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Abstract

We consider the use of a multigrid method with central differencing to solve the

Navier-Stokes equations for high-speed flows. The time-dependent form of the equations

is integrated with a Runge-Kutta scheme accelerated by local time stepping and variable

coefficient implicit residual smoothing. Of particular importance are the details of the

numerical dissipation formulation, especially the switch between the second and fourth

difference terms. Solutions are given for two-dimensional laminar flow over a circular

cylinder and a 15 degree compression ramp.
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Introduction
During the 1980'sa wide variety of numericalschemeswereinvestigated for solving

the Euler and Navier-Stokesequations. Multistage time-stepping schemeswith central
differencing and multigrid acceleration[1, 2, 3] weredemonstratedto be quite effective
in computing subsonicand transonic flows over aerodynamiccomponentsand config-
urations. With the recent resurgenceof interest in high-speedflight vehicles,we now
needto construct versatile algorithms for hypersonicflow. One must keep in mind that
hypersonic flows representa formidable challenge for any flow solver. In particular,
strong shock and expansionwavescan occur in the flow field, and they can interact
with each other and with shearlayers (i.e., boundary layers,jets, wakes). Suchstrong
nonlinear behavior and interactions can easily causedivergenceof any numerical inte-
gration procedure. This is especiallytrue during the initial phaseof a calculation with a
time-dependentmethod. Soeventhe most successfulalgorithms of the last decademay
requiresignificant modifications to be effectivefor hypersonicflows.

An initial effort [4] to apply a central-differencemultigrid algorithm to high-speed
flows resulted in numerical difficuMes that preventedthe calculation of two-dimensional
flows (i.e., blunt body and wedgetype) with a Math number higher than about 7. In
order to computesuchflowsa low Courant-Friedrichs-Lewy(CFL) numberwasrequired.
Thus four and five stageschemeswerenot practical, since there is substantial deterio-
ration in the high fi'equencydamping of the schemedue to the large reduction in the
CFL number. The CFL restriction reducedthe potential of the scheme as a viscous flow

solver. More recently an algorithm utilizing a semicoarsening technique, a symmetric

TVD formulation, and a three stage Runge-Kutta scheme [5] was proposed and used

to compute high Reynolds number (laminar) Mach 10 flow over an airfoil at 10 degrees

angle of attack. A good resolution of the bow shock wave and a reasonable convergence

rate were obtained. The method of semicoarsening considered required a much more

complicated cycle strategy than that employed with standard multigrid methods. In

addition, it appears to be somewhat cumbersome to implement in three dimensions.

It is our contention that standard multigrid techniques can be used in conjunction

with central differencing to compute hypersonic flows effectively. To achieve such success

with these techniques one needs to give appropriate attention to both the advection

and the dissipative processes of hyperbolic multigrid. The advection process provides

a mechanism by which long wave disturbances can be rapidly expelled. In a multigrid

method with a time-dependent iterative procedure, efficiency is in part derived from the

larger time steps allowed on coarser meshes. Hence, it is important that tile driving

scheme of the multigrid method use large time steps. The dissipative process is essential

in smoothing short wave disturbances. With this process the multigrid efficiency is based

on principles similar to that for elliptic equations.

For hypersonic flows one encounters an additional consideration regarding the damp-

ing of the short waves. As the Math number increases the jumps across shocks become

larger, and it becomes more difficult to eliminate these high frequency oscillations. Thus

a considerable part of the following discussion will concentrate on the smoothing al-

gorithm. The fundamental features of the multigrid process (i.e., Full Approximation

Storage scheme, grid transfer operators, fixed cycle strategy) are fairly standard. Other

aspects, such as type of coarse grid correction scheme and procedure for smoothing of

coarse grid corrections, found crucial in the present work will be emphasized. In this

paper we consider a Runge-Kutta scheme [6] as the smoother for the nmltigrid method.



Central differencesfor spatial approximations are augmentedby an artificial viscosity
basedon TVD principles [7]. Severalchangesare made to the numerical algorithm so
that a convergedsolution can be obtained for high-speedflows. We initially describe
the Runge-Kutta method for the central-differenceschemewith numerical viscosity. We
finally presentsomeexamplesto demonstrateour conclusions.

Basic Scheme
The basic elementsof the scalar dissipation model consideredin this paper were

first introduced by Jameson,Schmidt, and Turkel [6] in conjunction with Runge-Kutta
explicit schemes.The spatial discretization is basedon central differenceswith an addi-
tional artificial viscosity. This algorithm hasbeen usedby many investigators to solve
the Euler equations numerically for a wide range of fluid dynamic applications. The
same type of spatial discretization has been applied to alternating direction implicit
(ADI) schemes[8] and LU factored implicit schemes[9]. In this sectionthe basicscheme
is briefly reviewed.

Consider the Euler equationsin the form

Wt + f, + g_, = O, (1)

where the four-component vector of conserved variables

W = [ p pu pv pE ]r, (2)

and f,g are the corresponding flux vectors. The quantity p is the density, u and v

are the Cartesian velocity components, and E is the specific total internal energy. The

independent variables are time t and Cartesian coordinates (x, y). If (1) is transformed

to arbitrary curvilinear coordinates _ = ((x, y) and r/= r/(x, y), then we obtain

(J-1W)t + F_ + G,_ = O, (a)

where j-1 is the inverse transformation Jacobian, and

F = fY,7 - gx,7, G = gx_ - fy_.

In a cell-centered, finite-volume method, (1) is integrated over an elemental volume in

the discretized computational domain, and j-i is identified as the volume of the cell.

Equation (3) can also be written as

J-1W_ -{--AW_ + BW v = O,

where A and B are the flux Jacobian matrices defined by A = OF/OW and B = OG/OW.

To advance the scheme in time we use a multistage scheme. A typical step of a

Runge-Kutta approximation to (3) is

At [DCF(k_I ) + D,TG(k_I ) _ AD] ,W (k) = W (°) - ak (4)

where D_ and D r are spatial differencing operators, and AD represents the artificial

dissipation terms. The derivatives of the fluxes are approximated by central differences.



The dissipation terms are a blendingof secondand fourth differences.That is,

av = (,g + v',)w, (5)

where

D_W = Ve )_e_+},j_+},j) Ae

o_w = v_[(_., _._(_)_.'_a_v_e] w,,j, (7)
L\ '-t'-_,3 i']-2,J ]

and A_ , V_ are the standard forward and backward difference operators, respectively,

associated with the { direction. The variable scaling factor A is chosen as

I [(_()i,j "_ ()_()i+l,j] ' (s)

where A_ is proportional to the spectral radius of the matrix A. The coefficients e (2) and

e (4) are adapted to the flow and are defined as follows:

e(2) = _c(2) max(ui_l,j, ui,), lli+l,j,/"i-t-2,j),i+},j (9)

Pi+a,j -- 2pi,j -t- Pi-l,j
a,j = , (1O)

Pi+l,j -k- 2pi,j + Pi-l,j

[( ]i+},j max 0, _:(4) .(2) '_= - _+_,j) , (11)

where p is the pressure, and the quantities r_(z) and _(41 are constants to be specified.

The operators for the r/ direction are defined in a similar manner.

In this paper we will also consider a matrix form of the dissipation model just de-

scribed. The model of (5)-(11) is characterized as a scalar formulation, since the dis-

sipation for each discrete conservation equation is scaled by the same eigenvalue. As

discussed in [7], a matrix form is obtained by replacing A with a matrix, so that each

equation will be scaled by its corresponding eigenvalue. That is, in the _ direction, the

IAI is substituted for the eigenvalne scaling factor, A, in (6) and (7). For the r/direction,

and IA] are replaced by 77and IBI, respectively. A convenient form for the matrix IAI

is defined in the following way. Let

A = Diag [A1 A2 A3 A3]

with

al=d-l_x, a_=J-l_, q=alu+a2v.

and c representing the speed of sound. Then,

"_3 : q,

IAI

+

I,XalZ+ t_x,I+2IA_I I,X_l _2,q-a_-+a2 J

(12)



where

E 1 [_ --U --U

--U 2 --_V

--UU __y2

[H¢ -uH -vH

1

v

H

Z 2

E3 ---

0 0 0

-alq a_ ata2

--a2q a2al a_

_q2 qal qa2

--q al a2

--uq ual ua2

-vq val va2

-Hq Hal Ha2

il
0

0

0 '

0

0 0 0 0

ale --al'_t --air a 1
E4 =

a2¢ --a2u --a2v a2

q¢ --qu --qv q

H is the total enthalpy, and ¢ = (u 2 + v2)/2. Notice the special form of IA[, where each

row of Ej is either a scalar times the first row or a scalar times the second row when the

first row contains only zeros. Due to this special form for any A1, A2, andA3, an arbitrary

vector x can be multiplied by [A I very quickly. That is, one calculates [Aj+_ (Uj+l - uj)

rather than calculate IAj+_] and multiply a matrix times a vector. The matrixdirectly,

[B] is computed in the same way as [A[ by simply replacing ( with r/.

In practice one cannot choose A1,)_2, A3 as given above. Near stagnation points A3

approaches zero while near sonic lines A1 or A2 approach zero. A zero artificial viscosity

would create numerical difficulties. To prevent such problems, these values are limited

as

I), 1= max(lAl], V,,p(A)), p(A) -- ]ql 4- %/_ 4- a_, (13)

1 21-- max(IA21, V,_p(A)), 1i31= max(]A3], ½p(A)), (14)

where the linear eigenvalue A3 can be limited differently than the nonlinear eigenvalues.

The parameters V,_ and V_ are determined numerically, and the value used here is 0.25.

The second-difference term in these dissipation models is nonlinear. Its purpose is to

introduce an entropy-like condition and to suppress oscillations in the neighborhood of

shocks. This term is small in the smooth portion of the flow field. The fourth-difference

dissipation term is basically linear and is included to damp high-frequency modes and

allow the scheme to approach a steady state. Only this term affects the linear stability

of the scheme. Near shocks it is reduced to zero. For high speed flows the switch (10) is

not very good and does not allow the multigrid to converge. Instead we consider a TVD

variation of the switch [7] given by

[Pi+l,j -- 2pi,j + Pi-l,j[ g(2) = 1/2.
vi,j = IP;+I,j - P_,Jl4- ]P_,J - pi-l,jl 4- _'

(15)

With this change and the factor 1/2 in front of the second-difference dissipation term,

the scalar equation becomes first-order upwind near shocks. In the case of the original



u we find that t, "_ .05 near shock waves in transonic flows. The parameter e must be

chosen carefully to prevent the switch from being activated by noise. In fact we found

it useful to take an average of the two versions for u. Hence, we use

IPi+l,j -- 2pi,j -t- Pi-l,jl

""J = (1 - e) • (Ip,+l,j - + IP,,J- + e * + + p,_,,j)'
(16)

with e = 1/2 a reasonable compromise. We now no longer have a free parameter for the

second-difference dissipation.

Several other changes were made to the scheme in addition to the change to a TVD

switch. In the original algorithm the artificial viscosity for the energy equation was

based on the total enthalpy rather than the total internal energy. For high speed flows

we base the artificial viscosity on the total internal energy so that in each equation the

basic dependent variable is also used in the artificial viscosity. This is more in line with

upwind schemes. This has previously been used in central-difference schemes [10]. The

algorithm no longer preserves a constant total enthalpy in tile steady state (as the Euler

equations do), but enthalpy damping is not useful for supersonic flows. In most cases the

difference between the two approaches is small with each approach having its advantages.

The original form seems to give slightly sharper shocks, while the other one appears to
make the scheme more robust.

The form of the dissipation model of the basic or driving scheme is usually modified

for coarse grid problems in the multigrid process. A constant coefficient second-difference

dissipation is not only less expensive computationally but also generally provides ade-

quate smoothing properties. For high speed flows we find it necessary, as in [4], to append

a nonlinear dissipation to the usual one. Here this nonlinear contribution depends on

the modified switching function of (16). We also need to increase the constant coefficient

from the standard value of 1/16 to a value of 1/4.

In order for the scheme to be stable it is necessary to restrict the time step. For

transonic flows it is sufficient to base this limitation on the inviscid terms except for

extremely fine meshes. For higher speed flows we found it necessary to include a viscous

correction to the time step restriction even for crude meshes. We shall thus develop a

sufficient condition for stability for the thin-layer equations. Hence, we introduce body

fitted coordinates and then ignore all second derivatives except for the 7/r/ derivative.

One then obtains the linearized equation

W, + AW_ + [31/1/. = dW,_, (17)

where again W is the vector of conserved variables, and the tilde indicates that a matrix

is multiplied by the transformation Jacobian J. The matrices of (17) are somewhat

complicated. By transforming to nonconservative variables the matrices are greatly

simplified, and they have the same eigenvalues. Moreover, W, A, /), and C are replaced

by

W*=[p u v p]T, (18)

A*= MfiM-', B'= M[_M -_, C'= ._/[dJ_1-1, (19)

where the matrix M is defined according to

OW" _ MOW
Oa Oa ' (20)
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and a is any independent variable. Abarbanel and Gottlieb [11] have shown that one

can simultaneously symmetrize all these matrices. They symmetrize the matrices with

the similarity transformation determined by

Sp _-

"dq;O0 0

0 1 0 0

0 0 1 0

0 0 _vr4=-f-_pcpc

(21)

c 0 0 0

0 1 0 0

0 0 1 0

--c _ 1_---Tgrr-1 ° ° 7;

(22)

Using this transformation, the triangle inequality, and the condition for symmetric ma-

trices that the spectral radius is equal to the norm, one can easily show that a sufficient

stability condition is
1 1 1 1

-- > -- + + (23)
At - At_ _ At_sco_

The quantity 1/At¢ is bounded by the spectral radius of S_IA*Sp given by

and similarly the quantity 1�At, is bounded by

L = Fv_y+ _._l+ _v__+ ._.

The matrix S;IC*Sp is given by

#

3p

0 0 0 0

0 4r/_ + 3,/_ r/_r/_ 0

0 r/xr/_ 4r/_ + 3r/_ 0
32__ 20 0 0 _ +_)

(24)

and its spectral radius is given by

# , z 2 33'

A_is_o_ = VL'I_ + _tmax[_, 4]-YF

In general the first term in the maxinmm will be the larger. Hence, we can replace

A_co_ in (23) by its upper bound. So the actual time step (Atilt) is determined as
follows:

[ ]1Atoo,z x x_+ L + -p--7-;t_+ _) , (25)

where N is taken to be the allowable CFL number, and the constant d is 4. In the

case of steady flows, one can advance the solution at each grid point with the time step

determined from this estimate. This type of time stepping provides a preconditioning of



the matrix for the system of difference equations. The preconditioning relaxes stiffness

due to variations in local flow properties.

For all flow calculations in this paper a five stage Runge-Kutta scheme with a weighted

evaluation, as detailed in [12], of the dissipation terms on the first, third, and fifth stages

is used. As described above the time step is reduced in the boundary layer by including

the viscous contribution to the time step. In addition, the time step is reduced near

shocks by including a term that depends on ui,5. The reduction is constructed so that

there is a CFL number of 1 when u = 1. It serves to reduce the magnitude of the change

in the solution near the shock wave, which exhibits strong nonlinear behavior.

Implicit Residual Smoothing

Implicit residual smoothing of the residuals is used to extend the stability range of

the basic time-stepping scheme. For two-dimensional problems, the residual smoothing

can be applied in the form

- (ml = 77(T_)(I - _eVeAe)(I -/3,_V,_A,_)_i, j .-i,j , (26)

where the residual 7_!,7) is defined by

n!m) /_ti,j[ (_-1) ," W(0) AD(m)] m = 1,5,,s = c_m £.cWi + ,._ov_i,j
_'_ i,j

(27)

and computed in the R.unge-Kutta stage m, and AD ('_) is the total artificial dissipation
-(m)

at stage rn, and 7_i, j is the final residual at stage m after the sequence of smoothings

in the _ and r/ directions. The difference operators £c and £D are associated with the

convection and physical diffusion terms. To derive the maximum stability extension for

the hyperbolic problem, the implicit procedure is applied after each stage of the Runge-

Kutta scheme. The coefficients fie and/3,_ are variable and functions of the spectral radii

._¢ and A,. They can be written as follows:

f_r 1

1 [ N 1 )2= max _ N* l+tbr_

{I[(N1)2_= max _- N-" l+_/,r_ _

(28)

where the ratio r,e = A,/A_, and the quantity N/N* is the ratio of the CFL number

of the smoothed scheme to that of the basic explicit scheme (usually having a value of

2). In hypersonic flow applications we found it necessary for N* to be 3.25, rather than

the value of 3.75 used for transonic computations. From a linear stability analysis, the

scheme with these coefficients is stable for all mesh cell aspect, ratios when the parameter

_b _ .125 and N/N* is sufficiently large. The practical limitation on the Courant number

is due to the requirement for effective high fi'equency damping. For large N/N* the



high frequencydamping of the schemevanishes.The variable coeffacientsare functions
of the local mesh cell aspect ratio, and thus the smoothing process is not activated

in a coordinate direction where it is not needed. This is important for best possible

convergence. For further discussion of implicit residual smoothing see [13].

Multigrid Method

As indicated earlier the salient features of the multigrid method considered here are

fairly standard. Moreover, we apply the Full Approximation Storage (FAS) scheme of

Brandt [14] to define the equivalent fine grid problem on a coarse grid. Coarser meshes

are obtained by eliminating every other mesh line in each coordinate direction. The

grid transfer operators for the solution, residual, and coarse grid corrections are those

introduced by Jameson [15]. In particular, on the auxiliary meshes, the solution is
initialized as

where the subscript refers to the mesh spacing value, the sum is over the four fine grid

cells that compose the 2h grid cell, and f/ is a cell volume. This rule conserves mass,

momentum, and energy. On a coarse grid, a forcing function P is added to the governing

discrete equations in order to impose the fine grid approximation. After the initialization

of the coarse grid solution, this function is computed as follows:

F_.R,(w,) (o)= - ). (30)

where Rh(Wh) = f_hl4/h. Then, the time-stepping scheme on the (m + 1) st stage becomes

= W} °) - am+, _--_-t[R:h(W(_)) + P_)]- (31)W(2 +1)

We can also define a new value R* for the residual as

= /¢2h(W:h)+ P2h. (32)

collect this value, restrict the solution W2h to the next coarser grid, and repeat the

process. The corrections computed on a coarse grid are transferred back to a finer grid

with bilinear interpolation. In order to execute the multigrid strategy we employ a fixed

W-type cycle. To provide a well conditioned starting solution for the fine mesh a Full

Multigrid (FMG) method is used. The FMG is analogous to grid sequencing, except

multigrid cycles e_re performed on each coarse grid.

Some of the additional elements of the multigrid method are not necessarily standard.

A smoothing of the coarse grid corrections being transferred to the finest grid was found

to be beneficial in transonic computations [12]. The smoothing was accomplished with

the implicit residual smoothing mentioned previously and a constant coefficient/3 _ 0.1.

This smoothing of the residuals on the way to finer meshes is crucial for the convergence

of the multigrid for hypersonic flows. Such a process acts to reduce high frequency

8



oscillations causedby the interpolation. Hence,it becomesespecially important near
strong shocks, where nonphysicalupstream influence can occur. Another important
element for high Math number (M _>10) flows is the coarsegrid correction scheme.
That is, the physical viscousterms should alsobe computed on the coarsemeshes.

Boundary Conditions and Initialization
At a solidsurface(wall) boundary the no-slip condition is enforced.The wall pressure

is set to the value at the first interior solution point, and thus, a reducednormal mo-
mentum equation is satisfied. The wall temperature (Tw) is specified. In a finite-volume

formulation, this amounts to treating the Cartesian velocity components and the tem-

perature difference T- T_ as antisymmetric functions with respect to the wall. For each

of the physical problems considered the Mach number at the inflow boundary exceeds

1.0. Consequently, the dependent variables are specified at this boundary according to

the flow conditions. At any outflow boundary, we apply simple extrapolation of the

components of the solution vector. In general, for hypersonic flows numerical difficulties

are experienced at the start of a calculation if the discrete flow field is initialized with

free-stream conditions. To avoid these difficulties we apply the following procedure. The

Mach number of the flow is set to a lower value (i.e., 2.0) than the required one. In

addition, the wall temperature Tw is set to the free-stream value. Then the Mach num-

ber and Tw are gradually increased over a few hundred time steps until the desired flow

conditions are obtained. This Mach number ramping is only done on the coarsest mesh

in the FMG sequence.

Results

We consider two-dimensional (2-D) hypersonic laminar flow over two different geome-

tries in order to evaluate the present multigrid method. The first geometry is a circular

cylinder. For this case the free-stream Mach number (M_) is 6.5, and the Reynolds

number (RED) based on the cylinder diameter D (0.82 meters) is 1.04 x l0 s. The free-

stream temperature (To_) is 202 ° Kelvin, and the wall temperature is specified at 294 °

Kelvin. This represents a fairly cold wall condition relative to the temperature after the

normal portion of the bow shock. Computed surface pressures and heat transfer rates

are compared with the experimental data of Wieting [16]. The second geometry is the

15 degree compression ramp tested by Holden and Moselle [17]. For this flow problem

the free-stream Mach number is 14.1, and the Reynolds number based on a reference

length L (0.44 meters) is 1.04 x l0 s. The length of the flat plate preceding the ramp is

L. The Too is 89 ° Kelvin, and the wall temperature is 296 ° Kelvin. Surface distributions

of pressure coefficient (cp), skin-friction coefficent (cf), and heat transfer coefficient (ch)

calculated with the present multigrid method are compared with experimental data of

[17]. These coefficients have the standard definitions. In all calculations for both cases

we assume that the working fluid (air) is thermally and calorically perfect. Sutherland's

law is used to determine the molecular viscosity.

Cylinder Flow

The 2-D cylinder flow was computed on a 64 x 64 grid and a 128 x 128 grid. In

figure 1 the 64 x 64 grid, which is a proper subset of the 128 x 128 grid, is shown.

For both grids the circumferential spacing is uniform. In the normal direction on the

9



centerline,the meshis clusteredat the surfacewith minimum spacingsof approximately
4 x 10-4 D and 2 x l0 -4 D for the two meshes.At the circumferential angle (0) of -90
degreesor +90 degrees,the normal meshspacingsare increasedby nearly 60 percent
of the centerline values. This was done to accomodate the boundary-layer growth as

well as the resolution of the inviscid flow region. As evident from figure 2, the normal

spacing through the shock region is uniform. Convergence histories, which define the

variation of the error with multigrid cycles, corresponding to both grids are displayed

in figure 3. The error is measured as an rms value of the residual for the continuity

equation. In figure 3 one observes three out of the four levels of refinement in the FMG

procedure. The first level, which requires only a couple of CPU seconds, is used for

the initialization (Mach number ramping), and thus it is not shown. There are three

grids on both the third and the fourth levels. On the 128 x 128 mesh the residual is

reduced nearly 6 orders of magnitude in 300 cycles. This requires about 5 minutes of

CPU time on a Cray YMP. It should be emphasized that for engineering accuracy (i.e.,

residual reduced by 3 orders) the finest mesh calculation required about 2 minutes. Note

that when engineering accuracy is achieved, there is no appreciable improvement in the

viscous solution accuracy by further residual reduction.

In figure 4 the computed surface distributions of pressure and heat transfer rate are

presented. There is very good agreement between the predictions with the 128 x 128 grid

and the experimental data. For the 64 x 64 grid the scaled heat transfer rate (Q/Qre/)

is overpredicted for 0 < -25 degrees and 0 > +25 degrees. This indicates that opening

the normal mesh spacing adjacent to the surface produced a spacing too large for the 64

x 64 grid, when only a first-order approximation is used for the temperature derivative.

The Mach number and pressure contours for the two calculations are shown in figures 5

and 6, respectively. The smoothness of the contours is evident, and the improved shock

resolution with mesh refinement is readily seen. In addition, one can notice that the

boundary layer is extremely thin for this case.

Compression Ramp Flow

The 2-D compression ramp flow was computed on grids consisting of 56 x 64 (number

of streamwise cells x number of normal cells) and 112 x 128 cells. Figure 7 depicts the

56 x 64 grid. There is streamwise clustering at the leading edge of the flat plate and

at the start of 15 degree ramp. The minimum spacing is approximately 5.8 x 10 .3 L.

Again, to resolve the boundary layer, the mesh is clustered in the normal direction near

the surface. The normal spacings for the coarse and fine grids are about 4.6 x 10 .4 L

and 2.3 x 10 .4 L, respectively. In figure 8 the convergence histories for this case with

the scalar and matrix forms of the dissipation model are presented. The convergence

rates with both forms are quite good on the 56 x 64 grid, allowing the residual to be

decreased about 6 orders of magnitude in 300 cycles. The average rate of reduction of

the residual with the scalar model (0.954) is slightly faster. There is some deterioration

in the rates with mesh refinement. This slowdown with mesh refinement is also observed

for transonic computations. Although the average rates of residual decay using the two

dissipation forms is essentially the same (0.965), the asymptotic rate is faster using the

scalar model. The residual is reduced just about 5 orders in 300 multigrid cycles with

the scalar formulation. It should be pointed out that in the multigrid calculation with

the scalar model four grids were applied. Only three grids were used in conjunction

with the matrix model, due to numerical difficulties caused by the sudden switch from

10



free-streamconditions to a wall boundedflow at the inflow boundary.
To provide a better understandingof the computedresults for this compressionramp

case, we will first describe the physics of the flow. Due to the development of the

boundary layer on the flat plate, the inviscid flow is turned, and an oblique shock wave

is produced. Compression waves are formed by the turning of the flow at the start of the

compression ramp. These waves coalesce to form another oblique shock. The shock wave

emanating from the leading edge of the plate intersects the compression ramp shock. It

needs to be emphasized that accurate predictions of this flow field depend strongly on a

good resolution of the leading edge shock. Also, resolution of the boundary layer on the

ramp is demanding. There is a substantial thinning of the boundary layer on the ramp

as a consequence of the flow being compressed.

In figures 9-11 comparisons are made between the computed variations of the pressure,

skin-friction, and heat transfer coefficients and the corresponding experimental data. To

further assess the shock capturing capability of the present central-difference scheme,

results calculated with the code developed by J. L. Thomas, which is based on the

Riemann solver of Roe and described in [18], are also included in these figures. The

computed distributions exhibit excellent agreement with the data in nearly all cases.

With the scalar dissipation model, there are differences beween the solutions on the 56

x 64 grid and the 112 x 128 grid. The results obtained using the matrix model for these

two grids almost coincide. Moreover, the solution computed with the matrix model on

a 56 x 64 mesh is comparable to the one calculated with tile scalar formulation on a 112

x 128 mesh. Figures 12 and 13 show the pressure contours on the ramp for each of the

present computations. One can clearly see the effects of dissipation and mesh size on

the leading edge shock and the interaction region of the two shocks.

Concluding Remarks

A multigrid method with central differencing has been successfully applied to the

solution of hypersonic viscous flows. An explicit five stage Runge-Kutta scheme has been

used as a smoother in solving the time-dependent, thin-layer Navier-Stokes equations.

In this paper considerable emphasis has been focussed on the dissipative characteristics

of the driving scheme for the multigrid process. The presence of strong shocks has

required the introduction of a switching function for the numerical dissipation based

on TVD principles. In addition, as a consequence of the strong shocks, a nonlinear

coefficient, which is dependent on this switching function, has been included in the

coarse grid dissipation formulation. This nonlinear coefficient is not needed for transonic

computations. We have also considered both scalar and matrix forms of the dissipation
model.

Numerical solutions have been obtained for hypersonic laminar flow over a 2-D cylin-

der and a 2-D compression ramp. The agreement between predictions and experimental

data is quite good. Engineering accuracy has been obtained rapidly in all computations,

requiring about 2 CPU minutes oil the Cray YMP.
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