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ABSTRACT

_;o specimen configurations of a [0/9012 s SCS-6/Ti-15-3 laminate were tes-

ted and analyzed: a center hole (CH) specimen and a double edge notch (DEN)

specimen. The two specimen configurations failed at similar stress levels in

spite of the large difference in the stress concentration factors for the two

geometries. Microscopic examinations of the failure surfaces indicated more

fiber-matrix debonding at the notch tip in the DEN specimen than in the CH

specimen. Based on the experimental results, it was hypothesized that the

radial stresses that developed at the fiber-matrlx interface ahead of the notch

tip in the DEN specimen caused fiber-matrix debonding in the 0 ° plies, thus,

lowering the stress concentration in the DEN specimen to a level comparable to

that of the CH specimen.

Two analytical techniques, a three-dimensional finite element analysis and

a macro-micromechanical analysis were used to predict the overall stress-

deformation behavior and the notch-tip fiber-matrix interface stresses in both

configurations. The micromechanical analysis predicted radial stresses next to

the notch in the DEN configuration that were nearly 7 times as large as those

predicted for the CH configuration. The overall stress-deformation response of

both configurations was accurately predicted when debonding of the 90 ° plies was

included. Predictions of the axial stress in the notch-tip 0 ° fiber correlated

well with the specimen static strength when fiber-matrlx debonding of 0 ° plies

was included for the DEN specimen. The results shown indicate that a first

fiber failure criteria based on the axial stress in the first intact 0 ° fiber

can predict the static strength of notched specimens when interfacial damage is

modeled.

INTRODUCTION

Fiber-matrix interfaces can play a key role in the mechanical behavior of

continuous fiber-reinforced metal matrix composites (MMC's) [I]. Interfaces

govern the mode and extent of load transfer between the fiber and matrix. When

the interfaces are strong and transmit all loads fully, isolated fiber fractures



tend to spread more rapidly to other fibers, and hasten failure [2]. Continuous

flber-reinforced composites can often be mademore damagetolerant by decoupling

fractured fibers from their neighbors through controlled Interfaclal failure.

It may be possible to tailor the strength and toughness of the interface to

decouple broken fibers from their surroundings. To accomplish such a feat, it

is first necessary to understand interfaclal behavior and debonding in MMC's.

Early work with boron/alumlnum (B/AI) MMC'sshowedthat in this low yield

matrix, the interface was not a critical factor. Instead extensive yielding of

the matrix occurred at the notch tips, such that specimenswith sharp notches

and center holes failed at similar stress levels [3]. In brittle polymeric

matrix composites, similar notch insensitive results have been observed for

quasl-isotropic laminates [4]. However, in polymeric composites, the notch in-

sensitivity was caused by extensive matrix cracking and delamlnations near the

crack tip that significantly reduced the local stress concentration [5]. The

fiber-matrlx interface can play a particularly significant role in MMC'swith a

matrix having a high yield strength, such as the SCS-6/Ti-15-3 system currently

being investigated. Debondlng of the fiber-matrlx interface is a primary damage

mechanismin SCS-6/Ti-15-3 composites [i]. Proper modeling of interfaclal

debonding is needed to accurately predict composite fracture behavior. To study

the stress state governing fiber-matrix debonding, a mlcromechanlcs analysis is

required.

The objective of the present work is to predict the static strength of

notched SCS-6/Ti-15-3 composites. Twospecimen configurations of a [0/9012s

SCS-6/Ti-15-3 laminate were tested and analyzed: a center hole (CH) specimen

and a double edge notch (DEN)specimen. Microscopic examinations of the failure

surfaces in both configurations were made. Twoanalytical techniques, a three-

dimensional finite element analysis (PAFAC)and a macro-mlcromechanlcal analysis

(MMA)were used to analyze the behavior of both the DENand CHspecimens. The

MMAwas used to analyze the stresses in the notch-tip element in the interior 0°

ply in both the DENand CHspecimens to determine the fiber-matrix interface

stress state for perfectly bonded fibers. PAFACwas used to predict the global



stress-deformation response with interfaclal debonding in the 90° plies. PAFAC

was also used to predict the fiber axial stresses in the first 0° fiber next to

the notch for the two configurations with interfaclal debonding in the 90 ° and

0 ° plies. The static strengths of each specimen were compared to the predic-

tions of first fiber failure in the 0 ° plies.

MATERIALS AND TEST PROCEDURES

Materials and Specimens

The alloy Ti-15-3, a shortened designation for TI-15V-3Cr-3AI-3Sn, is a

metastable beta strip alloy [6]. The composite laminates were made by hot-pres-

sing Ti-15-3 foils between unidirectional tapes of sillcon-carbide fibers held

in place with molybdenum wire. The manufacturer's designation for these

sillcon-carbide fibers is SCS-6. The fiber diameter is 0.14 mm. Two specimen

configurations of the SCS-6/TI-15-3 material were tested: a CH specimen and a

DEN specimen. The two specimens were cut from a panel of [0/9012s material.

Each specimen consisted of eight plies and was approximately 1.67 mm thick. The

fiber volume fraction was approximately 39% for both specimens.

Each specimen was 19.l-mm wide and 152.4-mm long. One specimen (CH) had a

circular hole with a diameter of 6.35 mm cut in the center of the specimen. The

other specimen (DEN) had two edge notches cut on the sides of the specimen using

electro-discharge machining. Each notch had a length of 3.18 mm with a width of

0.25 mm and a notch tip radius of 0.125 mm. The two specimen configurations are

shown in Figure i. Both specimens were tested in the as-fabrlcated condition.

Testing Techniques

The tests were conducted on a 89 kN servo-hydraullc test stand. Load con-

trol was used with a loading rate of approximately .89 kN/s. Both specimens

were pulled statically in tension to failure. An extensometer with a 25.4 mm

gage length was mounted in the center of each specimen to record the deforma-

tion. An X-Y recorder was used to record the load-deformatlon response of the

specimen using the load cell and extensometer output. Global strains of the

specimens were calculated from the extensometer output.



ANALYTICAL TECHNIQUES

T_-o analytical techniques were used to model and predict various aspects of

_he specimen and material behavior. The first, a three-dlmenslonal finite ele-

ment analysis (PAFAC [7]), was used to analyze the global behavior of both

notched SCS-6/Ti-15-3 specimens with interfaclal debonding and yielding. The

second, a macro-micromechanlcal analysis (MMA) [8], was used to analyze notch-

tip stress states in both the DEN and CH specimens with perfectly bonded fibers.

Both analytical techniques are based on constituent properties. The fiber and

matrix properties used in both analyses are given in Table i. The two tech-

niques will be described in more detail in the following sections.

Three-Dimensional Analysis, PAFAC

The three-dimenslonal finite element analysis PAFAC (Plastlc Knd Failure

_nalysls of _omposites) was used to analyze the overall behavior of both

specimens. The analysis uses the vanishing-fiber-diameter material model [9] to

account for the elastic-plastlc behavior of the matrix and the elastic behavior

of the fiber. PAFAC uses an eight-noded hexahedral element; each element repre-

sents a unidirectional composite material whose fibers are arbitrarily oriented

in the structural coordinate system. Using this material model, the analysis

calculates the fiber and laminate stresses and predicts when yielding occurs in

each element of the finite element mesh. The PAFAC analysis does not account

for the thermal residual stresses that are present in this material due to the

fabrication process.

Figure 2 shows a plan view of each of the finite element meshes that were

used to model the DEN and CH specimens. In both cases, only one-elghth of the

specimen was modeled due to symmetry. The mesh for DEN specimen contained ap-

proximately 2600 nodes and 1600 elements; the notch was modeled as a rectangle.

The mesh for the CH specimen contained approximately 1500 nodes and 1040 ele-

ments. Each ply of the [0/9012 s laminate was modeled with one layer of

elements. Thus, each mesh contained four layers of the elements through the

thickness (Z-dlrection). The smallest elements, located next to the notch, were

sized to represent one fiber spacing. This fiber spacing was calculated using



the fiber volume fraction (vf - 39%), the fiber diameter (df - 0.14 mm), and the

ply thickness (t - 0.209 mm). A uniform stress was applied to the end of each

specimen to simulate loading and the end of the model was constrained to dis-

place uniformly.

Earlier work with unnotched SCS-6/Ti-15-3 laminates [i] indicated interfa-

cial debondlng in 90 ° plies at very low load levels. To model this phenomena,

PAFAC was modified to include a failure criterion to approximate interfaclal

debonding in the 90 ° plies. Using the discrete fiber-matrlx model described in

the Appendix, the transverse modulus of a unidirectional laminate with a com-

pletely debonded fiber-matrix interface was calculated. When the transverse

stress in the elements in the 90 ° plies reached a specified critical value, the

material properties of the 90 ° plies were modified to represent an isotroplc

material with an elastic modulus equal to the transverse modulus of a unidirec-

tional laminate with a completely debonded interface. The effect of modeling an

orthotropic layer with an isotroplc material model was examined and is discussed

in the Appendix. The critical transverse stress was chosen to be 155 MPa based

on experimental observations of unnotched [90]8 laminates [i]. The predicted

stress-deformation curves with debonding of the 90 = plies will be compared to

the experimental data for both the DEN and CH specimens.

The PAFAC analysis was also modified to account for interface debonding in

the 0 ° plies at the notch tip in the DEN specimen; the approximation used is

shown schematically in Figure 3. The original mesh at the notch tip for the DEN

model is shown in Figure 3(a), where the mesh contains one layer of elements per

ply and the elements at the notch tip are one fiber spacing wide. The fibers

are shown for reference only; since the material model in PAFAC is homogeneous,

it cannot model the fibers discretely. The elements next to the notch tip,

which were one fiber spacing wide, were each divided into two elements. Then

additional layers of elements were added such that each 0 ° ply was modeled with

three layers of elements, as opposed to one layer used previously. The material

properties of the additional elements were specified so that the elements next

to the notch and between each layer were isotropic with the material properties



of the matrix. The isotropic elements added between the 0 ° and 90 ° plies were

0.0345-mm thick. The remaining elements in the 0 ° plies were modeled as com-

posite elements with appropriately higher fiber volume fractions. Adding the

isotropic layers does not affect the overall stress-deformatlon response of the

laminate. To model the effects of fiber-matrix debonding of the 0 ° fiber next

to the notch, the elastic modulus of the isotropic elements in both 0 ° plies in-

dicated by the shaded areas in Figures 3(b) was reduced. Polsson's ratio was

unchanged. Predictions of the notch-tlp 0 ° fiber stress were made reducing the

elastic modulus by a factor of i0, 100 and I000 to determine the sensitivity of

fiber stress to the reduction factor.

In the PAFAC analysis, it was also possible to vary the number of elements

with the reduced modulus in the longitudinal direction (parallel to the 0 °

fibers). The effect on the 0 ° fiber stress due to varying the number of ele-

ments in the longitudinal direction with reduced moduli was also examined.

Varying the number of elements in this direction would be equivalent to modeling

different debond lengths for the 0 ° fiber at the notch tip.

Macro-Micromechanical Analysis (MMA)

The second analytical technique, the macro-micromechanical analysis (MMA)

developed by Bigelow and Nalk [8], was used to analyze notch-tip stress states

in both the DEN and CH specimens. The macro-mlcromechanlcal analysis combines

the 3D homogeneous, orthotropic finite element analysis (PAFAC) of the notched

specimen and a discrete fiber-matrlx (DFM) mlcromechanics model of a single fi-

ber. The MSC/NASTRAN finite element code [i0] was used to analyze the DFM

model. The MMA was used to calculate the stresses in the notch-tip element in

the interior 0 ° ply of the [0/9012 s laminate assuming a perfectly bonded fiber-

matrix interface. The interior 0 ° ply was the location of the highest axial

fiber stress predicted by the PAFAC analyses of the specimens. As mentioned, in

both specimen configurations, the finite element mesh was designed so that the

dimensions of the elements next to the notch corresponded to a single fiber

spacing. A plan view of the finite element mesh, and its dimensions, that was

used to model the notch-tlp element for both configurations is shown in Figure



4. A schematic view of the macro-mlcro interface used in the MMAfor the DEN

specimen is shownin Figure 5. Displacement boundary conditions from the macro-

level analysis are applied to the mlcro-level DFM mesh to simulate the stress

state next to the notch. A similar concept was used for the CH specimen. The

micro-level model shown in Figure 4 was used for both the DEN and CH configura-

tions. Thermal residual stresses were not included in this analysis.

RESULTS AND DISCUSSION

Experimental Observations

The two specimen configurations failed at similar stress levels in spite of

large differences in their stress concentration factors. The elastic stress

concentrations K T are 3.7 for the CH specimen and 5.7 for the DEN specimen.

These values of K T were calculated, assuming perfectly bonded fiber, using the

PAFAC analysis and the meshes shown in Figure 2. The K T for the DEN is roughly

one and one half times that of the KT of the CH configuration. The static

strength of the DEN specimen was 520 MPa, for the CH specimen the static

strength was 501 MPa. These strengths were unexpectedly close given the dif-

ference in the KT'S.

The failure surfaces next to the notch were examined microscopically for

both specimen configurations in order to identify the failure mechanisms. The

surface of each specimen was polished to reveal the first layer of 0 ° fibers.

Typical photographs for each configuration are shown in Figure 6. In these

photographs, the light gray area is matrix and the darker gray areas are fibers.

In Figure 6(a) the carbon core in the SCS-6 fiber and the molybdenum wire are

visible. Figure 6(a) shows the area Just ahead of the notch for the DEN

specimen. The first fiber ahead of the notch was damaged during the machining

of the notch, thus, this fiber probably failed rather early in the loading his-

tory. The next fiber failed away from the plane of the notch, exhibiting fiber

pullout; this type behavior would be expected if fiber-matrix debonding had oc-

curred over that length of the fiber. In this case, the fiber-matrix debond

length is three to four fiber diameters in length. Figure 6(b) shows an area



next to the hole for the CHspecimen. Minimal fiber pullout is seen next to the

hole, indicating that significant flber-matrlx debondlng was not present prior

to specimen failure.

Based on the experimental results, it was hypothesized that tensile radial

stresses at the flber-matrlx interface ahead of the notch tip in the DEN

specimen were large enough to cause extensive flber-matrix debonding in the 0 °

plies, thus, lowering the stress concentration in the DEN specimen. Both

analytical techniques, PAFAC and the MMA, were used to examine the hypothesis.

The MMA was used to analyze the stresses in the notch-tlp element in the inte-

rior 0 ° ply in both the DEN and CH specimens to determine the flber-matrlx

interface stress state. PAFAC was used for two analyses. First, the global

stress-deformation response was predicted including matrix yielding and interfa-

clal debondlng in the 90 ° plies. Second, the fiber axial stresses in the first

0 ° fiber next to the notch were predicted for the two configurations. The ef-

fects of modeling interfaclal debonding in the 90 ° and 0 ° plies on the axial

stress in the notch-tip 0 ° fiber were examined.

Interface Stresses

For a unit applied stress (S - 1 MPa), the MMA predicted the stresses shown

in Figure 7 and 8 for the DEN and CH specimens, respectively. The stresses

shown do not include the thermal residual stresses which would present due to

the fabrication of the composite. The stresses presented are the stresses in

the matrix at the fiber-matrlx interface calculated at the finite element nodal

points. For comparison, the matrix stresses in the interior 0 ° ply in an un-

notched [0/9012 s specimen due to a unit applied stress are shown in Figure 9.

The stresses are presented with respect to the cylindrical coordinate system

shown. Stresses are shown for the plane of symmetry on the XZ plane, i.e.

through the center llne of the notch or hole. Due to symmetry the shear

stresses are zero on this plane; thus, only the three normal stress components

will be presented. For the two notched configurations, 8 - 180 ° is the side of

the fiber next to the notch.



In all three configurations, the peak values of the normal stresses occur

at g - 180° . In the DENand CHconfigurations, the stresses are nearly sym-

metric about 8 - 180° This is expected since the stresses were calculated for

an interior ply. In the unnotched laminate (Figure 9), the stresses are sym-

metric about 8 - 0 ° and 180 ° . In fact, for the unnotched laminate, it was

sufficient to model only a quarter of the fiber. However, results are presented

for 0 ° S 8 z 360 ° for comparison with the notched laminate results in Figures 7

and 8.

All three stress components shown are largest for the DEN specimen and the

smallest for the unnotched laminate. The gradient in the stress distribution is

also much larger for the DEN specimen than the CH specimen. Consider for ex-

ample the axial component. The axial stress in the DEN specimen ranges from a

peak value of 5.2 MPa to a minimum of 2.2 MPa, whereas in the CH specimen, the

axial stress only ranges from 2.2 to 1.6 MPa. This is due, of course, to the

higher stress concentration of the DEN specimen. Likewise, the peak value of

the radial stress component is much larger relative to the hoop and axial stress

components in the DEN specimen compared to the CH specimen. In the DEN

specimen, the maximum radial stress is 1.67 times the hoop stress and .87 times

the axial stress. In the CH specimen, the maximum radial stress is 1.24 times

the hoop stress and only .25 times the axial stress. It is also interesting to

note that the radial stresses for the DEN configuration (Figure 7) are tensile

for all values of 8, whereas for the CH configurations, the radial stresses are

tensile only from approximately Ii0 ° to 250 ° (Figure 8), and for the unnotched

laminate, the radial stresses are compressive for all values of 8 (Figure 9).

For interfacial failure, the stress component of primary concern is the

radial stress. The peak values of the radial matrix stresses due to a remote

stress of 1 MPa are 4.5 and .67 MPa for the DEN and CH specimens, respectively.

The peak value of the radlal stress for the unnotched laminate is -0.17 MPa.
w

Thus, for a given interfaclal strength, the interface in the DEN specimen will

debond much earlier in the loading history than in the CH specimen. Conversely,

for a given load, the 0 ° fibers next to the notch in the DEN specimen are more



likely to have debonded than in the CH specimen. Since an interfaclal strength

is not available, it is not possible to predict when the interface will debond.

Based on the stresses shown in Figures 7 and 8 and the evidence of a weak inter-

face in the SCS-6/Ti-15-3 material [I], it is likely that much more debonding of

the 0 ° plies occurred in the DEN than the CH specimen. In fact, based on the

micrographics presented in Figure 6, the 0 ° plies probably did not debond in the

CH specimen.

Calculations With Interface Debondlng

The predicted and experimental stress-deformatlon curves for both specimens

are shown in Figure i0. The PAFAC predictions were made including interfacial

debonding in the 90 ° plies. From the DFM analysis described in the Appendix,

the transverse modulus of a unidirectional laminate with a completely debonded

interface was found to be 50.1 GPa. As described previously, a simplistic

failure criterion was incorporated in the PAFAC analysis to simulate a debonded

interface In the 90 ° plies. After the critical transverse stress (155 MPa) was

reached in any finite element with an orientation of 90 °, that element was then

modeled as isotropic material with an elastic modulus of 50.1 GPa. By modifying

the material properties of the 90 ° plies to simulate the failed interfaces, the

predicted stress-deformatlon behavior agreed quite well with the experimental

results for CH specimen and reasonably well for the DEN specimen.

The PAFAC analysis was then used to determine the effect of debondlng in

the 0° plies on the notch-tlp fiber stress concentrations. The axial fiber

stresses in the element next to the notch In the interior 0 ° ply were predicted

for both the DEN and CH specimens using the modified material properties for the

90 ° plies (i.e., debonded 90 ° flber-matrix interfaces) as described above.

Figure ii shows the predictions of the 0 ° fiber stress in the first element

next to the notch as a function of applied stress for the DEN and CH specimens

assuming no debondlng of the 0 ° piles. The horizontal dashed line indicates an

assumed fiber strength of 4200 MPa, and the two vertical dash-dotted lines show

the experimental strengths of the two specimens. The fiber strength was calcu-

lated from the strain to failure of an unnotched [0/9012s coupon (_ult - 0.0105

I0



mm/mm). The solid and dashed lines indicate the predicted 0 ° fiber stress with

no debondlng in the 0 ° plies for the DEN and CH specimens, respectively. If the

strength of the first 0° fiber is used as a failure criteria, the analysis

predicts the strength of the CH specimen quite well. However, the strength of

the DEN specimen is significantly underpredlcted. Earlier work with B/AI [3]

indicated that a first 0 ° fiber failure criteria accurately predicted the static

strengths of a variety of notched specimens.

Based on the earlier hypothesis of debonding at the notch tip in the DEN

specimen, the approximation described earlier was made using the PAFAC analysis

to model the effects of debonding in the 0 ° plies in the DEN configuration. As

shown in Figure 3(b), the elastic modulus of the elements indicated by the

shaded areas was reduced by a factor of I0, I00 and I000 to approximate the in-

terface debondlng of the notch-tlp 0 ° fiber in the DEN specimen. Little

difference in the 0 ° axial fiber stress (less than I_) was seen whether the

modulus was reduced by I0, I00, or I000 so results are shown for a reduction

factor of I000. The number of elements p_rallel to the 0 ° fiber direction with

a reduced modulus was varied to represent different debond lengths. This is

shown schematically in Figure 12 for the various numbers of elements modified.

The axial notch-tip 0 ° fiber stress in the interior 0 ° ply for both con-

figurations is shown in Figure 13. The fiber stresses shown in Figure 13 were

calculated with interfacial debonding of the 90 ° plies. In addition, the cal-

culations for the DEN specimen include the interfaclal debonding of the notch-

tip elements in the 0 ° plies. The two solid lines are the predictions made for

no debonding of the 0 ° plies repeated from Figure ii. Reducing the modulus of

only one element (dashed line) reduced the fiber stress in the DEN specimen con-

siderably, as shown in Figure 13. Reducing the modulus of only 2 elements

caused the 0 ° fiber stress to drop nearly to the level of the CH configuration.

A two element length is equivalent to a debond length of 3.5 fiber diameters.

This debond length is in good agreement with the micrographs showing a debond

length of three to four fiber diameters (Figure 6(a)). By reducing the modulus

of four or more elements, the 0 ° fiber stress in the notch-tlp element in DEN

II



specimenwas reduced to a level below that of the CHconfiguration. The results

sbe_ _n Figure 13 agree with predictions madeusing a two-dlmenslonal shear lag

model of a unidirectional composite [ii] showing that any damagewill bring the

solutions for a notch and a hole closer together. From Figure 13, a first fiber

failure criteria based on the axial stress of the notch-tlp 0° fiber would

predict the strength of the CHspecimen to be 490 MPaand the strength of the

DENspecimen to be from 320 to 560 MPa, depending upon the debond length modeled

in the 0° plies of the DENspecimen. For a debond length of 3.5 fibers (2

elements) in the 0° plies next to the notch, the PAFACanalysis predicts a

strength of 500 MPafor the DENconfiguration. The strength prediction corre-

lates reasonably well with the experimental strengths of 520 MPaobserved for

the DENspecimen. As mentioned earlier, the thermal residual stresses that are

present in this material due to the fabrication process were not accounted for

in the analyses. A compressive axial stress would be present in the 0° fibers

due to the temperature change during the fabrication process. However, the same

thermal residual stress state would be present in both the CHand DENspecimens,

and in the unnotched specimen used to determine the fiber strength. The results

shown indicate that the axial stress in the first intact 0° fiber maydictate

the static strength of the specimen and a first fiber failure criteria would

predict specimen strengths when interfacial debonding is modeled.

CONCLUDINGREMARKS

The static notched strengths of [0/9012s SCS-6/TI-15-3 laminates were

predicted based on the stress in the notch-tip 0 ° fiber. Two specimen con-

figurations of a [0/9012 s SCS-6/Ti-15-3 laminate were tested and analyzed: a

center hole (CH) specimen and a double edge notch (DEN) specimen. The two

specimen configurations failed at similar stress levels in spite of the large

difference in the s£ress concentration factors for the two geometries.

Microscopic examinations of the failure surfaces for both configurations showed

fiber pullout for the DEN specimen, indicating flber-matrix debondlng had oc-

curred. Minimal fiber pullout was seen in the CH specimen. Based on the

12



experimental results, it was hypothesized that the radial stresses that

developed at the fiber-matrix interface ahead of the sllt tip in the DEN

specimen were large enough to cause fiber-matrlx debonding in the 0 ° plies,

thus, lowering the stress concentration in the DEN specimen to a level com-

parable to that of the CH specimen.

Two analytical techniques, a three-dlmensional finite element analysis

(PAFAC) and a macro-mlcromechanlcal analysis (MMA) were used to predict the

overall stress-deformatlon behavior and the notch-tip fiber-matrlx interface

stresses in both configurations. The MMA predicted radial stresses next to the

notch in the DEN configuration that were nearly 7 times as large as those

predicted for the CH configuration. Thus, flber-matrlx debondlng in the 0 °

plies will occur much earlier in the loading history for the DEN specimen and,

for a given stress level, more flber-matrlx debondlng will occur in the DEN

specimen than in the CH specimen. The overall stress-deformation response of

both specimens was accurately predicted when interfaclal failure of the 90 °

plies was included in the analysis. The modulus of the 90 ° ply with failed in-

terfaces was determined using a discrete fiber-matrlx (DFM) model containing gap

elements. By reducing the modulus of elements at the notch tip to simulate

debonding next to the notch in the 0 ° plies, predictions of notch-tip 0 ° fiber

stress for the DEN configuration were reduced to a level comparable to that of

the fiber stress in the CH configuration, indicating that flber-matrix debonding

in the DEN specimen could reduce the notch-tlp stress sufficiently so that both

configurations would have similar strengths. When the Interfacial debondlng of

the 90 ° plies and the notch-tlp 0 ° plies (in the DEN specimen) was modeled, the

axial stress in the first intact 0 ° fiber correlated well with the specimen

static strength for both specimen configurations. The analyses assumed no sig-

nificant debonding in the 0 ° plies in the CH specimen. The analyses also did

not account for thermal residual stresses in the material. However, the same

thermal residual stress state would be present in both the CH and DEN specimens,

and in the unnotched specimen used to determine the fiber strength. The results

shown indicate that a first fiber failure criteria based on the axial stress in

13



the first intact 0 ° fiber can predict the static strength of notched specimens

_en Interfaclal damage is modeled.
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APPENDIX- INTERFACIAL DEBONDING OF A UNIDIRECTIONAL LAMINATE

in tests of unnotched laminates of the SCS-6/Ti-15-3 material, a knee was

seen in the stress-deformatlon response. This knee occurred well below the

yield strength of the matrix material and was found to be due to debonding of

the fiber-matrix interface in the 90 ° plies [I]. A DFM model assuming an in-

finitely repeating rectangular array of fibers was used to analyze debonding of

a unidirectional laminate. MSC/NASTRAN [i0] was used for the finite element

analysis. The ply thickness (0.194 mm), the fiber volume fraction (32.5%), and

the fiber diameter (0.14 mm) were used to calculate the dimensions of the model.

The ply thickness, the fiber volume fraction, and the fiber diameter are typical

for the SCS-6/Ti-15-3 material tested in [I]. A plan view of the DFM model is

shown in Figure AI. In the DFM model, the debonded interface was modeled using

the gap elements available in MSC/NASTRAN. Gap elements are nonlinear elements

which may have significant compression and shear forces only if the gap is

closed. The gap elements were placed between the fiber and matrix and given a

zero length, Upon loading, the gap elements have zero stiffness when the gap

opens and the same stiffness as the fibers if the gap remains closed, thus,

modeling a failed interface. With the completely debonded interface, the

modulus of the unidirectional laminate was calculated by loading the DFM model

with the gap elements with a uniform stress applied in the transverse direction,

as shown in Figure AI. The modulus was calculated from the slope of the stress-

deformation curve. The transverse modulus of a unidirectional laminate with a

debonded interface was calculated to be 50.1 GPa. This value of the transverse

modulus is lower than the experimental value (66 GPa) given in [i]. The dis-

crepancy may be due to two factors. First, the effects of friction between the

fiber and matrix when the interface has debonded may have caused some dis-

crepancy. The model used assumed a perfectly smooth, frictionless interface

between the fiber and matrix, which may not be realistic. Second, the analysis

assumes all the flber-matrix interfaces are completely debonded, whereas, in the

actuality all the fibers may not be debonded throughout the specimen.
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When the transverse stress in the elements in the 90 ° plies reached a

specified critical value, the material properties of the 90 ° plies were modified

to represent an Isotroplc material with an elastic modulus equal to the

transverse modulus of the unidirectional laminate with a completely debonded in-

terface. This, in effect, models the 90 ° plies with a bilinear stress-straln

curve. The critical transverse stress was chosen to be 155 MPa based on ex-

perimental observations of unnotched [90]8 laminates [i]. Thermal residual

stresses, which were present in the experimental observations, were not included

in the analyses.

The material model used in PAFAC is based on constituent properties, thus,

the material properties required are the elastic modulus and Poisson's ratio for

the fiber and matrix, and a stress-straln curve for the matrix. It is not pos-

sible, for example, to reduce the transverse modulus of one constituent to model

interfaclal failure. Nor is it possible to reduce the transverse modulus (E22)

of an orthotropic material to model interfaclal debonding of a 90 ° ply. Thus,

in order to simulate Interfacial debonding with the PAFAC analysis, the 90 °

plies with a debonded interface were modeled as isotroplc plies with an elastic

modulus equal to the transverse modulus of a unidirectional laminate with a com-

pletely debonded interface. This gave the debonded 90 ° plies in the [0/9012 s

laminate an unrealistically low modulus in the axial fiber direction. The ef-

fect of this low modulus was found to be negligible (less than 2.5%) on the

stress-deformation response of the laminate.
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Table i - Constituent Properties For SCS-6/Ti-15-3

Matrix (as-fabrlcated)

E

Pa

V

9.239EI0 .36

Fiber

E

Pa

V

3.93EII .25

Matrix Stress-Strain Curves (as-fabrlcated)

Strain

0.0

0 0076

0 0082

0 0088

0 0094

0 0098

0 0106

0 0113

0 0118

0 0124

0 0132

O. 0146

0.0168

0.0208

Stress

Pa

0.0

6. 8948E8

7.4119E8

7. 8428E8

8.2737E8

8.4461E8

8. 7908E8

8.9632E8

9. 0494E8

9. 1356E8

9.2217E8

9. 3079E8

9. 3941E8

9. 4803E8
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