body

ROTATING BODIES

Optical spin stabilizer

ROTATING COLUMNS

Variable force, eddy-current or magnetic damper

ROTATING CYLINDERS

Tread drum for animals — having an electrical shock station

ROTATING ELECTRICAL MACHINES

Foil seal

Rotating body

Rotomatic

Rotating mirror

ROTATING MIRRORS

Retrodirective modulator Patent

ROTATING PEDESTALS

Improved pedestal

ROTATING SHAFTS

Foil seal Patent

ROTATION

Axially and radially controllable magnetic bearing

ROTATING SPACE STATION SIMULATOR

Constant frequency output two stage induction machine systems Patent

ROTOR MECHANICS

Method of lubricating rolling element bearings Patent

ROTOR SYSTEMS

Variable component bearing Patent

ROTOR SYSTEMS

Variable component bearing Patent

ROTOR WINGS

Variable geometry rotor system

ROTOR WINGS

Variable geometry rotor system

ROTORLESS SYSTEMS

Dynamic control system for an electrically driven system

SUBJECT INDEX

Constant frequency output two stage induction machine systems Patent

ROTATING ENVIRONMENTS

Radial module space environment Patent

ROTATING GENERATORS

Rotating rater generator Patent

ROTATING MIRRORS

Retrodirective modulator Patent

SPRINTS

Nuclear thermionic converter — tungsten-thorium oxide

Spike drill for recovering samples

Semi-linear ball bearing Patent

SEMICONDUCTOR DETECTORS

Focal plane array detector

SENSOR SYSTEMS

Improved sensor system

SENSORS

Cryogenic anti-friction bearing with inner race

SENSORS

Cryogenic anti-friction bearing with inner race
SEMICONDUCTOR DIODES

Method of forming thin window drifted silicon charged particle detector
[NASA-CASE-XLE-00086] c 44 N83-20530
Method of measuring field funneling and range straggling in semiconductor charge-collecting junctions
[NASA-CASE-NPO-15654-1-CJ] c 76 N86-25269
Edge geometry superconducting tunnel junctions utilizing a N/Na/Mg/Na thin film structure
[NASA-CASE-NPO-17812-1-CJ] c 76 N90-17456

SEMICONDUCTOR LASERS

Filter optical sensing system
[NASA-CASE-LEW-14983-1] c 74 N90-15733

Field induced gap infrared detector

DEPOSITING SEMICONDUCTOR FILMS UTILIZING A THERMAL GRADIENT

System for improving signal-to-noise ratio of a communication signal Patent Application
[NASA-CASE-MSC-12259-1] c 70 N7-12616

HIGH EFFICIENCY MULTIVIBRATOR PATENT

Method of making impurity-type semiconductor electrical devices
[NASA-CASE-LEW-14983-1] c 74 N90-15733

Method of electrostatically binding a layer of semiconductors together Patent
[NASA-CASE-XLE-01016] c 26 N78-17813

Gd or Sm doped silicon semiconductor composition Patent
[NASA-CASE-NPO-16607-1-CU] c 76 N89-30076

VAPOR DEPOSITION APPARATUS -- SEMICONDUCTORS AND METAL MATERIALS

Quadrupole mass spectrometer
[NASA-CASE-LEW-14983-1] c 74 N90-15733
SOLAR ELECTRIC PROPULSION

Closed loop solar array-ion thruster system with power control
- [NASA-CASE-LEW-12780-1] c 20 N79-20179

SOLAR ENERGY

Solar cell arrays
- [NASA-CASE-NPO-11771] c 03 N73-20040

SOLAR ELECTRIC POWER SYSTEMS

Thermally controlled non-tracking type solar energy concentrator
- [NASA-CASE-MFS-13497-1] c 94 N76-14602

Solar photolysis of water
- [NASA-CASE-NPO-13857-1] c 94 N77-32580

Solar collector with tracking solar concentrator and method for making same
- [NASA-CASE-NPO-13736-1] c 94 N77-32583

Solar energy concentrator array and method
- [NASA-CASE-LAR-12009-1] c 94 N78-15500

Method for producing solar energy panels by automation
- [NASA-CASE-LEW-12541-1] c 94 N78-25529

Method for making an aluminium or copper substrate panel for selective absorption of solar energy
- [NASA-CASE-MFS-23518-1] c 94 N78-11469

Primary reflector for solar energy collection systems
- [NASA-CASE-NPO-13579-1] c 94 N78-14519

Method of construction of a multi-cell solar array
- [NASA-CASE-MFS-22962-1] c 94 N76-26455

Solar cell module
- [NASA-CASE-NPO-14467-1] c 94 N76-31753

Solar concentrator
- [NASA-CASE-NPO-15388-1] c 94 N76-24803

Saltless solar pond
- [NASA-CASE-NPO-15808-1] c 94 N76-34792

SOLAR ENERGY ABSORBERS

Panel for selectively absorbing solar thermal energy and the method of producing said panel
- [NASA-CASE-MFS-22562-1] c 94 N76-14955

Solar energy absorber
- [NASA-CASE-MFS-22744-1] c 94 N76-24956

Solar reflector
- [NASA-CASE-LEW-12587-1] c 94 N76-31601

Low cost solar energy collection system
- [NASA-CASE-RMS-13579-1] c 94 N76-17490

Electromagnetic radiation energy arrangement — coatings for solar energy absorption and infrared reflection

Aluminum or copper substrate panel for selective absorption of solar energy
- [NASA-CASE-MFS-23518-3] c 94 N80-16452

SOLAR ENERGY CONVERSION

Solar energy power system
- [NASA-CASE-MFS-21628-2] c 94 N76-23975

High velocity high current Schottky barrier solar cell
- [NASA-CASE-NPO-13482-1] c 94 N76-13526

Process for utilizing low-cost graphite substrates for polycrystalline solar cells

Solar photolysis of water, air and solar collector
- [NASA-CASE-NPO-14126-1] c 94 N79-11470

Solar concentrator
- [NASA-CASE-NPO-14058-1] c 94 N79-18443

Solar concentrator
- [NASA-CASE-NPO-14072-1] c 94 N78-14477

Copper doped polycrystalline silicon solar cell
- [NASA-CASE-NPO-14670-1] c 94 N81-19558

Solar energy control system — temperature measurement
- [NASA-CASE-MFS-25287-1] c 94 N82-18686

Solar engine
- [NASA-CASE-LAR-12148-1] c 94 N82-24640

Solar driven liquid metal MH power generator
- [NASA-CASE-LAR-12495-1] c 94 N83-28573

Thermochemical reaction electrodes
- [NASA-CASE-NPO-14548-1] c 94 N83-12262

Solar pumped laser
- [NASA-CASE-LAR-12870-1] c 94 N86-16452

Wind and solar powered turbine
- [NASA-CASE-NPO-14546-1] c 94 N86-20308

Solar energy converter using surface plasma waves
- [NASA-CASE-NPO-10231-1] c 94 N88-21768

Bidirectional control system for energy flow in solar powered flywheel
- [NASA-CASE-MFS-25078-1] c 94 N87-21410

SOLAR FLUX DENSITY

Solar energy modulator
- [NASA-CASE-NPO-15086-1] c 94 N88-22033

SOLAR FURNACES

High temperature lens construction Patent
- [NASA-CASE-XNP-04111] c 14 N71-15622
SONIC BOOMS
Instrumentation for measurement of aircraft noise and sonic boom
[NASA-CASE-LAR-11713-1] c 35 N75-19614
Instrumentation for measuring aircraft noise and sonic boom
[NASA-CASE-LAR-11476-1] 07 N76-27232

SORBATES
Apparatus for measuring a sorbate dispersed in a fluid stream
[NASA-CASE-ARC-10889-1] c 35 N78-19455

SORPTION
Regenerative Cu La zeolite supported desulfurizing sorbents
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176
Multicomponent gas sorption Joule-Thomson refrigerator
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176

SORF COEFFICIENT
Method of growing composites of the type exhibiting the Sorf effect — improved structure of eutectic alloy crystals
[NASA-CASE-MFS-22929-1] 24 N77-21767

SPATIONS
Two stage sorption type cryogenic refrigerator including reed gas sorption Joule-Thomson refrigerator
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176

SOUND ATTENUATION APPARATUS
Acoustic agglomeration methods and apparatus
[NASA-CASE-XMF-00641] c 31 N70-36410

SOUND CHARGE
Resolution enhanced sound detecting apparatus
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176

SOUND DEBRIS
Spacecraft spacecraft debris Patent
[NASA-CASE-MSC-21545-1] c 02 N95-32278

SOUND DESTRUCTION
Infrared detection apparatus
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176

SOUND EQUIPMENT
Diaphragm for detecting sound wave source
[NASA-CASE-LAR-11095-1] c 35 N74-16135

SOUND GENERATORS
Cosmic dust sensor
[NASA-CASE-LAR-11173-1] c 35 N75-19614
Acoustic suspension system
[NASA-CASE-XMF-00641] c 31 N70-36410
Acoustic agglomeration methods and apparatus
[NASA-CASE-NPO-17569-1-CU] c 31 N90-26176

SOUND LOCALIZATION
Resolution enhanced sound detecting apparatus
[NASA-CASE-NPO-14154-1] c 71 N79-23753

SOUND PRESSURE
Instrumentation for measurement of aircraft noise and sonic boom
[NASA-CASE-LAR-11713-1] c 35 N75-19614
Instrumentation for acoustic suspension
[NASA-CASE-LAR-11713-1] c 35 N75-19614
Differential sound level meter
[NASA-CASE-XMF-21061-1] c 71 N78-14667

SOUND PROPAGATION
System for plotting subsoil structure and method therefor
[NASA-CASE-NPO-14191-1] c 31 N90-32535
Sound attenuation apparatus
[NASA-CASE-LAR-11986-1] c 71 N90-15710

SOUND RANGING
Echo tracker/line finder for radars and sonars
[NASA-CASE-NPO-14281-1] c 32 N82-22376

SOUND TRANSDUCERS
Method for detecting hydrogen gas
[NASA-CASE-NPO-14281-1] c 32 N82-22376
Cosmic dust sensor
[NASA-CASE-GSC-10059-1] c 14 N69-39733

SOUND TRANSMISSION
Instrumentation for air traffic control
[NASA-CASE-NPO-15459-1] c 71 N75-19614
Vibration-chamber-lab systems
[NASA-CASE-NPO-16142-1-CU] c 35 N86-20752
Sound attenuation apparatus
[NASA-CASE-LAR-11986-1] c 71 N90-15710

SOUND WAVES
Phonocardiograph transducer Patent
[NASA-CASE-NPO-10565-1] c 14 N71-29993
Material suspension within an acoustically excited resonant chamber — at near weightless conditions
[NASA-CASE-NPO-13263-1] c 12 N75-24774
Acoustic energy shaping
[NASA-CASE-NPO-13800-1] c 12 N75-10873
Acoustic drive of a rotor
[NASA-CASE-NPO-14005-1] c 12 N75-20827
Acoustic bubble removal method
[NASA-CASE-NPO-15034-1] c 12 N75-20827
Acoustic ground hum device
[NASA-CASE-LAR-12299-1] c 35 N84-22933
Acoustic rotation control
[NASA-CASE-NPO-15689-1] c 12 N84-23233
Acoustic agglomeration methods and apparatus
[NASA-CASE-NPO-15686-1] c 12 N84-23233
Dual differential interferometer
[NASA-CASE-LAR-12996-1] c 35 N85-30282

A-158
Terminal guidance sensor system — space shuttle
coupling to orbiting satellites

Satellite guidance system

Apparatus for translator: ranging and second
object: ranging to determine relative position

Space station architecture, module, berthing hub, shell assembly, berthing mechanism and utility connection

Augmentation for automated docking

Alignment flexibility and restraint

Assembly, berthing mechanism and utility connection

Micrometeoroid detector

Docking system for spacecraft

Automatic thermal switch — spacecraft applications

Docking system for spacecraft

Electrical self-aligning connector — orbital servicer

Docking system for spacecraft

Docking mechanism for spacecraft

Standard remote manipulator system docking target

Docking mechanism for spacecraft

Docking system for spacecraft

Device for determining relative angular position between spacecraft and a radiator emitting celestial body

Space station architecture, module, berthing hub, shell assembly, berthing mechanism and utility connection

Micrometeoroid detector

Docking system for spacecraft

Docking mechanism for spacecraft

Docking system for spacecraft

Micrometeoroid detector

Docking system for spacecraft

Docking mechanism for spacecraft

Docking system for spacecraft

Docking mechanism for spacecraft
SUBMARINES
Low density bermelanzita-carbon microporous composites -- aircraft and submarine compartment safety

SUBMERGING
Leaky immersion apparatus for minute articles

SUBMILLIMETER WAVES
LASER CASE-LW-13570-1-c 33 N84-19452

SUBSTRATES
Sulfuric acid

SUBSONIC SPEED
Landing arrangement for aerospace vehicle Patent

SUBREFLECTORS
Millimeter-wave monolithic diole-grid frequency multiplexers

SUBMINIATURIZATION
Subreflecting device using planar logarithmic response heated flamedatory type diodes Patent

SUBMERGING
Composites — aircraft and submarine compartment

SUBSISTENCE
Submersible liquid inflatable structures

SUBSONIC WIND TUNNELS

SUBSTANCES
Nitrogen and hydrogen substances

SUBSTRATES
Heating panels

SUPERBATCH
Superbath exchanger apparatus for holding amount of metal to be sprayed in an electroplating bath

SUPERHEATING
Superheating of jet engine Patent

SUPERIMPOSED
Superimposed subreflecting device

SUPERCONDUCTIVITY
Superconducting accelerator Patent

SUPERCONDUCTING MAGNETS
Doped Josephson tunneling junction for use in a sensitive IR detector

SUPERCOOLING
Method and apparatus for supercooling and solidifying substances

SUPERCOUPONDR
Superconducting accelerometer Patent

SUPERCRITICAL FLUIDS
Method of producing high T(subc) superconducting MSN films

SUPERCRITICAL PRESURES
Oil shale extraction using super-critical solution

SUPERFLUIDITY
Superfluidity by superfuidity Patent

SUPERFLUIDITY
Method of producing high T(subc) superconducting NBN films

SUPERLATTICES
Superlattices

SULFIDES
Stable sulfur allotropic forms

SUM RULES
Stable sulfur allotropic forms

SULFUR DIOXIDES
Superconducting magnetic-field-trapping device

SUNLIGHT
Sun tracking solar energy collector

SULFURIC ACID
Sunlight illumination apparatus for compensating solar energy

SUPERLATTICE
Superlattices

SUPERPLASTICITY
Superplastically formed diffusion bonded metallic structures

SUPERPLASTICITY
Superplastically formed diffusion bonded metallic structures
Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths
[NASA-CASE-ARC-11584-1] c 27 N79-25469

Process for developing crystallinity in linear aromatic polyimides
[NASA-CASE-LAR-13732-1] c 27 N79-25474

Aromatic cydotriphosphazenes and their uses

Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis
[NASA-CASE-LAR-14322-1] c 25 N80-26040

Boron-containing organic polymers and ceramic materials thereof
[NASA-CASE-LAR-13992-1-CU] c 25 N80-13946

Polyimides containing alkylenediamine groups
[NASA-CASE-LAR-13601-1-CU] c 27 N79-14337

Novel cydotriphosphazene compositions based on 4,4'-isophthalamido/phenolic anhydride (IPDA)
[NASA-CASE-LAR-14184-1] c 24 N90-15148

Water-soluble polyimides containing acrylic side chains
[NASA-CASE-LAR-14162-1] c 27 N79-12529

Polyimides with carboxyl and other connecting groups between the arylene ether-phosphazene units
[NASA-CASE-LAR-14001-1] c 27 N79-15260

Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof
[NASA-CASE-LAR-13821-1] c 27 N79-16950

Novolak Condensation polymides containing 1,1,1-triaryl-2,2,2-trifluoroethane structures
[NASA-CASE-LEW-14346-1] c 27 N90-19300

Triazine-linked (diorganooxyphosphonyl)-methyl-2,4- and 2,6-diamino benzanes
[NASA-CASE-LAR-11245-4] c 27 N90-20133

Processes for making a noble metal on tin oxide catalyst
[NASA-CASE-LAR-13741-1-SB] c 25 N80-26541

Method for preparing a polarization filter for processing synthetic aperture radar image data
[NASA-CASE-NPO-17184-1-CU] c 27 N79-16711

Generalized polarization state
[NASA-CASE-NPO-17184-1-CU] c 27 N79-16737

Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar
[NASA-CASE-NPO-17381-1-CU] c 43 N79-16462

SYNTHETIC FIBERS
Fluid containers and reusable separtum system therefor
[NASA-CASE-NPO-10123] c 15 N79-24835

Fabric for membrane protection garment
[NASA-CASE-MSC-12109] c 18 N79-26285

Fluid impervious barrier including liquid metal alloy and method of making self-sealing article
[NASA-CASE-XNP-08881] c 17 N78-28747

Polymeric electrolyte hydromer
[NASA-CASE-NPO-13948-1] c 35 N78-25391

Process for spinning flame retardant elastomeric compositions -- fabricating synthetic fibers for high oxygen environment
[NASA-CASE-MSC-14331-3] c 27 N78-32282

Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith
[NASA-CASE-NPO-12530-1] c 25 N78-17187

SYNTHETICfuels
Molten salt pyrolysis of latex -- synthetic hydrocarbon fuel production utilizing the liquid salt slurry
[NASA-CASE-NPO-13530-1] c 24 N79-16475

SYNTHETIC RESINS
Coating process
[NASA-CASE-XNP-06508] c 18 N69-38985

Phosphorus-containing bisimide resins
[NASA-CASE-ARC-11321-1] c 27 N78-27272

Process for forming pyrrole molding powders and products of said method
[NASA-CASE-LAR-10423-1] c 27 N80-29358

Copolyimide with a combination of flexibilizing groups for use in making flame retardant molding compositions
[NASA-CASE-LAR-14319-1-CU] c 27 N78-20560

Acetylene terminated aspartimides and resins therefrom
[NASA-CASE-LAR-14186-1] c 27 N78-20956

Polyimides containing a dimethylamino-link diarylide
[NASA-CASE-LAR-14186-1] c 27 N78-20956

Polyimides containing bisimide resins
[NASA-CASE-ARC-11321-1] c 27 N78-27272

PHENOL-FORMALDEHYDE RESINS
Preparation of resins from bis(N-isocyanato) of vinyl diamides
[NASA-CASE-LAR-14330-1] c 27 N79-13560

Poly-N-phenylmaleimide

Ladder polymers for use as high temperature stable resin-coated materials
[NASA-CASE-LEW-14203-1] c 27 N79-15402

Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis
[NASA-CASE-LEW-14203-1] c 27 N79-15402

Novel polyimides containing a dimethylamino-link diarylide
[NASA-CASE-LEW-14203-1] c 27 N79-15402

SYNTHESIZERs
Doppler frequency controlled synthesizer Patent
[NASA-CASE-XGS-02317] c 09 N71-23525

SYNTHETIC APERTURE RADAR
Development of linear phase measuring system -- synthetic aperture radar measurements of ocean wave height and terrain peaks
[NASA-CASE-NPO-13862-1] c 35 N79-10391

Azimuth correlator for real-time synthetic aperture radar imaging process
[NASA-CASE-LAR-14019-1] c 35 N79-14268

Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths
[NASA-CASE-ARC-11584-1] c 27 N78-25469

Process for developing crystallinity in linear aromatic polyimides
[NASA-CASE-LAR-13732-1] c 27 N78-25474

Aromatic cydotriphosphazenes and their uses

Substituted 1,1,1-triaryl-2,2,2-trifluoroethanes and processes for their synthesis
[NASA-CASE-LAR-14322-1] c 25 N80-26040

Boron-containing organic polymers and ceramic materials thereof
[NASA-CASE-LAR-13992-1-CU] c 25 N80-13946

Polyimides containing alkylenediamine groups
[NASA-CASE-LAR-13601-1-CU] c 27 N79-14337

Novel cydotriphosphazene compositions based on 4,4'-isophthalamido/phenolic anhydride (IPDA)
[NASA-CASE-LAR-14184-1] c 24 N90-15148

Water-soluble polyimides containing acrylic side chains
[NASA-CASE-LAR-14162-1] c 27 N79-12529

Polyimides with carboxyl and other connecting groups between the arylene ether-phosphazene units
[NASA-CASE-LAR-14001-1] c 27 N79-15260

Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof
[NASA-CASE-LAR-13821-1] c 27 N79-16950

Novolak Condensation polymides containing 1,1,1-triaryl-2,2,2-trifluoroethane structures
[NASA-CASE-LEW-14346-1] c 27 N90-19300

Triazine-linked (diorganooxyphosphonyl)-methyl-2,4- and 2,6-diamino benzanes
[NASA-CASE-LAR-11245-4] c 27 N90-20133

Processes for making a noble metal on tin oxide catalyst
[NASA-CASE-LAR-13741-1-SB] c 25 N80-26541

Method for preparing a polarization filter for processing synthetic aperture radar image data
[NASA-CASE-NPO-17184-1-CU] c 27 N79-16711

Generalized polarization state
[NASA-CASE-NPO-17184-1-CU] c 27 N79-16737

Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar
[NASA-CASE-NPO-17381-1-CU] c 43 N79-16462
Electric motive machine including magnetic bearing

[WIRE-WINDING] 02 N82-22551
Laser measuring system for incremental assemblies — measuring wire-wrapped frame assemblies in spark chambers

[WIRE-PROFILE] 15 N82-23349
Wiring system for aircraft wings — differential pressure measurements for subsonic aircraft

[WING-TIPS] 36 N82-16398
Improved high power/high frequency inductor

[WING-BRIDGE] 39 N81-14539
Wireless communication

[WING-ROOTS] 04 N82-12151
Silent emergency alarm system for schools and the like

[WING] 14 N81-28594
Apparatus for testing wiring harness by vibration generating means

[WING-PROFILES] 14 N78-17325
Test apparatus for locating shorts during assembly of electrical buses

[WING] 33 N82-24420
Phase sensitive guidance sensor for wire-following vehicles

[WING-SLOTS] 35 N84-33769
Method of radiographic inspection of wooden members

[WING] 36 N82-26756
Wingtip vortex turbine

[WING] 37 N82-26168
Wingtip vortex propeller

[WING] 07 N85-35194
Wingtip vortex turbine

[WING-CA R-14116-1] 05 N81-14345

WOOL

Method of radiographic inspection of wooden members

[WOOD] 38 N90-23756
WooD structures

[WORDS (LANGUAGE)] 24 N81-13999
Words (language)

[WRENCH] 03 N84-28344
Digital memory in which the driving of each word location is controlled by a switch core Patent

[WRENCH] 10 N71-26343
Method of producing complex aluminum alloy parts of high tension, and products thereof

[WRENCH] 26 N82-26756
Heat pipe with dual working fluids

[WRENCH] 24 N78-17336
Thermoelectrical generation of hydrogen

[WRENCH] 02 N84-28268
High temperature and heavy metal working fluid

[WRENCH] 04 N83-19596
Ceramic heat pipe wick

[WRENCH] 27 N90-23541
Spectral slicing x-ray telescope with variable magnification

[WORKSTATIONS] 02 N82-38247
Work hardening

[WORKSTATION] 02 N82-26373
Flexible electric device

[WORKSTATION] 33 N78-20567
Remote pivot decoupler: Wing/store flutter

[WORKSTATION] 07 N86-35194
Wingtip vortex turbine

[WRENCH] 05 N81-14345
Selectable topline swivel chute system

[WIRE-CA R-14322-1] 02 N81-15138
Transfer printed core line for flexible connectors

[WIRE] 24 N78-17336
Three mirror glancing incidence system for x-ray telescope

[WIRE-CA R-14018-1] 02 N81-13999
Three mirror glancing incidence x-ray telescope

[WIRE] 15 N71-22714
Forming tool for ribbon or wire

[WIRE-LENGTH] 02 N81-13999
Forming tool for ribbon or wire

[WIRE-LENGTH] 15 N82-28268
Flexible electric device

[WIRE-LENGTH] 02 N82-28268
Remote pivot decoupler: Wing/store flutter

[WIRE-LENGTH] 04 N82-28268
Flexible electric device

[WIRE-LENGTH] 03 N87-14671
Three-dimensional and tomographic imaging device for X-ray imaging

[WIRE-LENGTH] 03 N87-14671
Extended range x-ray telescope

[WIRE-LENGTH] 07 N90-23541
Spectral slicing x-ray telescope with variable magnification

[WIRE-LENGTH] 02 N82-26373
Flexible electric device

[WIRE-LENGTH] 07 N86-35194
Wingtip vortex turbine

[WIRE-LENGTH] 05 N81-14345
Selectable topline swivel chute system

[WIRE-LENGTH] 02 N82-38247
Method of producing metal alloy parts of high tension, and products thereof

[WIRE-LENGTH] 26 N82-26756
Heat pipe with dual working fluids

[WIRE-LENGTH] 24 N78-17336
Thermoelectrical generation of hydrogen

[WIRE-LENGTH] 02 N84-28268
High temperature and heavy metal working fluid

[WIRE-LENGTH] 04 N83-19596
Ceramic heat pipe wick

[WIRE-LENGTH] 27 N90-23541
Spectral slicing x-ray telescope with variable magnification

[WIRE-LENGTH] 02 N81-13999
Three mirror glancing incidence x-ray telescope

[WIRE-LENGTH] 15 N71-22714
Forming tool for ribbon or wire

[WIRE-LENGTH] 02 N82-26373
Flexible electric device

[WIRE-LENGTH] 07 N86-35194
Wingtip vortex turbine

[WIRE-LENGTH] 05 N81-14345
Selectable topline swivel chute system

[WIRE-LENGTH] 02 N82-38247
Method of producing metal alloy parts of high tension, and products thereof

[WIRE-LENGTH] 26 N82-26756
Heat pipe with dual working fluids

[WIRE-LENGTH] 24 N78-17336
Thermoelectrical generation of hydrogen

[WIRE-LENGTH] 02 N84-28268
High temperature and heavy metal working fluid
YAG LASERs

Purging means and method lor Xenon arc lamps
[NASA-CASE-NPO-11978] c 31 N76-17238

Multiple anode arc lamp system
[NASA-CASE-NPO-10857-1] c 33 N80-14330

YAG LASERS

Dually mode locked Nd:YAG laser
[NASA-CASE-GSC-11746-1] c 36 N75-19564

Length controlled stabilized mode-lock Nd:YAG laser
[NASA-CASE-GSC-11571-1] c 36 N77-25499

YAGI ANTENNAS

Planar microstrip Yagi array antenna
[NASA-CASE-NPO-17873-1-CU] c 32 N90-27015

VARNS

Flexible pi connector thermal barrier insulator.
[NASA-CASE-MSC-19868-1] c 34 N78-35350

Lightweight electrically-powered flexible thermal
luminaire — made of metal and nonconductive yarns
[NASA-CASE-MSC-12962-1] c 33 N76-12331

YAW

Three-axis controller Patent
[NASA-CASE-XAC-01404] c 05 N70-41581

Thrust augmented spin recovery device
[NASA-CASE-LAR-11970-2] c 08 N81-19130

Actuated forebody strakes
[NASA-CASE-LAR-13983-1] c 05 N90-23390

YIELD STRENGTH

High toughness-high strength iron alloy
[NASA-CASE-LEW-12542-3] c 26 N80-32494

YLF LASERS

Tm,Ho:YLF laser end-pumped by a semiconductor diode
laser array
[NASA-CASE-NPO-17282-1-CU] c 36 N91-15528

YO-YO DEVICES

Stretch de-spin mechanism Patent
[NASA-CASE-XGS-00619] c 30 N70-40016

YOKEs

Preloadable vector sensitive latch
[NASA-CASE-MSC-20910-1] c 37 N87-25582

YTERBIUM

Thermal barrier coating system
[NASA-CASE-LEW-14057-1] c 24 N85-35233

YTTRIUM COMPOUNDS

Composite thermal barrier coating
[NASA-CASE-LEW-14999-1] c 24 N91-13500

Z

ZEOLITES

Filter system for control of outgas contamination in vacuum Patent
[NASA-CASE-MFS-14711] c 15 N71-28185

Regenerative Cu La zeolite supported desulfurizing sorbents

ZINC

Potassium silicate zinc coatings
[NASA-CASE-GSC-10961-1] c 18 N72-33581

Rechargeable battery which combats shape change of the zinc anode
[NASA-CASE-HGN-10962-1] c 44 N76-29699

ZINC COMPOUNDS

Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere Patent
[NASA-CASE-XNP-01961] c 26 N71-29156

Synthesis of zinc titanate pigment and coatings containing the same
[NASA-CASE-MFS-15352] c 18 N72-17532

Brazing alloy
[NASA-CASE-XNP-02878] c 26 N75-27127

Zinc-halide battery with molten electrolyte
[NASA-CASE-NPO-11961-1] c 44 N76-18643

Method of preparing zinc orthotitanate pigment
[NASA-CASE-MFS-23345-1] c 27 N77-30237

ZINC OXIDES

Stabilized zinc oxide coating compositions Patent
[NASA-CASE-XMF-07770-2] c 18 N71-26772

Method of forming transparent films of ZnO
[NASA-CASE-FRC-10019] c 15 N73-12487

ZIRCONIUM CARBIDES

Zirconium carbide as an electrocatalyst for the chromium-chromic redox couple
[NASA-CASE-LEW-15246-1] c 44 N83-27344

ZIRCONIUM COMPOUNDS

High temperature refractory material with radiation
emissive overcoat
[NASA-CASE-NPO-17122-1-CU] c 27 N91-14489

ZIRCONIUM OXIDES

Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-1] c 37 N75-15992

Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-3] c 24 N79-25143

Composite thermal barrier coating
[NASA-CASE-LEW-14999-1] c 24 N81-13500

Metallic seal for thermal barrier coating systems
[NASA-CASE-LEW-15020-1] c 27 N91-15412

ZONE MELTING

Method of making single crystal fibers
[NASA-CASE-LEW-14921-1] c 24 N91-13502
oblique wings for booster recovery
circuit four-quadrant multiplier

Temperature compensated current source
Coaxial cable connector Patent
Cable arrangement for rigid tethering Patent
Automatic transponder
Plating nickel on aluminum castings Patent

Faraday rotation measurement method and apparatus
Silicon nitride coated, plastic covered solar cell
Magnetocaloric pump

Autoignition test cell Patent
Magnetic heat pumping

Magnetocaloric pump

Magnetocaloric pump
System for stabilizing objects
[NASA-CASE-KSC-11085-1] c 54 N81-24724

BUCK, CHARLES F., JR.
Light damage threshold protection rod
[NASA-CASE-LAR-13470-1] c 03 N88-14083

Spacecraft thermal control system
[NASA-CASE-LAR-13411-1-SR] c 18 N88-23828

BUCK, M. B.
Motorized model damper Patent
[NASA-CASE-XLA-09480] c 11 N71-33612

BUCK, TIMOTHY D.
Fatigue testing device Patent
[NASA-CASE-XLA-02131] c 32 N70-42003

Biomechanical method for measuring angular deflection
[NASA-CASE-LAR-12178-1] c 74 N80-21123

BUCEK, D. H.
Digital controller for a Baum folding machine
[NASA-CASE-LAR-10686-1] c 37 N74-21056

BUCH, JOHN W.
Soil perist rotor
[NASA-CASE-XNP-05530] c 14 N73-32221

Buckley, J. D.
Solar cell with improved N-region contact and method of forming the same
[NASA-CASE-LAR-14205-1] c 44 N79-31752

BUCHELA, P. R.
High speed drive system
[NASA-CASE-MFS-20645-1] c 37 N74-23070

Buchner, M. G.
Automatically operable self-leveling load table
[NASA-CASE-MFS-20209-1] c 09 N75-12686

Buchbinder, J. W.
Actuator device for artificial leg
[NASA-CASE-MFS-23225-1] c 52 N77-14735

Combining and grasping device
[NASA-CASE-MFS-23088-1] c 37 N73-23483

Appliance for assembling space structure
[NASA-CASE-MFS-23571-1] c 18 N79-11108

Buchheit, L. D.
Nozzle fabricated using contoured nozzle assembly
[NASA-CASE-FRC-11062-1] c 71 N82-16800

Burchard, W. A.
Controlled release device Patent
[NASA-CASE-XSF-00338] c 15 N71-24043

Burch, J. E.
Laser communication system for controlling several functions at a location remote to the laser
[NASA-CASE-LAR-12011-1] c 16 N73-16536

Burchard, T. W.
Transmitting and reflecting diffuser
[NASA-CASE-LAR-10825-1] c 70 N74-13426

Burchett, P. B.
Automatic focus control for facsimile cameras
[NASA-CASE-LAR-11207-1] c 35 N75-15014

Spectrometer integrated with a facsimile camera
[NASA-CASE-LAR-11215-1] c 35 N75-19613

Burd, R. E.
Device for measuring the contour of a surface
[NASA-CASE-LAR-11865-1] c 74 N78-15879

Device for measuring the contour of a surface
[NASA-CASE-LAR-11857-1] c 74 N78-27904

Burdin, C.
Phase-locked servo system
[NASA-CASE-MFS-20073-1] c 33 N75-13139

BURGESS, A.
Method of fabricating an imaging X-ray spectrometer
[NASA-CASE-KSC-11295-1] c 35 N75-14671

BURK, K. R.
Induction-type metal detector with increased scanning area capability
[NASA-CASE-LAR-12894-1] c 27 N85-20125

BURK, R. A.
Spot-welding apparatus
[NASA-CASE-LAR-13181-1] c 35 N81-29083

Buckley, John D.
Method of attaching strain gauges to various materials
[NASA-CASE-LAR-13797-1] c 35 N88-30108

Buck, GREGORY M.
Quick-disconnect interface seal assembly
[NASA-CASE-KSC-11368-1] c 37 N89-12766

BULGER, H. B.
Photoetching of metal-oxide layers
[NASA-CASE-XRF-10108] c 06 N72-21094

Bunce, R. C.
Closed loop ranging system Patent
[NASA-CASE-XNP-05901] c 21 N70-41930

Automatic coordinate measurement system
[NASA-CASE-NPO-11628-1] c 07 N73-30113

Bunin, B.
Optimized jointed tool
[NASA-CASE-LAR-12350-1] c 37 N86-27630

Bunker, E. R., JR.
Automated gravimetric plotter
[NASA-CASE-NPO-11134] c 09 N72-21246

Bucin, T. R.
Silica ribbon mechanism
[NASA-CASE-MSC-20080-1] c 35 N85-30334

BUONCRISTIANI, A. MARTIN
Method and apparatus for determining optical absorption and emission characteristics of a crystal or non-crystalline fiber
[NASA-CASE-LAR-13963-1] c 78 N80-24150

BURCH, C. F.
Grinding arrangement for ball nose milling cutters
[NASA-CASE-LAR-10450-1] c 37 N74-27905

Burkhart, J. A.
Two-speed drive system
[NASA-CASE-MFS-20645-1] c 37 N74-23070

Burke, C. F.
Automatically operable self-leveling load table
[NASA-CASE-MFS-20209-1] c 09 N75-12686

Burke, J. R.
Actuator device for artificial leg
[NASA-CASE-MFS-23225-1] c 52 N77-14735

Burk, S. M., JR.
Automatically operable self-leveling load table
[NASA-CASE-MFS-20209-1] c 09 N75-12686

Burke, J. A.
Quick-disconnect interface seal assembly
[NASA-CASE-FRC-11062-1] c 71 N82-16800

Burkley, R. A.
Motorized model damper Patent
[NASA-CASE-XLA-09480] c 11 N71-33612

Burkley, D. H.
Police signal
[NASA-CASE-XNP-05530] c 14 N73-32221

Burke, J. D.
Solar cell with improved N-region contact and method of forming the same
[NASA-CASE-LAR-14205-1] c 44 N79-31752

Burkett, F. A.
Measuring device Patent
[NASA-CASE-MFS-01546] c 14 N70-40223

Burkhardt, J.
Magneto-plasma dynamic arc thruster
[NASA-CASE-LAR-11180-1] c 25 N73-25760

Burkley, R. A.
Panelized high performance multilayer insulation Patent
[NASA-CASE-MFS-14023] c 33 N70-25531

Burks, B. H.
Polyethylene others with inter linkings Patent
[NASA-CASE-LAR-12580-1] c 27 N84-22749

Process of end-capping a polyimide system
[NASA-CASE-LAR-13117-1] c 37 N76-25879

Burk, R. K.
Protective isotopic heat source
[NASA-CASE-XLA-11295-1] c 37 N75-30876

Burns, C. N.
Temperature compensated light source using a light emitting diode
[NASA-CASE-ARC-10467-1] c 09 N73-14214

Burrows, D. L.
Insulating structure Patent
[NASA-CASE-XMF-00341] c 15 N70-30336

Burrell, M. R., JR.
Flexible weld torch guidance control system
[NASA-CASE-MFS-25807-1] c 37 N83-20154

Burns, R. H.
Automated weld torch guidance control system

Burns, R. H.
High pulse rate high resolution optical radar system
[NASA-CASE-NPO-11426] c 07 N73-26119

Burns, R. K.
Processed isotopic heat source
[NASA-CASE-XLA-11295-1] c 37 N75-30876

Burns, D. L.
Polyimide film for structural stability
[NASA-CASE-MPO-05033] c 15 N71-25810

Burns, E. A.
Metallic film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046

Burns, E. A.
Polyimide film for structural stability
[NASA-CASE-XLA-10337-1] c 15 N71-24046
COOPER, L. P.
Superconical fuel injection system
[NASA-CASE-LEW-12990-1] c 07 N81-29129

Copp, P. G.
Dual physiological rate measurement instrument
[NASA-CASE-MSC-20078-3] c 52 N91-14709

Cot, D.
Collapsible Apollo couch
[NASA-CASE-MSC-13140] c 05 N72-11085

Cot, G. L.
High speed photo-optical time recording
[NASA-CASE-KSC-10294] c 14 N72-18411

Corbin, P. L.
Automatic fatigue test temperature programmer Patent
[NASA-CASE-XLA-02059] c 33 N71-24276

Corcoran, M. H.
Coal desulfurization by aqueous chlorination
[NASA-CASE-NPO-14022-1] c 25 N82-29371

Cory, J. E.
Supercritical multicomponent solvent coal extraction
[NASA-CASE-XGS-04987] c 09 N73-21122

Crew, J. H., Jr.
Display for binary characters Patent
[NASA-CASE-XGS-10158-1] c 35 N88-29667

Crews, J. H., Jr.
Active clearance control system for a turbomachine
[NASA-CASE-KSC-10294] c 32 N71-25360

Crewe, J. H.
Deployable flexible tunnel
[NASA-CASE-XLA-08530] c 32 N71-25360

Crewe, Jeanne Lee
Aircraft body-axis rotation measurement system
[NASA-CASE-LAR-13098-1] c 37 N77-11397

Cree, J. S.
Amplifier drift tester
[NASA-CASE-LAR-13597-1] c 25 N87-23713

Cree, R. F.
Sequentially deployable maneuverable tetrahedral
[NASA-CASE-LAR-13597-1] c 25 N87-23713

Cree, R. F.
Hypersonic impact shield
[NASA-CASE-XGS-04987] c 09 N73-21122

Cree, R. F.
Sound shield
[NASA-CASE-LAR-12883-1] c 71 N83-17235

Cree, R. F.
Flexible, repairable, potable material for electrical connector Patent
[NASA-CASE-KSC-05180] c 18 N71-25681

Cress, S. B.
Coaxial inverted geometry transistor having buried emitter
[NASA-CASE-ARC-10303-1] c 09 N73-32112

Cresey, J. R.
Display for binary characters Patent
[NASA-CASE-XGS-04987] c 09 N73-21122

Crew, J. H., Jr.
Damping and/or material system test
[NASA-CASE-LAR-13458-1] c 35 N88-29667

Crew, J. H., Jr.
Display for binary characters Patent
[NASA-CASE-KSC-10158-1] c 32 N71-30318

Crew, J. H., Jr.
Collapsible high gain antenna
[NASA-CASE-KSC-10392] c 07 N73-26117

Crot, R. M.
Personal propulsion unit Patent
[NASA-CASE-MFS-20130] c 28 N71-27565

Crofts, D. E.
Amplifier drift tester
[NASA-CASE-LAR-13597-1] c 25 N87-23713

Croonen, A. P.
Phase modulating with odd and even finite power series
[NASA-CASE-XGS-01143] c 31 N86-19479

Crow, J. S.
Amplifier drift tester
[NASA-CASE-LAR-13597-1] c 25 N87-23713

Crow, J. S.
Aircraft body-axis rotation measurement system
[NASA-CASE-LAR-13098-1] c 37 N77-11397
ESPY, P. N.  
High density, hypervelocity plasma generator and accelerator with ionizable metal disc  

ESTE, E. G.  
Rocket nozzle test method Patent  

ESTES, M. F.  
Apparatus for making diamonds  

ESTEY, R. S.  
Method and apparatus for precision control of radiometer  

ETRELLA, C. A.  
Catalysts to pyrolyze foams from aromatic isocyanates and aromatic dihydrides  

EUBANKS, A. G.  
Device for measuring electron-beam intensities and for measurement capability Patent  

EULER, H. I.  
Autoignition test cell Patent  
Patent [NASA-CASE-GSC-12321-1] c 36 N82-16396

EVANS, D. G.  
Fiber distributed feedback laser  

EVANS, F. D.  
Autogeneration test cell Patent  

EVANS, H. E.  
Energy storage apparatus  

EVANS, J.  
Millimeter wave antenna system Patent Application  
Patent [NASA-CASE-MFS-10949-1] c 07 N71-28935

EVANS, J. M., JR.  
High power laser apparatus and system  
Patent [NASA-CASE-LEW-12529-1] c 33 N74-20859

EVRIN, P. B.  
Solar cell collector  
Patent [NASA-CASE-LEW-12541-1] c 44 N76-25292

Ewig, J. M.  
System and method for tracking a signal source  
Patent [NASA-CASE-LEW-10903-1] c 17 N76-17140

EVANS, K. C.  
Synchronized voltage contrast display analysis system  

EVANS, P. K.  
Device for tuning test specimens within an hermetically sealed chamber  

EVANSEN, D. E. H.  
Boyaunt anti-slash system Patent  

EY, JONES, W.  
Porous plug for reducing office induced pressure error in trolls  

EYLER, L. W.  
Water cooled static pressure probe Patent  

EYLER, W. D.  
Clear air turbulence detector Patent  

EYLER, W. R.  
Fluid power transmitting gas bearing Patent  

FACEMIRE, BARBARA R.  
Liquid encapsulated float zone process and apparatus  

FAETH, P. A.  
Automatic recording McLeod gauge Patent  

FAGG, MARY F.  
Holographic work station for a video display unit and keyboard  

FAGU, J. O.  
Gas low pressure flow rate metering system Patent  

FAJARDO, M. E.  
Solar cell collector and method for producing same  

FAJARDO, M. E.  
Method for fabricating solar cells having integrated collector grids  

FAJARDO, M. E.  
Solar cell system having alternating current output  

FAJARDO, M. E.  
High voltage v-groove solar cell Patent  
Patent [NASA-CASE-LEW-13401-1] c 44 N82-32177

FAJARDO, M. E.  
High temperature high efficiency solar cell Patent  
Patent [NASA-CASE-LEW-13292-1] c 44 N82-13462

FAJARDO, M. E.  
Thin-walled pressure vessel Patent  
Patent [NASA-CASE-LEW-13401-1] c 44 N82-31674

FAJARDO, M. E.  
Method for making a high voltage v-groove solar cell  
Patent [NASA-CASE-LEW-13401-1] c 44 N82-31674

FAJARDO, M. E.  
Solar cell system having alternating current output  

FAJARDO, M. E.  
High voltage v-groove solar cell Patent  
Patent [NASA-CASE-LEW-13401-1] c 44 N82-32177

FAJARDO, M. E.  
System and method for tracking a signal source  
Patent [NASA-CASE-LEW-10903-1] c 17 N76-17140

FAJARDO, M. E.  
Synchronized voltage contrast display analysis system  

FAJARDO, M. E.  
Device and method for mapping the distribution of chemical elements in an extended medium Patent  

FAJARDO, M. E.  
Water cooled static pressure probe Patent  

FAJARDO, M. E.  
Clear air turbulence detector Patent  

FELTON, J. M.  
Stack plume visualization system Patent  
Patent [NASA-CASE-LAR-11640-1] c 45 N76-17656

FELTON, J. M.  
TV fatigue crack monitoring system Patent  

FELTON, J. M.  
Vibration-free Raman Doppler velocimeter Patent  

FENDYK, J. D.  
Porous plug for reducing office induced pressure error in trolls  

FENNER, D. E. H.  
Field power transmitting gas bearing Patent  

FORD, R. J.  
Survival couch Patent  
Patent [NASA-CASE-XLA-00118] c 05 N70-33285

FORD, R. J.  
Aerial capsule emergency separation device Patent  
Patent [NASA-CASE-MFS-25812-1] c 03 N70-33285

FORD, R. J.  
Space capsule Patent  

FORD, R. J.  
Space shuttle vehicle and system Patent  
Patent [NASA-CASE-MSC-12433] c 18 N76-17185

FORD, R. J.  
Solar cell collector Patent  

FORD, R. J.  
Solar cells having integral collector grids Patent  

FORD, R. J.  
Application of semiconductors to solar cells by screen printing Patent  
<table>
<thead>
<tr>
<th>PERSONAL AUTHOR INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTERING techniques based on high-frequency plant modeling for high-gas conversion.</td>
</tr>
<tr>
<td>[NASA-CASE-LAR-12951-5] c 08 N79-23097</td>
</tr>
<tr>
<td>GARRETT, H.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-25430-1] c 03 N84-16453</td>
</tr>
<tr>
<td>GARRETT, STEVEN L.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-16896-1-CU] c 71 N89-13236</td>
</tr>
<tr>
<td>GARWOOD, D. C.</td>
</tr>
<tr>
<td>[NASA-CASE-XNP-00545] c 14 N70-35666</td>
</tr>
<tr>
<td>GARY, R. L.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-15351-1] c 06 N63-10040</td>
</tr>
<tr>
<td>System for indicating fuel-efficient aircraft altitude.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-15351-2] c 06 N64-34443</td>
</tr>
<tr>
<td>GASPAR, MARK S.</td>
</tr>
<tr>
<td>[NASA-CASE-XNP-00708-1-CU] c 35 N86-14422</td>
</tr>
<tr>
<td>GAST, G.</td>
</tr>
<tr>
<td>[NASA-CASE-XNP-00292] c 15 N70-40233</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21086-1] c 15 N70-35666</td>
</tr>
<tr>
<td>GATTI, A.</td>
</tr>
<tr>
<td>[NASA-CASE-XNO-03990] c 15 N69-21922</td>
</tr>
<tr>
<td>GAVRILLIS, T. G.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-03946] c 03 N79-23097</td>
</tr>
<tr>
<td>GAVIRA, H. E.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-11078] c 09 N72-25262</td>
</tr>
<tr>
<td>GAVIRA, H. E.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21109-1] c 05 N73-27941</td>
</tr>
<tr>
<td>GAVRILLIS, T. G.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21010-1] c 05 N73-30078</td>
</tr>
<tr>
<td>GAVRILLIS, T. G.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21049-1] c 52 N74-27864</td>
</tr>
<tr>
<td>GAVRILLIS, T. G.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21049-1] c 52 N74-27864</td>
</tr>
<tr>
<td>GAVYLA, G. R.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-12907-1] c 44 N78-31527</td>
</tr>
<tr>
<td>GAVYRA, H. E.</td>
</tr>
<tr>
<td>[NASA-CASE-SCP-15291-1] c 02 N70-37916</td>
</tr>
<tr>
<td>GAVYRA, H. E.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21054-1] c 27 N70-32037</td>
</tr>
<tr>
<td>GAVYLA, G. R.</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-12907-1] c 44 N78-31527</td>
</tr>
<tr>
<td>GAVYRA, H. E.</td>
</tr>
<tr>
<td>[NASA-CASE-MFS-21054-1] c 27 N70-32037</td>
</tr>
</tbody>
</table>
Apparatus for deriving synchronizing pulses from pulses in a single channel PCM communications system 

(NASA-CASE-NPO-11473-1) c 37 N80-23654

GOSS, W. C. Printed circuit board with bellows rivet connection Patent

(NASA-CASE-XNP-05082) c 15 N70-41960

GOULD, J. M. Stanford inventors win a sum of pluralities of waves Patent

(NASA-CASE-XMF-00663) c 08 N71-18752

Acquisition and tracking system for optical radar 

(NASA-CASE-MFS-20112) c 16 N75-13437

A dc to dc converter 

(NASA-CASE-MFS-25430) c 33 N84-16543

GRAFSTEIN, D. Analytical test apparatus and method for determining oxide content of trimetal Patent

(NASA-CASE-XLE-01997) c 06 N71-23257

GRABOWSKY, J. Target acquisition antenna 

(NASA-CASE-GSC-10619-1) c 10 N72-22325

GRAFSTEIN, D. Fluidic-thermochromic display device Patent

(NASA-CASE-ERC-10031) c 12 N71-18603

GRAHAM, LLOYD J. Acoustic emission frequency discrimination

(NASA-CASE-MSC-20467-1) c 35 N88-23966

GRAHAM, G. L. Color television system

(NASA-CASE-MSC-12146-1) c 07 N72-17109

GRAHAM, OL. Method and apparatus for tolerometry adaptive bandwidth compression 

(NASA-CASE-MSC-20681-1) c 17 N87-25348

Range and rate system 

(NASA-CASE-MSC-20687-1) c 36 N88-24958

GRAHAM, R. A. Liquid storage tank venting device for zero gravity environment Patent

(NASA-CASE-LAR-11299-1) c 37 N84-12493

GNRANA. L. Steering reflectance spectrometer 

(NASA-CASE-NPO-13556-1) c 35 N84-33766

GRAHN, A. A. Venting device for pressurized space suit helmet Patent

(NASA-CASE-XLE-01449) c 15 N70-41846

Curved film cooling admission tube 

(NASA-CASE-LEW-13174-1) c 34 N83-27144

GRIENER, L. J. Method and apparatus for characterizing residual stress in ferromagnetic materials 

(NASA-CASE-LAR-14239-1) c 26 N91-13527

GRAHAME, D. Apparatus and process for microbial detection and enumeration 

(NASA-CASE-LAR-12709-1) c 35 N82-28004

GRANADA, D. Remote water monitoring system 

(NASA-CASE-LAR-11973-1) c 35 N78-27384

Natural turbulence electrical power generator 

(NASA-CASE-LAR-1551-1) c 44 N80-29343

Vertical windmill 

(NASA-CASE-LAR-12923-1) c 37 N84-12493

GRANATA, R. L. Sideband frequency generator Patent

(NASA-CASE-XGS-02610) c 14 N71-23174

GRANETT, D. Gravity enhanced acoustic levitation method and apparatus

(NASA-CASE-NPO-16147-1-CU) c 71 N85-29693

Vibrating-chamber levitation systems

(NASA-CASE-NPO-16142-1-CU) c 35 N86-20752

GRANT, D. J. Passively regulated water electrolysis rocket engine Patent

(NASA-CASE-XGS-06729) c 28 N71-14044

Precision thrust page Patent

(NASA-CASE-XGS-03219) c 14 N71-22965

Fluid flow meter with comparator reference means Patent

(NASA-CASE-XGS-01331) c 14 N71-22996

Spacecraft attitude sensor

(NASA-CASE-GSC-10660-1) c 21 N73-30640

GOSS, WILLIS C. Closed loop optic rotation sensor

(NASA-CASE-NPO-16551-1-CU) c 74 N87-22059

GOULD, C. W. Thermal model for 246-448

Patent

(NASA-CASE-XNP-05082) c 15 N70-41960

GOULD, J. M. Stanford inventors win a sum of pluralities of waves Patent

(NASA-CASE-XMF-00663) c 08 N71-18752

Acquisition and tracking system for optical radar 

(NASA-CASE-MFS-20112) c 16 N75-13437

A dc to dc converter 

(NASA-CASE-MFS-25430) c 33 N84-16543

GRAFSTEIN, D. Analytical test apparatus and method for determining oxide content of trimetal Patent

(NASA-CASE-XLE-01997) c 06 N71-23257

GRABOWSKY, J. Target acquisition antenna 

(NASA-CASE-GSC-10619-1) c 10 N72-22325

GRAFF, J. Amino acid analysis

(NASA-CASE-NPO-11200-1) c 25 N75-14844

GRAFSTEIN, D. Fluidic-thermochromic display device Patent

(NASA-CASE-ERC-10031) c 12 N71-18603

GRAHAM, LLOYD J. Acoustic emission frequency discrimination

(NASA-CASE-MSC-20467-1) c 35 N88-23966

GRAHAM, G. L. Color television system

(NASA-CASE-MSC-12146-1) c 07 N72-17109

GRAHAM, OL. Method and apparatus for tolerometry adaptive bandwidth compression 

(NASA-CASE-MSC-20681-1) c 17 N87-25348

Range and rate system 

(NASA-CASE-MSC-20687-1) c 36 N88-24958

GRAHAM, R. A. Liquid storage tank venting device for zero gravity environment Patent

(NASA-CASE-LAR-11299-1) c 37 N84-12493

Curved film cooling admission tube 

(NASA-CASE-LEW-13174-1) c 34 N83-27144

GRANGER, L. J. Method and apparatus for characterizing residual stress in ferromagnetic materials 

(NASA-CASE-LAR-14239-1) c 26 N91-13527

GRAHAME, D. Remote water monitoring system 

(NASA-CASE-LAR-11973-1) c 35 N78-27384

Natural turbulence electrical power generator 

(NASA-CASE-LAR-1551-1) c 44 N80-29343

Vertical windmill 

(NASA-CASE-LAR-12923-1) c 37 N84-12493

GRANATA, R. L. Sideband frequency generator Patent

(NASA-CASE-XGS-02610) c 14 N71-23174

GRANETT, D. Gravity enhanced acoustic levitation method and apparatus

(NASA-CASE-NPO-16147-1-CU) c 71 N85-29693

Vibrating-chamber levitation systems

(NASA-CASE-NPO-16142-1-CU) c 35 N86-20752

GRANT, D. J. Passively regulated water electrolysis rocket engine Patent

(NASA-CASE-XGS-06729) c 28 N71-14044

Precision thrust page Patent

(NASA-CASE-XGS-03219) c 14 N71-22965

Fluid flow meter with comparator reference means Patent

(NASA-CASE-XGS-01331) c 14 N71-22996

Spacecraft attitude sensor

(NASA-CASE-GSC-10660-1) c 21 N73-30640
GREEN, G. Thin wire point method
[NASA-CASE-NPO-15788-1] c 31 N83-19477
GREEN, K. A. Highly efficient antenna system using a conical horn and scanning hyperbolic reflector
[NASA-CASE-NPO-15668-1] c 32 N76-21355
Multifrequency broadband polarized horn antenna
[NASA-CASE-NPO-14588-1] c 31 N81-25278
GREEN, R. G. Traversing probe Patent
[NASA-CASE-XFR-2097] c 12 N71-24652
Layout tool Patent
[NASA-CASE-XFR-2099] c 15 N71-26185
Method and apparatus for attaching physiological monitoring electrodes Patent
[NASA-CASE-XFR-28565-1] c 05 N71-26293
GREEN, R. R. Serial digital decoder Patent
[NASA-CASE-NPO-10150] c 08 N71-24650
Apparatus for deriving synchronizing pulses from pulses in a single channel PCM communications system
[NASA-CASE-NPO-11302-2] c 07 N71-13149
Method and apparatus for a single channel digital communications system
[NASA-CASE-NPO-11302-1] c 37 N71-10132
GREEN, W. L. Mass measuring system Patent
[NASA-CASE-NPO-03371] c 05 N70-42000
GREENBERG, J. Combined electrolysis device and fuel cell and method of operation Patent
[NASA-CASE-XLE-01645] c 03 N71-20904
Heat activated cell with alkali anode and alkali salt electrolyte Patent
[NASA-CASE-XLE-11358] c 03 N71-26684
Heat activated cell Patent
[NASA-CASE-XLE-11359] c 03 N71-28579
Method of making emf cell Patent
[NASA-CASE-XLE-11250-2] c 03 N71-20004
GREENHALL, CHARLES A. Apparatus for using a time interval counter to measure frequency stability
[NASA-CASE-NPO-17325-1] c 32 N90-17005
GREENLEAF, J. E. Thermostat for blood temperature measurements Patent
[NASA-CASE-ARC-10055-1] c 52 N77-10780
Sweat collection capsule Patent
[NASA-CASE-ARC-11301-1] c 52 N81-25762
GREENWOOD, JOHN E. Payload deployment method and system Patent
[NASA-CASE-NPO-17230-1] c 16 N88-24660
GREENWOOD, T. D. Thermostat-thermoplastic aromatic polyamide containing N-propargyl groups Patent
[NASA-CASE-LAR-17223-1] c 27 N84-22746
Thermostat-thermoplastic aromatic polyamide containing Nitropropargyl rings Patent
GREENWOOD, T. L. Ceramic system Patent
[NASA-CASE-XLE-01645] c 03 N71-20904
Heat activated cell with alkali anode and alkali salt electrolyte Patent
[NASA-CASE-XLE-11358] c 03 N71-26684
Heat activated cell Patent
[NASA-CASE-XLE-11359] c 03 N71-28579
Method of making emf cell Patent
[NASA-CASE-XLE-11250-2] c 03 N71-20004
GREENHALL, CHARLES A. Apparatus for using a time interval counter to measure frequency stability
[NASA-CASE-NPO-17325-1] c 32 N90-17005
GREENLEAF, J. E. Thermostat for blood temperature measurements Patent
[NASA-CASE-ARC-10055-1] c 52 N77-10780
Sweat collection capsule Patent
[NASA-CASE-ARC-11301-1] c 52 N81-25762
GREENWOOD, JOHN E. Payload deployment method and system Patent
[NASA-CASE-NPO-17230-1] c 16 N88-24660
GREENWOOD, T. D. Thermostat-thermoplastic aromatic polyamide containing N-propargyl groups Patent
[NASA-CASE-LAR-17223-1] c 27 N84-22746
Thermostat-thermoplastic aromatic polyamide containing Nitropropargyl rings Patent
GREENWOOD, T. L. Ceramic system Patent
[NASA-CASE-XLE-01645] c 03 N71-20904
Heat activated cell with alkali anode and alkali salt electrolyte Patent
[NASA-CASE-XLE-11358] c 03 N71-26684
Heat activated cell Patent
[NASA-CASE-XLE-11359] c 03 N71-28579
Method of making emf cell Patent
[NASA-CASE-XLE-11250-2] c 03 N71-20004
GREENHALL, CHARLES A. Apparatus for using a time interval counter to measure frequency stability
[NASA-CASE-NPO-17325-1] c 32 N90-17005
GREENLEAF, J. E. Thermostat for blood temperature measurements Patent
[NASA-CASE-ARC-10055-1] c 52 N77-10780
Sweat collection capsule Patent
[NASA-CASE-ARC-11301-1] c 52 N81-25762
GREENWOOD, JOHN E. Payload deployment method and system Patent
[NASA-CASE-NPO-17230-1] c 16 N88-24660
GREENWOOD, T. D. Thermostat-thermoplastic aromatic polyamide containing N-propargyl groups Patent
[NASA-CASE-LAR-17223-1] c 27 N84-22746
Thermostat-thermoplastic aromatic polyamide containing Nitropropargyl rings Patent
GREENWOOD, T. L. Ceramic system Patent
[NASA-CASE-XLE-01645] c 03 N71-20904
Heat activated cell with alkali anode and alkali salt electrolyte Patent
[NASA-CASE-XLE-11358] c 03 N71-26684
Heat activated cell Patent
[NASA-CASE-XLE-11359] c 03 N71-28579
Method of making emf cell Patent
[NASA-CASE-XLE-11250-2] c 03 N71-20004
GREENHALL, CHARLES A. Apparatus for using a time interval counter to measure frequency stability
[NASA-CASE-NPO-17325-1] c 32 N90-17005
HANCOCK, BRUCE

HAMPTON, HERBERT R.

HANSEN, D. O.

Hammond, A. D.

HANCOCK, BRUCE

HANCOOK, BRUCE, R.

HANCOOK, BRUCE, R.

HANDSCHUH, ROBERT F.

HANGER, R. T.

HANKINSON, T. W. E.

HANNON, M. S.

HANSON, J. M.

HANSON, P. W.

HANSON, S.

HANSEN, G. R.

HANSEN, J. M.

HARADA, Y.

HARD, T. M.

HARD, T. M.

HARRISON, R. G., JR.

HARRIS, R. V., JR.

HARRIS, R. W.

HARRIS, R. W.
HOYT, R.  
RIBBON, J. H.  
HUBERT, H. J.  
HUGA, C. J.  
HUGHES, B. C.  
HUGHES, C. T.  
HUGHES, D. B.  
HUEY, D. C.  
HUDS, M.  
HUGHES, G. C.  
HUFF, R. F.  
HUGHES, M. T. S.  
HUFFAKER, R. M.  
HU, Y.-F.  
HULL, R.  
HUMBARD, W. P.  
HULL, B. E.  
HUBBELL, T.  
HUGHES, M. Y.  
HUBER, R. F.  
HUBER, W. C.  
HUFF, R. G.  
HUBBELL, T. O.  
HUBBS, T.  
HUDSON, O. K.  
HUGHES, P. L.  
HUBBS, T. P.  
HUGHES, C. T.  
HUDDINGS, J. L.  
HUEY, D. C.  
HUGGINS, J. L.  
HUGHES, C. T.  
HUDDIN, P.  
HUGHES, C. T.  
HUGHES, C. T.
Lee, W. A.

Ride quality meter

Lee, W. A., Lee, W. Y.

Switching mechanism with energy storage means

Patent

[The rest of the text follows with various entries, each beginning with a numeric character and including multiple authors' names, patent numbers, and descriptions of various technologies and inventions.]
MOORE, DENNIS R.

MOORE, T. C.

MOORE, ROBERT.

MOOR, D. D., JR.

MOORE, R. W. A.

MOORE, W. A.

MOORE, THOMAS C.

MOODY, O. L., JR.

MONTGOMERY, RAYMOND C.

MONTELET, J. H.

MONFORD, L. G., JR.

MOND, J. F.

MONET, J. F.

PERSONAL AUTHOR INDEX

STAGES PATENT

PERSONAL AUTHOR INDEX

SYSTEM FOR USE IN CONDUCTING WAKE INVESTIGATION FOR A
[Tv CASE-KSC-10053-1] c 03 N72-28025

Polymorphic compositions and their method of manufacture
[Tv CASE-MSC-14805-1] c 32 N83-13232

MORRIS, W. C.

Thick-walled pressure vessel Patent

[MORRIS, M. C. J.] c 17 N71-27365

MORRIS, R. C.

Open loop digital frequency multiplier

Moore, R. L.

Trigonometric vehicle guidance assembly which aligns the horizontal and vertical axes of two three-axis systems Patent

[Tv CASE-XLE-00477] c 15 N71-10577

Transducer element finder

[MORRIS, J. E.] c 07 N79-27672

MORRIS, B. G.

DATAFLOW computer

[MORRIS, B. G.] c 76 N91-25411

MORRIS, M. J.

Electronic checkout system for space vehicles Patent

[MORRIS, B. G.] c 25 N82-11144

MORRIS, R. J.

Decontamination of petroleum products Patent

[MORRIS, B. G.] c 19 N71-21688

MORRIS, R. D.

Reducing counter employing cascaded single SCR stages Patent

[MORRIS, B. G.] c 17 N78-23572

Thermoelectric power Patent

[MORRIS, B. G.] c 37 N78-32025

MORRIS, R. J.

Diffuse dielectric Patent

[MORRIS, B. G.] c 44 N83-32175

High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

[MORRIS, B. G.] c 25 N82-11144

MORRIS, J. D.

Low defect, high purity crystalline layers grown by selective deposition method

[MORRIS, J. D.] c 14 N90-27700

MORRIS, J. R.

Difference dielectric Patent

[MORRIS, J. R.] c 35 N90-27700

MORRIS, K. W.

Repetitive actuating mechanism Patent

[MORRIS, K. W.] c 17 N69-39884

MORRIS, P. W.

Cerebral interface detection system Patent

[MORRIS, P. W.] c 34 N90-27700

MORRIS, R. L.

Lightweight refractory insulation and method of preparing the same Patent

[MORRIS, R. L.] c 17 N71-12346

MORRIS, R. W.

Redundant actuating mechanism Patent

[MORRIS, R. W.] c 17 N71-27365

MORRIS, R. W.

MORRIS, R. W.
PARSONS, W. E.
PARRA, G. T.
PASIERB, E. F.
PASCIUTTI, E. R.
PARTSCH, V. M.
PARR, R. A.
PARMA, GEORGE F.
PARKER, O. J.
PARKER, L. C.

PARKE, J. H.

PATTON, W. J.
PATTEN, C. W.
PATTERSON, J. C., JR.
PATTEE, H. E.
PATAK, V. J.

PAWLICZ, F.
PAULKOVICH, J.

PEARCE, J. C., JR.

PEER, C. R.

PEDERSON, C. W.
PEELGREN, M. L.
PELLERIN, C. J., JR.

PEPPEL, J. T.

PEPER, P. J. G.

PEGDEN, C. D.

PEGORARI, S. J.

PELCHAT, G. M.

PEK, S. W.

PEK, T. C.

PELZ, D. C.

PELZ, M. J.

PENN, B. G.

PENN, J. A.

PENNICK, G. S.

PENNINGTON, J. C.

PENNINGTON, J. E.

PENN, J. A.

PENNY, J. N.

PEOPLES, J. A.

PERKINS, G. R.

PERKINS, G. S.

PERKINS, J. A.

PERKINS, G. S.

PERKINS, J. A.

PERLMAN, M.

PERLMUTTER, M.

PERLY, J. C.

PENDER, B. M.

PENDER, K. D.

PENDLINGTON, J. E.

PENDLINGTON, J. E.

PENNINGTON, J. E.

PERSONAL AUTHOR INDEX

PERRY, C. L.

PERKINER, J. A.

PERKINER, J. A.

PERKINS, G. R.

PERKINS, G. R.

PETERS, P. M.

PETRAK, R. H.

PETTERSSON, P.

PETTERSSON, P.
**PERSONAL AUTHOR INDEX**

**Attitude orientation of spin-stabilized space vehicles** Patent  
**D. A. REISS**  
**R. F. REINISCH**  
**V. REINHARDT**  
**G. REINHARDT**  
**W. J. REID**  
**R. REID**  
**M. S. REID**  
**M. A. REID**  

Attitude control of spin-stabilized space vehicles Patent  
**D. A. REISS**  
**R. F. REINISCH**  
**V. REINHARDT**  
**G. REINHARDT**  
**W. J. REID**  
**R. REID**  
**M. S. REID**  
**M. A. REID**  

**Conical scan tracking system employing a large antenna** Patent  
**D. A. REISS**  
**R. F. REINISCH**  
**V. REINHARDT**  
**G. REINHARDT**  
**W. J. REID**  
**R. REID**  
**M. S. REID**  
**M. A. REID**  

**Preparation of alkali metal dispersions**  
**Dicyanoacetylene polymers**  
**Method and apparatus for shaping and enhancing extended area semiconductor radiation detectors and ultraviolet and thermally stable polymer compositions**  
**High stability buffered phase comparator**  
**Elastomer coated filler and composites thereof**  
**Medical diagnosis system and method with multispectral imaging**  
**Conical scan tracking system employing a large antenna** Patent  
**D. A. REISS**  
**R. F. REINISCH**  
**V. REINHARDT**  
**G. REINHARDT**  
**W. J. REID**  
**R. REID**  
**M. S. REID**  
**M. A. REID**  

**Satellite personal communications system**  
**Coal-shale interface detector**  
**Coal-shale interface detection system**  
**Pressure transducer**  
**Nuclear alkylated pyridine aldehyde polymers and prepolymers thereof**  
**Induction motor control system with voltage controlled therewith and process for making same**  
**Deployable M-braced truss structure**  
**Preloaded space structural coupling joints**  
**Methods for milling and drilling glass**  
**Protein sterilization method of firefly luciferase using bacterial contamination monitor**  
**Indicated mean-effective pressure instrument**  
**Moving wall, continuous flow electrophoresis apparatus**  
**Drop deployment system for crystal growth apparatus**  
**Static continuous electrophoresis device**  
**Electrophoresis device**  

**RICHARD, C. E.**  

**RHODES, P. H.**  
**Electrophoresis device**  
**RICKETT, S. R.**  
**Polymeric foams from cross-linkable para-xylenediaminoterephthalates**  
**Preparation of B-65**  

**Patent**  
**NASA-CASE-NPO-12400-1**  
**NASA-CASE-NPO-12657-1**  
**NASA-CASE-LAR-11643-1-SB**  
**NASA-CASE-NPO-12658-1**  
**NASA-CASE-ARC-11643-1-SB**  
**NASA-CASE-NPO-12660-1**  
**NASA-CASE-NPO-12661-1**  
**NASA-CASE-ARC-11644-1-SB**  
**NASA-CASE-NPO-12662-1**  
**NASA-CASE-ARC-11645-1-SB**  

**Patent**  
**NASA-CASE-ARC-11646-1-SB**  
**NASA-CASE-NPO-12663-1**  
**NASA-CASE-ARC-11647-1-SB**  
**NASA-CASE-NPO-12664-1**  
**NASA-CASE-ARC-11648-1-SB**  
**NASA-CASE-NPO-12665-1**  
**NASA-CASE-ARC-11649-1-SB**  
**NASA-CASE-NPO-12666-1**  
**NASA-CASE-ARC-11650-1-SB**  
**NASA-CASE-NPO-12667-1**  
**NASA-CASE-ARC-11651-1-SB**  
**NASA-CASE-NPO-12668-1**  
**NASA-CASE-ARC-11652-1-SB**  
**NASA-CASE-NPO-12669-1**  
**NASA-CASE-ARC-11653-1-SB**  
**NASA-CASE-NPO-12670-1**  
**NASA-CASE-ARC-11654-1-SB**  

**Patent**  
**NASA-CASE-ARC-11655-1-SB**  
**NASA-CASE-NPO-12671-1**  
**NASA-CASE-ARC-11656-1-SB**  
**NASA-CASE-NPO-12672-1**  
**NASA-CASE-ARC-11657-1-SB**  
**NASA-CASE-NPO-12673-1**  
**NASA-CASE-ARC-11658-1-SB**  
**NASA-CASE-NPO-12674-1**  
**NASA-CASE-ARC-11659-1-SB**  
**NASA-CASE-NPO-12675-1**  
**NASA-CASE-ARC-11660-1-SB**  
**NASA-CASE-NPO-12676-1**  
**NASA-CASE-ARC-11661-1-SB**  

**Patent**  
**NASA-CASE-ARC-11662-1-SB**  
**NASA-CASE-NPO-12677-1**  
**NASA-CASE-ARC-11663-1-SB**  
**NASA-CASE-NPO-12678-1**  
**NASA-CASE-ARC-11664-1-SB**  
**NASA-CASE-NPO-12679-1**  
**NASA-CASE-ARC-11665-1-SB**  
**NASA-CASE-NPO-12680-1**  
**NASA-CASE-ARC-11666-1-SB**  

**Patent**  
**NASA-CASE-ARC-11667-1-SB**  
**NASA-CASE-NPO-12681-1**  
**NASA-CASE-ARC-11668-1-SB**  
**NASA-CASE-NPO-12682-1**  
**NASA-CASE-ARC-11669-1-SB**  
**NASA-CASE-NPO-12683-1**  
**NASA-CASE-ARC-11670-1-SB**  
**NASA-CASE-NPO-12684-1**  
**NASA-CASE-ARC-11671-1-SB**  

**Patent**  
**NASA-CASE-ARC-11672-1-SB**  
**NASA-CASE-NPO-12685-1**  
**NASA-CASE-ARC-11673-1-SB**  
**NASA-CASE-NPO-12686-1**  
**NASA-CASE-ARC-11674-1-SB**  
**NASA-CASE-NPO-12687-1**  
**NASA-CASE-ARC-11675-1-SB**  
**NASA-CASE-NPO-12688-1**  
**NASA-CASE-ARC-11676-1-SB**  

**Patent**  
**NASA-CASE-ARC-11677-1-SB**  
**NASA-CASE-NPO-12689-1**  
**NASA-CASE-ARC-11678-1-SB**  
**NASA-CASE-NPO-12690-1**  
**NASA-CASE-ARC-11679-1-SB**  
**NASA-CASE-NPO-12691-1**  
**NASA-CASE-ARC-11680-1-SB**  
**NASA-CASE-NPO-12692-1**  
**NASA-CASE-ARC-11681-1-SB**  

**Patent**  
**NASA-CASE-ARC-11682-1-SB**  
**NASA-CASE-NPO-12693-1**  
**NASA-CASE-ARC-11683-1-SB**  
**NASA-CASE-NPO-12694-1**  
**NASA-CASE-ARC-11684-1-SB**  
**NASA-CASE-NPO-12695-1**  
**NASA-CASE-ARC-11685-1-SB**  
**NASA-CASE-NPO-12696-1**  

**Patent**  
**NASA-CASE-ARC-11686-1-SB**  
**NASA-CASE-NPO-12697-1**  
**NASA-CASE-ARC-11687-1-SB**  
**NASA-CASE-NPO-12698-1**  
**NASA-CASE-ARC-11688-1-SB**  
**NASA-CASE-NPO-12699-1**  
**NASA-CASE-ARC-11689-1-SB**  
**NASA-CASE-NPO-12700-1**
ROMAN, R. F.
Rolling contact interface
[NASA-CASE-MFS-23725-1] c 43 NJ 37106
ROSEN, H. A.
Varactor high level mixer
[NASA-CASE-XGS-02171] c 09 NJ 24324
ROSALE, L. A.
Control valve and co-axial variable injector Patent
[NASA-CASE-XNP-09702] c 15 NJ 17654
ROUSEY, W. J.
Portable device for use in starting air-start-units for
[NASA-CASE-MFS-256704-1] c 33 NJ 26569
ROUSEY, W. J.
Incorporated ion voltammetric cell
[NASA-CASE-NPO-13125-1] c 33 NJ 19519
ROUSSEAU, J. A.
Method and apparatus for measuring conductivity and velocity of plasma utilizing a plurality of sensing coils positioned in the plasma Patent
[NASA-CASE-XAC-01101] c 15 NJ 20505
ROSSO, J. P.
matrix
[NASA-CASE-ARC-11402-1] c 25 NJ 22744
ROVER, J. W.
Method and apparatus for recording and reconstructing
[NASA-CASE-ARC-11253-2] c 25 NJ 24338
ROWLEY, P. D.
Preparation of heterocyclic block copolymer
[NASA-CASE-ARC-10329-1] c 05 NJ 26072
ROSELAND, E. D.
Gas turbine combustor Patent
[NASA-CASE-XER-07894] c 27 NJ 28915
ROUSEY, W. J.
High performance channel injection sealant invention
[NASA-CASE-ARC-11097-1] c 24 NJ 11213
Rosenwasser, B. B.
Perfluorinated 1,2,4-oxadiazoles
[NASA-CASE-MFS-23540-1] c 44 NJ 25475
Technical data for a multi-cell solar array
[NASA-CASE-MFS-23540-1] c 44 NJ 25475
Rumpf, H.
Method for sequentially processing a multi-level interconnected circuit in a vacuum chamber
[NASA-CASE-MFS-15670-1] c 34 NJ 33034
ROSS, R. M.
Preparation of heterocyclic block copolymer
[NASA-CASE-ARC-11060-1] c 27 NJ 22300
Perfluoroalkyl polyoxazolines containing pendant
[NASA-CASE-ARC-11241-1] c 25 NJ 14016
process for the preparation of perfluorinated 1,2,4-oxadiazoles
[NASA-CASE-MFS-1253-1] c 34 NJ 13683
Russen, B. W.
Polyimide film for the thermal insulation and fire
[NASA-CASE-XNP-09702] c 15 NJ 17654
Rosenblum, L.
Increased voltage photovoltaic cell
[NASA-CASE-ARC-11241-1] c 25 NJ 14016
process for preparing perfluorooxazolones elastomers and precursors thereof
[NASA-CASE-ARC-11418-1] c 25 NJ 14016
ROSENBURG, B. J.
Flux test device
[NASA-CASE-XMS-04917] c 14 NJ 24257
ROSEN, H. A.
Focused image holography with extended sources Patent
[NASA-CASE-ARC-10010-1] c 16 NJ 15551
ROSENBERG, L. A.
Recording and reconstructing focused image holograms Patent
[NASA-CASE-ARC-10010-1] c 16 NJ 15567
ROSENBERG, L. G.
Flow test device
[NASA-CASE-XRS-04917] c 14 NJ 24257
ROSEN, H. A.
Focused image holography with extended sources Patent
[NASA-CASE-ARC-10010-1] c 16 NJ 15567
ROSENBERG, B. J.
Visual examination apparatus
[NASA-CASE-XAC-00648] c 14 NJ 40400
ROSEN, H. A.
Increased voltage photovoltaic cell
[NASA-CASE-ARC-11267-1) c 24 NJ 84112
ROUSEY, W. J.
Increased voltage photovoltaic cell
[NASA-CASE-MFS-16155-1] c 15 NJ 19568
Rosen, S.
Wide angle long eye relief eyepiece
[NASA-CASE-XAC-00648] c 14 NJ 40400
ROWAN, C.
Polyurethane foam for the thermal insulation and fire
[ NASA-CASE-LEM-12010-1] c 35 NJ 15132
RULLICK, G. P.
Solar cell panels with light transmitting plates Patent
[NASA-CASE-ARC-10010-1] c 15 NJ 21324
RULLINS, R. J.
Externally supported internally stabilized flexible duct joint
[NASA-CASE-MFS-10194-1] c 37 NJ 11640
RULLINS, R. E.
Demodulator for carrier transducers
[NASA-CASE-ARC-10107-1] c 33 NJ 17930
RULLINS, FRED P.
Self-contained, single-use hose and tubing cleaning module
[NASA-CASE-MFS-20857-1] c 37 NJ 18705
RULLINS, G. N.
System for calibrating pressure transducer
[NASA-CASE-ARC-10101-1] c 35 NJ 15132
RULLINS, F. E.
Gas core nuclear reactor Patent
[NASA-CASE-LEW-10250-1] c 22 NJ 128759
ROMAN, J. A.
Semicontinuous electrode arrangement Patent
[NASA-CASE-XFR-1085-1] c 35 NJ 11189
ROMAN, J. A.
Method and apparatus for attaching physiological electrodes Patent
[NASA-CASE-XFR-07568-1] c 05 NJ 26293
ROMAN, J. A.
Gas low pressure low flow rate metering system
[NASA-CASE-FRC-00122] c 12 NJ 25548
ROMAN, J. A.
Respiration monitor Patent
[NASA-CASE-FRC-10012] c 14 NJ 17329
ROMAN, R. F.
Hydrogen hollow cathode ion source
[NASA-CASE-LEW-12940-1] c 72 NJ 3186
RING, C. D.
High-speed, multiple pass, single-masking technique
[NASA-CASE-ACM-1010-1] c 33 NJ 26587
ROMANOFFSKY, ROBERT R.
Method for using superior wave shifter using optically activated superconducting switches
[NASA-CASE-LEW-14878-1] c 74 NJ 13999
ROMEL, M. A.
Hydrogen leak detection device Patent
[NASA-CASE-MFS-11537-1] c 14 NJ 26072
ROMAYR, E. J.
Intermittent type silica gel adsorption refrigerator
[NASA-CASE-XNP-00920] c 15 NJ 15906
RONEY, B. W.
Evolution valve
[NASA-CASE-ARC-11061-1] c 15 NJ 21348
ROONEY, JAMES A.
Apparatus for imaging deep arterial and coronary lesions
[NASA-CASE-NPO-17439-1-CU] c 52 NJ 16391
ROOT, G. L.
Valve seat
[NASA-CASE-NPO-10606] c 15 NJ 22545
ROVING, MARK E.
General method of pattern classification using the two-domain theory
[NASA-CASE-MFS-21737-1] c 61 NJ 13911
ROUSSELL, L. R.
Method for detecting pollutants
[NASA-CASE-LAR-11405-1] c 45 NJ 691714
THERMOMETERS: Immersometric analysis Patent
[NASA-CASE-LAR-10246-1] c 25 NJ 15210
ROGOWSKI, ROBERT S.
[NASA-CASE-LEW-10286-1] c 28 NJ 17122
ROLIK, G. P.
Solar cell panels with light transmitting plates Patent
[NASA-CASE-ARC-10010-1] c 07 NJ 22042
ROLLER, R. W.
Demodulator for carrier transducers
[NASA-CASE-ARC-10107-1] c 33 NJ 17930
ROLLINS, FRED P.
Self-contained, single-use hose and tubing cleaning module
[NASA-CASE-MFS-20857-1] c 37 NJ 18705
ROLLINS, G. N.
System for calibrating pressure transducer
[NASA-CASE-LAR-10101-1] c 35 NJ 15132
ROLLINS, R. J.
Externally supported internally stabilized flexible duct joint
[NASA-CASE-MFS-10194-1] c 37 NJ 11640
ROMAN, J. A.
Electronic circuitry for interferometers Patent
[NASA-CASE-LAR-12024-1] c 14 NJ 27225
ROMANOWSKY, ROBERT R.
Method for using superior wave shifter using optically activated superconducting switches
[NASA-CASE-LEW-14878-1] c 74 NJ 13999
ROMAN, R. F.
Hydrogen leak detection device Patent
[NASA-CASE-MFS-11537-1] c 14 NJ 20442
RONEY, B. W.
Evolution valve
[NASA-CASE-LAR-10601-1] c 15 NJ 21348
RONEY, B. W.
Evolution valve
[NASA-CASE-ARC-11061-1] c 15 NJ 21348
Listings in this index are arranged alphabetically by source. The title of the document provides the user with a brief description of the subject matter. The case number is the prime access point to patent documents. The subject category indicates the category in Section 1 (Abstracts) in which the citation is located. The accession number denotes the number by which the citation is identified within the subject category. The titles are arranged under each source in ascending accession number order.

**A**

**Adjunct Systems, Inc., Huntsville, AL.** Longwall shearer tracking system [NASA-CASE-MFS-2357-1] c 09 N74-33768


**Airborne Instruments Lab., Deer Park, N.Y.** Ammonium perchlorate composite propellant containing an organic transitional metal chelate catalytic additive [NASA-CASE-XNP-02862-1] c 15 N72-29358


**American Optical Co., Southbridge, MA.** Apparatus and method for heating a material in a cryogenic path [NASA-CASE-LEW-10794-1] c 17 N72-17093


**Amphex Corp., Redwood City, CA.** Method for making conductors for ferrite memory arrays [NASA-CASE-LAR-10994-1] c 24 N75-13032

**Anocut Engineering Co., Chicago, IL.** Apparatus for electrolytically tapered or contoured cavities [NASA-CASE-XNP-00885-1] c 37 N86-14996


**Army Aviation Research and Development Command, Hampton, VA.** Helicopter multi-torque system using strakes [NASA-CASE-LAR-1323-1] c 05 N84-33400

**Army Mobility Research and Development Laboratory, Hampton, VA.** Army Aviation Research and Development Command, Moffett Field, CA. Clutchless multiple drive source for output shaft [NASA-CASE-LAR-1125-1] c 37 N82-22496

**ARCO, Inc., Arnold Air Force Station, TN.** Rhomboid prism pair for rotating the plane of parallel light beams [NASA-CASE-ARC-1131-1] c 74 N83-19378

**Astro Research Corp., Carpineta, CA.** Foldable boom [NASA-CASE-LAR-1207-1] c 31 N81-25259

**Astro-Space Labs., Inc., Huntsville, AL.** Linear differential pressure sensor Patent [NASA-CASE-XLS-0074-1] c 14 N71-22752

**Athens Coll., CA.** Apparatus and method for heating a material in a transparent annulus [NASA-CASE-MFS-2354-1] c 27 N83-36200


**Auburn Univ., AL.** Automatic frequency control for FM transmitter [NASA-CASE-MFS-21540-1] c 33 N74-19700

**Avco Corp., Cincinnati, OH.** Method for forming pyrrole molding powders and products of said method [NASA-CASE-LAR-1043-1] c 23 N82-29358


**Battelle Columbus Laba., OH.** Star scanner [NASA-CASE-GSC-11569-1] c 69 N74-30886

**Battelle Memorial Inst., Columbus, OH.** Multi-laser scan horizon sensor Patent [NASA-CASE-XGS-00809-1] c 21 N70-35427


**Beamtronics Corp., Easton, PA.** Apparatus comprising a bonded stack of pieces of corrugated metal foil [NASA-CASE-GSC-11308-1] c 09 N73-32108

**Bendix Aviation Corp., Northbrook, IL.** Method of making porous conductive supports for electrodes [NASA-CASE-YGO-0124-1] c 35 N79-33449

**Bettis Columbus Laba., OH.** Automatic frequency control for FM transmitter [NASA-CASE-XNO-0267-1] c 06 N71-23230

**Bettis Memorial Inst., Richland, WA.** Attached of strain gages to substrates [NASA-CASE-FRC-1099-1] c 35 N80-20560


**Bethe Northwest Labs., WA.** Preparation of high purity copper fluoride [NASA-CASE-LEW-10794-1] c 06 N72-17093


**Beverage Automation Co., Stamford, CT.** EEG sleep analyzer and method of operation Patent [NASA-CASE-MSC-1028-1] c 05 N71-24729
Singly-curved reflector for use in high-gain antennas

Digital phase shift of carrier data compression

Continuously variable load at original shift phase

Pseudo-random phase sequence generator with three tap linear feedback shift registers

Versatile arithmetic unit for high speed sequential decoder

Dual frequency microwave reflex feed

Ferrite and polynomials for reducing noise effects

Irradiance measuring device

Programmable resistor band-aid reliability estimation

Vapor condenser attenuator wherein motor has orthogonally disposed resistive and dielectric cards

Multi-purpose antenna employing dish reflector with plural coaxial horn feeds

Communications link for computers

Method and apparatus for frequency-division multiplex communications by digital phase shift of carrier

Binary coded digital acquisition range system

Multifunctional sequential function generator for multibit binary sequence

Analog data logger system using cathode ray tube

Multi-mode antenna with voltage feedback

Universal motor for driving high speed fan

Thermal second system with double impinging two-phase jets

Analog-to-digital converter

Light sensor

Quick disconnect coupling

Chemical reactor for reaction mixture

Uninterrupted in-core thermionic diode

Audiomedical display device

Adjustable support

Apparatus for testing adults

Method for controlling vapor content of a gas

Microphone for monitoring noise in the 70Hz range

Thin film thermometer and method of making same

Circular polarized antenna

Current steering commutator

Attenuator for polarizing a phototransistor

Pressure transducer

Positioning mechanism

Solar cell panels with light transmitting plate

Data multiplexer using tree switching configuration

Twin solid-state switches with Seebeck effect compensation

Cycles of equal length

Feedback shift register with states decomposed into cycles of equal length

Self-occluding gas-state launcher

Communications link for computers

Thermal to electrical power conversion system with Seebeck effect

Two phase flow system with discrete impinging surface

Thermal motor

Bipropellant injector

Solid propellant rocket motor nozzle

Absorptive hydrogen-deuterium mixtures

Galvanometer for inspecting cathode filament

Flexible computer access telemetry

Magnetic recording card, with states decomposed into cycles of equal length

Multipurpose antenna employing dish reflector with plural coaxial horn feeds

Communications link for computers

Method and apparatus for frequency-division multiplex communications by digital phase shift of carrier

Binary coded digital acquisition range system

Multifunctional sequential function generator for multibit binary sequence

Analog data logger system using cathode ray tube

Multi-mode antenna with voltage feedback

Universal motor for driving high speed fan

Thermal second system with double impinging two-phase jets

Analog-to-digital converter

Apparatus for measuring irradiance

Rotary actuator

Magnetically actuated tuning method for Gunn oscillators

Multiple reflection conical microwave antenna

Combined optical system

Heat detector and compositions and devices therefor

Parallel-plate viscometer with double diaphragm suspension

Multifunctional sequential function generator for multibit binary sequence

Speaker system with continuous magnetic flux pump

Optically actuated two position mechanical mover

Discount unit

Coaxial injector for reaction motors

Thermomagnetic recording and magneto-optic playback system

Photoelectric detector

Maser for frequencies in the 7-20 GHz range

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode

Optical computer peripheral interactive device with coaxial cable under pressure

Thermomagnetic recording and magneto-optic playback system

Audio frequency marker system

Ball screw linear actuator

Low loss dichroic plate

Continuous magnetic flux pump

Low loss diode
Dual membrane hollow fiber cell and method of operating same  
[NASA-CASE-NPO-13732-1] c 44 N79-10513  
Concentrator  
Surfactant-assisted liquefaction of particulate carbonaceous substances  
Electroosseive device  
Space-charge-limited solid state triode  
[NASA-CASE-NPO-13604-1] c 33 N79-11315  
Plasma catalytic combustion engine  
[NASA-CASE-NPO-13828-1] c 37 N79-11405  
Non-tracking solar energy collector system  
Method of controlling defect orientation in silicon crystal  
[NASA-CASE-NPO-13918-1] c 76 N79-11920  
Method and apparatus for measuring minority carrier lifetimes and bulk diffusion length in P-N junction solar cells  
[NASA-CASE-NPO-14100-1] c 44 N79-12541  
Aging blood clinical system for chromosome analysis  
[NASA-CASE-NPO-13913-1] c 52 N79-12694  
Conical scan tracking system employing a large antenna  
Stabilization of He(I) 3 Sigma u + molecules in liquid helium by optical pumping for vacuum UV laser  
[NASA-CASE-NPO-13993-1] c 72 N79-12862  
High temperature resistant cement and ceramic composions  
Inhibited solid propellant composition containing beryllium nitride  
Digital demodulator-correlator  
[NASA-CASE-NPO-12067-1] c 32 N79-12467  
Azimuth correlator for real-time synthetic aperture radar image processing  
[NASA-CASE-NPO-14019-1] c 32 N79-12468  
Apparatus for providing a servo drive signal in a high-speed stepping interferometer  
High-torque open-end wrench  
[NASA-CASE-NPO-13541-1] c 37 N79-14383  
Sun tracking solar energy collector  
[NASA-CASE-NPO-13921-1] c 44 N79-14526  
Primary reflector for solar energy collection systems  
[NASA-CASE-NPO-13579-1] c 44 N79-14529  
Gas diffusion liquid storage bag and method of storing blood  
[NASA-CASE-NPO-13930-1] c 52 N79-14749  
Coping apparatus for ultrasanic medical diagnostic systems  
[NASA-CASE-NPO-13931-1] c 52 N79-14751  
Thermographic recording and magnetic-optic playback system  
[NASA-CASE-NPO-13579-1] c 52 N79-15013  
Manipulated bitshifts method for narrow chromatography switching  
[NASA-CASE-NPO-13313-1] c 76 N79-15335  
Multispectral imaging and analysis system  
Process for purification of waste water produced by a Kraft process pulp and paper mill  
Thermal energy transformer  
[NASA-CASE-NPO-14058-1] c 44 N79-18443  
Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths  
Method for extracting kinetic energy from a stream of two-phase fluid  
[NASA-CASE-NPO-14130-1] c 34 N79-20335  
Digital data transmission/demodulation system  
[NASA-CASE-NPO-13676-1] c 60 N79-20751  
Acoustic driving of rotor  
[NASA-CASE-NPO-14205-1] c 71 N79-20897  
System and method for obtaining wide screen Schlieren  
[NASA-CASE-NPO-14174-1] c 74 N79-20856  
Schematic vibration source  
[NASA-CASE-NPO-14112-1] c 46 N79-22679  
Underwater seismographic sensor  
[NASA-CASE-NPO-14255-1] c 46 N79-23555  
Resolution enhanced sound detecting apparatus  
[NASA-CASE-NPO-14143-1] c 31 N79-23753  
Phase conuagation method and apparatus for an active retrodirective antenna array  
[NASA-CASE-NPO-13669-1] c 32 N79-24210  
Module failure isolation circuit for paralleled inverters  
[NASA-CASE-NPO-14000-1] c 37 N79-24524  
Dual membrane hollow fiber cell and method of operating same.
Adaptive choke for fluids nozzle  
[NASA-CASE-NPO-17625-1-CU] c 34 N90-27070  
Method and apparatus for configuration control of redundant robotics  
[NASA-CASE-NPO-17801-1-CU] c 37 N90-27110  
Pneumatosas diagnostic assay  
[NASA-CASE-NPO-17853-1-CU] c 51 N90-27239  
Special-purpose parallel optical architecture for real-time control and simulation in robotic applications  
[NASA-CASE-NPO-17293-1-CU] c 60 N90-27268  
Modified fast frequency acquisition via adaptive least squares algorithm  
[NASA-CASE-NPO-17345-1-CU] c 61 N90-27411  
Telemetry for leading neural networks  
[NASA-CASE-NPO-17264-1-CU] c 62 N90-27384  
Neural network with dynamically adaptable neurons  
[NASA-CASE-NPO-16933-1-CU] c 62 N90-27258  
All-optical photonic spatial light modulators based on photodetected electron transfer in rigid matrices  
[NASA-CASE-NPO-17612-1-CU] c 74 N90-27487  
Equal path, phase shift, sampling point interface meter for monitoring the configuration of surfaces  
[NASA-CASE-NPO-17913-1-CU] c 74 N90-27468  
Growth of III-V films by control of MBE growth front stoichiometry  
[NASA-CASE-NPO-17724-1-CU] c 76 N90-27517  
Currents at locations remote from land masses using synthetic aperture radar currents at locations remote from land masses using synthetic aperture radar  
[NASA-CASE-NPO-17931-1-CU] c 76 N90-27518  
Logic gate  
[NASA-CASE-NPO-17640-1-CU] c 33 N91-14538  
Darlington photo-transistors for optical neural networks  
[NASA-CASE-MSC-18604-1] c 33 N91-14536  
Multiplier  
[NASA-CASE-MSC-18759-1] c 52 N83-27578  
Tape guidance system and apparatus for the provision thereof  
[NASA-CASE-MSC-18777-1] c 53 N83-27804  
Automatic signal range selector for metering devices  
[NASA-CASE-MSC-18382-1] c 27 N82-16238  
Open loop digital frequency multiplier  
[NASA-CASE-MSC-18255-1] c 74 N80-33210  
Lockheed Engineering and Management Services Co., Inc.  
Lockheed Engineering and Management Services Co., Inc.
Deep space monitor communication satellite system Patent
[CASA-ARC-XAC-06029-1] c 05 N71-24813
Laser fluid velocity detector Patent
[CASA-ARC-XAC-10007-1] c 16 N71-26288
Thermal video signal recorded with expanded playback Patent
[CASA-ARC-XAC-10005-1] c 09 N71-25066
Method of controlling phase quadrature plural channel data transmission Patent
[CASA-ARC-XAC-10176-1] c 15 N71-21752
Mechanically limited, electrically operated hydraulic valve system for aircraft controls Patent
[CASA-ARC-XAC-10178-1] c 09 N71-21319
Telemeter actuated switch Patent
[CASA-ARC-XAC-10100-1] c 09 N71-21353
Active RC networks Patent
[CASA-ARC-XAC-10105-1] c 03 N71-23409
Phase shift circuit apparatus Patent
[CASA-ARC-XAC-10259-1] c 10 N71-16712
High intensity radiant energy pulse source for opening shutter when light flux has reached a desired level Patent
[CASA-ARC-XAC-10179-1] c 09 N71-23852
Wiggle sensor Patent
[CASA-ARC-XAC-10263-1] c 14 N71-22438
Fluidic proportional thruster method and apparatus Patent
[CASA-ARC-XAC-10154-1] c 14 N71-22440
Magnetic position detection method and apparatus Patent
[CASA-ARC-XAC-10151-1] c 21 N71-26519
Hydrostatic fluid displacement apparatus Patent
[CASA-ARC-10151-1] c 33 N71-12982
Automatic real-time pair feeding system for animals Patent
[CASA-ARC-XAC-10302-1] c 51 N71-17577
Optical machine tool alignment indicator Patent
[CASA-ARC-10197-1] c 33 N71-17492
Ultrasonic biomedical measuring and recording apparatus Patent
[CASA-ARC-10597-1] c 52 N71-20726
Inertial reference apparatus Patent
[CASA-ARC-10265-1] c 14 N71-25463
Metallic intrusion detector system Patent
[CASA-ARC-10456-1] c 05 N75-12930
Wind tunnel flow generation section Patent
[CASA-ARC-10637-1] c 35 N75-16783
Dual wavelength scanning Doppler velocimeter Patent
[CASA-ARC-10802-1] c 35 N75-30502
Segmented tubular cushion springs and spring assembly

- [NASA-CASE-ARC-11348-1] c 37 N65-20767
- Perfucuro (imodiumal) diamidines

- High performance mixed bisamide resins and composites based thereon

- [NASA-CASE-ARC-11508-15B] c 24 N65-21590
- Laminating composite fibers embedded in cured amine terminated bis-imi

- Thru-manned two axis controller

- [NASA-CASE-ARC-11372-1] c 08 N65-27268
- Toughened reinforced epoxy composites with brominated polystyrene fibers

- [NASA-CASE-ARC-11427-2] c 27 N65-27451
- Load positioning system with gravity compensation

- Light weight fire resistant graphite composites

- [US-PATENT-4,568,007] c 24 N65-27631
- Torsion ring construction for hard space kill

- [NASA-CASE-ARC-11611-1] c 54 N65-28619
- Shoulder and hip joint for hard space suits

- [NASA-CASE-ARC-11543-1] c 54 N65-29507
- Aramid terminated bisisophoramide polymer

- Simulation display computer equipment

- [NASA-CASE-ARC-11504-1] c 09 N65-32447
- Polymer of phosphonylethynyl-2,4- and -2,6-diamino benzene and phenylphosphazene

- [NASA-CASE-ARC-11506-2] c 23 N65-32525
- Fire resistant polypylene based on 1-diglycophospholymethylene-2,4- and -2,6-diaminobenzene

- [NASA-CASE-ARC-11428-2] c 27 N65-32568
- Spinning disk calibration method and apparatus for laser Doppler velocimeter

- [NASA-CASE-ARC-11510-1] c 35 N65-32697
- Process for curing brominated resins

- Vinyl silicones

- [NASA-CASE-ARC-11429-3] c 27 N65-15305
- Fire and heat resistant laminate resins based on maleimido substituted aromatic cyclotriphosphazene polymer

- Elevated workflow access floor system and method of making same

- [NASA-CASE-ARC-11363-1] c 31 N65-16918
- Projection lens scanning laser velocimeter system

- [NASA-CASE-ARC-11547-1] c 26 N65-17206
- Process for preparing phthalocyanine polymer from imide containing bisphthalimide

- [NASA-CASE-ARC-11511-2] c 27 N65-21112
- Liquid sealing atomizer

- [NASA-CASE-ARC-11021-2] c 34 N65-21255
- Structural panels

- [NASA-CASE-ARC-11429-2] c 27 N65-22845
- Swashplate control system

- [NASA-CASE-ARC-11633-1] c 08 N65-23031
- Preparation of B-trichloroborazine

- [NASA-CASE-ARC-11428-2] c 27 N65-23698
- Ceramic honeycomb structures and the method thereof

- [NASA-CASE-ARC-11427-1] c 27 N65-27377
- Fire and heat resistant laminate resins based on maleimido and cyanoamidomethyl substituted 1,2,4- and -2,6-diaminobenzenes

- [NASA-CASE-ARC-11503-1] c 23 N65-27351
- Fire and heat resistant laminate resins based on maleimido and cyanoamidomethyl substituted 1,2,4- and -2,6-diaminobenzenes

- [NASA-CASE-ARC-11503-1] c 23 N65-27351
- Fire and heat resistant laminate resins based on maleimido and cyanomethyl substituted 1-(diisocyanate) methyl-2,4- and -2,6-diaminobenzenes

- [NASA-CASE-ARC-11502-3] c 27 N65-27454
- Weightlessness simulation system and process

- [NASA-CASE-ARC-11646-1] c 18 N65-27544
- Aminophenoxycyclotriphosphazene cured epoxy resins and the composites, laminates, adhesives and structures therefrom

- [NASA-CASE-ARC-11458-1] c 23 N65-27549
- Self-compensating solenoid valve

- [NASA-CASE-ARC-11620-1] c 37 N65-27555
- Liquid iminocyclophosphazene growth

- [NASA-CASE-ARC-11620-1] c 37 N65-27555
- Liquid iminocyclophosphazene growth

- [NASA-CASE-NPO-16061-1-CU] c 76 N65-27668
- Method and apparatus for making an optical element having a dielectric film

- [NASA-CASE-ARC-11611-1] c 74 N65-28146
- The 1-(dikaloxycarbonyloxy) methyl-2,4- and -2,6-diamino benzene and their derivatives

- Electro-expulsive separation system

- [NASA-CASE-ARC-11613-1] c 33 N65-28823
- Dual mode laser velocimeter

- [NASA-CASE-ARC-11634-1] c 26 N68-14350
- Aircraft tracking sunphotometer apparatus and system

- [NASA-CASE-ARC-11622-1] c 04 N68-14492
- Ceramic-ceramic shell fire thermal protection system and method thereof

- [NASA-CASE-ARC-11641-1] c 24 N68-16288
- Dioxide ceramic shell fire thermal protection system and method thereof

- [NASA-CASE-ARC-11428-1] c 23 N68-24692
- High performance forward swept wing aircraft

- [NASA-CASE-ARC-11510-1] c 26 N68-28756
- Boron-containing organosilanes and polymer materials thereof

- [NASA-CASE-ARC-11429-1SB] c 27 N68-29040
- Laser Doppler velocimeter multiplexer interface for simultaneous measurement events

- [NASA-CASE-ARC-11429-2] c 23 N86-14384
- Fire and heat resistant laminating resin based on maleimido and cyanoamidomethyl substituted 1-dikaloxycarbonyloxy)methyl-2,4- and -2,6-diaminobenzenes

- [NASA-CASE-ARC-11532-3] c 54 N86-20202
- Shoulders and hips for hard space suits and the like

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-1] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11501-1] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility

- [NASA-CASE-ARC-11505-2] c 18 N89-25266
- Suitport extra vehicular access facility
CORPORATE SOURCE

Elastomer and containing halogenated flame standard frequency.


CORPORA TESOURCE

NASA, Johnson Space Center
Automatic compression adjusting mechanism for internal
combustion engines
[NASA-CASE-MSC-18807-1]
C 37 N83-36483
Absorbent product and articles made therefrom
[NASA-CASE-MSC-18223-2]
C 54 N84-11758
Method and technique for installing light-weight, fragile,
high-temperature fiber insulation
[NASA-CASE-MSC-16934-3]
C 24 N84-16262
Method and apparatus for simulating gravitational forces
on a living organism
[NASA-CASE-MSC-20202-1]
C 54 N84-16803
Pre-stressed thermal protection systems
[NASA-CASE-MSC-20254-1]
C 16 N84-22601
Apparatus for releasably connecting first and second
objects in predetermined space relationship
[NASA-CASE-MSC-18969-1]
C 18 N84-22605
Tanker orbit transfer vehicle and method
[NASA-CASE-MSC-20543-1]
C 18 N84-22610
Doppler radar having phase modulation of both
transmitted and reflected return signals
[NASA-CASE-MSC-18675-1]
C 32 N84-22820
Heat resistant protective hand covering
[NASA-CASE-MSC-20261-2]
C 54 NB4-23113
Method and apparatus for receiving and tracking phase
modulated signals
[NASA-CASE-MSC-16170-2]
C 32 N84-27952
Heat resistant protective hand covering
[NASA-CASE-MSC-20261-1]
c 54 N84-28484
Digital interface for bi-directional
communication
between a computer and a peripheral device
[NASA-CASE-MSC-20258-1]
c 60 N84-28492
Slow opening valve
[ NASA-CASE-MSC-20112-1]
c 37 N85-20338
Television camera video level control system
[NASA-CASE-MSC-18578-1]
C 32 N85-21427
Self-charging metering and dispensing device for
fluids
[NASA-CASE-MSC-20275-1]
c 35 N85-21595
Connection system
[NASA-CASE-MSC-20319-1]
C 37 N85-21649
Monogroove heat pipe design: Insulated liquid channel
with bridging wick
[NASA-CASE-MSC-20497-1]
c 34 N85-29180
Moisture content and gas sampling device
[NASA-CASE-MSC-18866-1]
c 35 N85-29213
Low gravity exothermic heating/cooling apparatus
[NASA-CASE-MSC-25707-1]
C 35 N85-29214
Spray applicator for spraying coatings and other fluids
in space
[NASA-CASE-MSC-18852-1]
c 37 N85-29283
Linear motion valve
[NASA-CASE-MSC-20148-1]
C 37 N85-29284
Light transmitting window assembly
[NASA-CASE-MSC-18417-1]
C 74 N85-29750
Slide release mechanism
[NASA-CASE-MSC-20080-1 ]
c 37 N85-30334
Liquid crystal light valve structures
[NASA-CASE-MSC-20036-1]
C 76 N85-33826
Reactant pressure differential control for fuel cell
[NASA-CASE-MSC-20127-2]
C 37 N85-34403
Fluid leak indicator
[NASA-CASE-MSC-20783-1]
c 35 N86-20756
Spillage detector for liquid chromatography systems
[NASA-CASE-MSC-20206-1]
c 25 N86-27431
Multi-leg heat pipe evaporator
[NASA-CASE-MSC-20812-1]
C 34 N86-27593
Foldable self-erecting joint
[NASA-CASE-MSC-20635-1]
c 18 N87-14373
Real-time garbage collection for list processing
[NASA-CASE-MSC-20964-1]
C 60 N87-14863
Infusion extractor
[NASA-CASE-MSC-20761-1]
C 37 N87-15465
Self-contained, single-use hose and tubing cleaning
module
[NASA-CASE-MSC-20857-1]
. C 37 N87-17035
Sun shield
[NASA-CASE-MSC-20162-1]
C 37 N87-17036
Method and apparatus for measuring frequency and
phase difference
[NASA-CASE-MSC-20865-1]
C 32 N87-18692
Multi-path peristaltic pump
[NASA-CASE-MSC-20907-1]
c 37 N87-18818
Pumped two-phase heat transfer loop
[NASA-CASE-MSC-20841-1]
C 34 N87-22950
Apparatus and method of capturing an orbiting
spacecraft
[NASA-CASE-MSC-20979-1]
c 37 N87-22985
Method of making a flexible diaphragm
[NASA-CASE-MSC-20797-1]
C 37 N87-23981
Method and apparatus for telemetry adaptive bandwidth
compression
[NASA-CASE-MSC-20821-1]
C 17 N87-25348
Improved method and apparatus for waste collection
and storage
[NASA-CASE-MSC-21025-1]
C 31 N87-25495

C-26

Processing circuit with asymmetry corrector and
convolutional encoder for digital data
[NASA-CASE-MSC-20187-1]
C 33 N87-25531
Four-terminal electrical testing device
[NASA-CASE-MSC-21166-1]
c 35 N87-25555
Preloadable vector sensitive latch
[NASA-CASE-MSC-20910-1]
C 37 N87-25582
Monogroove cold plate
[NASA-CASE-MSC-20946-1]
C 34 N87-28867
Tapered, tubular polyester fabric
[NASA-CASE-MSC-21082-1]
C 27 N87-29672
Locking hinge
[NASA-CASE-MSC-21056-1]
c 18 N88-23827
Hermetically scalable package for hybrid solid-state
electronic devices and the like
[NASA-CASE-MSC-20181-1]
C 33 N88-23941
Pumped two-phase heat transfer loop
[NASA-CASE-MSC-20841-2]
c 34 N88-23958
Acoustic emission frequency discrimination
[NASA-CASE-MSC-20467-1]
c 35 N88-23966
Magnetic drive coupling
[NASA-CASE-MSC-21171-1]
c 37 N88-23973
Payload deployment method and system
[NASA-CASE-MSC-21330-1]
c 16 N88-24660
Nozzle fabrication technique
[NASA-CASE-MSC-21299-1]
c 20 N88-24684
Linear force device
[NASA-CASE-MSC-20549-2]
C 35 N88-24927
Electrostatic discharge test apparatus
[NASA-CASE-MSC-21094-1]
c 35 N88-24941
Range and range rate system
[NASA-CASE-MSC-20867-1]
C 36 N88-24958
Toggle release
[NASA-CASE-MSC-21354-1]
C 37 N88-24969
Mobile remote manipulator system for a tetrahedral
truss
[NASA-CASE-MSC-20985-1]
C 18 N88-26398
Method and apparatus for measuring distance
[NASA-CASE-MSC-20912-1]
C 32 N88-26568
Expandable pallet for space station interface
attachments
[NASA-CASE-MSC-21117-1]
c 18 N88-28958
Method of forming dynamic membrane on stainless steel
support
[NASA-CASE-MSC-18172-3]
C 31 N88-29052
High effectiveness contour matching contact heat
exchanger
[NASA-CASE-MSC-20840-1]
C 34 N88-29132
Collet lock joint for space station truss
[NASA-CASE-MSC-21207-1]
C 37 N88-29180
Preloaded brake disc
[NASA-CASE-MSC-21132-1]
c 37 N88-29181
ARC length control for plasma welding
[NASA-CASE-MSC-20900-1 ]
c 37 N88-30131
Switched steerable multiple beam antenna system
[NASA-CASE-MSC-20873-1-SB]
c 32 N89-11961
Hazards protection for space suits and spacecraft
[NASA-CASE-MSC-21366-1]
c 54 N89-12206
Space station erectable manipulator placement
system
[NASA-CASE-MSC-21096-1]
c 18 N89-12621
Improved docking alignment system
[NASA-CASE-MSC-21372-1]
C 35 N89-12842
Magnetic attachment mechanism
[NASA-CASE-MSC-21095-1]
C 37 N89-12866
Horizontally rotated cell culture system
[NASA-CASE-MSC-21294-1]
c 51 N89-13131
Don/doff support stand for use with rear entry space
suits
[NASA-CASE-MSC-21364-1]
C 54 N89-13889
Bio-reactor cell culture process
[NASA-CASE-MSC-21293-1]
c 51 N89-14666
Fluidic momentum controller
[NASA-CASE-MSC-20906-2]
C 35 N89-15379
Hybrid plume plasma rocket
[NASA-CASE-MSC-20476-2]
c 20 N89-25279
Method and apparatus for sensor fusion
[NASA-CASE-MSC-21334-1]
c 32 N89-25360
Spiral vane bioreactor
[NASA-CASE-MSC-21361-1]
C 51 N89-25557
Space module assembly apparatus with docking
alignment flexibility and restraint
[NASA-CASE-MSC-21211-1]
C 18 N89-28553
Expandable pallet for space station interface
attachments
[NASA-CASE-MSC-21117-2]
c 18 N89-28554
Method and apparatus for bio-regenerative life support
system
[NASA-CASE-MSC-21629-1]
C 54 N89-29027
Method of controlling a resin curing process
[NASA-CASE-MSC-21169-1]
c 27 N89-29539
Docking system for spacecraft
[NASA-CASE-MSC-21327-1)
c 18 N90-11798
Bus programmable slave module
[NASA-CASE-MSC-21387-1]
c 61 N90-16411

High-pressure promoted combustion chamber
[NASA-CASE-MSC-21470-1]
c 09 N90-16771
Microporous structure with layered interstitial surface
treatment, and method and apparatus for preparation
thereof
[NASA-CASE-MSC-21487-1]
c 25 N90-16887
Polycarbonate article with chemical resistant coating
[NASA-CASE-MSC-21503-1]
C 27 N90-16925
Method and apparatus for positioning a robotic end
effector
[NASA-CASE-MSC-21476-1]
C 37 N90-17137
Mechanized fluid connector and assembly tool system
[NASA-CASE-MSC-21434-1]
c 37 N90-17138
Three-dimensional coculture process
[NASA-CASE-MSC-21560-1]
C 51 N90-18852
Hatch cover
[NASA-CASE-MSC-21356-1]
c 18 N90-19278
Docking mechanism for spacecraft
[NASA-CASE-MSC-21386-1]
C 18 N90-20126
System for venting gas from a liquid storage tank
[ NASA-CASE-MSC-21253-1 ]
c 31 N90-20254
Doppler radar with multiphase modulation of transmitted
and reflected signal
[NASA-CASE-MSC-18808-1]
c 32 N90-20280
Gripping device
[NASA-CASE-MSC-21365-1]
C 37 N90-20408
Double swivel toggle release
[NASA-CASE-MSC-21436-1]
c 37 N90-21390
Pressurized bellows flat contact heat exchanger
interface
[NASA-CASE-MSC-21271-1]
c 34 N90-21999
Lightweight ceramic insulation and method
[NASA-CASE-MSC-20782-1]
c 27 N90-23566
Hazards protection for space suits and spacecraft
[NASA-CASE-MSC-21366-1]
C 54 N90-25498
Methods and apparatus for providing real-time control
of a gaseous propellent rocket propulsion system
[NASA-CASE-MSC-21542-1]
c 20 N90-26073
Power saw
[NASA-CASE-MSC-21469-1]
C 37 N90-26340
Alignment positioning mechanism
[NASA-CASE-MSC-21502-1]
c 37 N90-26341
Bidirectional drive and brake mechanism
C 37 N90-26342
Hypervelocity impact shield
[NASA-CASE-MSC-21420-1]
C 18 N90-26858
Overcenter collet space station truss fastener
[NASA-CASE-MSC-21504-1]
c 18 N90-26859
Semi-active orbital debris sweeper
[NASA-CASE-MSC-21534-1]
c 18 N90-26860
Generation of animation sequences of three dimensional
models
[NASA-CASE-MSC-21379-1-SB]
c 61 N90-27340
Assured crew return vehicle
[NASA-CASE-MSC-21536-1]
C 18 N91-13483
Dual diaphragm tank with telltale drain
[NASA-CASE-MSC-21703-1]
c 31 N91-13580
• Variable orifice flow regulator
[NASA-CASE-MSC-21549-1]
C 34 N91-13657
Volumetric measurement of tank volume
[NASA-CASE-MSC-21500-1]
c 35 N91-13683
Two fault tolerant toggle-hook release
[NASA-CASE-MSC-21671-1]
c 37 N91-13723
Biofilm monitoring coupon system
[NASA-CASE-MSC-21585-1]
C 51 N91-13857
Three-dimensional cell to tissue assembly process
[NASA-CASE-MSC-21559-1]
c 51 N91-13860
Portable dynamic fundus instrument
[NASA-CASE-MSC-21675-1]
c 52 N91-13865
EMU helmet mounted display
[NASA-CASE-MSC-21460-1]
C 54 N91-13879
Programmable remapper with single flow architecture
[NASA-CASE-MSC-21481-1]
c 60 N91-13890
General method of pattern classification using the
two-domain theory
[NASA-CASE-MSC-21737-1]
c 61 N91-13911
System and method for a general purpose architecture
for intelligent computer-aided training
[NASA-CASE-MSC-21381-1]
c 63 N91-13944
Optical joint correlation for real-time tracking
[NASA-CASE-MSC-21509-1]
C 74 N91-13997
Three dimensional moire pattern alignment
[NASA-CASE-MSC-21416-1]
c 74 N91-14000
Adaptive data acquisition multiplexing system and
method
[NASA-CASE-MSC-21170-1]
c 17 N91-14371
Smart tunnel: Docking mechanism
[NASA-CASE-MSC-21360-1]
c 18 N91-14374
Thermal switch disc for short circuit protection of
batteries
[NASA-CASE-MSC-21428-1]
c 33 N91-14537
Vibration analyzer
[NASA-CASE-MSC-21408-1]
C 37 N91-14607
Quick connect coupling
[NASA-CASE-MSC-21539-1]
C 37 N91-14610


NASA, Langley Research Center

Resonant waveguide stark cell

Fluid control apparatus and method

C-30

C-31

C-32

C-33

C-34

C-35

C-36

C-37

C-38

C-39

C-40

C-41

C-42

C-43

C-44

C-45

C-46

C-47

C-48

C-49

C-50

C-51

C-52

C-53

C-54

C-55

C-56

C-57

C-58

C-59

C-60

C-61

C-62

C-63

C-64

C-65

C-66

C-67

C-68

C-69

C-70

C-71

C-72

C-73

C-74

C-75

C-76

C-77

C-78

C-79

C-80

C-81

C-82

C-83

C-84

C-85

C-86

C-87

C-88

C-89

C-90

C-91

C-92

C-93

C-94

C-95

C-96

C-97

C-98

C-99

C-100

C-101

C-102

C-103

C-104

C-105

C-106

C-107

C-108

C-109

C-110

C-111

C-112

C-113

C-114

C-115

C-116

C-117

C-118

C-119

C-120

C-121

C-122

C-123

C-124

C-125

C-126

C-127

C-128

C-129

C-130

C-131

C-132

C-133

C-134

C-135

C-136

C-137

C-138

C-139

C-140

C-141

C-142

C-143

C-144

C-145

C-146

C-147

C-148

C-149

C-150

C-151

C-152

C-153

C-154

C-155

C-156

C-157

C-158

C-159

C-160

C-161

C-162

C-163

C-164

C-165

C-166

C-167

C-168

C-169

C-170

C-171

C-172

C-173

C-174

C-175

C-176

C-177

C-178

C-179

C-180

C-181

C-182

C-183

C-184

C-185

C-186

C-187

C-188

C-189

C-190

C-191

C-192

C-193

C-194

C-195

C-196

C-197

C-198

C-199

C-200

C-201

C-202

C-203

C-204

C-205

C-206

C-207

C-208

C-209

C-210

C-211

C-212

C-213

C-214

C-215

C-216

C-217

C-218

C-219

C-220

C-221

C-222

C-223

C-224

C-225

C-226

C-227

C-228

C-229

C-230

C-231

C-232

C-233

C-234

C-235

C-236

C-237

C-238

C-239

C-240

C-241

C-242

C-243

C-244

C-245

C-246

C-247

C-248

C-249

C-250

C-251

C-252

C-253

C-254

C-255

C-256

C-257

C-258

C-259

C-260

C-261

C-262

C-263

C-264

C-265

C-266

C-267

C-268

C-269

C-270

C-271

C-272

C-273

C-274

C-275

C-276

C-277

C-278

C-279

C-280

C-281

C-282

C-283

C-284

C-285

C-286

C-287

C-288

C-289

C-290

C-291

C-292

C-293

C-294

C-295

C-296

C-297

C-298

C-299

C-300

C-301

C-302

C-303

C-304

C-305

C-306

C-307

C-308

C-309

C-310

C-311

C-312

C-313

C-314

C-315

C-316

C-317

C-318

C-319

C-320

C-321

C-322

C-323

C-324

C-325

C-326

C-327

C-328

C-329

C-330

C-331

C-332

C-333

C-334

C-335

C-336

C-337

C-338

C-339

C-340

C-341

C-342

C-343

C-344

C-345

C-346

C-347

C-348

C-349

C-350

C-351

C-352

C-353

C-354

C-355

C-356

C-357

C-358

C-359

C-360

C-361

C-362

C-363

C-364

C-365

C-366

C-367

C-368

C-369

C-370

C-371

C-372

C-373

C-374

C-375

C-376

C-377

C-378

C-379

C-380

C-381

C-382

C-383

C-384

C-385

C-386

C-387

C-388

C-389

C-390

C-391

C-392
Apparatus and method for reducing thermal stress in a turbine rotor

Apparatus and method for reducing thermal stress in a turbine rotor

Traveling wave tube circuit

High pressure gas bearing

Solar cells having integral collector grids

Application of semiconductors to dust cells to solar arrays by screen printing

Solid cell collector and method for producing same

High temperature sealant

Heat exchanger and method of making

Cam-operated pitch-change apparatus

Integrated gas turbine engine-nacelle

Variable area exhaust nozzle

Indicated mean effective pressure instrument

Thermocouples of molybdenum and iridium alloys for more stable vacuum-t high temperature performance

Back wall solar cell

Formulated plastic dispensers for soluble electrode coatings

Closed loop array-air thrust engine system with power control circuit

Heat exchanger and method of making

Composite seal for turbomachinery

Method for fabricating solar cells having integrated collector grids

Formulated plastic coatings for soluble electrode coatings

Closed loop spray cooling apparatus

Hydrogen velocity gun

Low heat leak connector for cryogenic system

Metallographic examination of molybdenum single crystal and polycrystalline electronic materials

Method for detecting defects in thin films of ferrous and related compounds

Process for making a high toughness, high strength iron alloy

Shaft seal assembly for high speed and high pressure applications

Self-sustaining solar cell

Solar chemical-electrical cell for rebalancing REDOX flow system

Catalytic trimerization of aromatic nitriles and related compounds

In-situ cross linking of polyvinyl alcohol

Circumferential shaft seal

Polynylvinyl alcohol battery separator containing inorganic filler

Superconducting solar cells

Cross-linked polyvinyl alcohol and method of making same

Catalyst surfaces for the chromatographic/chronic redox couple

Catalyst and method of making

Polyvinyl alcohol and method of making same

Superconducting solar cells

High thermal power density heat transfer

Assay to determine the active film stiffness

Composite seal for turbomachinery

Modifying method for making plastic separators for soluble electrode cells

Method of making polyimide reinforced fabric

Composition and method for making polyimide reinforced fabric

Methods and apparatus for rapid thrust increases in a gas turbine engine

Improved refractory coatings

Intra-ocular pressure normalization technique and apparatus for rapid thrust increases in a gas turbine engine

Gas path seal

Free-piston regenerative hot gas hydraulic engine

Hydrogen hollow cathode ion source

Free-piston regenerative hot gas hydraulic engine

Composite seal for turbomachinery

Superconducting solar cells

High thermal power density heat transfer

Assay to determine the active film stiffness
Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver

C-40

NASA, Marshall Space Flight Center

C-40
Method and apparatus for producing concentric hollow spheres

[C-TL;NASA-CASE-NPO-15059-1] c 32 N84-21938

Push-pull converter with energy saving circuit for protecting switching transformers from peak power stress

[C-TL;NASA-CASE-NPO-15121-1] c 36 N84-21667

Optical gYROscopic system

[C-TL;NASA-CASE-NPO-15107-1] c 38 N84-21596

Suppressed carrier signals

[C-TL;NASA-CASE-NPO-15082-1] c 32 N83-50200

Fluxgate nuclear reactor having a core with a powder moderator

[C-TL;NASA-CASE-NPO-15058-1] c 37 N83-49203

Real-time multiple-looking aperture processor for spacecraft applications

[C-TL;NASA-CASE-NPO-15043-1] c 32 N82-22977

Microwave limb scanner

[C-TL;NASA-CASE-NPO-15029-1] c 42 N82-22656

Faraday rotation measurement method and apparatus

[C-TL;NASA-CASE-NPO-14899-1] c 35 N82-15381

Carbon fiber-reinforced plastic for structural applications

[C-TL;NASA-CASE-NPO-14897-1] c 36 N82-14843

Fiber optic transmission line stabilization apparatus and method

[C-TL;NASA-CASE-NPO-15020-1] c 44 N82-16745

Suspension system for a wheel rolling on a flat track

[C-TL;NASA-CASE-NPO-14396-1] c 37 N82-21587

Pulse switching for high energy lasers

[C-TL;NASA-CASE-NPO-15021-1] c 44 N82-21072

Instrumentation for sensing moisture content of material

[C-TL;NASA-CASE-NPO-15019-1] c 33 N82-21493

Acoustic system for material transport

[C-TL;NASA-CASE-NPO-15018-1] c 37 N82-23376

Acoustic suspension system

[C-TL;NASA-CASE-NPO-15017-1] c 44 N82-23077

Efficiency of silicon solar cells containing chromium

[C-TL;NASA-CASE-NPO-15016-1] c 44 N82-22677

Distributed multiport memory architecture

[C-TL;NASA-CASE-NPO-15015-1] c 47 N82-22222

Means and method for calibrating a photon detector

[C-TL;NASA-CASE-NPO-15014-1] c 32 N82-20702

State-of-charge coulometer

[C-TL;NASA-CASE-NPO-15013-1] c 32 N82-20702

Microphotometer

[C-TL;NASA-CASE-NPO-15012-1] c 44 N82-19976

Broadband optical radiation detector

[C-TL;NASA-CASE-NPO-15011-1] c 44 N82-19976

Broadband optical radiation detector

[C-TL;NASA-CASE-NPO-15010-1] c 32 N82-18975

Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

[C-TL;NASA-CASE-NPO-15009-1] c 44 N82-18092

Synchronized voltage contrast display analysis system

[C-TL;NASA-CASE-NPO-15008-1] c 32 N82-17996

Broadband optical radiation detector

[C-TL;NASA-CASE-NPO-15007-1] c 74 N82-15957

Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer coating containing an acid...
Tunable cavity resonator with ramp shaped supports [NASA-CASE-HON-10709-1] c 26 N74-11513
Solid State Radiations, Inc., Los Angeles, CA.
Southern Methodist Univ., Dallas, TX.
Sundberg Research Corp., Lexington, MA.
Insulatesilazane polymer and process for producing same [NASA-CASE-XMF-02526-1] c 27 N79-21190
Southwest Research Inst., San Antonio, TX.
Thin film strain transducer [NASA-CASE-WLP-10055-1] c 35 N84-20615
Space Sciences, Inc., Wattham, MA.
Doppler shift system [NASA-CASE-HON-10740-1] c 72 N74-18101
Space Technology Labs, Inc., Redondo Beach, CA.
Ac electric flip-flop circuits Patent [NASA-CASE-XGS-00820] c 14 N71-16014

Robles Associates, Inc., Nashua, NH.
Sandels Labs, Attleboro, MA.
Fluid sampling device Patent [NASA-CASE-GSC-12142-1] c 35 N77-32455
Santa Barbara Research Center, Goleta, CA.
Santa Cruz, Cal.
Reversed curl flip flop inverter Patent [NASA-CASE-10756-1] c 07 N75-24738
System for measuring three fluctuating velocity components in a turbulently flowing fluid [NASA-CASE-10756-3] c 34 N77-27345
Scholz & Co., Northfield, MN.
Selectronic Corp., Hollywood, CA.
Science Applications, Inc., La Jolla, CA.
Ultra-violet process for producing faster resistant polyimide and products produced thereby [NASA-CASE-MSC-16074-1] c 27 N80-26448
Scott Aviation Corp., Lancaster, NY.
Serv-Air, Inc., Edwards, CA.
Portable device for use in start-up/air start systems for aircraft and having leadless pin contact Patent [NASA-CASE-10113-1] c 33 N80-26559
Serv-Air, Inc., Houston, TX.
Razor blade with passive tuned tab Patent [NASA-CASE-XRC-10100] c 10 N71-24662
Serv-Air, Inc., Houston, TX.
Razor blade with passive tuned tab [NASA-CASE-XRC-10100-1] c 14 N72-17329
Space, Inc., Huntsville, AL.
Vibroheating system using an infrared source and sensor Patent [NASA-CASE-XMF-09394] c 09 N71-22665
Method and device for detecting voids in low density material Patent [NASA-CASE-XGS-10575] c 12 N71-28003
Spectra-Physics, Inc., Mountain View, CA.
Optically pumped resonance magnetometer for determining vectorial components in a spatially stationary magnet [NASA-CASE-XGS-04879] c 24 N71-20428
Spectroch, Inc., Simyar, CA.
Apparatus for applying cover slides Patent [NASA-CASE-HON-10575] c 09 N71-22665
Speranco Co., Co., Great Neck, NY.
Automatic gain control system Patent [NASA-CASE-XMS-05037] c 09 N69-24330
Sperro Rand Corp., Blue Bell, PA.
Flip-flop oscillator and bi-polar current drive Patent [NASA-CASE-XGS-00508] c 10 N71-10547
Sperro Rand Corp., Huntsville, AL.
Collapsible antenna boom and transmission line Patent [NASA-CASE-MFS-20066] c 07 N71-27919
Frequency division multiplex technique Patent [NASA-CASE-KSC-10521] c 07 N73-20176
Device for configuring multiple leads [NASA-CASE-MFS-22135-1] c 33 N74-26977
System for enhancing tool-exchange capabilities of a portable wrench [NASA-CASE-MFS-22283-1] c 37 N73-33995
Remotely operable ariculated manipulator [NASA-CASE-MFS-22707-1] c 37 N76-15457
Photovoltaic cell array [NASA-CASE-MFS-22458-1] c 44 N77-10625
Notch filter [NASA-CASE-XGS-23033-1] c 32 N73-18307

Technology, Inc.

Tang Designs, Inc., College Park, MD.
Recovery of radiation damaged solar cells through thermal annealing [NASA-CASE-XGS-06107-1] c 32 N70-11262
Taft Broadcasting Corp., Houston, TX.
Modulator for a 400 MHz radio frequency signal [NASA-CASE-MSC-12067-1] c 32 N75-21485
Tamarack Scientific Co., Inc., Orange, CA.
Detectors for microprocessor and measurement apparatus Patent [NASA-CASE-LAR-10907-1] c 35 N70-26551
Telescript, Inc., Paramus, NJ.
Automatic lightning detection and photographic system [NASA-CASE-KSC-10728-1] c 14 N73-32319
Technidyne, Inc., West Chester, PA.
Methods and apparatus employing xerographic energy for writing Patent [NASA-CASE-MFS-20506] c 15 N71-17686
Technidon, Inc. of Tech, Haifa.
Modeling water scale for positive film softness [NASA-CASE-LERW-12898-1] c 37 N82-12442
Technochon Research and Development Foundation Ltd., Haifa (Israel).
Self-stabilizing radial face seal [NASA-CASE-LERW-12991-1] c 37 N81-24442
Techron, Inc., Cleveland, OH.
Apparatus and method for processing Kokotkov source [NASA-CASE-MSC-13999-1] c 54 N72-26626
Technology, Inc., San Antonio, TX.
Contourgraph system for monitoring electrical diagrams [NASA-CASE-MSC-13407-1] c 10 N72-20225
Teledyne Brown Engineering
Modification of the physical properties of freeze-dried
rice

Teledyne Brown Engineering, Huntsville, AL.
Thermal controllable poroporous material

[TAG-CASE-MFS-20774] c 17 N9-14200

Rocket having barium release system to create ion
clouds in the upper atmosphere

[TAG-CASE-LAR-10670-2] c 15 N7-27360

Texas A&M Univ., College Station.
Apparatus for use in examining the lattice of a
semiconductor wafer by x-ray diffraction

[TAG-CASE-NPO-14424-1] c 33 N8-32650

Texas Technological Univ., Lubbock.
Insulated electrodoped glass electrodes

[TAG-CASE-MSC-12465-1] c 27 N5-24716

Thiokol Chemical Corp., Baltimore, PA.
Casting propellant in rocket engine

[TAG-CASE-LAR-11995-1] c 28 N7-10213

Thiokol Corp., Brigham City, UT.
Process for the treatment of AF propellant

[TAG-CASE-NPO-14109-1] c 28 N8-23471

Thiel Chemical Co., Inc., Dallas.
Integrated circuit including field effect transistor and
cermet resistors

[TAG-CASE-GSC-10835-1] c 09 N7-32305

Thiokol Chemical Corp., Dallas.
Apparatus for measuring semiconductor device
resistance

[TAG-CASE-NPO-14424-1] c 33 N8-32650

Texas Technological Univ., Lubbock.
Insulated electrodoped glass electrodes

[TAG-CASE-MSC-12465-1] c 27 N5-24716

Thiokol Chemical Corp., Baltimore, PA.
Casting propellant in rocket engine

[TAG-CASE-LAR-11995-1] c 28 N7-10213

Thiokol Corp., Brigham City, UT.
Process for the treatment of AF propellant

[TAG-CASE-NPO-14109-1] c 28 N8-23471

Thomson Ramo Wooldridge, Inc., Cleveland, OH.
Electromagnetic radiation energy

[TAG-CASE-TECH-13043-1] c 79 N9-18916

Tidewater (Henry F., Sr.), Treasure Island, FL.
Generator for use in generating electric power

[TAG-CASE-GLC-10189] c 08 N7-21626

Trans-Sonics, Inc., Lexington, MA.
Capacitive gaging apparatus being independent of
liquid distribution

[TAG-CASE-MFS-21269-1] c 14 N7-22442

Trans-Technology Corp., Canby, Oregon, OR.
Slide release mechanism

[TAG-CASE-MSC-20080-1] c 37 N8-30334

Transocean Engineering Associates, Inc., Annapolis, MD.
Spectroscopic equipment using a cylindrical
doctrine as a reflector for a slit

[TAG-CASE-GLS-08269] c 23 N7-26206

TRW, Inc., Redondo Beach, CA.
Method of and for determining the characteristics and
distribution of micrometeorites

[TAG-CASE-NPO-12127-1] c 91 N7-13130

Reinforced structural plastics

[TAG-CASE-LEW-10199-1] c 27 N7-23125

Capsular flow wobolding

[TAG-CASE-GLS-10119-1] c 37 N7-27568

Rule for making navigational computations

[TAG-CASE-XNP-01485] c 04 N7-17031

Refrigerating system

[TAG-CASE-XLE-00694] c 33 N7-17293

Temperature compensated current source

[TAG-CASE-XLE-00694] c 33 N7-17293

Shunt regulation electric power system

[TAG-CASE-GSC-10135] c 33 N7-17296

Thermal effect on a liquid medium

[TAG-CASE-ARC-19189] c 34 N7-17336

Multi-chamber controllable heat pipe

[TAG-CASE-PAR-19189] c 34 N7-17337

Microbalance

[TAG-CASE-MSC-11242] c 35 N7-17358

Gas laser construction for electrically isolating the
pressure gauge thereof

[TAG-CASE-MFS-22557] c 36 N7-17366

Thermal conduction mechanism

[TAG-CASE-WOO-00625] c 37 N7-17385

Apparatus for holding micor size range particulate
material

[TAG-CASE-NPO-10151] c 37 N7-17386

Solar cell module assembly

[TAG-CASE-GSC-10124-1] c 44 N9-19447

Low thrust monopropellant engine

[TAG-CASE-GXG-00829-1] c 45 N9-18547

Low thrust propellant engine

[TAG-CASE-GXG-00829-1] c 45 N9-18547

Molecular content and gas sampling device

[TAG-CASE-MSC-18866-1] c 35 N8-29213

TRW Space and Sea Systems Group, Redondo
Beach, CA.
Optical crystalline growth method for growing
optical crystals

[TAG-CASE-MSC-18866-1] c 35 N8-29213

TRW Equipment Labs., Cleveland, OH.
Pulsed power system patent

[TAG-CASE-MSC-19112] c 03 N7-11057

C5-2
Thermosel-thermoplastic aromatic polyamide containing N-propargyl groups  
[NASA-CASE-LAR-12723-2] c 27 N64-22746  
Ultrasonic transducer with Gaussian radial pressure distribution  
[NASA-CASE-LAR-12967-1] c 35 N84-22832  
Dual differential interferometer  
[NASA-CASE-LAR-12966-1] c 35 N65-30282

Virginia Univ., Charlottesville.  
Depositing semiconductor films utilizing a thermal gradient  
[NASA-CASE-XKS-04814] c 15 N69-21460  
Active microwave iris and windows  
[NASA-CASE-LAR-10513-1] c 07 N72-25170  
Thin film microwave iris  
[NASA-CASE-LAR-10511-1] c 09 N72-29172  
Apparatus for measuring a sorbate dispersed in a fluid stream  
[NASA-CASE-ARC-10996-1] c 35 N78-19465

Vivox Corp., Mountain View, CA.  
Amino acid analysis  
[NASA-CASE-NPO-12130-1] c 25 N75-14844  
Vought Corp., Hampton, VA.  
Mechanical end joint system for structural column elements  
[NASA-CASE-LAR-12482-1] c 37 N80-32732

Weaver Aircraft Corp., Burbank, CA.  
Articulated multiple couch assembly Patent  
[NASA-CASE-MSC-11253] c 05 N71-12343  
Device for separating occupant from an ejection seat Patent  
[NASA-CASE-XMS-06252] c 05 N71-20718  
Collapsible Apollo couch Patent  
[NASA-CASE-MSC-11240] c 05 N72-11085

Westinghouse Electric Corp., Baltimore, MD.  
Broadband choke for antenna structure  
[NASA-CASE-XMS-05203] c 07 N69-27462  
Electronic background suppression method and apparatus for a field scanning sensor  
[NASA-CASE-XGS-05211] c 07 N69-39960  
Solid-state current transformer Patent  
[NASA-CASE-MFS-22560-1] c 33 N77-14355  
Time delay and integration detectors using charge transfer devices Patent  
[NASA-CASE-GSC-12524-1] c 33 N81-33403

Westinghouse Electric Corp., Huntville, AL.  
Solid state television camera system Patent  
[NASA-CASE-XFM-06092] c 07 N71-24612  
Phototransistor Patent  
[NASA-CASE-MFS-20407] c 09 N73-19235

Westinghouse Electric Corp., Lima, OH.  
Transistor drive regulator Patent  
[NASA-CASE-LEW-10223] c 10 N71-27126  
Westinghouse Electric Corp., Pittsburgh, PA.  
Linear sawtooth voltage-wave generator employing transistor timing circuit having capacitor-zener diode combination feedback Patent  
[NASA-CASE-XMS-01315] c 09 N70-41675  
Thermal conductive connection and method of making same Patent  
[NASA-CASE-XMS-02087] c 09 N70-41717  
Gas cooled high temperature thermocouple Patent  
[NASA-CASE-XLE-09475-1] c 33 N71-15568  
High resolution developing of photosensitive resists Patent  
[NASA-CASE-XGS-04909] c 14 N71-17574  
Regulated power supply Patent  
[NASA-CASE-XMS-01991] c 09 N71-21449  
Pulse modulator providing fast rise and fall times Patent  
[NASA-CASE-XMS-04919] c 09 N71-23270  
Extended area semiconductor radiation detectors and a novel readout arrangement Patent  
[NASA-CASE-XGS-02320] c 14 N71-23401  
Frequency shiftkeying apparatus Patent  
[NASA-CASE-XGS-01537] c 07 N71-23405  
Phase locked phase modulator including a voltage controlled oscillator Patent  
[NASA-CASE-XNP-05328] c 10 N71-23544  
Bearing and gimbal lock mechanism and spiral flex feed module Patent  
[NASA-CASE-GSC-10556-1] c 31 N71-26537  
Multiple slope sweep generator Patent  
[NASA-CASE-XMS-03543] c 09 N71-28926  
Self-adjusting multisegment, deployable, natural circulation radiator Patent  
[NASA-CASE-XHO-03673] c 33 N71-29046  
Thermally cascaded thermoelectric generator Patent  
[NASA-CASE-NPO-10753] c 03 N72-26031  
Phototransistor imaging system Patent  
[NASA-CASE-MFS-20809] c 23 N73-13660

Demodulator for carrier transducers  
[NASA-CASE-NUC-10107-1] c 33 N74-17930  
Heat transfer device  
[NASA-CASE-NPO-11120-1] c 34 N74-18552  
Amplitude steered array  
[NASA-CASE-GSC-11446-1] c 33 N74-20680  
Glass-to-metal seals comprising relatively high expansion metals  
[NASA-CASE-LEW-10689-1] c 37 N74-21063  
Millimeter wave pumped parametric amplifier  
[NASA-CASE-GSC-11617-1] c 33 N74-32660  
Method of forming a Wick for a heat pipe  
[NASA-CASE-NPO-12391-1] c 34 N76-27155  
Magnifying image intensifier  
[NASA-CASE-GSC-12010-1] c 74 N78-18905  
Westinghouse Electric Corp., Trafford, PA.  
Sodium storage and injection system  
[NASA-CASE-NPO-12684-1] c 37 N80-10494  
Method of producing silicon  
[NASA-CASE-NPO-14382-1] c 31 N80-18231  
Weston Instruments, Inc., College Park, MD.  
Electrically resealable fuse Patent  
[NASA-CASE-XGS-11177] c 09 N71-27001  
Whirlpool Corp., Saint Joseph, MI.  
Relief container  
[NASA-CASE-XMS-06761] c 05 N69-23192  
Fluid sample collector Patent  
[NASA-CASE-XMS-06767-1] c 14 N71-20435  
Whittaker Corp., Los Angeles, CA.  
Polyurethanes of fluorine containing polycarbonates  
[NASA-CASE-MFS-10512] c 06 N73-30099  
Polyurethanes from fluorocatalyst propylene glycol polyesters  
[NASA-CASE-MFS-10506] c 06 N73-30100  
Fluorohydroxy ethers  
[NASA-CASE-MFS-10507] c 06 N73-30101  
Highly fluorinated polymers  
[NASA-CASE-MFS-11492] c 06 N73-30102  
Fluorine-containing polyurethane  
[NASA-CASE-MFS-10509] c 06 N73-30103  
Fluorine-containing polyformals  
[NASA-CASE-XFM-06002-1] c 27 N79-21911

Whittaker Corp., San Diego, CA.  
Reinforced polyvinylalcohol gasket and method of preparing the same  
[NASA-CASE-MFS-21394-1] c 37 N74-18126  
Polymeric foams from cross-linkable poly-n-arylenen benzimidazoles  
[NASA-CASE-MFS-10508] c 06 N73-30101  
Fluid sample collector Patent  
[NASA-CASE-XLE-09475-1] c 33 N71-15568  
High resolution developing of photosensitive resists Patent  
[NASA-CASE-XGS-04909] c 14 N71-17574  
Regulated power supply Patent  
[NASA-CASE-XMS-01991] c 09 N71-21449  
Pulse modulator providing fast rise and fall times Patent  
[NASA-CASE-XMS-04919] c 09 N71-23270  
Extended area semiconductor radiation detectors and a novel readout arrangement Patent  
[NASA-CASE-XGS-02320] c 14 N71-23401  
Frequency shiftkeying apparatus Patent  
[NASA-CASE-XGS-01537] c 07 N71-23405  
Phase locked phase modulator including a voltage controlled oscillator Patent  
[NASA-CASE-XNP-05328] c 10 N71-23544  
Bearing and gimbal lock mechanism and spiral flex feed module Patent  
[NASA-CASE-GSC-10556-1] c 31 N71-26537  
Multiple slope sweep generator Patent  
[NASA-CASE-XMS-03543] c 09 N71-28926  
Self-adjusting multisegment, deployable, natural circulation radiator Patent  
[NASA-CASE-XHO-03673] c 33 N71-29046  
Thermally cascaded thermoelectric generator Patent  
[NASA-CASE-NPO-10753] c 03 N72-26031  
Phototransistor imaging system Patent  
[NASA-CASE-MFS-20809] c 23 N73-13660

Youngstown State Univ., OH.  
Instrumentation for measurement of aircraft noise and sonic boom  
[NASA-CASE-LAR-11173-1] c 35 N75-19614

Youngstown State Univ.

CORPORATE SOURCE

[CORPORATE SOURCE]

NASA-CASE-XGS-04909

C-53
<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS2-10334</td>
<td>c27 N82-33523</td>
</tr>
<tr>
<td>JPL-650596</td>
<td>c15 N89-23185</td>
</tr>
<tr>
<td>JPL-650590</td>
<td>c09 N89-23429</td>
</tr>
<tr>
<td>JPL-651531</td>
<td>c09 N89-21926</td>
</tr>
<tr>
<td>Nagl-1-72</td>
<td>c23 N90-21118</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-1-2593</td>
<td>c11 N62-24321</td>
</tr>
<tr>
<td>Nash-2-1123</td>
<td>c09 N72-20066</td>
</tr>
<tr>
<td>Nash-1-2115</td>
<td>c14 N71-34389</td>
</tr>
<tr>
<td>Nash-10-334</td>
<td>c27 N82-33523</td>
</tr>
<tr>
<td>Nash-2-1565</td>
<td>c23 N82-22724</td>
</tr>
<tr>
<td>Nash-2-3510</td>
<td>c10 N89-39588</td>
</tr>
<tr>
<td>Nash-3-3522</td>
<td>c14 N89-24313</td>
</tr>
<tr>
<td>Nash-4-1403</td>
<td>c14 N70-25587</td>
</tr>
<tr>
<td>Nash-10-2506</td>
<td>c06 N72-21105</td>
</tr>
<tr>
<td>NAS-5-119</td>
<td>c23 N89-24322</td>
</tr>
<tr>
<td>NAS-7-100</td>
<td>c15 N89-23185</td>
</tr>
<tr>
<td>JPL-650590</td>
<td>c09 N89-23429</td>
</tr>
<tr>
<td>JPL-651531</td>
<td>c09 N89-21926</td>
</tr>
<tr>
<td>Nagl-1-72</td>
<td>c23 N90-21118</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-1-2593</td>
<td>c11 N62-24321</td>
</tr>
<tr>
<td>Nash-2-1123</td>
<td>c09 N72-20066</td>
</tr>
<tr>
<td>Nash-1-2115</td>
<td>c14 N71-34389</td>
</tr>
<tr>
<td>Nash-10-334</td>
<td>c27 N82-33523</td>
</tr>
<tr>
<td>Nash-2-1565</td>
<td>c23 N82-22724</td>
</tr>
<tr>
<td>Nash-2-3510</td>
<td>c10 N89-39588</td>
</tr>
<tr>
<td>Nash-3-3522</td>
<td>c14 N89-24313</td>
</tr>
<tr>
<td>Nash-4-1403</td>
<td>c14 N70-25587</td>
</tr>
<tr>
<td>Nash-10-2506</td>
<td>c06 N72-21105</td>
</tr>
<tr>
<td>NAS-5-119</td>
<td>c23 N89-24322</td>
</tr>
<tr>
<td>NAS-7-100</td>
<td>c15 N89-23185</td>
</tr>
<tr>
<td>JPL-650590</td>
<td>c09 N89-23429</td>
</tr>
<tr>
<td>JPL-651531</td>
<td>c09 N89-21926</td>
</tr>
<tr>
<td>Nagl-1-72</td>
<td>c23 N90-21118</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-1-2593</td>
<td>c11 N62-24321</td>
</tr>
<tr>
<td>Nash-2-1123</td>
<td>c09 N72-20066</td>
</tr>
<tr>
<td>Nash-1-2115</td>
<td>c14 N71-34389</td>
</tr>
<tr>
<td>Nash-10-334</td>
<td>c27 N82-33523</td>
</tr>
<tr>
<td>NAS-2-1565</td>
<td>c23 N82-22724</td>
</tr>
<tr>
<td>NAS-2-3510</td>
<td>c10 N89-39588</td>
</tr>
<tr>
<td>NAS-3-3522</td>
<td>c14 N89-24313</td>
</tr>
<tr>
<td>NAS-4-1403</td>
<td>c14 N70-25587</td>
</tr>
<tr>
<td>NAS-10-2506</td>
<td>c06 N72-21105</td>
</tr>
<tr>
<td>NAS-5-119</td>
<td>c23 N89-24322</td>
</tr>
<tr>
<td>NAS-7-100</td>
<td>c15 N89-23185</td>
</tr>
<tr>
<td>JPL-650590</td>
<td>c09 N89-23429</td>
</tr>
<tr>
<td>JPL-651531</td>
<td>c09 N89-21926</td>
</tr>
<tr>
<td>Nagl-1-72</td>
<td>c23 N90-21118</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-2-1223</td>
<td>c06 N72-10138</td>
</tr>
<tr>
<td>Nash-1-2593</td>
<td>c11 N62-24321</td>
</tr>
<tr>
<td>Nash-2-1123</td>
<td>c09 N72-20066</td>
</tr>
<tr>
<td>Nash-1-2115</td>
<td>c14 N71-34389</td>
</tr>
<tr>
<td>Nash-10-334</td>
<td>c27 N82-33523</td>
</tr>
<tr>
<td>Nash-2-1565</td>
<td>c23 N82-22724</td>
</tr>
<tr>
<td>NAS-2-3510</td>
<td>c10 N89-39588</td>
</tr>
</tbody>
</table>
NUMBER INDEX
JULY 1991

NASA PATENT ABSTRACTS BIBLIOGRAPHY
Section 2

Typical Number Index Listing

CASE
NUMBER

NASA
SPONSORED

ACCESSION
NUMBER

I

.
I
I
I
c 16 N73-33397 • #

NASA-CASE-ARC-10444-1

Listings in this index are arranged alphanumerically by "patent" number. The subject category
number indicates the category in Section 1
(Abstracts) in which the citation is located. The
accession number denotes Ine numbet by which
the citation is identified within the subject category.
An asterisk (') indicates that the item is a NASA
report. A pound sign (#) indicates that the item is
available on microfiche.
INT-PATENT-CLASS-A47K-11 /OO C54
INT-PATENT-CLASS-A61B-5/00 . C35

M91 -14724
H90-23706

INT-PATE NT-CLASS-B01D-29/04
INT-PATENT-CLASS-B01D-29/42
INT-PATENT-CLASS-B22D-27/04
INT-PATENT-CLASS-B23K-26/00
INT-PATENT-CLASS-B23K-9/16 .
INT-PATENT-CLASS-B25J-15/08
INT-PATENT-CLASS-B29B-33/D2
INT-PATENT-CLASS-B32B-15/08
INT-PATENT-CLASS-B32B-7/02 .
INT-PATENT-CLASS-B64B-21 /OO
INT-PATENT-CLASS-B64C-9/02 .
INT-PATENT-CLASS-B64C-9/08 .
INT-PATENT-CLASS-B64D-1/00 .
INT-PATENT-CLASS-B64D-25/08
INT-PATENT-CLASS-B64D-33/00
INT-PATENT-CLASS-B64D-33/04
INT-PATENT-CLASS-B64G-1/14 .
INT-PATENT-CLASS-B64G-1/64 .

C51
C51
C26
c31
c31
C31
C37
C37
C37
C27
C34
C76
C76
C34

COS
COS
c35
c03
COS
c37
c 16
c 18

H91 -14703
H91-14703
H91 -14462
H91-14508
N90-23586
N 90-261 68
H91-14610
H91-14614
H91-14615
1490-23566
N90-23700
H90-24168
H90-24168
IJ91-14S62
H90-23390
H90-23390
|J 90-22769
H91-15142
H91 -14345
H90-23751
H90-22584
H91 -14374

INT-PATENT-CLASS-C07C-15/16
INT-PATENT-CLASS-C07D-207/44
INT-PATENT-CLASS-C07S-9/40 .
INT-PATENT-CLASS-C08G-69/26
INT-PATENT-CLASS-C08G-73/10
INT-PATENT-CLASS-C08G-73/10
INT-PATENT-CLASS-C21D-1/09 .
INT-PATENT-CLASS-C30B-7/02 .

3
c 223
c 223
3
c
2
3
C 23
7
c 227
c
C23
23
C27
c 27
C09
c 09
C76
c
76

H91-17141
H91-14419
H90-23475
(J91 -15403
H91-14418
IJ91-15402
(J90-23415
M90-23242

INT-PATENT-CLASS-E03D-9/04

. c 54

INT-PATENT-CLASS-F01D-11/08 c 37
INT-PATENT-CLASS-F03D-9/00 . c 37
INT-PATENT-CLASS-F16B-1/00 . c 37
INT-PATENT-CLASS-F16C-11/00 C 37
INT-PATENT-CLASS-F16D-3/02 . c 37
INT-PATENT-CLASS-F16D-3/50 . c 37
INT-PATENT-CLASS-F16J-15/46 C 37
INT-PATENT-CLASS-F16K-1/22 . c 37
INT-PATENT-CLASS-F16K-3/316 c 34
INT-PATENT-CLASS-F16K-3/32 . c 34
INT-PATENT-CLASS-F16K-37/00
c 34
INT-PATENT-CLASS-F16L-35/00
c 37
INT-PATENT-CLASS-F16M-13/00 e 37
INT-PATENT-CLASS-F23J-1/00 .. c 31
INT-PATENT-CLASS-F28D-15/02 e 27
INT-PATENT-CLASS-F41G-11/00 c 35
INT-PATENT-CLASS-F8-15/00 .... c 31

N9M4723 '
(J91-14608 •
H90-23742 '
IJ91-14610 '
N91-15544 •
(J91-17387 •
(J91-17388'
(J90-23751 '
|J91-14609 '
N91-14563'
H91-14563'
H91-14563'
N9M4613 '
N91-14617 •
)«V13423 '
N90-23541 '
IJ9M4591 '
N91-15424 •

INT-PATENT-CLASS-G01B-11/26 c 35
INT-PATENT-CLASS-G01B-15/06 c 38
INT-PATENT-CLASS-G01C-1/00 . c 35
INT-PATENT-CLASS-G01C-3/08 . c 35
INT-PATENT-CLASS-G01F-17/00 C 35
INT-PATENT-CLASS-G01K-15/00 C 71
INT-PATENT-CLASS-G01L-3/00 . c 35
INT-PATENT-CLASS-G01M-9/00
c 35
INT-PATENT-CLASS-G01M-9/00
c 09
INT-PATENT-CLASS-G01N-21/64 c 76
INT-PATENT-CLASS-G01N-21/84 c 76
INT-PATENT-CLASS-G01N-23/20 c 74
INT-PATENT-CLASS-G01N-27/72 c 27
INT-PATENT-CLASS-G01N-3/00 . c 24
INT-PATENT-CLASS-G01N-3/32 . c 35
INT-PATENT-CLASS-G01P-3/36 . c 36
INT-PATENT-CLASS-G01R-1/04 . c 33
INT-PATENT-CLASS-G01R-27/00 c 27
INT-PATENT-CLASS-G01R-33/12 c 27
INT-PATENT-CLASS-G01S-13/90 c 43
INT-PATENT-CLASS-G01S-5/02 . c 04
INT-PATENT-CLASS-G01W-1/00 c 19 '
INT-PATENT-CLASS-G02B-23/00 c 35
INT-PATENT-CLASS-G02B-27/64 c 35
INT-PATENT-CLASS-G02B-7/18 . c 35
INT-PATENT-CLASS-G03H-1/02 . c 35
INT-PATENT-CLASS-G06F-1/02 . c 33
INT-PATENT-CLASS-G06F-15/16 c 62
INT-PATENT-CLASS-G06F-15/18 c 61
INT-PATENT-CLASS-G06F-15/20 c 17
INT-PATENT-CLASS-G06F-9/46 . c 62
INT-PATENT-CLASS-G08B-21/OO c 37

N9M5512 '
N90-23756 '
N91-15512 '
N91-15512 •
N91-15511 '
N91-14807 •
N91-17350 '
N90-23707 •
N91-14357 •
N90-24150 *
N90-24150 •
N91-14835 '
N90-23544 •
N91-14430 •
N90-23712 '
N90-25340 •
N91-14552 '
N90-23544 •
N90-23544 •
N91-14642'
N91-14321 *
N91-14412 •
N91-14591 '
N91-14590 *
N91-14590 *
N91-13694 '
N90-23636 '
N91-14769 *
N91-14741 '
N91-14371 •
N91-14769'
N91-14607 '

INT-PATENT-CLASS-HOI B-1/06 .
INT-PATENT-CLASS-HOI F-27/30
INT-PATENT-CLASS-HOI J-25/34
INT-PATENT-CLASS-HOI L-27/14
INT-PATENT-CLASS-HOI L-41 /OS
INT-PATENT-CLASS-HOI L-41 /OS
INT-PATENT-CLASS-H01L-43/OQ
INT-PATENT-CLASS-HOI M-6/20
INT-PATENT-CLASS-HOI S-3/098
INT-PATENT-CLASS-HOtS-3/16 .
INT-PATENT-CLASS-H02K-44/10
INT-PATENT-CLASS-H02L-9/04 .
INT-PATENT-CLASS-H03B-5/12 .
INT-PATENT-CLASS-H03D-1/00 .
INT-PATENT-CLASS-H04J-3/02 ..
INT-PATENT-CLASS-H04L-27/18
INT-PATENT-CLASS-H04N-7/18 .
INT-PATENT-CLASS-H05B-33/00
INT-PATENT-CLASS-H07M-10/39
INT-PATENT-CLASS-H07M-4/60

C24
C33
C33

C33

N91-15320 '
N91-14539 '
N90-22724 '
N91-14551 '
N91-14808 '
N91-14872 '
N91-W537 '
N91 -14538 '
N91-17360 '
N91-15528 '
N91-14489 '
N90-25583 '
N90-23635 '
N91-14550 •
N91-14772 '
N91-14523 '
N90-22770 *
N91-14835 '
N91-14536 '
N91-14536 '

NAS 1.15:76884
NAS 1.71 :ARC-11349-1
NAS 1.71 :ARC-11368-2
NAS 1.71 :ARC-t 1423-1
NAS 1.71:ARC-11510-1
NAS 1.71:ARC-11641-1
NAS 1.71:ARC-11652-1
NAS 1.71:ARC-11916-1-SB
NAS 1.71:ARC-11917-1
NAS 1.71:GSC-12558-1
NAS 1.71:GSC-12582-2
NAS 1.71:GSC-12682-1
NAS 1.71:GSC-12789-1
NAS 1.71:GSC-12799-1
NAS 1.71:GSC-12808-1
NAS 1.71:GSC-12944-1
NAS 1.71 :GSC-13127-1
NAS 1.71 :GSC-13175-1
NAS 1.71 :GSC-13230-1
NAS'1.71:GSC-13239-1
NAS 1.71 :GSC-13240-1
NAS 1.7VGSC-13261-1
NAS 1.71:GSC-13265-1
NAS 1.71:KSC-11218-1
NAS 1.71:LAR-12588-1
NAS 1.71:LAR-12723-1
NAS 1.71:LAR-12775-2
NAS 1.71 :LAR-12787-2
NAS 1.71:LAR-12858-2

c 24
c 37
c 27
c 03
c 35
c 24
c 27
c 74
C 35
c 36
c 37
c 35
c 35
c 31
c 25
c 52
c 37
c 74
c 37
c 37
c 35
C37
c 76
e 09
C 34
c 27
c 27
c 08
c 27

N85-25436 * #
N86-20797 • #
N85-21347 •
N84-33394 '
N86-32697 '
N88-18628 •
N87-23737 • #
N91-14002 • #
N91-15520 ' #
N85-21639 '
N85-20337 •
N84-33765 •
NB5-20294 •
N85-21404 • .
N85-21279 '
N86-19885 " #
N91-13735 • #
N91-14001 ' #
N91-13734 • #
N91-15556 ' #
N91-13692 • #
N91-17401 • f
N91-14066 ' #
N85-19990 •
N85-21568 •
N85-20123 •
N85-21349 •
N85-19985 '
N85-20124 •

C 33
C71

c 76
C33

c 33
C36

C 36
C27
C60
C33
C33
C62
C32
C35
C74

c 33

NAS 1.71:LAR-12868-1
NAS 1.71:LAR-12884
NAS 1.71:LAR-12894-1
NAS 1.71:LAR-12979-1
NAS 1.71:LAR-13014-1
NAS 1.71:LAR-13065-1
NAS 1.711AR-13225-1
NAS 1.71:LAR-13230-1
NAS 1.71:LAR-13233-1
NAS 1.71:LAR-13256-1
NAS 1.71:LAR-13257-1
NAS 1.71:LAR-13292-1
NAS 1.71:LAR-13387-1
NAS 1.71:LAR-13447-1
NAS 1.71:LAR-13490-1
NAS 1.71:LAR-13508-1
NAS 1.71:LAR-13519-1
NAS 1.71:LAR-13555-1
NAS 1.71:LAR-13580-1
NAS 1.71 :LAR-13632-1
NA.S1.7V.LAR-13633-1
NAS 1.71:LAR-13689-1
NAS 1.71:LAR-13705-1
NAS 1.71:LAR-13719-1
NAS 1.71:LAR-13738-1
NAS1.71:LAR-13742-1
NAS 1.71:LAR-13772-1
NAS 1.71:LAR-13780-1
NAS 1.71:LAR-13785-1
NAS 1.71:LAR-13854-1-CU
NAS 1.71:LAR-13870-1
NAS 1.71:LAR-13875-1
NAS 1.71:LAR-13889-1
NAS 1.71:LAR-13925-1
NAS1.71:LAR-13966-1
NAS 1.71:LAR-13968-1
NAS1.71:LAR-13981-1
NAS 1.71:LAR-13988-1
NAS1.71:LAR-13992-1-CU
NAS 1.71:LAR-13996-1-SB
NAS 1.71:LAR-14001-1
NAS 1.71:LAR-14027-1
NAS 1.71:LAR-14033-1
NAS 1.71:LAR-14036-1
NAS 1.71:LAR-14049-1
NAS 1.71:LAR-14062-1
NAS1.71:LAR-14078-1-CU
NAS1.71:LAR-14088-1
NAS1.71:LAR-14142-1
NAS1.71:LAR-14145-1
NAS 1.71:LAR-14149-1-SB
NAS1.71:LAR-14156-1
NAS 1.71:LAR-14159-1-CU
NAS1.71:LAR-14162-1
NAS 1.71:LAR-14163-1
NAS 1.71:LAR-14194-1
NAS 1.71:LAR-14198-1
NAS 1.71 :LAR-14203-1
NAS 1.71:LAR-14239-1
NAS 1.71:LAR-14250-1-SB
NAS 1.71:LAR-14271-1-CU
NAS 1.71:LAR-14322-1
NAS 1.71:LAR-14330-1-CU
NAS 1.71:LAR-14338-1
NAS 1.71:LAR-14339-1
NAS 1.71:LAR-14340-1-CU
NAS 1.71:LAR-14351-1
NAS 1.71:LAR-14361-1
NAS 1.71:LAR-14402-1-CU
NAS 1.71:LAR-14419-1
NAS 1.71:LAR-14459-1
NAS 1.71:LEW-12995-1
NAS 1.71:LEW-13324-2
NAS 1.71:LEW-13414-1
NAS 1.71:LEW-13495-1
NAS 1.71:LEW-13524-1
NAS 1.71:LEW-13639-1
NAS 1.71:LEW-13770-3
NAS 1.71:LEW-1377CM
NAS1.71:LEW-13770-5
NAS 1.71:LEW-13827-1
NAS 1.71:LEW-13833-1
NAS 1.71 :LEW-13837-2

c 37
c 18
c 27
c 05
c 09
c 35
c 24
c 24
c 05
c 36
c 25
C 27
c 74
c 27
c 18
c 35
c 35
C 23
c 37
C 26
C 27
c 35
c 39
c 37
c 18
c 02
c 36
c 18
c 70
c 04
COS
c 05
c 39
c 27
c 71
c 71
c 37
c 23
c 23
c 25
c 27
c 35
c 34
c 27
c 07
c 37
c 34
c 35
c 37
c 27
c 14
c 16
c 27
c 27
c 27
c 24
c 27
c 36
c 26
c 72
c 27
c 02
c 27
c 24
c 27
c 35
c 27
c 71
c 74
c 35
c 24
c 37
c 24
c 44
c 33
c 07
c 26
c 27
c 27
c 27
c 44
c 33
c 24

N85-21651 '
N84-33450 '
N85-20125 '
N85-21147'
N85-21178'
N85-20295 '
N89-14258 '
N84-34571 '
N84-33400 '
N86-29204 '
N84-32447 '
N86-24841 •
N88-25302 '
N88-18725 '
N87-14413 •
N88-23962 •
N88-23963'
N86-32526 '
N90-16272 '
N87-29650 '
NB7-24575 '
N87-23941 '
N88-25011 •
N89-12867 '
N87-29586 '
N91-16999 '
N89-28816 '
N91-13481 '
N90-17403 '
N88-24621 '
N90-15094 •
N89-14233 '
N88-30160 •
N89-25334 '
N90-17408 '
N90-15710 •
N90-15442 •
N89-118141
N89-13496'
N90-15161 '
N90-15260 '
N91-13693 '
N90-27072 '
N91-13562 '
N89-23466 '
N90-27114'
N90-27071 •
N91-13686 '
N90-27116'
N90-26954 '
N89-28547 '
N90-16781 '
N90-26953 '
N90-15259 •
N91-13559 '
N90-15148'
N90-26956 •
N89-28817 •
N91-13527 •
N90-27472 '
N91-13558'
N91-15138 •
N91-13560'
N90-26881 '
N90-26955 '
N91-13684 •
N91-13561 •
N91-16707'
N91-15874 '
N91-13687 '
N91-15334 •
N84-33808'
N85-21266 '
N85-20530 '
N84-33663 '
N84-33410 •
N84-33555 •
N85-21350 •
N85-21351 •
N8S-21352 •
N85-21768 '
N85-21492 '
N85-21267 '

E-1


null
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N73-25463*</td>
<td>US-PATENT-CLASS-356-152</td>
</tr>
<tr>
<td>N73-25463*</td>
<td>US-PATENT-3,723,745</td>
</tr>
<tr>
<td>N73-25463*</td>
<td>NASA-PATENT-APPL-SN-10278</td>
</tr>
<tr>
<td>N73-25463*</td>
<td>NASA-PATENT-CLASS-356-110</td>
</tr>
<tr>
<td>N73-25463*</td>
<td>NASA-PATENT-CLASS-250-199</td>
</tr>
<tr>
<td>N73-25463*</td>
<td>NASA-PATENT-CLASS-332-7,51</td>
</tr>
<tr>
<td>N73-25628*</td>
<td>NASA-PATENT-CLASS-356-220</td>
</tr>
</tbody>
</table>

These are the entries from the ACCESSION NUMBER INDEX page.
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N74-14935</td>
<td>33 NASA CASE 100-737-116</td>
</tr>
<tr>
<td>N74-14936</td>
<td>36 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-14955</td>
<td>33 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098</td>
<td>19 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15099</td>
<td>35 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098*</td>
<td>34 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15099*</td>
<td>35 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098*</td>
<td>34 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15099*</td>
<td>35 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>37 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>38 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098*</td>
<td>39 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>37 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>38 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098*</td>
<td>39 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>37 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15125*</td>
<td>38 NASA CASE 100-737-115</td>
</tr>
<tr>
<td>N74-15098*</td>
<td>39 NASA CASE 100-737-115</td>
</tr>
</tbody>
</table>
N76-31661

US-PATENT-CLASS-339-6
US-PATENT-3,971,363

N76-31666

US-PATENT-APPL-3,57480

N76-31662

US-PATENT-3,977,831

N76-31663

US-PATENT-APPL-3,57480

N76-31664

US-PATENT-APPL-3,57480

N76-31665

US-PATENT-APPL-3,57480

N76-31667

US-PATENT-APPL-3,57480

N76-31668

US-PATENT-APPL-3,57480

N76-31669

US-PATENT-APPL-3,57480
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N78-25145</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-27176</td>
<td>C 20 NASA-CASE-MFS-25642-2</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-26594</td>
<td>C 44 NASA-CASE-ARC-11381-1</td>
</tr>
<tr>
<td>N78-25529</td>
<td>C 44 NASA-CASE-MFS-23270-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-25390</td>
<td>C 34 NASA-CASE-LEW-12718-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-27357</td>
<td>C 34 NASA-CASE-LEW-1187-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
<tr>
<td>N78-25530</td>
<td>C 25 NASA-CASE-LEW-12465-1</td>
</tr>
<tr>
<td>N78-25180</td>
<td>C 24 NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>N78-25377</td>
<td>C 35 NASA-CASE-NPO-13948-1</td>
</tr>
<tr>
<td>N78-27226</td>
<td>C 25 NASA-CASE-LEW-10158-3</td>
</tr>
<tr>
<td>N78-25350</td>
<td>C 34 NASA-CASE-MSC-16568-1</td>
</tr>
<tr>
<td>N78-25251</td>
<td>C 34 NASA-CASE-LEW-12512-1</td>
</tr>
<tr>
<td>N78-25272</td>
<td>C 44 NASA-CASE-LEW-12552-1</td>
</tr>
<tr>
<td>N78-25278</td>
<td>C 44 NASA-CASE-LEW-12185-1</td>
</tr>
<tr>
<td>N78-25300</td>
<td>C 44 NASA-CASE-LEW-12561-1</td>
</tr>
</tbody>
</table>
PUBLIC AVAILABILITY OF COPIES OF PATENTS AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy and microfiche by the National Technical Information Service. The US-Patent-Appl-SN-number should be used in ordering either paper copy or microfiche from NTIS.

LICENSES FOR COMMERCIAL USE: INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance with the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the Invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 2 is available from the National Technical Information Service (NTIS) on standing order subscription as PB 91-911100 at the price of $31.00 domestic and $62.00 foreign. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
<table>
<thead>
<tr>
<th>NASA Case Number Prefix Letters</th>
<th>Address of Cognizant NASA Patent Counsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-xxxxx</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>XAR-xxxxx</td>
<td>Mail Code: 200-11A</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td>Telephone: (415) 694-5104</td>
</tr>
<tr>
<td>ERC-xxxxx</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>XER-xxxxx</td>
<td>Mail Code: GP</td>
</tr>
<tr>
<td>HQN-xxxxx</td>
<td>Washington, D.C. 20546</td>
</tr>
<tr>
<td>XHQ-xxxxx</td>
<td>Telephone: (202) 453-2417</td>
</tr>
<tr>
<td>GSC-xxxxx</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>XGS-xxxxx</td>
<td>Mail Code: 204</td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland 20771</td>
</tr>
<tr>
<td></td>
<td>Telephone: (301) 286-7351</td>
</tr>
<tr>
<td>KSC-xxxxx</td>
<td>John F. Kennedy Space Center</td>
</tr>
<tr>
<td>XKS-xxxxx</td>
<td>Mail Code: PT-PAT</td>
</tr>
<tr>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td></td>
<td>Telephone: (305) 867-2544</td>
</tr>
<tr>
<td>LAR-xxxxx</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>XLA-xxxxx</td>
<td>Mail Code: 279</td>
</tr>
<tr>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td>Telephone: (804) 865-3725</td>
</tr>
<tr>
<td>LEW-xxxxx</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>XLE-xxxxx</td>
<td>Mail Code: 500-318</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td>Telephone: (216) 433-5753</td>
</tr>
<tr>
<td>MSC-xxxxx</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td>XMS-xxxxx</td>
<td>Mail Code: AL3</td>
</tr>
<tr>
<td></td>
<td>Houston, Texas 77058</td>
</tr>
<tr>
<td></td>
<td>Telephone: (713) 483-4871</td>
</tr>
<tr>
<td>MFS-xxxxx</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td>XMF-xxxxx</td>
<td>Mail Code: CC01</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama 35812</td>
</tr>
<tr>
<td></td>
<td>Telephone: (205) 544-0024</td>
</tr>
<tr>
<td>NPO-xxxxx</td>
<td>NASA Resident Legal Office</td>
</tr>
<tr>
<td>XNP-xxxxx</td>
<td>Mail Code: 180-801</td>
</tr>
<tr>
<td>FRC-xxxxx</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>XFR-xxxxx</td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td>WOO-xxxxx</td>
<td>Telephone: (818) 354-2700</td>
</tr>
</tbody>
</table>
Summary: The National Aeronautics and Space Administration (NASA) is revising its patent licensing regulations to conform with Pub. L. 96-517. This interim regulation provides policies and procedures applicable to the licensing of federally owned inventions in the custody of the National Aeronautics and Space Administration, and implements Pub. L. 96-517. The object of this subpart is to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

Effective Date: July 1, 1981. Comments must be received in writing by December 2, 1981. Unless a notice is published in the Federal Register after the comment period indicating changes to be made, this interim regulation shall become a final regulation.

Address: Mr. John G. Mannix, Director of Patent Licensing, GP-4, NASA, Washington, D.C. 20546

For Further Information Contact: Mr. John G. Mannix, (202) 755-3954.

Supplementary Information:

Subpart 2—Patents and other intellectual property rights

Subpart 2 of Part 1245 is revised to read as follows:

§ 1245.200 Scope of subpart.

§ 1245.201 Policy and objective.

§ 1245.202 Definitions.

§ 1245.203 Authority to grant licenses.

§ 1245.204 All licenses granted under this subpart.

§ 1245.205 Restrictions and conditions.

§ 1245.206 Procedures.

§ 1245.207 Application for a license.

§ 1245.208 Processing applications.

§ 1245.209 Notice to Attorney General.

§ 1245.210 Modification and termination of licenses.

§ 1245.211 Appeals.

§ 1245.212 Protection and administration of inventions.

§ 1245.213 Transfer of custody.

§ 1245.214 Confidentiality of information.

Authority: 35 U.S.C. Section 207 and 208.94 Slat 3023 and 3024.

Subpart 2—Licensing of NASA Inventions

Scope of subpart.

This subpart prescribes the terms, conditions and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government's acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights in the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.
PATENT LICENSING REGULATIONS

(6) The license shall require the licensee to report periodically on the utilization or efforts at obtaining utilization that are being made by the licensee, with particular reference to the plan submitted.

(7) All licenses shall normally require royalties or other consideration.

(8) Where an agreement is obtained pursuant to §1245.204(a)(2) that any products embodying the invention or produced through use of the invention will be manufactured substantially in the United States, the license shall recite such agreement.

(9) The license shall provide for the right of NASA to terminate the license, in whole or in part, if:

(i) NASA determines that the licensee is not executing the plan submitted with its request for a license and the licensee cannot otherwise demonstrate to the satisfaction of NASA that it has taken or can be expected to take within a reasonable time effective steps to achieve practical application of the invention;

(ii) NASA determines that such action is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license and such requirements are not reasonably satisfied by the licensee;

(iii) The licensee has willfully made a false statement of or willfully omitted a material fact in the license application or in any report required by the license agreement; or

(iv) The licensee commits a substantial breach of a covenant or agreement contained in the license.

(10) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(11) Nothing relating to the grant of a license, nor the grant itself, shall be construed to confer upon any person any immunity from or defenses under the antitrust laws or from a charge of patent misuse, and the acquisition and use of rights pursuant to this subpart shall not be immunized from the operation of state or Federal law by reason of the source of the grant.

Types of Licenses

§ 1245.205 Nonexclusive licenses.

(a) Availability of licenses. Nonexclusive licenses may be granted under NASA inventions without publication of availability or notice of a prospective license.

(b) Conditions. In addition to the provisions of §1245.204, the nonexclusive license may also provide that, after termination of a period specified in the license agreement, NASA may restrict the license to the fields of use or geographic areas, or both, in which the licensee has brought the invention to practical application and continues to make the benefits of the invention reasonably accessible to the public. However, such restriction shall be made only in order to grant an exclusive or partially exclusive license in accordance with this subpart.

§ 1245.206 Exclusive and partially exclusive licenses.

(a) Domestic licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on NASA inventions: (i) 3 months after notice of the invention's availability has been announced in the Federal Register; or (ii) without such notice where NASA determines that expeditious granting of such a license will best serve the interests of the Federal Government and the public; and (iii) in either situation, specified in (a)(1)(i) or (ii) of this section only if:

(A) Notice of a prospective license, identifying the invention and the prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period;

(B) After expiration of the period in §1245.206(a)(1)(ii)(A) and consideration of any written objections received during the period, NASA has determined that:

(1) The interests of the Federal Government and the public will best be served by the proposed license, in view of the applicant's intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public;

(2) The desired practical application has not been achieved, or is not likely expeditiously to be achieved, under any nonexclusive license which has been granted, or which may be granted, on the invention;

(3) Exclusive or partially exclusive licensing is a reasonable and necessary incentive to call forth the investment of risk capital and expenditures to bring the invention to practical application or otherwise promote the invention's utilization by the public; and

(4) The proposed terms and scope of exclusivity are not greater than reasonably necessary to provide the incentive for bringing the invention to practical application or otherwise promote the invention's utilization by the public;

(C) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the country in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with the antitrust laws; and

(D) NASA has given first preference to any small business firm submitting plans that are determined by the agency to be within the capabilities of the firm and as equally likely, if executed, to bring the invention to practical application as any plans submitted by applicants that are not small business firms.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to domestic exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall reserve to NASA the right to require the licensee to grant sublicenses to responsible applicants, on reasonable terms, when necessary to fulfill health or safety needs.

(iii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iv) The license may grant the licensee the right of enforcement of the licensed patent pursuant to the provisions of Chapter 29 of Title 35, United States Code, or other statutes, as determined appropriate in the public interest.

(b) Foreign licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on a NASA invention covered by a foreign patent, patent application, or other form of protection, provided that:

(i) Notice of a prospective license, identifying the invention and prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period and following consideration of such objections;

(ii) NASA has considered whether the interests of the Federal Government or United States industry in foreign commerce will be enhanced; and

(iii) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the United States in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with antitrust laws.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to foreign exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall reserve to NASA the right to require the licensee to grant sublicenses to responsible applicants, on reasonable terms, when necessary to fulfill health or safety needs.

(iii) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(iv) The license may grant the licensee the right of enforcement of the licensed patent pursuant to the provisions of Chapter 29 of Title 35, United States Code, or other statutes, as determined appropriate in the public interest.

Procedures

§ 1245.207 Application for a license.

An application for a license should be addressed to the Patent Counsel at the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application serial number or patent number, title, and date, if known;

(b) Identification of the type of license for which the application is submitted;

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant;

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent;
(e) Nature and type of applicant's business, identifying products or services which the applicant has successfully commercialized, and approximate number of applicant's employees;

(f) Source of information concerning the availability of a license on the invention;

(g) A statement indicating whether applicant is a small business firm as defined in § 1245.202(c);

(h) A detailed description of applicant's plan for development or marketing of the invention, or both, which should include:

(1) A statement of the time, nature and amount of anticipated investment of capital and other resources which applicant believes will be required to bring the invention to practical application;

(2) A statement as to applicant's capability and intention to fulfill the plan, including information regarding manufacturing, marketing, financial, and technical resources;

(3) A statement of the fields of use for which applicant intends to practice the invention; and

(4) A statement of the geographic areas in which applicant intends to manufacture any products embodying the invention and geographic areas where applicant intends to use or sell the invention, or both;

(i) Identification of licenses previously granted to applicant under Federally owned inventions;

(j) A statement containing applicant's best knowledge of the extent to which the invention is being practiced by private industry or Government, or both, or is otherwise available commercially; and

(k) Any other information which applicant believes will support a determination to grant the license to applicant.

§ 1245.208 Processing applications.

(a) Applications for licenses will be initially reviewed by the Patent Counsel of the NASA installation having responsibility for the invention. The Patent Counsel shall make a preliminary recommendation to the Director of Licensing, NASA Headquarters, whether to: (1) grant the license as requested, (2) grant the license with modification after negotiation with the licensee, or (3) deny the license. The Director of Licensing shall review the preliminary recommendation of the Patent Counsel and make a final recommendation to the NASA Assistant General Counsel for Patent Matters. Such review and final recommendation may include, and be based on, any additional information obtained from applicant and other sources that the Patent Counsel and the Director of Licensing deem relevant to the license requested. The determination to grant or deny the license shall be made by the Assistant General Counsel for Patent Matters based on the final recommendation of the Director of Licensing.

(b) When notice of a prospective exclusive or partially exclusive license is published in the Federal Register in accordance with § 1245.206(a)(1)(iii)(A) or § 1245.206(b)(1)(i), any written objections received in response thereto will be considered by the Director of Licensing in making the final recommendation to the Assistant General Counsel for Patent Matters.

(c) If the requested license, including any negotiated modifications, is denied by the Assistant General Counsel for Patent Matters, the applicant may request reconsideration by filing a written request for reconsideration within 30 days after receiving notice of denial. This 30-day period may be extended for good cause.

(d) In addition to, or in lieu of requesting reconsideration, the applicant may also appeal the denial of the license in accordance with § 1245.211.

§ 1245.209 Notice to Attorney General.

A copy of the notice provided for in §§ 1245.206(a)(1)(iii)(A), and 1245.206(b)(1)(i) will be sent to the Attorney General.

§ 1245.210 Modification and termination of licenses.

Before modifying or terminating a license, other than by mutual agreement, NASA shall furnish the licensee and any sublicensee of record a written notice of intention to modify or terminate the license, and the licensee and any sublicensee shall be allowed 30 days after such notice to remedy any breach of the license or show cause why the license should not be modified or terminated.

§ 1245.211 Appeals.

(a) The following parties may appeal to the NASA Administrator or designee any decision or determination concerning the grant, denial, interpretation, modification, or termination of a license:
**Report No.**
NASA SP-7039 (39)

**Title and Subtitle**
NASA Patent Abstracts Bibliography
A Continuing Bibliography
Section 2: Indexes (Supplement 39)

**Report Date**
July 1991

**Performing Organization Code**
NTT

**Author(s)**

**Performing Organization Name and Address**
NASA Scientific and Technical Information Program

**Sponsoring Agency Name and Address**
National Aeronautics and Space Administration
Washington, DC 20546

**Abstract**
A subject index is provided for over 5000 patents and patent applications for the period May 1969 through June 1991. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers.

**Key Words (Suggested by Author(s))**
Bibliographies
Patent Policy
NASA Programs

**Distribution Statement**
Unclassified - Unlimited
Subject Category - 82

**No. of Pages**
554

**Price**
A24/HC

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1991