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ABSTRACT

An analytically linearized model for helicopter flight response

including rotor blade dynamics and dynamic inflow, that was recently

developed, has been studied with the objective of increasing the

understanding, the ease of use, and the accuracy of the model. The

mathematical model is described along with a description of the UH-60A

Black Hawk helicopter and flight test used to validate the model. To aid in

utilization of the model for sensitivity analysis, a new, faster, and more

efficient implementation of the model has been developed. It is shown that

several errors in the mathematical modeling of the system have caused a

reduction in accuracy. These errors in rotor force resolution, trim force and

moment calculation, and rotor inertia terms have been corrected along with

improvements to the programming style and documentation. Use of a trim

input file to drive the model is examined. Trim file errors in blade twist,

control input phase angle, coning and lag angles, main and tail rotor pitch,

and uniform induced velocity, have been corrected. Finally, through direct

comparison of the original and corrected model responses to flight test data,

the effect of the corrections on overall model output is shown.

xiii



CHAPTER I

INTRODUCTION

Progress in helicopter technology requires progress in the ability to

analyze those helicopters. In both the initial design phases and the

modification phases of helicopter development, the engineer must be capable

of accurately modeling his design to observe the behavior of its various

components. The aeroelastic and aeromechanical stability and control

response problems in helicopters are of particular interest and, unfortunately,

tend to be among the most complicated problems faced by dynamicists.

Studying the stability and control response of a helicopter presents the

designer with a number of challenges that do not affect the designer of fixed

wing aircraft. The interaction and coupling between the rotor system

dynamics and the helicopter body dynamics presents a problem that is usually

modeled by a system of complex nonlinear equations. Although there are

several ways to handle these nonlinear equations, many are not adequately

suitable for stability and control analyses and do not provide a physical

insight into the problem. An analytically linearized model of the full

dynamics of the nonlinear system, however, does have a great potential in

this area. This research further examines, clarifies, and corrects a unique

mathematical model [1] developed several years ago, that may be suitable for

many of these types of analyses.

Historically, helicopter analysis has often been based on a quasi-static,

rigid body stability derivative model in which the blade dynamics are

1
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neglected. Rotor flap and lag angles are determined from the instantaneous

values of body angular and translational displacements as well as body rates

and accelerations. For many applications, such as low frequency response and

steady state flight behavior, this approach is adequate and is sufficiently

simple to promote a physical insight into the problem.

However, back in the early 1950's, there was doubt as to the capabilities

of the quasi-static model. Ellis [2] found that due to the neglecting of the

strong influence of the rotor dynamics, the conventional quasi-static stability

derivative model was not capable of representing higher order, short period

dynamics. More recent studies by Hansen [3] found that the flapping

dynamics, which are neglected in the quasi-static model, were very important

in stability derivative determination.

It has also been determined that the quasi-static model may not be

adequate for the development of feedback control systems. Curtiss [4] found

that the high frequency modes associated with the body-flap coupling and the

lag degrees of freedom limited the rate and attitude feedback gains used in

attitude control systems. This was not predicted by the quasi-static

formulation. Hall [5] showed that, for tight control (high gain), neglecting the

rotor flapping dynamics in the design of the feedback system resulted in

unstable closed loop responses when the flap dynamics were included. Zhao

[1] discovered that the lag dynamics, as well, caused instability in the closed

loop response if they were neglected in the design of the feedback control

system.

Additionally, several researchers (Curtiss and Shupe [6], Gaonkar [7],

and Chen [8]) determined that inclusion of dynamic inflow is important in

modeling the helicopter. The dynamic inflow was found to produce
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significant changes in the response modes due to the influence of the low

frequency unsteady aerodynamics.

The shortcomings of the quasi-static formulation for stability and

control analysis becomes even more severe as helicopter technology

progresses. Super augmented, high-gain flight control systems are being

developed for military helicopters in order to meet the requirements of

demanding mission tasks such as low level, nap-of-the-earth flight. The rotor

designs are shifting to more hingeless and bearingless systems which tend to

be more prone to rotor-fuselage mechanical instabilities. In addition, the fly-

by-wire and fly-by-light control systems being developed are so fast and so

responsive that the modeling of rotor blade dynamics becomes an essential

component of the modeling process. The obvious conclusion is that the true

physical behavior of the highly coupled rotor-fuselage dynamical system can

only be fully captured by developing a model in which the influence of the

coupled rotor-body motion is properly incorporated and for which the effects

of unsteady aerodynamics are accounted.

One solution to deal with these problems results in a system consisting

of nonlinear ordinary differential equations with periodic coefficients.

Sikorsky's GENHEL [9] is an example of such a nonlinear program. Although

this model can provide a reasonable simulation of the dynamic response of

the helicopter to time varying inputs, the complication level is so high that

gaining a general understanding of the system or a physical insight into the

problem is very difficult, if not impossible.

An excellent alternative solution would be a carefully linearized

description of the nonlinear equations about a steady-state trim condition.

This would provide for analytical simplicity and could be used as a basis for
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the design of feedback control systems. This linearized system would be

especially attractive if it could be shown to agree with experiment.

Recently, a linearized model was de'_<ioped by Zhao [1] as part of his

doctoral research in Aerospace Engineering at Princeton University. The

generic model, which is capable of representing any single main rotor

helicopter, uses an analytically linearized form of the equations,

incorporating rotor dynamics and dynamic inflow effects. This provides for

the accurate representation required for the stability and control analysis of a

helicopter. To ensure that the model was properly representing true aircraft

response, it was compared to flight test data. The simulation showed very

good agreement with a UH-60A Black Hawk helicopter for both hover and

forward flight speeds. This particular aircraft was used for the validation

because high quality flight test data were readily available [10]. MacDonald

performed further research [11] on this generic model with the goal of

improving the correlation of Zhao's model to flight test data through the

correction of modeling errors and application of an analytical study.

The present research continues the development and improvement of

this generic linearized model with several overall objectives. The full system

model, the quasi-static simplified version, and the incorporation of dynamic

inflow terms is clarified and documented to aid in further research and

development of the program. The UH-60A Black Hawk flight test data are

clarified and described with an emphasis on subtleties or irregularities that

impact simulation of the flight conditions. Also, the user interface is

improved in order to facilitate expedient sensitivity analysis used in the

further development of the model. The main thrust of this research,

however is to correct modeling errors in order to improve the accuracy of the
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model and to improve the understanding of the inputs required to drive the

simulation. This last part is accomplished through sensitivity analyses of the

model response to variations in selected parameters.



CHAPTER II

THE ANALYTICALLY LINEARIZED HELICOPTER MODEL

2.1 Generation of the Model

The mathematical model created by Zhao [1] develops equations of

motion based on a representation of a helicopter that includes a fuselage, an

empennage consisting of a vertical tail, a horizontal tail, and a tail rotor, and a

main rotor system maintained at a constant speed that consists of one hub

and a number of blades associated with that hub.

Each blade is assumed to be a rigid beam that undergoes flap (vertical)

and lag (inplane) bending. Torsional bending, however, is not included. The

aerodynamic load on the blades is modeled using quasi-steady strip theory.

The rotor hub is modeled as an articulated system with offset hinges, but the

flexibility of the model allows other hub types, such as a hingeless or

bearingless hub, to be modeled by the inclusion of the proper combination of

a hinge offset and flap and lag springs. In addition, longitudinal tilt of the

rotor shaft, pitch changes due to fuselage deformation, and the effects of a 83

or a a2 hinge can be taken into account. Dynamic stall and reverse flow

effects are not modeled. A simplified model of the tail rotor allows for coning

of the blades but not for cyclic flap. It also allows for incorporation of a 53

hinge and a canted tail rotor shaft.

In order to properly couple the rotor with the rest of the helicopter, the

equations for each blade are first developed in a coordinate system that rotates

with the hub at a constant speed. These equations in the rotating coordinate

6
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system are then transformed to the non-rotating system to be combined with

the other blades and with the fuselage. Although this is actually just a

transformation of coordinate systems, the mathematics involved can become

quite lengthy and prone to algebraic errors.

Fortunately, the development of symbolic computer languages for

general computer systems allows the development of the system dynamic

equations directly on the computer. Zhao utilized a symbolic generation

system called REDUCE, running on an IBM mainframe computer at the

Princeton University Computing Center to develop the equations for the

model. An added benefit of the REDUCE system was its ability to output the

equations in program-ready FORTRAN code, again avoiding a source of

errors. The equations were then checked with the symbolic system

MACSYMA at the Laboratory for Control and Automation at Princeton.

Finally, the complete nonlinear dynamic description of the multi-

dimensional system, formulated by a Lagrangian approach, is converted to a

set of linear second-order differential equations. This is accomplished

through a perturbation analysis performed on the nonlinear equations, and is

described later in this chapter.

One of the greatest strengths of this model is the fact that by using

symbolic manipulation, the final linear equations are strictly analytical and

not numerical. Thus, the equations are applicable to any single main rotor

helicopter in any trim flight condition without further modification. This

allows a great flexibility in using the equations to study various helicopters

and flight conditions by simply changing the values in a trim input file.

Additionally, studies of the sensitivity of the helicopter (or the model) to

slightly differing trim conditions can be quickly and easily performed.
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2.2 The Lagrangian Formulation

A Lagrangian formulation is based on a set of generalized coordinates

that correspond to the degrees of freedom of the system. For this particular

helicopter model, the appropriate number is twelve: six degrees of freedom

for the rotor system and six degrees of freedom for the fuselage.

Each blade has one flap and one lag degree of freedom. However,

when converting from the rotating frame to the fixed frame through the use

of multi-blade coordinates, six degrees of freedom result; three flap and three

lag degrees. Figure 2-1 graphically defines the flap degrees of freedom. These

_=180 o _u=oO u_=270 o

_= 180 o

Figure 2-I: Rotor flap degrees of freedom.

three values correspond to the standard formulation for the flapping

equation (NACA notation) as found in the literature [12],

= ao - al cos(_F) - bl sin(_). (2.2-1)

is the total flap angle, positive in the upward direction, ao is the part of the
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flapping angle that is independent of blade azimuth angle _. It is also

positive in the upward direction. The coefficient al represents the amplitude

of a pure cosine motion for longitudinal tilt, positive for a flap back, and bl

represents the amplitude of a pure sine motion for lateral tilt, positive for a

flap down to the right.

In a similar manner, the three lag degrees of freedom are graphically

defined in figure 2-2. Again these values correspond to a standard

--

Figure 2-2: Rotor lag degrees of freedom.

formulation for the lag equation,

= _o - Y1 cos(h u) - "Y2sin(Y). (2.2-2)

is the lag angle, positive for lag (motion opposite to rotation), to is the

steady state lag which is positive in the same direction. The coefficient "Y1

corresponds to the lateral displacement of the center of mass (c.m.) of the

rotor system due to asymmetric lag, positive to the right. Finally, "/2

corresponds to the longitudinal displacement of the rotor system c.m.,

positive forward.

Six degrees of freedom are associated with the fuselage as well. There

are three translational displacements in the lateral, longitudinal and vertical



10

direction. There are also three rotations in pitch, roll, and yaw. Due to a

somewhat unconventional axis system used in the derivation of the model,

the body forces and moments do not all follow the same sign conventions as

the rotor system forces and moments. Figure 2-3 depicts the axes and positive

sense of rotation for both systems. The X forward, Y right and Z down system

that is usually encountered in stability and control analysis has not been used.

An axis system similar to what is used in analyzing a rotor is used instead.

Therefore, for both the hub and fuselage the Z axis is positive up, the Y axis is

positive to the right, and the X axis is positive aft.

z

YO

age

Figure 2-3: Hub and fuselage axis systems.

This unconventional axis system creates confusion in the definition of

the rotations. Pitch, 0, remains positive in the nose up direction as per

convention. Roll, ¢, and yaw, _, are opposite of convention leading to a roll

that is positive left wing down, and a yaw that is positive nose left. To relieve

some of this confusion, the definition of the fuselage roll angle is reversed to

positive right wing down, per convention, but the yaw remains

unconventional throughout the program and is corrected only in the final
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integration and plotting of the output. This change of sign for the roll angle

does help in relieving some confusion, but it adds the side-effect of creating a

left-handed system for the fuselage calculations. This can create problems in

the definition of terms like products of inertia so careful consideration must

be taken. Care must also be taken in transmitting rolling motion from the

rotor system to the fuselage.

These six rotor degrees of freedom and the six fuselage degrees of

freedom makeup the twelve generalized coordinates for the Lagrangian

formulation. They are collected into a single vector, Q,

Q = [ ao, al, bl, _o, _/1, y2, 0, ¢, % y, x, z ]7. (2.2-3)

Typical flight controls used by the helicopter pilot (collective stick,

cyclic stick, and directional pedals) create three inputs to the main rotor

system and one to the tail rotor. For the main rotor, they are the collective

pitch of all the blades 0o, the longitudinal cyclic pitch of the blades Bls, and

the lateral cyclic pitch of the blades Als. As with the flap and lag equations,

the blade pitch (feathering) variables used in this program are in standard

NACA notation,

0 = 0o - Als cos(_) - Bls sinffI0. (2.2-4)

As shown in figure 2-4, the lateral cyclic pitch, Als, is positive right side down

with the blade pitch at its most negative angle over the tail (_P = 0°). The

longitudinal cyclic pitch, Bls is positive nose down with the blade pitch at its

most positive angle at • = 270 °. The input to the tail rotor is the value of

collective pitch, OTR.
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_Als

12

Blade Pitch

B I._; Swashplate

Figure 2-4: Lateral and longitudinal

cyclic input to the rotor.

This model was originally designed for hover and level forward flight.

In these cases, the value of collective pitch to the main rotor is not varied

from a steady state trim value. Therefore, the constant trim value of eo is

provided to the model in the trim input file, and the system needs only three

time varying inputs: the lateral cyclic pitch, the longitudinal cyclic pitch, and

the tail rotor collective pitch. These values are contained in a vector of

inputs, U,

U = [ A]s, B]s, err ]T. (2.2-5)

With the generalized coordinates and inputs defined, the nonlinear

equations of motion can be developed using the Lagrangian approach. This

results in a series of equations where the second time derivative of each

generalized coordinate is expressed as a function of the first time derivative of

the generalized coordinates, the generalized coordinates themselves, the

inputs and time,

(2.2-6)

However, while introdudng the multi-blade coordinates, which transformed
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the rotating rotor system to the non-rotating frame, if the higher harmonic

terms are omitted, a constant coefficient approximation to equation 2.2-6 is

obtained,

h=-F(Q,Q,u). (2.2-7)

This is still a nonlinear representation of the Lagrangian formulated system,

but it has constant coefficients.

2.3 Linearization of the System

This nonlinear system is then linearized using a perturbation analysis.

In this sense, one assumes the twelve generalized coordinates, Qi(t), and the

three inputs, Ui(t), can be defined as the sum of a steady state value ( Qio or

Uio ) and a time dependent perturbation around that steady state value (AQi(t)

or AUi(t) ),

Qi(t) = Qio + AQi(t),

Ui(t) = Uio + AUi(t).

(2.3-1)

(2.3-2)

These new steady state plus perturbation terms are substituted into equation

2.2-7. Since the perturbation values are considered small (<<1), all terms

containing squares of perturbation values are neglected. The perturbation

quantities are then temporarily set equal to zero to obtain the steady-state

values of the generalized coordinates and inputs. Since these steady-state

values do not cause changes in the motion of the aircraft (by definition) they

can be subtracted out. This leaves a second order, linear dynamic equation of

motion for the helicopter,
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(2.3-3)

where M is a "generalized mass" matrix, C is a "generalized damping" matrix,

K is a "generalized spring" matrix and F is the "forcing" matrix. Each is

dependent on the constant, steady-state trim values of Qo and Uo and are

therefore constant matrices.

Due to the linearization of the system, these generalized matrices (C, K

and F) can be treated as the superposition of the effects from individual

components of the model as they are affected by the perturbations. This

systematic modular approach permits the effects of any changes to the model

to be observed directly on the system matrices. Table 1 indicates the physical

interpretation of the parts of the C and K matrices. The total value of the

matrix is the superposition (summation) of each term (i.e. K=KI+K2+...).

Table I" Physical interpretation of the parts of

the generalized matrices C and K.

r

CI=

C2=

C3=

C4=

C5=

C6=

C7=

Mechanical Damping

Aerodynamic Damping

(not used)

Body Aerodynamic Damping

Vertical _ _il Damping

Horizontal Tail Damping

Tail Rotor Dampin 9

KI = Mechanical Spring

K2 = Aerodynamic Spring

K3 = Hinge and Elastic Coupling

K4 = Body Aerodynamic Spring

K5 = Vertical Tail Spring

K6 = Horizontal Tail Spring

K7 = Tail Rotor Spring

The mass matrix, M, is treated slightly differently and contains the values of

the inertias or masses required for the terms in the equations of motion. For

example, the diagonal elements are basically the blade inertia fib) for the rotor

degrees of freedom and the fuselage moments of inertia (Iyy, Ixx, and Izz) or



the fuselage mass (mfus) for the fuselage degrees of freedom.

diagonal elements correspond similarly.

15

Other off-

Because the values of the M, C, K, and F matrices are dependent on the

trim condition (Qo,Uo), it is important that the correct trim values are used in

developing these matrices. There should not, however, be a strong

dependence on the precise accuracy of the trim value. If a small change in

one of the trim values makes a large change in the final output, then it would

indicate difficulties with the linearization, and the validity of the model

would have to be reviewed.

For clarity, equation 2.3-3 can be rewritten using a small letter q to

represent the term AQ and a small u to represent AU. This simplifies the

equation to

Mq+Cq+Kq=Fu. (2.34)

Whereas the perturbations in generalized coordinates and inputs will be

written q = [ao,al,bl,_o,_/1,_/2,0,0,_,y,x,z] T and u = [Als,Bls,0TR] _, for the

remainder of this report, it must be remembered that these are the values of

the perturbation from the steady-state trim value, and not absolute values of

the generalized coordinates or the absolute values of the inputs.

2.4 State-Space Representation

To further provide analytical simplicity, and to create a basis for

development of feedback control systems, the system of second-order linear

equations can be combined into a first order, state-space representation,

k = A x + B u. (2.4-1)



This change is accomplished by noting the identity

equation 2.3-4 to read,
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q = Cl, and manipulating

/:l= /l (2.4-2a)

Cl=" M_ Kq -M -_ C/:I + M -1 Fu. (2.4-2b)

Then substituting x = [ q, /t ]T, maintaining u = [Als,Bls,0TR ]T, and writing in

matrix form, the state-space representation is defined,

i 0 ,lE01= .M_IK _M_IC x + M_IF u (2.4-3)

This conversion results in a state vector, x, that consists of 24 states: the

perturbations in the twelve generalized coordinates and their first time

derivatives. This state-space form of the linearized model can now be

conveniently used for eigenvalue analysis of the system (the eigenvalues of

the matrix A) or for integration over time with a specified, time varying

input u.

As an example, figure 2-5 shows the integration of equation 2.4-3 for a

flight test input as calculated by MacDonald [11]. This graph of roll rate, which

is a response to a one inch right lateral cyclic input in a hover, plots both the

flight test roll rate and the basic simulation model output. The effects of

dynamic inflow are not accounted for at this point. The model obviously

reproduces the general shape of the aircraft response, although a large

discrepancy in the maximum value is evident.
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Figure 2-5: Roll response of the 24 state model, without

dynamic inflow effects, to a I " lateral cyclic

input in a hover (FIEFA Test 201).

2.5 The Quasi-Static Formulation

As discussed earlier, a quasi-static formulation that neglects the rotor

dynamics is not capable of modeling the higher order, short period dynamics

and can therefore cause instabilities in feedback control laws that may be

developed. However, the quasi-static solution developed from a full order

model does retain many of the important characteristics of the full system

transient response. By having a reduced order (from 24 to 12), it also provides

a reduction in the complexity of the model and a subsequent improvement in

the physical insight that can be gained. This is especially evident when the

quasi-static system response can be compared to the full order response.

MacDonald developed a quasi-static formulation from the full order

model that provides these benefits. The simplified model is developed by

noting that the rotor system response is much faster than the fuselage

response. The assumption is made, therefore, that in terms of the time frame

of the fuselage, an input to the rotor system causes the rotor to achieve its
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new equilibrium position instantaneously.

Mathematically, this is achieved by first splitting the twelve

generalized coordinates into two vectors: the body degrees of freedom, qb, and

the rotor degrees of freedom, qr,

qb=[0, GR/,y,x,z] T and qr=[ao, al, bl,_o,'_l,'l/2] T. (2.5-1)

The M, C, K, and F matrices can then be partitioned, and the equations of

motion rewritten as

[Mll M121[_ ]
M21 M22_] qr

+ ECllC121[,]EK,1K,21E'IE'11C21 C22 Clr + K21 K22J qr = F2 u (2.5-2)

Setting the rotor system partitions of the M and C matrices, M12, M22, C12, and

C22 equal to zero and manipulating the results gives an algebraic equation for

the rotor states,

qr =" ME qb - CE t_b - KE qb + FE u (2.5-3)

where the subscript E denotes the effective matrices as computed in terms of

the partitioned matrices of equation 2.5-2. Finally, setting Clr and ¢lr equal to

zero, since we are assuming that the change in qr is instantaneous, and

substituting equation 2.5-3 back into 2.5-2 we are able to write the quasi-static

equations of motion in terms of a second order, linear equation in qb,

MQ _lb + CQ ¢lb + KQ qb = FQU. (2.5-4)

In the same manner as section 2.4, equation 2.5-4 can be converted into

a convenient state space form. The resultant system is of order 12 (6 fuselage

degrees of freedom and their first time derivatives), and this simplification
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can aide in the understanding of the system response.

The response of the quasi-static model to the same right lateral input is

shown in figure 2-6 along with the response of the 24 state model. In this

case, the quasi-static response includes the effects of dynamic inflow as

discussed in the next section. Although the overall roll rate response in this

reduced order model is different from the basic full order model, the same

initial roll acceleration is displayed. It is interesting to note that due to the
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Figure 2-6: Roll response of the 12 state model, with

dynamic inflow effects, to a I " lateral cyclic

input in a hover (AEFA Test 201).

"instantaneous" effects of the rotor system, the fuselage acceleration occurs

slightly earlier than with the 24 state model. The lower peak indicates an

increased roll damping as a side-effect of the reduction in model order and

inclusion of the dynamic inflow effects. The smoothness of the model

response curve is an indication of the lack of higher order rotor response

modes which cause the slight oscillations noted in the flight test curve.
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2.6 Dynamic Inflow Modeling

The unsteady aerodynamics of the rotor environment does have a

significant impact on the response of the system so they need to be included

in the model in order to accurately replicate the response of the aircraft.

These aerodynamics can be modeled using simple models based on the

definition of certain inflow parameters that represent the unsteady wake-

induced flow through the rotor disk. As graphically defined in figure 2-7,

these parameters include a steady state inflow, Vo, a cosine harmonic inflow

coefficient, Vc , and a sine harmonic inflow coefficient, Vs. The harmonic

u/= 180 _ 5u=O °

_=180 o

Figure 2-7: Dynamic inflow components.

components are assumed to vary linearly with radius, r.

total dynamic inflow is the sum of these terms,

Mathematically, the



v = Vo + Vc r cos(h u) + Vs r sin(W).
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(2.6-1)

To model the dynamic inflow in the linearized equations of motion a

term, -Lv, is added to account for the unsteady aerodynamics,

Mi_+Cq+Kq-Lv=Fu. (2.6-2)

v is the vector of the steady state inflow and the two harmonics. The

dynamics of the inflow itself are included as an additional first order

differential equation,

i, -- Dc v + DB1 q + DB2 d1 + DF u (2.6-3)

To convert the full order model with the dynamic inflow, to the state

space representation, the same procedure is used as in section 2.4, but

equation 2.6-3 is included with equations 2.4-2a and 2.4-2b in the formulation.

This gives a slightly more complicated A and B matrix,

0 I 0 0 "]

A= -M qK -M 1C -L and B= M qFj, (2.6-4)DB1 DB2 Dc DF

for the augmented state variable, x = [ q, q, v ]T, which now is a vector of 27

states.

Inclusion of the unsteady aerodynamic effects into the full order model

improves the response substantially. Figure 2-8 shows that the roll response

of the model to the lateral cyclic input nearly coincides with the flight test

data. The acceleration and damping have very good correlation with the

flight test, and some higher order rotor mode oscillations are present. The

response shows a great improvement over the 24 state or 12 state models.
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2.7 Rotor Wake Effects On The Tail

Wind tunnel tests have shown that the rotor wake has a large

influence on the aerodynamics of the tail rotor and tail surfaces in forward

flight. This influence arises from the variable downwash, sidewash, and

forwardwash components of the rotor wake. Zhao, Curtiss and Quackenbush

[13 & 14] found that modeling of helicopter transient response in forward

flight is very sensitive to the treatment of the effects of the main rotor wake

on the tail.

A vortex sheet, which is a continuous surface of vorticity, is formed by

the vortices leaving the trailing edge of the main rotor blades. This vortex

sheet forms the rotor wake. Application of the Biot-Savart law allows

induced velocities to be calculated from this vortex sheet, and from these

velocities, a rotor flow field can be developed. As the helicopter changes

attitude, the angle of attack or sideslip will alter the position of the tail in this
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flow field, thereby changing the aerodynamic forces and moments acting on

the vertical tail, horizontal tail and tail rotor.

For this model, an off-line program is used to calculate these effects.

Linearized derivatives are developed that model the change in the flow field

with position. These values are then fed to the main program via the trim

input file at the beginning of calculation and used to modify the system

equations as necessary. The flexibility to input these wake effects, instead of

having them coded in the main program, allows various simple or

complicated models of the rotor wake to be used and compared.

2.8 Benefits Of Analytic Linearization and the Trim Input File

This model provides a unique basis to study sensitivities of the

helicopter to variations in its parameters due to its having been analytically

developed and linearized using the symbolic computer languages. It is this

linearization that gives the model many advantages over other existing

linearized models. These other models use numerical linearizations of the

nonlinear equations about a set of flight conditions. Thus, the entire model,

and not just the solution, would be fully dependent on the numerical value

of the flight condition. It would not be possible to individually vary a single

term of the nonlinear equation because these terms would be determined as

part of the complete solution. For example, with the numerically linearized

models, it would not be possible to change the steady state value of rotor

coning in order observe the effect on the helicopter response or the

eigenvalue analysis. The coning angle would be directly calculated from

initial values of the flight condition (velocity, weight, air density, etc.) and

would not be available to be changed directly by the dynamicist. The
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analytically linearized model, however, does provide the ability to do this

type of sensitivity analysis.

The model studied in this research uses a data file to input the required

information to the mathematical model. This trim input file includes

several types of information. One type is the physical dimensions of the

helicopter such as main rotor diameter, blade twist, hinge offset distance,

shaft tilt, vertical tail size and sweep, and tail rotor position. Additional

physical characteristics that are input in the trim input file are data

concerning the aerodynamics of the particular helicopter. These include

main and tail rotor lift curve slopes, drag area, fuselage lift curve slope, and

fuselage pitching moment slope. These values can be derived from fuselage

wind tunnel data. Then the trim flight condition is input which includes

values such as air density, weight, speed, and center of gravity (c.g.) position

but also includes the trim values of main and tail rotor collective pitch, rotor

speed, and body angle of attack. Much of this type of information comes

directly from the flight test data. Other values, calculated off-line, are also

included, like average induced flow for the tail and main rotors, wake effects

on the tail surfaces, steady state rotor coning, and steady state blade lag.

Thus, modification of the trim input file allows the dynamicist to take

full advantage of this analytically linearized model of the helicopter.

Sensitivity of the aircraft (or the model) to the various parameters and

conditions can be studied in isolation from other variations, and thereby

greater insight and physical understanding can be gained.



CHAPTER III

VALIDATION OF THE MODEL WITH FLIGHT TEST

Any complex mathematical model of a dynamic system, especially one

in which simplifying assumptions have been made, must be correlated with

experiment to validate the accuracy of the model. To prove the validity of

this analytically linearized model, it had to be correlated with actual

helicopter responses.

In 1982 a flight test program was conducted with an early production

UH-60A Black Hawk helicopter for the precise purpose of validating

mathematical models [10]. The very high-quality step-input data that was

developed in this study was used to validate other earlier simulation models

of the Black Hawk. This data was made available to Princeton University and

subsequently used to validate the linearized model studied in this research.

Because the data had been correlated with other simulations, the added

benefit of comparison with other mathematical models was available.

3.1 The UH-60A Black Hawk Helicopter

The UH-60A Black Hawk is a utility helicopter developed by Sikorsky

for the Army under the Utility Tactical Transport Aircraft System (UTTAS)

program. This medium sized helicopter is designed to carry 11 combat

equipped troops and a crew of three. The twin-engine aircraft has a single

main rotor and a canted tail rotor. A moveable horizontal stabilator is located

on the lower portion of the tail pylon near the non-retractable tail wheel.

25
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There are also two non-retractable main landing wheels mounted forward on

the fuselage. Figure 3-1 shows the general external configuration of the Black

Hawk helicopter. Further information on the helicopter structural and

aerodynamic properties are given in reference [15].

Figure 3-I: UH-60A Black Hawk helicopter.

The main rotor consists of four fully-articulated titanium/fiberglass

blades which are retained by a flexible elastomeric bearing in a forged

titanium hub. The elastomeric bearing, located at an offset of 1.25 feet from

the shaft center, provides for pitch change as well as serving as the hinge for

blade flap and lag. A conventional hydraulic damper acts to increase lag

damping.

The cross-beam tail rotor with composite blades is attached to the right

side of the tail pylon. It is a bearingless arrangement allowing for blade

bending and pitch change solely through the flexibility built into the

composite material of the blades. In addition, there is a 35 degree 53 hinge

built into the blades that allows for a decrease in blade pitch with an increase

in coning. This acts to reduce the blade flapping that occurs as a function of

speed. The tail rotor is canted 20 degrees to provide 2.5 percent of total aircraft
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lift in a hover, which also allows for greater aft center of gravity (c.g.) travel.

An adverse side-effect of the canted tail rotor is that it adds additional

coupling between the longitudinal and lateral motions of the aircraft.

To partially compensate for this coupling and to convert control stick

motion into rotor inputs, the flight controls are fed through a "mixing unit."

This mechanical device, made up of levers, cams and pushrods, has the

expressed purpose of combining and coupling the cyclic, collective, and yaw

inputs and providing proportional output to the main and tail rotor controls.

However, it is also designed to de-couple some of the adverse affects of the

canted tail rotor. It is important to note that the mixing unit is a mechanical

system that has been designed for a certain "typical" flight condition.

Therefore, at any other flight conditions, it will not operate optimally and

may even produce some adverse side-effects of its own. These effects are

minor but do show up in flight test responses and .therefore should be

expected in the simulation responses.

To illustrate the control mixing, the control system logic is shown in

figure 3-2. In addition to the conversion from a control position to its

corresponding input, as shown in the four bold boxes in figure 3-2, the other

mixing is also presented. Collective stick position is fed-forward to the tail

rotor pitch to counter the increased torque of a higher collective setting.

Collective stick position is also fed to the lateral cyclic pitch, Als, to account

for the increased thrust of the tail rotor from the previously described mixing.

This increased tail rotor thrust will create a right rolling moment, due to the

height of the tail rotor, as well as tending to "pull" the aircraft to the right.

The mixing unit counters the increase in collective with a negative Als, or

left roll. A third collective mixing is to the longitudinal cyclic pitch, Bls. This
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Figure 3-2: UH-60A control system logic,

illustrating the control mixing.

mixing provides positive Bzs, a nose down pitching moment, to counter the

effects of increased downwash on the tail from increased collective, and to

counter the tendency for the rotor to flap-back with at forward speed with

collective. Also fed to the longitudinal cyclic pitch, Bls, is the input from the

directional pedals. This is due to the canted tail rotor. A left pedal input will

increase the tail rotor pitch to yaw the aircraft. However, due to the 20 degree

cant, the increased pitch on the tail rotor will also provide vertical thrust

causing the tail to rise and nose to pitch down. To counter this, the mixing

unit provides negative Bls, or nose-up pitching moment.

Outside of the mixing unit, the flight control system on the UH-60A is

a redundant hydro-electrical-mechanical system. It includes three dual-stage
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main rotor servos to move the swashplate, a dual-stage tail rotor servo, a

Stability Augmentation System (SAS), a Flight Path Stability system (FPS), a

TRIM feature, and a Pitch Bias Actuator (PBA). The SAS, made up of two

independent systems (one analog and one digital), provides short-term

dynamic stability through rate damping. The FPS provides a longer term

stability to the aircraft through features such as attitude hold, heading hold

and airspeed hold. The TRIM maintains the controls at a fixed (trim)

position set by the pilot and also moves the controls in response to

commands from the FPS. The final part of the flight control system, the

Pitch Bias Actuator, is in effect a variable length control rod in the

longitudinal cyclic control system that changes the relationship between the

cyclic and the tilt of the swashplate. Due to a neutral or slightly negative static

longitudinal stability in the unaugmented aircraft, stabilizing at increased

airspeeds requires a slight aft movement of the cyclic. The PBA, when

operating, compensates for this effect and provides a forward stick movement

with increased airspeed while, at the same time, providing the negative (aft

stick) input to the swashplate for trim.

The large moveable horizontal tail (stabilator) is automatically

programmed to optimize the aircraft pitch attitude for any flight condition

and to improve the dynamic response of the aircraft. The incidence angle has

a range of from about 40 degrees trailing-edge-down in a hover through about

zero degrees at high forward airspeeds to about 10 degrees trailing-edge-up for

autorotative descents. The stabilator control system determines the proper

angle as a function of four input flight parameters. Variation in collective

stick position will require a modified stabilator angle to adjust for the

variation in downwash and the change in body angle of attack due to a climb
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or descent. Airspeed feedback allows the stabilator to adjust its incidence

angle to keep aligned with the airflow. Pitch rate feedback to the stabilator

will counter, or dampen, any pitch rates. Finally, sensed lateral acceleration is

fed back to the stabilator to reduce pitching moment due to sideslip caused by

the non-uniform downwash around the tail.

3.2 USAAEFA Flight Test

The flight test data of the UH-60A, used in validating the model, was

obtained in a series of tests conducted by the U.S. Army Aviation Engineering

Flight Activity (USAAEFA) at Edwards Air Force Base in 1982 [10]. This flight

test program was originally conducted for use in the validation of the Army's

Rotorcraft Systems Integration Simulation (RSIS) for investigation of flight

control systems, augmentation systems, and displays that are being integrated

into modern helicopters. The necessarily high quality of the flight test data,

therefore, made it perfect for validation of the analytically linearized

helicopter model of this study, without requiring any modifications to the

data.

The test program explored steady state and transient responses at

various weights, c.g. positions, and velocities ranging from hover to 140

knots. The transient responses are of particular interest for this study, and

consisted of individual axis (lateral cyclic, longitudinal cyclic, directional

pedal) steps, pulses, and doublets of one inch or less in both directions. The

time histories of the control inputs, the test conditions, and the transient

responses obtained from the flight test are presented in reference [16]. The

aircraft weight was varied in order to set the thrust coefficient (C-r) values as

required by the flight test plan. Once in flight, CT was maintained at the
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specified value by increasing the altitude as fuel was expended. Also, the rotor

speed was varied as a function of temperature.

The Black Hawk helicopter used in the test program was fitted with the

test instrumentation required to vary the trim conditions and to record the

necessary data. An airspeed boom was mounted forward of the nose to

provide the actual flight airspeed of the aircraft, uncorrupted by the

downwash. Elliot Low Airspeed Sensing and Indicating Equipment (LASSIE)

was also used in the hover tests for measurement of omnidirectional low

airspeeds. A ballast cart was installed and used to maintain lateral and

longitudinal c.g. in conjunction with crossfeeding of fuel between the two

main fuel cells. Waterline (vertical) c.g. was not controlled in the testing, and

was allowed to vary. An instrumented fixture was provided by Sikorsky to

measure the three axes of blade motion: pitch, lead-lag, and flap. Reference

[10] made note of the fact that after Sikorsky initially calibrated this fixture, the

Army had to recalibrate it on a regular basis. This may indicate that the

accuracy of that data may be somewhat questionable. There was also a fixture

mounted on all axes of the flight controls to allow the vehicle response to a

single axis input to be recorded.

The original test plan called for response data on the basic aircraft

without the augmentation of the various automatic flight control systems.

This unaugrnented data was desired to allow validation of a basic simulation

model of the aircraft. If augmented data had been collected, the flight control

system would automatically alter the transient response making discovery of

mathematical modeling errors more difficult. Therefore, during the transient

response data runs, no stability augmentation systems were used. Both the

analog and digital SAS, the TRIM and the FPS, were disabled, and the PBA
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was disconnected and locked in a "mid-length" position. The stabilator was

fixed for each run; its position determined as the stabilator control system

would have set it for the aim airspeed and collective setting. This allowed

proper trim position of the stabilator, but it prevented the automatic features

of the stabilator from contaminating the basic response data. Table 2 lists the

test plan aim airspeeds and the stabilator position corresponding to each.

Ballin [16] noted that the position of the stabilator given in the flight test data

Table 2: Stabilator position setting for the four

flight test aim airspeeds.

Aim Flight Airspeed Stabilator Position

(trailinqedge dowh)

Hover 43 °

60 knots 31 °

I O0 knots 8 °
I

1 40 knots °

varies up to 5 ° from these values, and he determined that the aim values as

given in table 2 are probably the more accurate ones.

Due to the disabling of all the augmentation systems, the aircraft

responses derived in this flight test program should not to be considered

representative of a UH-60A Black Hawk in normal operation. They do

provide, however, excellent data for validation of unaugmented

mathematical models of the helicopter.

The procedure for these flight tests normally consisted of stabilizing in

a trim configuration with one of the two redundant stability (SAS) systems

on. The allowed for good trim initial conditions. One second prior to control



input the SAS was disengaged, and then the control input was applied.

control fixture, mentioned earlier, allowed for making single axis inputs.
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The

The

pilot held this configuration until forced to respond due to aircraft

acceleration or attitude. Unfortunately, the poor stability characteristics of the

unaugmented aircraft, especially in pitch, often prevented the pilot from

holding the controls fixed for a long duration. Longitudinal and lateral cyclic

inputs as well as pedal inputs often caused divergent pitch response, which

caused the pilot to initiate recovery. Because of this, the flight test data is

often only useful for five to six seconds.

3.3 Prior Validation of Other Simulation Models

This same flight test data has been used by several different

organizations to validate both nonlinear and numerically linearized

mathematical models of the Black Hawk. Sikorsky's own GENHEL [9] (for

GENeric HELicopter model) is a nonlinear model that also showed reasonable

correlation with flight test. It therefore makes a good comparison with the

analytically linearized model of this study.

GENHEL was developed by Sikorsky for the Army to do engineering

simulations for performance and handling quality evaluations. The model is

a total-force, large-angle representation that has six rigid-body degrees of

freedom. The modeled rotor system has a hub rotational degree of freedom

as well as rotor blade flapping and lagging degrees of freedom for each blade.

A blade-element approach is used to model the main rotor blades. No

dynamic twisting is modeled, but preformed geometric twist is represented

through adjustment of the pitch of each segment of the blade. The total rotor

forces and moments are produced by summation of all forces (aerodynamic,



inertial and gravitational) from each blade.

through the hub to the fuselage.
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These forces are then transmitted

The aircraft response to a time varying input is obtained by iteratively

summing the components of all forces and moments acting on the aircraft's

c.g. and subsequently obtaining the body axis accelerations. These

accelerations are integrated through one time step (1/100 second) to produce

the resulting velocities and displacements, and then the entire procedure is

repeated for the next time step. The results were correlated with the Black

Hawk flight test data and found to show reasonable agreement [16].

Numerous deficiencies were noted, however, especially in the off-axis

response of the model (e.g. the pitch response to a yaw input).

3.4 Flight Test Correlation of the Original Analytically Linearized Model

The full-order analytically linearized model was compared to flight test

to validate its accuracy. A thorough description of the correlation results can

be found in reference [13]. Two of the flight test examples are shown in

figures 3-3 through 3-8 to demonstrate the capabilities of the model. The

graphs indicate the output of the model as originally developed by Zhao and

modified by MacDonald. The output of the improved model from this study

is provided in Chapter VII.

The first three figures demonstrate the roll, pitch, and yaw rate

responses of the helicopter in a hover to a one inch right lateral cyclic input

(AEFA Test 201). The full 27 state model including dynamic inflow was used.

Correlations are discussed in terms of these fuselage angular rates since their

quantities are of primary interest in handling qualities. The roll response,

which also appeared in figure 2-8, is shown in figure 3-3. This, being the on-
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Figure 3-3: Roll rate response of the original 27 state

model, with dynamic inflow effects, to a I " right

lateral cyclic input in a hover (AEFA Test 201).

axis response to the lateral input, nearly coincides with the flight test data.

This response correlates much better to the flight test than did the GENHEL

model in which the response reached a maximum peak of about 40 percent

above the flight test value [16]. The off axis responses, figure 3-4 for pitch rate

and figure 3-5 for yaw rate, do correlate with the actual helicopter, but not

nearly as well as the roll rate. In the pitch axis, the helicopter first pitched

down and then up during the flight test. The simulation, however, only

pitches up.
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Figure 3-4: Pitch rate response of the original 27 state

model, with dynamic inflow effects, to a I" right

lateral cyclic input in a hover (AEFA Test 201).
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Figure 3-5: Yaw rate response of the original 27 state

model, with dynamic inflow effects, to a I " right

lateral cyclic input in a hover (AEFA Test 201).
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The model responses to a 1/2 inch doublet pedal input (left pedal first)

are shown in figures 3-6, 3-7 and 3-8. The flight velocity is 140 knots (AEFA

Test 309). In this case, the roll rate, figure 3-6 is an off-axis response to the
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Figure 3-6" Roll rate response of the original 27 state model,

with dynamic inflow effects, to a I/2" left then right

doublet pedal input at 140 knots (AEFA Test 309).

pedal input. It correlates with flight test quite well, but there is an

overestimation of the roll rate to the left. The pitch rate in figure 3-7 is

underestimated and shows much greater nose-down pitching rates after the

initial nose-up response. The yaw rate, figure 3-8, is the on-axis response, and

shows very good correlation with the flight test. The initial acceleration is

not quite as high as flight test, and so the amplitude of the yaw rate at its

maximum is smaller.
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Figure 3-7: Pitch rate response of the original 27 state model,

with dynamic inflow effects, to a I/2" left then right

doublet pedal input at 140 knots (AEFA Test 309).
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Figure 3-8: Yaw rate response of the original 27 state model,

with dynamic inflow effects, to a I/2" left then right

doublet pedal input at 1 40 knots (AEFA Test 309).

As demonstrated in these graphs, the original model showed good to

very good correlation with flight test. In many cases the correlation is better

than the output of the much more complicated GENHEL program.

Regardless of the comparison to other models, areas still exist that need

improvement. Although the on-axis response is very good, deficiencies

remain in the off-axis response, and accurate representation of these cross-

coupling characteristics of the vehicle are necessary for research relating to

flight control. To make the system easier to use, to correct these errors or

inconsistencies in the program that reduce its accuracy, and possibly to
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improve the correlation with flight test, this research examined three areas:

improvement of the computer system interface, corrections in the modeling

of the helicopter and in the math model computer code, and improvements

in the values input to the program in the trim input file.



CHAPTER IV

MODEL IMPLEMENTATION IMPROVEMENTS

In order for this model to be a useful tool for general use in analysis of

helicopter responses, it must be compatible with a large number of computer

systems. Ease of use and speed are important aspects as well. It is

inconvenient to analyze the sensitivity of the model to variation in a

parameter if it is difficult and time consuming to run the model for each

value of the parameter. The initial modifications to the model were directed

in these important areas.

The implementation of the model as developed by Zhao [1] and

modified by MacDonald [11] was neither convenient nor particularly fast, and

did not lend itself well to sensitivity analysis. Figure 4-1 shows, in block

form, the operation of the original system. The trim input file was developed

first from an off-line program and transferred to an IBM 3081 mainframe

computer at the Princeton University Computing Center that utilizes the VM

operating system. A series of programs written in Fortran IV code on this

computer developed the analytically linearized model and created the state-

space representation of the system. For time history studies, the system

matrices were then transferred to a UNIX based VAX 8700 computer.

Programs written in Fortran 77 code on this computer took the matrices and

integrated them using a fourth-order Runge-Kutta integration routine with

Gill coefficients. The output time histories were then transferred to an IBM

or Macintosh PC for plotting. The eigenvalue analysis of the system matrices
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required that the files were transferred directly from the IBM mainframe to

the PC for analysis. For either the time history or eigenvalue this procedure

Off-line

System

I

IBM 3081 VAX IBM/MAC

Mainframe Mainframe PC

(FORTAN IV)

Trim Input

System
Matrix

(:_}Indicates File Transfer Required

(FORTAN 77) (MATLAB)

tting
Kutta of Time

Eigenvalue

Figure 4-I: Original implementation of the model.

was too complicated and time consuming for easy use. In addition, the

variety of computers needed made it impossible to export the system to other

research institutions.

Since UNIX based machines are generally available, and have a more

"universal" user interface, the mathematical model and associated programs

were imported to a UNIX based SUN computer system at Princeton. The

programs from the IBM 3081 mainframe were converted from the somewhat

antiquated Fortran IV language to Fortran 77, and their user interface was

improved. The complicated integration routine was eliminated. A simple

but accurate integration routine was combined with the plotting and

eigenvalue analysis to be run using a matrix manipulation computer



program called MATLAB, also running on the U_'IX machine.

demonstrates how this simplified the process.
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Figure 4-2

UNIX Based SUN Computer

(FORTAN 77) (MATLAB)

System LIState-Spacel

Matrix
valuationl

I

LS,M dP'°tting]

I _Eigenvalue]
IAnalqsis I

Figure 4-2: Improved implementation of the model.

The trim input file, consisting of data from flight test, wind tunnel

data, and a trim program operating on the UNIX system is fed to the main

program that develops the mathematical model. The output A and B

matrices are then fed to the MATLAB program, also operating on the UNIX

system, for integration and plotting. Instead of using the Runge-Kutta

routine from the original system, the state-space representation is integrated

using a MATLAB function LSIM. This function is designed to simulate a

continuous time linear system with arbitrary inputs. In this case the arbitrary

input is the flight test control input history. The LSIM function converts the

continuous time system to a discrete time system using matrix exponentials

and a specified time step. A step of 0.05 seconds was used as this was the same

step size as the control input data and was sufficiently small for good

integration results. Th_ function then propagates the response of the discrete
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system for the duration of the input. To insure that the discretization process

was not degrading the fidelity of the response, plots from the original

integration routine and the LSIM routine were compared, and both outputs

were nearly identical.

Additional benefits of using the MATLAB program are its plotting

capabilities and eigenvalue analysis capabilities. Since it is designed for work

with matrices, MATLAB is an exceptional tool for analyzing eigenvalues and

eigenvectors. Feedback control systems can be easily implemented and

studied, and the output quickly plotted.

These changes to the implementation of the model allow efficient

operation of the system and quick and easy sensitivity analysis. Developing

and plotting the eigenvalues or response time histories for a series of values

of a certain parameter can be completed in a matter of minutes, compared to

the hours it took with the original implementation.

Although it may slow the system down somewhat, the entire system

should also be exportable to a UNIX based desktop computer that has a

Fortran 7"7compiler and MATLAB available. However, the size of the System

Matrix Evaluation program (see figure 4-2), over 4000 lines of code, may need

to be reduced through partitioning in order to meet memory requirements.



CHAPTER V

HELICOPTER MODEL IMPROVEMENTS

Past research with this linearized model has focused on individual

aspects that make a significant impact on the time history response

correlation with flight test. However, fundamental errors in the model have

gone unnoticed. Several of these errors have been discovered and corrected

to improve the accuracy of the model.

5.1 Rotor Forces Resolved to the Body

As discussed in the description of the rotor and fuselage degrees of

freedom, care must be taken when transmitting forces and moments from the

rotor hub axis system which is unconventional, although right-handed, to

the fuselage axis system which is left-handed. These fuselage axes, previously

defined in figure 2-3, are aligned with the waterline/frame-station/butt-line

reference system.

This reference system, adopted from ship design, uses these terms to

depict positions in the Z, X, and Y axes respectively. See figure 5-1. The

waterline position, analogous to the waterline of a ship, defines a horizontal

plane where the ground or a plane below the ground is given a value of zero.

Every position on the aircraft has a positive waterline value that indicates the

number of inches above the zero level. The frame-station is similarly defined

for the position along the longitudinal axis. In this case, the zero position is

out in front of the nose, so all positions are a positive number of inches

43
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Wa ,,oePo°,,,o
"_ Frame-Station 7" i-I
,_ Position _, Butt-Line
,- - _ Position I_1

Figure 5-I: Definition of the waterline/frame-station/

butt-line reference system.

behind that point. Finally, the butt-line system defines left to right position

where the centerline of the aircraft is zero. There are both positive and

negative values for the butt-line to indicate number of inches right and left of

the centerline respectively. All linear dimensions for the helicopter are given

in this reference system.

The conversion between the fuselage center of mass (c.m.) motion and

the hub motion in the model is performed through a transformation (T)

matrix. Figure 5-2 shows the geometry that the T matrix uses for the

_,_ Yaw

h I Moment

l'
_" ROll
Moment _ _ Fuselagec.m.

Xc.g.

Waterline

Figure 5-2: Hub and fuselage c.m. geometry.

conversion, according to,

Xhub = T qb, (5.1-1)



where

Xhub = [0, _), _, y, X, Z]hub T and qb = [0, O, _, y, x, Z]bodv T,
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(5.1-2)

the latter being defined as in section 2,5. The T matrix has the values,

T ...

1 0 0 000

0-10 000

0 0 1 000

0 h-xcgl 00
h 0 0 010

_xegO o o o 1_

(5.1-3)

where Xcg and h are defined in figure 5-2 with a positive Xcg for a fuselage c.m.

aft of the hub. The aforementioned change of sign between the hub roll angle

and the fuselage roll angle is accounted for by the value of -1 in T(2,2). The

other terms follow the geometry exactly.

Since the rotor forces and moments are initially resolved into the shaft

axis, this transformation would be suitable for a shaft that coincides with the

Zbody direction. This model, however, is designed to take a shaft tilt (called

AN in the program) into account. As depicted in figure 5-3, this tilt changes

the geometry of the problem somewhat. The most obvious change that the

tilt makes, is to move the line of force of the thrust vector, thereby changing

the moment arm for its affect on the pitch moment. To account for this, the

original derivation of the model included terms to change the fuselage

pitching moment due to the rotor forces,

Pitch Moment = (Hs cos(AN) - Ts sin(AN)) h +

Ts cos(AN) xcg (5.1-4)

simplified via smaI1 angle approximations to,

Pitch Moment = ( Hs - Ts AN ) h +Ts Xcg. (5.1-5)



The other moments were unchanged in the original model,
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F

Roll Moment = Ys h

Yaw Moment = -Ys Xcg.

|l \

i \\ ! Yaw

i Moment

I

- i- --\_-
Roll

Moment _ _ Fuselagec.m.

Xc.g.

Waterline

(5.1-6)

(5.1-7)

Figure 5-3: Geometry for a shaft tilted by the angle AN.

This change properly corrects the calculation of the fuselage moments

generated by the rotor system. However, since the T matrix is also used in

resolving rotor motions, forces and moments into the fuselage frame, the

shaft tilt was still causing errors in this resolution. A slight coupling occurs

between the components of motion (translational and rotational) in

transforming between the tilted shaft hub and the fuselage. Since coupling is

a problem noted in the original flight test validation [13], any corrections in

this area should be of benefit.

During this research, the original terms that had been inserted in the

pitch moment equation were removed and a complete axis transformation

was made. This corrected all three axes of the system by taking the value of

AN into account. The new Tnew matrix converts between the fuselage c.m.
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and the tilted shaft systems,

Xshaft = Tnew qb, (5.1-8)

and has the values,

T

1 0 0 0 0 0

0 -COs(AN) sin(AN) 0 0 0

0 sin(AN) cos(AN) 0 0 0

0 h -Xcg 1 0 0
h 0 0 0 cos(AN) sin(AN)

_ Xeg 0 0 0 -sin(AN) cos(AN)_

(5.1-9)

where the Tnew(2,2) still includes the -1 for reversal of the roll angle. For a

helicopter with no shaft tilt, this reverts back to the original definition of T

(equation 5.1-3).

This change to

incorporation of AN

the T matrix corrects for the oversight in the

in the original derivation of the system, thereby

increasing the accuracy of the system. When the system response to the flight

test input was plotted, it indicated an improvement in the correlation with

flight test, but the improvement was slight. The model was improved to

ensure that the physics were correct, but due to the small angles involved, it

did not make a large impact on the overall system response.

5.2 Trim Force and Moment Correction

Although it is true that the linearized model should not be sensitive to

small variations in the trim flight condition, the better the accuracy of the

trim calculations and input, the more accurate the response. In the case of the

nonlinear models, such as GENHEL, only flight initial conditions (velocity,

weight, etc.) are specified and the program calculates the resultant rotor forces
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and moments required to attain that flight condition. From this, the value of

rotor and body angles are calculated. The analytically linearized model with

its trim input file, on the other hand, tends to work in reverse. It takes the

rotor and body angles that are input tothe system, calculates the resultant

forces and moments from them, and then uses these values in the derivative

formulation. It is important, therefore, that the calculations are correct and

derive accurate values of the forces and moments. The interpretation of

these trim rotor forces and moments are shown in figure 5-4.

i F = radial force
_- m E_ --'_ po

I Fie =in-plane force

_M fo

Forward

Fno =normal force

Fie =in-plane force

Mlo .,lag moment

Figure 5-4: Calculated forces and moments
on the blade and hub.

To verify the accuracy of the trim force and moment calculations, the

value of the rotor thrust and power required by the rotor, as determined by

the model, were output. These values come directly from the forces and



moments depicted in figure 5-4 as,

Thrust = Fno cos(Do) * (4 blades) * a,

Powerreq = (E *(Fio cos(_o) - Fpo sin(_o)) + Mlo cos ([3o))*
(4 blades) * f'2 *a,
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(5.2-1)

(5.2-2)

where a is a constant (the value of rotor blade lift slope) needed to properly

dimensionalize the forces as used in the program. The outcome of these

calculations are listed in table 3 for three different flight velocities and

weights.

Table 3: Outcome of initial trim calculations.

Flight

Velocity .

Hover

60 knots

140 knots !

Aircraft i

W..e..!._h t _

157501bs i

Calculated

Thrust

165501bs

16110 Ibs i 13940 lbs

16300 lbs i 28260 lbs

Calculated

Rotor Powerreq_

!8s! hP ......

.................1048hP................

1829 hp

The values of calculated power required by the main rotor appear

reasonable considering that the UH-60A engines are each capable of

producing nearly 1600 hp [I0]. Total power required from the engines would

be 10 to 15 percent above the value for the rotor in table 3. The Black Hawk

should not generally be capable of single-engine hover nor single-engine

flight near Vmax at these weights, but the helicopter should be capable of flight

in mid-range airspeeds with one engine inoperative. The calculated power

correctly indicates this. The other calculated va]ue, thrust, should be

approximately equal to the aircraft weight. However, this does not hold true

at the higher airspeed. At 140 knots, the trim thrust calculated by the program

is nearly double the weight of the aircraft; an obvious error.
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The equations used by the program for calculating Fno were examined

to determine if an error was present. Although they had inconsistencies in

comparison with simplified theory as given by Gessow and Myers [12] they

did agree (in somewhat simplified form, i.e. neglecting the hinge offset) with

the more detailed Bailey theory as detailed in reference [17]. A sensitivity

analysis was therefore performed to determine if an incorrect input

parameter value was causing the discrepancy.

It was soon found that substantially increasing the value (in a negative

or nose-down sense) of the body angle of attack, (aB), from that given in the

flight test served to bring the calculated thrust more in line with the weight.

However, a change in strictly the body angle of attack should not have a

significant effect on this calculation. Since the angle of attack of the rotor

shaft, as, is related to the fuselage angle by the shaft tilt angle, AN, according

to

0_s = 0_B - A_N, (5.2-3)

modification of the body angle was pitching the rotor system down as well as

the body. It was this change in angle of attack of the rotor that improved the

calculations. The original values of aB and AN being used were determined

to be correct, so it was realized that the error was in specifying the rotor

attitude in terms of 0_s. The control axis angle of attack, O_CA, which takes the

value of Bls into account,

O_CA= O_S- Bls, (5.2-4)

more appropriately specified the rotor attitude.

illustrates how these variables are related.

Figure 5-5 graphically
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Figure 5-5 Body, shaft, and control axis

angles of attack.

In the original formulation of the model, it had been assumed that the

value of Bls in trim would be small, and therefore it was neglected in the

calculations. In Ballin's stud}, on modeling the Black Hawk [16] he indicated

that the longitudinal position of the cyclic remained relatively constant at a

range of airspeeds. This was due to the aforementioned neutral speed stability

of the aircraft for which the PBA (as discussed in section 3.1) was designed.

Neglecting the trim Bls seemed, therefore, to be an appropriate assumption.

What wasn't considered, however, was the input to Bls made by the

trim collective and pedal positions via the mixing unit illustrated in figure 3-

2. Determined from the work of Curtiss [18] and Cooper [15], the equation for

Bls is approximately,



Bls = 0.464 Xc - 2.83 XLoxc + 1.63 XTR.
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(5.2-5)

Utilizing the values from flight test for the collective (Xc), longitudinal cyclic

(XLoxG), and pedal (X_R) positions at 140 knots, a Bls of about 6.7 degrees

results. Then, to further check this value of Bls, the value of individual

blade pitch, 0, was plotted from flight test as shown in figure 5-6. This graph

shows, although somewhat crudely due to the low sampling rate, that in the

trimmed flight before an input was made, the pitch oscillated around a steady

2O

15

_=
5

0

ii i
0 0.5 I 1.5 2

Time (sec)

Figure 5-6: Blade pitch angle for trim flight
at 1 40 knots (AEFA Test 309).

state value. Since there was very little lateral stick displacement during these

tests, and Als is almost entirely defined by the lateral stick position,

Als = 1.6 XL^_ - 0.256 Xo (5.2-6)

the equation for blade pitch (2.2-4) would indicate that the oscillations are due

to Bls. The value of Bls can therefore be approximated from the graph at
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about 7.7 degrees. Because the blade angle measurement device had to be

recalibrated repeatedly during the flight testing, and the system measured the

pitch at the cuff and not at the root of the blade, the steady state value on the

graph is not the same as 0o. The value of Bls, however, should be correct.

The discrepancy between the 6.7 and 7.7 degrees most likely comes from the

fact that the PBA was locked at an unknown "mid-length" position. Since the

PBA, in effect, changes the length of the control rod from longitudinal cyclic

to the swashplate, its configuration can create the biasing effect that is noted.

The calculated and flight test values of Bls for several tests were examined to

determine an average bias which was used to correct equation 5.2-5,

Bls = 0.464 Xc - 2.83 Xuoxc + 1.63 X-rR + 1.27 °. (5.2-7)

The importance of Bls in the calculations was accounted for in the

model by modifying the angle of attack used in the trim force and moment

equations. The value of trim Bls was added to the trim input file, the control

axis angle of attack c_^ was calculated from the trim Bls, and then the angle of

attack terms in the trim force and moment equations were changed to ac^.

The outcome of these changes was a trim thrust calculation that much

better approximated the value of aircraft weight at high airspeed. The thrust

at the lower airspeeds are not quite as close to the weight as before, and the

power required calculation changed slightly, but they all remained in an

acceptable range. Table 4 indicates these corrected values.

By the assumption that we can linearize the system around a trim

value of the flight condition, a change of eight degrees to the angle of attack of

the rotor should only have a small impact on the aircraft response to an

input. Plotting the response of the model to flight test inputs for the model
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with and without a trim Bls value did, in fact, confirm that the change to the

response was minor• However, the overall accuracy of the model has

definitely been improved.

Table 4: Outcome of corrected trim calculations.

Flight

Veloc!ty

Hover

60 knots

140 knots

Aircraft Calculated Calculated

Weigh t • Thrust Rotor Powerrec 1 _
|

15750 lbs l 17600 lb s .... !812 tip __

......... 16110.1bs ] 13390 lbs , 1072 hp
i

16300 lbs ..i 17120 lbs 1673 hp

5.3 Rotor Inertial Velocity Terms

A third change made to the model during this research is in the

calculation of rotor system inertial variables. Due to the fact that the model is

based in a space-fixed frame, the velocity of the helicopter, V, should not

impact the rotor inertial variables as would happen in an Eulerian frame.

Analysis of the inertial variables indicated that, indeed, terms dependent on

V had crept into the equations. These terms were removed from the

equations to correct the error.

5.4 Style Improvements

In many other areas of the code, programming style was corrected and

updated in order to increase the understandability of the program as well as

increase the efficiency and speed.

In general, the only variables specifically declared in the program were

those that required dimensionalization as a matrix or vector. All others were
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left to the Fortran default type. In three cases variable names beginning with

either an M or an L were for variables that were to be defined as real. Fortran

automatically defines variables with those initial letters as integers. This

discrepancy went unnoticed although it caused the values of these variables

to be incorrectly set at zero. Properly defining the names corrected the

problem and the variables were able to be used normally.

In several other cases, the same names were inadvertently used for

different variables in different parts of the program. The calculations

involving these variables were sufficiently independent to prevent an

incorrect result, however, it became difficult for the user to understand the

program. These variables names were changed.

Finally, in order to make the programs more efficient, numerous

constant terms like cos([3o), sin2(_o), and fl 2 that were calculated and

recalculated hundreds or thousands of times throughout the program were

modified. Instead, they are calculated once at the beginning of the program,

assigned to a new variable name such as cbeta0, sbeta0sqd, or omegasqd, and

then these variable names were used for the duration of the program.

Each of these changes served to improve the performance or accuracy

of the program, while at the same time improving the understandability for

the user.



CHAPTER VI

TRIM INPUT FILE FOR THE SYSTEM

The analytical linearization process used in this research produces a

model that is independent of a specific type of helicopter or a specific trim

condition. After the model has been generically developed, the process of

inputting a trim input file allows the model to produce a state-space

representation that is the response of a certain type of helicopter around a

certain trim condition.

The accuracy of the different types of information in this trim file has

different effects on the model output. Small variation in the input trim

conditions of the helicopter may only create a small variation in the output.

However, errors in other parts of the input file could make an impact.

Incorrect physical configuration or physical size values, for instance, can

change the output more significantly.

6.1 Stabilator Incidence Angle

A sensitivity analysis on the stabilator incidence angle provides an

example where the accuracy of the trim value has very little effect on the

outcome. In studying a version of the nonlinear GENHEL model, Ballin [16]

determined that the value of stabilator incidence angle had a significant effect

on the nonlinear model response, especially in the trimmed flight

calculation. He reported that errors in this value had caused miscalculations

in the flapping and lagging response of the rotor in earlier studies. The

56
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analytically linearized model was therefore studied to see if it too had this

strong dependence. It was determined that it did not.

Admittedly, the absolute value of the trim lift on the stabilator will be

different for two cases in which the incidence angle is different. However, the

other trim values of the aircraft are dependent on the input in the trim file

and not on the value of stabilator lift. In both cases, the model would give

continued steady state flight in the absence of an outside input. When the

inputs are applied, they are perturbational inputs, so, for example, a

longitudinal cyclic input would cause a perturbational change of aircraft pitch

from the stead), state condition. This pitch change would affect the above two

cases by changing their angle of attack by the same perturbational amount, Acz.

Since lift is basically a linear function of angle of attack,

ACL = CLc_ ACz (6.1-1)

both cases would have the same perturbational lift generating the same

perturbational pitching moment, and there would be no difference between

the responses. Of course, if the basic relation was nonlinear, some difference

between the two cases would occur, but since the perturbations are considered

very small the difference would be very small.

This simplified view of the stabilator helps to explain some of the

value in using a linearized model. Use of the stabilator angle values that

Ballin considered inaccurate had little effect on the model. However, just to

maintain overall accuracy of the model, the values were changed to the more

accurate ones.
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6.2 Linear Geometric Twist

An item in the trim file that can make a large difference in the aircraft

response is the geometric twist built into the main rotor blades. The value of

linear twist in the input file is given in units of degrees of twist per foot along

the blade. An incorrect value of twist in the model will cause errors in all

main rotor thrust, moment and torque calculations, thereby severely

impacting the accuracy of the results.

For the Black Hawk, the value of blade twist is given as a linear "-18 °

(equiv)" [10] which would imply that

twist/h= -18 °/26.83 feet = -0.671 °/ft (6.2-1)

where 26.83 feet is the rotor radius. The original trim input files, therefore,

used this value for the twist. In the model, the rotor blade is considered as a

rectangular blade with a constant linear pitch from the hinge to tip, so for a

root pitch of zero degrees this resulted in a tip washout of over 17 degrees.

(There is no twist up to the first 1.25 feet of radius where the hinge is located.)

Reference [9] indicates that the blade does have a -0.671 °/ft twist, but only

starts the twist at the beginning of the blade surface which is 5.4 feet from the

hub center. This results in a tip that is washed out only about 14.5 degrees.

Figure 6-1 shows the shape of the UH-60A main rotor blade, the shape of the

modeled blade, and has the blade twist graphed. The difference between the

actual tip washout and the value used in the trim input file has a substantial

effect on the thrust developed by the blade. For the same root pitch, this

incorrectly modeled blade will produce much less lift, overall, than the actual

blade.

Since blades on different helicopters are designed differently, a
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Model Blade Geometry

-9

-!1

-13

-15
0

__ ................................_................................... blade

.............................................. _............................................. _....................... _,._ .......... _............................................

_ ........................ i .......................................... _ ........... ..._...

| .25 5.40 26.83

Blade Position (feet)

Figure 6-I: Geometric blade twist for the
actual and modeled blade.

conversion of the actual blade geometry and twist to a full rectangular blade

with linear twist must be made before a value is used in the input file. As

shown in figure 6-1, a strict linear twist from hinge to tip for the same tip

washout results in a blade that has a greater washout throughout the length

than the actual blade. This also will cause an undercalculation of the thrust.

To properly calculate the equivalent twist for the model, a nominal lift must

be integrated across the helicopter blade, according to the design of the blade,

to determine a value of total thrust. A value of twist for the modeled blade

must then be derived to achieve this same value of total thrust. The plot of

"weighted" twist in figure 6-1 shows the appropriate calculated value of

- 0.51°/ft.
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This change in twist, which causes an overall change in thrust, does

have a significant impact in all the model calculations. The figures in

Chapter VII of this report indicate how the response was substantially affected

due to the corrected value of the linear twist. The calculations of section 5.2

concerning Bls were performed using this corrected value of twist.

6.3 Control System Input Phase Angle

The helicopter control system is designed to transfer the pilot's input

to the swashplate which in turn changes the pitch on the blades. Obviously, a

pure lateral input should create a pure rolling motion in the blades.

However, due to the steady state lag on the blades, this may not always be

true. A control system input phase angle, Asp, is therefore used on the Black

Hawk to compensate. Figure 6-2 illustrates the effect of the lag. Part (a) of the

figure shows the rotor system without the phase angle compensation. Pure

lateral input to the rotor causes maximum roll deflection of the blades when

the hub is at _=90 °. However, due to the steady state lag, to, the blade

achieves this maximum deflection at _P=90 ° - to, causing a small longitudinal

pitch-up response as well.

This can be the cause of some of the cross-coupling noted in the

original validation of the model with flight test. Although the roll input can

cause a longitudinal response, a pitch input also can cause an even greater

lateral response due to the aircraft's lower moment of inertia in roll.

In part (b) of figure 6-2, the effect of the input phase angle is shown.

The lateral input is rotated a number of degrees forward (_sp=9.7 ° [9] ) to

_=90 ° + Asp. If the lag has the same value, then the lateral input will create

the maximum roll deflection in the blades at _=90 ° giving purely roll
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9o° _ _

/...// _-_ _ 9o°-_o i
Asp =o •

_Y= 90 ° + Asp

_ _ _:90.

(a) (b)

= 90 °+ Asp

• = 90° +(_Sp-_o)

-- -q_ = 90"

(c)

Figure 6-2: Control system input phase angle, Asp.

motion. The same correction would work for a pitch input. Unfortunately,

the steady state lag is variable with flight condition, and in many cases for the

Black Hawk is about 5 to 7 degrees. This creates a situation as in figure 6-2 (c)

where the input phase angle has over compensated for the lag, thereby again

causing some cross-coupling in the axes. However, the degree is much

reduced. Time histories in Chapter VII illustrate the improvements due to

correct use of Asp.

6.4 Steady-State Coning and Lag Angles

In the flight test, the trim steady-state values of main rotor coning and

lag were measured by a device mounted on the blades. Having been noted as

a device needing frequent recalibration, the absolute values of these angles
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were in question. To ensure accuracy in the model, therefore, these angles

were instead calculated from the moments of the blade acting in their

direction.

Figure 6-3 illustrates the origin of the moments acting on the blade:

Thrust, Drag, Weight, Inertia, Centrifugal Force, and Hub Springs. For the

Black Hawk, since there are no hub springs, Mhs is zero. For steady state

CF

Figure 6-3: Forces generating coning and lag.

conditions, the sum of the moments must be zero, or

Mr- Mw - Mhs = Mcf + Mi.

The physics of the problem can be calculated as,

(6.4-1)

Mcf + Mi =mb f22 R 3 63o/3. (6.4-2)

Substitution of the blade inertia, Ib = mb R3/3, and equation 6.4-2 into 6.4-1

yields,

9o = (Mr - Mw - Mhs)/Ib f22, (6.4-3)

which calculates the steady state coning angle. However, these calculations

did not take the hinge offset, E, into account. This offset will change equation



6.4-3 to,

where Sb is the blade first mass moment.

for steady state lag can be calculated as,
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9o = (Mt - Mw- Mhs)/(E Sb -Ib) f12 (6.4-4)

In a similar manner, the equation

_o = (Md - Mhs)/Sb E _2. (6.4-5)

The model calculates the trim values of Mt (MFO*a) and Md (MLO*a)

in the development of the various derivatives that depend on their values.

These values can therefore be used to calculate the steady-state coning and lag

angles for input in the trim file. However, to ensure the accuracy of MFO and

MLO, their values were compared to manual calculations of the thrust

moment and lagging moment using the linearized Bailey theory. The

difference between the values at various flight conditions was determined to

be very small, and therefore the values of MFO and MLO were used.

The corrected values of 9o and _o were up to a degree different from

those originally used. As determined by MacDonald [11], the change in lag

angle has an effect on axis cross-coupling only due to the effect in conjunction

with Asp. Without this effect on the input phasing, variation in _o has little

effect on the response. The change in coning also has little impact on the

response due to the linearization around the trim value of coning.

6.5 Main Rotor and Tail Rotor Pitch

The values of main and tail rotor pitch were originally derived from

the flight test values of the control settings. The mixing unit shown in figure

3-2 converts these flight control settings to the the main rotor collective pitch

0o and the tail rotor pitch 0TR., according to



64

Oo = 1.6 Xc (6.5-1)

OVR= 1.60 Xc - 5.54 XrR + 7 °. (6.5-2)

To ensure that the values derived in this manner were not in error,

manual calculations were performed. To check the main rotor collective

pitch, linearized Bailey equations were used to solve for 0o as a function the

thrust required to counter the weight of the aircraft. Nearly identical values

of collective pitch were derived in the two manners, allowing the conclusion

that equation 6.5-1 is a reasonable approximation for collective pitch.

For the tail rotor pitch, the value derived from the directional pedal

position was compared to a value manually calculated from the tail rotor

thrust required to counter the torque of the main rotor. Linearized Bailey

theory was again used, and to account for the tail rotor 53 hinge, equations

developed by Seckel and Curtiss [19] were used. These manual calculations

again produced values that were very close to those calculated in equation 6.5-

2. It was therefore concluded that equation 6.5-2 is a good approximation for

the tail rotor thrust.

6.6 Uniform Induced Velocity

Once the main rotor thrust and tail rotor thrust had been determined,

the values of uniform induced velocity could be directly calculated for both

the tail rotor and main rotor as,

Vo = Ct f2 R / 2(k2+la2) 1/2, (6.6-1)

which can be approximated by

Vo = f2 R (Ct/2) 1/2 (6.6-2)
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in the hover caseand

Vo = Ct f2 R / 2p (6.6-3)

for airspeeds greater than about 50 knots. _. is calculated as

_. = (V sin o_ - Vo)/f2R. (6.6-4)

The source of the original values for main and tail rotor Vo, which is

somewhat different from these calculated values, is unknown, however, the

values as derived from the above equations were used in the trim input file.

Changing from the previous values to these values had only a small effect on

the response.

6.7 Other Corrections

In addition to the sensitivity analyses and manual calculations

performed to check for changes to the inputs, all other values in the trim

input file were also checked for accuracy. Slight errors in physical dimensions

and flight test conditions, such as velocity and c.g. position, were discovered

and corrected.

the cases had

validation.

Of these, only the change in velocity that occurred on three of

an impact on the response as compared to the original



CHAPTER VII

RESULTS OF THE CHANGES

During this research, numerous changes were made to this analytically

linearized model and to the trim input file that drives it; each with the goal of

improving the accuracy of the model. Since this model has undergone

extensive research in the past, many of the major problems that would affect

model response have been already corrected. The changes made in this

research are generally of a more subtle kind, that improve the physics of the

problem and improve the overall accuracy of the results, but may not have a

significant visual effect on the model response for the Black Hawk. Several of

them, most notably twist, have improved the response dramatically. This

chapter illustrates these improvements to the response graphs as compared to

the original model output as developed by Zhao and modified by MacDonald.

Two hover cases, two 60 knot cases and a 140 knot case are presented.

The first case, figure 7-1, shows the response of the helicopter to a one

inch right cyclic input while in a hover. The major improvement noted in

this case is in the pitch rate response to the roll input. The flight test indicates

a pitch down followed after two seconds by a pitch up. Although still not

correct, the new output does show the initial nose down pitch rate, but then

reverts to the nose up. After 4 seconds the model can not be expected to

accurately follow the flight test because the pilot began recovery by lowering

the collective. The collective input is not modeled in this system. It was the

correction in the value of asp that is mostly responsible for this
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improvement in pitch rate. Originally, with Asp set at zero, the situation that

was presented in figure 6-2 (a) was occurring; a right side down roll input was

also causing a nose up pitching moment. As for the other angular rates, the

roll response, which was very well correlated to flight test to start with, was

improved slightly by the correction to twist, but the yaw response was

basically unchanged.

The second hover case, figure 7-2, in which a one inch left pedal input

is used, illustrates other kinds of changes. In this case the aim velocity for

flight test was zero knots (hover). Maintaining a precise hover was difficult,

however, for the pilots flying at over five thousand feet, and at the time of

the test, the LASSIE system was indicating 14 knots forward airspeed. The

original trim file indicated zero knots. It is this correction in velocity, plus

some effect from the twist, that improved the roll rate response in lowering

the peak and improving the roll acceleration (slope of the rate) after the peak.

The velocity also caused the yaw rate response to show some indication of the

bend at 3.8 seconds. Unfortunately, the pitch rate response shows even less

correlation with flight test than it did previously. This points out the fact that

the system is still not correctly modeling the effects of the downwash on the

tail surfaces as the tail changes position due to the yaw. Another cause may

be the control mixing since the left pedal input does affect Bls. The values

used in the mixing are linearizations of this nonlinear device, so inaccuracies

may be present.

The first 60 knot case, shown in figure 7-3, demonstrates the response

to a one inch left cyclic input. In addition to the other corrections discussed in

this report, for this flight test case, errors in the velocity and gross weight were

corrected. Overall there was not a significant change in the output. The pitch
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does now show some of the tendency to pitch up before pitching down like

the flight test. The yaw response is even closer to flight test than it was before.

The second 60 knot case, figure 7-4, shows a one half inch right pedal

input. Like in the previous 60 knot case, the velocity had to be corrected, in

addition to the overall corrections. The roll plot indicates a higher negative

peak value than the original model, but then the acceleration is better after

the peak. It should be noted that at 5 seconds, the pilot began a strong

recovery due to the pitching rate, and the collective was used. The change in

roll rate at 5.5 seconds is likely caused by the collective not being modeled.

The model does show very good yaw-pitch coupling in this case as the pitch

rate graph shows. The correction in both twist and velocity were responsible

for the improvements. The on-axis response of the yaw rate shows much

better improvement with the increased velocity and corrected twist along

with the other changes.

The final case is at 140 knots with a half inch doublet pedal input, first

to the left and then the right. Figure 7-5 shows the angular rates. This is a

case where the corrections to the model had a generally negative effect on the

correlation with flight test. The pitch rate response is slightly improved with

a better pitch acceleration after the peak, but the peak is still too low. The off-

axis response in roll rate is over-estimated, and the corrections to the program

have tended to exacerbate that situation. The on-axis yaw response is only

slightly changed.

These five cases demonstrate that the changes and corrections to the

model and the trim input file did have a generally positive effect on the

correlation of the model with flight test.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

An analytically linearized model of a helicopter, incorporating rotor

blade dynamics and dynamic inflow, had been developed that promised

advantages in stability and control analysis. This model has been examined

with the goal of improving its capabilities for this type of analysis.

To this goal, integral details of the mathematical model and the

validating flight test have been explored and documented. The computer

implementation of the system has been substantially improved to increase

speed, efficiency and ease of use. Several hidden modeling errors have been

discovered and corrected. And finally, the use of the trim input file has been

studied with numerous corrections to the values that "have been used and

corrections to how they are derived.

Although the correlation to flight test was not perfected, it was more

the objective of this study to correct the fundamental problems in the system;

both in the physics of the problem and in the modeling. Many of these types

of problems were resolved. Future sensitivity analysis performed with this

model can be done more confidently, in that the variations to the parameters

will be due to the helicopter and not due a modeling error.

However, several areas still remain to be explored further. The entire

area of the effect of the downwash on the tail still needs to be examined.

Although the subject has been approached in past work, this study did not

address it. Problems with off-axis coupling still remain and are probably due
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to this complicated feature of the model. The off-line program to calculate

these effects should be implemented into the model to provide these values

automatically. Presently they must be input manually in the trim input file.

Although comparison with Black Hawk flight test has shown very

good correlation, the model should also be correlated against other helicopter

flight tests. A hingeless rotor helicopter would indicate the usefulness of the

hub geometry flexibility that is built into the model.

In terms of implementation, one question remains. In order to export

this model to other research organizations, it would be advantageous to

operate the system from a desktop computer. Due to memory restrictions,

however, the main program, "matrix", will have to be partitioned into

several smaller clusters such as rotor aerodynamics, tail aerodynamics,

fuselage aerodynamics, matrix development, etc. These smaller partitions

could then be run individually with lower overall memory requirements.

Finally, the model is currently not easily extendable. Addition of

collective input, drive train/engine dynamics, fuselage flexibility or blade

torsion would be extremely difficult. It would be very valuable to re-derive

the system using a modern symbolic program, such as Mathematica, to

produce a new model that would be capable of these other modeling areas.
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