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ABSTRACT

Two specimen configurations of a [0/90]zs SCS-6/Ti-15-3 laminate were tes-
ted and analyzed: a center hole (CH) specimen and a double edge notch (DEN)
specimen. The two specimen configurations failed at similar stress levels in
spite of the large difference In the stress concentration factors for the two
geometries. Microscopic examinations of the failure surfaces indicated more
fiber-matrix debonding at the notch tip in the DEN specimen than in the CH
specimen. Based on the experimental results, it wasihypothesized that the
radial stresses that developed at the fiber-matrix interface ahead of the notch
tip in the DEN specimen caused fiber-matrix debonding in the 0° plies, thus,
lowering the stress concentration in the DEN specimen to a level comparable to
that of the CH specimen.

Two analytical techniques, a three-dimensional finite element analysis and
a macro-micromechanical analysis were used to predict the overall stress-
deformation behavior and the notch-tip fiber-matrix interface stresses in both
configurations. The micromechanical analysis predicted radial stresses next to
the notch in the DEN configuration that were nearly 7 times as large as those
predicted for the CH configuration. The overall stress-deformation response of
both configurations was accurately predicted when debonding of the 90° plies was
included. Predictions of the axial stress in the notch-tip 0° fiber correlated
well with the specimen statié strength when fiber-matrix debonding of 0° plies
was included for the DEN specimen. The results shown indicate that a first
fiber failure criteria based on the axial stress in the first intact 0° fiber
can predict the static strength of notched specimens when interfacial damage is

modeled.

INTRODUCTION
Fiber-matrix interfaces can play a key role in the mechanical behavior of
continuous fiber-reinforced metal matrix composites (MMC’s) [1]. Interfaces
govern the mode and extent of load transfer between the fiber and matrix. When

the interfaces are strong and transmit all loads fully, isolated fiber fractures



tend to spread more rapidly to other fibers, and hasten failure [2]. Continuous
fiber-reinforced composites can often be made more damage tolerant by decoupling
fractured fibers from their neighbors through controlled interfacial failure.

It may be possible to tailor the strength and toughness of the interface to
decouple broken fibers from their surroundings. To accomplish such a feat, it
is first necessary to understand intérfacial behavior and debonding in MMC's.
Early work with boron/aluminum (B/Al) MMC's showed that in this low yield
matrix, the interface was not a critical factor. Instead extensive yielding of
the matrix occurred at the notch tips, such that specimens with sharp notches
and center holes failed at similar stress levels [3]. 1In brittle polymeric
matrix composites, similar notch insensitive results have been observed for
quasi-isotropic laminates [4]. However, in polymeric composites, the notch in-
sensitivity was caused by extensive matrix cracking and delaminations near the
crack tip that significantly reduced the local stress concentration [5]. The
fiber-matrix interface can play a particularly significant role in MMC's with a
matrix having a high yield strength, such as the SC5-6/Ti-15-3 system currently
being investigated. Debonding of the fiber-matrix interface is a primary damage
mechanism in SCS-6/Ti-15-3 composites [1]. Proper modeling of interfacial
debonding is needed to accurately predict composite fracture behavior. To study
the stress state governing fiber-matrix debonding, a micromechanics analysis is
required.

The objective of the present work is to predict the static strength of
notched SCS-6/Ti-15-3 composites. Two specimen configurations of a [0/90]25
5C5-6/Ti-15-3 laminate were tested and analyzed: a center hole (CH) specimen
and a double edge notch (DEN) specimen. Microscopic examinations of the failure
surfaces in both configurations were made. Two analytical techniques, a three-
dimensional finite element analysis (PAFAC) and a macro-micromechanical analysis
(MMA) were used to analyze the behavior of both the DEN and CH specimens. The
MMA was used to analyze the stresses in the notch-tip element in the interior 0°
ply in both the DEN and CH specimens to determine the fiber-matrix interface

stress state for perfectly bonded fibers. PAFAC was used to predict the global



stress-deformation response with interfacial debonding in the 90° plies. PAFAC
vas also used to predict the fiber axial stresses in the first 0° fiber next to
the notch for the two configurations with interfacial debonding in the 90° and
0° plies. The static strengths of each specimen were compared to the predic-

tions of first fiber failure in the 0° plies.

MATERIALS AND TEST PROCEDURES
Materials and Specimens

The alloy Ti-15-3, a shortened designation for Ti-15V-3Cr-3Al-3Sn, is a
metastable beta strip alloy [6]. The composite laminates were made by hot-pres-
sing Ti-15-3 foils between unidirectional tapes of silicon-carbide fibers held
in place with molybdenum wire. The manufacturer’s designation for these
silicon-carbide fibers is SCS-6. The fiber diameter is 0.14 mm. Two specimen
configurations of the SCS-6/Ti-15-3 material were tested: a CH specimen and a
DEN specimen. The two specimens were cut from a panel of [0/90]2S material.
Each specimen consisted of eight plies and was approximately 1.67 mm thick. The
fiber volume fraction was approximately 39% for both specimens.

Each specimen was 19.1-mm wide and 152.4-mm long. One specimen (CH) had a
circular hole with a diameter of 6.35 mm cut in the center of the specimen. The
other specimen (DEN) had two edge notches cut on the sides of the specimen using
electro-discharge machining. Each notch had a length of 3.18 mm with a width of
0.25 mm and a notch tip radius of 0.125 mm. The two specimen configurations are
shown in Figure 1. Both specimens were tested in the as-fabricated condition.

Testing Techniques

The tests were conducted on a 89 kN servo-hydraulic test stand. Load con-
trol was used with a loading rate of approximately .89 kN/s. Both specimens
were pulled statically in tension to failure. An extensometer with a 25.4 mm
gage length was mounted in the center of each specimen to record the deforma-
tion. An X-Y recorder was used to record the load-deformation response of the
specimen using the load cell and extensometer output. Global strains of the

specimens were calculated from the extensometer output.



ANALYTICAL TECHNIQUES

Two analytical techniques were used to model and predict various aspects of
the specimen and material behavior. The first, a three-dimensional finite ele-
ment analysis (PAFAC [7]), was used to analyze the global behavior of both
notched 5CS-6/Ti-15-3 specimens with interfacial debonding and yielding. The
second, a macro-micromechanical analysis (MMA) [8], was used to analyze notch-
tip stress states in both the DEN and CH specimens with perfectly bonded fibers.
Both analytical techniques are based on constituent properties. The fiber and
matrix properties used in both analyses are given in Table 1. The two tech-
niques will be described in more detail in the following sections.

Three-Dimensional Analysis, PAFAC

The three-dimensional finite element analysis PAFAC (Plastic and Failure
Analysis of Composites) was used to analyze the overall behavior of both
specimens. The analysis uses the vanishing-fiber-diameter material model [9] to
account for the elastic-plastic behavior of the matrix and the elastic behavior
of the fiber. PAFAC uses an eight-noded hexahedral element; each element repre-
sents a unidirectional composite material whose fibers are arbitrarily oriented
in the structural coordinate system. Using this material model, the analysis
calculates the fiber and laminate stresses and predicts when yielding occurs in
each element of the finite element mesh. The PAFAC analysis does not account
for the thermal residual stresses that are present in this material due to the
fabrication process.

Figure 2 shows a plan view of each of the finite element meshes that were
used to model the DEN and CH specimens. In both cases, only one-eighth of the
specimen was modeled due to symmetry. The mesh for DEN specimen contained ap-
proximately 2600 nodes and 1600 elements; the notch was modeled as a rectangle.
The mesh for the CH specimen contained approximately 1500 nodes and 1040 ele-
ments. Each ply of the [0/90]25 laminate was modeled with one layer of
elements. Thus, each mesh contained four layers of the elements through the
thickness (Z-direction). The smallest elements, located next to the notch, were

sized to represent one fiber spacing. This fiber spacing was calculated using



the fiber volume fraction (vf = 39%), the fiber diameter (df = 0.14 mm), and the
ply thickness (t = 0.209 mm). A uniform stress was applied to the end of each
specimen to simulate loading and the end of the model was constrained to dis-
place uniformly.

Earlier work with unnotched SCS-6/Ti-15-3 laminates [1] indicated interfa-
cial debonding in 90° plies at very low load levels. To model this phenomena,
PAFAC was modified to include a failure criterion to approximate interfacial
debonding in the 90° plies. Using the discrete fiber-matrix model described in
the Appendix, the transverse modulus of a unidirectional laminate with a com-
pletely debonded fiber-matrix interface was calculated. When the transverse
stress in the elements in the 90° plies reached a specified critical value, the
material properties of the 90° plies were modified to represent an isotropic
material with an elastic modulus equal to the transverse modulus of a unidirec-
tional laminate with a completely debonded interface. The effect of modeling an
orthotropic layer with an isotropic material model was examined and is discussed
in the Appendix. The critical transverse stress was chosen to be 155 MPa based
on experimental observations of unnotched [90]8 laminates [1]. The predicted
stress-deformation curves with debonding of the 90° plies will be compared to
the experimental data for both the DEN and CH specimens.

The PAFAC analysis was also modified to account for interface debonding in
the 0° plies at the notch tip in the DEN specimen; the approximation used is
shown schematically in Figure 3. The original mesh at the notch tip for the DEN
model is shown in Figure 3(a), where the mesh contains one layer of elements per
ply and the elements at the notch tip are one fiber spacing wide. The fibers
are shown for reference only; since the material model in PAFAC is homogeneous,
it cannot model the fibers discretely. The elements next to the notch tip,
which were one fiber spacing wide, were each divided into two elements. Then
additional layers of elements were added such that each 0° ply was modeled with
three layers of elements, as opposed to one layer used previously. The material
properties of the additional elements were specified so that the elements next

to the notch and between each layer were isotropic with the material properties



of the matrix. The isotropic elements added between the 0° and 90° plies were
0.0345-m thick. The remaining elements in the 0° plies were modeled as com-
posite elements with appropriately higher fiber volume fractions. Adding the
isotropic layers does not affect the overall stress-deformation response of the
laminate. To model the effects of fiber-matrix debonding of the 0° fiber next
to the notch, the elastic modulus of the isotropic elements in both 0° plies in-
dicated by the shaded areas in Figures 3(b) was reduced. Poisson's ratio was
unchanged. Predictions of the notch-tip 0° fiber stress were made reducing the
elastic modulus by a factor of 10, 100 and 1000 to determine the sensitivity of
fiber stress to the reduction factor.

In the PAFAG analysis, it was also possible to vary the number of elements
with the reduced modulus in the longitudinal direction (parallel to the 0°
fibers). The effect on the 0° fiber stress due to varying the number of ele-
ments in the longitudinal direction with reduced moduli was also examined.
Varying the number of elements in this direction would be equivalent to modeling
different debond lengths for the 0° fiber at the notch tip.

Macro-Micromechanical Analysis (MMA)

The second analytical technique, the macro-micromechanical analysis (MMA)
developed by Bigelow and Naik [8], was used to analyze notch-tip stress states
in both the DEN and CH specimens. The macro-micromechanical analysis combines
the 3D homogeneous, orthotropic finite element analysis (PAFAC) of the notched
specimen and a discrete fiber-matrix (DFM) micromechanics model of a single fi-
ber. The MSC/NASTRAN finite element code [10] was used to analyze the DFM
model. The MMA was used to calculate the stresses in the notch-tip element in
the interior 0° ply of the [0/90]zs laminate assuming a perfectly bonded fiber-
matrix interface. The interior 0° ply was the location of the highest axial
fiber stress predicted by the PAFAC analyses of the specimens. As mentioned, in
both specimen configurations, the finite element mesh was designed so that the
dimensions of the elements next to the notch corresponded to a single fiber
spacing. A plan view of the finite element mesh, and its dimensions, that was

used to model the notch-tip element for both configurations is shown in Figure



4. A schematic view of the macro-micro interface used in the MMA for the DEN 3
specimen is shown in Figure 5. Displacement boundary conditions from the macrb-
level analysis are applied to the micro-level DFM mesh to simulate the stress
state next to the notch. A similar concept was used for the CH specimen. The
micro-level model shown in Figure 4 was used for both the DEN and CH configura-

tions. Thermal residual stresses were not included in this analysis.

RESULTS AND DISCUSSION
Experimental Observations

The two specimen configurations failed at similar stress levels in spite of
large differences in their stress concentration factors. The elastic stress
concentrations Ky are 3.7 for the CH specimen and 5.7 for the DEN specimen.
These values of Kp were calculated, assuming perfectly bonded fiber, using the
PAFAC analysis and the meshes shown in Figure 2. The K for the DEN is roughly
one and one half times that of the K of the CH configuration. The static
strength of the DEN specimen was 520 MPa, for the CH specimen the static
strength was 501 MPa. These strengths were unexpectedly close given the dif-
ference in the K 's.

The failure surfaces next to the notch were examined microscopically for
both specimen configurations in order to identify the failure mechanisms. The
surface of each specimen was polished to reveal the first layer of 0° fibers.
Typical photographs for each configuration are shown in Figure 6. In these
photographs, the light gray area is matrix and the darker gray areas are fibers.
In Figure 6(a) the carbon core in the SCS-6 fiber and the molybdenum wire are
visible. Figure 6(a) shows the area just ahead of the notch for the DEN
specimen. The first fiber ahead of the notch was damaged during the machining
of the notch, thus, this fiber probably failed rather early in the loading his-
tory. The next fiber failed away from the plane of the notch, exhibiting fiber
pullout; this type behavior would be expected if fiber-matrix debonding had oc-
curred over that length of the fiber. 1In this case, the fiber-matrix debond

length is three to four fiber diameters in length. Figure 6(b) shows an area



next to the hole for the CH specimen. Minimal fiber pullout is seen next to the
hole, indicating that significant fiber-matrix debonding was not present prior
to specimen failure.

Based on the experimental results, it was hypothesized that tensile radial
stresses at the fiber-matrix interface ahead of the notch tip in the DEN
specimen were large enough to cause extensive fiber-matrix debonding in the 0°
plies, thus, lowering the stress concentration in the DEN specimen. Both
analytical techniques, PAFAC and the MMA, were used to examine the hypothesis.
The MMA was used to analyze the stresses in the notch-tip element in the inte-
rior 0° ply in both the DEN and CH specimens to determine the fiber-matrix
interface stress state. PAFAC was used for two analyses. First, the global
stress-deformation response was predicted including matrix yielding and interfa-
cial debonding in the 90° plies. Second, the fiber axial stresses in the first
0° fiber next to the notch were predicted for the two configurations. The ef-
fects of modeling interfacial debonding in the 90° and 0° plies on the axial
stress in the notch-tip 0° fiber were examined.

Interface Stresses

For a unit applied stress (§ = 1 MPa), the MMA predicted the stresses shown
in Figure 7 and 8 for the DEN and CH specimens, respectively. The stresses
shown do not include the thermal residual stresses which would present due to
the fabrication of the composite. The stresses presented are the stresses in
the matrix at the fiber-matrix interface calculated at the finite element nodal
points. For comparison, the matrix stresses in the interior 0° ply in an un-
notched [0/90]2s specimen due to a unit applied stress are shown in Figure 9.
The stresses are presented with respect to the cylindrical coordinate system
shown. Stresses are shown for the plane of symmetry on the XZ plane, i.e.
through the center line of the notch or hole. Due to symmetry the shear
stresses are zero on this plane; thus, only the three normal stress components
will be presented. For the two notched configurations, # = 180° is the side of

the fiber next to the notch.



In all three configurations, the peak values of the normal stresses occur
at § = 180°. 1In the DEN and CH configurations, the stresses are nearly sym-
metric about § = 180°. This is expected since the stresses were calculated for
an interior ply. In the unnotched laminate (Figure 9), the stresses are sym-
metric about # = 0° and 180°. In fact, for the unnotched laminate, it was
sufficient to model only a quarter of the fiber. However, results are presented
for 0° < # = 360° for comparison with the notched laminate results in Figures 7
and 8.

All three stress components shown are largest for the DEN specimen and the
smallest for the unnotched laminate. The gradient in the stress distribution is
also much larger for the DEN specimen than the CH specimen. Consider for ex-
ample the axial component. The axial stress in the DEN specimen ranges from a
peak value of 5.2 MPa to a minimum of 2.2 MPa, whereas in the CH specimen, the
axial stress only ranges from 2.2 to 1.6 MPa. This is due, of course, to the
higher stress concentration of the DEN specimen. Likewise, the peak value of
the radial stress component is much larger relative to the hoop and axial stress
components in the DEN specimen compared to the CH specimen. In the DEN
specimen, the maximum radial stress is 1.67 times the hoop stress and .87 times
the axial stress. In the CH specimen, the maximum radial stress is 1.24 times
the hoop stress and only .25 times the axial stress. It is also interesting to
note that the radial stresses for the DEN configuration (Figure 7) are tensile
for all values of #, whereas for the CH configuratioms, the radial stresses are
tensile only from approximately 110° to 250° (Figure 8), and for the unnotched
laminate, the radial stresses are compressive for all values of § (Figure 9).

For interfacial failure, the stress component of primary concern is the
radial stress. The peak values of the radial matrix stresses due to a remote
stress of 1 MPa are 4.5 and .67 MPa for the DEN and CH specimens, respectively.
The peak value of the radial stress'for the unnotched laminate is -0.17 MPa.
Thus, for a given interfacial strength, the interface in the DEN specimen will
debond much earlier in the loading history than in the CH specimen. Conversely,

for a given load, the 0° fibers next to the notch in the DEN specimen are more



likely to have debonded than in the CH specimen. Since an interfacial strength
is not available, it is not possible to predict when the interface will debond.
Based on the stresses shown in Figures 7 and 8 and the evidence of a weak inter-
face in the SCS$-6/Ti-15-3 material [1], it is likely that much more debonding of
the 0° plies occurred in the DEN than the CH specimen. In fact, based on the
micrographics presented in Figure 6, the 0° plies probably did not debond in the
CH specimen,

Calculations With Iﬁterface Debonding

The predicted and experimental stress-deformation curves for both specimens
are shown in Figure 10. The PAFAC predictions were made including interfacial
debonding in the 90° plies. From the DFM analysis described in the Appendix,
the transverse modulus of a unidirectional laminate with a completely debonded
interface was found to be 50.1 GPa. As described previously, a simplistic
failure criterion was incorporated in the PAFAC analysis to simulate a debonded
interface in the 90° plies. After the critical transverse stress (155 MPa) was
reached in any finite element with an orientation of 90°, that element was then
modeled as isotropic material with an elastic modulus of 50.1 GPa. By modifying
the material properties of the 90° plies to simulate the failed interfaces, the
predicted stress-deformation behavior agreed quite well with the experimental
results for CH specimen and reasonably well for the DEN specimen.

The PAFAC analysis was then used to determine the effect of debonding in
the 0° plies on the notch-tip fiber stress concentrations. The axial fiber
stresses in the element next to the notch in the interior 0° ply were predicted
for both the DEN and CH specimens using the modified material properties for the
90° plies (i.e., debonded 90° fiber-matrix interfaces) as described above.
Figure 11 shows the predictions of the 0° fiber stress in the first element
next to the notch as a function of applied stress for the DEN and CH specimens
assuming no debonding of the 0° plies. The horizontal dashed line indicates an
assumed fiber strength of 4200 MPa, and the two vertical dash-dotted lines show
the experimental strengths of the two specimens. The fiber strength was calcu-

lated from the strain to failure of an unnotched [0/90]2s coupon (eult = 0.0105
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mm/mm). The solid and dashed lines indicate the predicted 0° fiber stress with
no debonding in the 0° plies for the DEN and CH specimens, respectively. If the
strength of the first 0° fiber is used as a failure criteria, the analysis
predicts the strength of the CH specimen quite well. However, the strength of
the DEN specimen is significantly underpredicted. Earlier work with B/Al [3]
indicated that a first 0° fiber failure criteria accurately predicted the static
strengths of a variety of notched specimens.

Based on the earlier hypothesis of debonding at the notch tip in the DEN
specimen, the approximation described earlier was made using the PAFAC analysis
to model the effects of debonding in the 0° plies in the DEN configuration. As
shown in Figure 3(b), the elastic modulus of the elements indicated by the
shaded areas was reduced by a factor of 10, 100 and 1000 to approximate the in-
terface debonding of the notch-tip 0° fiber in the DEN specimen. Little
difference in the 0° axial fiber stress (less than 1%) was seen whether the
modulus was reduced by 10, 100, or 1000 so results are shown for a reduction
factor of 1000. The number of elements parallel to the 0° fiber direction with
a reduced modulus was varied to represent different debond lengths. This is
shown schematically in Figure 12 for the various numbers of elements modified.

The axial notch-tip 0° fiber stress in the interior 0° ply for both con-
figurations is shown in Figure 13. The fiber stresses shown in Figure 13 were
calculated with interfacial deboﬁding of the 90° plies. In addition, the cal-
culations for the DEN specimen include the interfacial debonding of the notch-
tip elements in the 0° plies. The two solid lines are the predictions made for
no debonding of the 0° plies repeated from Figure 11. Reducing the modulus of
only one element (dashed line) reduced the fiber stress in the DEN specimen con-
siderably, as shown in Figure 13. Reducing the modulus of only 2 elements
caused the 0° fiber stress to drop nearly to the level of the CH configuration.
A two element length is equivalent to a debond length of 3.5 fiber diameters.
This debond length is in good agreement with the micrographs showing a debond
length of three to four fiber diameters (Figure 6(a)). By reducing the modulus

of four or more elements, the 0° fiber stress in the notch-tip element in DEN
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specimen was reduced to a level below that of the CH configuration. The results
showrn in Figure 13 agree with predictions made using a two-dimensional shear lag
model of a unidirectional composite [11] showing that any damage will bring the
solutions for a notch and a hole closer together. From Figure 13, a first fiber
failure criteria based on the axial stress of the notch-tip 0° fiber would
predict the strength of the CH specimen to be 490 MPa and the strength of the
DEN specimen to be from 320 to 560 MPa, depending upon the debond length modeled
in the 0° plies of the DEN specimen. For a debond length of 3.5 fibers (2
elements) in the 0° plies next to the notch, the PAFAC analysis predicts a
strength of 500 MPa for the DEN configuration. The strength prediction corre-
lates reasonably well with the experimental strengths of 520 MPa observed for
the DEN specimen, As mentioned earlier, the thermal residual stresses that are
present in this material due to the fabrication process were not accounted for
in the analyses. A compressive axial stress would be present in the 0° fibers
due to the temperature change during the fabrication process. However, the same
thermal residual stress state would be present in both the CH and DEN specimens,
and in the unnotched specimen used to determine the fiber strength. The results
shown indicate that the axial stress in the first intact 0° fiber may dictate
the static strength of the specimen and a first fiber failure criteria would

predict specimen strengths when interfacial debonding is modeled.

CONCLUDING REMARKS

The static notched strengths of [0/90]25 5CS-6/Ti-15-3 laminates were
predicted based on the stress in the notch-tip 0° fiber. Two specimen con-
figurations of a [0/90]ZS SCS-6/Ti-15-3 laminate were tested and analyzed: a
center hole (CH) specimen and a double edge notch (DEN) specimen. The two
specimen configurations failed at similar stress levels in spite of the large
difference in the stress concentration factors for the two geometries.
Microscopic examinations of the failure surfaces for both configurations showed
fiber pullout for the DEN specimen, indicating fiber-matrix debonding had oc-

curred, Minimal fiber pullout was seen in the CH specimen. Based on the
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experimental results, it was hypothesized that the radial stresses that
developed at the fiber-matrix interface ahead of the slit tip in the DEN
specimen were large enough to cause fiber-matrix debonding in the 0° plies,
thus, lowering the stress concentration in the DEN specimen to a level com-
parable to that of the CH specimen.

Two analytical techniques, a three-dimensional finite element analysis
(PAFAC) and a macro-micromechanical analysis (MMA) were used to predict the
overall stress-deformation behavior and the notch-tip fiber-matrix Interface
stresses in both configurations. The MMA predicted radial stresses next to the
notch in the DEN configuration that were nearly 7 times as large as those
predicted for the CH configuration. Thus, fiber-matrix debonding in the 0°
plies will occur much earlier in the loading history for the DEN specimen and,
for a given stress level, more fiber-matrix debonding will occur in the DEN
specimen than in the CH specimen. The overall stress-deformation response of
both specimens was accurately predicted when interfacial failure of the 90°
plies was included in the analysis. The modulus of the 90° ply with failed in-
terfaces was determined using a discrete fiber-matrix (DFM) model containing gap
elements. By reducing the modulus of elements at the notch tip to simulate
debonding next to the notch in the 0° plies, predictions of notch-tip 0° fiber
stress for the DEN configuration were reduced to a level comparable to that of
the fiber stress in the CH configuration, indicating that fiber-matrix debonding
in the DEN specimen could reduce the notch-tip stress sufficiently so that both
configurations would have similar strengths. When the interfacial debonding of
the 90° plies and the notch-tip 0° plies (in the DEN specimen) was modeled, the
axial stress in the first intact 0° fiber correlated well with the specimen
static strength for both specimen configurations. The analyses assumed no sig-
nificant debonding in the 0° plies in the CH specimen. The analyses also did
not account for thermal residual stresses in the material. However, the same
thermal residual stress state would be present in both the CH and DEN specimens,
and in the unnotched specimen used to determine the fiber stremgth. The results

shown indicate that a first fiber failure criteria based on the axial stress in
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the first intact 0° fiber can predict the static strength of notched specimens

when interfacial damage is modeled.
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APPENDIX - INTERFACIAL DEBONDING OF A UNIDIRECTIONAL LAMINATE

In tests of unnotched laminates of the SCS-6/Ti-15-3 material, a knee was
seen in the stress-deformation response. This knee occurred well below the
yield strength of the matrix material and was found to be due to debonding of
the fiber-matrix interface in the 90° plies [1]. A DFM model assuming an in-
finitely repeating rectangular array of fibers was used to analyze debonding of
a unidirectional laminate. MSC/NASTRAN [10] was used for the finite element
analysis. The ply thickness (0.194 mm), the fiber volume fraction (32.5%), and
the fiber diameter (0.14 mm) were used to calculate the dimensions of the model.
The ply thickness, the fiber volume fraction, and the fiber diameter are typical
for the SCS-6/Ti-15-3 material tested in [l1]. A plan view of the DFM model is
shown in Figure Al. In the DFM model, the debonded interface was modeled using
the gap elements available in MSC/NASTRAN. Gap elements are nonlinear elements
which may have significant compression and shear forces only if the gap is
closed. The gap elements were placed between the fiber and matrix and given a
zero length. Upon loading, the gap elements have zero stiffness when the gap
opens and the same stiffness as the fibers if the gap remains closed, thus,
modeling a failed interface. With the completely debonded interface, the
modulus of the unidirectional laminate was calculated by loéding the DFM model
with the gap elements with a uniform stress applied in the transverse direction,
as shown in Figure Al. The modulus was calculated from the slope of the stress-
deformation curve. The transverse modulus of a unidirectional laminate with a
debonded interface was calculated to be 50.1 GPa. This value of the transverse
modulus is lower than the experimental value (66 GPa) given in [1]. The dis-
crepancy may be due to two factors. First, the effects of friction between the
fiber and matrix when the interface has debonded may have caused some dis-
crepancy. The model used assumed a perfectly smooth, frictionless interface
between the fiber and matrix, which may not be realistic. Second, the analysis
assumes all the fiber-matrix interfaces are completely debonded, whereas, in the

actuality all the fibers may not be debonded throughout the specimen.
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When the transverse stress in the elements in the 90° plies reached a
specified critical value, the material properties of the 90° plies were modified
to represent an isotropic material with an elastic modulus equal to the
transverse modulus of the unidirectional laminate with a completely debonded in-
terface. This, in effect, models the 90° plies with a bilinear stress-strain
curve. The critical transverse stress was chosen to be 155 MPa based on ex-
perimental observations of unnotched [90]8 laminates [1]. Thermal residual
stresses, which were present in the experimental observations, were not included
in the analyses.

The material model used in PAFAC is based on constituent properties, thus,
the material properties required are the elastic modulus and Poisson’'s ratio for
the fiber and matrix, and a stress-strain curve for the matrix. It is not pos-
sible, for example, to reduce the transverse modulus of one constituent to model
interfacial failure. Nor is it possible to reduce the transverse modulus (E22)
of an orthotropic material to model interfacial debonding of a 90° ply. Thus,
in order to simulate interfacial debonding with the PAFAC analysis, the 90°
plies with a debonded interface were modeled as isotropic plies with an elastic
modulus equal to the transverse modulus of a unidirectional laminate with a com-
pletely debonded interface. This gave the debonded 90° plies in the [0/90]2S
laminate an unrealistically low modulus in the axial fiber direction. The ef-
fect of this low modulus was found to be negligible (less than 2.5%) on the

stress-deformation response of the laminate.
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Table 1 - Constituent Properties For SCS-6/Ti-15-3

Matrix (as-fabricated)

E v
Pa
9.239E10 .36
Fiber
E v
Pa
3.93E11 .25

Matrix Stress-Strain Curves (as-fabricated)

Strain Stress
Pa

0.0 0.0
0.0076 6.8948E8
0.0082 7.4119E8
0.0088 7.8428E8
0.0094 8.2737E8
0.0098 8.4461E8
0.0106 8.7908E8
0.0113 8.9632E8
0.0118 9.0494E8
0.0124 9.1356E8
0.0132 9,.2217E8
0.0146 9.3079E8
0.0168 9.3941E8
0.0208 9.4803E8
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