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Forebody Tangential Blowing for Control at High Angles of Attack

—Feasibility Study Final Report

I. Kroo, S. Rock, and L. Roberts

Stanford University

Introduction

This report summarizes work performed under NASA grant NCC2-55. The project was started in

the summer of 1989. It consisted of a feasibility study, intended to ascertain whether the use of

tangential leading edge blowing over the forebody could produce effective and practical control of

the F-18 HARV aircraft at high angles of attack.

The work consisted of the following phases:

1. Aerodynamic Modeling — A simplified model of the F-18 configuration using a vortex-lattice

model was developed to obtain a better understanding of basic aerodynamic coupling effects and

the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing

was estimated using existing wind tunnel data on normal forebody blowing and analytical studies

of tangential blowing over conical forebodies. From this review of previous work, vehicle forces

and moments due to blowing over a range of angles of attack and blowing rates were estimated.

2. Control system design — Incorporation of forebody blowing into the flight control system was

investigated by adding this additional yaw control and sideforce generating actuator into the exist-

ing F-18 HARV simulation model. A control law was synthesized using LQG design methods that

would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw

rates. This control system was "wrapped around" the existing closed-loop F-18 model and the re-

sulting enhanced vehicle was simulated using the nonlinear NASA HARV simulation program.

Vehicle response to blowing commands and closed-loop time histories of the vehicle at high angles
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of attack with sideslip perturbations were predicted. Cases with and without blowing control re-

vealed that the range of controllable angle of attack could be extended significantly with the addi-

tion of blowing control. Required blowing rates were found to be smaller than other types of

blowing control.

3. Implementation — Based on the estimated blowing momentum coefficients required for flight

control at high angles of attack, possible schemes for obtaining this flow rate were explored.

Three alternatives were considered: compressed or liquefied gas bottle, APU or auxiliary compres-

sor, and engine bleed air. Required values of CM were translated into mass flows based on as-

sumed geometric constraints and choked slot flow. Despite the relatively low momentum coeffi-

cients, a reasonable test period could not be obtained with the use of the first two alternatives, but

data obtained from G.E. indicated that sufficient engine air is available to provide the desired blow-

ing rates.

4. Feasibility demonstrator — Because of the highly nonlinear flow field and important coupling

with the vehicle dynamics, an inexpensive flight research vehicle to test the basic concept was de-

veloped. The vehicle was tested in a wind tunnel at Stanford University, with results to be report-

ed subsequently.

The conclusion of this short study is that the proposed concept is feasible. The work has identified

areas in which additional experimental data is needed and has suggested fruitful topics for future

analysis.

Objectives and Approach

The objective of this short study was to demonstrate how forebody blowing might be used to in-

crease aircraft maneuverability. In particular, the investigation focussed on the feasibility of a

forebody blowing system on the NASA F-18 HARV Aircraft

The approach involved parallel efforts in the areas of aerodynamics and controls. An aerodynamic



model of the vehicle was developed based on existing experimental data and a simple flow solver.

Work was undertaken to identify the range of flow conditions over which this approach would be

useful.

A demonstration control system was designed based on the NASA Dryden HARV simulation and

an LQR control law. The closed loop simulation was run at high angles of attack to demonstrate

the loss of lateral control without blowing and the reestablishment of controlled flight with fore-

body blowing control.

Since much of the available data was classified during this work, it was decided that additional data

could be obtained using a scale model. Flight or wind tunnel testing on this model could provide

important data required for control law design. The airframe was designed, a blowing system de-

signed, constructed and tested, and a sensor / control system was developed. Although the vehicle

was not flown freely, it was tested in a wind tunnel at Stanford.

Finally, a feasibility study was undertaken to determine whether the system could be installed on

the F-18 aircraft This involved estimates of required mass flow and determination of how this

could best be generated

Aerodynamic Modeling

Theoretical Investigation

To understand the origin of some of the basic aerodynamic forces and moments relevant to the con-

trol law design, a vortex lattice model was developed and is shown in figure 1. Results are shown

in figure 2. As might be expected, the lift is rather well predicted out to angles of attack of 30° or

more. The general trend of sideforce at 20° of sideslip is properly predicted although the magni-

tude is underestimated. Pitching moment is also reasonably predicted even at these large sideslip

angles; however, rolling moment and especially yawing moment depart from the measured values

at angles of attack above about 20° for this model. The use of reduced circulation models for post-

stall were investigated with the conclusion that fuselage vortex shedding was particularly important

to accurate computation of yawing moment. A better model with free vortex wakes on the fuselage

would be needed to significantly improve the prediction. " ~



Several coupling effects can be modeled by introducing streamwise circulation at forebody as a

representation of the effects of blowing. In addition to a direct sideforce and its associated yawing

moment, the trailing vorticity produces a nonlinear roll coupling by increasing the asymmetric

downwash distribution on the wing and introducing a sidewash on the vertical tail surfaces.

(See figure 3.)

Experimental Investigation

Clearly, a detailed experimental database would be useful for the control system modeling. How-

ever, the primary data obtained at NASA Ames Research Center on the P-600 model was classified

just after the current program started. Other available data was limited, but indicated that the pri-

mary effect of forebody blowing is associated directly with the forebody sideforce. (Figure 4.)

Data that has now been made available indicates large available yawing moments, increasing with

angle of attack (Figure 5.)

As suggested by the vortex lattice calculations, significant Cn , Cv , Q terms appear with

asymmetric blowing. This produces a strong coupling of longitudinal and lateral dynamics, requir-

ing more careful control system design. The a - dependence is due primarily to the fact that the

sideforce is produced by cross-flow on the fuselage so that with blowing we expect a sin a varia-

tion in sideforce and yawing moment.

Summary

The fundamental effect of forebody blowing is on yawing moment. The effectiveness increases

with angle of attack, unlike the rudder effectiveness which becomes quite small at higher angles of

attack. However, other forces and moments are also produced including: sideforce in the opposite

direction as a rudder would produce for a given yawing moment, highly nonlinear rolling moments

associated with downwash on the wings and interference with the vertical tail surfaces, and nonlin-

ear rate derivatives. From the vortex lattice model, it is expected that further coupling between lon-

gitudinal and lateral motion will result from yawing moment due to pitch rate and pitching moment

due to yaw rate.



Control System Design

Philosophy

One of the major issues determining the feasibility of using any pneumatic control system is its

mass flow requirement. Consequently, an attempt has been made to approximate the requirements

of the proposed system for the F/A 18.

The procedure employed to develop the approximation was to design a yaw control system that

could be installed as outer loop around the existing F/A 18 flight control system. This control logic

was then implemented and tested in the full nonlinear HARV simulation. Details of the implemen-

tation are provided in the following section.

A schematic of the proposed proof-of-concept control system is presented in Figure 6. One justi-

fication for this approach is that such a system should require even less mass flow. The non-

optimality results from the lack of coordination in the design between the blowing system and the

other yaw effectors.

There are other advantages to this approach. One of the greatest is that it is easy to design and

implement. Since the system is intended only to augment the stability of an existing system, there

is no need to address the complexities of a complete flight control system. Ease of implementation

is also included as part of this benefit.

Another advantage is that treating the pneumatic control as an outer loop allows similar designs to

be implemented on different aircraft systems. For example, similar yaw augmentation systems

could be implemented on a real aircraft and on a remote controlled model aircraft The latter would

could be done to provide a low cost proof-of-concept flight test demonstration.

Note that there is no claim that an outer loop configuration would represent the final configura-

tion. In fact, the final configuration envisioned would result from complete redesign of the entire

flight control system. Only in this way can the actions of the pneumatic control and the aerody-

namic surfaces be coordinated efficiently. Another reason for addressing a complete flight control

design is that pneumatic systems to control vortex behavior are inherently nonlinear. They cannot



properly be treated as yielding incremental forces and moments as is often done with the aerody-

namic surfaces. When activated, pneumatic control and the effectiveness of the .other effectors

(e.g. if the vortex flow is altered, the effectiveness of an aileron can be altered drastically). At the

extreme, the entire concept of using stability derivatives to describe an aircraft becomes questiona-

ble.

For these reasons, developing optimal or efficient use pneumatic control systems may require ex-

tensions to the state-of-the-art in nonlinear fight control system design. There is exciting research

potential. The justification for such research, however, depends on there being sufficient perfor-

mance improvements for the aircraft system. Demonstrating the potential for such improvements is

the goal of addressing the simple control logic described in Figure 6.

Control Law Design

Using blowing to control the vortex flow and hence produce a yawing moment is conceptually an

appealing concept. At high angles-of-attack such an effector is potentially very powerful whereas

the effectiveness of conventional aerodynamic surfaces is greatly diminished. In fact, the existing

F/A-18 exhibits an instability (large amplitude limit cycle) at approximately 45° angle of attack.

The source of this instability is apparent in Figure 7. Plotted are the Q stability derivative (yawing

moment) and the rudder effectiveness, 3Cn/96r, versus angle-of-attack and that the rudder effec-

tiveness drops rapidly at 20° and even more at 45°. The significance of this is that the control sys-

tem relies on the rudder to compensate for the radical change in CR, and the rudder loses its effec-

tiveness at high angle-of-attack. Augmenting the control system with an effector (blowing) that

increases in effectiveness at high angles-of-attack offers the promise of greatly increasing the

flight-maneuver envelope of the aircraft

One potential complicating factor in using forebody blowing (as viewed by the controls engineer)

is that it acts in front of the center-of-gravity rather that behind it (as does the rudder). This results

in a non-minimum phase system characterized by a zero in the right-half of the s-plane. Such sys-

tems are typically more difficult to control. In this effort, the result was that all attempts to design

simple controllers using only beta (and its derivatives) as feedback were unsuccessful (note that the



effort was limited, however). Rather, a full state linear quadratic design was accomplished that fed

back P, r, p, and <(>.

A typical pole-zero pattern for a transfer function from blowing input to yaw-angle output is

shown in Figure 8. The right-half plane zeros are apparent This figure was obtained by extract-

ing a linear model of the closed-loop F/A-18 from the HARV simulation (see next section). For

this derivative, blowing was modeled as a stability derivative increment The values used are pre-

sented in Table 1. Values for the rudder are included for comparison. Note the sign change on the

CY derivative. The state variable mode of the closed loop system using P, r, p, and <|> as states is:

P
r

P

L*J

-.0971 .2290 .1037 -.9722

-10.2147 -1.0287 -.1111 .6408

0 1.0 0 2350

.8613 -.0070 .0202 -.1044

V
r

P

.*.

*

'-.0017"

.0148

0

-.0591

This fidelity of this linear model is marginal. Its response to a step in blowing is compared with

the full HARV simulation's response in Figure 9. Clearly, improvements in the model are neces-

sary, but this was beyond the scope of the current effort. All that was required for this study was a

model that predicted general trends so that a candidate control logic could be designed.

The design of the actual control system that was implemented was accomplished using this model

and PC-MATLAB. The result is:

= 469*p - 65*p - 81*<|> - 196*r.

Again, no claim is made that this is a good control design. Rather, this is a control design that

when applied to the HARV simulation, stabilized the motion at high alpha. The derivation of the

control gains is relatively unimportant Future work will address the fidelity of the model and the

development of better control logics.

Results showing the performance of this control logic when applied to the HARV simulation are

presented in following sections.



Simulation

The simulation used for this study was a modified version of the real-time HARV simulation

used at NASA Ames Dryden Flight Research Center. The simulation and a set of validation results

were provided by NASA. The simulation was modified at Stanford to incorporate the effects of

forebody blowing and to run on an IBM compatible personal computer under DOS.

The major modifications included:

(1) The main program which controls program flow was rewritten to operate

on a single computer in a batch mode rather than on multiple processors in real

time (as is done at NASA).

(2) The input routines were rewritten to accept time histories of stick and pedal

inputs rather than process real time signals.

(3) The output routines were rewritten to create ASCII data files that could be

processed off-line to create plotted output PC-MATLAB was the program

used to process the data and create the plots.

(4) The initialization loop was rewritten.

(5) The capability (preliminary) to extract linear models of the closed-loop air-

craft was added.

(6) The effects of forebody blowing and a control system to govern its use

were added.



Given the above modifications, the program has a 502K executable image. Current limitations of

the PC version of the simulation include:

(1) Only the "clean" and the "high-alpha" data bases have ben implemented.

The "takeoff1 and "approach" data bases were eliminated to reduce memory re-

quirements.

(2) No hinge moment data are incorporated. This was a result of not having a

valid data base soon enough in the effort The data are now available and could

be added easily.

Results

Two test cases were run to demonstrate the effectiveness of the control logic defined in the previ-

ous section. Again, the goal was to obtain a rough estimate of the amount of blowing that was re-

quired rather that to evaluate the control system.

The first case was designed to demonstrate nominal (good) performance of the F/A-18 in a "nor-

mal" part of its flight-maneuver envelope. A pedal doublet applied to an aircraft trimmed at 13° an-

gle-of-attack (altitude =10K ft, velocity = 300 ft/sec) was chosen. The results are presented in Fig-

ure 10. The aircraft is well behaved.

The second case chosen was a pedal doublet applied at 45° angle-of-attack. The results of the

nominal closed-loop F/A-18 are presented in Figure 11. Note that the aircraft response is unstable,

also note that the aircraft was "flown to" 45° using the longitudinal stick since it was not possible

to trim the aircraft at that attitude with centered control stick.

Figure 12 presents data for the same condition as Figure 11 except that the blowing control law

as activated at roughly seven seconds into the transient (in order to allow the beta response to

build). Note the excellent response in returning the system to zero when the blowing is activated.

Note also that the amount of mass flow required by the blowing system to perform this maneuver

was well within the reasonable limits described in the section on full scale implementation.
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The conclusions to be drawn from figure 12 include:

(1) Blowing on the forebody of an F/A-18 is a very effective means of pro-

ducing yawing moment control at high angles of attack, and

(2) The predicted mass flow requirements of such a system are well within

reasonable limits.

Future work is required to develop and incorporate more accurate descriptions of the effects of

blowing into HARV simulation, and to address the complex issues of designing control systems

that will incorporate blowing.

F-18 Model Development

Objectives

A scale model of the F-18 was constructed to demonstrate the effectiveness of forebody blowing

for yaw control at high angles of attack. It was planned that this model would be flown, or at least

tested, to provide additional aerodynamic data for control law design, to permit preliminary evalua-

tion of control strategy, and to obtain unsteady aerodynamic data.

Description

The model airframe was based on a Byron Originals R/C model kit and consisted of a molded fi-

berglass fuselage and Styrofoam wing and tail surfaces with aluminum spars. The model was

powered by an O.S. 0.91 ducted fan. The control system consisted of a PWM R/C system,

a Futaba rate gyro, and a "Tattle-Tale" computer. Interfaces for these systems were developed and

tested during the course of this research program.

The blowing system consisted of an electrically-powered centrifugal compressor, constructed spe-

cially for this model Blowing slots were constructed in the forebody and the plenum was con-

structed of fiberglass and polyester resin. This design was developed after initial tests of a Freon

propellent system yielded unsatisfactory results. A revised system using "Propel" as a working

fluid was then constructed and evaluated. This too was insufficient to generate the required 60-100

11



seconds of blowing with C^ = .003. Methods for using "bleed" air from the ducted fan were con-

sidered, but the final solution used a separate centrifugal compressor driven by an Astro-5 electric

motor and Ni-Cad batteries. (Figure 13.)

Tests

Tests of the subsystems, including electronics, blowing system, and wing-leveling autopilot were

completed successfully, but due to time constraints, the planned flight tests were replaced with a

wind tunnel investigation. Results of these tests (see installation photo in figure 14) will be report-

ed subsequently.

Full-scale Implementation — Feasibility Study

Introduction

The successful mechanical implementation of an active yaw control blowing system for the F-18 is

vital to this study. Also, as in all aeronautical design studies, weight and size considerations are al-

ways in the forefront, three methods for implementation of this section of the report. The basis of

this study is the basic requirements and limitations imposed to obtain a viable solution of the design

problem. These basic requirements are listed first, followed by a description of each of the three

methods. The methods are: (1) using bottled liquid gas, (2) using the auxiliary power unit (APU)

and, (3) using bleed air from the engine. Finally a conclusion is given with recommendations for

further work.

Basic requirements and limitations

Proposed flight conditions:

Altitude: 10,000 ft

CL: 1 to 1.8

Load factor (L/W): 1

Aircraft statistics:

Fighter configuration weight: 15740 kg (34700 Ib)
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Blowing jet data:

Jet Mach number: 0.7

Slot length: 6 -8 ft

Max slot height: 5 - 10 mm

Time of blowing: 5-10 min.

Other considerations applicable to a bottled system or one with an intermediate plenum, are weight

and space. Weight considerations include stability data like longitudinal and lateral distances from

center of gravity, aerodynamic center and center of pressure. Space considerations include the ex-

isting availability and possible availability of space for storage of these devices. Coupled to this is

the necessity of plumbing to bring the control gas to the jet slot.

Considerations not addressed in detail in this report include:

• the controllability of the jet (response time, repeatability of velocity, momentum

at different altitudes)

• steadiness of supply/reservoir conditions (temperature, pressure, mass flow)

during operation of jet.

Defining equations and definitions

The blowing momentum coefficient is defined as follows

(1)

The mass flow,

m = p j V j A j (2)

Thus, the area of the jet slot:

Aj = ^ q S / ( P j Vj2) (3)

From the definition of the lift coefficient:

L= qS CL (4)

WithL/W= 1:
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q S = W / C L (5)

where W is the weight of the aircraft

Sound speed of the gas,

C J = V Y R T J (6)

Pressure ratio across an isentropic nozzle as a function of nozzle Mach number,

P0/P = [1+ M 2 (Y-1) /2]Y/(Y-D (7)

Proposed Systems

CCh Bottled Gas System

The primary parameters to be determined in this case are the required mass flow an thus the weight

and size of the required storage bottle. To do this we need the thermodynamic and thermophysical

properties of CO2 •

Fig. 15 shows a pressure-enthalpy diagram for CC>2, also known as Refrigerant 744. Note that

liquid CO2 implies that we have a thermodynamic equilibrium state somewhere on the liquid satu-

ration line, the exact pressure and density depending on the temperature of the storage bottle.

Since the jet exit is at atmospheric pressure (which depends on the altitude), this is the final refer-

ence condition assuming that the jet pressure is the same as atmospheric. Since it is required to

have a subsonic velocity at the jet, the pressure ratio across the jet needs to be controlled for this to

be so.

By specifying the jet exit Mach number, we have already assumed a certain pressure ratio across an

'isentropic1 nozzle for a given jet exit temperature.

14



A program was written (see Appendix) in which the user specifies the following input parameters:

* Blowing momentum coefficient

* CL for typical control maneuver

* L/W

* Weight of aircraft

* Altitude

* Jet Mach number

* Jet exit temperature

* Jet slot length

* Required blowing time

* Reservoir storage temperature

The following parameters are then calculated using the defining equations and table look-ups:

* Jet exit velocity

* Exit density

* Exit area, slot height

* Jet mass flow rate

* Initial mass required

* Initial volume required

* Pressure ration required across isentropic nozzle

For the above assumption of constant reservoir conditions we need to determine what the required

heat input rate is for this assumption to be valid In the reservoir, liquid CO2 is continually being

vaporized to gas. This requires heat of vaporization which needs to be supplied externally if not

available from the surroundings. With reference to Fig. 15, the enthalpy-pressure diagram for

CO2, this amount of specific heat can be identified as the horizontal distance between the two legs

of the saturation curve. From the tabulated values of enthalpy of different temperatures, and the

calculated mass flow, we can calculate the heat input required. This was also included in the pro-
•

gram.

Table 2 shows the calculated parameters for a range specified by the basic requirements.
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As can be seen from the table, this is not a viable solution to the problem. The obvious reason is

that the mass flow rate required results in too heavy and large a reservoir. A secondary reason is

the large amount of heat required for a constant temperature reservoir also due to the large mass

flow rate.

Using Auxiliary Power Unit (APU)

The next option is to use the APU. This 200 kW unit is a Garrett Ai Research turbine used for

starting one engine of the F- 18 and for testing of the systems before take-off. It is also used to

some extent for environmental control during flight The following data on the exit air of the APU

is available:

Exit pressure: 33.3 - 55.5 psig (3.31 - 4.90 bar abs)

Entrance temperature: 1236° ± 15° F (942° ± 8° K)

This supply air has too much energy for direct expansion across a nozzle and would therefor need

some intermediate plenum. The most important factor in evaluation this option, however is the

available mass flow rate. This number was not available and was crudely, optimistically estimated

as follows:

If this air should exhaust isentropically with no losses, the following isentropic relation determines

the final temperature:

The specific work available is then

W = Cp(T02-T03) (9)

Again with no losses, the mass flow rate, given the power output

m = P/W (10)

Choosing representative conditions as 942°K, 3.3 and 4.9 bar, and cp = 1005 kJ/kgK we get mass

flow rates of 0.73 and 0.58 kg/s respectively. The program described in the previous section was

run with air as control gas, with the results presented in table 3.
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It can be seen that the mass flow rates required for the specified blowing momentum coefficient are

considerably more than that available form the APU. This makes this option only viable if an inter-

mediate reservoir is used which is pumped up with excess air when the control system is not in

use. This is a topic for future research.

Bleed air from the engines

The final alternative discussed in this section is that of using air from the aircraft's engines. Possi-

bilities include normal bleed air and "anti-ice" bleed air. Normal bleed air is bled off the engine in

the last stages (7) of the high pressure compressor. Anti-ice air comes from stage 4 of the high

pressure compressor. Both supplies are relatively high temperature but since they are bled off be-

fore the burner, are clean without products of combustion.

For a typical maneuver specified under the basic requirements,

Altitude: 10 000 ft

Angle of attack: 45°

Flight Mach number 0.6

The throttle position, available bleed air and thermodynamic conditions are displayed in table 4.

(PLA = Power Level Angle).

Normal bleed air is 6% of Wl. 'Anti-ice1 bleed air is 0.8% of W25.

Table 5 shows the available normal bleed air and table 6, the available air from the anti-ice system.

Comparing with the required values presented in table 3, we are now in the right order of magni-

tude using the normal bleed air, but not the 'anti-ice' bleed air.

This air needs to be brought down in temperature and pressure before it reaches the jet slots if a

subsonic jet is required.

17



Summary

1. It was shown in this section of the report that implementation of a blowing system to control

the yawing moment is viable if the normal bleed air from the engines can be used.

2. Other systems using bottled gas or the APU are shown to be inadequate due to a too low mass

flow rate.

3. Next steps in the design of the mechanical system implementing this idea would include:

• design of the jet nozzle shape and plenum cross-section for 'isentropic' flow

• layout of plumbing and valves required to bring the air to the nose of the aircraft

• determination of the lag-effects due to the length of ducting

• linkage of the actuation of the valves to the control system of the aircraft

18



Conclusions

In summary, the following conclusions may be drawn from this brief investigation:

• Tangential forebody blowing can significantly extend the controllable angle of at-

tack range of the F-18 aircraft.

• Several aerodynamic nonlinearities and couplings have been identified and should

be the subject of continued investigation.

• Blowing system requirements for both model and full-scale aircraft were evaluat-

ed: mass flow rates are critical factors, but can be achieved.

Future Work

Many topics have been identified as beyond the scope of this initial investigation, but may be cru-

cial for continued development of the concept These include:

• Improved aerodynamic prediction methodology

— Post-stall prediction capability

— Unsteady effects

• Acquisition of additional aerodynamic data

— Classification problem

— Future tests

• Refined control law development

— Gain scheduling

— Coupling effects (Cn modifies derivatives)

• Continued RPV construction and testing

• Full-scale blowing system integration issues

—Ducting system requirements

— Reduced mass flow slot design
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Figure 1. Vortex lattice representation of F-18.
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Figure 2. Comparison of computed aerodynamic characteristics using a simple vortex lattice model

with NASA HARV Aero Model Database. Beta = 20°, C.G. at 33.6 ft from nose.
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Figure 3. Blowing Effects on Forces and Moments.
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a. Complete configuration

b. Forsbody contribution to campMM
configuration

Figure 4. Experimental data using other blowing schemes suggests that most of the yawing
moment is produced by local sideforce on the fuselage.
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Estimated Effects of Blowing
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Figure 5. Effect of blowing on yawing moment
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Derivative

d o / ̂  sv--l / C» Of*

0 V-TY1 / " ^V

acn/aa,.
a Co/as,.
acL/a8r
acy/asr

Rudder
(perdeg)

0.00028

0.00011

-0.0012

0.000

0.000

0.0038

Blowing
(per .001 C^)

0.0

0.0

-0.007

0.0

0.0

-0.016

Table 1. Assumed stability derivative increments due to rudder and blowing.

Closed-Loop
F/A 18

Blowing
System

Figure 6. Implementation of blowing scheme as outer loop around existing

F-18 system.
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Figure 7. Yaw stability and control characteristics for F-18 vs. angle of attack.
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Figure 8. Typical pole-zero pattern for blowing input to yaw angle output
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HARV SIMULATION VS LINEAR MODEL

BETA RESPONSE TO A STEP IN BLOWING: ALPHA=14. V-300. H=IOK
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Figure 9. Comparison of linear model and HARV simulation—response to step input

in blowing.
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PERFORMANCE OF HARV AT 13 deg
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Rgure 10. Time history of motion after rudder doublet input a = 13°
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PERFORMANCE OF HARV AT 45 deg
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Figure 11. Time history of motion after rudder doublet input a = 45

30



50

40

30

20

ALPHA

10
0

20

10

0

-10

-20

10

RUDDER

15 20

6

4

2

0

-2

BETA

0

10 15 20

-2

•4

-6

-8

10

BLOWING

15

0 10 15

Figure 12. Time history of motion after rudder doublet input a = 45°

Blowing control system on.
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Astro-5 Electric Motor

Compressor

Ni-Cad Batteries

Slot

Figure 13. Installation of blowing system in F-18 model.
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Figure 14. F-18 model installed in wind tunnel at Stanford University.
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Figure 15. Pressure-Enthalpy diagram for CC>2
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EVALUATION OF BLOWING SYSTEM PARAMETERS

1989-10-09
12:49:55

CONTROL GAS - C02

Cmu CL L/W Mj Tj [K] Vj [m/s] rhoj[kg/m3]

.005 1.0 1.0 .7 273. 181. 1.344

Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa] ratio alt [ft]

.017 1.829 9.6 .4.26 154252. 69693. 1.360 10000.

tblow [s] mO [kg] vol [m3] rhoO [kg/m3] TO [K] Qdot [kW]

600. 2553. 2.75 927. 273. 987.283

EVALUATION OF BLOWING SYSTEM PARAMETERS

1989-10-09
12:49:02

CONTROL GAS - CO2

Cmu CL L/W Mj Tj [K] Vj [m/s] rhoj[kg/m3]

.005 1.8 1.0 .7 273. 181. 1.344

Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa] ratio alt [ft]

.010 1.829 5.3 2.36 85696. 69693. 1.360 10000.

tblow [s] mO [kg] vol [m3] rhoO [kg/m3] TO [K] Qdot [kW]

600. 1418. 1.53 927. 273. 548.490



VALUATION OF BLOWING SYSTEM PARAMETERS

989-08-16
3:08:47

ONTROL GAS - AIR

Cmu CL L/W Mj Tj [K] Vj [m/s] rhoj[kg/m3]

.005 K_0 1.0 .7 273. 232. .890

Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa] ratio alt [ft]

.016 1.829 8.8 3.33 154252. 69693. 1.387 10000.

VALUATION OF BLOWING SYSTEM PARAMETERS

989-08-16
3:09:53

ONTROL GAS - AIR

Cmu CL L/W Mj Tj [K] Vj [m/s] rhoj[kg/m3]

.005 1̂ 8 1.0 .7 273. 232. .890

Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa] ratio alt [ft]

.009 1.829 4.9 1.85 85696. 69693. 1.387 10000.
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Table 4

PLA

0

40

75

87

(PLA

PLA

40

75

87

PLA

40

75

87

Wl

(lb/s)

46

106

127

W25 P21
(total)

(lb/s) (psi)

27 19

76 42

96 52

P3 T25 T3
(tot/static)
(psi)

63/59

(°R)
592

230/219 758

311 819

(°R)
836

1203

1333

= Power Level Angle).

Wl

(kg/s)

20.9

48.1

57.6

W25

(kg/s)

12.2

34.5

43.5

Tables

normal
bleed
(kg/s)

1.25

2.88

3.46

Table 6

anti-ice
bleed
(kg/s)

0.098

0.276

0.348

P3
(total/static)
(kPa)

434/407

1590/1510

2280/?

(p3-p2i)/2
+ P21
(kPA)

269

8%

1250

T3

(K)

464

668

741

CT3-T21)/2
+ T21
(K)

397

545

598



PROGRAM RABLOW1
*
* RA AUG 1989
*
* Program for evaluating different parameters in fuselage blowing
* scheme.
*
* Ken Craig 8/15/89
*

REAL Cmu,CL,LW,Mj,Tj,Vj,rhoj,Aj,1,h,mdotj,qS,Pa,rati o,
# tb,mO,vol,rhoO,TO,R,gamma,alt,W.Qdot.delh
INTEGER i1oad,igas
INTEGER*2 IHR,IMIN,ISEC,I1OOTH,IYR,IMON,IDAY
CHARACTER*64 outfile

*
WRITE(*,«) 'EVALUATION OF BLOWING SYSTEM PARAMETERS'
WRITE(*,«) ' '

*
* OPEN OUTPUT FILE
*

WRITE(*,«) 'OUTPUT FILE :'
READ(«,'(a)') outfile
OPEN(1,FILE=OUtfile,STATUS='UNKNOWN',ACCESS='SEQUENTIAL' ,
*IOSTAT=IOS,ERR=9000)
WRITE(*,«) 'Blowing momentum coefficient Cmu :'
READ(*,«) Cmu
WRITE(*,«) 'Lift coefficient CL :'
READ(*,«) CL
WRITE(*,») 'Load factor L/W :'
READ(*,«) LW
WRITEC*,*) 'Weight of aircraft'
WRITE(*,«) '1 empty'
WRITE(*,*) '2 fighter configuration'
WRITE(*,*) '3 maximum1

READ(*,*) iload
GOTO (10,11,12),iload

10 W = 9900*9.8
GOTO 13

11 W = 15740*9.8
GOTO 13

12 W = 23540*9.8
13 qS = W*LW/CL

WRITE(*,«) 'Altitude for manoeuver [ft] :'
READ(*,») alt

*
* CALL TABLE LOOKUP OF ISA FOR ATMOSPHERIC PRESSURE AT ALTITUDE
*

CALL TABISA(alt,Pa)
WRITE(*,«) 'Jet Mach number Mj :'
READ(*,«) Mj
WRITE(*,«) 'Jet exit temperature Tj [K] :'
READ(*,«) Tj
WRITE(*,«) 'Jet slot lenght 1 [m] :'
READ(*,«) 1



WRITE(*,*) 'Choose control gas'
WRITE(*,«) '1 Air'
WRITE(*,«) '2 C02'
READ(*,«) igas
GOTO (14,15),igas

*
* SECTION FOR AIR
*

14 gamma = 1.4
R = 287.0
Vj = SQRT(gamma*R*Tj)*Mj
rhoj = Pa/R/Tj
Aj = Cmu*qS/rhoj/Vj/Vj
h = Aj/1
mdotj = rhoj*Aj*Vj '
GOTO 100

*
* SECTION FOR CO2
*

15 gamma =1.3
R = 188.9
Vj = SQRT(gamma*R*Tj)*Mj

*
* CALL TABLE LOOKUP FOR DENSITY of gas AT SPECIFIED TEMPERATURE
*

CALL TABCOG(Tj.rhoj)
Aj = Cmu*qS/rhoj/Vj/Vj
h = Aj/1
mdotj = rhoj*Aj*Vj
WRITE(*,«) 'Specify required blowing time, tb :'
READ(*,«) tb
mO = mdotj*tb
WRITE(*,«) 'Specify reservoir storage temperature TO [K] :
READ(*,*) TO

*
* CALL TABLE LOOKUP FOR DENSITY of liquid and enthalpy 01
vaporization
* AT SPECIFIED TEMPERATURE
*

CALL TABCOL(TO,rhoO,delh)
vol = mO/rhoO
Qdot = de1h*mdotj

*
100 ratio = (1.0 + (gamma-1.0)/2.0*Mj*Mj)**(gamma/(gamma-1))

*
* WRITE RESULTS TO FILE AND SCREEN
*

CALL GETDAT(IYR,IMON,IDAY)
CALL GETTIM(IHR,IMIN,ISEC,I1OOTH)
WRITE(* *) 'EVALUATION OF BLOWING SYSTEM PARAMETERS'
WRITE(*
WRITE(*
WRITE(*
WRITE(*

*) ' '
'(1X,I4.2,1H-,I2.2,1H-,I2.2)') IYR,IMON,IDAY
'(1X,12.2,1H:,12.2,1H:,12.2)') IHR,IMIN,ISEC
*) • '



IF (igas.EQ.1) THEN
WRITE(*,«) 'CONTROL GAS - AIR'
ELSEIF (igas.EQ.2) THEN
WRITE(*,«) 'CONTROL GAS - C02'
ENDIF
WRITE(*,») ' '
WRITE(*,«) ' Cmu CL L/W Mj Tj [K] Vj [m/s]

rhoj[kg/m3]'
WRITE(*,«) ' '
WRITE(*,'(1X,F5.3,2X,F3.1,3X,F3.1,2X,F3.1,4X,F4.0,4X,F4.0,
* 5X.F5.3)') Cmu,CL,LW,Mj,Tj,Vj,rhoj
WRITE(*,*) ' '
WRITE(*,«) ' Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa]

rati
#o alt [ft]'
WRITE(*,«) ' '
WRITE(*,'(1X,F5.3,4X,F5.3,1X,F4.1,2X,F5.2,8X,F7.0,1X,F6.0,
* 1X,F6.3,1X,F6.0)') Aj,l,h*1000.,mdotj,qS,Pa,ratio,alt
WRITE(*,*) ' '
IF (igas.EQ.2) THEN
WRITE(*,«) ' tblow [s] mO [kg] vol [m3] rhoO [kg/m3] TO [K]

Qdot
*[kW]'
WRITE(*,«) ' '
WRITE( *, ' (2X, F4.0, 6X, F5 .0, 3X , F5. 2, 4X, F5 .0, 9X, F4. 0, 3X, F8. 3)' )
* tb,mO,vol,rhoO,TO,Qdot
ENDIF
WRITE(1,«) 'EVALUATION OF BLOWING SYSTEM PARAMETERS'
WRITEd,*) ' '
WRITE(1,'(1X,14.2,1H-,12.2,1H-,12.2)') IYR,IMON,IDAY
WRITE(1,'(1X,I2.2,1H:,12.2,1H:,12.2)') IHR,IMIN,ISEC
WRITE(1,*) ' '
IF dgas.EQ.1) THEN
WRITE(1,*) 'CONTROL GAS - AIR'
ELSEIF (igas.EQ.2) THEN
WRITE(1,*) 'CONTROL GAS - C02'
ENOIF
WRITE(1,*) ' '
WRITEd,*) ' Cmu CL L/W Mj Tj [K] Vj [m/s]

rhoj[kg/m3]'
WRITEd,*) ' '
WRITE(1,'(1X,F5.3,2X,F3.1,3X,F3.1,2X,F3.1,4X,F4.0,4X,F4.0,
* 5X.F5.3)') Cmu,CL,LW,Mj,Tj,Vj,rhoj
WRITEd,*) ' '
WRITEd,*) ' Aj [m2] 1 [m] h[mm] mdotj [kg/s] qS [N] Pa [Pa]

rati
*o alt [ft]'
WRITEd,*) ' '
WRITE(1,'(1X,F5.3,4X,F5.3,1X,F4.1,2X,F5.2,8X,F7.0,1X,F6.0,
* 1X,F6.3,1X,F6.0)') Aj,l,h*1000.,mdotj,qS,Pa,ratio,alt
WRITEd,*) ' '
IF (igas.EQ.2) THEN
WRITEd,*) ' tblow [s] mO [kg] vol [m3] rhoO [kg/m3] TO [K]

Qdot



*[kW]'
WRITE(1,«) ' '
WRITE( 1,'(2X,F4.0,6X,F5.0,3X,F5.2,4X,F5.0,9X,F4.0,3X,F8.3 ) '
* tb.mO.vol,rhoO,TO,Qdot
ENDIF
STOP

*
9000 WRITE(*,*) 'PROBLEM WITH OUTPUT FILE'SIOS

CLOSE(1)
END

SUBROUTINE TABCOG(T,rho)
DIMENSION vol(8),Tg(8)
DATA vo1/10.64,11.14,11.63,12.12,12.61,13.10,13.60,14.09/
DATA Tg/-20.0,0.0,20.0,40.0,60.0,80.0,100.0,120.O/
N = 8

*
* CONVERT TEMPERATURE TO degF
*

Tf = T*9.0/5.0 - 459.67
CALL LOCATE(Tg.N.Tf,J)

*
* LINEAR INTERPOLATION
*

volg = vol(J) + (vo1(J+1)-vol(J))/(Tg(J+1)-Tg(J))*(Tf-Tg(J)
*
* CONVERT TO SI UNITS AND DENSITY
*

rho = 1.601846E01/volg
RETURN
END

SUBROUTINE TABCOL(T,rho,delh)
DIMENSION dens(9),Tl(9),h1(9),hg(9)
DATA dens/982.03,955.18,926.36,894.97,860.13,828.79,772.73
* 724.83,604.70/
DATA hi/479.01,490.47,502.38,514.84,528.04,539.33,558.14,
* 572.84,604.89/
DATA hg/738.07,736.4,733.96,730.58,725.98,721.1,710.73,
* 700.33,668.3/
DATA T1/-10.0,-5.0,0.0,5.0,10.0,14.0,20.0,24.0,30.O/
N = 9

*
* CONVERT TEMPERATURE TO degC
*

Tc = T - 273.15
CALL LOCATE(T1,N,TC,J)

*
* LINEAR INTERPOLATION
*

r h o = d e n s ( J )
(dens(J+1)-dens(J))/(Tl(J+1)-Tl(J))*(Tc-Tl(J))

hliq = hl(J) + (hl(J-H)-hl(J))/(Tl(J+1)-Tl(J))*(Tc-T1(J))
hgas = hg(J) + (hg(J+1)-hg(J))/(Tl(J+1)-Tl(J))*(Tc-Tl(J))



delh = hgas - hliq
RETURN
END

SUBROUTINE TABISA(alt,Pa)
DIMENSION pres(11),h(11)
DATA pres/10.132E4,8.987E4,7.948E4,7.01E4,6.163E4,5.4E4,
* 4.717E4,4.104E4,3.558E4,3.073E4,2.642E4/
DATA h/0.0,1E3,2E3,3E3,4E3,5E3,6E3,7E3,8E3,9E3,10E3/
N = 11

*
* CONVERT ALTITUDE TO m
*

altm = alt*3.048E-1
CALL LOCATE(h,N,a1tm,J)

*
* LINEAR INTERPOLATION
*

Pa = pres(J) + (pres(J+1)-pres(J))/(h(J+1)-h(J))*(a1tm-h(J))
RETURN
END

SUBROUTINE LOCATE(XX,N,X,J)
DIMENSION XX(N)
JL=0
JU=N+1

10 IF(JU-JL.GT.1)THEN
JM=(JU+JL)/2
IF((XX(N).GT.XX(1)).EQV.(X.GT.XX(JM)))THEN
JL=JM

ELSE
JU=JM

ENDIF
GO TO 10
ENDIF
J=JL
RETURN
END




