
NASA Contractor Report 187609

ICASE Report No. 91-63

ICASE
NONLINEAR INSTABILITY OF HYPERSONIC FLOW

PAST A WEDGE

Sharon O. Seddougui
Andrew P. Bassom

Contract No. NAS1-18605

July 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

Nalional Aeronaulic-'_ and
Space Administration

I__ngley Reseereh C_ntor
Hampton, Virginka 23665-5225

.9

I

7_

_j e-¸

L_

7

I •

r





NONLINEAR INSTABILITY OF HYPERSONIC FLOW

PAST A WEDGE

Sharon O. Seddougui 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center,

Hampton, VA 23665

and

Andrew P. Bassom 1

Department of Mathematics

North Park Road

University of Exeter

Exeter, Devon. EX4 4QE

U.K.

ABSTRACT

The nonlinear stability of a compressible flow past a wedge is investigated in the hyper-

sonic limit. The analysis follows the ideas of a weakly nonlinear approach as first detailed

by Smith (1979). Interest is focussed on Tollmien-Schlichting waves governed by a triple

deck structure and it is found that the attached shock can profoundly affect the stability

characteristics of the flow. In particular, it is shown that nonlinearity tends to have a sta-

bilising influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in

a number of asymptotic limits which were first identified by Cowley and Hall (1990) in their

linearised account of the current problem.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NASl-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





§1. Introduction.

This investigation is an extension of the work of Cowley &: Hall (1990) who were

concernedwith the linear stability of hypersonic flow around a wedgeof small angle. Here

we aim to examine the effects of including nonlinearity in the solutions for the viscous

modesof instability consideredin Cowley & Hall.

Recently, there has been a resurgencein researchof hypersonic flows, motivated by

the interest in developinghigh speedaircraft. In compressibleflow work it is necessaryto

specify a functional relationship between the temperature and the viscosity of the fluid.

Frequently Chapman'slaw isusedin which the viscosity is taken to be directly proportional

to the temperature. Although this law can be rather unrealistic for high speedflows,

stability analysis using this relationship is often more straightforward than for any other

commonly usedlaw. Cowley£: Hall (1990), hereafter referred to as CH, used Chapman's in

their work and weshall follow their leadhere. A muchmoreaccurate relation, Sutherland's

law, is usedby Blackaby, Cowley & Hall (1990) in their investigation of the instability of

hypersonic flow past a flat plate. They obtained smaller growth rates for tile vorticity

mode under consideration compared to thosewhen Chapman's law was assumed. In this

instance we know that Chapman's law is a bad approximation for the vorticity mode since it

is concentrated in the layer where there is substantial variation in the basic temperature.

However, since we are going to be concerned with the stability of Tollmien-Schlichting

waves which by their nature are dominated by viscous effects close to the wall it is be to

hoped that the results obtained here using Chapman's law will not be vastly different to

those found should a more accurate law be used.

At hypersonic speeds real gas effects will be important but we do not take them into

account in this study. These have been considered by Fu, Hall & Blackaby (1990) in

their investigation of the instability of G6rtler vortices at hypersonic speeds, in which they

also assumed Sutherland's law. The fluid was taken to be an ideal gas and the effects

of gas dissociation on the stability of the modes considered were obtained. The Ggrtler

instability at hypersonic speeds has also been investigated by Hall & Fu (1989) and Dando

& Seddougui (1991).

As already mentioned, in the present study attention is focussed on (viscous) Tollmien-

Schlichting waves. CH investigated the effect of an attached shock on the viscous and

inviscid modes in the compressible boundary layer on a thin wedge. For a discussion

of the inviscid modes the reader is referred to Mack (1987). Smith & Brown (1990)



have investigated inviscid modes at high Mach numbers and in the absenceof a shock.

Theseauthors concentratedon the vorticity mode while CH, in their study of the inviscid

modes, looked at the acoustic modes which differ from the vorticity modesin as much as

they are not concentrated within a thin layer. Blackaby, Cowley & Hall (1990) discuss

the relationship which exists between thesevarious modes. For large Mach numbers the

inviscid modeshave larger growth rates than the viscousonesbut neverthelessthe effectof

the shockon the viscousmodesis of someimportance. In fact CH showthat the presence

of the shock greatly affects the viscous modes.

The wavelengthsand frequency of the viscousinstability in a compressibleboundary

layer at hypersonic speedswere given by Smith (1989). These form the basis of the

scalingsadopted in the present analysis. CH describedthe interactive triple-deck structure

governing disturbances to a hypersonic flow over a wedge. The basic flow is given by an

exact steady solution of the governing equations for a constant density gasand we follow

CH and assume for simplicity that the wedge is insulated. As mentioned by CH the

analysis can be extended to consider an isothermal flow where heat transfer at the surface

is allowed. CH were concerned with the stability of the basic flow to viscous modes and as

a first analysis they sought conditions under which non-parallel effects could be neglected.

They showed that in order to do this it is necessary to make the Newtonian approximation

and this yields a lower bound on the Mach number. A discussion of when non-parallel

effects become important for hypersonic flow is given by Smith (1989) and this gives the

same lower bound for the Mach number. CH also selected the angle between the surface

of the wedge and the shock so that the shock occurs in the upper deck of the triple-deck

structure. In this way the influence of the shock wave on the Tollmien-Schlichting waves

can be investigated. As in classical triple-deck analysis as the perturbation to the basic

flow is increased in amplitude from an infinitesimal size to a point where nonlinearity must

be accounted for, it is the equations governing the disturbance in the lower deck which

are the first to become nonlinear. We choose to retain the nonlinearities in the lower deck

equations since the aim of the present study is to investigate these effects. The above

requirements give bounds on the position of the shock or alternatively bounds on the size

of the local Mach number with respect to the size of the Reynolds number, which will be

taken as large for the following analysis.
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CH determined the linearised conditions which hold at the shock. Sincethe nonlinear

effectsare unimportant in the upper deck(where the shockoccurs) to the order of approx-

imation considered both by CH and the present study these linearised shock conditions

are appropriate. It is found that the effect of the shock is weak.

The linear results of CH for tile Tollmien-Schlichting waves will be presented in §4,

however, we give a brief summary of their results here. CH determined the nonlinear system

governing the instability of Tolhnien-Schlichting waves over a thin wedge in the presence of

a shock. They linearised this system in order to determine the dispersion relation relevant

to small disturbances and neutral solutions were presented for various positions of the

shock. Since the disturbances are three-dimensional there exists an infinity of solutions.

CH presented asymptotic solutions for the neutral wavenumbers which agree well with

their numerical results. In particular, they showed that as the position of the shock, ys,

tends to infinity the shockless dispersion relation derived by Smith (1989) is recovered.

CH also gave a discussion on the temporal growth of the linearised modes.

CH proceeded to investigate the effect of the shock on neutral, two-dimensional invis-

cid modes of instability having wavelengths scaled on the boundary layer thickness. These

modes are concentrated in the temperature adjustment layer centred at the generalised

inflection point and solutions were given for the acoustic modes alluded to earlier. (A

discussion of the vorticity modes in the absence of a shock is given by Smith & Brown
I

(1990).) However, CH show that the shock has a negligible effect on the acoustic modes

unless the distance of the shock from the surface is of the order of the boundary layer

thickness.

Before we give an outline of tile paper we mention some additional recent investigations

of instability of hypersonic flow. Balsa & Goldstein (1990) investigated the high Mach

number instability of supersonic mixing layers using asymptotic theory. They use the

WKB method and solve the compressible Rayleigh equation for a non-isothermal free

shear flow, so in a sense their solutions are similar to CH. This work is also related to that

on the vorticity mode by Smith gz Brown (1990). An investigation of nonlinear effects

on the acoustic modes at hypersonic speeds described by CH is given by Goldstein &:

Wundrow (1990). Many aspects of theoretical research into hypersonic flow are discussed

in the recent paper by Brown et al. (1991).

The plan of the paper is as follows. In §2 we describe the basic flow situation for

hypersonic flow around a thin wedge, and give the equations governing the flow. The
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scalingsare chosenso that we are able to neglect non-parallelism, to include the effectsof

nonlinearity in the lower deckof the triple-deck structure and to ensurethat the shock is

located in the upper deck. The triple-deck structure for hypersonic flow is describedin §3

and the scalings chosento eliminate someof the variables for convenience. In addition,

we state the linear conditions which hold at the shock (and which are describedin detail

in CH). In §4 we consider the nonlinear solutions of the governing system of equations.

Rather than attempt a full numerical solution of the nonlinear equations we execute a

weakly nonlinear analysis of the system in a manner virtually identical to that of Smith

(1979) who studied the nonlinear stability of an incompressible boundary layer over a

flat plate. In this way wederive an amplitude equation of classicalStuart-Watson type to

describethe evolution of the disturbance. Solutionsof this evolution equation arediscussed

in §5where we also draw someconclusions.

§2. The basic flow.

We consider the flow of a compressiblefluid over a wedgeof semi-angle 0. As in CH,

we suppose that the supersonic flow has velocity magnitude U and we consider the situation

when the wedge is symmetrically aligned with the oncoming flow. Then symmetrical shocks

develop on either side of the wedge. We denote the semi-angle of the shocks by a and so

the angle between the shock and the wedge is ¢ = a - O. This notation is chosen to be

consistent with CH and the situation is illustrated in Figure 1.

We take (37, _), _) co-ordinates with _? denoting the distance along the upper surface

of the wedge, # the distance normal to the wedge face and _? as the spanwise co-ordinate.

We suppose that the corresponding velocities are (fi, t3, tb) and denote quantities upstream

of the shock and in the region between the shock and wedge by the subscripts u and s

respectively.

We assume that the fluid is a perfect gas so we have the equation of state

(2.1a)

where/3, /3 and IF denote the pressure, density and temperature of the fluid respectively,

whilst ? is the ratio of specific heats and Cp is the specific heat at constant pressure. Then

the speed of sound au in the upstream flow is defined by

a_ t3_ - (7- 1)h_, (2.1b)
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where h u

given by

= cpT is the enthalpy of the fluid. It follows that the upstream Mach number is

0
Mu = --. (2.1c)

au

The inviscid solution for hypersonic flow over a wedge is well known (see for example

Hayes & Probstein (1966)) for, if we define e = _u/fi_, then we have

7-1( 2 ) (2.2a)e= (_-_-i-) 1+ (7_l)M_sin2a ,

/J_A = 1 + 7M_(1 - e)sin2 a, (2.2b)

=----= I+ (7--1)(1 e2
hu 2 -- )M_ sin 2a,

tan ¢ = e tan or,

(_lt) _ = (t_ll), = 0 cos a, (fi_c)u = -0 sina, (fi±), = -cO sina,

(2.2c)

(2.2d)

where fill and ri_l_ are the velocity components parallel and perpendicular to the shock.

Thus we see from (2.2e) that the magnitude of the fluid velocity in the region between the

shock and the wedge is given by

0_ = 0 cos_r (1 + e2 tan _ a) -} , (2.3)

which yields the slip velocity along the wedge. Thence, from (2.1c), (2.2c) and (2.3) the

Mach number in the shock layer is given by

M_ = 2M_ cos 2 a (1 + ez tan 2 a) (2.4a)
2 +(7- 1)(1- e2)M_ sin2 c_ '

whence

M_ = 2M_ (2.4b)
2cos 2 a (1 + e2 tan 2 a) - (3' - 1)(1 - d)M 2 sin 2

Since we are interested in Tollmien-Schlichting instabilities of this basic flow we need

to consider the governing equations which comprise the continuity, Navier-Stokes and

energy equations for a viscous, compressible fluid. We non-dimensionalise these equations

using the values of the flow quantities between the shock and the wedge. We write

= L(x,y,z), =



where the lengthscale L is the distance from the tip of the wedge to the position of interest.

We non-dimensionalise time with respect to L/Us, pressure with respect to ps _ and the

other variables with respect to their values in the shock layer. If we define a Reynolds

number for the flow by

Re- h_r2_L
/_s ' (2.5)

where _ts is a typical viscosity then the flow is governed by the equations

Op
o-7+ V.(pu) = 0, (2.6a)

and

Du 1 [2V.(tIe)+V((#, 32- )]Pb5 =-vP+ _ - _)v.u , (2.6b)

DT Dp 1 V.(#VT)+ (3'- 1)M_ 4, (2.6c)p-j/- = (7 - 1)M__ + PrR---_ Re

where p, p and T are the non-dimensional density, pressure and temperature. The shear

and bulk viscosities # and #' have both been non-dimensionalised with respect to fi8 and

Pr is the Prandtl number. Finally, the components of the rate of strain tensor are

and the dissipation function • is given by

(I)=2#e:e+ (#'--_)(_7.u) 2.

In the following analysis we shall assume that the Reynolds number is large. From

(2.1@ the non-dimensional equation of state is

7M2p=pT, (2.7a)

and the non-dimensional enthalpy of the flow is given by

h = T. (2.7b)

As in CH we shall restrict attention to the case when there is no heat transfer on the wedge

surface so that OT/Oy = 0 when y = 0 and the Prandtl is taken to be unity. Then the

temperature of the fluid at the wall is given by

1 M2Tw = 1 + _ (_- 1) , (2.8)



where the subscript s has been dropped from the Mach number.

The analysis presented in this paper is based on the assumption that the temperature

dependence of the viscosity is described by Chapman's law; i.e.

# = CT, (2.9)

where C is a constant. The argument leading to the choice of scalings shown below was

given by CH for the more realistic Sutherland's law as well as for Chapman's law. However,

since the results presented in CH are restricted to the Chapman law scenario and since our

attention is also focussed on this case we shall just give the scalings appropriate to this

situation here.

Then, following CH, we introduce the scalings

7

a = EM-_Re ao and (7- 1) M2_r2 = FE2, (2.10a, b)

where E and P are 0(1) constants. If (2.10a) is satisfied for cr small then the shock will

occur in the upper deck of the triple-deck structure and the effect of the the shock on the

growth rate of the Tollmien-Schlichting waves can easily be determined. Consequently, we

are assuming that _b, the angle between the shock and the wedge face, is small.

The problem is greatly simplified if the contributions from non-parallel effects can be

neglected in a rational manner. This will be the case if the disturbance develops over a

small streamwise distance. It can be deduced from the basic flow solution (2.2a) together

with (2.4a) that e << 1 and for M_ > 0 in (2.4b) we are forced to make the 'Newtonian'

assumption

(7-- 1) << 1, (2.11)

if non-parallel effects are to be ignored. The sealings (2.10) take account of these conditions

and these considerations furnish a lower bound for _r. An upper bound for _r is obtained

by including the effects of nonlinearity in the lower deck which is the aim of the present

study. In CH the linearised problem was obtained from the nonlinear problem they initially

formulated. As in CH we intend to apply linearised shock conditions in the upper deck and

this consideration whilst simultaneously demanding nonlinearity in the lower deck yields

the desired upper bound on a. Specifically, the neglect of the non-parallelism and the

imposition of nonlinearity imposes the constraints

l 1

Re-_ << _r << Re _8, (2.12a)



and so, from (2.10a)
1 7

Re_ << M << Re_. (2.12b)

For a detailed description of the argument leading to (2.10) and (2.12) the reader is once

more referred to CH.

If the upper bound on a is satisfied then, as discussed in CH, we are able to ignore

viscous effects in the entropy and shear waves which are inevitably produced when the

pressure/acoustic wave meets the shock. With the scales described above and assuming

that the shock has a viscous internal layer the entropy and shear waves will have y- scales

much less than the width of the upper deck.

From (2.10b) if Tw is given by (2.8) then

Tw ,-_ 1rE2a-2 >> 1, (2.13a)
2

and to satisfy M_ > 0 in (2.4b) we require

FE 2 < 2. (2.13b)

The position of the shock is given by (2.2d). Thus, in cartesian co-ordinates at the shock

we have, from (2.2a) and (2.10a) that

3 23 1
y = xetana ,,_ Re_M-_E- x. (2.14)

We re-emphasize the point here that much of the above is described in much greater detail

by CH.

53. The triple-deck structure.

It was shown by CH that the hypersonic flow described in the previous section is

governed by a triple-deck structure. In deriving the relevant scales within each zone it

is convenient to scale out a number of the variables. The triple deck structure relating

to a hypersonic flow situation of the type we have here was deduced by Smith (1989) in

the course of his investigations into the stability of supersonic flows. It is possible to use

Smith's results to infer the expansions which allow #w, T,_ and M to be eliminated from the

governing equations. These were given by CH but will be repeated here for convenience.



and

The x-, z- and t- scalings will be the same in each deck and are given by

3 3 3_ 3 5
x = 1 + Re-_C_TJM_-_X,

s 3 3- 1
z = Re-gC_T_M-_Z,

(3.1a)

i I I 3

t Re-_C (3.1c)= _TwM_l--_r,

^ 1

where C = #w/Tw is the Chapman constant and )_ = ,kx-_, with _ = 0.332, is the Blasius

boundary layer skin-friction from the undisturbed middle deck solution.

§3.1 The lower deck

The lower deck is the region in which the nonlinearity of the problem manifests itself

and the equations here necessarily contain viscous terms since it is this layer which is

required to reduce the disturbance velocities to zero at the wedge surface. Indeed the

relevant equations in the remaining zones of the triple-deck are linear as we shall describe

presently. Within the lower deck we have scalings which take the forms

5 _3 z a

y = Re-_C_TJ_M_-'_Y,

1 l 1

u _ Re-_C_T_M¼.X_U,

v ~ Re-iCiT),M-¼_V,

1 1 1

w ... Re-_CiT_M-_.XiW,

1 3 1

p _ 7-1M-2 + Re-¼C_M-_£_P,

T ~ Tw,

p_TE 1.

We substitute these expressions into (2.6a, b) which give at leading order

Ux + Vy + Wz = O,

U,- + UUx + VUy + WUz = Uyy,

Py=0_

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

(3.2g)

(3.33)

(3.3b)

(3.3c)



"vV_-+ UWx + VWy + WWz = -Pz + Wyy. (3.3d)

The boundary conditions pertinent to system (3.3) require no-slip conditions on the wedge

face so that

U=V=W=0 at Y=0, (3.4a)

and the solutions must match with those in the middle deck as Y _ oo so that

U _ Y + A(X,Z,r), W --, O, as r --_ _, (3.4b)

where A is a displacement function which is to be determined.

§3.2 The middle deck

The middle deck covers the extent of the undisturbed boundary layer. Since, from

(2.13a), T_, >> 1 we require a thin transition region to reduce T to its free-stream value of

unity. This transition region has thickness O ((2 log Tw)-½) in terms of the Dorodnitsyn-

Howarth variable. Thus, the middle deck is itself composed of three regions: (i) a bound-

ary layer region where T >> 1, (ii) the transition region and 5ii) the region above the

transition region where T -,_ 1.

The thickness of region (i)is O (Re-½C½T,.o] and if we define
\ /

y = Re-½C½T_,y*, (3.5)

then to match with the lower deck solutions as y* ---. 0 we find that the solutions take

the forms

, , 1 1 I 1 3 ,

u ,_ Uo(y ) + Re-aC-aT_M_ A-_ Auoy. , (3.6a)

1 i ' ' * (3.6b)v ,'-, -Re-sC_M-_A_Axuo,

w ,_ l_e-¼C¼M-½)_½ (R_zt_) -1D(X,Z,-c), (3.6c)

1 l 3 1

,'_ _M-_A_P,p 7-1M -2 + Re-_C (3.6d)

1 ! 1 3 ,

p ,-,, R_(V* ) + Re-_C_Tw 2 M:_ A -_; ARou.. (3.6e)

Here u_(y*) and R_)(y*) are the undisturbed velocity and density profiles respectively and

Dx = -Pz. For Chapman's law u_) takes the form of a Blasius function for a compressible

_OW.
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In region (ii) we write

1 1 1

y = yc - Re- _ C _Tw(21ogTw)-_Y * , (3.7)

where yc is a constant which determines the position of the transition layer. Here the

solutions are very similar to (3.6) with the Tw scales slightly altered for u and p. In
1 1 1

particular, for u, T_ is replaced by T_ _ (21ogT,_) _. The solutions in region (iii) are

similar to those in region (i) with the simplification that u_ = R_ = 1 here.

§3.3 The upper deck

Finally, in the upper deck the basic flow quantities take their flee-stream values.

Thus, as in CH, the pressure/acoustic waves have scalings given by

s s i s

= (3.8a)

1 1 3 1

u "_ 1 + Re-_C_M-_)_fz, (3.8b)

(v,w) _ Re-¼C¼M-½,_½ (_,@), (3.8c, d)

1 3 1

p _ "{-1M-2 + Re-¼CzM-_A_p, (3.8e)

p -,_ 1 + Re-¼C¼M½,_½t_, (3.8f)

T _ 1 + (3' - 1)Re-¼C¼M½)_½7'. (3.89)

If we substitute (3.8) into (2.6) and (2.7) and rearrange the resulting equations we find

that the pressure/3 satisfies

/3xx -/3_ -/3zz = 0. (3.9)

The solutions in the upper deck must match with those in the middle deck as tj ---+ 0.

From the y-momentum equation we obtain the boundary condition that

/30 = Axx at _ = 0, (3.10)

while t5 = P when ff = 0. The remaining boundary condition is that

p = 0 at 9 = (3.11)

where _0s is the position of the shock. The analysis leading to this condition with our

basic state is given in the Appendix of CH and will not be repeated here. The reader is

11



also referred to Moore (1954), Ribner (1954) and McKenzie &: Westphal (1968) for the

conditions which hold at the shock. This condition is obtained from the linear inviscid

problem and will continue to hold for the nonlinear analysis presented in this paper since

the nonlinearity is confined to the lower deck to the orders considered.

For Chapman's law the position of the shock is given by (2.14). Thus, from (3.8a),

(2.13a) and (2.10a) we obtain

We shall now follow the convention of referring to the solutions of (3.9) as acoustic waves.

§4. The nonlinear solution.

In general the solution of equations (3.3), (3.4) and (3.9-11) is a fully numerical task

but it is possible to make analytical progress by implementing a weakly nonlinear analysis

of the system. The method used here is identical in spirit to that proposed by Smith

(1979) who investigated the nonlinear stability of an incompressible Blasius boundary

layer to Tollmien-Schlichting type disturbances. We differ slightly from Smith (1979)

by considering a three-dimensional mode as in CH but this poses no formal difficulties

whatsoever.

Our objective is to monitor the streamwise development of a finite amplitude TS wave

whose leading order wavenumbers in the streamwise and spanwise directions are o_ and

respectively and whose frequency is f/. Consequently, we seek modes whose fundamental

component is proportional to

If the weakly nonlinear disturbance is allowed to develop in the vicinity of the linear neutral

point and if the relative amplitude of the disturbance in the lower deck is O(h), h << 1,

then following Smith (1979) it is found that the amplitude A of the mode will evolve on

a O(h 2) lengthscale. However, there is a lower bound on the possible size of h which is

derived by consideration of the non-parallelism of the flow. Using an argument formally

identical to that of Hall _ Smith (1984) it is straightforward to demonstrate that the

following account is valid for all h in the range O(Re-_M_Tiw) << h << 1. If the lower

bound of this inequality is attained then the lengthscale over which the amplitude of the

12



perturbation modulates is identical to that over which the non-parallelism of the basic flow

occurs. For full details of this aspect the reader is referred to Hall & Smith (1984).

From (3. la) we observe that the linear neutral stability point has been non-dimensional-

ised so as to be at x = 1 and so we need to consider perturbations at the point

x = 1 + h_x2. (4.2a)

Since the skin friction )_ is a function of x it too will be slightly perturbed from its neutral

value ,kl according to

Additionally, we choose to fix the frequency but allow the spanwise wavenumber to vary

and write

= _1 + h2_2. (4.2c)

These perturbations imply that for h << 1 we seek solutions of the lower deck equations

(3.3-4) and the upper deck problem (3.9-11) in the forms

3

(U, V, W,P,A,i6) = ((1 + h2.X2)Y,O) + E h"(U., V., W.,P.,An,fin) + O(h4).
n=l

(4.3)

Finally, the boundary condition (3.4b) which describes the matching with the middle deck

solutions now assumes the form

U_(I+h2)_2)(Y+A), W_0 as Y----,ec. (4.4)

To account for the slow modulation of the amplitude on streamwise lengthscales we

introduce the co-ordinate J_" = h2X and then by use of multiple scales we replace all X

derivatives throughout according to the recipe

0 0 h2 0 (4.5)
ox ' -5-2+ 02

Substitution of (4.3-5) in (3.3-4) leads to a hierarchy of problems at increasing orders in

h. We address these problems in turn.
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§4.1 The first order problem

The solution for the O(h) terms in (4.3) has the linear stability form

(U1, V1, W1,P1,AI,Pl) = (_]_(.f(,Y), V_(ff,Y), lfV_(X,Y),Pl(ff),fl,(ff),_(f(,_)) E+c.c.,

(4.6)
where we recall that E is defined by (4.1) and here, as in the remainder of the paper, c.c.

denotes complex conjugate.

The problem for the unknowns in (4.6) is precisely the linear problem considered by

CH. It is convenient to define

and then we obtain

i½f_
and _0 - 2 , (4.7)

O_g

iZl_Pl f_o_rl q-_lY_rl_---(ic_)]Ai'((o) o Ai(q)dq, (4.8)

where Ai(_) denotes the Airy function.

----, oo then
1 2 ^

o_ Ai'(_o )fi_l = i_ _1 gP1,

with _ - f_o Ai(q)dq. From the continuity equation (3.3a) we deduce that

V1 - (zc_)-_fl_ Ai'(_)- Ai'((0)-( Ai(q)dq

N o

Consideration of the upper deck problem (3.9-11) yields the solution

oL2 sinh[(ill2- ol2)½(_-_)]
_ : J_f: o_ _os-_[(92;- 2;_5_ _1,

In order to satisfy the boundary conditions as

(4.9)

(4.10)

for fl_ > a 2, (4.12a)

14

Ai'(_o)
tanh ((fl_ - ol2)½ _)

(i_) _- 2

and

/31=v/o_2--fl_ co---_[(o---2-_-fl_)----_--] fix1, for fl_<a e. (4.11b)

Note that the solution (4.11b) for/31 does not decay as _s ----* oo. Since t31 =/51 at _ = 0

we obtain from (4.9) and (4.11) the dispersion relation

for f12 > a2 (4.11a)



(ion) _- 2 - for < (4.12 )

As mentioned by CH in the limit !J8 _ ec for _2 > a2 the relation (4.12a) becomes that

obtained by Smith (1989) for hypersonic flow with no shock.

The neutral solution of (4.12b) for a and _1 real is determined from the eigenrelation

(tip - a 2) ½ = c2a _ /32 tanh ((tip - a2) -_Ys), (4.13)

.I

and _0 = -cxz_ where cl _ 2.3 and c2 _ 1.0. The corresponding expression for fl_ < a 2

is similar to (4.13) and CH obtained neutral solutions to these two equations for various

values of Ys. The dispersion relation admits an infinity of solutions and in Figure (2) we

present some of these solutions for the three cases !)8 = 1, 4 and 16. For each Y8 we

observe that there is one mode for which a _ 0 as _1 ---* ec and an infinity of modes

all of which asymptote to a = /71 as _1 _ oo. The Mach cone is defined by the line

a = fll so that above this line the acoustic waves are sinusoidal and supersonic whereas

below this line the modes are subsonic. Hence for nearly all spanwise wavenumbers there

are an infinity of supersonic modes and precisely one subsonic mode. _,Ve shall infer precise

details concerning the asymptotic limit fl] ------*oo in Section 5 where we shall also discuss

solutions of the amplitude evolution equation for Lil(X) which is to be derived.

§_.2. The second order problem.

By examining O(h 2) terms in (3.3) and (3.9) we conclude that the solutions of these

equations at this order take the forms

U2 = U21E 2 + U2_ + U_I)E -2, (4.14)

with similar expansions for 172, B_, P2, A2 and/52. Here the terms U21, U22, V21, V22, W21

and W22 are functions of )t" and Y,/)21 and/522 are functions of )_7 and _ and the remaining

terms are functions of -X" alone.

From O(h=E 2) terms in (3.3) we find, using manipulations similar to those described

by Smith (1979), that

aU21+31W21 ic 2
-- N2 (nl)

+ Ai'(q) Ai(t)dt dq+B2(._) Ai(2_t)dt,
o o

(4.15a)

15



which, using the continuity equation (3.3a), leads to

= (aU21 +/31W2a) d_. (4.15b)
0

In (4.15) we have made the definitions

dq
/_ Ai(t)R(t)dt, (4.16a)F(_) - Ai(2_) ]2½_o [Ai(q)]

where

R(2½_) -- -2-] [2Ai(_)Ai"(_) + Ai'(_o)Ai'(_)]. (4.16b)

Imposing the boundary condition (3.4b) as _ _ oc in (4.15a) gives

in2 f_l (i_)-_ F + Ai'(_) Ai(t)dt d_ + B2 Ai(2_t)dt. (4.17)
/_l°_A21- t_2 0 0 0

From O(h2E 2) terms in the momentum equations (3.3b, d) when evaluated at Y = 0 we

obtain the relationship

( 02U21 02W21 ) = 2it32P21, (4.18)a 0-----z- e=e0

and elimination of B2 between (4.15a), (4.17) and (4.18) yields a first connection between

/)21 and A21. A second relation between these quantities is obtained by studying the upper

deck problem (3.9-11) where, on considering O(h2E 2) terms we find that

0216:a 4(3 2 - a2)p21 = 0, (4.19a)
095

with associated boundary conditions

f21 = 0 at 9 = 9_, (4.19b)

0P21 _ _4a2A2a at _7= 0. (4.19c)
09

Solution of (4.19), when combined with the matching requirement with the main deck

solution that i621 = P21 at 9 = 0 yields the relation

P21- (_1:---_)_2a2A:a tanh(2(3_-a2)½y_) , (4.20)

16



for /312 > a 2 with an analogous expression when /3] < a 2. This second expression for

P21/A21 enables B2(X) to be found, as previously described. The resulting expressions

are complicated and so we shall not state them here.

Turning to the O(h 2) mean flow terms U22, V22, W22, P22, A22 and t522 in the governing

equations we obtain the results that

I/'22 = 0, (4.21a)

(ia)_(c92U22 02 W22 '_ ((ia)-}) (c) /'OU_ _) OI;V_ c) )O[ 0 _'--_- + ]_1 b'-'_ ) = _.Z1 _ 0_ -_-_ -'_- /31 C_"----_ + C . C . (4.21b)

This latter equation has solution

where

ay=+3 w==(iod- a21 [2 at
o

[ //f'*(() = i_ (Ai({)) (_) Ai'(() - Ai'({o) -
o

f**(q)dq, (4.22a)

Ai(t)dt + c.c.

Applying the boundary condition (3.4b) as _ ---+ oo implies that

(4.22b)

o_(i(_)- _
A22- d_ _f**(t)dt. (4.23)

/_1 t_ 0

Finally, the upper deck problem (3.9-11) yields p22 =/:)22 = 0.

§4.3 The third order problem.

At this order we determine the amplitude equation for the unknown function AI(X).

This equation arises from a solvability condition on the O(haE) terms in the systems (3.3)

and (3.9-11), solutions of which are sought of the form

U3 = EU31 -t- E2U32 -t- E3U33 nt- U34 "Jr-E-1U_I ) -t- E-2U_ ) + E-au}3 ),

with similar expansions for Va, Wa, Aa, P3 and /Sa. The desired solvability criterion is

obtained from consideration of the coefficients of O(haE) terms in the lower deck equations

(3.3) and this leads to

o3C_3 (G_U31 Av _lW31 ) -_ (olU3, hi-j_l W31)= -(i°l)- ] (0C;O--_-AV z02'c_U1
4.24a)

17



where

"--(iO/)-- 1 (_
-- _0 ) _---_(0_81 + _1 #1 ) "_- (ioL) _ (_ -- _0 )/_2 (O{81 4- fll l/Yl )

Jr" &A2_rl 4- ifllf12/31 "q- i(abri + f11]_V1)(C)(o_U21 -[- fllW21)

^ 0

+ i(,_U_2 + Z, W_)(,_U_ + Zl VCa) +(io,)_V_-_(o_U22 + Z,W_)

0 , ¢_(c)
4- ( iol ) l _r ( c ) 0 lyl 0----_ _'OLU21rr 4- /31W21) 4- ( ( ioL ) l ) ( C ) U21__ to_ u1 ..__fll_rl(C)).

(4.24b)

The boundary conditions obtained from (3.4) axe

U31(_0,2) = W3x(_0,2) = 0, (4.25a)

U3x(oo, X) -- Aal(X) + _2-41(.,_), W31(oo,-_) -- 0. (4.25b)

By evaluating the streamwise and spanwise momentum equations (3.3b, d) at 5 = 50 we

get

.x 2 ( (_2U31 (02W31) ¢__¢0
i½o_-i/32p31 4- z_a-_/3,/32/Sx= o_-- 4- fix-- (4.26)

052 052 •

The homogeneous forms of equation (4.24) and boundary conditions (4.25) are sat-

isfied by aU1 4-/311_1 and so (4.24-5) only has a solution for aUal 4-/31 W31 if a certain

compatibility condition holds (as in Stuart (1960) and Watson (1960)). This condition is

derived by considering the adjoint system of the problem as in Hall L: Smith (1982). We

multiply (4.24a) by the function

Ai'(_o)£(Z_ (4.27a)
K(_) = Ai(_) L:'(50) -'_"

where

[Ai(q)] 2

and integrate over the range (_0, oc). This gives

(4.27b)

•! _2 . 2
- z3a _Az(_o)_IPal

Ai'((o) aA2.4, + (ia)-i K'(()G(_,f()d( +
_'(_o) o o OS1 )i((_) i o---ff- _' d_.

(4.28)

18



In the upper deck the problem for t531 takes the form (ion equating terms of O(h3E)

in (3.9)),
192p31

with boundary conditions

(3_ - a2)P31 = 2in Opl
Oq----_- q'- 2/_1_2/_1,

P31 =0

-- -a2A31 -4- 2ioL 0f_----!"1 andOP31

a_ 02

(4.29a)

at _ = ,q,, (4.29b)

i631 = P31 at _ = 0. (4.29c)

Solution of (4.29) yields a second expression for

Ai'(_o) aA
i_o_-_Ai((o)t3_P31 + £,--7_o) 31

in terms of the solutions derived when considering the first and second order problems

in Sections 4.1 and 4.2. Then, after considerable manipulation, substitution of (4.24b)

for G(_,,_') in (4.28) enables the desired evolution equation to be obtained. Since the

expressions occurring in this equation are long and complicated we have relegated these

details to the Appendix. In the following section we analyse some solutions of the amplitude

equation and comment upon some of the implications.

§5. Results and discussion.

By implementing the procedures described in the previous section we obtain a classical

evolution equation for the amplitude _i_(2() which takes the general form

dA1 ^

d,_ : (al/_2 -4- a2_2)2_1 nt- a3A11,4112, (5.1)

where the definitions of the complex valued constants al, a2 and a3 are given in the Ap-

pendix. As is usual in this type of weakly nonlinear analysis interest is primarily centred

upon the sign of the real part of a3. It is easily deduced from (5.1) that

d

d2 (IA'I_) = [2Re(a2A2 + a,_2)] IAll 2 + 2Re(_z)lA, I_, (5.2)

and thence if Re(a3) > 0 nonlinear effects are destabilising and the equilibrium state with

amplitude

/:_e(al_2 + a2/_2) '

19



is unstable. Conversely,for Re(a3) < 0 nonlinearity tends to stabilise a linearly unstable

mode. (Here Re(O) denotes the real part of the complex number as.)

We now illustrate solution characteristics for the values of ys considered previously.

Firstly, in Figure (3) we show the dependence of the real part of the coefficient al as

functions of/_1 and where a is then given by the solution of the eigenrelation (4.12). We

see from these diagrams that the behaviour of al is markedly different for the subsonic

mode as opposed to the remaining modes. Specifically, for sufficiently large ys the real

part of al appears to be negative for all 81 and for all modes except the subsonic one.

Figure (4) shows that the constant a2 has the property that Re(a2) < 0 for all values of _s

and ill. In particular, the subsonic mode has the greatest absolute value for Re(a2) and

the ratio between the size of this constant for the subsonic mode to that for the supersonic

modes increases as the shock position _ moves away from the wedge surface.

When the amplitude equation (5.1) is linearised we observe that the sign of Re(a2 A2 +

al/72) determines whether small amplitude Tollmien-Schlichting waves are stable or un-

stable according to a usual linear stability analysis. As previously described, it is the sign

of Re(a3) which governs the effect of the nonlinear term on the stability of near neutral

modes. Crucially, Figure (5) demonstrates that for all _s and/31 we have Re(a3) < 0 and

hence for each mode the effect of nonlinearity is stabilising. The size of the nonlinear term

decreases as Ys increases and for sufficiently large Ys the nonlinear term relating to the

subsonic mode far exceeds in value those for the remaining supersonic cases.

Above we have provided a brief description of the results of the weakly nonlinear

calculations for a selection of shock positions ys. We now turn to consider some analytical

results which are derivable in certain important limits. CH identified three particular cases

in which asymptotic progress is easily accomplished. Firstly, we consider the case of a weak

three-dimensionality effect in the TS disturbance (4.1), i.e. 81 << 1. Then the solution

of eigenrelation (4.12) takes the form

1(()0)Clg'_ Ys -4- 2(_-']- 21-)71" Ys (72 -- 1 "'''- + g)Tr 812 -I- (5.4a)

2O



where n = 1,2,... and where we recall that c2 ,_ 1.0. Then, using the functions defined in

the Appendix it follows that at leading orders in/31 the evolution equation for A1 becomes

/31c2 _8

__ _ L 4
La + c_ y,

]v\ t ,lt2

nl

where the constants Lj are defined in the Appendix. On evaluation this amplitude equation

becomes

dA1
d2

( 3,2/3_ (-0.378,0.273) + /31/32 [! ---- 2 _ (-0.001 -0.932) +

+ B__(-0.279, 7.03 x lO-2).4._l.Zill 2
y,

4 ])Y, (0,0.318) .,'{1
(n -1+_)_

(5.4b)

We may deduce from this equation that for/51 << 1 all the coefficients in this amplitude

equation become small. Further, on considering the coefficient of the linear term we see

that variations in the perturbed spanwise wavenumber f12 have little effect on the linear

growth rate of the TS wave. Finally, for _2 = 0 we have the possibility of a finite amplitude

stable mode of size
i

1.16_ _.A._- -- 7-1-

A second case for investigation is that of supersonic modes with a > > 1. From Figure

(2) we observed that such neutral modes have/_1% a and, more accurately, we find that

nrr 1 mr 1 __1 TtTl" /31 3 +..., (5.5a)
O/ = _1 + \-_s ] 2ill _1 + C2Ys

where n = 1,2, .... Thus for fll >> 1 the possible a values for neutrally stable linear TS

waves are separated by O(1/n). In this case the amplitude equation asymptotes to

7

/3_vsAi(_o ) dA1 -aL (_f_L,t ftl +
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Performing the necessary evaluations yields

d--_- "_ (-8.016,5.781) A2 + ifl2
-41 + (-6.058,-0.377)

8

n_/_ .ft..11.A112, (5.5c)

ml

and hence we can obtain supercritically stable modes of amplitude _ 1.15fll _ -x/-Z'_2. We

note that in this a, fl >> 1 limit the scaled equilibrium amplitude is small and is independent

of the perturbed spanwise wavenumber _32.

A final regime for asymptotic investigation is that of the solitary subsonic mode in

Figures (2), i.e. those modes for which a _ 0 as/_1 ----+ oo. The solution of eigenrelation

(4.12a) in this case assumes the form

1

,-- (c2_j) 3 +..., (5.6a)

and then the amplitude equation (5.1) simplifies, at leading order in _-1 to

c2L1 -- 2A_(_°) dA1 [ (Lcs_)23 = A2 +
_ c2 d_

_2(c2L3 + L4)
6 6

C2 81

A 1 --]- (c2Ls + 2_7_L_ )L AllA I 2,
c7/371(c2L7 T- S)

or,

d:_l _ [(_0.376,0.117)A2f113 + (0.125,_0.373)f12fl_a] 2_ 1

dk (5.6b)
+ (-0.321,-8.83 × 10-2)fl;-sAIIA-I 12.

This evolution equation admits a stable finite equilibrium solution in which -41 = O(fll ).

We remark that the three asymptotic limits briefly alluded to above agree well with the

numerical solutions sketched in Figures (3)-(5). It is straightforward to make a comparison

of the relative likelihoods of the equilibrium modes in the _1 >> 1 case. We have seen that
1

for j3_ >> 1 the supersonic modes have amplitudes O(t31-_) whereas the corresponding

amplitude for the subsonic mode is much larger, O(/_1 ). Hence, in practice, at large

spanwise wavenumbers j31 the subsonic mode will likely dominate the other modes and is

therefore much more likely to be observable.

To conclude, we have presented an account of some properties of classical weakly

nonlinear stability theory as applied to an, admittedly idealised, hypersonic flow problem

originally considered by CH. Our main conclusion is that for all the parameter regimes

investigated near linear neutrally stable modes appear to be supercritically stable; i.e. the

nonlinear effects tend to stabilise the slightly unstable linearised modes.
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There is much further work which is possible in relation to this problem. The most

obvious is that of a full nonlinear solutions of the lower deck equations (3.3) together

with boundary conditions (3.4); work which when combined with the relevant upper deck

problem clearly needs to be numerical in character. A second course of action is that of

considering viscosity/ temperature dependences other than that of Chapman's law. As

mentioned earlier CH and Blackaby et. al. (1990) consider situations in which the more

physically realistic Sutherland's law is used although CH did not calculate any results for

this case. The effect of changing the viscosity law on our results would be of great interest

for, of course, if it transpires that the properties of our solutions are quite sensitive to the

actual laws invoked then this raises the question as to which to use in future studies.

One complete subject area which has been deliberately excluded in both CH and the

present study is that as to the nature of any nonlinearities which might occur in the vicinity

of the shock layer position _)s. The scalings chosen here were such that (2.12a) holds:

technically once a reaches a value of O(Re-_) then the shock layer problem becomes

nonlinear itself for we can no longer ignore viscous effects in entropy and shear waves

which are produced when the acoustic wave meets the shock. Finally_ we mention the

observation of CH who concluded that in addition to the neutral modes sketched in Figure

(2) there are other modes with zero growth rate but with infinite frequency and therefore

these modes cannot be described within the asymptotic framework used here. Investigation

of both the linearised and nonlinear problems which arise within the necessarily modified

structure would be extremely worthwhile.

There are, therefore, many directions in which the results presented here may be

extended. Progress in any of these would be valuable indeed.
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APPENDIX

In this appendix we summarisethe results of manipulating (4.28) and using the first

and secondorder solutions in order to derive the desired amplitude equation. We recall

that 0/01+ ¢?11;?V1is given by (4.8) and by considering the O(h) terms in the lower deck

equation (3.3d) we obtain 12all. Similarly, We1 can be found by examining O(h2E 2) terms

in this equation and then U21 derived via (4.15a). Finally, 1>1 and I721 are given by (4.10)

and (4.15b) respectively and thus G(_, 2_) deduced from its definition (4.24b). We may now

proceed to substitute in (4.28) and the resulting classical Stuart-Watson type evolution

equation for A1(_7) is as follows:

If 1912> a 2 then

o_L_-Zb_Ai((°)(Z__0/2)-_<(2Z_0/_-0/2)tanh(_Z?-0/2,Z)- cos_l 2__2'Z)

[ _,32L 0/2_2 ( _i, 0/_,z _/,__0/2_,: _-_L,),_+ Pl _+ (Z_-_2)}L4 tanh( - )- co_h-_ -0/2_,)

(L_ + (I'+L6) AIlAll2+0/5 _+_+Ls

] dA1d2

)]

where
1 2

20/g/_1
_+ tanh(2_//_ - a29,),

and where {Lj}_-Sl are complex constants defined presently. If however/912 < a 2 then

A1

(A.la)

[0/_.c_ZA-_3_i(e°---) {(2_{:0/2)+

where

' ( V/0/2- _121J$ )] A1

(L5 '{- (I}-L6) AllAll2+0/5 E+_-_
(A.lb)

1 2

(I) -- V/0/220/_91-t912tan(2"V/0/2 - fl2Ys)"
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The constants here are defined by

L 1 m

• l

z-g j_

(T1) Ai'(_o)

/_ K 0 K(_)Ai(_) o [Ai(s)] 2 Ai(t)dt) d_, (A.2a)

and

L3 m

.2

z5Ai'(_0)

2 , ,}

i(T1) 2i_Az(_o)Az (40) (A.2b)L2 ..... ,
t£ I_

_ (_ dsAi(_o)- o K(_)Ai(_) o [Ai(s)] 2 L

L 4 -= -iAi(_o),

(T20)(T14) + (T21)(T7)
L 5 -_

Ai(t)dt) d_],
(A.2c)

(A.2d)

(A.2e)

L6 = (T20)(T13) - (T21)(T12), (A.2f)

[d (Ai(d)) ] ,L7 =-2 ½ _ _=2½(0
(A.29)

jr2 °°
Ls = 2_i½ Ai(s)ds. (A.2h)

½_0

The complex constants T1, T7, T12, T13, T14, T20 and T21 are defined and evaluated

in the Appendix of Bassom (1989). All the above expression s were found numerically.

Initial conditions at a suitably large value of _, say _o¢, were found using asymptotic

methods and the defining equations integrated using a fourth order Runge-Kutta scheme.

The integrations necessary in the evaluation of (A2) were performed using the trapezium

rule combined with Richardson extrapolation. Various values of _ and step length were

used and the results quoted below are believed to be accurate to within 0.1%. Further

checks were made on these computed values by using the program to calculate some of the

coefficients given by Hall &: Smith (1982) and defined in their equation (2.27). Using the

above techniques we found that

L1 _ (0.4766, 0.9858), L2 _ (0.0277,-1.202),

Lz _ (1.916,1.450), L4 _ (-0.9573,-0.7247),

Ls ,,_ (-0.8346, 1.389), L6 _ (2.092, -0.9825),

L7 _ (-4.633,-0.6513), Ls _ (0.3473, 1.536).
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Figure (1). The geometry of the wedge and shock for a high Mach number flow.
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Figure (2). (a) The first three neutral curves a _-- a(_l) given by (4.12) for ys = 1. (b)

The first seven neutral curves for y8 = 4. (c) The first ten neutral curves for _8 = 16.
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Figure (2). (a) The first three neutral curves a = a(/31) given by (4.12) for ys = 1. (b)

The first seven neutral curves for .0s = 4. (c) The first ten neutral curves for ys = 16.
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Figure (2). (a) The first three neutral curves a - a(/31) given by (4.12) for ys = 1. (b)

The first seven neutral curves for 9_ -- 4. (c) The first ten neutral curves for 9_ -- 16.
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Figure (3). The real part of the coefficient al(fll) as defined in (5.1). (a) The vaJues

taken on the three curves in Figure (2a) where ys = 1. (b) The values taken on the seven

curves in Figure (2b) where _s = 4. (c) The values taken on the ten curves in Figure (2c)

where _, = 16.
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Figure (3). The real part of the coefficient al(fll ) as defined in (5.1). (a) The values

taken on the three curves in Figure (2a) where y8 : 1. (b) The values taken on the seven

curves in Figure (2b) where 9s = 4. (c) The values taken on the ten curves in Figure (2c)

where _s -- 16.
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Figure (3). The real part of the coefficient al(fll) as defined in (5.1). (a) The values

taken on the three curves in Figure (2a) where ys = 1. (b) The values taken on the seven

curves in Figure (2b) where _78 = 4. (c) The values taken on the ten curves in Figure (2c)

where _ = 16.
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Figure (4). The real part of the coefficient a2(/_1) as defined in (5.1). (a) The values

taken on the three curves in Figure (2a) where _s = 1. (b) The values taken on the seven

curves in Figure (2b) where ys = 4. (c) Tim values taken on the ten curves in Figure (2c)

where _s = 16.
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Figure (4). The real part of the coefficient a2(fll) as defined in (5.1). (a) The values

taken on the three curves in Figure (2a) where y_ = 1. (b) The values taken on the seven

curves in Figure (2b) where Y8 = 4. (c) The values taken on the ten curves in Figure (2c)

where ys = 16.
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Figure (4). The real part of the coefficient a2(/_1) as defined in (5.1). (a) The values

taken on the three curves in Figure (2a) where y8 = 1. (b) The values taken on the seven

curves in Figure (2b) where _8 = 4. (c) The values taken on the ten curves in Figure (2c)

where _7, = 16.
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Figure (5). The real part of the nonlinear coefficient a3(fll ) as defined in (5.1). (a) The

values taken on the three curves in Figure (2a) where ys = 1. (b) The values taken on the

seven curves in Figure (2b) where _s = 4. (c) The values taken on the ten curves in Figure

(2c) where y8 = 16.
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Figure (5). The real part of the nonlinear coefficient a3(/_1) as defined in (5.1). (a) The

values taken on the three curves in Figure (2a) where _ = 1. (b) The values taken on the

seven curves in Figure (2b) where .Vs = 4. (c) The values taken on the ten curves in Figure

(2c) where _ = 16.
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Figure (5). The real part of the nonlinear coefficient aa(fll) as defined in (5.1). (a) The

values taken on the three curves in Figure (2a) where ys -- 1. (b) The values taken on the

seven curves in Figure (2b) where _s = 4. (c) The values taken on the ten curves in Figure

(2c) where Y8 = 16.
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