VOLUME I - EXECUTIVE SUMMARY

VOLUME II - STUDY SUMMARY

SECTION 1: LRBI Study Synopsis - An assessment of the study objectives, approach, analysis, and rationale. The study findings and major conclusions are presented.

SECTION 2: Launch Site Plan - An implementation plan for the KSC launch site integration of LRB ground processing. The plan includes details in the areas of facility activations, operational schedules, costs, manpower, safety and environmental aspects.

SECTION 3: Ground Operations Cost Model (GOCM) - The updating and enhancement of this NASA provided computer-based costing model are described. Its application to LRB integration and instructions for modification and expanded use are presented.

SECTION 4: Cost - Summary and Analysis of KSC Costs.

VOLUME III - STUDY PRODUCTS

The study output has been developed in the form of nineteen derived study products. These are presented and described in the subsections of this volume.

VOLUME IV - REVIEWS AND PRESENTATIONS

The progress reviews and oral presentations prepared during the course of the study are presented here along with facing page text where available.

VOLUME V - APPENDICES

Study supporting data used or referenced during the study effort are presented and indexed to the corresponding study products.
LIQUID ROCKET BOOSTER INTEGRATION STUDY

VOLUME IV OF V REVIEWS AND PRESENTATION MATERIAL

KENNEDY SPACE CENTER NAS10-11475

PREPARED BY:
LOCKHEED SPACE OPERATIONS COMPANY

Gordon E. Artley
Lockheed Study Manager

W. J. Dickinson
NASA Study Manager

L.P. Scott
Lockheed Deputy Study Manager

NOVEMBER 1988
VOLUME IV

REVIEWS AND PRESENTATIONS

This volume contains the material presented at the MSFC/JSC/KSC Integrated Reviews and Working Group Sessions, and the Progress Reviews presented to the KSC Study Manager.

The December 16, 1987 charts were presented at MSFC to support the KSC Project Manager's announcement of the intent to contract with LSOC for the LRBI Study Contract. At the December Working Group Meetings MSFC and JSC requested that KSC host a special Working Group meeting in January 1988.

In response to the December request, KSC hosted the Working Group on the 20th through the 23rd of January. At this time, the LRBI team presented the initial impact assessment to the Working Group Team. This was followed with a station by station tour of KSC processing. This tour identified the significant impact areas and processing work stations to the MSFC/JSC study contractors.

The April 21-22 working sessions updated the total cadre of booster options under consideration of MMC and GDSS. At this update the KSC Ground Systems Impacts were expanded to reflect conflicts with the on-going STS mission. The specific areas reviewed were: access to the LRB at the PAD, the activation schedule, and the transition requirements.

A special cost Working Group meeting was held at MSFC on May 10, 1988. The principal presentations were by GDSS and MMC. Their cost methodology, cost modeling approach and initial life cycle cost were presented. The LRBI presentation provided the first KSC ROM costs. The costs presentation used the same discrete impacts as evaluated by the MSFC contractors.

The last three enclosures of this volume present the Progress Reviews for the period March 15 through December 15, 1988.
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Automatic Data Processing</td>
</tr>
<tr>
<td>A&E</td>
<td>Architectural and Engineering</td>
</tr>
<tr>
<td>AF</td>
<td>Air Force</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>AL</td>
<td>Aluminum</td>
</tr>
<tr>
<td>AL-Li</td>
<td>Aluminum Lithium Alloy</td>
</tr>
<tr>
<td>ALS</td>
<td>Advanced Launch Systems</td>
</tr>
<tr>
<td>ALT</td>
<td>Alternate</td>
</tr>
<tr>
<td>AOA</td>
<td>Abort Once Around</td>
</tr>
<tr>
<td>AOPL</td>
<td>Advanced Order Parts List</td>
</tr>
<tr>
<td>AP</td>
<td>Auxiliary Platform</td>
</tr>
<tr>
<td>APU</td>
<td>Auxiliary Power Unit</td>
</tr>
<tr>
<td>ARF</td>
<td>Assembly and Refurbishment Facility</td>
</tr>
<tr>
<td>ARTEMIS</td>
<td>Accounting, Reporting, Tracking, & Evaluation Management - Information System</td>
</tr>
<tr>
<td>ASRM</td>
<td>Advanced Solid Rocket Motor</td>
</tr>
<tr>
<td>ASSY</td>
<td>Assembly</td>
</tr>
<tr>
<td>ATO</td>
<td>Abort to Orbit</td>
</tr>
<tr>
<td>ATP</td>
<td>Authority to Proceed</td>
</tr>
<tr>
<td>AUTO</td>
<td>Automatic</td>
</tr>
<tr>
<td>AWCS</td>
<td>Automated Work Control System</td>
</tr>
<tr>
<td>BITE</td>
<td>Built-in Test Equipment</td>
</tr>
<tr>
<td>BLOW</td>
<td>Booster Liftoff Weight</td>
</tr>
<tr>
<td>BOC</td>
<td>Base Operations Contractor</td>
</tr>
<tr>
<td>BSM</td>
<td>Booster Separation Motor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CALS</td>
<td>Computer Aided Logistics System</td>
</tr>
<tr>
<td>CCAFS</td>
<td>Cape Canaveral Air Force Station</td>
</tr>
<tr>
<td>CCB</td>
<td>Change Control Board</td>
</tr>
<tr>
<td>CCC</td>
<td>Complex Control Center</td>
</tr>
<tr>
<td>CCF</td>
<td>Comprossor Converter Facility</td>
</tr>
<tr>
<td>CCMS</td>
<td>Checkout, Control and Monitor Subsystem</td>
</tr>
<tr>
<td>CDDT</td>
<td>Countdown Demonstration Test</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CEC</td>
<td>Core Electronics Contractor</td>
</tr>
<tr>
<td>CER</td>
<td>Cost Estimating Relationships</td>
</tr>
<tr>
<td>CG</td>
<td>Center of Gravity</td>
</tr>
<tr>
<td>CH4</td>
<td>Methane</td>
</tr>
<tr>
<td>CITE</td>
<td>Cargo Integration Test Equipment</td>
</tr>
<tr>
<td>CM</td>
<td>Construction Management</td>
</tr>
<tr>
<td>C/O</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>CONC</td>
<td>Concrete</td>
</tr>
<tr>
<td>C of F</td>
<td>Cost of Facilities</td>
</tr>
<tr>
<td>COMM</td>
<td>Communications</td>
</tr>
<tr>
<td>CPF</td>
<td>Cost per Foot</td>
</tr>
<tr>
<td>CPF2</td>
<td>Cost per Square Foot</td>
</tr>
<tr>
<td>CPF3</td>
<td>Cost per Cubic Foot</td>
</tr>
<tr>
<td>CPM</td>
<td>Critical Path Management</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CR</td>
<td>Control Room</td>
</tr>
<tr>
<td>Cryo</td>
<td>Cryogenic</td>
</tr>
<tr>
<td>C/S</td>
<td>Contractor Support</td>
</tr>
<tr>
<td>CT</td>
<td>Crawler Transporter</td>
</tr>
<tr>
<td>CY</td>
<td>Calendar Year</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>dBase</td>
<td>Data Base - Software Program</td>
</tr>
<tr>
<td>dc</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DDS</td>
<td>Data Processing System</td>
</tr>
<tr>
<td>DDT&E</td>
<td>Design, Development, Test & Engineering</td>
</tr>
<tr>
<td>DE</td>
<td>Design Engineering</td>
</tr>
<tr>
<td>DEQ</td>
<td>Direct Equivalent Head Count</td>
</tr>
<tr>
<td>DFRF</td>
<td>Dryden Flight Research Facility</td>
</tr>
<tr>
<td>DFI</td>
<td>Development Flight Instrumentation</td>
</tr>
<tr>
<td>DHC</td>
<td>Direct Head Count</td>
</tr>
<tr>
<td>DIST</td>
<td>Distributor</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>ECLSS</td>
<td>Environmental Control & Life Support System</td>
</tr>
<tr>
<td>ECS</td>
<td>Environmental Control System</td>
</tr>
<tr>
<td>EL</td>
<td>Elevation</td>
</tr>
<tr>
<td>ELS</td>
<td>Eastern Launch Site</td>
</tr>
<tr>
<td>ELV</td>
<td>Expendable Launch Vehicle</td>
</tr>
<tr>
<td>EMA</td>
<td>Electrical Mechanical Actuator</td>
</tr>
<tr>
<td>EMERG</td>
<td>Emergency</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPDC</td>
<td>Electrical Power and Distribution Control</td>
</tr>
<tr>
<td>EPL</td>
<td>Emergency Power Level</td>
</tr>
<tr>
<td>ET</td>
<td>External Tank</td>
</tr>
<tr>
<td>ET-HPF</td>
<td>External Tanks - Horizontal Processing Facility</td>
</tr>
<tr>
<td>ETR</td>
<td>Eastern Test Range</td>
</tr>
<tr>
<td>F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>F&D</td>
<td>Fill & Drain</td>
</tr>
<tr>
<td>FEP</td>
<td>Front End Processor</td>
</tr>
<tr>
<td>FLT</td>
<td>Flight</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FMEA/CIL</td>
<td>Failures Modes & Effects Analysis/Critical Items List</td>
</tr>
<tr>
<td>FRF</td>
<td>Flight Readiness Firing</td>
</tr>
<tr>
<td>FRSC</td>
<td>Forward Reaction Control System</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>FSS</td>
<td>Fixed Service Structure</td>
</tr>
<tr>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>G&A</td>
<td>General and Administrative</td>
</tr>
<tr>
<td>G, g</td>
<td>Acceleration of Gravity</td>
</tr>
<tr>
<td>GAL</td>
<td>Gallons</td>
</tr>
<tr>
<td>GDSS(GD)</td>
<td>General Dynamics Space Systems</td>
</tr>
<tr>
<td>GEN</td>
<td>Generator</td>
</tr>
<tr>
<td>GFE</td>
<td>Government Furnished Equipment</td>
</tr>
<tr>
<td>GH2</td>
<td>Gaseous Hydrogen</td>
</tr>
<tr>
<td>GHe</td>
<td>Gaseous Helium</td>
</tr>
<tr>
<td>GLOW</td>
<td>Gross Liftoff Weight</td>
</tr>
<tr>
<td>GLS</td>
<td>Ground Launch Sequencer</td>
</tr>
<tr>
<td>GN2</td>
<td>Gaseous Nitrogen</td>
</tr>
<tr>
<td>GN&C</td>
<td>Guidance, Navigation & Control</td>
</tr>
<tr>
<td>GOAL</td>
<td>Ground Operations Aerospace Language</td>
</tr>
<tr>
<td>GOX</td>
<td>Gaseous Oxygen</td>
</tr>
<tr>
<td>GOCM</td>
<td>Ground Operations Cost Model</td>
</tr>
<tr>
<td>GPC</td>
<td>General Purpose Computer</td>
</tr>
<tr>
<td>GPM</td>
<td>Gallons Per Minute</td>
</tr>
<tr>
<td>GRD</td>
<td>Ground</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GTSI</td>
<td>Grumman Technical Services, Inc.</td>
</tr>
<tr>
<td>GUCP</td>
<td>Ground Umbilical Carrier Plate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>H2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HAZGAS</td>
<td>Hazardous Gas</td>
</tr>
<tr>
<td>HB</td>
<td>High Bay</td>
</tr>
<tr>
<td>HDP</td>
<td>Holddown Post</td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>HIM</td>
<td>Hardware Interface Module</td>
</tr>
<tr>
<td>HMF</td>
<td>Hypergolics Maintenance Facility</td>
</tr>
<tr>
<td>HPF</td>
<td>Horizontal Processing Facility</td>
</tr>
<tr>
<td>HQ</td>
<td>Headquarters</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>HYD</td>
<td>Hydraulic(s)</td>
</tr>
<tr>
<td>HYPER</td>
<td>Hypergolic</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>I/F</td>
<td>Interface</td>
</tr>
<tr>
<td>ILC</td>
<td>Initial Launch Capability</td>
</tr>
<tr>
<td>INST</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>INTEG</td>
<td>Integration</td>
</tr>
<tr>
<td>IOC</td>
<td>Initial Operational Capability</td>
</tr>
<tr>
<td>IPR</td>
<td>Interim Problem Report</td>
</tr>
<tr>
<td>IRD</td>
<td>Interface Requirements Document</td>
</tr>
<tr>
<td>IUS</td>
<td>Internal Upper Stage</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Space Center</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>K</td>
<td>Thousands</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>KLB</td>
<td>Thousands of Pounds</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>KW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LAC</td>
<td>Launch Accessories Contractor</td>
</tr>
<tr>
<td>LC-39</td>
<td>Launch Complex 39</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>LCC</td>
<td>Launch Control Center</td>
</tr>
<tr>
<td>LCH4</td>
<td>Liquid Methane</td>
</tr>
<tr>
<td>LESC</td>
<td>Lockheed Engineering and Science Company</td>
</tr>
<tr>
<td>LETF</td>
<td>Launch Equipment Test Facility</td>
</tr>
<tr>
<td>LEO</td>
<td>Low Earth Orbit</td>
</tr>
<tr>
<td>LH2</td>
<td>Liquid Hydrogen</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>LN2</td>
<td>Liquid Nitrogen</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquid Natural Gas</td>
</tr>
<tr>
<td>LO2</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>LOX</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>LPS</td>
<td>Launch Processing System</td>
</tr>
<tr>
<td>LRB</td>
<td>Liquid Rocket Booster</td>
</tr>
<tr>
<td>LRB-HPF</td>
<td>Liquid Rocket Booster Horizontal Processing Facility</td>
</tr>
<tr>
<td>LRBI</td>
<td>Liquid Rocket Booster Integration</td>
</tr>
<tr>
<td>LRU</td>
<td>Line Replaceable Unit</td>
</tr>
<tr>
<td>LSE</td>
<td>Launch Support Equipment</td>
</tr>
<tr>
<td>LSOC</td>
<td>Lockheed Space Operations Company</td>
</tr>
<tr>
<td>LUT</td>
<td>Launcher Umbilical Tower</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum</td>
</tr>
<tr>
<td>MECO</td>
<td>Main Engine Cutoff</td>
</tr>
<tr>
<td>MDAC</td>
<td>McDonnell Douglas Astronautics Company</td>
</tr>
<tr>
<td>MIL</td>
<td>Military</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MIN</td>
<td>Minimum</td>
</tr>
<tr>
<td>MLP</td>
<td>Mobile Launch Platform</td>
</tr>
<tr>
<td>MMC</td>
<td>Martin-Marietta Corporation</td>
</tr>
<tr>
<td>MMH</td>
<td>Mono Methyl Hydrazine</td>
</tr>
<tr>
<td>MOD</td>
<td>Mission Operations Directorate</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MP</td>
<td>Manpower</td>
</tr>
<tr>
<td>MPS</td>
<td>Main Propulsion System</td>
</tr>
<tr>
<td>MSBLS</td>
<td>Microwave Scanning Beam Landing System</td>
</tr>
<tr>
<td>MSFC</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>MST</td>
<td>Mobile Service Tower</td>
</tr>
<tr>
<td>MTI</td>
<td>Morton-Thiokol, Inc.</td>
</tr>
<tr>
<td>N2</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NDE</td>
<td>Non-Destructive Evaluation</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Test</td>
</tr>
<tr>
<td>NF</td>
<td>Nose Fairing</td>
</tr>
<tr>
<td>N2O2</td>
<td>Nitrogen Tetroxide</td>
</tr>
<tr>
<td>NPL</td>
<td>Nominal Power Level</td>
</tr>
<tr>
<td>NPSH</td>
<td>Not positive Suction Head</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NSTL</td>
<td>National Space Technology Laboratories (Stennis Space Center)</td>
</tr>
<tr>
<td>NSTS</td>
<td>National Space Transportation System</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OAA</td>
<td>Orbiter Access Arm</td>
</tr>
<tr>
<td>OIS</td>
<td>Operational Intercommunications System</td>
</tr>
<tr>
<td>OJT</td>
<td>On-the-job Training</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>OMD</td>
<td>Operating and Maintenance Documentation</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>OMI</td>
<td>Operations and Maintenance Instruction</td>
</tr>
<tr>
<td>OMRF</td>
<td>Orbiter Maintenance and Refurbishment Facility</td>
</tr>
<tr>
<td>OMRSD</td>
<td>Operational Maintenance Requirements and Specifications Document</td>
</tr>
<tr>
<td>OMS</td>
<td>Orbital Maneuvering System</td>
</tr>
<tr>
<td>OPF</td>
<td>Orbiter Processing Facility</td>
</tr>
<tr>
<td>OPS</td>
<td>Operations</td>
</tr>
<tr>
<td>OMBUU</td>
<td>Orbiter Mid Body Umbilical Unit</td>
</tr>
<tr>
<td>ORB</td>
<td>Orbiter</td>
</tr>
<tr>
<td>ORD</td>
<td>Operational Readiness Date</td>
</tr>
<tr>
<td>ORI</td>
<td>Operational Readiness Inspection</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety & Health Administration</td>
</tr>
<tr>
<td>OTV</td>
<td>Operational Television</td>
</tr>
<tr>
<td>PA</td>
<td>Public Affairs</td>
</tr>
<tr>
<td>PAWS</td>
<td>Pan Am World Services, Inc.</td>
</tr>
<tr>
<td>P/A</td>
<td>Propulsion/Avionics Module</td>
</tr>
<tr>
<td>Pc</td>
<td>Engine Combustion Chamber Pressure</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulator</td>
</tr>
<tr>
<td>PCR</td>
<td>Payload Changeout Room</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PER</td>
<td>Preliminary Engineering Report</td>
</tr>
<tr>
<td>PGHM</td>
<td>Payload Ground Handling Mechanism</td>
</tr>
<tr>
<td>PIC</td>
<td>Pyro Initiator Controller</td>
</tr>
<tr>
<td>PIF</td>
<td>Payload Integration Facility</td>
</tr>
<tr>
<td>P/L</td>
<td>Payload</td>
</tr>
<tr>
<td>PMM</td>
<td>Program Model Number</td>
</tr>
<tr>
<td>PMS</td>
<td>Permanent Measuring System</td>
</tr>
<tr>
<td>PO</td>
<td>Purchase Order</td>
</tr>
<tr>
<td>POP</td>
<td>Programs Operations Plan</td>
</tr>
<tr>
<td>PR</td>
<td>Problem Report</td>
</tr>
<tr>
<td>PRACA</td>
<td>Problem Reporting and Corrective Action</td>
</tr>
<tr>
<td>PRCBD</td>
<td>Program Review Control Board Directive</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRC</td>
<td>Planning Research Corporation</td>
</tr>
<tr>
<td>PRD</td>
<td>Program Requirements Document</td>
</tr>
<tr>
<td>PRESS</td>
<td>Pressure, pressurization</td>
</tr>
<tr>
<td>PROP</td>
<td>Propellant</td>
</tr>
<tr>
<td>PRR</td>
<td>Preliminary Requirements Review</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds Per Square Inch</td>
</tr>
<tr>
<td>psia</td>
<td>Pounds Per Square Inch Absolute</td>
</tr>
<tr>
<td>psig</td>
<td>Pounds Per Square Inch Gage</td>
</tr>
<tr>
<td>PSP</td>
<td>Process Support Plan</td>
</tr>
<tr>
<td>PT&I</td>
<td>Payroll Taxes and Insurance</td>
</tr>
<tr>
<td>P&W</td>
<td>Pratt & Whitney Company</td>
</tr>
<tr>
<td>Q</td>
<td>Dynamic Pressure</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Q-Alpha</td>
<td>Dynamic Pressure x Angle of Attack</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>QD</td>
<td>Quick Disconnect</td>
</tr>
<tr>
<td>QTY</td>
<td>Quantity</td>
</tr>
<tr>
<td>R</td>
<td>Ranking</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RCS</td>
<td>Reaction Control System</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>RIC</td>
<td>Rockwell International Corporation</td>
</tr>
<tr>
<td>ROM</td>
<td>Rough Order of Magnitude</td>
</tr>
<tr>
<td>RP-1</td>
<td>Propellant (Kerosene Related Petroleum Product)</td>
</tr>
<tr>
<td>RPL</td>
<td>Rated Power Level</td>
</tr>
<tr>
<td>RPS</td>
<td>Record and Playback System</td>
</tr>
<tr>
<td>RPSF</td>
<td>Rotation, Processing & Surge Facility</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>R/R</td>
<td>Remove/Replace</td>
</tr>
<tr>
<td>RSLS</td>
<td>Redundant Set Launch Sequencer</td>
</tr>
<tr>
<td>RSS</td>
<td>Rotating Service Structure</td>
</tr>
<tr>
<td>R&T</td>
<td>Research and Technology</td>
</tr>
<tr>
<td>RTLS</td>
<td>Return to Launch Site</td>
</tr>
<tr>
<td>SAIL</td>
<td>Shuttle Avionics Integration Laboratory</td>
</tr>
<tr>
<td>SAB</td>
<td>Shuttle Assembly Building</td>
</tr>
<tr>
<td>SCAPE</td>
<td>Self-Contained Atmospheric Protective Ensemble</td>
</tr>
<tr>
<td>SDI</td>
<td>Strategic Defense Initiative</td>
</tr>
<tr>
<td>SDV</td>
<td>Shuttle Derivative Vehicle</td>
</tr>
<tr>
<td>SEB</td>
<td>Source Evaluation Board</td>
</tr>
<tr>
<td>SEC</td>
<td>Second(s), Secondary</td>
</tr>
<tr>
<td>SGOS</td>
<td>Shuttle Ground Operations Simulator</td>
</tr>
<tr>
<td>SIES</td>
<td>Supervision, Inspection & Engineering Services</td>
</tr>
<tr>
<td>SIT</td>
<td>Shuttle Integrated Test</td>
</tr>
<tr>
<td>SLC-6</td>
<td>Shuttle Launch Complex No.6</td>
</tr>
<tr>
<td>SLF</td>
<td>Shuttle Landing Facility</td>
</tr>
<tr>
<td>SOFI</td>
<td>Spray On Foam Insulation</td>
</tr>
<tr>
<td>SOW</td>
<td>Statement of Work</td>
</tr>
<tr>
<td>SPC</td>
<td>Shuttle Processing Contractor</td>
</tr>
<tr>
<td>SPF</td>
<td>Software Production Facility</td>
</tr>
<tr>
<td>SPDMS</td>
<td>Shuttle Processing Data Management System</td>
</tr>
<tr>
<td>SRB</td>
<td>Solid Rocket Booster</td>
</tr>
<tr>
<td>SRM</td>
<td>Solid Rocket Motor</td>
</tr>
<tr>
<td>SRSS</td>
<td>Shuttle Range Safety System</td>
</tr>
<tr>
<td>SR&QA</td>
<td>Safety, Reliability and Quality Assurance</td>
</tr>
<tr>
<td>SSC</td>
<td>Stennis Space Center (NSTL)</td>
</tr>
<tr>
<td>SSME</td>
<td>Space Shuttle Main Engine</td>
</tr>
<tr>
<td>SSV</td>
<td>Space Shuttle Vehicle</td>
</tr>
<tr>
<td>STD</td>
<td>Standard</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SUBSTA</td>
<td>Substation</td>
</tr>
<tr>
<td>SW</td>
<td>Switch</td>
</tr>
<tr>
<td>S/W</td>
<td>Software</td>
</tr>
<tr>
<td>TAL</td>
<td>Transatlantic Landing</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>T&C/O</td>
<td>Test and Checkout</td>
</tr>
<tr>
<td>TFER</td>
<td>Transfer</td>
</tr>
<tr>
<td>T-0</td>
<td>Liftoff Time</td>
</tr>
<tr>
<td>TOPS</td>
<td>Technical Operating Procedures</td>
</tr>
<tr>
<td>TPS</td>
<td>Thermal Protection System</td>
</tr>
<tr>
<td>TSM</td>
<td>Tail Service Mast</td>
</tr>
<tr>
<td>TTV</td>
<td>Termination/Test/Verification</td>
</tr>
<tr>
<td>TVA</td>
<td>Thrust Vector Activator</td>
</tr>
<tr>
<td>TVC</td>
<td>Thrust Vector Control</td>
</tr>
<tr>
<td>T/W</td>
<td>Thrust to Weight Ratio</td>
</tr>
<tr>
<td>TYP</td>
<td>Typical</td>
</tr>
<tr>
<td>ULCE</td>
<td>Unified Life Cycle Engineering</td>
</tr>
<tr>
<td>UMB</td>
<td>Umbilical</td>
</tr>
<tr>
<td>UPS</td>
<td>Unintegrated Power System</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USS</td>
<td>Utility Substation</td>
</tr>
<tr>
<td>V</td>
<td>Volt(s)</td>
</tr>
<tr>
<td>VAB</td>
<td>Vehicle Assembly Building</td>
</tr>
<tr>
<td>VAFB</td>
<td>Vandenberg Air Force Base</td>
</tr>
<tr>
<td>VIB</td>
<td>Vertical Integration Building</td>
</tr>
<tr>
<td>VLS</td>
<td>Vandenberg Launch Site</td>
</tr>
<tr>
<td>VPF</td>
<td>Vertical Processing Facility</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>WAD</td>
<td>Work Authorization Document</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in Progress</td>
</tr>
<tr>
<td>WSMR</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>WTR</td>
<td>Western Test Range</td>
</tr>
</tbody>
</table>
1. INTEGRATED WORKING GROUP MEETING - December 16, 1987
2. INTEGRATED WORKING GROUP MEETING - January 20, 1988
3. INTEGRATED WORKING GROUP - April 21, 1988
4. COST WORKING GROUP MEETING - May 10, 1988
5. FIRST PROGRESS REVIEW - July 18, 1988
6. SECOND PROGRESS REVIEW - October 14, 1988
7. FINAL ORAL PRESENTATION - November 23, 1988
VOLUME IV

SECTION 1

INTEGRATED WORKING GROUP MEETING

December 16, 1987
LIQUID ROCKET BOOSTER (LRB)
INTEGRATION STUDY

LAUNCH PROCESSING ELEMENT CONTRACTOR INTRODUCTION
OBJECTIVES

- LAUNCH SITE OPERATIONS AND FACILITY IMPACTS
- PRELIMINARY OPERATIONAL SCENARIOS
- DESIGN RECOMMENDATIONS
- OPERATIONALLY EFFICIENT LRB SYSTEM
- LAUNCH SUPPORT SYSTEM DEFINITION/GSE AND ASSOCIATED COST
- LAUNCH SITE SUPPORT PLAN
SCOPE

- DEPTH OF ANALYSIS TO FACILITATE CONFIGURATION COMPARISON
 - STRENGTHS AND WEAKNESSES
 - OPERATIONAL COST
 - ENVIRONMENTAL
- SPECIFIC DESIGN RECOMMENDATIONS
- ALL PHASES OF LAUNCH SITE PROCESSING
- IDENTIFY DESIGN ENHANCEMENTS
 - OPERATIONS
 - LIFE CYCLE COST
- PLAN DETAIL CONSISTENT WITH MSFC PHASE A STUDY
- OPERATIONAL CONCERNS
 - SAFETY
 - FACILITIES
 - SYSTEMS
 - PROCEDURES
 - MANPOWER
 - STS OPS
 - SCHEDULE
 - COSTS
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

GORDON ARTLEY

WILLIAM K. WARD

LSC LRB STUDY MANAGER

LSC LRB STUDY DEPUTY MANAGER

SINGLE POINT-OF-CONTACT
CUSTOMER INTERFACE
LOCKHEED CORPORATE INTERFACE
SPC INTERFACE
OPTION RECOMMENDATIONS
FINAL REPORT

ALTERNATE FOR STUDY MANAGER
SPC SUPPORT COORDINATION
IMPACT ANALYSIS

PROCESS ENGINEERING SPECIALIST
L. PAT SCOTT

DESIGN ENGINEERING SPECIALIST
GREGORY A. DE BLASSIO

OPERATIONS PROCESSING SPEC
R. KEITH HUMPHREYS

SAFETY, MAINT & LIFE CYCLE COST SPEC
G. LE FEBVRE

PRIMARY
- COMPILE BASELINE
- LRB REQUIREMENTS
- LRB SCENARIOS

PRIMARY
- IMPACT ANALYSIS
- DESIGN RECOMMENDATIONS

PRIMARY
- LAUNCH SITE PLANS
- FOLLOW-ON RECOMMENDATIONS
- FINAL REPORT

SUPPORT
- DESIGN RECOMMENDATIONS
- LAUNCH SITE PLANS
- ENVIRONMENT CONCERNS

ENTRY POINT SPC WORKING LEVEL INTERFACES WITH SPC MATRIX SPECIALISTS

SHUTTLE DATA SYSTEMS
J.W. ENTINGER

LOGISTICS
D.T. GREGORY

SAFETY ENVIRONMENT
R. LEE

RELIABILITY, MAINTAINABILITY & QUALITY ASSURANCE
C.A. BLUE

VANDENBERG LAUNCH SITE OPERATIONS
K. GEILER

OPERATIONS CONTROL
G.L. CRAWFORD

SHUTTLE & GROUND SUPPORT ENGINEERING
T.J. HARTSELL

SHOP & PROCESSING SUBCONTRACTORS
H.C. BYRD

SUPPORT OPERATIONS
A.S. RUSSELL
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

SPC TECHNICAL EXPERTISE

<table>
<thead>
<tr>
<th>LRB STUDY ISSUES</th>
<th>VICE PRESIDENT, ADVANCED PROJECTS</th>
<th>NEIL G. ROSENBERG, MANAGING DIRECTOR</th>
<th>JAMES W. PETERS, MANAGING DIRECTOR</th>
<th>MARK W. KEMPNER, MANAGING DIRECTOR</th>
<th>LINCOLN G. SAVAGE, MANAGING DIRECTOR</th>
<th>BILL A. GREENE, MANAGING DIRECTOR</th>
<th>DILL T. WHITE, MANAGING DIRECTOR</th>
<th>ANDREW O. PEIRCE, MANAGING DIRECTOR</th>
<th>GLENN A. MICHIELSON, MANAGING DIRECTOR</th>
<th>ROGER L. MILLER, MANAGING DIRECTOR</th>
<th>ROBERT H. RICHARDS, MANAGING DIRECTOR</th>
<th>JOHN W. SMITH, MANAGING DIRECTOR</th>
<th>ANDREW L. JONES, MANAGING DIRECTOR</th>
<th>ANDREW W. PETERSON, MANAGING DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQUID PROPELLANT ACQUISITION, STORAGE AND HANDLING</td>
<td>✗</td>
</tr>
<tr>
<td>LRB PHYSICAL PLANT, LOCATION, & RESTRICTIONS</td>
<td>✗</td>
</tr>
<tr>
<td>LRB UNIQUE HAZARDS</td>
<td>✗</td>
</tr>
<tr>
<td>LRB GROUND TESTING/PROCESSING</td>
<td>✗</td>
</tr>
<tr>
<td>LRB GROUND/LAUNCH OPERATIONS</td>
<td>✗</td>
</tr>
<tr>
<td>VEHICLE MODIFICATIONS</td>
<td>✗</td>
</tr>
<tr>
<td>VEHICLE OPERATION & MAINT</td>
<td>✗</td>
</tr>
<tr>
<td>GROUND SUPPORT EQUIP MODS</td>
<td>✗</td>
</tr>
<tr>
<td>COMMON/SHARED STS, LRB GROUND SUPPORT EQUIPMENT</td>
<td>✗</td>
</tr>
<tr>
<td>AUTOMATED (UPS) GROUND/LAUNCH OPERATIONS</td>
<td>✗</td>
</tr>
<tr>
<td>AUTOMATION & OTHER PROCESSING ENHANCEMENTS</td>
<td>✗</td>
</tr>
<tr>
<td>LRB UNIQUE SPARES</td>
<td>✗</td>
</tr>
<tr>
<td>COMMON/SHARED STS, LRB SPARES</td>
<td>✗</td>
</tr>
</tbody>
</table>

Expertise/Issue Matrix

Lockheed Space Operations Company
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

<table>
<thead>
<tr>
<th>LOCKHEED SPACE OPERATIONS CO.</th>
<th>LOCKHEED CORPORATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• STS PROCESSING / LAUNCH OPERATIONS / FACILITIES / PLANNING / ENGINEERING / LOGISTICS</td>
<td>• LEMSCO - LAS VEGAS ENVIRONMENTAL STUDIES</td>
</tr>
<tr>
<td>• CONTRACTOR TEAM MANAGEMENT / INTEGRATION</td>
<td>• LEMSCO - WHITE SANDS</td>
</tr>
<tr>
<td>• LAUNCH SITE FACILITY ACTIVATION / SUPPORT (PAD B / ALP 3) / RPBS / ORMF / VLS</td>
<td>• REACTION CONTROL SYSTEM TESTS</td>
</tr>
<tr>
<td>• GSE / LSE DESIGN / MOD MAINTENANCE AND SUSTAINING ENGINEERING</td>
<td>• CYROGENIC PUMP / VALVE COMPONENT TESTS</td>
</tr>
<tr>
<td>• PROPELLANT HANDLING / TESTING / LAUNCH OPERATIONS</td>
<td>• FLAMMABILITY STUDIES / TESTS</td>
</tr>
<tr>
<td>• LPS SYSTEM SOFTWARE DEVELOPMENT / MAINTENANCE</td>
<td>• LOCKHEED - HUNTSVILLE</td>
</tr>
<tr>
<td>• DATA MANAGEMENT SYSTEM SOFTWARE</td>
<td>• SSME STRUCTURAL / THERMAL ANALYSES</td>
</tr>
<tr>
<td>• COMMUNICATIONS SYSTEM DESIGN / DEVELOPMENT</td>
<td>• SRB STRUCTURAL / GAS DYNAMIC MODELS / DESIGN SUPPORT</td>
</tr>
<tr>
<td>• QUALITY / SAFETY / RELIABILITY ANALYSIS</td>
<td>• MSFC STUDY COORDINATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRUMMAN TECHNICAL SERVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LCC COMPUTER / ELECTRONIC SYSTEMS OPERATIONS AND MAINTENANCE</td>
</tr>
<tr>
<td>• INSTRUMENTATION AND MEASUREMENT SUPPORT OF ALL LPS SYSTEMS</td>
</tr>
<tr>
<td>• SPECIALIZED DIAGNOSTIC SYSTEM DEVELOPMENT</td>
</tr>
<tr>
<td>• TELEMETRY / GROUND STATION OPERATIONS AND MAINTENANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAN AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OPERATIONS ANALYSIS / PROCESSING ENHANCEMENTS</td>
</tr>
<tr>
<td>• RELIABILITY CENTERED MAINTENANCE PROGRAMS</td>
</tr>
<tr>
<td>• STS GROUND PROCESSING EFFICIENCY STUDIES</td>
</tr>
<tr>
<td>• RELIABILITY CONTROL PROGRAMS</td>
</tr>
<tr>
<td>• LOGISTICS SUPPORT ANALYSIS</td>
</tr>
<tr>
<td>• AUTOMATED WORK CONTROL</td>
</tr>
<tr>
<td>• GSE / LSE AVAILABILITY STUDIES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROCKETDYNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SSME DESIGN / DEVELOPMENT / TESTING</td>
</tr>
<tr>
<td>• MAIN ENGINE PERFORMANCE UPGRADE / ENHANCEMENTS</td>
</tr>
<tr>
<td>• ADVANCED ENGINE DEVELOPMENT / LIFE CYCLE STUDIES</td>
</tr>
<tr>
<td>• LARGE EXPENDABLE LIQUID BOOSTER ENGINES</td>
</tr>
<tr>
<td>• NSI / KSC ENGINE STATIC Firing / FLIGHT CERTIFICATION</td>
</tr>
<tr>
<td>• PROPULSION / VEHICLE INTEGRATION / FLIGHT SOFTWARE / LAUNCH OPERATIONS</td>
</tr>
</tbody>
</table>

Lockheed / SPC Team Capabilities
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

RECEIVING/HANDLING
- TRANSPORTATION TO THE SITE OF ELEMENTS
- RECEIVING AREA(S)
- HANDLING OF ELEMENTS
- STORAGE OF ELEMENTS
- ELEMENT REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - ENVELOPE

ASSEMBLY
- ASSEMBLY AREA(S)
- HANDLING
- SHOPS
- LRB REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - TOOLING
 - STORAGE
 - TEST REQUIREMENTS
 - ENVELOPE

INTEGRATION
- STACKING/MATING
 - HANDLING
 - ALIGNMENT
- LRB REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - INTERFACE REQUIREMENTS
 - COMMUNICATIONS
 - STRUCTURAL/ACCESS REQ.

TEST/CHECKOUT
- END-TO-END REQUIREMENTS
 - CONTINUITY
 - LEAK CHECK
 - FR (FS/SSW) REQUIREMENTS
 - GSE/TEST EQUIPMENT
 - COMMUNICATIONS
 - STRUCTURAL/ACCESS REQ.

ABORT/SCRUB
- TURNOVER REQUIREMENTS
 - Firing Room
 - Launch Commit Criteria
 - GSE Sequencer
 - DETAINING/SAFING
 - PROCEDURES
 - SAFETY
 - COMMUNICATIONS
 - CERTIFICATION/TRAINING

LRF REQUIREMENTS
- HOLD DOWNS
- EXCURSIONS
- PROCEDURES
- Firing Room Reg
- ADDITIONAL INSTRUMENTATION

LAUNCH
- SUPPORT SERVICING REQ
 - PROPELLANTS (TRANSFERS)
 - LOADOUT
 - PNEUMATICS
 - INSTRUMENTATION
 - ELECTRICAL
 - FLAME TRENCH
 - LOCFIRING ROOM
 - LP#/SWITCHING
 - LAUNCH COMMIT CRITERIA
 - GSE SEQUENCER
 - SAFETY
 - HQIS
 - FIRE DETECTION
 - FIRE
 - RANGE SAFETY
 - SITE SAFETY
 - WEATHER PROTECTION
 - INTERFACE REQUIREMENTS
 - COMMUNICATIONS
 - EXCURSIONS
 - ICE INSPECTION

RECOVERY
- RECOVERY SHIP
 - GSE/TOOLS
 - SAFETY
 - HANDLING
 - COMMUNICATIONS
 - RTLS PROCEDURES

DISASSEMBLY/REPAIR
- HANDLING/ACCESS
- DISASSEMBLY AREA
- BAPING AREA
- HAZARDOUS MATE DISPOSAL
- HAZARDOUS GAS DETECTION
- GSE REQUIREMENTS
- COMMUNICATIONS

REFURBISHMENT
- FACILITIES
 - SHOPS
 - HANDLING
 - GSE/TOOLS
 - DEWATERING/CLEANING
 - REFURB REQUIREMENT FOR REUSABLE ELEMENTS

LRB Configuration Evaluation Areas of Impact
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

Study Task Interrelationships
STUDY PRODUCTS

- LRB GROUND OPERATIONS PLAN.
- LRB PROCESSING TIMELINE ASSESSMENTS.
- LRB FACILITY REQUIREMENTS AND CONCEPTS FOR NEW FACILITIES.
- LRB LAUNCH SUPPORT EQUIPMENT DEFINITION.
- LRB GROUND SUPPORT EQUIPMENT DEFINITION.
- LRB MANPOWER.
- COST ESTIMATES INCLUDING TRANSITION.
- POTENTIAL IMPACTS TO ON-GOING LAUNCH SITE ACTIVITY.
- PRELIMINARY TRANSITION PLAN.
- POTENTIAL ENVIRONMENTAL AND SAFETY IMPLICATIONS.
- PROPELLANT ACQUISITION STORAGE AND HANDLING REQUIREMENTS.
- RECOMMENDED CHANGES TO LRB DESIGN FOR OPERATIONAL EFFICIENCY.
- RECOMMENDATIONS FOR FOLLOW-ON STUDY ACTIVITY.
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

Program Interface Definition
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

MSFC LRB FEASIBILITY STUDY

<table>
<thead>
<tr>
<th>MONTHS FROM GO AHEAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITIES</td>
<td></td>
</tr>
<tr>
<td>CONTRACT AWARDS</td>
<td></td>
</tr>
<tr>
<td>PROJECT REVIEWS</td>
<td></td>
</tr>
<tr>
<td>TRADE ANALYSIS/STUDIES</td>
<td></td>
</tr>
<tr>
<td>CONFIGURATION EVALUATION PLAN</td>
<td></td>
</tr>
<tr>
<td>CONCEPT SELECTION</td>
<td></td>
</tr>
<tr>
<td>SELECTED CONCEPT ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>FINAL REPORT</td>
<td></td>
</tr>
</tbody>
</table>

KSC LRB INTEGRATION STUDY

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILESTONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT AWARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDY PLAN REVISION/APPROVAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT REVIEWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTHLY PROGRESS REPORTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT STUDY TASKS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. BASELINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. LRB REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. LRB SCENARIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. IMPACT ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. DESIGN RECOMMENDATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. LAUNCH SITE PLANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. FOLLOW-ON RECOMMENDATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. FINAL REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LRB Integration and LRB Feasibility Schedule Relationship

71210-01G

Lockheed
Space Operations Company
KSC LRB INTEGRATION STUDY

<table>
<thead>
<tr>
<th>MONTHS - BASIC + OPTION</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILESTONES</td>
<td></td>
</tr>
<tr>
<td>CONTRACT AWARD</td>
<td></td>
</tr>
<tr>
<td>NOTIFICATION OF CONCURRENT OPTION</td>
<td></td>
</tr>
<tr>
<td>STUDY PLAN REVISION/APPROVAL</td>
<td></td>
</tr>
<tr>
<td>PROJECT REVIEWS</td>
<td></td>
</tr>
<tr>
<td>MONTHLY PROGRESS REPORTS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

PROJECT STUDY TASKS:
1. BASELINE
2. LRB REQUIREMENTS
3. LRB SCENARIOS
4. IMPACT ANALYSIS
5. DESIGN RECOMMENDATIONS
6. LAUNCH SITE PLANS
7. FOLLOW-ON RECOMMENDATIONS
8. FINAL REPORT
- MSFC 14 x 14 Inch Trisonic Wind Tunnel
- .004 - scale SSLV model
- Instrumentation - 6 component balance (mated vehicle)
 3 component balance (orbiter right wing)
 1 component balance (each left elevon)
 9 base pressures
- Mach number range - 0.6 to 4.45
- Sector angle range - -10 to +10 deg (2 deg increments)
CONFIGURATION 1 - LRB Position Change

\[D = 15 \text{ ft.} \]
\[\theta = 3.6, 7, 10 \text{ deg} \]
CONFIGURATION 4 - Multi-Diameter LRB

$D_1 = 12.2$ ft.

$D_2 = 15.18$ ft.

$L = 159$ ft.
AERODYNAMIC TEST SCHEDULE
ALTERNATE LRB CONFIGURATIONS
TWT 711 - MSFC 14-INCH TRISONIC WIND TUNNEL

<table>
<thead>
<tr>
<th>DEC '77</th>
<th>JAN '78</th>
<th>FEB '78</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>29</td>
</tr>
</tbody>
</table>

Pretest planning
Pretest conference
Installation and checkout
Hardware fabrication
Testing:
Config. #1
Config. #2
Config. #3
Config. #4
Config. #5
Analysis and Documentation
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CENTER OF GREATEST EROSION</th>
<th>CENTER OF GREATEST PRODUCTION</th>
<th>CENTER OF GREATEST DECREASE</th>
<th>CENTER OF GREATEST DECREASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>CENTER OF GREATEST EROSION</td>
<td>CENTER OF GREATEST PRODUCTION</td>
<td>CENTER OF GREATEST DECREASE</td>
<td>CENTER OF GREATEST DECREASE</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>WEIGHT</td>
<td>CENTER OF GRAVITY-IND</td>
<td>MOMENTS/PRODUCTS OF INERTIA - SLUG- FEET/ FEET</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LBS</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1 ORBITER WITHOUT CONSUMABLES</td>
<td>176210</td>
<td>1097.2</td>
<td>-0.6</td>
<td>368.4</td>
</tr>
<tr>
<td>NON-PROP CONSUM AT SRB IGN</td>
<td>5337.6</td>
<td>977.6</td>
<td>3.4</td>
<td>342.8</td>
</tr>
<tr>
<td>MPS PROPELLANT AT SRB IGN</td>
<td>5166</td>
<td>1404.5</td>
<td>6.8</td>
<td>352.7</td>
</tr>
<tr>
<td>OMS FUEL LEFT</td>
<td>2254</td>
<td>1425.0</td>
<td>-7.4</td>
<td>496.0</td>
</tr>
<tr>
<td>OMS FUEL RIGHT</td>
<td>2254</td>
<td>1425.0</td>
<td>71.4</td>
<td>498.0</td>
</tr>
<tr>
<td>OMS OXIDIZER LEFT</td>
<td>4746</td>
<td>1424.1</td>
<td>-109.1</td>
<td>458.8</td>
</tr>
<tr>
<td>OMS OXIDIZER RIGHT</td>
<td>4746</td>
<td>1424.1</td>
<td>109.1</td>
<td>456.8</td>
</tr>
<tr>
<td>RCS PROPELLANT - FWD</td>
<td>1950</td>
<td>317.8</td>
<td>5.4</td>
<td>365.2</td>
</tr>
<tr>
<td>RCS PROPELLANT - AFT</td>
<td>4970</td>
<td>1345.9</td>
<td>0.0</td>
<td>420.3</td>
</tr>
<tr>
<td>1 ORBITER MODULE TOTAL AT SRB IGN</td>
<td>208983</td>
<td>1124.2</td>
<td>-0.2</td>
<td>377.4</td>
</tr>
<tr>
<td>CARGO MODULE</td>
<td>51761</td>
<td>1163.6</td>
<td>1.1</td>
<td>381.4</td>
</tr>
<tr>
<td>CARGO BUOYANCY</td>
<td>36</td>
<td>1163.6</td>
<td>1.1</td>
<td>380.4</td>
</tr>
<tr>
<td>1 CARGO MODULE TOTAL</td>
<td>58000</td>
<td>1163.6</td>
<td>1.1</td>
<td>380.4</td>
</tr>
<tr>
<td>1 ORBITER PLUS CARGO AT SRB IGN</td>
<td>266893</td>
<td>1123.7</td>
<td>0.1</td>
<td>379.0</td>
</tr>
<tr>
<td>ET-029 ACT WT MMC 12/12/85</td>
<td>66521</td>
<td>1356.9</td>
<td>2.7</td>
<td>424.6</td>
</tr>
<tr>
<td>ET BUOYANCY</td>
<td>175</td>
<td>1356.9</td>
<td>2.7</td>
<td>424.6</td>
</tr>
<tr>
<td>MFS FUEL AT SRB IGN</td>
<td>2266.3</td>
<td>1607.6</td>
<td>0.0</td>
<td>400.0</td>
</tr>
<tr>
<td>MFS OXIDIZER AT SRB IGN</td>
<td>1367989</td>
<td>729.8</td>
<td>0.0</td>
<td>401.4</td>
</tr>
<tr>
<td>MFS PRESSURANT</td>
<td>416</td>
<td>729.8</td>
<td>0.0</td>
<td>400.0</td>
</tr>
<tr>
<td>ICE/FROST/LIU AIR+NG2+TPS H2O</td>
<td>317</td>
<td>1362.6</td>
<td>2.6</td>
<td>424.5</td>
</tr>
<tr>
<td>ET MODULE TOTAL AT SRB IGN</td>
<td>1655159</td>
<td>685.7</td>
<td>0.6</td>
<td>407.7</td>
</tr>
<tr>
<td>SRB LEFT SEPARATION</td>
<td>186453</td>
<td>1602.6</td>
<td>-250.9</td>
<td>401.9</td>
</tr>
<tr>
<td>SRB LEFT INFLIGHT LOSSES</td>
<td>1116562</td>
<td>1306.8</td>
<td>-250.9</td>
<td>400.1</td>
</tr>
<tr>
<td>SRB LEFT AT IGN. RSRL-001</td>
<td>1300015</td>
<td>1711.9</td>
<td>-250.6</td>
<td>400.2</td>
</tr>
<tr>
<td>SRB RIGHT SEPARATION</td>
<td>186453</td>
<td>1602.6</td>
<td>-250.9</td>
<td>401.9</td>
</tr>
<tr>
<td>SRB RIGHT INFLIGHT LOSSES</td>
<td>1116562</td>
<td>1306.8</td>
<td>-250.5</td>
<td>400.1</td>
</tr>
<tr>
<td>SRB RIGHT AT IGN. RSRL-001</td>
<td>1300015</td>
<td>1711.9</td>
<td>-250.6</td>
<td>400.2</td>
</tr>
<tr>
<td>TOTAL MASS PROPERTIES AT SRB IGN</td>
<td>4538002</td>
<td>1414.6</td>
<td>0.2</td>
<td>419.5</td>
</tr>
</tbody>
</table>

ORBITER AND CARGO IN ORBITER COORDINATE SYSTEM. ET, SRB, AND SHUTTLE TOTAL IN SHUTTLE COORDINATE SYSTEM.
TO: NASA Headquarters
Attn: M/Director, National Space Transportation System
FROM: GA/Deputy Director, National STS Program
SUBJECT: Update to Space Transportation System (STS) Ascent Performance and Landing Weight Capability

The previously reported Shuttle ascent performance and landing weight capability (refer to letter TM4-87-010) has been updated to reflect changes to the allowable payload capability. Enclosed you will find updated versions of the Shuttle Ascent Performance Capability, the Shuttle Landing Weight Capability, and the associated Ground Rules and Assumptions. All previous versions of this material should be discarded. The only major updates involve Shuttle landing weight capability as summarized below.

Several changes to ascent performance capability have occurred in the last 4 months. However, the performance losses have been offset by performance gains and the STS ascent performance capability is essentially unchanged. The performance losses result from a 300-pound increase to the Orbiter system weight and a 300-pound performance loss because of an increase in the inert weight of the redesigned solid rocket motor. This 600-pound loss in ascent performance is offset by a 600-pound performance gain resulting from an adjustment to the main propulsion system propellant budget.

As a result of the 300-pound Orbiter system inert weight increase, the cargo landing weight capabilities have been reduced by 300 pounds. A significant increase in nominal end of mission (NEOM) landing weight capability results from increasing the NEOM landing weight limit to 230,000 pounds.

The incremental weight adjustment for an additional crew person (such as a payload specialist) has been increased to 500 pounds. This increase from 450 pounds accounts for individual crew escape equipment.

We hope this update is helpful in keeping abreast of the National Space Transportation System (NSTS) capability. Updates to the NSTS ascent performance and landing weight capability will be provided quarterly.

Original Signed By:
RICHARD H. KOHRS

Richard H. Kohrs

3 Enclosures
SHUTTLE ASCENT PERFORMANCE CAPABILITY

11-20-87

<table>
<thead>
<tr>
<th></th>
<th>ETR</th>
<th>WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE STS 51-L CAPABILITY @ 104% SSME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Perf. 28.5 Deg., 110 NM</td>
<td>61,400</td>
<td>47,400</td>
</tr>
<tr>
<td>Max. Perf. 57.0 Deg., 110 NM</td>
<td>limited to 54,300 by down weight</td>
<td>45,930</td>
</tr>
<tr>
<td>Space Station 28.5 Deg., 220 NM</td>
<td>48,600</td>
<td>28,800</td>
</tr>
<tr>
<td>NEAR-TERM CAPABILITY @ 104% SSME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55,000 limited to 50,200 by downweights prior to 6,0 loads analysis</td>
<td>41,000</td>
<td>39,530</td>
</tr>
<tr>
<td>ACHIEVABLE CAPABILITY WITH CURRENTLY PLANNED HARDWARE, MARGIN TESTING & ANALYSIS @ 104% SSME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Perf. 68.0 Deg., 110 NM</td>
<td>55,500</td>
<td>41,500</td>
</tr>
<tr>
<td>Max. Perf. 98.0 Deg., 110 NM</td>
<td>40,030</td>
<td></td>
</tr>
<tr>
<td>Space Station Polar Mission 140 NM</td>
<td>60,500</td>
<td>46,500</td>
</tr>
<tr>
<td>limited to 57,700 by downweights after 6,0 loads analysis</td>
<td>45,030</td>
<td></td>
</tr>
<tr>
<td>POTENTIAL CAPABILITY WITH THE ASRM (12,000 POUNDS) @ 104% SSME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Perf. 68.0 Deg., 110 NM</td>
<td>61,500</td>
<td>53,500</td>
</tr>
<tr>
<td>Max. Perf. 98.0 Deg., 110 NM</td>
<td>52,030</td>
<td>49,600</td>
</tr>
<tr>
<td>Space Station Polar Mission 140 NM</td>
<td>72,500</td>
<td>58,500</td>
</tr>
<tr>
<td>limited to 72,500 by downweights after 6,0 loads analysis</td>
<td>57,030</td>
<td>54,600</td>
</tr>
<tr>
<td>POTENTIAL CAPABILITY WITH THE ASRM (12,000 POUNDS) @ 109% SSME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Perf. 68.0 Deg., 110 NM</td>
<td>72,500</td>
<td>58,500</td>
</tr>
<tr>
<td>Max. Perf. 98.0 Deg., 110 NM</td>
<td>57,030</td>
<td>54,600</td>
</tr>
<tr>
<td>Space Station Polar Mission 140 NM</td>
<td>21,500</td>
<td>34,600</td>
</tr>
</tbody>
</table>

NOTES:
- Capability equates to payload plus attach hardware.
- Subtract approximately 100 lb/nm for increased altitudes.
- Capability shown is for orbiters OV-103, 104, & 105; subtract approximately 8,400 pounds to use orbiter OV-107.

This capability can only be used if the orbiter abort landing weight limits are certified to 258,100 pounds for the 67,500-pound capability, and 261,300 pounds for the 72,500-pound capability. This is a significant increase over the current goal of 248,000 pounds and may require significant modifications to the structural design of the orbiter. The feasibility of these modifications is unknown.
<table>
<thead>
<tr>
<th>ORBITER CONFIGURATION</th>
<th>MAXIMUM PERFORMANCE</th>
<th>SPACE STATION (ETR)</th>
<th>SPACELAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREW SIZE / DURATION</td>
<td>5 MAN / 4 DAY</td>
<td>5 MAN / 7 DAY</td>
<td>5 MAN / 7 DAY</td>
</tr>
<tr>
<td>CRYO (HARDWARE / FLUID LEVEL)</td>
<td>3 TANKS / 3 OFFLOADED</td>
<td>4 TANKS / 3 FULL</td>
<td>4 TANKS / 4 FULL</td>
</tr>
<tr>
<td>FORWARD RCS</td>
<td>OFF</td>
<td>FULL</td>
<td>FULL</td>
</tr>
<tr>
<td>RMS</td>
<td>OFF</td>
<td>FULL</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM PERFORMANCE CONFIGURATION</th>
<th>SPACE STATION (ETR)</th>
<th>SPACELAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTLS</td>
<td>AOA</td>
<td>NEOM</td>
</tr>
<tr>
<td>CURRENT LANDING LIMITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORBITER SYSTEM</td>
<td>240,000</td>
<td>230,000</td>
</tr>
<tr>
<td>WEIGHT GROWTH PORTION OF MANAGERS RESERVE</td>
<td>187,816</td>
<td>185,479</td>
</tr>
<tr>
<td>NEAR TERM LANDING WEIGHT CAPABILITY</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>6.0 LANDING LIMITS</td>
<td>50,184</td>
<td>42,521</td>
</tr>
<tr>
<td>ORBITER SYSTEM</td>
<td>254,000</td>
<td>230,000</td>
</tr>
<tr>
<td>WEIGHT GROWTH PORTION OF MANAGERS RESERVE</td>
<td>187,816</td>
<td>185,479</td>
</tr>
<tr>
<td>CAT II MODS AND NOMINAL WEIGHT GROWTH FOR THE MID 90'S</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>ACHIEVABLE LANDING WEIGHT CAPABILITY</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>63,184</td>
<td>41,521</td>
</tr>
</tbody>
</table>

NOTES:
- RTLS AND TAL ARE NOT LIMITING CASES FOR SPACE STATION AND SPACELAB CONFIGURATIONS.
- CAPABILITY SHOWN IS FOR ORBITERS OV-103, 104, & 105; SUBTRACT ~ 8,400 LBS WHEN USING ORBITER OV-102.
- EACH ADDITIONAL CREW PERSON BEYOND THE FIVE PERSON STANDARD IS CHARGEABLE TO THE CARGO WEIGHT ALLOCATION AND WILL REDUCE THE PAYLOAD CAPABILITY BY APPROXIMATELY 500 POUNDS.
Shuttle Performance

Ground Rules and Assumptions

11-20-87

Orbiter Configuration:

<table>
<thead>
<tr>
<th>Maximum Performance</th>
<th>Orbiter Configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MAN / 4 DAY</td>
<td>CREW SIZE / DURATION</td>
</tr>
<tr>
<td>3 TANKS / 3 OFFLOADED</td>
<td>CRYO (HARDWARE / FLUID LEVEL)</td>
</tr>
<tr>
<td>OFFLOADED</td>
<td>FORWARD RCS</td>
</tr>
<tr>
<td>OFF</td>
<td>RMS</td>
</tr>
<tr>
<td>NO</td>
<td>RENDEZVOUS</td>
</tr>
</tbody>
</table>

Near-Term Capability - Late 1980's to Early 1990's

- ASCENT SHAPING: Q - 790 FLUTTER BUFFET; Q alpha = -3250;
- THE QUOTED CAPABILITY INCLUDES DISCOUNTS FOR MANAGER'S RESERVE AND FOR THE CREW ESCAPE SYSTEM, SRB REDESIGN, AND ORBITER MODIFICATIONS RESULTING FROM STS 51-L.

Achievable Capability - Early to Mid 1990's

- ASCENT SHAPING: Q - 819 TPS; Q alpha = -3000; PERFORMANCE INCREASES BY:
 - 1500 LBS @ ETR
 - 2,300 LBS @ WTR
- POTENTIAL WEIGHT GROWTH FOR CAT II MODS & NOMINAL WEIGHT GROWTH IN THE 1990's;
 - PERFORMANCE DECREASES BY:
 - 1000 LBS @ BOTH SITES

Potential Capability - Mid to Late 1990's

- SAME AS ACHIEVABLE CAPABILITY GROUND RULES
- ADVANCED SRM: 12,000 LBS AS A PERFORMANCE INCREASE DESIGN GOAL.
 - FOR THIS ASSESSMENT WE ARE ASSUMING THAT THE ASRM REPLACES THE EWR SRM.

Note

- EACH ADDITIONAL CREW PERSON BEYOND THE FIVE PERSON STANDARD IS CHARGEABLE TO THE CARGO WEIGHT ALLOCATION AND WILL REDUCE THE PAYLOAD CAPABILITY BY APPROXIMATELY 500 POUNDS.
cc:
NASA Hq., M/R. H. Truly
KSC, CM/J. T. Conway
TM/T. E. Utsman
R. B. Sieck
G. T. Sasseen
TP/C. D. Gay
TV/J. E. Smith
NSTS-KSC, MK/R. L. Crippen
MSFC, EE01/J. A. Lovingood
SA21/J. A. Lombardo
SA31/G. P. Bridwell
SA41/G. W. Smith
EE01/J. A. Lovingood
SA71/J. W. Kennedy
NSTS-MSFC, SA01/W. R. Marshall
M. M. Boze
USAF VAFB, WSMC, ST/Lt. Col. T. G. Martin
b cc:
JSC, AC/D. A. Nebrig
 AC3/C. E. Charlesworth
 CA/G. W. S. Abbey
 CB/F. H. Hauck
 DA/E. F. Kranz
 EA/H. O. Pohl
 FA/R. L. Berry
 VA/R. A. Colonna
 D. M. Germany
 NSTS-JSC, GA/J. F. Honeycutt
 B. D. O'Connor
 GA2/J. B. Costello
 GA3/M. E. Merrell
 GM/D. C. Schultz
 MJ/R. A. Thorson
 TA/L. S. Nicholson
 TM/A. A. Bishop
 TM2/G. C. Nield
 TM4/R. E. Matthews
 VK/J. C. Presnell
 C. M. Vaughn
 WA/R. W. Moorehead
 L. G. Williams
 T. T. Henricks

TM4/CMCarothers:el:11/13/87:31364
LRB Reference Missions

Shuttle Ascent Performance Capability

11-20-87

<table>
<thead>
<tr>
<th></th>
<th>ETR</th>
<th>WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX. PERF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5 DEG, 110 NM</td>
<td>61,400</td>
<td>48,600</td>
</tr>
<tr>
<td>57.0 DEG, 110 NM</td>
<td>47,400</td>
<td>28,800</td>
</tr>
<tr>
<td>SPACE STATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5 DEG, 220 NM</td>
<td>45,930</td>
<td>21,600</td>
</tr>
<tr>
<td>MAX. PERF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.0 DEG, 110 NM</td>
<td>48,600</td>
<td>28,800</td>
</tr>
<tr>
<td>98.0 DEG, 110 NM</td>
<td>28,800</td>
<td>21,600</td>
</tr>
<tr>
<td>SPACE STATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLAR MISSION 140 NM</td>
<td>21,600</td>
<td></td>
</tr>
</tbody>
</table>

PRESTS 51.4 CAPABILITY @ 104% SSME

- Limited to 54,300 by down weight

Near-Term Capability @ 104% SSME

- Limited to 50,200 by downweights prior to 6.0 loads analysis

Achievable Capability @ 104% SSME

- With currently planned hardware, margin testing & analysis

Potential Capability @ 104% SSME

- With the ASRM (12,000 pounds)

Notes:
- Capability equates to payload plus attach hardware.
- Subtract approximately 100 lb/nm for increased altitudes.
- Capability shown is for orbiters OV-103, 104, & 105; subtract approximately 8,500 pounds to use orbiter OV-10.

This capability can only be used if the orbiter abort landing weight limits are certified to 758,100 pounds for the 67,500 pound capability, and 263,100 pounds for the 22,500 pound capability. This is a significant increase over the current goal of 258,100 pounds and may require significant modifications to the structural design of the orbiter. The feasibility of these modifications is unknown.
LRB Reference Missions

<table>
<thead>
<tr>
<th>Orbiter Configuration</th>
<th>Maximum Performance</th>
<th>Space Station (ETR)</th>
<th>Spacelab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Size / Duration</td>
<td>5 man / 4 day</td>
<td>5 man / 1 day</td>
<td>5 man / 1 day</td>
</tr>
<tr>
<td>Cryo (Hardware / Fluid Level)</td>
<td>3 tanks / 3 offloaded</td>
<td>4 tanks / 3 full</td>
<td>4 tanks / 4 full</td>
</tr>
<tr>
<td>Forward RCS</td>
<td>Off</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>RMS</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Maximum Performance Configuration

<table>
<thead>
<tr>
<th></th>
<th>RTLS</th>
<th>AOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Landing Limits</td>
<td>240,000</td>
<td>240,000</td>
</tr>
<tr>
<td>Orboter System</td>
<td>187,816</td>
<td>187,232</td>
</tr>
<tr>
<td>Weight Growth Portion of Managers Reserve</td>
<td>2,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Near Term Landing Weight Capability

<table>
<thead>
<tr>
<th></th>
<th>50,184</th>
<th>50,768</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 Landing Limits</td>
<td>254,000</td>
<td>248,000</td>
</tr>
<tr>
<td>Orboter System</td>
<td>187,816</td>
<td>187,232</td>
</tr>
<tr>
<td>Weight Growth Portion of Managers Reserve</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>CAT II MODS and Nominal Weight Growth for the Mid 90's</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Achievable Landing Weight Capability

<table>
<thead>
<tr>
<th></th>
<th>63,184</th>
<th>57,768</th>
</tr>
</thead>
</table>

Notes:
- RTLS and TAL are not limiting cases for Space Station and Spacelab configurations.
- Capability shown is for Orbiters OV-101, 104, & 105; subtract 8,400 lbs when using Orbiter OV-102.
- Each additional crew person beyond the five-person standard is chargeable to the cargo weight allowance and will increase the payload capability by approximately 100 pounds.
LRB Reference Missions

Orbiter Configuration:
- **Orbiter Configuration:**
 - **CREW SIZE / DURATION:** 5 MAN / 4 DAY
 - **CRYO (HARDWARE / FLUID LEVEL):** 3 TANKS / 3 OFFLOADED OFFLOADED
 - **FORWARD RCS:** OFF
 - **RMS:** NO
 - **RENEDEWOUKS:**

Maximum Performance

<table>
<thead>
<tr>
<th>SPACE STATION: ETR</th>
<th>SPACE STATION: WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MAN / 1 DAY</td>
<td>5 MAN / 1 DAY</td>
</tr>
<tr>
<td>4 TANKS / 3 FULL.</td>
<td>3 TANKS / 3 FULL.</td>
</tr>
<tr>
<td>FULL.</td>
<td>FULL.</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Near Term Capability - Late 1980's to Early 1990's

- **Near Term Capability:**
 - **ASCENT SHAPING:** Q - 190 FLUTTER BUFFET; Q alpha - 1250;
 - **The Quoted Capability includes Discounts For Manager's Reserve and for the Crew Escape System, SRB Redesign, and Orbiter Modifications Resulting from STS 51-L.

Achievable Capability - Early to Mid 1990's

- **Achievable Capability:**
 - **ASCENT SHAPING:** Q - 819 TPS; Q alpha - 3000; PERFORMANCE INCREASES BY:
 - **1500 LBS @ ETR**
 - **12,400 LBS @ WTR**
 - **Potential Weight Growth for CAT 11 MODS & Nominal Weight Growth in the 1990's:**
 - **1000 LBS @ BOTH SITES**

Potential Capability - Mid to Late 1990's

- **Potential Capability:**
 - **SAME AS ACHIEVABLE CAPABILITY GROUND RULES**
 - **ADVANCED SRM:** 12,000 LBS AS A PERFORMANCE INCREASE DESIGN GOAL.
 - **FOR THIS ASSESSMENT WE ARE ASSUMING THAT THE ASRM REPLACES THE EVS SRM.**

Note:
- **Note:** Each additional crew person beyond the five person standard is chargeable to the cargo weight allocation and will reduce the payload capability by approximately 500 pounds.
<table>
<thead>
<tr>
<th>LRB REFERENCE MISSIONS</th>
<th>Advanced Programs Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX PERP. 28.5 DEG,</td>
<td>D. Blumentritt/LEMSCO</td>
</tr>
<tr>
<td>160 NM</td>
<td>SPACE STATION 28.5 DEG 220 NM</td>
</tr>
<tr>
<td>104% SSME 62500</td>
<td>52030</td>
</tr>
<tr>
<td>109% SSME 67500</td>
<td>57030</td>
</tr>
<tr>
<td>0 LRB BPM-1 (5000 LB TO 150 NNM) SSME 104% 58000</td>
<td>47530</td>
</tr>
<tr>
<td>100% SSME 63000</td>
<td>56530</td>
</tr>
<tr>
<td>0 LRB BPM-2 (7000 LB TO 150 NNM) 104% SSME 73000</td>
<td>62530</td>
</tr>
<tr>
<td>0 SPACE STATION MAX SSME 100% 68470</td>
<td>58000</td>
</tr>
</tbody>
</table>

* LIMITED TO 58000 LB BY MAXIMUM AOA DOWNWEIGHT CONSTRAINT

** LIMITED TO 5000 LB BY CONTINUENCY PAYLOAD RETURN DOWNWEIGHT CONSTRAINT PE., PRCB OR 40313B
RECOMMENDATIONS

O RETAIN 69KLB TO 160 NM CARGO WEIGHT FOR LRB BRM-2 TO REPRESENT MAXIMUM SPACE STATION PERFORMANCE CAPABILITY (EQUIVALENT TO 70KLB TO 150 NM)

O REVISE LRB BRM-2 CARGO WEIGHT TO REFLECT ASRM DESIGN PERFORMANCE GOAL (62500 LB TO 160 NM)
LRB REFERENCE MISSION OPTIONS
DECEMBER 16, 1987
LRB Reference Missions

Shuttle Ascent Performance Capability

11-20-87

<table>
<thead>
<tr>
<th></th>
<th>ETR</th>
<th>WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Perf.</td>
<td>Max. Perf.</td>
<td>Max. Perf.</td>
</tr>
<tr>
<td>28.5 deg, 110 NM</td>
<td>61,600</td>
<td>47,400</td>
</tr>
<tr>
<td></td>
<td>Limited to 54,300 by downweight</td>
<td>45,930</td>
</tr>
<tr>
<td>57.0 deg, 110 NM</td>
<td>55,000</td>
<td>41,000</td>
</tr>
<tr>
<td></td>
<td>Limited to 50,200 by downweights</td>
<td>39,730</td>
</tr>
<tr>
<td>28.5 deg, 220 NM</td>
<td>55,500</td>
<td>41,500</td>
</tr>
<tr>
<td></td>
<td>Limited to 57,700 by downweights</td>
<td>40,030</td>
</tr>
<tr>
<td></td>
<td>After 6.0 loads analysis</td>
<td></td>
</tr>
<tr>
<td>Max. Perf.</td>
<td>Max. Perf.</td>
<td>Space Station</td>
</tr>
<tr>
<td>68.0 deg, 110 NM</td>
<td>48,600</td>
<td>28,800</td>
</tr>
<tr>
<td>98.0 deg, 110 NM</td>
<td>21,600</td>
<td></td>
</tr>
<tr>
<td>Space Station</td>
<td>Polar Mission</td>
<td></td>
</tr>
<tr>
<td>140 NM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Capability equates to payload plus attach hardware.
- Subtract approximately 100 lb/nm for increased altitudes.
- Capability shown is for orbiters OV-101, 104, & 105; Subtract approximately 8,400 pounds to use orbiter OV-10.

Potential Capability

<table>
<thead>
<tr>
<th></th>
<th>ETR</th>
<th>WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Perf.</td>
<td>Max. Perf.</td>
<td>Max. Perf.</td>
</tr>
<tr>
<td>67,500</td>
<td>53,500</td>
<td>52,030</td>
</tr>
<tr>
<td></td>
<td>49,600</td>
<td>29,600</td>
</tr>
<tr>
<td>12,500</td>
<td>54,600</td>
<td>34,600</td>
</tr>
<tr>
<td></td>
<td>27,500</td>
<td></td>
</tr>
</tbody>
</table>

Additional Note:
This capability can only be used if the orbiter abort landing weight limits are certified to 258,100 pounds for the 67,500 pound capability, and 263,100 pounds for the 12,500 pound capability. This is a significant increase over the current goal of 248,000 pounds and may require significant modifications to the structural design of the orbiter. The feasibility of these modifications is unknown.
<table>
<thead>
<tr>
<th>ORBITER CONFIGURATION</th>
<th>MAXIMUM PERFORMANCE</th>
<th>SPACE STATION (ETR)</th>
<th>SPACELAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREW SIZE / DURATION</td>
<td>5 MAN / 4 DAY</td>
<td>5 MAN / 1 DAY</td>
<td>5 MAN / 1 DAY</td>
</tr>
<tr>
<td>CRYO (HARDWARE / FLUID LEVEL)</td>
<td>3 TANKS / 3 OFFLOADED</td>
<td>4 TANKS / 3 FULL</td>
<td>4 TANKS / 4 FULL</td>
</tr>
<tr>
<td>FORWARD RCS OFFLOADED</td>
<td></td>
<td>FULL</td>
<td></td>
</tr>
<tr>
<td>RMS OFF</td>
<td></td>
<td>ON OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM PERFORMANCE CONFIGURATION</th>
<th>RTLS</th>
<th>ADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT LANDING LIMITS</td>
<td>240,000</td>
<td>260,000</td>
</tr>
<tr>
<td>ORBITER SYSTEM</td>
<td>187,816</td>
<td>187,232</td>
</tr>
<tr>
<td>WEIGHT GROWTH PORTION OF MANAGERS RESERVE</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>NEAR TERM LANDING WEIGHT CAPABILITY</td>
<td>50,184</td>
<td>50,768</td>
</tr>
</tbody>
</table>

ORBITER SYSTEM	187,816	187,232
WEIGHT GROWTH PORTION OF MANAGERS RESERVE	2,000	2,000
NEAR TERM LANDING WEIGHT CAPABILITY	42,521	42,499

ORBITER SYSTEM	187,816	187,232
WEIGHT GROWTH PORTION OF MANAGERS RESERVE	2,000	2,000
NEAR TERM LANDING WEIGHT CAPABILITY	42,521	42,499

NOTES:

- RTLS and ADA are not limiting cases for Space Station and Spacelab configurations.
- Capability shown is for orbiters OV 101, 104, & 105; Subtract 8,400 lbs when using orbiter OV 102.
- Each additional crew person beyond the five-person standard is chargeable to the cargo weight allocation and will reduce the cargo capability by approximately 340 pounds.

Original page is of poor quality.
LRB Reference Missions

Orbiter Configuration:
- **Crew Size / Duration**: 5 Man / 4 Day
- **Cryo (Hardware / Fluid Level)**: 3 Tanks / 3 Offloaded
- **Forward RCS**: Off
- **RMS**: No
- **Rendezvous**: No

Maximum Performance

<table>
<thead>
<tr>
<th>Space Station</th>
<th>ETR</th>
<th>WTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man / Day</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tanks / Full</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Near Term Capability - Late 1980's to Early 1990's

- **Ascent Shaping**: Q - 790 Flutter Buffet, Q alpha = 425;
- The quoted capability includes discounts for manager's reserve and for the crew escape system, SRB redesign, and orbiter modifications resulting from STS 51-L.

Achievable Capability - Early to Mid 1990's

- **Ascent Shaping**: Q - 819 TPS, Q alpha = 3000; Performance increases by:
 - 11500 lbs @ ETR
 - 12000 lbs @ WTR
- **Potential Weight Growth for CAT II Mods & Nominal Weight Growth in the 1990's**;
 - Performance decreases by:
 - 1000 lbs @ both sites

Potential Capability - Mid to Late 1990's

- Same as Achievable Capability ground rules
- **Advanced SRM**: 12,000 lbs as a performance increase design goal.
 - For this assessment we are assuming that the ASRM replaces the EWC SRM.

Note
- Each additional crew person beyond the five person standard is chargeable to the cargo weight allocation and will reduce the payload capability by approximately 500 pounds.
LRB REFERENCE MISSIONS

<table>
<thead>
<tr>
<th></th>
<th>MAX PERF. 38.5 DEG. 160 NM</th>
<th>SPACE STATION 38.5 DEG 220 NM</th>
<th>INCREASED PERFORMANCE GOAL</th>
<th>DELTA FROM HSRM</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 LRB BPM-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(300LB TO 150 NM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSHE</td>
<td>62500 ×</td>
<td>52030</td>
<td>12000</td>
<td>--</td>
<td>PE., ALDICH MENU</td>
</tr>
<tr>
<td>104%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LRB BPM-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(700LB TO 150 NM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSHE</td>
<td>67500 ×</td>
<td>57030</td>
<td>12000</td>
<td>--</td>
<td>PE., ALDICH MENU</td>
</tr>
<tr>
<td>109%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LRB BPM-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(700LB TO 150 NM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSHE</td>
<td>69000 ×</td>
<td>58530</td>
<td>22500</td>
<td>10500</td>
<td>100P LRBPM-2</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SPACE STATION MAX SSHE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPABILITY BASED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON 500 LB DOWN-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT LIMIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSHE</td>
<td>69470 ×</td>
<td>58000</td>
<td>21970</td>
<td>9970</td>
<td>PE., PRCB CP 403138</td>
</tr>
<tr>
<td>104%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* LIMITED TO 50000 LB BY MAXIMUM AOA DOWNEIGHT CONSTRAINT

** LIMITED TO 50000 LB BY CONTINGENCY PAYLOAD RETURN DOWNEIGHT CONSTRAINT

PE., PRCB CP 403138
RECOMMENDATIONS

O RETAIN 69KLB TO 160 NM CARGO WEIGHT FOR LRB BRM-2 TO REPRESENT MAXIMUM SPACE STATION PERFORMANCE CAPABILITY (EQUIVALENT TO 70KLB TO 150 NM)

O REVISE LRB BRM-2 CARGO WEIGHT TO REFLECT ASRM DESIGN PERFORMANCE GOAL (62500 LB TO 160 NM)
JSC/LEMSCO TOOLS

- SIX DEGREE-OF-FREEDOM (DOF) TRAJECTORIES ARE GENERATED USING SPACE VEHICLE DYNAMICS SIMULATION (SVDS) PROGRAM WHICH IS USED FOR ASCENT FLIGHT DESIGN AND ANALYSIS AT THE JOHNSON SPACE CENTER ON UNISYS 1100 SERIES COMPUTER SYSTEM

 -- LRB/STS AERO DATABASE CAN BE IMPLEMENTED INTO SVDS, BUT WILL REQUIRE MODIFICATIONS TO THE AERO DATA PROCESSOR TO CREATE DATABASE

 -- GN&C FLIGHT SOFTWARE IS MODELLED IN SVDS

 -- MODIFICATIONS TO THE GN&C FLIGHT SOFTWARE IN SVDS CAN BE MADE FOR LRB/STS INTEGRATED STACK

 -- FORCE, MOMENT, C.G. AND ASCENT TRAJECTORY PARAMETERS TIME HISTORIES ARE OUTPUT FOR USE IN THE LOADS ANALYSIS PROGRAMS

- ORTHOGONAL AND STRUT LOADS CAN BE COMPUTED USING LOAD-CONVERT (LDCON) PROGRAM ON THE JSC/ADVANCED PROGRAMS OFFICE (APO) HARRIS-800 COMPUTER SYSTEM

 -- CURRENT ORTHOGONAL AND STRUT LOADS EQUATIONS CAN BE EMPLOYED IF LRBs ARE SIZED THE SAME AS CURRENT SRBs

 -- NEW ORTHOGONAL AND STRUT LOADS EQUATIONS WOULD HAVE TO BE DEVELOPED IF SIZING DIFFERENCES TO THE CURRENT STACK ARE INTRODUCED

- SHUTTLE LOAD INDICATOR (SLI) ANALYSIS CAPABILITIES EXIST USING JSC/APO SLI PROGRAM (ALSO ON THE HARRIS-800 SYSTEM)

 -- SLI PROGRAM ALGORITHMS CAN BE MODIFIED TO REFLECT NEW ALGORITHMS AND/OR NEW ALGORITHM COEFFICIENTS GENERATED VIA RESULTS FROM NASTRAN ANALYSIS AND EMPIRICAL TESTING
CURRENT LOADS ANALYSIS DATA PROCESSING

SVDS 6-DOF SIMULATION
ASCENT TRAJECTORY GENERATED

81 PARAMETERS REQUIRED FOR STRUT LOAD COMPUTATIONS

LOAD-CONVERT PROGRAM
ORTHOGONAL & STRUT LOADS CALCULATED

91 PARAMETERS REQUIRED FOR SHUTTLE LOADS ANALYSIS

SLI PROGRAM
LOADS ANALYSIS MACH RANGE 0.6 - 2.2
NEW DATA REQUIRED FROM AN OUTSIDE SOURCE

- **SVDS - SIX-DOF ASCENT TRAJECTORY SIMULATION**
 -- LRB/STS AERO DELTA COEFFICIENTS (FROM MSFC)
 -- ESTIMATE OF C.G. FOR DRY LRBs (FROM MARTIN AND GENERAL DYNAMICS)
 -- ESTIMATE OF C.G. VS WEIGHT HISTORY OF EACH LRB TANK (FROM MARTIN AND GENERAL DYNAMICS)

- **LDCON - ORTHOGONAL & STRUT LOADS CALCULATION PROGRAM**
 -- STRUT LENGTHS AND GEOMETRY (FROM MARTIN AND GENERAL DYNAMICS) IF DIFFERENT FROM CURRENT STS
 -- AERODYNAMIC DATA FROM EMPIRICAL WIND TUNNEL TESTING (FROM MSFC)

- **SLI - SHUTTLE LOAD INDICATOR ANALYSIS PROGRAM**
 -- NEW LOAD INDICATOR COEFFICIENTS AND/OR ALGORITHMS FROM NASTRAN ANALYSIS AND EMPIRICAL WIND TUNNEL TESTING FOR ORBITER, ET AND LRBs (FROM LMSC/HUNTSVILLE)
LOADS ANALYSIS RECOMMENDATIONS

- USE SIMPLE LOAD INDICATORS FOR TESTING ALL CANDIDATE LRB/STS DESIGN CONFIGURATIONS
 -- ELEMENT WING ROOT BENDING, SHEER AND TORSION EQUATIONS
 -- ELEMENT TAIL ROOT BENDING, SHEER AND TORSION EQUATIONS

- PERFORM COMPLETE 6-DOF SHUTTLE LOADS INDICATOR ANALYSIS ON DESIGN FINALISTS
 -- JUST PRIOR TO DOWN-SELECT TO ASSIST IN DECISION PROCESS ON CLOSE CALLS
 -- AFTER DOWN-SELECT ON ALL DESIGN CONFIGURATIONS
PRESENTATION OVERVIEW

- STUDIES CONDUCTED
 --SUMMARY (Carter)
 --PERFORMANCE TRENDS (Kelly)
 --LOADS ANALYSIS CAPABILITIES (Fardelos)

- LRB ABORT CAPABILITIES SUMMARY (Blumentritt)

- INTEGRATION ISSUES (Akkerman)

- FY 88 MAJOR TASKS/SUBTASKS (McCurry)

- FY 88 SCHEDULE (McCurry)
SUMMARY

- STS-26 CYCLE 1B
 --SIMULATION AND OPTIMIZATION OF ROCKET TRAJECTORIES (SORT)
 --CONCEPTUAL ABORT REGION DETERMINATOR (CARD)
 --SPACE VEHICLE DYNAMICS SIMULATION (SVDS)

- "LAB RAT" BOOSTER (W. Kelly/LEMSCO)
 --PUMP-FED, LOX/METHANE
 --SIZED ON IDEAL VELOCITY REQUIREMENTS (BURN TIME = 140 sec)
 --T/W = 1.25 @ L.O.; 5 ENGINES (400K lbf CLASS)
 --TOTAL THRUST PER BOOSTER = 1.8 Million lbf

- "LAB RAT" BOOSTER
 --SORT/CARD

- MARTIN MARIETTA CONFIGURATION # 1
 --SORT/CARD

- MARTIN MARIETTA CONFIGURATION # 1, USING THE LRB BASE REFERENCE MISSION #2 (69K lbf TO 160 nm)
 --SORT
INTEGRATION ISSUES

- SYSTEM INTERFACES/AUTONOMY
- AERODYNAMIC LOADS
- LOAD PATHS/LOAD LIMITS
- ABORTS
- OPERATIONAL ISSUES
- ENVIRONMENTAL IMPACTS
- GROWTH POTENTIAL
SYSTEM INTERFACES/AUTONOMY

- ELECTRICAL POWER
 --NUMBER OF CIRCUITS
 --POWER AVAILABLE
 --ENERGY AVAILABLE

- AVIONICS
 --GN&C
 --EVENT SEQUENCING
 --TELEMETRY
 --HEALTH MONITORING
 --PROPELLANT UTILIZATION

- TVC
 --SUPPORTING SUBSYSTEM REQUIREMENTS
 - APU/HPU
 - FLEX LINES
 - GIMBAL HARDWARE
 - LIQUID INJECTION SYSTEMS
 --CONTROLLER LOGIC/MIXING
 --FAILURE IMPLICATIONS (ACTIVE/PASSIVE)
AERODYNAMIC LOADS

- STS PERFORMANCE TYPICALLY COUPLED TO LOADS
- LRB SIZE COUPLED TO STS PERFORMANCE AND STS LOADS
- PERFORMANCE INCREASE REQUIRED
- LOAD REDUCTION DESIRED
- REQUIREMENT APPEARS TO CONFLICT WITH DESIRE

- FACTORS
 -- WING LOADING IS DOMINANT CONSTRAINT
 -- ANGLE-OF-ATTACK (ALPHA) CAN BE ADJUSTED
 -- DYNAMIC PRESSURE (Q BAR) CAN BE ADJUSTED
 -- BOOSTER GEOMETRY CAN BE ADJUSTED

- STATUS: PERFORMANCE INCREASE APPEARS TO BE ACHIEVABLE WITH LOAD REDUCTION
LOAD PATHS/LOAD LIMITS

-BOOSTER LOADS
 -STACK WEIGHT (PRESSURE-FED VS. PUMP-FED)
 --ATTACH-STRUT LOADS
 - THERMAL
 - PRESSURE
 --TWANG ABATEMENT (START-UP/SHUT-DOWN/LIFT-OFF)
 --ACOUSTIC/OVERPRESSURE/FLOW
 --RETRIEVAL/IMPACT LOADS

-ORBITER LOADS
 --TWANG REACTION LOADS
 --AERODYNAMIC-INDUCED LOADS

-ET LOADS
 --AFT LOX BULKHEAD
 --REACTION TO LRB THRUST LOADS (THRUST BEAM/INTERTANK PANELS)
ABORTS

• NO NEW ABORT MODES ARE PRESENTED

• LRB DESIGNED TO PROTECT FOR INTACT ABORTS. FOR ONE LRB ENGINE OUT AT LIFT-OFF**

• HOWEVER, ADDITIONAL OPPORTUNITIES TO USE CURRENT MODES

--PAD ABORT
 • WITH SSME OUT
 • WITH LRB ENGINE OUT**

--INTACT ABORT
 • WITH SSME OUT
 • WITH LRB ENGINE OUT**
 --RTLS, TAL, ATO, AOA

--ENHANCED NON-INTACT ABORTS
 • EXPAND SPLIT'S COVERAGE
 • IMPROVE FAST-SEP. CONDITIONS

** IF MULTIPLE ENGINES PER BOOSTER
ABORTS (CONCLUDED)

- EXTRA LRB/STS PERFORMANCE PROVIDES:
 -- LATER NEGATIVE RETURN (LAST RTLS)
 -- EARLIER PRESS-TO-TAL
 -- EARLIER PRESS-TO-ATO
 -- EARLIER PRESS-TO-MECO
 -- OVERLAP OF ATO & RTLS MAY ELIMINATE TAL COVERAGE
 REQUIREMENT (FROM PERFORMANCE STANDPOINT)
OPERATIONAL ISSUES

- LAUNCH PROBABILITY (PRESENTLY ABOUT 85%)
 --WINDS aloft DRIVE Q.BAR, Q.BAR-ALPHA, SIDESLIP
 --DOWN-RANGE WEATHER

- EFFECTS OF LAUNCH SLIPS
 --STS IMPACTS (LITTLE "SLACK TIME" FOR MAKE-UP)
 --INTERFACING PROGRAM IMPACTS

- MISSION DESIGN/FLIGHT OPERATIONS
 --GENERIC MISSIONS (INCREASED PERFORMANCE ENVELOPE)
 --TIMING/DAY-OF-LAUNCH FLEXIBILITY
 --REDUCED RECONFIGURATION LEAD TIME

- TURNAROUND SEQUENCING/TIMELINE
 --VAB SCHEDULE
 --SAFETY CONSTRAINTS
OPERATIONAL ISSUES (CONCLUDED)

- RETRIEVAL/REFURB./ECONOMICS

- RANGE SAFETY
 --SHUT-DOWN POTENTIAL
 --REDUCED RISK

- REPEATABILITY OF BOOSTER PERFORMANCE
 --ADAPTIVE GUIDANCE
ENVIRONMENTAL IMPACTS

- BECOMES MORE AN ISSUE DAILY
 --MORE PEOPLE/CLOSER
 --LAUNCH FACILITY/TEST FACILITY

- SRBs GENERATE PROBLEMS
 --NORMALLY "ON COMMAND"
 --ACCEPT RESULTS RATHER THAT CONSTRAIN ON TIME & WINDS

- HYPERGOLICS DO NOT GENERATE AS MUCH OF A PROBLEM, BUT
 --SPILLS CAN BE UNTIMELY
 --EFFECTS MORE SPECTACULAR AND FAR-REACHING

- LOX/HYDROCARBON MOST COMPATIBLE FLUIDS
 --SPILLS CAN BE A PROBLEM
 --EFFECTS MORE LOCALIZED
 --NORMAL OPERATION ENTIRELY ACCEPTABLE
GROWTH POTENTIAL

- PERFORMANCE MARGIN NORMALLY USED FOR OTHER BENEFITS CAN BE USED OCCASIONALLY FOR HEAVY LOADS
 -- FLY HIGHER Q.BAR
 -- ACCEPT REDUCED ABORT MARGINS
 -- ACCEPT HIGHER SSME STRESS/WEAR
 -- ACCEPT LOWER LAUNCH PROBABILITY
 -- ACCEPT LAUNCH DATE/TIME CONSTRAINTS
 (GO BACK TO TODAY'S MODE OCCASIONALLY)

- PRODUCT IMPROVEMENT FEATURES
 -- METALIZED PROPELLANTS
 -- TANK QUALITY/OPERATING PRESSURE INCREASES
 -- BURNER EFFICIENCY IMPROVEMENTS
 -- PRESSURIZATION SYSTEM REFINEMENTS

- CARGO CARRIER FOR HAZARDOUS MATERIALS/BULK ITEMS

- POTENTIAL USE WITH OTHER CORE VEHICLES (MULTIPLE UNITS)
FY 88 MAJOR TASKS/SUBTASKS

(1) SYSTEM INTERFACE TRANSACTION IDENTIFICATION & ANALYSIS

(2) ASCENT/ABORT PERFORMANCE ANALYSIS

(3) SYSTEMS INTEGRATION ANALYSIS OF CANDIDATE LRB DESIGNS

(4) LRB PROGRAMMATIC ANALYSIS

(5) FLIGHT PLANNING/MISSION OPS. ANALYSIS

(6) AERO LOADS ANALYSIS
 --ANALYSIS TOOL MODIFICATION
 --LOADS ANALYSIS/VERIFICATION
 --ORBITEER STRUCTURES ASSESSMENT
FY 88 MAJOR TASKS/SUBTASKS (CONTINUED)

(7) STS AERO DATABASE MODIFICATION
 --ANALYSIS TOOL MODIFICATION
 --DATABASE MODIFICATION/VERIFICATION

(8) VEHICLE SIMULATION TOOL MODIFICATION/VERIFICATION
 --3-DOF TOOLS
 --6-DOF TOOLS

(9) HOLD-DOWN/LAUNCH DYNAMICS ANALYSIS

(10) HEATING ANALYSIS
 --AERO HEATING
 --PLUME HEATING

(11) SEPARATION DYNAMICS ANALYSIS
 --ANALYSIS TOOL DEVELOPMENT
 --DYNAMICS ANALYSIS
FY 88 MAJOR TASKS/SUBTASKS (CONTINUED)

(12) ROCKWELL (DOWNEY) INTEGRATION ASSESSMENT
 --CERTIFICATION PLAN DEVELOPMENT (MATED-VEHICLE)
 --VALIDATION OF JSC INTEGRATION ASSESSMENT (MATED-VEHICLE)
 --AERO LOADS ANALYSIS SUPPORT

(13) STSOC INTEGRATION ASSESSMENT
 --FACILITIES/RESOURCES IMPACT ASSESSMENTS (COMPLETION-FORM & LOE)

(14) MARTIN MARIETTA MICHOUDE INTEGRATION ASSESSMENT
 --ET STRUCTURES/SYSTEMS IMPACT ASSESSMENTS

(15) PHASE A INTEGRATION REPORT
 --PRELIMINARY REPORT
 --FINAL REPORT

(16) LRB PHASE B RFP DEVELOPMENT

(17) LAUNCH VEHICLE INPUT/OUTPUT SYSTEMS ANALYSIS TEMPLATE DEVELOPMENT
FY 88 MAJOR TASKS/SUBTASKS (CONCLUDED)

(18) LRB APPLICATIONS ANALYSIS FOR ADVANCED LAUNCH VEHICLES
 --CORE VEHICLE SIZING CONFIGURATION & PERFORMANCE ANALYSIS
 --LRB SYSTEM REQUIREMENTS ANALYSIS
 --LRB/CORE VEHICLE INTERFACE REQUIREMENTS ANALYSIS
 --PROGRAMMATICS ANALYSIS

(19) LRB UTILIZATION TRADE STUDIES

(20) SRB UTILIZATION/DESIGN IMPROVEMENTS
<table>
<thead>
<tr>
<th>MILESTONES</th>
<th>87</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Vehicle Simulation Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 Modification/Verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 Hold-Down Launch Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 Anal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 Hero Heating Anal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 Separation Dynamics Anal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Easel Report Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 FI Integration Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 ISGUC Facilities Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Phase A Design Contractors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Configuration Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 System Definition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
<table>
<thead>
<tr>
<th>MILESTONES</th>
<th>1987</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01 LMC ET Impacts Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 Phase A Integration Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 LRB Phase B RFP Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 Launch Vehicle Input/Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 Systems Anal. Template Dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 LRB Applications Anal. for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Advanced Launch Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 LRB Utilization Trade Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 LRB Utilization Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Phase H Design Contractors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Configuration Definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 System Definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 12/16/87
ASCENT PERFORMANCE TRENDS

ASCENT PERFORMANCE TRENDS FROM PARAMETRIC STUDIES

- PROCEDURES
- TOOLS EMPLOYED
- SELECTED RESULTS
PERFORMANCE, COST AND TECHNOLOGY RISKS

• PERFORMANCE DEFINED BY MINIMUM REQUIREMENTS ON TWO POINT DESIGNS
 AT 28.5 DEGREE INCLINATION 150-NMI ORBIT
 --70K-LBM PAYLOAD AT 100% SSME THROTTLE
 --59K-LBM PAYLOAD AT 104% SSME THROTTLE

• COST REQUIREMENTS ARE BASED PREDOMINANTLY ON MINIMIZING COST
 PER FLIGHT AND DDT&E

• ADVANCED TECHNOLOGY TENDS TO DRIVE UP DDT&E WHILE COSTS PER FLIGHT ARE
 UNCERTAIN
 --THEN WHY CONSIDER ADVANCED TECHNOLOGY?

• POSSIBLE ADVANCED TECHNOLOGY PAYOFFS:
 --PROVIDING MORE BENIGN ORBITER ASCENT ENVIRONMENT (E.G. LOWER DYNAMIC
 LOADS, LESS FREQUENT SSME OVERHAUL, ETC.)
 --OPPORTUNITIES FOR SYSTEM GROWTH (E.G. NOMINAL REQUIREMENTS ACHIEVED WITH
 FUEL OFFLOAD, AND FLAT PERFORMANCE CURVES FOR ALTITUDE AND INCLINATION
 VARIATIONS)

• LOW TECHNOLOGY DISADVANTAGES:
 --POSSIBLE COMBINATION OF DISADVANTAGES OF SOLIDS AND LIQUIDS
 --GROWTH MARGINS BECOME SMALLER
LAUNCH

- Interactive, inputs adjust Shuttle or SDV SRB/LRB defaults

- Static thermodynamic engine analysis to determine liquid engine parameters by fuel type, mixture ratio, chamber pressure and nozzle expansion with one dimensional equilibrium flow calibrated with recent design studies.

 Reference: AIAA 83-1189, W. Kelly

- 3-DOF trajectories, closed or open loop throttle and pitch profiles, iterative (3-5 trials) upper stage guidance based on analytical partials in earth relative frame to minimum fuel target (h, v, γ).

 Reference:
 MSFC TMX-53464, 25 May 1966, L. R. Dickey

P3DLN

- Interactive, inputs adjust shuttle or other vehicle defaults.

- Fewer engine analysis features than LAUNCH program

- More comprehensive and accurate trajectory and targeting with rapid convergence in inertial frame, analytical partials for choices among 13 target parameters.

- Applications: dog-leg ascent maneuvers west coast launches, winds and no winds effects.
LRB PERFORMANCE CALCULATION RUDIMENTS

\[\frac{m_{\text{MECO}}}{m_\text{ig}} = \exp\left(-\frac{\Delta v_{\text{ideal}}}{g \text{lsp}_{\text{eff}}} \right) \]

\[\Delta v_{\text{ideal}} = f(v_i, v_o, \Delta v_{\text{grav}}, \Delta v_{\text{eng}}, \Delta v_{\text{drag}}, \Delta v_{\text{vc}}) = v_i - v_o + \Sigma \Delta v_i \]

\[v_i = 25,680 \text{ fps} \quad v_o = 1337 \text{ fps} \quad \Delta v_{\text{grav}} > 4000 \text{fps} \quad \Delta v_{\text{ideal}} > 29000 \]

\[\Delta v_{\text{ideal}} = \Delta v_{\text{ideal-1}} + \Delta v_{\text{ideal-2}} \quad \Delta v_{\text{ideal-2}} > 20,000 \text{ fps.} \]

\[\frac{m_{\text{MECO}}}{m_{\text{sep}}} = \exp\left(-\frac{\Delta v_{\text{ideal2}}}{g \text{lsp}_{\text{SSME's}}} \right) \quad (\frac{T}{W})_{\text{sep}} > 1.0 \]

\[(3'\text{SSME's throttle})/\text{wgt} \]

\[= \frac{(m_{\text{orb}} + m_{\text{pl}} + m_{\text{ET}} + m_{\text{prop margin}})}{(m_{\text{orb}} + m_{\text{pl}} + m_{\text{ET}} + m_{\text{prop sep}})} \]

\[= \frac{\text{fixed}}{\text{variable}} \quad \frac{\text{fixed}}{\text{variable}} \]

\[m_{\text{sep+}}/m_\text{ig} = \exp\left(-\frac{\Delta v_{\text{ideal-1}}}{g \text{lsp}_{\text{av}}} \right) \]

\[= \frac{(m_{\text{orb}} + m_{\text{pl}} + m_{\text{ET}} + m_{\text{prop sep}} + m_{\text{srb/lnb}})}{(m_{\text{orb}} + m_{\text{pl}} + m_{\text{ET}} + m_{\text{prop}} + m_{\text{srb/lnb}} + m_{\text{prop booster}})} \]

\[(\frac{T}{W})_{\text{ig}} > 1.1 \text{ or } 1.2', \quad Q_{\text{max}} > 700 \text{ or } 750 \text{ psf.} \]
INTRODUCTION TO PLOTS OF PERFORMANCE TRENDS

- THE MAJORITY OF FIGURES WERE GENERATED WITH LAUNCH PROGRAM ON IBM-COMPATIBLE PC WITH LOTUS 1-2-3 PLOT PACKAGE

- THE AIM OF THE PROGRAM: TO CONNECT SIMPLE TRAJECTORY, GUIDANCE AND ENVIRONMENT MODELS WITH SIMPLE PROPULSION, STRUCTURES AND OTHER DESIGN FORMULATIONS IN A PRELIMINARY DESIGN SCHEME

- WHILE LAUNCH SIMULATIONS ARE ACKNOWLEDGED AS ONLY CUTS ABOVE STATIC CALCULATIONS, THE PROGRAM CAN ACT AS A FIRST PASS FILTER FOR CONFIGURATIONS BEFORE MORE DETAILED MODELING

- TRAJECTORY AND PARAMETRIC PLOTS DISPLAY DATES GENERATED (JULY-SEPTEMBER 87) TO TRACK
 --SIMULATION FEATURES, INPUT AND OUTPUT CORRECTIONS
 --METHOD USED TO DETERMINE MINIMUM LRB PERFORMANCE REQUIREMENTS

- WHILE LITERAL ADAPTATION OF TRAJECTORY DATA DERIVED IN THESE BROAD ANALYSES COULD VIOLATE MANY STS CONSTRAINTS DISCUSSED ELSEWHERE, IT IS POSSIBLE THAT MANY VIOLATIONS COULD BE ALLEVIATED IN SUBSEQUENT FOCUSED STUDIES
280CT87 CH4 LRB IDEAL VELOCITY SIZING

THrust/WEIGHT LIFt-OFF

200 21 21.2 21.4 21.6 21.8 22

SECOND STAGE IDEAL VELOCITY (FPS)

31K 31.6 32K
28OCT87 CH4 LRB IDEAL VELOCITY SIZING
LRB ENGINE PERFORMANCE - ILLUSTRATIVE EXAMPLE

VARIED MIXTURE RATIO AND CHAMBER PRESSURE EFFECTS

LIQUID CH₄·O₂ 5.5 PSI FIXED EXIT PRESSURE

2.0 < MIXTURE RATIO < 4.0 1000 < P_c < 4000 psi.

Thrust Thrust 500-klb S.L.

Maxima Diameter Vacuum

<table>
<thead>
<tr>
<th>P_c</th>
<th>MR</th>
<th>Isp vac</th>
<th>A_e/A_t</th>
<th>Isp_sl</th>
<th>Diameter</th>
<th>Vacuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2.9</td>
<td>332</td>
<td>17</td>
<td>280</td>
<td>7.47-ft.</td>
<td>592860-lbf.</td>
</tr>
<tr>
<td>4000</td>
<td>3.0</td>
<td>360</td>
<td>55</td>
<td>322</td>
<td>7.15-ft.</td>
<td>559000-lbf.</td>
</tr>
</tbody>
</table>
SUMMARY AND CONCLUSIONS

- WITHOUT A DIRECTED SEARCH THROUGH PARAMETRIC BOOSTER CONFIGURATIONS, THE LIKELIHOOD OF DESIGNING A SATISFACTORY BOOSTER IS DECREASED.

- "LOW TECHNOLOGY" SRB EMULATORS CANNOT MEET SRB VOLUME LIMITS WITH LIQUID FUELS AND "HIGH TECHNOLOGY" (OR EXCESS LIFT) SOLUTIONS SHIFT TRAJECTORIES INTO NEW REGIONS.

- FOR PERFORMANCE ANALYSIS CONFIGURATION SEARCH TRADES CAN BE MADE ON LEVEL OF SIMULATION DETAIL VS. NUMBER OF CONFIGURATIONS STUDIED.
VOLUME IV

SECTION 2

INTEGRATED WORKING GROUP MEETING

January 20, 1988
AGENDA

- INTRODUCTION GORDON ARTLEY
- BASELINE L. PAT SCOTT
- REQUIREMENTS R. KEITH HUMPHRYES / STEVE BLACK
- IMPACTS GREGORY DEBLASIO / ROGER LEE
- SUMMARY GORDON ARTLEY
- SPLINTER MEETING JAN. 21, 1988 1430 HRS
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACT

JAN. 20, 1988
G. ARTLEY

KSC LRB INTEGRATION STUDY

MONTHS - BASIC + OPTION

<table>
<thead>
<tr>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>J</th>
</tr>
</thead>
</table>

MILESTONES

- CONTRACT AWARD
- NOTIFICATION OF CONCURRENT OPTION
- STUDY PLAN REVISION/APPROVAL
- PROJECT REVIEWS
- MONTHLY PROGRESS REPORTS
- WORKING GROUP MEETINGS
- BI-MONTHLY REVIEWS

PROJECT STUDY TASKS:

1. BASELINE
2. LRB REQUIREMENTS
3. LRB SCENARIOS
4. IMPACT ANALYSIS
5. DESIGN RECOMMENDATIONS
6. LAUNCH SITE PLANS
7. FOLLOW-ON RECOMMENDATIONS (OPTION 1 AND 2 STUDIES)
8. FINAL REPORT

LRB INTEGRATION SCHEDULE
OBJECTIVES

- DEFINE SRB BASELINE

- DISCUSS LRB REQUIREMENTS/SCENARIOS

- IDENTIFY MAJOR LAUNCH SITE IMPACTS
AGENDA

- INTRODUCTION GORDON ARTLEY
- BASELINE L. PAT SCOTT
- REQUIREMENTS R. KEITH HUMPHRYES / STEVE BLACK
- IMPACTS GREGORY DEBLASIO / ROGER LEE
- SUMMARY GORDON ARTLEY
TASK 1

OUTLINE

- SRB BASELINE FLOW OVERVIEW
- GENERIC SRB FLOW PROJECTED TO 1993
- MINI-SCHEDULES EACH SRB FACILITY
- SRB MULTIFLOW 93-94 TIME FRAME
- FACILITY PLANNING/UTILIZATION/CONSTRAINTS
- GSE FOR SRB PROCESSING/OMI PROCEDURES
- TRANSITION PLANNING (94-98)
BASIS FOR:

- COST DELTAS AND MANPOWER ASSESSMENTS
- FACILITY EVALUATIONS (INCLUDING MODS)
- TRANSITION PLANNING (FOR MIXED FLEET OPS)
- DEVELOPMENT OF LRB FLOW SCHEDULES
1994 SRB Processing Baseline Summary

97 Day Flow

Days

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Aft Skts At RPSF</td>
<td>RPSF</td>
</tr>
<tr>
<td>12</td>
<td>Booster Buildup</td>
<td>RPSF</td>
</tr>
<tr>
<td>6</td>
<td>Inspection/OFFLOAD</td>
<td>RPSF</td>
</tr>
<tr>
<td>21</td>
<td>Stack' - VAB</td>
<td>VAB</td>
</tr>
<tr>
<td>13</td>
<td>ET MATE & C/O</td>
<td>VAB</td>
</tr>
<tr>
<td>5</td>
<td>Integrated Operations</td>
<td>VAB</td>
</tr>
<tr>
<td>15-18</td>
<td>Pad Operations</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Retrieval Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parachutes To PRF</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Disassembly Operations</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fwd Skt Xfer To USBI Refurb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aft Skt Xfer To USBI Refurb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start Seg Xfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spent Seg Onload To Railcars</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Remanufacturing at Utah not shown
- USBI Refurb ARF and Parachute Repack not shown
SRB STACK BASELINE FOR 1994

15 JANUARY 1988

<table>
<thead>
<tr>
<th>SHIFTS</th>
<th>DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB STACK</td>
<td>1</td>
</tr>
<tr>
<td>RAB STACK</td>
<td>2</td>
</tr>
<tr>
<td>LAB HARDWARE INSTALL/TENSION</td>
<td>3</td>
</tr>
<tr>
<td>RAB HARDWARE INSTALL/TENSION</td>
<td>4</td>
</tr>
<tr>
<td>LAC STACK</td>
<td>5</td>
</tr>
<tr>
<td>LAC VAB XFER AISLE OPS (LOCAL CLEAR)</td>
<td>6</td>
</tr>
<tr>
<td>LAC VAB HI-BAY OPS (TOTAL CLEAR)</td>
<td>7</td>
</tr>
<tr>
<td>LAC VAB HI-BAY OPS (LOCAL CLEAR)</td>
<td>8</td>
</tr>
<tr>
<td>RAC STACK</td>
<td>9</td>
</tr>
<tr>
<td>LFC STACK</td>
<td>10</td>
</tr>
<tr>
<td>RFC STACK</td>
<td>11</td>
</tr>
<tr>
<td>LF STACK</td>
<td>12</td>
</tr>
<tr>
<td>RF STACK</td>
<td>13</td>
</tr>
<tr>
<td>LFA MATE</td>
<td>14</td>
</tr>
<tr>
<td>RFA MATE</td>
<td>15</td>
</tr>
<tr>
<td>PLATFORM OPS</td>
<td>16</td>
</tr>
<tr>
<td>SRA ALIGNMENT</td>
<td>17</td>
</tr>
<tr>
<td>SRB JOINT CLOSEOUT</td>
<td>18</td>
</tr>
<tr>
<td>ET MATE PREPS</td>
<td>19</td>
</tr>
<tr>
<td>READY FOR SRB/ET MATE</td>
<td>20</td>
</tr>
</tbody>
</table>

Legend:
- XFER AISLE OPS
- BEAM CONN/ADJUST
- TANG MEASURE/REPLACE
- PROPellant SLUMP MEASURE
- J-SEAL PROFILE
- METAL PARTICLE INSPECTION
- ENCLOSURE INSTRUMENTATION
- VAB HI-BAY OPS (TOTAL CLEAR)
- DEPLOY ENCLOSURE/EST PURGE
- TANG/CLEVIS/CLEAN/REGREASE
- V2 FILLER/0' RING INSTRUMENTATION
- APPLY J-SEAL ADHESIVE
- LEVEL SEG/MATE/PIN
- VAB HI-BAY OPS (LOCAL CLEAR)
- J-SEAL INSPECTION
- JOINT LEAK CHECK
- SRB JOINT CLOSEOUT
- HEATER STRIP INSTRUMENTATION
- TEMP SENSOR INSTRUMENTATION
- WEATHER SEAL INSTRUMENTATION
- HEAT CONFIDENCE TEST
- CORK INSTRUMENTATION
- KODA APPLICATION

JAN. 20, 1988

P. SCOTT
<table>
<thead>
<tr>
<th>DAYS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>READY FOR ET/SRB MATE</td>
<td>SC003 ET/SRB MATE ONS</td>
<td>INSL INNER TK ACCESS KIT</td>
<td>INSL MON GAUGES</td>
<td>CBL VERIF/CONN</td>
<td>FWD XOVER INSL</td>
<td>LH AFT STRUT ELEC MATE</td>
<td>LWR STRUT CVR INSL</td>
<td>BIPOD INSL</td>
<td>LWR STRUT C/O</td>
<td>ONG INSL</td>
<td>UPPER FAIRING INSL</td>
<td>SYST TUN COVER INSL</td>
<td>ETA/IEA CVR INSL</td>
<td>FWD XOVER INSL</td>
<td>HEP CBL INSL</td>
<td>INSL MOLDS UGB STRUTS/FOAM/TRIM/FILL VOIDS</td>
<td>AFT FAIRING INSL/AFT FAIRING PNL C/L</td>
<td>SYST TUN C/O</td>
<td>SSA INSL</td>
</tr>
</tbody>
</table>
Generic Pad Operations for 1994

18 January 1988

<table>
<thead>
<tr>
<th>DAYS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A5214 XFER SSV TO PAD</td>
<td></td>
</tr>
<tr>
<td>S0009 LAUNCH PAD VALID</td>
<td></td>
</tr>
<tr>
<td>S0024 PRELAUNCH PROPELLANT LOAD</td>
<td></td>
</tr>
<tr>
<td>S5009 ORD INSTL - PART 1</td>
<td></td>
</tr>
<tr>
<td>SSV LAUNCH PREPS</td>
<td></td>
</tr>
<tr>
<td>△ OPEN PLBD'S</td>
<td></td>
</tr>
<tr>
<td>PAYLOAD SERVICING</td>
<td></td>
</tr>
<tr>
<td>△ CLOSE PLBD'S</td>
<td></td>
</tr>
<tr>
<td>S5009 ORD INSTL - PART 2</td>
<td></td>
</tr>
<tr>
<td>HYPER PRESS</td>
<td></td>
</tr>
<tr>
<td>S0007 LAUNCH COUNTDOWN</td>
<td></td>
</tr>
<tr>
<td>△ LAUNCH</td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 1
SRB RETRIEVAL/DISASSEMBLY BASELINE FOR 1994

15 JANUARY 1988

| DAYS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | RETRIEVAL/DISASSEMBLY PRE-OPS | LAUNCH | AT SEA SRB RECOVERY OPS | OFFLOAD CHUTES & FRUSTRUM | OFFLOAD SRB/PLACE ON DOLLIES/52N4 LK CK | REM FWD SKIRT/FLY RECORDERS | SRB WASHDOWN/PREPS FOR DISASSY | INITIAL TPS RMVL | NOZZLE DEMATE | AFT SKT DEMATE/XFER TO USBI | REM ETA RING CYRS | REM CABLES | REM AFT IEA/INSPECTION & CLEAN CONNECTIVE | PREP FWD SKT FOR & DEMATE/XFER TO USBI | REM STRUTS/REM IGNITER SGA | PREP FOR & SRB SEG DEMATE | REM ETA RINGS | HYDROLASE STIFFENER RINGS | TANG & CLEVIS CLEANING | REM STIFFENER RINGS | HOLE RING INST. | START SEG XFER |

Legend:
- ▲: Key event
- □: Task activity
SRB MULTIFLOW
'93-'94 TIMEFRAME

EXAMPLE MULTIFLOW (STS-080)
SEPT 1993 LAUNCH
SRB FACILITY PLANNING/UTILIZATION/CONSTRAINTS

FISCAL YEAR - 1993

ET/SRB FACILITY UTILIZATION

<table>
<thead>
<tr>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

NOTES

- SRB, STS, and Vab-1, Vab-2, and Vab-3 diagrams are shown with specific dates and allocations for each month from August 1992 to October 1993.
- The project code is LABOA, and the timeline spans from August 1992 to October 1993.
- The document is marked as "Original Page is Poor Quality."
OMIs FOR SRB PROCESSING

- **RPSF**
 - B5308 - SRB ROTATION, PROCESSING AND SURGE FACILITY (RPSF) OPERATIONS
 - B5309 - AFT BOOSTER ASSEMBLY - RPSF
 - B5305 - AFT BOOSTER ASSEMBLY ELECTRICAL BUILDUP

- **VAB**
 - B5303 - STACKING AND ALIGNMENT OPERATIONS
 - B5307 - SRB CABLE INSTALLATION/CHECKOUT AND PRE-POWER ELECTRICAL CHECKS
 - B1009 - SRB TVC/GSE CONNECTION (VAB/PAD) - (LPS)
 - B1019 - SRB GSE HYDRAULIC SYSTEM DISCONNECT/CLOSEOUT
 - B7009 - SRB HOLDDOWN STUD TENSION INTEGRITY VERIFICATION
 - B5304 - SRB SYSTEMS INSTALLATION AND CLOSEOUT, PRE-ET MATE

- **PAD**
 - B1016 - SRB HYDRAZINE SERVICING
 - B2038 - HYDRAZINE SERVICE CART LOADING AND DRAIN
 - B1037 - SRB AFT SKIRT PURGE SYSTEM CONNECTION AND C/O
 - B2040 - SRB TVC/APU LUBE OIL SERVICE - PAD
 - B5306 - SRB POST-ET MATE AND PAD CLOSEOUT
LRB TRANSITION PLANNING

<table>
<thead>
<tr>
<th></th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRB #1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>* LRB #2</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>ASRM</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANNED SRB (MANIFEST)</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

ISSUES:

- IMPACTS TO ON-GOING LAUNCH OPERATIONS
- FACILITY/GSE ACTIVATION/MODS TO SUPPORT 94 LRB LAUNCH
- INTEGRATION OF LRB WITH OTHER PROGRAM CHANGES (STS-C, SPACE STATION, ETC)
- FULL ACTIVATION OF LRB SUPPORT SYSTEMS REQUIRED PRIOR TO INITIAL LAUNCH
- FEASIBILITY OF MIXED FLEET LAUNCHES
NEAR-TERM GOALS FOR
BASELINE TASK

• DEVELOP COSTS/MANPOWER PARAMETERS FOR BASELINE SRB FLOWS
• BEGIN LRB FLOW MODELLING
• INTEGRATE PHASE A CONTRACTOR DATA FROM DOWN-SELECT CHECKLIST
• EVALUATE ON-GOING LAUNCH IMPACTS
AGENDA

• INTRODUCTION GORDON ARTLEY
• BASELINE L. PAT SCOTT
• REQUIREMENTS R. KEITH HUMPHRYES / STEVE BLACK
• IMPACTS GREGORY DEBLASIO / ROGER LEE
• SUMMARY GORDON ARTLEY
TASK II LRB REQUIREMENTS

APPROACH

- DEVELOP CHECKLIST
 - BY AREAS OF IMPACT
 - BY SYSTEM

- CHECKLIST TO PHASE A CONTRACTORS
 - EACH CANDIDATE CONFIGURATION

- ANALYZE CHECKLIST RESPONSES
 - COMMON
 - UNIQUE
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

RECEIVING/HANDLING
- TRANSPORTATION TO THE SITE OF ELEMENTS
- RECEIVING AREA(S)
- HANDLING OF ELEMENTS
- STORAGE OF ELEMENTS
- ELEMENT REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - ENVELOPE

ASSEMBLY
- ASSEMBLY AREA(S)
- HANDLING
- SHOPS
- LRB REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - TOOLING
 - STORAGE
 - TEST REQUIREMENTS
 - ENVELOPE

INTEGRATION
- STACKING/MATING
 - HANDLING
 - ALIGNMENT
- LRB REQUIREMENTS
 - GSE
 - ELECTRICAL POWER
 - INTERFACE REQUIREMENTS
- COMMUNICATIONS
- STRUCTURE/ACCESS REQ

TEST/CHECKOUT
- END-TO-END REQUIREMENTS
 - CONTINUITY
 - LEAK CHECK
- FR/ILPS/SW REQUIREMENTS
- GSE/TEST EQUIPMENT
- COMMUNICATIONS
- STRUCTURE/ACCESS REQ

ABORT/SCRUB
- TURNAROUND REQUIREMENTS
- FIRING ROOM
 - LAUNCH/ATTACH CRITERIA
 - GSE SEQUENCER
- DETANKING/SAFING PROCEDURES
- SAFETY
- COMMUNICATIONS
- CERTIFICATION/TRAINING

FRF REQUIREMENTS
- HOLDOWN
- EXCURSIONS
- PROCEDURES
- FIRING ROOM REQ
- ADDITIONAL INSTRUMENTATION

ALL OPERATIONAL AREAS WILL CONSIDER
- SAFETY
- ENVIRONMENTAL
- COMMUNICATIONS
- PROCEDURES
- QUALITY
- LOGISTICS
- TRAINING

LAUNCH
- SUPPORT SERVICING REQ
 - PROPELLANTS (TRANSPARENCY LOADOUT)
 - PNEUMATICS
 - INSTRUMENTATION
 - ELECTRICAL
 - UMBILICALS
 - HOLDOWN
 - ACCESS
 - SOUND SUPPRESSION
- STRUCTURAL REQUIREMENTS
 - MLP
 - FS/S/RS
 - ADDITIONAL STRUCTURES
 - ENVELOPE
 - FLAME TRENCH
- LOO/FIRING ROOM
 - LPS/SW/IM
- LAUNCH/ATTACH CRITERIA
 - GSE SEQUENCER
- SAFETY
 - HDOS
 - FIRE DETECTION
 - PREX
 - RANGE SAFETY
 - SITE SAFETY
- WEATHER/PROTECTION
 - INTERFACE REQUIREMENTS
 - COMMUNICATIONS
 - EXCURSIONS
 - ICE INSPECTION

RECOVERY
- RECOVERY SHIP
 - GSE/TOOLS
 - SAFETY
 - HANDLING
- COMMUNICATIONS
- RLX/PROCEDURE

DISASSEMBLY/SAFING
- HANDLING/ACCESS
- DISASSEMBLY AREA
- SAFING AREA
- HAZARDOUS MAT./DISPOSAL
- HAZARDOUS GAS DETECTION
- GSE REQUIREMENTS
- COMMUNICATIONS

REFURBISHMENT
- FACILITIES
 - SHOPS
 - HANDLING
- GSE/TOOLS
- DEWATERING/CLEANING
- REFURB REQUIREMENT FOR REUSABLE ELEMENTS

LRB CONFIGURATION EVALUATION AREAS OF IMPACT

80113-01K

Lockheed
Space Operations Company
TYPICAL CHECKLIST ITEMS

- RECEIVING/HANDLING
 - HOW WILL BOOSTER/COMPONENTS ARRIVE?
 - WHAT SUPPORT EQUIPMENT WILL BE REQUIRED AT RECEIVING AREA?

- ASSEMBLY
 - WHAT LEVEL OF ASSEMBLY WILL BE REQUIRED AT LAUNCH SITE?
 - WHO WILL ACCOMPLISH ASSEMBLY?

- INTEGRATION
 - WHAT FIXTURES ARE REQUIRED TO BRING BOOSTER TO VERTICAL?

- TEST/CHECKOUT
 - WHAT INCREASE IN DATA HANDLING CAPABILITY BY THE F/R WILL BE REQUIRED?

- LAUNCH
 - WHAT IS CONFIGURATION OF LRB TANK VENTS?
TYPICAL CHECKLIST ITEMS (CONT'D)

• RECOVERY
 • WHAT ADDITIONAL SHIP SIDE EQUIPMENT WILL BE REQUIRED
 (POWER, PURGE, ETC.)?

• DISASSEMBLY SAFING
 • WHAT TYPE AND AMOUNT OF RESIDUALS NEED BE ADDRESSED
 AT GROUND RECOVERY AREA?

• REFURBISHMENT
 • WHAT WILL BE THE LEVEL OF REFURBISHMENT REQUIRED AT KSC?
AGENDA

- INTRODUCTION GORDON ARTLEY
- BASELINE L. PAT SCOTT
- REQUIREMENTS R. KEITH HUMPHRYES / STEVE BLACK
- IMPACTS GREGORY DEBLASIO / ROGER LEE
- SUMMARY GORDON ARTLEY
PROCESS OPERATION REQUIREMENTS

• INTRODUCTION

• LRB GROUND PROCESSING OVERVIEW

• TEST AND CHECKOUT OPERATIONS SUMMARY

• LRB VEHICLE DESIGN RECOMMENDATIONS FOR GROUND PROCESSING

• GROUND SYSTEMS DESIGN RECOMMENDATIONS FOR LRB

• ISSUES AND QUESTIONS
INTRODUCTION

THIS PRESENTATION IS BASED ON THE CONCEPT OF PROCESSING A MAJOR LIQUID FUEL PROPULSION SYSTEM AS AN STS FLIGHT ELEMENT THROUGH KSC. IT IS CONSISTENT WITH EXISTING STS LAUNCH OPERATIONS CONCEPTS AND BASED ON THE LESSONS OVER THE LAST 25 YEARS.
TEST AND CHECKOUT OPERATIONS SUMMARY RECOMMENDATIONS

- ENGINE SHOP
 - RECEIVE/INSPECT NEW DELIVERY ENGINES
 - PERFORM STAND ALONE ENGINE REFURBISHMENT, MAINTENANCE AND CHECKOUT

- LRB ASSEMBLY FACILITY
 - RECEIVE/INSPECT NEW DELIVERY LRB FLIGHT HARDWARE
 - PERFORM LRB SYSTEMS REFURBISHMENT, MAINTENANCE AND INDIVIDUAL SYSTEMS CHECKOUT
 - PERFORM LRB AFT/PROPULSION SYSTEMS BUILDUP* AND TEST (ENGINE AND LRB PROPULSION SYSTEM INTEGRATION)
 - PERFORM LRB INTEGRATED SYSTEMS TEST*

*ASSUMES LRB IS TRANSPORTED TO VAB AS COMPLETE ELEMENT
TEST AND CHECKOUT OPERATIONS SUMMARY RECOMMENDATIONS

- LRB CHECKOUT STATION
 - "MINI" LPS SYSTEM TO SUPPORT ALL LRB POST-FLIGHT SAFING, TEST AND CHECKOUT OPERATIONS UP TO READY FOR TRANSFER TO VAB.

- LRB RECOVERY FACILITY
 - INITIAL RECEIVING, INERT PROPELLANT SYSTEMS AND SAFE ORDNANCE.
 - POWER, DATA AND COMMAND CAPABILITY REQUIRED.
 - RECEIVE/INSPECT RETURN FROM FLIGHT HARDWARE AFTER INERT/SAFING
TEST AND CHECKOUT OPERATIONS SUMMARY RECOMMENDATIONS

- VAB (STS INTEGRATED) OPERATIONS
 - MATE LRB TO MLP
 - MATE ET TO LRBs
 - MATE ORBITER TO ET
 - PERFORM SHUTTLE INTEGRATED TEST TO VERIFY BASIC ORBITER/ET/LRB AND MLP AVIONICS/FLUIDS INTERFACES
• STS PRELAUNCH PAD OPERATIONS

 • PAD SHUTTLE INTERFACE TEST: VERIFY BASIC STS VEHICLE TO LAUNCH PAD FLUID, PROPELLANT AND AVIONICS INTERFACES.

 • SHUTTLE HYPERGOLIC PROPELLANT SERVICING: PERFORMS ORBITER OMS/RCS, APU PROPELLANT SERVICING AND LRB APU PROPELLANT SERVICING. (LRB HYPERGOL SERVICE)

 • TERMINAL COUNTDOWN DEMONSTRATION TEST: VERIFIES LAUNCH TEAM READINESS AND FLIGHT CREW TIMELINE. NO CRYOGENIC PROPELLANT LOAD OR APU ACTIVATION. AVIONICS ARE IN PRE-FLIGHT CONFIGURATION WITH GROUND LAUNCH SEQUENCER UNTIL CUTOFF DECLARED AT APPROXIMATELY T-5 SECONDS.

 • FINAL SHUTTLE ORDNANCE CONNECTION: PERFORMS ALL FINAL RANGE SAFETY, HOLDDOWN POST AND PAYLOAD ORDNANCE PRE-LAUNCH CONNECTIONS. ORBITER AND LRB AFT SECTIONS CLOSE-OUT FOR FLIGHT.
TEST AND CHECKOUT OPERATIONS SUMMARY RECOMMENDATIONS

- LAUNCH COUNTDOWN OPERATIONS
 - ORBITER/ET/LRB AVIONICS PREFLIGHT SYSTEMS ACTIVATION
 - ENGINE PREFLIGHT SYSTEMS ACTIVATION, SOFTWARE LOAD AND VERIFICATION
 - FINAL ORBITER CREW MODULE PREFLIGHT CONFIGURATION
 - ORBITER PRSD CRYOGENIC PROPELLANT SERVICING
 - ROTATING SERVICE STRUCTURE RETRACT
 - ET/LRB PROPELLANT SERVICE (IF LRB CRYOGENIC PROPELLANTS)
 - TERMINAL COUNTDOWN/LAUNCH
GROUND SYSTEMS DESIGN

RECOMMENDATIONS FOR LRB

- Major new propellant loading system required at pad to be approximately same order of magnitude complexity (operationally) regardless of type fuel/oxidizer used.

- Lift off umbilicals to provide ground power, commands and data for prelaunch monitor and test.

- LRB recovery and tear down facility will require significant GSE to support command/data/power for inert purging and safing.

- LRB checkout station (MINI-CCMS/LPS) to support all LRB recovery, buildup and pre-VAB (MATE) test activities.

- LCC/LPS be expanded to incorporate new firingroom consoles and associated hardware/software to accommodate LRB and LRB CX39 support equipment.
LRB VEHICLE DESIGN RECOMMENDATIONS
FOR GROUND PROCESSING

• LRB SYSTEMS DESIGN SHOULD BE AS INDEPENDENT AS POSSIBLE FROM ORBITER AVIONICS.

• SELF-CONTAINED POWER AND DATA TELEMETRY SYSTEMS
• INDEPENDENT LRB INSTRUMENTATION HARDLINE VIA UMBILICAL
• INDEPENDENT GROUND ELEC POWER VIA UMBILICAL
• ORBITER AVIONICS I/F ONLY FOR GNC, SAFETY/FLIGHT CRITICAL COMMANDS AND DATA

• PROVIDE FOR STAND ALONE LRB INTEGRATED TEST.
ISSUES AND QUESTIONS

- INTEGRATION
 - ORBITER AVIONICS SYSTEMS CAPABILITY FOR EXPANSION LIMITED WITHOUT MAJOR REDESIGN/MOD EFFORT.

- LAUNCH
 - PROPELLANT SUPPLY CAPABILITIES (VENDOR).

 - IF HYPERGOLIC BOOSTER, WHAT SAFETY CONSTRAINTS WILL THERE BE ON PAYLOAD INTEGRATION AND OTHER ORBITER/ET PAD WORK?

 - WHAT ARE PLANS FOR PROPELLANT SERVICING UMBILICALS?

 - DRAMATIC INCREASE IN LAUNCH SYSTEMS COMPLEXITY.

 - SAFETY ISSUES IN LAUNCH PAD POST-ENGINE START SHUTDOWN.

 - HOW TO MAINTAIN SAME CONFIDENCE/RELIABILITY FOR SUCCESSFUL ENGINE START/LIFTOFF WITH 11 LIQUID ENGINES VERSUS 3 LIQUID ENGINES AND 2 SRBs.

- RECOVERY
 - IF SEA LANDING, HOW TO INSURE LRB SAFE TO HANDLE/TOW? (IN-FLIGHT INERT CAPABILITY?)
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACT

JAN. 20, 1988

AGENDA

• INTRODUCTION GORDON ARTLEY
• BASELINE L. PAT SCOTT
• REQUIREMENTS R. KEITH HUMPHRYES / STEVE BLACK
• IMPACTS GREGORY DEBLASIO / ROGER LEE
• SUMMARY GORDON ARTLEY
LRB MODEL AND ASSUMPTIONS

LRB MODULE

- LOX/RP1 (PRESSURE FEED)
- 175' LONG X 14.2' DIAMETER
- TANK ASSEMBLY, AVIONICS PACKAGE, ENGINES RECEIVED AT KSC SEPARATELY
- ALL LRB SERVICES PROVIDED IN AFT
- THREE ACCESS PLATFORM AREAS (NOSE, MID-BODY, AFT) AND ENGINE ACCESS NEEDED FOR THE LRB WHEN IN THE VERTICAL POSITION
- LRBs ASSEMBLED AND TESTED - HORIZONTALLY
- RECOVERY OF AVIONICS AND ENGINES (TANKS EXPENDABLE)
- REFURBISHMENT BY ELEMENT CONTRACTOR

ASSUMPTIONS

- LAUNCH RATE DURING TRANSITION - 14 PER YEAR
- AT THIS TIME GROUND RULE OUT IMPLEMENTATION OF ASRM OR SHUTTLE DERIVATIVES
- DURING TRANSITION DUAL LAUNCH CAPABILITY OF SRB AND LRB CONFIGURED STS
LRB RECEIVING/STORAGE

DRIVERS

0 INADEQUATE FLOOR SPACE IN VAB HIGH BAYS 2 AND 4 AND LOW BAY
 FOR HORIZONTAL PROCESSING
0 ET PROCESSING OF 12 TO 14 FLIGHTS PER YEAR
0 SRB STACKING IN HIGH BAYS 1 AND 3 REQUIRES CLEARING HIGH BAYS 2 AND 4

IMPACTS

0 SITE LOCATION (APPROXIMATELY 10 ACRES)
0 NEW RECEIVING AND STORAGE BUILDING REQUIRED (3 HORIZONTAL STORAGE
 CELLS APPROXIMATELY 75,000 SQ. FT.)
0 BONDED STORAGE AREA FOR FLIGHT ELEMENTS
LRB PROCESSING (ASSEMBLY/CHECK-OUT)

DRIVERS

- INADEQUATE FLOOR SPACE IN VAB HIGH BAYS 2 AND 4 FOR HORIZONTAL PROCESSING
- ET PROCESSING OF 12 TO 14 FLIGHTS PER YEAR
- SRB STACKING IN HIGH BAYS 1 AND 3 REQUIRES CLEARING HIGH BAYS 2 AND 4
LRB PROCESSING (ASSEMBLY/CHECK-OUT)

IMPACTS

0 SITE LOCATION (APPROXIMATELY 10 ACRES)

0 NEW ASSEMBLY AND CHECK-OUT FACILITY
 - EACH STORAGE CELL EQUIPPED FOR HORIZONTAL ASSEMBLY AND CHECK-OUT
 - ENGINE INSTALLATION AND CHECK-OUT
 - OFFICE/PERSONNEL SUPPORT SPACE
 - AVIONICS SHOP 10,000 SQ. FT. (APPROXIMATELY)
 - ENGINE SHOP 20,000 SQ. FT. (APPROXIMATELY)
 - MACHINE SHOP
 - ELECTRONICS SHOP

0 INDEPENDENT MINI-LPS (CONTROL ROOM AND SOFTWARE)
LIQUID ROCKET BOOSTER (LRB)
GROUND FACILITIES & SYSTEM IMPACTS

LRB RECEIVING/STORAGE/PROCESSING

ISSUES

0 ELEMENTS HANDLING

- MODS TO BARGE FOR TIE DOWNS
- TRANSPORTER MUST MATE TO KSC ET TOWING VEHICLE
- HANDLING FIXTURES FOR AVIONICS/ENGINES
- STRONG BACK/SLINGS
- VERTICAL LIFT PLATFORM FOR ENGINE/AVIONICS INSTALLATION

PAGE 9
STACKING/VEHICLE INTEGRATION

DRIVER

- INCOMPATIBLE STACKING/VEHICLE INTEGRATION OPERATION IN HIGH BAYS 1 AND 3 FOR LRB AND SRB
- LAUNCH SCHEDULE AND PROCESSING REQUIREMENTS OF SRB AND LRB CONFIGURED STS
- LRB HIGH BAYS 1 AND 3 MODIFICATION IMPLEMENTATION SCHEDULE

IMPACT

- REQUIRES A FOURTH MLP FOR LRB - 1994
- MODIFIED MLP FOR LRB - 1995
- REQUIRES A NEW BOOSTER STACKING FACILITY - 1993
- IMPLEMENTATION OF MODIFICATION SCHEDULE VS. PROCESSING SCHEDULE
- VAB PLATFORM MODIFICATIONS FOR LRB - ADD EXTENDABLES FOR SRB
LRB Transition Plan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LRB Flights</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>SRB Flights</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

MLPs Required

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For LRB</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>For SRB</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Stacking Facilities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For LRB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>For SRB</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
STACKING/VEHICLE INTEGRATION

ISSUES

0 LRB STIFFNESS
0 LRB HANDLING/LIFTING EQUIPMENT DESIGN AND PRODUCTION
STACKING/VEHICLE INTEGRATION/LAUNCH

MLP

DRIVER

- WEIGHT LIMITATION OF EXISTING MLP
- MEETING LAUNCH SCHEDULE OF LRB AND SRB CONFIGURATIONS REQUIRES A FOURTH MLP
- COMMON MLP CANNOT SUPPORT BOTH LRB AND SRB
 - LRB CONFIGURATION AND CONNECTION POINTS
 - VEHICLE ENGINE FIRING SEQUENCES
 - LRB ENGINE SERVICING REQUIREMENTS
STACKING/VEHICLE INTEGRATION LAUNCH

MLP

- NEW HOLD-DOWN POSTS
- NEW HAUNCH
- NEW LRB ENGINE SERVICE PLATFORM
- NEW HIMS AND CABLE FOR LPS
- NEW LRB SERVICE UMBILICALS
- PIC SYSTEM
- ENLARGE BOOSTER FLAME HOLE (PRESSURE FEED)
STACKING/VEHICLE INTEGRATION/ LAUNCH

MLP

ISSUES

0 GOX VENT CAPABILITY
0 LOX LOADING/REVERT/DRAIN CAPABILITY
0 RP1 LOADING/DRAIN CAPABILITY
NEW STACKING FACILITY

DRIVER

- INCOMPATIBLE INTEGRATION STACKING OPERATIONS IN HIGH BAYS 1 AND 3 FOR LRB AND SRB

- INCOMPATABLE LAUNCH SCHEDULE AND PROCESSING REQUIREMENTS OF SRB AND LRB CONFIGURED STS

- LRB HIGH BAYS 1 AND 3 MODIFICATION IMPLEMENTATION SCHEDULE
NEW STACKING FACILITY

IMPACTS

0 NEW FACILITY WITH ACCESS FOR PROCESSING
0 MLP/CRAWLER SCHEDULE
0 STAGING AREA - PREPARATION WORK
0 SITE LOCATION
LAUNCH PAD

- DRIVERS
 - MEETING LAUNCH SCHEDULES USING TWO PADS FOR BOTH LRB AND SRB
 - LRB PAD MODIFICATION IMPLEMENTATION SCHEDULE
 - ENGINE FIRING SEQUENCES AND DURATIONS PRIOR TO LIFTOFF
 - LRB GOX VENT CONFIGURATION
 - SCRUB/TURNAROUND
 - FRF
LIQUID ROCKET BOOSTER (LRB) INTEGRATION STUDY

LAUNCH PAD

• IMPACTS
 • NEW RP1 FACILITY AND SYSTEM
 • NEW LOADING SYSTEM FOR LOX (CAPACITY)
 • NEW UMBILICALS (LOADING, GOX VENT, ELECTRICAL)
 • RELOCATION/MODS OF EXISTING UMBILICALS (HYDROGEN VENT GOX ARM, TSM)
 • NEW GOX VENT UMBILICAL SYSTEM
 • NEW OR MODIFICATION OF EXISTING ACCESS PLATFORM
 • NEW FLAME DEFLECTORS/PROTECTION SYSTEM
 • ICE SUPPRESSION
 • LPS-GLS AND OTHER CCMS SOFTWARE
LAUNCH PAD

ISSUES

- DRIFT CURVES AND LAUNCH OVER-PRESSURES
- SOUND SUPPRESSION SYSTEM REQUIREMENTS
- FIREX SYSTEM SUPPORT REQUIREMENTS FOR ENGINE SHUT-DOWN/NO LIFT-OFF
LRB RECOVERY

DRIVER

- RETRIEVAL OF FLIGHT ELEMENTS FROM OCEAN

IMPACTS

- NEW BARGE WITH CRANE AND TUGS
- ENVIRONMENTAL/SAFETY REQUIREMENTS IF HYPERGOL POWERED TVC UNIT USED
- NEW SLIP/Docking FACILITIES FOR UNLOADING
- GROUND TRANSPORT AND HANDLING FOR RECOVERED ELEMENTS
LRB DISASSEMBLY/SAFING

DRIVER

0 DISASSEMBLY OF FLIGHT ELEMENTS

IMPACTS

0 HAZARDOUS MATERIAL AND PYROTECHNIC DISPOSAL
0 LOCATION
0 NEW HANDLING EQUIPMENT REQUIREMENTS
0 NEW DEWATERING EQUIPMENT

PAGE 25
LRB REFURBISHMENT

DRIVER

0 REFURBISHMENT AT ELEMENT CONTRACTOR LOCATION

IMPACT

0 TRANSPORT OF ELEMENTS
LIQUID ROCKET BOOSTER (LRB)
GROUND FACILITIES & SYSTEM IMPACTS

JAN. 20, 1988
G. DEBLASIO

LRB ELEMENT DESIGN CONSIDERATION

RECEIVING/STORAGE/ASSEMBLY/CHECK-OUT

- ASSEMBLED AND PROCESSED HORIZONTALLY
- TRANSPORTERS AND DOLLIES CAPABLE OF SUPPORTING STORAGE
 AND PROCESSING (ASSEMBLY AND CHECK-OUT)

STACKING

- LRB ASSEMBLY STRONG ENOUGH TO BE ROTATED AND LIFTED ONTO THE MLP

LAUNCH AREA (PAD/MLP)

- DO NOT VENT CRYOGENICS AT THE NOSE TO AVOID A VENT ARM
- FILL/DRAIN/VENT CAPABILITIES/REQUIREMENTS AT THE AFT
- VERTICAL ENGINE CHANGE-OUT CAPABILITY

RECOVERY

- DO NOT USE HYPERGOL POWERED TVC UNITS

PAGE 27
NEAR TERM STUDIES

- CONCEPT FOR INTEGRATED LRB PROCESSING FACILITY
- ADDRESS THE MLP AND VAB STACKING NEEDS MODIFICATIONS AND NEW CONSTRUCTION REQUIREMENTS
- PARALLEL LPS FOR LRB. (INCLUDING H/W SAFING)
- LPS IMPACTS OF PUMP FEED
- DELTA IMPACTS FOR LOX/LH2 (PRESSURE & PUMP FEED)
- DELTA IMPACTS FOR HYPERGOL (PRESSURE & PUMP FEED)
AGENDA

- INTRODUCTION
 GORDON ARTLEY

- BASELINE
 L. PAT SCOTT

- REQUIREMENTS
 R. KEITH HUMPHRYES / STEVE BLACK

- IMPACTS
 GREGORY DEBLASIO / ROGER LEE

- SUMMARY
 GORDON ARTLEY
ENVIRONMENTAL/SAFETY IMPACTS

\(\text{N}_2\text{O}_4/\text{MMH PROPELLANTS} \)
ENVIRONMENTAL IMPACTS

- **Air Quality**
 - Capacity of current emission controls (scrubbers) to meet LRB requirements
 - Ignition by-products
 - Ozone depletion concerns

- **Water Quality**
 - Minimal impact in immediate vicinity of the launch pads other than non-contained spills or non-detected leaks
 - Possible impact to marine life if residuals escape from LRBs in the recovery area
ENVIRONMENTAL IMPACTS CONT'D

- Hazardous Waste
 - Increase in quantity of hypergols used will likely result in increase of hazardous waste generated
 - Disposal of hypergol waste presents unique problems
 - Capacity of current disposal methods (fire training on site and incineration off site) may not be adequate if large quantities are generated

- Other Environmental Impacts
 - Increased production will impact environmental requirements at the manufacturing sites
ENVIRONMENTAL IMPACTS CONT'D

- New concept will require Environmental Impact Statement with extensive development effort

- Other Environmental Concerns

 - Propellant or LRB delivery by barge creates concern that increased barge traffic may affect endangered species
SAFETY IMPACTS

- Increased use of hypergols increases the risk of personnel exposure to toxic chemicals
- Scape suit requirements will increase substantially
- Current clear zone for hypergol operations in the pad areas may require expanding
- Possible exposure of personnel to hypergols during recovery and disassembly
- Large spills or catastrophic explosions could expose large numbers of people to toxic vapors
- Current vapor detection and monitoring system will require expansion
SAFETY IMPACTS CONT'D

- Fire Detection/Protection
 - Current Fire Detection/Protection system at the pads not adequate for LRB requirements

- Transportation
 - Transporting projected quantities of hypergols from manufacturing sites over public highways and through populated areas significantly increases the risk of exposing the public to toxic chemicals
OTHER CONCERNS

- Current trend is toward more stringent regulatory requirements
- Community Right-To-Know Law

CONCLUSION

- The projected use of huge quantities of MMH and N₂O₄ as primary propellants for the LRB raise serious environmental and safety concerns, which make them highly questionable from an environmental and safety standpoint
AGENDA

- Introduction
- Baseline
- Requirements
- Impacts
- Summary

GORDON ARTLEY
L. PAT SCOTT
R. KEITH HUMPHRIES / STEVE BLACK
GREGORY DEBLASIO / ROGER LEE

JAN. 20, 1988

KSC IMPACT

LIQUID ROCKET BOOSTER (LRB)

ADVANCED PROJECTS

KSC TECHNOLOGY OFFICE
IMPACT SUMMARY

- NEW SRB STACKING FACILITY OR ADDITIONAL VAB HIGH BAY
- FOURTH MLP REQUIRED
- NEW INTEGRATED LRB PROCESSING FACILITY/PROCEDURES/GSE/STANDALONE LPS TO SUPPORT
- NEW FLAME DEFLECTOR REQUIRED
- NEW LPS, PMS AND COMMUNICATION SYSTEMS REQUIRED
- VAB PLATFORM AND MLP MODS WILL INTERRUPT PROCESSING/LAUNCH RATE
- NEW ACCESS TOWERS REQUIRED ON PAD OR MLP
- OVER-WEIGHT RSS LIMITS NEW ACCESS MODS
- NEW CONSOLES, FIRING ROOM/RECERTIFICATION
ISSUE - SUMMARY

- COMPLEXITY OF TERMINAL COUNTDOWN - 7 OR 11 LIQUID ENGINES VERSUS 3 SSME AND 2 SRB ENGINES

- PROPELLANT HANDLING/STORAGE/ENVIRONMENTAL

- SCENARIO FOR RECOVERY, DISASSEMBLY AND REFURBISHMENT

- ENGINE ACCESS AND REMOVAL AT THE PAD

- ENGINE SEQUENCE AND TIMING BEFORE LIFTOFF

- WATER REQUIREMENTS - DEFLECTOR/FIREX/SOUND SUPPRESSION

- LAUNCH DRIFT CURVES VERSUS NEW UMBILICALS/STRUCTURES

- EXPANSION OF FIRING ROOMS/LPS CAPABILITIES

- TWANG EFFECTS VERSUS TSM AND NEW UMBILICALS

- PRE-MATE LPS PROCESSING IN HORIZONTAL MODE
NEAR TERM STUDY TASKS

- SUPPORT NASA DOWN SELECTION
- PRELIMINARY OPERATIONAL SCENARIOS
- MODIFICATION SCHEDULE OPTIONS: VAB - MLP - PAD
- SYSTEM LEVEL IMPACT ANALYSIS AND ASSESSMENTS
- MITIGATE HYPERGOL SCENARIO OPTIONS
VOLUME IV

SECTION 3

INTEGRATED WORKING GROUP

April 21, 1988
OUTLINE

• TRANSITION PLANNING ISSUES

• APPROACH TO LRB PROCESSING

• GENERIC LRB FLOW

• KSC FACILITY ACTIVATION SCHEDULE

• DETAILED KSC FACILITY REQUIREMENTS
 - HORIZONTAL PROCESS FACILITY
 - VAB
 - MLP
 - PAD
 - LCC

• LRB LAUNCH RATE BUILD-UP REQUIREMENTS
TRANSITION PLANNING ISSUES

- FACILITY ACTIVATION SCHEDULE
 - LRB FIRST FLOW REQUIREMENTS

- MIXED FLEET OPERATIONS

- TRANSITION AND LRB BUILD-UP RATE

- INTEGRATION WITH OTHER PROGRAMS
 (STS-C, SPACE STATION, ASRM, ETC.)
• NEW LRB HORIZONTAL PROCESS FACILITY
• NEW MLP DESIGNED / BUILT FOR LRB
• PAD MODS FOR LOX / RP-1 PROPELLANTS
• VAB MODS FOR LRB (PLATFORMS, ETC)
• NEW / MOD GROUND SOFTWARE FOR LRB
• NEW / MOD GROUND SUPPORT EQUIPMENT
• ADDITIONAL FACILITIES TO SUPPORT LRB LAUNCH RATE BUILD-UP
GENERIC LRB PROCESS FLOW

1. LRB BARGE ON DOCK KSC
2. OFF LOAD AND INSTALL IN C-O CELL (LRB HORIZONTAL PROCESS FACILITY)
3. LRB STAND ALONE CHECK-OUT
4. LRB MOVE TO VAB
5. LRB/MLP MATE (VAB HB 3)
6. ET MATE/C-O
7. ORBITER MATE/INTEG C-O
8. STS MOVE TO PAD
9. LRB UNIQUE
10. LAUNCH

SUMMARY:
- 53-DAY GENERIC LRB PROJECTED PROCESS FLOW (SRB PROJECTED FLOW = 78 DAYS)
- DELTA = 25 WORK DAYS
LRB Integration Study

KSC Facility Activation Schedule

April 21, 1988

G. Artley/L.P. Scott

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Preliminary Design Requirements Available</td>
</tr>
<tr>
<td>1992</td>
<td>Design</td>
</tr>
<tr>
<td>1993</td>
<td>Construction</td>
</tr>
<tr>
<td>1994</td>
<td>Final Design Requirements Available</td>
</tr>
<tr>
<td>1995</td>
<td>TTW Activation</td>
</tr>
<tr>
<td>1996</td>
<td>Ops Certification</td>
</tr>
<tr>
<td>1997</td>
<td>Ops Certification</td>
</tr>
</tbody>
</table>

MLP MOD (MLP-3)
- Design
- Construction
- TTW Activation
- Ops Certification

LETE
- Design
- Fab/Install/Test MLP (New)
- Fab/Install/Test MLP (Exist)

LRB Horiz Process Facility
- Preliminary Design Requirements Available
- Design/Build
- Final Design Requirements Available
- Activation
- Ops Certification
LRB Integration Study

KSC Facility Activation Schedule

April 21, 1988

G. Artley/L.P. Scott

<table>
<thead>
<tr>
<th>Year</th>
<th>VAB Mods (HB-3)</th>
<th>Pad Mods (PAD A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>Preliminary Design Requirements Available</td>
<td>Final Design Requirements Available</td>
</tr>
<tr>
<td>1994</td>
<td>Design</td>
<td>Construction</td>
</tr>
<tr>
<td>1995</td>
<td>Activation</td>
<td>Ops Certification</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Design**
- **Construction**
- **Activation**
- **Ops Certification**

Notes:
- Preliminary Design Requirements Available
- Final Design Requirements Available
- 1st LRB Flow
- 1st LRB Launch
NEW LRB HORIZONTAL PROCESS FACILITY

- OFFLINE STAND ALONE CHECKOUT / NO VAB INTERFERENCE
- RECEIVING / INSPECTION / TEST & CHECKOUT OPS
- ALL PROCESSING ON DELIVERY TRANSPORTER
- NEW GSE / TEST EQUIPMENT / TOWING TUG
- STAND ALONE LPS / CONTROL SYSTEM
- WORKSTANDS / ACCESS PLATFORMS / HORIZONTAL ENGINE CHANGEOUT
- CONTINGENCY ENGINE SERVICE SHOP
- NEW BATTERY LAB / CONTINGENCY AVIONICS SERVICE
- NEW LRB LOGISTICS SUPPORT REQUIRED
- SURGE / STORAGE CAPABILITY REQUIRED
- OFFLINE REPAIRS / MODS / LRU CHANGE OUT PROVISIONS
• INTEGRATION CELL PLATFORM REVISIONS
• NEW SERVICING EQUIPMENT / GSE
• NEW ROTATION AND LIFTING FIXTURES
• ET MATE, ORBITER MATE PROCEDURES UNCHANGED
• NO HIGHBAY STRUCTURAL MODS OR DOOR MODS
- NO LAUNCH UMBILICAL TOWERS
- NEW LIFT-OFF UMBILICAL DESIGN
- NEW LPS INTERFACE / HIMs
- ENGINE REMOVAL / REPLACEMENT PROVISIONS
- NEW HOLDDOWN SYSTEM DESIGN
- NEW PROPELLANT LOADING / VALVES / CONTROL SYSTEM
- NEW BOOSTER FLAME HOLES / PLUME CLEARANCES
- REDesign: POWER / HGDS / INSTRUMENTATION / LPS / COMM
- REVISED WATER DELUGE / SOUND SUPPRESSION / FIREX SYSTEMS
• NO ADDED TOWERS / SWING ARMS
• NO LRB HYDRAZINE, HYDRAULICS REQUIREMENTS
• ON BOARD LOX VENT SYSTEM (NO COOLIE CAP)
• NEW FUEL SYSTEM (RP-1, CH4, ETC)
• AUGMENTED LOX STORAGE SYSTEM / PUMPING SYSTEM REQUIRED
• NEW DESIGN FLAME DEFLECTOR / FLAME TRENCH MOD
• REVISED WATER DELUGE / DEFLECTOR, TRENCH COOLING
• REVISED MLP-TO-PAD INTERFACE
• MODIFIED ACCESS PROVISIONS: LRB AFT SKIRT, INTERTANK, FORWARD ASSEMBLY
LCC MODS SUMMARY

- NEW FIRING ROOM CONFIGURATION / REVISED CONSOLES
- NEW LRB GROUND SOFTWARE DEVELOPMENT / VERIFICATION
- NEW SAFING / ABORT PROVISIONS
- NEW LRB OMS AND AUTOMATED LOADING PROCEDURES
- NEW COMM PROVISIONS / OTV
- NEW PHOTO-OPTIC CONTROL / TIMING DESIGN
- RF DOWNLINK (?)
- REVISED INTEGRATION / SAFING CONSOLES
- SIMPLIFIED ORBITER I/F REQUIRES EXTENSIVE LRB HEALTH MONITORING SYSTEMS CHECKOUT

KSC & TECHNOLOGY OFFICE

ADVANCED PROJECTS
INDEX TO DRAWING
79K20788

1. PCR ELEVATIONS AND DRAWING INDEX
2. PLATFORM GUIDE RAIL PLANS I
3. PLATFORM GUIDE RAIL PLANS II
4. GENERAL ARRANGEMENT PLAN
5. ACCESS PLATFORMS - PLAN AND ELEVATIONS
6. ACCESS PLATFORMS - REMOV. HANDRAILS - DETAILS
7. ACCESS PLATFORMS - GUIDE/SLIDE SHOE ASSEMBLIES
8. OAA HINGED GUIDE RAIL - LIFTING BOOM
9. OAA HINGED GUIDE RAIL - LIFTING BOOM DETAILS
10. PLATFORM WINCHING SYSTEM - PLANS AND DETAILS
11. PLATFORM WINCHING SYSTEM - SHEAVE MOUNTING DETAILS
12. PLATFORM WINCHING SYSTEM - JIB FRAMING DETAILS
13. PLATFORM WINCHING SYSTEM - AIR WINCH PIPING SCHEMATIC ISOMETRIC
14. -Y FIXED GUIDE RAIL - DETAILS
15. +Y FIXED GUIDE RAIL - DETAILS
16. -Y PIVOTED GUIDE RAIL - PLANS AND ELEVATIONS
INDEX TO DRAWING
79K20788

29. -Y PIVOTED GUIDE RAIL - RADIAL HINGE
30. -Y PIVOTED GUIDE RAIL - THRUST BEARING HINGE
31. -Y PIVOTED GUIDE RAIL - RADIAL HINGE BRACKET
32. +Y FRAMING CONNECTION DETAILS

⚠️ 33. +Y HINGED GUIDE RAIL EXTENSION - ACCESS CATWALK
 34. -Y HINGED GUIDE RAIL EXTENSION - DETAILS I
 35. -Y HINGED GUIDE RAIL EXTENSION - DETAILS II
 36. -Y HINGED GUIDE RAIL EXTENSION - DETAILS III
 37. -Y HINGED GUIDE RAIL EXTENSION - DETAILS IV
 38. -Y HINGED GUIDE RAIL EXTENSION - DETAILS V
 39. -Y HINGED GUIDE RAIL EXTENSION - DETAILS VI
 40. -Y HINGED GUIDE RAIL EXTENSION - DETAILS VII

⚠️ 41. RAIN WATER RUNOFF DRAIN - I
 WiFi 42. RAIN WATER RUNOFF DRAIN - II
 WiFi 43. AFT IEA ACCESS PLATFORM FOR RIGHT SRB
 WiFi 44. AFT IEA ACCESS PLATFORM FOR RIGHT SRB - SECTIONS
 WiFi AND DETAILS

NOT IN CONTRACT
PLAN AT OMBUU FLOOR - EL 158' - 10 1/4" AND EL 170' - 6"
3/16" = 1'-0"
VOLUME IV

SECTION 4

COST WORKING GROUP MEETING

MAY 10, 1988
KSC COST ASSESSMENTS FOR LRB

• OUTLINE:
 • LRB PROCESSING SCENARIO
 • COSTING GROUNDRULES / DATA SOURCES
 • COST ELEMENT BREAKDOWN
 • COST DATA SUMMARY
 • TRANSITION ISSUES / WORK IN PROGRESS
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACTS

MAY 10, 1988

LRB PROCESSING SUMMARY

SCENARIO GROUNDRULES: (GENERAL)

- LRB TRANSITION IS PLANNED TO YIELD MIN IMPACTS TO
 ON-GOING KSC FLIGHT OPS

- FIRST-LINE FACILITY ACTIVATIONS WILL SUPPORT 1996
 FIRST FLIGHT AND A BUILD-UP TO AN ANNUAL 4 LRB
 LAUNCH RATE

- A FIVE-YEAR TRANSITION TO FULL FLIGHT RATE OF 14 IS
 PLANNED OVER 1996 TO 2000. SECOND AND THIRD LINE
 FACILITY ACTIVATIONS ARE PLANNED TO SUPPORT THIS
 BUILD-UP

- SHARED FACILITY UTILIZATION FOR THE MIXED FLEET OPS
 ARE PLANNED TO SUPPORT SHUTTLE LAUNCH MANIFEST
 DURING TRANSITION
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACTS
MAY 10, 1988

KSC COST ELEMENT BREAKDOWN

NON-RECURRING

1. FIRST-LINE FACILITY ACTIVATION FOR IOC
 • LRB HORIZ PROCESS FAC
 • NEW MLP
 • VAB HB4 MOD
 • PAD MOD
 • LETF / LCC MOD
 ELEMENTS:
 • DESIGN
 • CONSTRUCTION
 • TTV / ACTIVATION
 • OPS CERTIFICATION / VALIDATION

2. SECOND / THIRD-LINE FACILITY ACTIVATION FOR TRANSITION
 • 2ND MLP (MOD EXISTING)
 • 2ND INTEG CELL (MOD HB3)
 • 3RD MLP (MOD EXISTING)
 • 2ND PAD MOD
 ELEMENTS:
 • DESIGN
 • CONSTRUCTION
 • TTV / ACTIVATION
 • OPS CERTIFICATION / VALIDATION

3. GSE AND LSE (ALL SITES)

4. GROUND SOFTWARE / LPS DEVELOPMENT

5. ORBITER / ET MODS TO ACCOMMODATE LRB
 • TTV = TERMINATE, TEST AND VERIFICATION
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACTS
MAY 10, 1988

KSC COST ELEMENT BREAKDOWN

RECURRING

6. BOOSTER PROCESSING MANPOWER
 - TECHNICIANS
 - ENGINEERING
 - QUALITY / SAFETY
 - PLANNING / SCHEDULING
 - TRAINING / CERTIFICATION

7. OPERATIONS SUPPORT MANPOWER *
 - LOGISTICS SUPPORT - SPARES PROVISIONING
 - BASE OPERATIONS (EG&G)
 - FACILITY AND GSE O&M
 - COMM
 - LPS / SOFTWARE

8. ON-GOING LRB MODIFICATIONS

NOTE: LRB PROCESSING MANPOWER BASED ON A POST-IOC ASSESSMENT WITH NO
LEARNING CURVE CURRENTLY APPLIED.

* NASA/KSC CIVIL SERVICE ALLOTTED COST ARE INCLUDED IN OPERATIONS SUPPORT
MANPOWER
<table>
<thead>
<tr>
<th>Non-Recurring</th>
<th>Design</th>
<th>Construction</th>
<th>TTV Activation</th>
<th>Ops Certification</th>
<th>Total Cost (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST LINE FACILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>5.6</td>
<td>62</td>
<td>21.8</td>
<td>1.6</td>
<td>$91</td>
</tr>
<tr>
<td>LRB HORIZ. PROC. FAC.</td>
<td>1.0</td>
<td>13.5</td>
<td>1.7</td>
<td>0.8</td>
<td>$17</td>
</tr>
<tr>
<td>VAB MOD (HB-4)</td>
<td>0.8</td>
<td>10.0</td>
<td>1.2</td>
<td>1.0</td>
<td>$13</td>
</tr>
<tr>
<td>PAD MOD (A OR B)</td>
<td>3.3</td>
<td>37</td>
<td>14</td>
<td>1.7</td>
<td>$56</td>
</tr>
<tr>
<td>LETF / LCC</td>
<td>0.5 / 2.0</td>
<td>6.3 / 3.0</td>
<td>-</td>
<td>1.2 / 1.0</td>
<td>$8 / $6</td>
</tr>
<tr>
<td>ET HORIZ PROC FAC</td>
<td>0.8</td>
<td>11.0</td>
<td>1.4</td>
<td>0.8</td>
<td>$14</td>
</tr>
</tbody>
</table>

Total = $205M
LRB Launch Site Cost Elements

<table>
<thead>
<tr>
<th>NON-RECURRING</th>
<th>DESIGN</th>
<th>CONSTRUCTION</th>
<th>TTV Activation</th>
<th>OPS Certification</th>
<th>TOTAL COST (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECOND/THIRD LINE FACILITIES</td>
<td>2ND MLP (MOD)</td>
<td>3.0</td>
<td>35.5</td>
<td>13.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>VAB HB-3 MOD</td>
<td>0.2</td>
<td>2.4</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>PAD MOD</td>
<td>3.3</td>
<td>37</td>
<td>14</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>3RD MLP (MOD)</td>
<td>3.0</td>
<td>35.5</td>
<td>13.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>LETF / LCC</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>3.5 / 1.0</td>
</tr>
</tbody>
</table>

TOTAL = $173M
LRB Launch Site Cost Elements

<table>
<thead>
<tr>
<th>GSE/LSE (All Sites)</th>
<th>Handling Fixtures</th>
<th>Engine GSE</th>
<th>Leak Pressur.</th>
<th>ELEC C-0</th>
<th>Access</th>
<th>Other Mech.</th>
<th>Totals (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZ. PROC. FAC.</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>$28</td>
</tr>
<tr>
<td>MLP's (3)</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>$50</td>
</tr>
<tr>
<td>VAB (2)</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>$9</td>
</tr>
<tr>
<td>PAD's (2)</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>$8</td>
</tr>
<tr>
<td>ET PROC. FAC.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>$3.5</td>
</tr>
<tr>
<td>Totals (M)</td>
<td>$10</td>
<td>$35</td>
<td>$9</td>
<td>$32</td>
<td>$8.5</td>
<td>$4</td>
<td>$98.5M</td>
</tr>
</tbody>
</table>
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACT
MAY 10, 1988

LRB PROCESSING MANHOURS AND COST

<table>
<thead>
<tr>
<th>SKILL MIX</th>
<th>RATIO</th>
<th>MANHOURS</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRB PROCESSING</td>
<td>1.00</td>
<td>11,744</td>
<td>$355,392</td>
</tr>
<tr>
<td>VAB OPS</td>
<td>0.89</td>
<td>3,632</td>
<td>366,814</td>
</tr>
<tr>
<td>PAD OPS</td>
<td>0.53</td>
<td>4,680</td>
<td>393,258</td>
</tr>
<tr>
<td>TOTAL TECHNICIANS</td>
<td>1.00</td>
<td>20,056</td>
<td>$1,979,000</td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>0.89</td>
<td>17,850</td>
<td>366,814</td>
</tr>
<tr>
<td>FAC & GROUND SUPPORT</td>
<td>1.14</td>
<td>22,864</td>
<td>393,258</td>
</tr>
<tr>
<td>LOGISTICS</td>
<td>0.53</td>
<td>10,630</td>
<td>393,258</td>
</tr>
<tr>
<td>QUALITY</td>
<td>0.38</td>
<td>7,621</td>
<td>172,095</td>
</tr>
<tr>
<td>SAFETY</td>
<td>0.08</td>
<td>1,604</td>
<td>139,393</td>
</tr>
<tr>
<td>PP&C</td>
<td>0.22</td>
<td>4,412</td>
<td>29,346</td>
</tr>
<tr>
<td>OVERHEAD</td>
<td>0.42</td>
<td>8,424</td>
<td>78,892</td>
</tr>
<tr>
<td>GRUMMAN</td>
<td>0.71</td>
<td>14,240</td>
<td>162,574</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>107,701</td>
<td>$1,360,599</td>
</tr>
<tr>
<td>BASE SUPPORT - EG&G</td>
<td>1.60</td>
<td>32,090</td>
<td>$513,434</td>
</tr>
<tr>
<td>NASA - CS</td>
<td>1.92</td>
<td>38,508</td>
<td>847,165</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td>70,598</td>
<td>$1,360,599</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td>178,298</td>
<td>$3,339,599</td>
</tr>
</tbody>
</table>

COMMENTS AND ASSUMPTIONS:
1. MHRS AND COST FOR PROCESSING LRBs FROM RECEIPT THRU LAUNCH
2. ALL SKILL MIXES ARE RATIOED TO TECHNICIANS
3. MHRS AND COST ARE BASED ON THE LRB PROCESSING FLOW
4. EG&G BASE SUPPORT ASSUMES 20% SUPPORTS CARGO AND 80% SUPPORTS SHUTTLE ELEMENT PROCESSING
5. THE NASA/KSC CIVIL SERVICE VALUES HAVE THE SAME ASSUMPTIONS AS THE EG&G BASE SUPPORT ASSUMPTION IN ITEM #4
6. A NON-RECOVERABLE LRB IS ASSUMED IN THE ABOVE TABLE
Liquid Rocket Booster (LRB)
KSC Impact

MAY 10, 1988

Current SRB Processing Manhours and Cost

<table>
<thead>
<tr>
<th>SRB Activity/Loc</th>
<th>Manhours</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB Processing</td>
<td>18,603</td>
<td>$311,191</td>
</tr>
<tr>
<td>SRB Stacking</td>
<td>10,240</td>
<td>$181,008</td>
</tr>
<tr>
<td>VAB Integration</td>
<td>5,095</td>
<td>$88,728</td>
</tr>
<tr>
<td>Pad Processing</td>
<td>18,575</td>
<td>$343,842</td>
</tr>
<tr>
<td>SRB Shops/SE Maint</td>
<td>3,378</td>
<td>$54,264</td>
</tr>
<tr>
<td>SRB Ops Support</td>
<td>6,898</td>
<td>$179,466</td>
</tr>
<tr>
<td>Integ Ops Support</td>
<td>7,961</td>
<td>$164,167</td>
</tr>
<tr>
<td>RPSF - Maint</td>
<td>2,818</td>
<td>$54,488</td>
</tr>
<tr>
<td>VAB - Maint</td>
<td>4,639</td>
<td>$90,196</td>
</tr>
<tr>
<td>Pad/MLP - Maint</td>
<td>276</td>
<td>$5,661</td>
</tr>
<tr>
<td>Safety</td>
<td>5,377</td>
<td>$114,630</td>
</tr>
<tr>
<td>Overhead</td>
<td>4,183</td>
<td>$90,407</td>
</tr>
</tbody>
</table>

SPC (LSOC) Support

<table>
<thead>
<tr>
<th>SRB Activity/Loc</th>
<th>Manhours</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB Processing</td>
<td>1,120</td>
<td>$23,016</td>
</tr>
<tr>
<td>SRB Stacking</td>
<td>784</td>
<td>$16,111</td>
</tr>
<tr>
<td>VAB Integration</td>
<td>254</td>
<td>$5,220</td>
</tr>
<tr>
<td>Pad Processing</td>
<td>5,704</td>
<td>$109,146</td>
</tr>
<tr>
<td>Ops Support</td>
<td>814</td>
<td>$14,888</td>
</tr>
<tr>
<td>Grumman</td>
<td>3,997</td>
<td>$78,936</td>
</tr>
</tbody>
</table>

Subtotal

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100,716</td>
<td>$1,925,365</td>
</tr>
</tbody>
</table>

Base Support - EG&G

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32,090</td>
<td>$513,434</td>
</tr>
</tbody>
</table>

NASA/KSC - CS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38,508</td>
<td>$847,165</td>
</tr>
</tbody>
</table>

Subtotal

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70,598</td>
<td>$1,360,599</td>
</tr>
</tbody>
</table>

Grand Total

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>171,314</td>
<td>$3,285,964</td>
</tr>
</tbody>
</table>

Comments and Assumptions:

1. Morton Thiokol Processing Manhours and cost based on the past 14 missions.
2. SPC (LSOC) data based on the past three missions.
3. All SPC manhour and cost data is PWO and WBS data.
4. EG&G and NASA/KSC CS manhour and cost data assumes 80% of manhours and cost supports shuttle element processing and 20% supports cargo ops at KSC.
5. All LSOC support is engineering manhours except 1/2 of pad processing and the other half is techs and all ops support is quality people.

Lockheed Space Operations Company
LIQUID ROCKET BOOSTER (LRB)

KSC IMPACT

MAY 10, 1988

<table>
<thead>
<tr>
<th>KSC SRB RETRIEVAL/ REFURBISHMENT</th>
<th>MANHOURS</th>
<th>COST</th>
<th>95% CONFIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB RETRIEVAL/OPS</td>
<td>7,539</td>
<td>$153,164</td>
<td></td>
</tr>
<tr>
<td>SRB RETRIEVAL VESSEL</td>
<td>6,450</td>
<td>134,425</td>
<td></td>
</tr>
<tr>
<td>HANGAR AF OPS</td>
<td>12,379</td>
<td>247,195</td>
<td></td>
</tr>
<tr>
<td>USBI - KSC OPS</td>
<td>88,043</td>
<td>1,678,048</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>114,411</td>
<td>$2,212,832</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. IT IS ASSUMED THE USBI - KSC OPS IS STAFFED APPROXIMATELY THE SAME AS MORTON THIOKOL AT 400 PEOPLE

2. THIS $2.2M SRB LAUNCH SITE COST IS AVOIDED BY THE USE OF EXPENDABLE LRBs
LIQUID ROCKET BOOSTER (LRB)
KSC IMPACT

MAY 10, 1988

KSC LIFE CYCLE COSTS FOR LRB

<table>
<thead>
<tr>
<th>COST ELEMENT</th>
<th>UNIT COST</th>
<th>QTY</th>
<th>TIME SPAN</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-RECURRING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. FIRST-LINE FACILITY</td>
<td>$205M</td>
<td>1</td>
<td>91-95</td>
<td>$205M</td>
</tr>
<tr>
<td>2. SECOND/THIRD-LINE FAC.</td>
<td>173M</td>
<td>1</td>
<td>96-00</td>
<td>173M</td>
</tr>
<tr>
<td>3. GSE/LSE</td>
<td>98.5M</td>
<td>1</td>
<td>91-95</td>
<td>98.5M</td>
</tr>
<tr>
<td>4. GROUND S/W - LPS</td>
<td>20M</td>
<td>1</td>
<td>91-95</td>
<td>20M</td>
</tr>
<tr>
<td>5. ORBITER/ET MODS</td>
<td>TBD</td>
<td></td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$496.5M</td>
</tr>
</tbody>
</table>

RECURRING				
6. BOOSTER PROC. MANPOWER	$3.34M/FLOW	81	96-06	270.6M
7. OPERATIONS SUPPORT MANPOWER			(INCLUDED IN ABOVE)	
8. ON-GOING LRB MODIFICATIONS	TBD			TBD

LCC GRAND TOTAL = $767.1M
LIQUID ROCKET BOOSTER (LRB) KSC IMPACT

MAY 10, 1988

KSC LAUNCH RATE PROJECTIONS

<table>
<thead>
<tr>
<th>BOOSTER VEHICLE</th>
<th>DATE</th>
<th>MLP's</th>
<th>VAB INTEG. CELLS</th>
<th>PADS</th>
<th>ORB</th>
<th>FLT RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSRB</td>
<td>EARLY 90'S</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>ASRB</td>
<td>MID 90'S</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>16*</td>
</tr>
<tr>
<td>LRB</td>
<td>LATE 90'S</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>20*</td>
</tr>
<tr>
<td>LRB</td>
<td>2000+</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>24*</td>
</tr>
</tbody>
</table>

ORBITER PROCESSING FORECAST STILL LIMIT ULTIMATE LAUNCH RATE TO 14 PER YEAR
LIQUID ROCKET BOOSTER (LRB) IMPACTS

- MIXED FLEET OPERATIONS (SRB AND LRB)
- MAJOR SEPARATE BOOSTER FACILITIES
- LRB HORIZONTAL PROCESS FACILITY
- MLP
- PAD
- MAJOR SHARED FACILITIES
- VAB INTEGRATION FACILITIES
- LCC (FIRING ROOMS)
- OPF AND ORBITER OPS UNCHANGED AND NOT IMPACTED
- MANPOWER REQUIREMENTS DURING TRANSITION
- FIRST-LINE FACILITY ACTIVATIONS TO BE PHASED TO SUPPORT STS
- SECOND-LINE FACILITY ACTIVATIONS TO FULL LAUNCH RATE CAPABILITY
- 1996 FIRST LAUNCH
- MANIFEST/LRB LAUNCH RATE BUILDUP
- MINIMUM 5-YEAR TRANSITION TO FULL LAUNCH RATE CAPABILITY PER YEAR
- ON-GOING SRB LAUNCH CAPABILITY IMPORTANT BACKUP
LRB TRANSITION ISSUES/CONCERNS (CONT'D)

• LRB RETRIEVAL, DISASSEMBLY, REFURBISHMENT REQUIRE DEFINITION

• LRB GROUND SOFTWARE (LPS) CHANGES REQUIRE DEFINITION

• THE PRIME CONCERN IS THE TRANSITION OF LRB AND ITS INTEGRATION WITH OTHER EMERGING PROGRAMS AT KSC (i.e., ASRM, ALS, SHUTTLE "C", ETC.)
AGENDA

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988

GORDON ARTHUR

JERRY LEFEBVRE
GREG DEBLASIO
KEITH HUMPHREYS
PAT SCOTT

1. INTRODUCTION

II. SUMMARY

A) LRB Project Integration
B) Baseline Requirements
C) Impact Analysis
D) Plans, Products And Model

GORDON ARTHUR

80780-01BD

LRB STUDY TEAM MEMBERS

THE LRB STUDY TEAM IS COMPRISED OF EFFORTS AT THREE NASA CENTERS. THE LEMSCO STUDY AT JSC IS LED BY JIM MCCURRY AND DAVE BLUMENTRITT SUPPORTING JIM AKKERMAN IN THE LEVEL II INTEGRATION AND LRB SYSTEM PERFORMANCE EVALUATIONS. OUR TEAM AT LSOC IS LED BY GORDON ARTLEY AND REPORTS TO BILL DICKINSON FOR ALL THE LRB LAUNCH SITE INTEGRATIONS ISSUES. THE LRB PHASE A FLIGHT HARDWARE STUDIES AT MSFC ARE HEADED BY TOM MOBLEY AT MMC/MICHOND AND KEN NUSS AT GDSS. NED HUGHES, LRB CHIEF ENGINEER, COORDINATES THESE STUDIES, REPORTING TO LARRY WEAR, LRB PROGRAM MANAGER. THE TOTAL STUDY PROGRAM REPORTS THROUGH ADVANCED PROGRAM DEVELOPMENT UNDER DARRELL BRANSCOME TO THE OFFICE OF SPACE FLIGHT, NASA/HQ. THE INTERCENTER TECHNICAL WORKING GROUP MEETS EVERY TWO MONTHS ON MAJOR LRB ISSUES AT VARIOUS PRE-ARRANGED SITES.
Space Operations Company

Contractors: GOSS, MNS
- System Design Studies
- Aerodynamic Support
- Propulsion Evaluation
- Phase A Configuration Study

NED HUGHES
MSC

BILL DICKINSON
KSC

JIM ACKERMANN
JSC

Working Group

Program Manager
L.O. Valve
MSC

DARRELL BRANSCOMBE
Development Program Advanced

Space Flight Office of NASA / HQ

80708-01TV

TEAM MEMBERS

LAB STUDY

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1988

KSC Advanced Projects

TECHNOLOGY OFFICE

ADVANCED PROJECTS
STUDY OBJECTIVES

THE LIQUID ROCKET BOOSTERS WOULD PROVIDE ADDITIONAL PAYLOAD CAPACITY FOR THE SHUTTLE SYSTEMS AS WELL AS AN ON PAD HOLD-DOWN AN ENGINE CUT-OFF CAPABILITY PRIOR TO LAUNCH RELEASE TO ALLOW VERIFICATIONS OR PROPER SYSTEM PERFORMANCE. THE LRB SYSTEM MAY HAVE APPLICATIONS FOR FUTURE SPACE VEHICLES. KSC HAS, SEPARATE FROM LRB CONSIDERATIONS, DEVELOPED A GROUND OPERATIONS COST MODEL (GOCM) WHICH PROVIDES MACRO BUDGETARY ESTIMATES OF KSC GROUND OPERATION COSTS. THE GOCM IS CONSIDERED USEFUL IN THE CONDUCT OF EARLY CONFIGURATION TRADE STUDIES WHICH CONSIDER GROUND COST IMPACT BUT DOES NOT, IN ITS PRESENT CONFIGURATION, PROVIDE ADEQUATE RESOLUTION TO CONSIDER DETAIL DESIGN SENSITIVE COST DRIVERS.
1. Develop launch site support plan defining manpower requirements for LB implementation and operation.

2. Develop preliminary LSE/CE for LB processing.

3. Provide flight hardware design recommendations based on operational considerations.

4. Assist in the development of an operationally efficient LB system.

5. Utilize the ground operations cost model (GOCM) in the preparation of the LB launch site cost assessment.

6. Develop preliminary LHF for selected LTA scenarios.

7. Develop preliminary operational LTA configurations for selected MFC-selected LB configurations for selected LTA scenarios.

Study Objectives

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1988
METHODOLOGY/STUDY TASKS

THE RESPONSIBILITY ASSIGNMENT MATRIX (RAM) DISPLAYED HERE RELATES THE NINE STUDY TASKS TO THE SIXTEEN STUDY PRODUCTS, SHOWING THE TASK AND TASK-LEAD FOR THE PRODUCTION OF EACH PRODUCT. THESE IDENTIFIED RESPONSIBILITIES ENABLE QUICK REFERENCE AND TRACKING OF THE STUDY EFFORT TOWARD MEETING THE EARLIER STATED OBJECTIVES.
Study Products

<table>
<thead>
<tr>
<th>Task</th>
<th>Study Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Ground Ops Plan</td>
</tr>
<tr>
<td>2</td>
<td>The Launch Site Plan</td>
</tr>
<tr>
<td>3</td>
<td>The Follow-on Integration Plan</td>
</tr>
<tr>
<td>4</td>
<td>The Requirements Plan</td>
</tr>
<tr>
<td>5</td>
<td>The Baseline Plan</td>
</tr>
<tr>
<td>6</td>
<td>The Final Report</td>
</tr>
</tbody>
</table>

Responsibilities

<table>
<thead>
<tr>
<th>Lab</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow-On Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ejection System

<table>
<thead>
<tr>
<th>System</th>
<th>Ejection Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Design Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Impact/DeLasso

<table>
<thead>
<tr>
<th>Impact/DeLasso Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Scenario/Scott

<table>
<thead>
<tr>
<th>Scenario/Scott Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Launch Site Plan

<table>
<thead>
<tr>
<th>Launch Site Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Requirements Plan

<table>
<thead>
<tr>
<th>Requirements Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Baseline Plan

<table>
<thead>
<tr>
<th>Baseline Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Final Report

<table>
<thead>
<tr>
<th>Final Report Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Follow-on Integration Plan

<table>
<thead>
<tr>
<th>Follow-on Integration Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ground Ops Plan

<table>
<thead>
<tr>
<th>Ground Ops Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Launch Site Plan

<table>
<thead>
<tr>
<th>Launch Site Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Requirements Plan

<table>
<thead>
<tr>
<th>Requirements Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Baseline Plan

<table>
<thead>
<tr>
<th>Baseline Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Final Report

<table>
<thead>
<tr>
<th>Final Report Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Follow-on Integration Plan

<table>
<thead>
<tr>
<th>Follow-on Integration Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ground Ops Plan

<table>
<thead>
<tr>
<th>Ground Ops Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Requirements Plan

<table>
<thead>
<tr>
<th>Requirements Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Baseline Plan

<table>
<thead>
<tr>
<th>Baseline Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Final Report

<table>
<thead>
<tr>
<th>Final Report Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Follow-on Integration Plan

<table>
<thead>
<tr>
<th>Follow-on Integration Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ground Ops Plan

<table>
<thead>
<tr>
<th>Ground Ops Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Requirements Plan

<table>
<thead>
<tr>
<th>Requirements Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Baseline Plan

<table>
<thead>
<tr>
<th>Baseline Plan Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Final Report

<table>
<thead>
<tr>
<th>Final Report Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
KSC LRB INTEGRATION SCHEDULE

This is the first quarterly review, based on the contract ATP in mid-March. Informal coordination with MSFC began in October. The down-selected booster configurations on June 29 & 30 have provided a framework for the first formal presentation to KSC. Schedule changes have been made in response to changes in study emphasis by MSFC. Progress, open questions and plans for each of the four task packages will be discussed in section II of this review.
AGENDA

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

Gordon Arley

SUMMARY

Jerry LeFebvre

Greg DeBlaiso

Keith Humphries

B) Baseline Requirements

A) LAB Project Integration

II. Study Progress

I. Introduction

III. Summary

D) Plans, Products and Model

C) Impact Analysis
OPEN ISSUES / NEAR TERM PLANS
GENERIC FLOW / LAUNCH SITE COST ASSESSMENTS
FACILITY ACTIVATION / TRANSITION PLAN
LRB PRELIMINARY PROCESSING SCENARIO
LRB DESIGN RECOMMENDATIONS
MSC PHASE A CONFIGURATIONS

LRB PROJECT INTEGRATION

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION

A TECHNOLOGY OFFICE
KSC
ADVANCED PROJECTS
LRB PROJECT MILESTONES

MAJOR MILESTONES ARE IDENTIFIED HERE WITH REFERENCE TO OUR KSC STUDY. LRB PROJECT PARTICIPANTS ARE ORGANIZED INTO A THREE-CENTER TECHNICAL WORKING GROUP WHICH HAS PERIODICALLY CONVENED AND REVIEWED MAJOR PROJECT ISSUES, SUBJECTS SUCH AS VEHICLE AERODYNAMIC PROPERTIES, LAUNCH SITE INTEGRATION, PROJECT COST ANALYSIS AND PHASE A STUDY REVIEWS HAVE BEEN ADDRESSED. OUR STUDY TEAM AT KSC IS AN ACTIVE MEMBER OF THIS GROUP AND HOSTED THE JANUARY 88 KSC REVIEW. PREPARATION AND SUPPORT FOR THESE ACTIVITIES HAS REQUIRED A SIGNIFICANT AMOUNT OF OUR RESOURCES IN THE STUDY TO DATE. TECHNICAL INTERCHANGE WITH THE OTHER NASA CENTERS AND THEIR CONTRACTORS HAS BEEN VERY VALUABLE IN THE PERFORMANCE OF OUR LAUNCH SITE INTEGRATION PLANNING.
Space Operations Company
Lockheed

48070-0100

Phase A Final Rev / MSFC
(Jun 88)
- Reviews Rev MFG / GD AND MNC
- Cost Anal W'G / MSFC (May 88)
- W'G, MFG / MSFC / Config Baseline (Apr 88)
- Review (July 88)

1st Quarterly
- Lab ATP (Mar 88)
- Phase A Mid-Term Rev / MSFC (Mar 88)

Tech Rev W'G, MFG / MSFC /0-A1PHA (Dec 87)
Phase A Kick-off Rev / MSFC (Oct 87)

LAB Project Milestones

1987
1988
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEP

First Progress Review

Liquid Rocket Booster Integration

KSC
A Technology Office

ADVANCED PROJECTS
MSFC PHASE A SELECTED CONFIGURATIONS

THE "DOWN-SELECTED" LRB CONFIGURATIONS FROM THE MSFC STUDIES ARE SUMMARIZED HERE. THERE ARE SIX IN ALL AND CONSIST OF THREE DIFFERENT PROPULSION CONCEPTS. BECAUSE OF THE SELECTION OF LOX/RP1 FOR BOTH PUMP FED AND PRESSURE FED VEHICLES, WE AT THE LAUNCH SITE HAVE CHOSEN THIS PROPELLANT FOR INITIAL IMPACT ANALYSIS. WHERE OTHER PROPELLANT OR VEHICLE DESIGN FEATURES CAUSE IMPACT AT THE LAUNCH SITE THOSE "DELTA"S WILL BE IDENTIFIED AND DOCUMENTED, BUT OUR "BASELINE" FOR ALL MAJOR TRADES IS THE LOX/RP1 PUMP FED CONFIGURATION. THE REUSABILITY ISSUE IS STILL IN EVALUATION AT KSC AND WILL CONTINUE CONCURRENT WITH THE MSFC PHASE B STUDY. CURRENTLY, BOTH CONTRACTORS AND MSFC HAVE SELECTED THE EXPENDABLE LRB CONCEPT.
Launch Site Baseline for Initial Evaluations

<table>
<thead>
<tr>
<th></th>
<th>LOX/RP-1</th>
<th>LOX/RP-1</th>
<th>MWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOX/CH₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPANDER</td>
<td>PRESS FED</td>
<td>PRESS FED</td>
<td>CONTRACTIONS</td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSFC Phase A Selected Configurations

First Progress Review
Liquid Rocket Booster Integration

July 1986

KSC
Advanced Projects
HYDRAZINE

• Flight control via electro-mech TVC / no hydraulics / no

INTERFACES

• All boosters are designed to existing orbiter / ET

GROSS SUPPORT

• Press Fed test bed program has begun at MSC with M&C &

• Weight of press Fed boosters exceed SRB levels

FORWARD, EXPENDABLE

• All selected configurations are 4-engine, LOX tank

CONFIGURATION DETAILS

FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

July 1988
ENGINE DEVELOPMENT - NO EXISTING ENGINE FOUND SUITABLE

• ALL SELECTED CONFIGURATIONS REQUIRE NEW LOW-COST

70K PAYLOAD TO 150 NM 28.5° INCLINATION

DESIGN BASED ON ATO WITH ONE LRB ENGINE OUT AT LIFT-OFF

ALUMINUM - LITHIUM TANK MATERIALS

DOWN SYSTEM IS MODIFIED POSTS CONCEPT

LIFT-OFF UMBILICALS / NO VENT ARMS EXCEPT H2 AND CH4 / HOLD

PROPELLENT OPTIMIZATION

LIFT-OFF / IGNITION SEQUENCE STAGED FOR MIN BASE MOMENT

CONFIGURATION DETAILS (CONT)
<table>
<thead>
<tr>
<th>LRB</th>
<th>LO2/RP-1 PUMP</th>
<th>LO2/CH4 PUMP</th>
<th>LO2/LH2 PUMP</th>
<th>LO2/RP-1 PRESS FED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH (FT)</td>
<td>149.5</td>
<td>150.5</td>
<td>190.4</td>
<td>199.5</td>
</tr>
<tr>
<td>DIA (FT)</td>
<td>14.06</td>
<td>15.0</td>
<td>16.16</td>
<td>15.0</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>MONOCOQUE</td>
<td>MONOCOQUE</td>
<td>MONOCOQUE</td>
<td>MONOCOQUE</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>AL-LI</td>
<td>AL-LI</td>
<td>AL-LI</td>
<td>AL 2219 - T6</td>
</tr>
<tr>
<td>PRESSURANT</td>
<td>AUTOG</td>
<td>AUTOG</td>
<td>AUTOG</td>
<td>TRIDYNE (He/H2/O2)</td>
</tr>
<tr>
<td>CHAMBER PRESS</td>
<td>1275 psia (NLP)</td>
<td>758 psia (RLP)</td>
<td>2366 psia (NLP)</td>
<td>334 psia (NLP)</td>
</tr>
<tr>
<td>ISP (VAC)</td>
<td>323</td>
<td>337</td>
<td>427</td>
<td>273</td>
</tr>
<tr>
<td>MIXTURE RATIO</td>
<td>2.53</td>
<td>3.5</td>
<td>6.0</td>
<td>2.5</td>
</tr>
<tr>
<td>EXIT DIA (IN)</td>
<td>108</td>
<td>108.9</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>FEED LINES (LOX)</td>
<td>SINGLE (24IN)</td>
<td>SINGLE (24IN)</td>
<td>SINGLE (24IN)</td>
<td>CONCENTRIC (24IN)</td>
</tr>
</tbody>
</table>
Properties

<table>
<thead>
<tr>
<th></th>
<th>Pump Fed LOX/RP1</th>
<th>Press Fed LOX/RP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXID TANK VOLUME</td>
<td>10,769 FT³</td>
<td>12,012 FT³</td>
</tr>
<tr>
<td>FUEL TANK VOLUME</td>
<td>5,796 FT³</td>
<td>6,328 FT³</td>
</tr>
<tr>
<td>FEED LINES - LOX</td>
<td>17 IN. DUAL</td>
<td>25.5 IN. DUAL</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>MONOCOQUE</td>
<td>MONOCOQUE</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>WELDALITE</td>
<td>WELDALITE</td>
</tr>
<tr>
<td>INERT WEIGHT</td>
<td>116,665 LB</td>
<td>199,520 LB</td>
</tr>
<tr>
<td>TOTAL WEIGHT (BLOW)</td>
<td>1,092,000 LB</td>
<td>1,300,860 LB</td>
</tr>
<tr>
<td>PRESSURANT</td>
<td>AUTOGENOUS</td>
<td>SC He/10°C, (3000 psi)</td>
</tr>
<tr>
<td>PRESSURANT VOLUME</td>
<td>-</td>
<td>1,000 FT³</td>
</tr>
<tr>
<td>MIXTURE RATIO</td>
<td>2.5:1</td>
<td>2.67:1</td>
</tr>
<tr>
<td>CHAMBER PRESS (PSI)</td>
<td>1300 EPL</td>
<td>800 FPL</td>
</tr>
<tr>
<td>THRUST S.L. (EA.)</td>
<td>655 KLB</td>
<td>750 KLB</td>
</tr>
<tr>
<td>ISP (VAC)</td>
<td>322 SEC</td>
<td>320 SEC</td>
</tr>
</tbody>
</table>
KSC LRB DESIGN RECOMMENDATIONS

DURING THE COURSE OF OUR STUDY WE HAVE SUPPORTED THE ORGANIZATION OF A LAUNCH SITE WORKING GROUP MEETING AT KSC IN JANUARY 88, TWO WORKING GROUP MEETINGS AT MSFC (ONE ON COSTS, ONE ON AERO LOADS) AND VISITS TO MMC, MICHOUD AND GDSS - SAN DIEGO ON THE SUBJECT OF BOOSTER PROCESSING REQUIREMENTS. AT EACH OF THESE INTERFACE MEETINGS WE TOOK THE OPPORTUNITY TO IDENTIFY LRB DESIGN RECOMMENDATIONS THAT WOULD ENHANCE LAUNCH SITE OPERATIONS. SHOWN HERE ARE SOME OF THE MORE SIGNIFICANT FLIGHT VEHICLE DESIGN ISSUES IDENTIFIED, SOME (BUT NOT ALL) HAVE BEEN INCORPORATED INTO THE SELECTED LRB CONFIGURATIONS.
MAKE BOOSTER AUTONOMOUS WITH MINIMUM ORBITER INTERFACES

- FACILITATE VERTICAL AND HORIZONTAL CHECKOUT
- NO FRAME TRENCH (CONCRETE) MODS AT PAD
- LOX/RP-1 PROPELLANTS HAVE MINIMUM PAD IMPACTS
- USE EXPENDABLE DESIGN
- FACILITATE ENGINE R/R IN VERTICAL ON MLP
- LOCATE AVIONICS R/U & IN AFT SKIRT AREA
- MAXIMUM LAB DIAMETER LESS THAN 16 FEET
- USE LIFTOFF UMBILICALS - NO SWING ARMS OR LUT
- NO HYDRAULICS/NO HYDRAZINE

KSC-LRB DESIGN RECOMMENDATIONS

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION
REQUIRE SPECIAL ATTENTION:

- AVOID ELEPHANT TRUNKS (TRAPS) IN PROPELLENT LINES THAT
 FACILITATE ACCESS AND EASE OF SERVICE.
- CONSIDER EXTERNAL POD FOR AVIONICS AND BATTERIES TO
 ELIMINATE ENGINE PURGES, BLEEDS AND SPECIAL PREP
 MINIMIZE ET MODS
- HARD MOUNTED ENGINES (NOZZLE GIMBALS FOR TVC)
 ON BOARD LOX VENTS / NO BEANIE CAP
- FACILITATE SEPARATE LAB STAND ALONE TEST AND CHECKOUT
 USE SEPARATE BOOSTER DOWNLINK (RF)

KSC-1RB DESIGN RECOMMENDATIONS (CONT):
THE ANNUAL LRB/SRB LAUNCH RATE CAPABILITY DURING THE 5-YEAR TRANSITION OF LRB IS PLANNED TO SUPPORT A CONTINUING 14 LAUNCHES PER YEAR STS MANIFEST.

THE PLANNED LRB LAUNCH RATE BUILD-UP, SRB SUPPORTED LAUNCHES WILL DECLINE ACCORDINGLY DURING THIS PERIOD.

AT KSC THE PLANNED IOC (FIRST LINE) FACILITY ACTIVATIONS ARE SCHEDULED OVER THE 1991 TO 1996 TIME FRAME LEADING UP TO THE "INITIAL ACTIVATION COMPLETE" POINT.
GENERIC LRB/SRB PROCESS FLOW COMPARISON

TYPICAL TIMELINES FOR STS PROCESSING ARE COMPARED TO SHOW THAT LRB PLANNED FLOW TIME FROM RECEIPT TO LAUNCH IS 25 DAYS SHORTER THAN THE MID-90'S PROJECTION FOR SRB/ASRM. THIS RESULTS IN INCREASED LAUNCH RATE CAPABILITY FOR THE LIQUID-BOOSTED STS AFTER FULL TRANSITION. DIFFERENCES ARE DUE MAINLY TO THE SHORTENED BUILD-UP AND STACKING TIMES REQUIRED BY LRB.

A DETAILED LRB PROCESS FLOW FROM BARGE DELIVERY THROUGH LAUNCH HAS BEEN DEVELOPED. IT IDENTIFIES OVER 100 TASKS WITH SEQUENCE, MANPOWER AND SHIFT DURATIONS. THIS MODEL HAS BEEN NETWORKED IN ARTEMIS AND WILL BE USED IN OUR CONTINUING ANALYSIS EFFORTS TO ASSESS OPERATIONAL EFFICIENCY, MULTIFLOW INTEGRATION, AND FACILITY UTILIZATION.
GENERIC LAB/SRB PROCESS FLOW COMPARISON

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

NOTE: LAB RETRIEVAL, DISASSEMBLY, REPAIR/BUILD AND REMANUFACTURING ARE NOT SHOWN.

SRB FLOW = 78 DAYS

LAB FLOW = 53 DAYS
KSC LAUNCH RATE PROJECTIONS

KSC LAUNCH RATE PROJECTIONS VS. FACILITIES ARE SUMMARIZED HERE FOR KNOWN BOOSTER CONFIGURATIONS (RSRB, ASRB, AND LRB). CURRENT FORECASTS FOR ORBITER PROCESSING TIMES OF 51 DAYS IN THE OPF LIMIT EFFECTIVE LAUNCH RATES, HOWEVER THE BOOSTER AND INTEGRATED VEHICLE CAPABILITIES ENABLE ANNUAL RATES UP TO 24 PER YEAR BY THE YEAR 2000. CURRENT PLANNED LRB FACILITY ACTIVATIONS THRU TRANSITION SUPPORT THE 20 PER YEAR CAPABILITY.

THESE RESULTS ARE PRELIMINARY FORECASTS; MORE DETAILED MULTIFLOW ARTEMIS ANALYSIS WITH OUR REFINED LRB FLOW MODELS WILL BE PERFORMED TO ESTABLISH MORE ACCURATE FLIGHT RATE CAPABILITIES.
KSC Launch Rate Projections

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

<table>
<thead>
<tr>
<th>VAB 2000+</th>
<th>LRB</th>
<th>ORB</th>
<th>FLR</th>
<th>VAB Cells</th>
<th>MLPs</th>
<th>Date</th>
<th>VAB Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>MLD 90.5</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Using a 21-day stack time, VAB H3 & H1 utilization is near 100% at a launch rate of 14 per year. 14 per year (assuming 4-orbiter fleet, 3 OPF, and 51-day flows). Orbs Processing Forecast still limit ultimate launch rate to 10.
KSC LIFE CYCLE COSTS FOR LRB

A PRELIMINARY LRB LAUNCH SITE COST ASSESSMENT WAS PERFORMED TO SCOPE THE MAJOR COST ITEMS AND TO SUPPORT THE MAY 10 COSTING REVIEW AT MSFC. SUMMARIZED HERE ARE THE MAJOR COST ELEMENTS COMPRISING BOTH NON-RECURRING AND RECURRING COSTS AT KSC. ELEMENTS ARE FACTORED BY 40% FOR COMPARISON WITH THE OTHER PROGRAM INPUTS: (CONTRACTOR FEE=10%, GOVT. SUPPORT=5%, MGMT. RESERVE=25%). COSTS ARE IN CONSTANT FY 87 DOLLARS AND REPRESENT TOTAL LIFE CYCLE INCLUDING A FIVE-YEAR ACTIVATION PHASE AND A TEN-YEAR OPERATIONAL PHASE.

OUR GROUND OPERATIONS COST MODEL (GOCM) DEVELOPMENT WILL RESULT IN A MORE FLEXIBLE COST MODELING APPROACH AND THE ABILITY TO EVALUATE AND CORRELATE PROGRAM COST APPROACHES SUCH AS THIS ASSESSMENT. DETAILED COST ELEMENTS SUPPORTING THIS SUMMARY ARE AVAILABLE FOR REVIEW.
<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Non-Recurring</th>
<th>Recurring</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Orbiter/ET Mods</td>
<td>$695M</td>
<td>$496.5M</td>
<td>$695M</td>
</tr>
<tr>
<td>4. Ground SW - LPS</td>
<td>TD</td>
<td>96-95</td>
<td>96-95</td>
</tr>
<tr>
<td>3. GSE/LSE</td>
<td>20M</td>
<td>98.5M</td>
<td>98.5M</td>
</tr>
<tr>
<td>2. Second/Third-Line FAC</td>
<td>173M</td>
<td>96-00</td>
<td>173M</td>
</tr>
<tr>
<td>1. First-Line Facility</td>
<td>$205M</td>
<td>$9-95</td>
<td>$205M</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$4/0%</td>
<td>TOTAL</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

KSC Life Cycle Costs for LRB

July 1988

First Progress Review

Liquid Rocket Booster Integration

Space Operations Company

Lockheed

Total LCC Cost does not include

Recycle/Recert Costs at the Launch Site

Cost Elements also does not include

Recovers, Disassembly or Refurbishment
1. Recovery / Disassembly Option

2. SRB - TO - LRB Transition Planning

3. OM Development / Test Team Training

4. Mixed Fleet Integration / Shared Facilities

5. Cost Assessment Refinements / Analyses

OPEN ISSUES:

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION

KSC ADVANCED PROJECTS TECHNOLOGY OFFICE
OPERATIONS COST MODEL (OCOM) REQUIREMENTS AND CORRELATE WITH THE GROUND 4. REFINISH LAUNCH SITE COST ASSESSMENTS PER CONTRACTOR

CONFIGURATION AND IDENTIFY ALL MAJOR DELTA'S FOR EACH SELECTED CONFIGURATION (DUE MID-JULY)

COORDINATE LRP LAUNCH SITE PROCESSING SCENARIOS

2. SUPPORT FOLLOW-UP TECHNICAL WORKING GROUP MEETINGS

FUNCTIONS 1. CONTINUE MSC / JSC AND CONTRACTOR COORDINATION

NEAR TERM PLANS:

FIRST PROGRESS REVIEW JULY 1988

LIQUID ROCKET BOOSTER INTEGRATION

ADVANCED PROJECTS
AGENDA

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
TASK 1 - SRB BASELINE DEFINITION

THE OBJECTIVE OF DEFINING THE SRB BASELINE IS TO PROVIDE A BASIS OF COMPARISON FOR LRB WITH PARAMETERS OF MANPOWER, COST, SCHEDULE AND SAFETY ENVIRONMENTAL.

USING HISTORICAL DATA FROM PREVIOUS STS PROCESSING WE HAVE COMPILED A BASELINE FOR THE RSRB PROCESSING THROUGH 2006. THIS BASELINE REFLECTS THE CHANGES MADE IN REQUIREMENTS AND PROCEDURES AFTER 51L WITH AN APPROPRIATE LEARNING CURVE. WE HAVE INCLUDED PROCESSING SCHEDULES, MANPOWER AND COST WHICH IS TO BE USED FOR COMPARISON WITH THE LRB AND FOR TRANSITION PLANNING. WHILE BASED ON ACTUAL DATA THESE PARAMETERS ARE ESTIMATES WITH SOME DEGREE OF UNCERTAINTY DUE TO OUR LACK OF EXPERIENCE WITH THE NEW (PRESENT) REQUIREMENTS AND PROCEDURES.
Task 1 - SRB Baseline Definition

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION
BASELINE SRB PROCESSING

THE SHADED LINES ENCLOSE THE PORTION OF THE SRB PROCESSING FLOW WHICH IS COMPARABLE TO AN EXPENDABLE LRB. THE RESOURCES, FACILITIES AND COSTS ASSOCIATED WITH THIS PORTION OF THE SRB PROCESSING ARE USED AS A BASELINE OF COMPARISON. THE PORTION OUTSIDE THE SHADED LINES CAN BE AGGREGATED WITH OTHER ELEMENTS OF LIFE CYCLE COST TO MAKE PROGRAMMATIC TRADES WITH LRB MANUFACTURING.
SCHEDULE

THE BARS REFLECT THE CURRENT ELAPSED TIME (DAYS) PROJECTIONS FOR SRB PROCESSING IN THE 1996 TIME FRAME. POST 51L PROCESSING CHANGES HAVE BEEN INCORPORATED WITH A LEARNING CURVE. THE BARS ARE NOMINAL, SUCCESS-ORIENTED TIMES. THE INSPECTION/OFFLOAD BAR IS SEGMENTED TO SHOW THE SIX DAY SERIAL TIME SPAN. PAD OPERATIONS INCLUDES THREE DAYS FOR VERTICAL PAYLOAD INTEGRATION.
Liquid Rocket Booster Integration

Task 1 - SRB Baseline Definition

First Progress Review

July 1998

1996 SRB Processing Baseline Schedule

(78 Day Flow)

Page 1 of 1

18 Pad Operations

5 Integrated Operations - VAB

ORBITER MATE

ET MATE & CO - VAB

STACK - VAB

INSPECTION/LOAD - RSPF

BOOSTER BUILDUP - RSPF

ATT SKITS AT RSPF

18 January 1998

Lockheed
Space Operations Company
SRB PROCESSING MANHOURS AND COST

IN DEFINING BASELINE COST AND MANHOURS FOR SRB WE ARE PRIMARILY INTERESTED IN THE PRE-LAUNCH, GROUND PROCESSING FOR COMPARISON WITH LRB. OTHER SUPPORT SUCH AS BASE OPERATIONS IS ASSUMED TO BE THE SAME FOR ANY FLIGHT CONFIGURATION AND IS, THEREFORE, NOT PRESENTED.

THE COST AND MANHOUR DATA ARE BASED ON SPC ACTUALS FROM PREVIOUS MISSIONS. SPC COST AND MANHOUR DATA ARE PWO AND WBS DATA. LSOC SUPPORT IS ENGINEERING EXCEPT "PAD PROCESSING” HALF OF WHICH IS TECHNICIANS AND "OPS SUPPORT” WHICH IS QUALITY. THE PRESENTED NUMBERS ARE STATISTICALLY DERIVED. THEY ARE THE UPPER LIMITS OF THREE STANDARD DEVIATIONS AND THEREFORE REPRESENT A 95% PROBABILITY THAT THE COSTS WILL NOT BE HIGHER. THIS IS BELIEVED TO BE A CONSERVATIVE APPROACH, IN THAT ALLOWANCES FOR POST 51L REQUIREMENT INCREASES HAVE NOT BEEN MADE AND THEIR EFFECTS ARE NOT YET CLEARLY QUANTIFIED.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruuman Ops Support</td>
<td>3.97</td>
<td>1,997</td>
</tr>
<tr>
<td>Pad Processing</td>
<td>2.94</td>
<td>1,480</td>
</tr>
<tr>
<td>Pad Integration</td>
<td>2.54</td>
<td>1,270</td>
</tr>
<tr>
<td>Srb Stacking</td>
<td>2.84</td>
<td>1,010</td>
</tr>
<tr>
<td>Srb Processing</td>
<td>1.20</td>
<td>530</td>
</tr>
<tr>
<td>Spc (Lsso) Support</td>
<td>4.13</td>
<td>1,860</td>
</tr>
<tr>
<td>Overhead</td>
<td>4.77</td>
<td>2,260</td>
</tr>
<tr>
<td>Safety</td>
<td>5.62</td>
<td>2,740</td>
</tr>
<tr>
<td>Pad/MLP - Maint</td>
<td>4.69</td>
<td>2,180</td>
</tr>
<tr>
<td>Vab - Maint</td>
<td>3.98</td>
<td>1,890</td>
</tr>
<tr>
<td>Psf - Maint</td>
<td>6.98</td>
<td>3,440</td>
</tr>
<tr>
<td>Iteg Ops Support</td>
<td>5.24</td>
<td>2,310</td>
</tr>
<tr>
<td>Srb Ops Support</td>
<td>3.75</td>
<td>1,725</td>
</tr>
<tr>
<td>Srb Shops/SE Maint</td>
<td>5.05</td>
<td>2,325</td>
</tr>
<tr>
<td>Pad Processing</td>
<td>1.17</td>
<td>530</td>
</tr>
<tr>
<td>Vab Integration</td>
<td>1.24</td>
<td>550</td>
</tr>
<tr>
<td>Srb Stacking</td>
<td>1.03</td>
<td>470</td>
</tr>
<tr>
<td>Srb Processing</td>
<td>2.71</td>
<td>1,240</td>
</tr>
</tbody>
</table>

Total Cost: $1,925.365

Task 1 - Srb Baseline Definition

July 1988

First Progress Review

Liquid Rocket Booster Integration

78079-81BRE

80709-81BRE
FINAL REPORT

FINIMIZE DATA AND FORMAT FOR

WORK PLAN FOR NEXT PERIOD

OPEN QUESTIONS AND ISSUES - NONE

TASK 1 - SRB BASELINE DEFINITION

FIRST PROGRESS REVIEW

JULY 1988

LIQUID ROCKET BOOSTER INTEGRATION

4 TECHNOLOGY OFFICE

ADVANCED PROJECTS

KSC
TASK 2 - LRB REQUIREMENTS

THE OBJECTIVE OF THIS TASK IS TO DEFINE ALL THE SIGNIFICANT LRB REQUIREMENTS AS THEY APPLY TO LAUNCH SITE PROCESSING. THESE REQUIREMENTS ARE THOSE THAT ARE LEVIED UPON THE LAUNCH SITE BY VIRTUE OF THE LRB DESIGN/CONFIGURATION AND THOSE THAT KSC WOULD REQUIRE OF THE MANUFACTURER(S). THESE REQUIREMENTS ARE BEING DEFINED/DEVELOPED THROUGH CLOSE COORDINATION WITH THE KSC STUDY MANAGER, MSFC, JSC AND THE PHASE A CONTRACTORS. THE DATA WAS ASSEMBLED FROM RESPONSES TO OUR REQUIREMENTS CHECKLIST, LRB TECHNICAL WORKING GROUP PRODUCTS AND VARIOUS RELATED DOCUMENTS.
REQUIREMENTS DEFINITION

A REQUIREMENTS CHECKLIST WAS PRODUCED AND SUBMITTED TO THE PHASE A CONTRACTORS. FOR SPECIFIC INFORMATION ABOUT EACH PROPOSED LRB CONFIGURATION, IT INCLUDES PHYSICAL PROPERTIES, GENERAL REQUIREMENTS AND SPECIFIC REQUIREMENTS WITH RESPECT TO THE TEN AREAS OF IMPACT* AS DEFINED IN THE STUDY PLAN. ALL OF THE PERTINENT ISSUES, SUCH AS HORIZONTAL VS. VERTICAL PROCESSING AND STAND ALONE TESTING, ARE COVERED. PRIOR TO RECEIVING THESE DATA, THE STUDY TEAM DEVELOPED A LOX/RP1 GENERIC BASELINE FOR A PUMP AND A PRESSURE FED CONFIGURATION. THIS ALLOWED US TO PROCEED WITH VARIOUS STUDY ELEMENTS WHICH WERE DEPENDENT UPON CONFIGURATION DATA. WE ATENDED ALL OF THE VARIOUS WORKING LRB SESSIONS AND VISITED THE PLANTS OF GDOSS MMC TO OBTAIN DATA AND INFLUENCE THE DESIGNS. THE REQUIREMENTS HAVE BEEN SORTED INTO CATEGORIES OF CONFIGURATION-COMMON AND CONFIGURATION-DEPENDENT.

* AREAS OF IMPACT-RECEIVING/HANDLING, ASSEMBLY, INTEGRATION, TEST/CHECKOUT, LAUNCH, ABORT/SCRUB, FRF, RECOVERY, DISASSEMBLY/SAFING, REFRIBISHMENT.
INTEGRATE DATA FROM CONTRACTOR DOCUMENTATION

WORKING SESSIONS / VISITS WITH PHASE A CONTRACTORS

EXPELABLE
- PUMP FED / PRESSURE FED
- LOX/RP1

STANDARD CONSIDERATION
- 10 AREAS OF IMPACT
- ISSUES
- REQUIREMENTS CHECKLIST

TASK 2 - LB REQUIREMENTS

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION
CONFIGURATION - COMMON REQUIREMENTS

THESE ARE THE REQUIREMENTS THAT ARE COMMON TO THE SIX "DOWN-SELECTED" LRB CONFIGURATIONS. GDSS HAS PROPOSED AN "ON SITE" MANUFACTURING FACILITY. THE SITE COULD BE ON THE BARGE CANAL IN WHICH CASE THE BOOSTERS WOULD ARRIVE AT LC39 VIA BARGE OR IT COULD BE AN LC39 LOCATION. IN EITHER CASE, NO SIGNIFICANT DIFFERENCE IN REQUIREMENTS IS SEEN AT THIS TIME WITH RESPECT TO RECEIVING/HANDLING. ON SITE MANUFACTURING HOWEVER, MAY PRECLUDE THE NEED FOR A LRB HORIZONTAL PROCESSING FACILITY (HPF).

LAUNCH, ABORT/SCRUB AND FRF ARE COMBINED. WE FOUND NO COMMON OR UNIQUE REQUIREMENTS THAT DESCRIMINATE BETWEEN THESE AREAS OF IMPACT.

RECOVERY, DISASSEMBLY/SAFING AND REFURBISHMENT ARE COMBINED. THEY HAVE NO CURRENT REQUIREMENTS BECAUSE ALL SIX CURRENT LRB CONFIGURATIONS ARE EXPENDABLE.
NONE

ADDITIONAL RECOVERY, DISASSEMBLY, SAFING, DECOMMISSIONING, LIFE SUPPORT, ARM MOD, L2 VENT ARM MOD, LIFEDRAILS, NEW HPE WITH FIREX, LIFEGPS, NO LAB HYDRAULIC TDC, ONE NEW MLP, TWO MODIFIED MLPs, ADDITIONAL Lock AND NEW FUEL FACILITIES, NO LAB LOCK "BEENE CAP".

LAUNCH, ABORT / SCRUB AND EFF

NO TANK INTERIOR WORK, PROPELLANT CONSOLING, 3 X SRB LPS INCLUDING NEW ENGINE AND MINI-LPS FOR HPF, NEW RLS & CYS SOFTWARE, NEW B. AND S. OMS, SOME NEW A. OMS.

TEST AND CHECKOUT

CONFIGURATION - COMMON REQUISITE

TASK 2 - LRB REQUIREMENTS

FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

NEW HOLDDOWN CONCEPT

SAB / LAB COMPATIBLE ORBITER HARDWARE

NO BOOSTER UNIQUE ET INTERFACE

LIFING GSE

ENGINE CHANGE CAPABILITY AFTER STACKING

STANDALONE DURING PROCESSING (MINI LPS)

INTEGRATION

ET PROCESSING FACILITY (ETPF)

HORIZONTAL PROCESSING FACILITY (HPF)

MINIMAL

ASSEMBLY

GROSS ON-SITE MANUFACTURING

A PURCHASE CASE

SELF CONTAINED TRANSPORTER ELECTRICAL INTEGRATION

DEDICATED TRANSPORTER THRU

BARGE RECEIVING (2 LRBs PER)

RECEIVING / HANDLING

4 TECHNOLOGY OFFICE

KSC

ADVANCED PROJECTS

July 1988
CONFIGURATION - DEPENDENT REQUIREMENTS

THE LAUNCH PADS WILL REQUIRE THE MOST EXTENSIVE REWORK, THE GDSS LOX/RP1 PUMP-FED CAUSES THE LEAST REQUIREMENTS FOR KSC ESPECIALLY IF ON-SITE MANUFACTURING IS EMPLOYED.
Configuration-Dependent Requirements

Task 2 - LRB Requirements

First Progress Review

Liquid Rocket Booster Integration

July 1988

<table>
<thead>
<tr>
<th>Side Definition</th>
<th>C-Mod Flow Platform</th>
<th>C-Mod Flow Platform HPF</th>
<th>LRV</th>
<th>C-Mod Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Cone Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NO FACING PAGE TEXT
BEGIN FINAL REPORT FORMATTING

COMPLETE ALL DATA POINTS

FREEZE DATA WITH PHASE-A FINAL

WORK PLAN FOR NEXT PERIOD

CONFIGURATIONS PLEASE STAND UP

WILL THE REAL DownSELECTED

OPEN QUESTIONS AND ISSUES

TASK 2 - LRB REQUIREMENTS
LRB PROCESSING SUMMARY

THE LRB PROCESSING SCENARIO BEGINS AT KSC WITH BARGE DELIVERY, AND HORIZONTAL TRANSPORTER TOW TO THE NEW LRB PROCESSING FACILITY. HERE ALL STAND-ALONE BOOSTER CHECKOUT AND TESTING IS CONDUCTED. THE CONVERSION OF VAB/HB4 TO A FULL INTEGRATION CELL PERMITS LRB TRANSITION WITHOUT IMPACT TO ON-GOING SHUTTLE LAUNCHES.

THE NEW ET HORIZONTAL PROCESSING FACILITY RELOCATES THE ET CHECKOUT AND STORAGE ACTIVITY SO THAT HB4 CAN BE USED. A NEW MLP CUSTOM-BUILT FOR LRB WILL BE CONSTRUCTED TO SUPPORT THE LRB IOC.

PAD MODS FOR OUR "BASELINE" LRB ARE MOSTLY ASSOCIATED WITH EXPANDED LOX CAPABILITY AND THE NEW FUEL STORAGE AND PUMPING SYSTEM. THE LAUNCH EQUIPMENT TEST FACILITY WILL BE MODIFIED TO SUPPORT THE VALIDATION OF THE NEW LRB LAUNCH SUPPORT EQUIPMENT.

THE LAUNCH CONTROL CENTER FIRING ROOMS WILL BE MODIFIED TO SUPPORT THE NEW CONSOLES AND GROUND SOFTWARE FOR LRB PROCESSING AND LAUNCH OPERATIONS.
SCENARIO GROUND RULES

BASIC GROUND RULES HAVE BEEN ESTABLISHED FOR THE PLANNED LRB SCENARIO AT THE LAUNCH SITE. CERTAIN FACILITIES ARE REQUIRED PRIOR TO IOC (FIRST LINE) AND ADDITIONAL FACILITY MODS AND ACTIVATION (SECOND AND THIRD LINE) ARE REQUIRED TO SUPPORT THE FULL TRANSITION AND LRB LAUNCH RATE BUILD UP.
Transition.

ARE PLANNED TO SUPPORT SHUTTLE LAUNCH MANIFEST DURING

* SHARED FACILITY UTILIZATION FOR THE MIXED FLEET OPERATIONS

ARE PLANNED TO SUPPORT THIS BUILD-UP

Overt 1996 To 2000, Second and third line facility Activations

A FIVE-YEAR TRANSITION TO FULL FLIGHT RATE OF 14 IS PLANNED

FLIGHT AND A BUILD-UP TO AN ANNUAL 3 LRB LAUNCH RATE

FIRST-LINE FACILITY ACTIVATIONS WILL SUPPORT 1996 FIRST

KSC LAUNCH OPERATIONS

LRB TRANSITION IS PLANNED TO YIELD MIN IMPACTS TO ONGOING

SCENARIO GROUNDBASED

Task 3 - Preliminary Scenarios

JULY 1988

First Progress Review

Liquid Rocket Booster Integration

A Technology Office

KSC Advanced Projects
SCENARIO FEATURES

THROUGH OUR INTEGRATION EFFORTS WITH THE OTHER NASA CENTERS AND THE LRB PHASE A CONTRACTORS WE HAVE BEEN ABLE TO DEVELOP THE MOST LIKELY SCENARIO. AT THIS TIME, WE ENVISION ONLY TWO MAJOR PROCESSING ALTERNATIVES, ONE IS OFF-SITE (NOT LC39) MANUFACTURE AND THE OTHER USES ON-SITE MANUFACTURE.

THE BOOSTERS ARE RECEIVED BY BARGE (OFF-SITE MANUFACTURE) AND MOVED TO THE HPF FOR ASSEMBLY, TEST AND CHECKOUT. BOOSTERS, ET AND ORBITER ARE TAKEN TO THE VAB HB 3 OR 4 FOR INTEGRATION ON A NEW OR MODIFIED MLP. THE INTEGRATED STACK IS MOVED TO THE PAD FOR INTEGRATED TESTING, PROPELLANT LOADING, FRF AND LAUNCH.
Scenarios Features

Task 3 - Preliminary LB Scenarios

July 1988
THE LRB FLIGHT RATE IS SHOWN TO FOLLOW A RAMP OF 3, 6, 9, 12, 14 FLIGHTS PER YEAR. SRB IS ASSUMED TO DECREASE AT A COMPLEMENTARY RATE (11, 8, 5, 2, 0 RESPECTIVELY) TO MAINTAIN A CONSTANT FLIGHT RATE OF 14 PER YEAR DURING THE TRANSITION PERIOD. TRANSITION IS TO OCCUR OVER THE FIVE YEAR PERIOD 1996-2000. OTHER RAMPING SCHEMES ARE BEING PROPOSED BY OTHER GROUPS. HOWEVER, THE ONE SHOWN IS GROUND RULED FOR THIS STUDY AND IS THE BASIS FOR OUR LRB IMPLEMENTATION PLANS. NO EFFECTS OF OTHER PROGRAMS (ASRM, ALS, SHUTTLE II, SHUTTLE C) ARE SHOWN.
CONFIGURATION
IDENTIFY ALL MAJOR DELTAS FOR EACH
FINALIZE PROCESSING SCENARIOS AND

• WORK PLAN FOR NEXT PERIOD

• HPF VS ON-SITE MANUFACTURING

(COMMON OR SEPARATE)
STRING FOR HPF AND ETPF

• OPEN QUESTIONS AND ISSUES

TASK 3 - PRELIMINARY LRB SCENARIOS

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION
AGENDA

FIRST PROGRESS REVIEW
JULY 1988

LIQUID ROCKET BOOSTER INTEGRATION

GORDON ARLETT

SUMMARY

II. PROGRESS

I. INTRODUCTION

A) LAB PROJECT INTEGRATION
B) BASELINE REQUIREMENTS
C) IMPACT ANALYSIS
D) PLANS, PRODUCTS AND MODEL

JERRY LEE BRYANT
KEITH HUMPHREYS
PAT SCOTT
THE GROUND RULE, PRESENTED IN THE BASELINE AND SCENARIO PLANNING, OF INTRODUCING LRB TO KSC WITHOUT IMPACTS TO EXISTING FACILITIES AND OPERATIONS DRIVES A REQUIREMENT TO STUDY AN OFF-LINE LRB PROCESSING FACILITY. THIS SCENARIO ALSO SHOWS THAT TO MAINTAIN THE PLANNED LAUNCH RATE A THIRD INTEGRATION CELL IN THE VAB IS REQUIRED. A STUDY TO PROVIDE AN OFF-LINE ET PROCESSING FACILITY IS ALSO BEING CONDUCTED.
LRB PROCESSING FACILITY LAYOUT

The off-line facility for processing and storage of LRBs being proposed will provide for LRB component & subsystem final checkout and flight certification, LRU replacement and engine removal/installation. Space for GSE and mini-LPS is provided along with an engine shop, battery shop and LRU storage.

The proposed facility will provide the capability to process a LRB pair for flight and store two pairs of LRB boosters.

The facility will require utilities as follows:

PNEUMATICS: GHE distribution, GN2 distribution, compressed air distribution, breathing air distribution systems, ECS
ELECTRICAL: AC power, DC power (controls)
FIRE CONTROL: Firex water, Halon, dry chemical (as required)
COMMUNICATIONS: PA system, OIS (voice recorder system)
UTILITIES: Potable water, sewage
LAB PROCESSING FACILITY LAYOUT

FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

July 1988

KSC

ADVANCED PROJECTS

TECHNOLOGY OFFICE

LOCKER ROOMS
BREAK ROOM
TAM ROOM
OFFICE
CONTROL ROOM
2ND FLOOR
LRB PROCESSING REQUIREMENTS

THE GSE REQUIRED TO SUPPORT VARIOUS FUNCTIONAL PROCESSING TASKS FOR THE LRB BOOSTERS (AVIONICS, TANKS AND ENGINES) IS BEING COMPILED.

THE CONTROLS/SOFTWARE-HARDWARE REQUIREMENTS ARE ALSO BEING COMPILED INCLUDING THE CONTROL ROOM REQUIREMENTS.
ET PROCESSING FACILITY LAYOUT

TO ALLOW VAB HB4 TO BE USED FOR STS/LRB INTEGRATION, ET STORAGE AND PROCESSING MUST BE MOVED TO AN OFF-LINE FACILITY. THE PROPOSED FACILITY CAN BE COMBINED WITH THE NEW LRB PROCESSING FACILITY AND SHARE OFFICE, SHOP AND CONTROL ROOM SPACE.

THE FACILITY UTILITY REQUIREMENTS WILL BE THE SAME AS LRB AND WILL BE SHARED.

ALL OPERATIONS PRESENTLY PERFORMED ON THE ET IN HB4 CAN BE ACCOMPLISHED IN THE HORIZONTAL POSITION.
ET PROCESSING FACILITY LAYOUT

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1998

KSC

ADVANCED PROJECTS
ET/LRB PROCESSING FACILITY - SITING

THE SITE SELECTION TRADE STUDY FOR THIS FACILITY IS IN PROGRESS. FOUR (4) LC-39 AREA SITES ARE UNDER REVIEW.

1. SOUTH OF THE LOGISTICS FACILITY ON CONTRACTOR’S ROAD
2. SOUTH OF THE TURN BASIN ADJACENT TO THE PRESS SITE
3. SOUTHWEST OF THE VAB AND EAST OF MFF, CURRENTLY A PARKING LOT
4. NORTH OF THE VAB AND EAST OF THE OMRF

PRIMARY TRADE SELECTION CRITERIA INCLUDES -

1. SSV INTEGRATION FACILITY PROXIMITY
2. TURN BASIN PROXIMITY
3. BLAST DANGER AREA (QUANTITY/DISTANCE)
4. LAUNCH DANGER AREA
5. ENVIRONMENTAL IMPACTS
6. ET & LRB TOW ROUTES
7. LC-39 AREA CONGESTION
8. AVAILABILITY OF UTILITIES/SERVICES
9. DEMOLITION AND RELOCATION OF EXISTING FACILITIES
10. SITE PREPARATION COSTS

ANY SITE IN THE DIRECTION OF SWARTZ ROAD IS PREFERRED TO ELIMINATE CONGESTION AND TRAFFIC CONCERN AND IMPACT TO CURRENT UTILITIES AND SERVICES IN THE LC39 AREA.
ET/LRB PROCESSING FACILITY CONTROL CENTER & LPS REQUIREMENTS

LRB PROCESSING FUNCTIONS IN THE NEW FACILITY INCLUDE COMPONENT AND SUBSYSTEM CHECKOUT, WITH LPS SUPPORT. TO AVOID A LCC IMPACT, AN INDEPENDENT CONTROL ROOM CONCEPT CONFIGURED LIKE A MINI-LCC, IS UNDER REVIEW.

EACH OPERATIONS SYSTEM ENGINEER WILL BE REQUIRED TO HAVE A CONSOLE WHILE PERFORMING FUNCTIONAL TESTING OF BOTH SETS OF LRB'S. CHECKOUT WILL INCLUDE ENGINE, AVIONICS, INSTRUMENTATION, POWER & GIMBALING TESTS. LISTED BELOW IS A GENERAL LIST OF EQUIPMENT REQUIRED FOR THE LRB/ET FACILITY CONTROL ROOMS:

- 1 - O.L.S.A
- 1 - HARDWARE INTERFACE MODULE (HIM)
- 1 - COMMON DATA BUFFER
- 1 - SCRS
- 1 - CPS4
- 1 - V & DA
- 5 - CONSOLES (CPU INCLUDED) FOR: PROPELLANTS, GUIDANCE, INSTR/HAZ, POWER, RANGE SAFETY/COMM, DPS, INTEGRATION, MASTER
- 1 - FEP

ET HORIZONTAL PROCESSING CAN BE SUPPORTED WITH THIS EQUIPMENT AS WELL.
FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

CENTER & LPS REQUIREMENTS
ET / LRP PROCESSING FACILITY CONTROL

July 1988
• VAB High Bay 4 Crawlerway
• VAB High Bay 4
• VAB HB Door Clearance
• VAB Exit / Platform Infringement
• VAB Platform (HB-3) Modification
• VAB Platforms (HB-3)

Integration Facility

First Progress Review
Liquid Rocket Booster Integration

July 1988
VAB PLATFORMS (HB 3)

THE PLATFORM MODIFICATIONS AT VARIOUS LEVELS IS DEPENDENT ON THE LENGTH AND DIAMETER OF THE LRB. THE WORST CASES FOR LENGTH ARE THE GDSS LOX/LH2 PUMP-FED AND GDSS LOX/RP1 PRESSURE-FED CONFIGURATIONS. THE DIAMETERS OF ALL LRB CONFIGURATIONS IMPACT THE EXTENSIBLE PLATFORMS/FLIP-UPS ENCOUNTERED. THE PRESENT REQUIREMENT FOR CLEARANCE OF STEEL TO FLIGHT HARDWARE IS 6" (STATIC).

USING THE MMC LOX/RP1 PUMP-FED CONFIGURATION AS A BASELINE, IT IS NOTED THAT EXTENSIVE MODIFICATIONS ARE REQUIRED. ALL FLOORS OF PLATFORM LEVELS "D," "B," & "E" WILL REQUIRE MODIFICATIONS. THE FLIP-UP/EXTENSIBLE PLATFORMS WILL REQUIRE REDESIGN TO PROVIDE DUAL CAPABILITY, LRB OR SRB. FOR THE GDSS LOX/LH2 PUMP-FED AND GDSS LOX/RP1 PRESSURE-FED CONFIGURATIONS, MODIFICATIONS TO PLATFORM "C" WILL BE REQUIRED.
VAB HB 3 EXIT/PLATFORM INFRINGEMENT

A MINIMUM CLEARANCE OF 1' - 6" WILL BE REQUIRED FOR FLIGHT HARDWARE TO STRUCTURE DURING VAB EGRESS. ALL LRB CONCEPTS IMPACT THE RETRACTED PLATFORM/FLIP-UPS AT PLATFORMS "D," "B," & "E." THE GDSS LOX/LH2 PUMP-FED AND GDSS LOX/RP1 PRESSURE-FED CONFIGURATIONS WILL IMPACT PLATFORM "C."
<table>
<thead>
<tr>
<th>LRB TYPE</th>
<th>Booster Dia. Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDSS LO2/RP1 (PUMP FED)</td>
<td>14'-1" 6'-9"</td>
</tr>
<tr>
<td>GDSS LO2/RP1 (PRESSURE)</td>
<td>16'-0" 5'-9"</td>
</tr>
<tr>
<td>GDSS LO2/LH2</td>
<td>16'-2" 4'-7" (SHOWN)</td>
</tr>
<tr>
<td>GDSS LO2/CH4</td>
<td>15'-0" 5'-5" (SHOWN)</td>
</tr>
<tr>
<td>MMC LO2/RP1 (PUMP FED)</td>
<td>16'-4" 4'-7"</td>
</tr>
<tr>
<td>MMC LO2/RP1 (PRESSURE)</td>
<td>16'-2" 8'-7" (SHOWN)</td>
</tr>
<tr>
<td>PRESENT SRB</td>
<td>12'-2"</td>
</tr>
</tbody>
</table>

- All LRB Configurations clear the VAB doors.
VAB HIGH BAY 4

DEMOLITION OF EXISTING VEHICLE ACCESS STRUCTURES IS REQUIRED. THIS INCLUDES REMOVAL OF SRB WORK STANDS AND ET CHECKOUT CELLS (ET CHECKOUT EQUIPMENT WILL BE MOVED TO THE NEW ET FACILITY AND THE SRB WORK STANDS CAN BE RELOCATED TO VAB HB2 AS BACKUP TO THE RPSF.)

NEW ORBITER, ET, AND LRB ACCESS PLATFORMS WILL BE PROVIDED. THE PLATFORM SYSTEM WILL BE SIMILAR TO THOSE IN HB 1/3 BUT WILL BE CUSTOMIZED TO PROVIDE ACCESS TO THE ORBITER, ET AND LRB. THE LRB ACCESS WILL INCLUDE AFT SKIRT, INTERTANK AREA AND NOSE. THE REQUIRED ORBITER/ET ACCESS WILL INCLUDE THE 2ND AND MAIN FLOOR OF PLATFORM "D" (WILL ALSO PROVIDE ACCESS TO LRB AFT SKIRT), ROOF & 2ND FLOOR OF PLATFORM "B" AND MAIN FLOOR OF PLATFORM "E."

THE TWO LONGEST BOOSTER CONFIGURATIONS WILL REQUIRE ADDITIONAL PLATFORMS SIMILAR TO "C" IN HB 1/3.

THE HIGH BAY WILL REQUIRE INSTALLATION OF GSE TO PERFORM INTEGRATION TESTING OF THE ET/ORBITER IDENTICAL TO HB 1/3. NEW LRB INTEGRATION TEST GSE WILL ALSO BE INSTALLED.
VAB HB-4 CRAWLERWAY

IN ORDER TO USE VAB HB-4 AS A STS/LRB INTEGRATION FACILITY, REACTIVATION OF THE HIGH BAY CRAWLERWAY IS REQUIRED.

THE OPF MODULAR HOUSING, OPF EAST PARKING LOT AND A SECTION OF THE ORBITER TOW-WAY WILL BE DEMOLISHED.

PARALLEL POWER, COMMUNICATION AND MECHANICAL SERVICES WILL BE INSTALLED PRIOR TO THE DEMOLITION OR ABANDONMENT IN PLACE OF EXISTING SERVICES.

DEMOLITION OF THE OPF MODULAR HOUSING WILL DISPLACE APPROXIMATELY 100 PERSONNEL AND WILL REQUIRE SITING OF ALTERNATE WORK SPACE.

FURTHER STUDY IS REQUIRED TO CONCEPT AN INTERSECTION OF THE CRAWLERWAY AND ORBITER TOW-WAY.
MLP

A major concern for modification of the MLPS is impacts to the G-20 girder. G-20 is the primary structural member of the girder system. Another concern with the SSME and booster exhaust hole arrangement is the impact on the size of the SSME exhaust hole. Further study is required for both concerns.
OIL
• Hold Down Concepts
• Comparison for MHC Press Fed LO2 / R1
• MHC Pump Fed LO2 / R1
• Comparison for OTHER GASS Lab Boosters
• GASS Pump Fed LO2 / R1
• MLP EXHAUST HOLE MODIFICATION

MLP

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION
JULY 1988
MLP EXHAUST HOLE MODIFICATION (GDSS)

GDSS PUMP-FED LO2/RP1

THE EXISTING MLP REQUIRES MAJOR MODIFICATION OF THE BOOSTER EXHAUST HOLES. NEW GIRDERS ARE REQUIRED TO SUPPORT THE HOLDDOWN SYSTEM ON THE NORTHSIDE. THE EXHAUST HOLES FOR ALL CONFIGURATIONS ARE TO BE ENLARGED TO 4 1/4 1/2" x 27'6 1/4". THERE ARE SOME CONCERNS ON DESIGN FEASIBILITY OF GIRDERS PLACED IN THE EXHAUST HOLES. THESE GIRDERS WOULD REQUIRE EXTENSIVE BLAST PROTECTION AND IN CASE OF "IGNITION AND NO-GO" MAY REQUIRE MAJOR REFURBISHMENT. ENGINE GIMBAL ANGLES OF ±6 DEGREES CAN BE ACCOMMODATED IN THE REDESIGN.
<table>
<thead>
<tr>
<th>Supports HAUNCH SIZE & GAUGE</th>
<th>FROM LTRB RELEASE Mech.</th>
<th>CRADLE OR SUPPORT LOCATION OF NEW</th>
<th>G-25 AND G-4 TO G-39 TO 4 relocation</th>
<th>G-20 IMPACT TO CRADLE</th>
<th>G-39 TO 4 relocation</th>
<th>G-3 TO 4 relocation</th>
<th>G-4 TO 4 relocation</th>
<th>G-4 TO 4 relocation</th>
<th>G-4 TO 4 relocation</th>
<th>G-4 TO 4 relocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBP</td>
<td>TBD</td>
</tr>
<tr>
<td>TBD</td>
</tr>
<tr>
<td>16.7"</td>
</tr>
<tr>
<td>7.1/2"</td>
</tr>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>SAME</td>
</tr>
<tr>
<td>22.2"</td>
</tr>
<tr>
<td>22.4"</td>
</tr>
<tr>
<td>27.2"</td>
</tr>
<tr>
<td>16.0"</td>
</tr>
</tbody>
</table>

Modifications to MLP for GS93 LRB Concepts

July 1988

First Progress Review
Liquid Rocket Booster Integration
MLP EXHAUST HOLE MODIFICATION (MMC)

MARTIN MARIETTA PUMP-FED LOX/RP1

The existing MLP exhaust holes will be enlarged for LRB exhaust, (41'-41/2" x 29' 0"), new girders will be installed replacing girders G-22, 23, 24 & 25. Reconfiguration of the blast shield structure will be required. A major constraint for redesign of an existing MLP is no change in location of the G-20 girder because of MLP structural integrity and SSME exhaust hole infringement.

Engine gimbal angles of ±6° present no problem for structural clearance for the pump fed configuration. The minimum clearance is approximately 2'-0". The G20 girder is impacted by the pressure fed configuration.
<table>
<thead>
<tr>
<th>Location of New Holddown Post</th>
<th>TBD</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-23 & G-24</td>
<td>4-11 5/8"</td>
<td>6-1 1/8"</td>
</tr>
<tr>
<td>Relocated G-2</td>
<td>6-3 1/8"</td>
<td>6-3 1/8"</td>
</tr>
<tr>
<td>Relocated G-2 and G-4 to G-10</td>
<td>6-3 1/8"</td>
<td>6-3 1/8"</td>
</tr>
<tr>
<td>Relocate from Blast Shield</td>
<td>22.0" - 4.1/4"</td>
<td>22.0" - 4.1/4"</td>
</tr>
<tr>
<td>Approx. 2" clearance</td>
<td>22.0" - 4.1/4"</td>
<td>22.0" - 4.1/4"</td>
</tr>
<tr>
<td>Impact to G-20 Impact hole</td>
<td>22.0" - 4.1/4"</td>
<td>22.0" - 4.1/4"</td>
</tr>
<tr>
<td>Exhaust hole</td>
<td>22.0" - 4.1/4"</td>
<td>22.0" - 4.1/4"</td>
</tr>
<tr>
<td>Size of LIP</td>
<td>22.0" - 4.1/4"</td>
<td>22.0" - 4.1/4"</td>
</tr>
<tr>
<td>Skirt dia</td>
<td>16.0"</td>
<td>16.0"</td>
</tr>
<tr>
<td>Booster dia</td>
<td>16.2"</td>
<td>16.2"</td>
</tr>
<tr>
<td>LO2/RP-1 Pump Feed</td>
<td>16.2"</td>
<td>16.2"</td>
</tr>
</tbody>
</table>

MODIFICATIONS TO MLP FOR MARTIN LRB CONCEPTS

FIRST PROGRESS REVIEW LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988

ADVANCED PROJECTS

KSC TECHNOLOGY OFFICE
HOLD DOWN MECHANISM (GDSS) LAYOUT

A CONCEPTUAL LAYOUT FOR HOLD DOWN MECHANISMS LOCATES THE HOLD DOWN POINTS ON THE CENTERLINE AXIS OF THE LRB ON THE ZERO DECK OF THE MLP. DESIGN ANALYSIS FOR SIZE AND LOADS IS REQUIRED. THIS ANALYSIS WILL REQUIRE THE DRIFT PROJECTIONS, FINAL WEIGHT OF LRB AND SKIRT DETAILS. THE GIRDER WHICH CROSSES THE EXHAUST HOLE WILL BE LOCATED BASED ON DRIFT PROJECTIONS WHEN AVAILABLE.
PLMN - MLP GDSS LO2/RP-1 Pump Fed LR8

HOLD DOWN MECHANISM (GDSS) LAYOUT

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
HOLD DOWN MECHANISM (GDSS)

SOFT RELEASE CONCEPT

THE HOLD DOWN DEVICE DESIGN IS SIMILAR TO THE HOLD DOWN SYSTEM USED ON SATURN V. THE RELEASE SYSTEM WILL CONSIST OF THE FOLLOWING MAJOR COMPONENTS:

1. HOLD DOWN HOUSING
2. HOLD DOWN ARM
3. AFT SKIRT SHOE
4. COUNTERWEIGHT/DIE
5. HOLD DOWN STUD BOLT & PYRO-NUT
6. EXTRUSION PINS AND NUT

SOFT RELEASE CONCEPT

HOLD DOWN MECHANISM (GSSS)

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
HOLD DOWN POST/HAUNCH (MMC) LAYOUT

A CONCEPTUAL LAYOUT, FOR HOLD DOWN POSTS AND HAUNCHES, LOCATES THE HOLD DOWN POINTS 45° TO THE CENTERLINE AXIS OF THE LRB, IN THE MLP EXHAUST HOLE. THIS IS SIMILAR TO THE SRB CONFIGURATION. DESIGN ANALYSIS FOR SIZE AND LOADS IS REQUIRED. THIS ANALYSIS WILL REQUIRE THE DRIFT PROJECTIONS, FINAL WEIGHT OF LRB AND SKIRT DETAILS.
HOLD DOWN POST WITH SOFT RELEASE (MMC)

THE SOFT RELEASE SYSTEM CONCEPT USED ON APOLLO WITH THE HOLD DOWN SYSTEM USED PRESENTLY WAS CHOSEN FOR THIS STUDY. IN THIS ARRANGEMENT A PRE-SHAPED BILLET OF MALLEABLE MATERIAL HAS A DIE EXTRUDED THROUGH IT TO PROVIDE A SLOW, DAMPED RELEASE OF THE LRB.

1. THE TENSIONING OF THE HOLD DOWN STUD WILL BE THE SAME PROCEDURE FOR SRB'S
2. PLACE THE LOWER RETAINER OVER THE PYRO-NUT
3. ATTACH THE LOWER RETAINER TO THE LRB FOOT
4. PLACE THE BILLET ON TOP OF THE LOWER RETAINER
5. THREAD THE DIE TO THE HOLD DOWN STUD
6. ATTACH THE UPPER RETAINER TO THE LOWER RETAINER

Lockheed
Space Operations Company
• LRB UMBILICAL SYSTEMS
• LAUNCH PAD ACCESS PLATFORMS
• WEATHER PROTECTION SYSTEM
• FLAME DEFLECTORS
• PAD UMBILICAL SYSTEMS
• ET H2 VENT

LAUNCH PAD

LIQUID ROCKET BOOSTER INTEGRATION
FIRST PROGRESS REVIEW
JULY 1988

SPACE OPERATIONS COMPANY
PAD FLAME DEFLECTORS

PAD FLAME DEFLECTORS

Major modifications are required to the main flame deflector for both the SRB and the SSME sides. This will involve shifting the separation line between the flame deflectors south to accommodate the new configuration. Similarly, major modifications are required to the side flame deflectors. This will involve having the capability of effectively direct the blast pressure to the flame trench and the strength to withstand the direct blast pressure. In addition to that, an evaluation of the foundations for the side flame deflectors is required to determine their capacities for the new loads.
PAD UMBILICAL SYSTEMS

THE UMBILICALS REVIEWED FOR IMPACT INCLUDE THE GOX VENT, OMBUU, OAA, HYPERGOL UMB(S), ET H₂ VENT AND TSM(S).

THE GOX VENT IS AFFECTED BY THE HEIGHT OF THE GDSS LO₂/LH₂ AND GDSS LO₂/RP1 PRESSURE-FED CONFIGURATIONS. EITHER ONE WILL REQUIRE EXTENSIVE MODIFICATION AND CONCEPT CHANGE FOR THE ARM.

THE ET H₂ VENT IS AFFECTED BY ALL LRB CONFIGURATIONS. EXTENSIVE MODIFICATION, RELOCATION AND CONCEPT CHANGES WILL BE REQUIRED.

THE OMBUU, OAA & HYPERGOL UMB HAVE NO IMPACT BY THE LRB.

THE TSM WILL BE UNEFFECTED BASED ON THE ASSUMPTION THAT VEHICLE EXCURSIONS REMAIN UNCHANGED.

IF EXCURSIONS AND DRIFTS ARE AFFECTED THE TSM(S), OMBUU AND OAA WILL REQUIRE ADJUSTMENT. SINCE THE OAA AND ET VENT HAVE LIMITED EXCURSION CAPABILITY THE IMPACT WILL BE EXTENSIVE.

ALL CHANGED/MODIFIED UMBILICAL SYSTEMS WILL REQUIRE RE-QUALIFICATION AND ACCEPTANCE TESTING AT THE LETF.
First Progress Review
Liquid Rocket Booster Integration

July 1988
GOX VENT

This umbilical is unaffected by the diameter increases for any of the six (6) LRB concepts, however; LRB lengths over 170 feet have hard interference with the existing structure. The GDSS LO2/RP-1 (Pres) and LO2/LH2 are incompatible with the current GOX vent. To provide GOX venting capability with these LRB's would require extensive modification to the umbilical.

This concept uses as much of the existing arm and associated components as possible, but requires a new or modified hood assembly, a new aft arm segment, new hinge and hinge actuating mechanism, and structural additions to the fixed service structure (FSS). Additionally, a modification of this magnitude will require LETF requalification and validation testing.
ET H2 VENT

THE MOST SIGNIFICANT CONCERN DEALS WITH VEHICLE DRIFT CLEARANCE TO THE ET VENT SUPPORT STRUCTURE. THE SRB DRIFT PATH PAST THE ET VENT OCCURS AS THE SKIRT PASSES THE 222'6½" LEVEL.

THE MINIMUM CLEARANCE IS 2.7 FEET. ASSUMING A SIMILAR DRIFT FOR THE LRB'S AND USING THE LARGER SKIRT DIAMETER, THE STRUCTURE TO VEHICLE RELATIONSHIP IS SHOWN.

ALL THE LRB CONFIGURATIONS SHOW INTERFERENCE AT THE 222'6½" LEVEL.
FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

7/98

ADVANCED PROJECTS

TECHNOLOGY OFFICE
ET H2 VENT

THIS FIGURE SHOWS THE REQUIRED RELOCATION OF THE ET VENT STRUCTURE TO OBTAIN A TWO (2) FOOT CLEARANCE FOR THE GDSS LO2/RP-1 PUMP CONFIGURATION.

RELOCATING THE STRUCTURE WILL NECESSitate LENGTHENING THE VENT LINE BY APPROXIMATELY FIVE (5) FEET, THIS IS TURN WILL MAKE IT NECESSARY TO MODIFY THE LOWER LEVEL OF ET VENT STRUCTURE AND DECEL UNIT SINCE THE VENT LINE WILL EXTEND LOWER WHILE IN THE RETRACTED POSITION.

LENGTHENING THE VENT LINE WILL AGGRAVATE THE ALREADY MARGINAL PYRO BOLT LOAD FOR THE ET VENT GROUND UMBILICAL CARRIER PLATE. TO PROVIDE ADEQUATE VEHICLE DRIFT CLEARANCE TO THE ET VENT WILL REQUIRE EXTENSIVE MODIFICATION OF THE UMBILICAL, AND COMPLETE LETF REQUALIFICATION & VALIDATION TESTING.
LRB UMBILICAL SYSTEMS

- To accommodate the LRB new umbilical systems will be required.

The systems will require qualification testing at the LETF.

<table>
<thead>
<tr>
<th>LRB OPTION</th>
<th>IMPACT</th>
<th>LO2 TSM FOR EACH LRB</th>
<th>NEW LH2 TSM FOR EACH LRB</th>
<th>NEW CH4 TSM FOR EACH LRB</th>
<th>NEW GH2 VENT LINE & SWING ARM FOR EACH LRB</th>
<th>NEW GH2 VENT LINE TOWER</th>
<th>NEW CH4 VENT LINE TOWER</th>
<th>MOD OF ET GH2 VENT LINE / ARM SYS</th>
<th>MOD OF ET GOX VENT ARM AND FSS</th>
<th>NEW POWER / INST. FOR EACH LRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 / RP-1 PUMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LAUNCH PAD ACCESS PLATFORMS

TO MAINTAIN DUAL LAUNCH CAPABILITY FOR LRB AND SRB THE EXISTING PLATFORM SYSTEM REQUIRES MODIFICATION TO ACCOMMODATE THE DIAMETERS OF BOTH BOOSTERS.

ACCESS MUST BE MAINTAINED FOR FORWARD SRB, ET/ORBITER AND TPS REQUIREMENTS. NEW ACCESS REQUIREMENTS FOR LRB WILL INCLUDE: FORWARD, INTERTANK, AND AFT.

MORE DETAILED STUDIES ARE REQUIRED FOR EACH LRB CONFIGURATION TO DETERMINE THE FEASIBILITY AND EXTENT OF THESE MODIFICATIONS.

FOR THE GDSS LOX/LH₂ AND GDSS LOX/RP1 PRESSURE-FED, FORWARD ACCESS FROM THE RSS ROOF WILL IMPACT THE LOAD LIMITATIONS OF THE RSS. THE SRB AFT INTEGRATED ELECTRONIC ASSEMBLY (IEA) PLATFORMS CAN BE STOWED FOR LRB LAUNCH CONFIGURATIONS.
WEATHER PROTECTION SYSTEM

MAJOR MODIFICATIONS WILL BE REQUIRED. FOR EXAMPLE, SWING CLEARANCE FOR THE -Y CURTAIN WALL IS REDUCED TO 8" FOR MMC LOX/RP1 PUMP FEED. THE HINGE POINT FOR ROTATING THE CURTAIN WALL WOULD NEED TO BE MODIFIED TO PROVIDE ADEQUATE CLEARANCE OF 1'-6" MINIMUM. A DETAILED STUDY IS REQUIRED TO DETERMINE THE EXTENT AND FEASIBILITY OF THE REQUIRED MODIFICATIONS.
Propellant Facilities

- RP1 Transfer and Storage
- LH2 Transfer and Storage
- LOX Transfer and Storage
PROPELLANT STORAGE

THE CRYOGENIC (LO2 AND LH2) PROPELLANT REQUIREMENT FOR THE 6 LRB CONFIGURATIONS HAVE BEEN REVIEWED FOR IMPACT ANALYSIS AND CONCEPTS FOR TRANSFER ARE BEING DEVELOPED.

THE RPI PROPELLANT REQUIREMENTS FOR THE 4 LRB CONFIGURATIONS HAVE BEEN REVIEWED AND THE CONCEPTS FOR TRANSFER ARE BEING DEVELOPED.

ANALYSIS AND REVIEW OF THE METHANE PROPELLANT REQUIREMENT HAS STARTED.

QUANTITY/DISTANCE REQUIREMENTS FOR LAUNCH PAD STORAGE FACILITIES HAVE BEEN DETERMINED FOR THE VARIOUS PROPELLANTS.
LOX TRANSFER & STORAGE

THREE CONCEPTS FOR TRANSFER ARE BEING STUDIED BASED ON FAST FILL:

0 HOLD EXISTING TIME LINE - LRB LOADED BY INDEPENDENT PUMP AND 8" CROSS-COUNTRY LINE (PREFERRED.)

0 USE EXISTING 1M PUMP AND 6" CROSS-COUNTRY LINE AND INCREASE LOADING TIME LINE.

0 HOLD EXISTING TIMELINE - LRB AND ET LOADED BY INDEPENDENT PUMP AND 10" CROSS-COUNTRY LINE, EXISTING SYSTEM USED FOR SRB/ET CONFIGURATION.

THE PREFERRED CONCEPT MAINTAINS THE TIMELINE AND PROVIDES A NEW TRANSFER SYSTEM FOR LRB USING A 8" VJ LINE AND 5M PUMPS. THIS WILL ALLOW INDEPENDENT LOADING OF LRB & ET. THE PRESENT STORAGE DOES NOT PERMIT A SCRUB/TURNAROUND WITHOUT REPLENISH OF STORAGE VESSEL. THEREFORE, A SECOND LOX TANK IS REQUIRED.

PRESENT LOX VESSEL REPLENISH CAPABILITY PERMITS 210,000 GAL/WEEK (42,000 GAL/DAY). ADDITIONAL TANKERS WOULD ALLOW ACQUISITION OF 84,000 GAL/DAY.
LH2 TRANSFER AND STORAGE

LH2 TRANSFER CAN BE ACHIEVED USING THE EXISTING 10" CROSS-COUNTRY LINE WITH LRB LOADING EQUIPMENT CONNECTED UPSTREAM OF ET LOADING EQUIPMENT.

THE PRESENT STORAGE DOES NOT PERMIT LOADING OF LRB/ET AND AN ADDITIONAL STORAGE VESSEL MUST BE PROVIDED.

THE DOUBLING OF THE STORAGE DOES NOT PERMIT A SCRUB/TURNAROUND.

THE PRESENT LH2 VESSEL REPLENISH CAPABILITY PERMITS 200,000 GAL/WEEK, THEREFORE DOUBLING THE FILL STATIONS AND TANKER FLEET WILL BE REQUIRED.
RP1 TRANSFER AND STORAGE

THE CONDITION OF THE STORAGE VESSELS ON PAD B IS UNKNOWN (PAD A VESSELS REMOVED) AND HAVE NOT BEEN MAINTAINED. BASED ON THE FACT OF LACK OF MAINTENANCE AND THAT EPA REGULATIONS FOR UNDERGROUND FUEL STORAGE HAVE BEEN TIGHTENED, THE STUDY IS PROCEEDING ON THE ASSUMPTION NEW VESSELS ARE REQUIRED. THE TRANSFER LINES ON BOTH PADS HAVE ALSO NOT BEEN MAINTAINED AND THE CONDITION IS UNKNOWN. A COST TRADE FOR REPLACEMENT OR REFURBISHMENT IS REQUIRED TO DETERMINE WHICH APPROACH IS COST EFFECTIVE AND WILL PROVIDE A SAFE TRANSFER SYSTEM INTO THE 21ST CENTURY.

THE APOLLO CONCEPT OF THREE 85,000 GALLON VESSELS IS SUFFICIENT FOR ALL LRB CONFIGURATIONS.

AN OPTION TO PROVIDE A CENTRAL RP1 STORAGE FACILITY BETWEEN THE PADS ON BEACH ROAD HAS BEEN CONSIDERED. THIS OPTION REQUIRES TRANSFER OF RP1 ACROSS WET-LANDS WHICH WILL REQUIRE AN ENVIRONMENTAL IMPACT STUDY.
LCC FIRING ROOMS

AT THE PRESENT TIME FIRING ROOM (FR) 1, 2, & 3 HAVE A MAXIMUM CAPACITY OF 15 CONSOLES/CPU(S) EACH DUE TO SPACE AND SOFTWARE LIMITATIONS. ADDITIONAL CONSOLES/CPU(S) MAY BE REQUIRED TO SUPPORT AN INTEGRATED STS/LRB STACK WHILE MAINTAINING STS/SRB CAPABILITY. OPTIONS FOR INTEGRATING LRB REQUIREMENTS INTO THE LCC IS TO UTILIZE CONSOLES IN FR 2 TO TIE IN WITH FR 1 AND 3 OR DEVELOP SOFTWARE CAPABILITY TO SHARE EXISTING CONSOLES. EXPANSION OF THE SOFTWARE TO ACCOMMODATE LRB REQUIREMENTS WITHOUT EFFECTING THE SRB REQUIREMENTS IS REQUIRED.
mlp parksite #2

other service / utility impacts

lc-39 power requirements

lc-39

first progress review

liquid rocket booster integration

july 1988
LC39 POWER REQUIREMENTS

THE ADDITIONAL LOAD REQUIREMENTS TO SUPPORT LRB WILL REQUIRE THE EXPANSION OF THE C-5 SUBSTATION. ADDITIONAL TRANSFORMERS AND SWITCHING PANELS WILL BE NEEDED.

EMERGENCY GENERATOR POWER PANELS WILL NEED TO BE EXPANDED TO SUPPORT THE ADDITIONAL EMERGENCY POWER REQUIREMENTS.

THE LCC AND LRB/ET PROCESSING FACILITY WILL REQUIRE ADDITIONAL UPS.

THE PAD LOX AND FUEL SITES, MLP PARKSITE AND LRB/ET PROCESSING FACILITY WILL REQUIRE ADDITIONAL SUBSTATIONS.

ADDITIONAL FEEDERS WILL BE REQUIRED FOR ALL NEW SITES AND EXPANDED SITES FOR BOTH FACILITY AND EMERGENCY POWER.
<table>
<thead>
<tr>
<th>UPS</th>
<th>""</th>
<th>""</th>
<th>""</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>VAB H-Bay 3</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>2-13.8kV Feeders</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>MLF 4 & 2 and/or 3</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>NEW MLF</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>1-480V & 400 Amp Feeder (double ended)</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>NEW MLF</td>
</tr>
<tr>
<td>3-600kV</td>
<td>TBD</td>
<td>TBD</td>
<td>CEC</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>PFD Fuel</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>PFD Lox</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>MLF Park Site (#2)</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>trb 4 Et Processing</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>Facility 60Hz Pwr Emergency</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>Facility 60Hz Pwr Emergency</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>Facility 60Hz Pwr Emergency</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>Facility 60Hz Pwr Emergency</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>System will need to provide 4-13.8kV 2200A Feeders</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>C-5 Substation</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>4-Substation</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>60Hz Pwr</td>
</tr>
<tr>
<td>""</td>
<td>""</td>
<td>""</td>
<td>Generator</td>
</tr>
</tbody>
</table>

LC-39 Power Requirements

FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

JULY 1998
MLP PARKSITE #2

DUE TO THE REQUIREMENT FOR CONSTRUCTION AND ACTIVATION OF A NEW MLP, REACTIVATION OF MLP PARKSITE #2 IS MANDATORY. INITIALLY, THE PARKSITE WILL BE DEDICATED AS A CONSTRUCTION SITE FOR THE NEW MLP, REQUIRING INSTALLATION OF MOUNT MECHANISMS. DURING THE ACTIVATION PHASE OF THE NEW MLP, PARKSITE REQUIREMENTS ARE MORE SOPHISTICATED. THIS INCLUDES INSTALLATION OF ACCESS TOWERS, POWER, COMMUNICATIONS, AND VARIOUS MECHANICAL UTILITIES.
LAUNCH EQUIPMENT TESTING FACILITY (LETF)

THE LAUNCH EQUIPMENT TEST FACILITY (LETF) PROVIDES THE CAPABILITY FOR THE OPERATIONAL QUALIFICATION AND CERTIFICATION OF LAUNCH SUPPORT EQUIPMENT (LSE). THE FACILITY TESTS LSE BY SIMULATION OF VEHICLE MOTION (BEFORE LAUNCH, AT LIFT-OFF, DURING FLUID FLOW) AND VERIFIES THE SYSTEM FOR OPERATIONAL PERFORMANCE, EMERGENCIES, HOLDS AND OTHER CONTINGENCIES.

THE LRB LSE WILL REQUIRE SUCH QUALIFICATION AND CERTIFICATION. THE LSE IDENTIFIED FOR TESTING INCLUDE THE TWO LOX FILL & DRAIN (F/D) UMBILICALS, TWO FUEL F/D UMBILICALS, TWO FUEL VENT UMBILICALS, TWO POWER/INSTRUMENTATION UMBILICALS AND THE EIGHT HOLDDOWN DEVICES FOR EACH MLP/PAD.

THE REQUIRED REDESIGN OF THE ET H₂ VENT WILL ALSO REQUIRE RE-QUALIFICATION AND CERTIFICATION. THE GOX VENT ARMS AND ALL TSMS WOULD REQUIRE RE-TEST IF MODIFICATIONS OR CHANGES ARE MADE.

THE IMPACT TO THE FACILITY INCLUDES ADDITION OF TOWERS/INTERFACE SIMULATORS FOR THE LRB LSE TESTS. MODIFICATIONS TO THE EXISTING ET/SHUTTLE SIMULATORS MAY BE REQUIRED.
SAFETY/ENVIRONMENTAL IMPACTS

SAFETY AND ENVIRONMENTAL IMPACTS ARE BEING ADDRESSED FOR EACH LRB CONFIGURATION AND PROCESSING CONCEPT. THESE IMPACTS ARE BASED ON RESEARCH OF APPLICABLE SAFETY AND ENVIRONMENTAL RULES, REGULATIONS, STANDARDS AND CODES; DATA PROVIDED BY THE MARSHALL PHASE "A" STUDY CONTRACTORS; AND STUDY GROUNDRULES (PUMP FED LOX/RP-1 PROPELLANTS).

THE SAFETY IMPACTS ARE ADDRESSED FROM A STANDPOINT OF THOSE THAT WOULD BE GENERIC TO ANY PROGRAM OF THIS NATURE AND THOSE THAT ARE FELT TO BE UNIQUE TO THE LRB. IMPACTS FROM AN ENGINEERING, OPERATIONAL AND INDUSTRIAL SAFETY POINT OF VIEW ARE BEING ADDRESSED.

THE ENVIRONMENTAL IMPACTS ADDRESSED ARE THOSE WHICH WOULD BE GENERATED BY ANY MAJOR PROGRAM OF THIS TYPE.
NEW LOW ROUTE VS USING EXISTING LOW WAYS

● LAB LOW ROUTE
 ● CENTRALIZED STORAGE FACILITY FOR RP-1 BETWEEN THE PADS
 ● ADDITIONAL PROPELLANT STORAGE REQUIREMENTS WITHIN PAD COMPOUND
 ● QUANTITY DISTANCE REQUIREMENTS
 ● ADDITIONAL ABORT CAPABILITY FOR ABORT MODES AFTER LIFTOFF
 ● TO RELEASE
 ● ABILITY TO PERFORM HEALTH VERIFICATION OF BOOSTER ENGINES PRIOR TO FLIGHT SAFETY/ABORT ENHANCEMENTS

CORROSION CONTROL
 ● PROBLEMS (INCREASED LIFE EXPECTANCY OF GSE AND REDUCTION IN CLEANER COMBUSTION BY-PRODUCTS / DRASIC REDUCTION IN ACID CLOUD
 ● MAJOR ENVIRONMENTAL ENHANCEMENTS
 ● ELIMINATES NEED FOR RSP
 ● REDUCED STACKING OPERATIONS
 ● NO LIVE PROPELLANTS IN VAB

MAJOR GROUND SAFETY ENHANCEMENTS

SIGNIFICANT ITEMS WHICH ARE BEING ADDRESSED IN THE STUDY ARE

SAFETY & ENVIRONMENTAL IMPACTS

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
EXISTING SOFTWARE LIMITATIONS TO SUPPORT LAB

LC - SPACE LIMITATIONS OF EXISTING FIRING ROOM

VAB - ACCESS TO VAB HB 4 WITH CRAWLERWAY

PRESSURE FORWARD AREA

WEIGHT LIMITATIONS OF RSS FOR ACCESS TO CSS LOX/LH2 AND LOX/RP1

NEW TOWERS FOR LRB H2 OR CH4 VENTS

MOD TO THE TRENCH

FRAME TRENCH DEFLECTORS AND SIDE DEFLECTORS CONCEPT WITHOUT

MARGINAL

AND PLACING THE ET H2 VENT (PYRO BOLT LOADS ARE ALREADY

AND ET H2 VENT REDISENSES AND NEW LAB VENT UMBILICALS

PAD - WEIGHT & STRUCTURAL LIMITATION OF RSS FOR CANTILEVER OF Gox VENT

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEIGHT & STRUCTURAL LIMITATION OF CSS LAB HOLL DOWN

PAD - WEI...
FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1988

KSC
ADVANCED PROJECTS

80708-01dp

- SITING OF PROPELLANT STORAGE
 - ENVIRONMENTAL: SITING OF LRB / ET FACILITY AND TOWAWAY ACCESS.
 - MAINTAINABILITY: DURABILITY OF LSE / GSE

- MECHANISMS USING VEHICLE EXCURSION AND LAUNCH DATA
 - TEST PROGRAM FOR ALL REDESIGNED AND NEW UMILICAL ANALYSES
 - RELIABILITY: FAILURE MODE AND EFFECTS ANALYSES (SYSTEM ASSURANCE)

- QUALITY: CERTIFICATION OF PRESSURE VESSELS AND SYSTEMS
 - HAZARD ANALYSES
 - AT KSC

- HANDLING AND STORAGE OF CH4 AS A NEW PROPELLANT
- SAFETY: PROPELLANT QUANTITY / DISTANCE REQUIREMENTS

Issued (cont)
FACILITY ACTIVATION SCHEDULE

THE CURRENT CRITICAL PATH TO 1ST LRB LAUNCH IS THE DESIGN, ADVANCED PROCUREMENT, CONSTRUCTION, ACTIVATION AND OPERATIONAL CERTIFICATION OF A NEW MLP AND THE RE-ACTIVATION OF MLP PARKSITE #2.

THE PRIMARY SCHEDULE CONCERN WITH THIS PLAN, IS THE POTENTIAL MISSION RATE IMPACT TO SRB FLIGHTS, DURING CONSTRUCTION, ACTIVATION AND OPERATIONAL CERTIFICATION OF THE FIRST LAUNCH PAD.
KSC FACILITY ACTIVATION CONCEPTUAL PLAN
1ST LINE FACILITIES

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1988

Advanced Projects

KSC

Space Operations Company
Lockheed
NEAR TERM PLANS

- COMPLETE LRB/ET PROCESSING FACILITY REQUIREMENT CONCEPT

- COMPLETE LRB/ET PROCESSING FACILITY SITING TRADE STUDY

- REFINE VAB HB-4 REQUIREMENTS AND DESIGN CONCEPTS INCLUDING CRAWLERWAY IMPACTS

- CONCEPT MULTI BOOSTER PLATFORMS FOR VAB HB-3 INCLUDING EXIT INFRINGEMENTS

- REFINE MLP HOLDDOWN CONCEPTS

- DEVELOP PAD FLAME DEFLECTOR CONCEPTS

- COMPLETE PROPELLANT STORAGE, TRANSFER & ACQUISITION STUDY

- ADDRESS GROUND SOFTWARE IMPACTS
TASK 9 - GROUND OPERATIONS Cost Model

TASK 8 - FINAL REPORT

TASK 7 - FOLLOW-ON RECOMMENDATIONS

TASK 6 - LAUNCH SITE PLANS

PlANS PRODUCED AND MODELS

FIRST PROGRESS REVIEW

LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
LAUNCH SITE PLANS, FOLLOW-ON RECOMMENDATIONS AND FINAL REPORT

LAUNCH SITE PLANS AND DOCUMENTS, FOLLOW-ON RECOMMENDATIONS AND FINAL REPORT (TASK 6, 7, 8 RESPECTIVELY) DERIVE THEIR SOURCE DATA FROM THE OTHER STUDY TASKS. THE FINAL ASSIMILATION OF THEIR DATA INTO FORMAL DOCUMENTS IS NOT SCHEDULED UNTIL THE LATTER PART OF THE YEAR. ROUTINE ASSESSMENT OF THE STUDY TASKS INDICATE DATA GENERATION IS ON OR AHEAD OF SCHEDULE. FOR INSTANCE A DRAFT LRB SAFETY IMPACT REPORT HAS BEEN COMPLETED.
NO SIGNIFICANT ISSUES ON SCHEDULE,

• TASK 8 FINAL REPORT
• TASK 7 FOLLOW-ON RECOMMENDATIONS
• TASK 6 LAUNCH SITE PLANS

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
SOFTWARE
INSTRUCTIONS
RECOMMENDATIONS
USER'S MANUAL
TASK 9 STUDY PRODUCTS
THE LAB INTEGRATION STUDY
THE INCORPORATION OF LESSONS LEARNED FROM
OF THE GCRM TO THE STS / KSC PROGRAMS THROUGH
EXPAND AND ENHANCE THE UTILITY AND RELIABILITY
6
LSOC TASK 9
GROUND PROCESSING COSTS
PARAMETRICALLY GENERATES STS / EQUIVALENT
DEVELOPED BY NASA

GROUND OPERATIONS COST MODEL

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

July 1988
GOCM IS A PARAMETRIC MODEL

Currently, major emphasis is being placed on collection of existing cost data for STS resources. GOCM cost estimating relationships (CERS) will be evaluated and updated with respect to LRB configurations/support scenarios. Additional LRB CERS shall be incorporated into GOCM as a module for significant and/or sensitive cost elements needing either modification or incorporation. GOCM will be used in the LRB costing and will be evaluated for its relevancy and utility.

The mix of cost generation techniques employed on a program varies with program maturity. Initially during phase "A" (conceptual evaluation/study) an all up parametric technique is employed which provides only moderate confidence in accuracy. This is the point where GOCM is believed to have utility and will be tested for relevancy, accuracy and ease of use on the LRB program. Soon to follow as the program advances in phase "A" and/or transitions into phase "B" certain cost drivers and/or cost elements sensitive to design/planning decisions will require greater confidence in their accuracy. These elements will require examination in greater detail and the employment of engineering estimates (analog). Select cost elements which are deemed very sensitive and significant may transition early to direct engineering and detail estimates. Such elements may be crucial to budget planning and/or trade studies. These type estimates will be conducted outside the GOCM model and will be evaluated for incorporation into GOCM as a module. Such modules however, may no longer be totally parametric in nature. Careful consideration must be given to the techniques for incorporation.

Generation of software changes will continue. The draft manual will be completed in the next quarter. Generation of the software instructions will commence late next quarter.
Completeness, and overall model utility

Task 9 emphasis is on booster cost accuracy,

may lessen model general utility and utility

providing greater sensitivity to detail design features

Few inputs required

10 booster size, generic type

Inputs are fundamental in nature

Quick and easy to use on a macro level

Phase a cost estimating tool

GCM is a Parametric Model

July 1988 FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

KSC ADVANCED PROJECTS
TASK 9 OVERVIEW; APPROACH AND STATUS

LSOC TASK 9 IS ON SCHEDULE. HARDWARE, SOFTWARE AND PERSONNEL ARE IN PLACE AND ARE PROCEEDING QUICKLY FROM SOFTWARE, HARDWARE, AND PROGRAM FAMILIARITY TO THE COST/GOCM EVALUATION PHASE. COST ESTIMATING RELATIONSHIP (CER) DATA COLLECTION HAS BEEN INITIATED. WE WILL SOON INITIATE CER/MODEL MODIFICATIONS AND DEVELOPMENT. PRODUCT DEVELOPMENT IS ON TARGET. THE USER'S MANUAL IS MOVING TOWARDS COMPLETION OF THE FIRST DRAFT. A PRELIMINARY SET OF RECOMMENDATIONS IS IN PROCESS.

FUTURE EFFORTS ARE DIRECTED AT ASSESSING AND WHERE NECESSARY IMPROVING GOCM FOR LRB/SRB REALISM AND COMPLETENESS AND THE PREPARATION OF PRODUCTS.
FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

KSC GROUND OPERATIONS COST MODEL SCHEDULE

1988

July 1988

PROGRESS REPORTS

MILESTONES & INPUT TO BASIC STUDY

1988

PROOFREADERS

PROJECT REVIEWS

MONTHLY PROJECT REPORTS

GTP

PROJECT PRODUCTS

PROVIDE INSTRUCTIONS
PROVIDE USERS MANUAL
PROVIDE GOM Software
PROJECT PRODUCTS

INPUT TO LAB STUDY
FINAL REPORT
GEN/DOPRINT II RECOMMENDATIONS
EXECUTE MODIFIED GOOM W/LAB CONG.
DEVELOP INSTR FOR PROGRAM MNT.
DEVELOP USER MANUAL FOR MODEL OPER.
EXECUTE GOOM WITH BASELINE DATA
RUN EXIST MODEL FOR LRB BASELINE
COLLECT BASELINE DATA COSTS
ANALYZE GOOM & SYMPHONY SOFTWARE

1989

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

KSC ADVANCED PROJECTS

T1. TECHNOLOGY OFFICE
RESULTS OF MODEL EVALUATION

Even with the completion of the GOCM user's manual GOCM will remain user unfriendly. The disk operating system limits the memory available to Symphony, which must remain RAM resident. Although expanded memory cards are available, most users do not have them installed. This requires GOCM to be arbitrarily (and awkwardly) partitioned to fit in standard memory.

Currently GOCM does not consider sharing resources between various flight configurations. For instance; the RSRB phase out and LRB phase in cannot be considered by GOCM. This limits GOCM utility to single vehicle operations.

GSE and facility modifications are not currently taken into account in GOCM. With the advent of gross facility modifications to support the LRB, the ability for GOCM to consider them in lieu of replacement is deemed necessary for achieving cost realism. Although some of the modifications may not individually be considered cost drivers, collectively they may become a significant cost driver.

GOCM does not provide segregated ground processing and facility costs for the LRB/SRB STS elements. This does not allow easy comparison of GOCM LRB/SRB generated costs with those developed independently in Tank 4.
RECOMMENDATIONS

- ADD CERS FOR GSF / FACILITY MODIFICATIONS
- ENHANCE MODEL TO REPORT SEGREGATED VEHICLE COSTS
- EXPAND MODEL CAPABILITY TO CONSIDER MIXED FLEET
- MORE USER FRIENDLY
- MORE EFFICIENT USE OF HARDWARE
- EXPLORE SPREAD SHEET (SYMPHONY SOFTWARE) ALTERNATIVES

RESULTS OF MODEL EVALUATION AND RECOMMENDATION

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1988
EARLY IDENTIFIED COST CONCERNS

THE MLP WAS IDENTIFIED EARLY IN THE STUDY TO BE A SENSITIVE KSC COST DRIVER. TECHNICAL IMPACTS ARE STILL BEING ASSESSED FOR SOLUTIONS WHICH MAY SIGNIFICANTLY IMPACT SCHEDULE AND COSTS. ADDITIONAL REQUIRED DATA IS BEING GATHERED BEFORE THE ISSUE OF WHETHER TO BUILD NEW MLPS VERSUS MODIFICATION OF EXISTING MLPS IS ADDRESSED.

GOCM IS UNDER STUDY TO DETERMINE IF IT ADEQUATELY ADDRESSES NEW TYPE FACILITY COSTS, NONRECURRING FACILITY ACTIVATION COSTS, AND THE NONRECURRING GROUND PROCESSING TRANSITION COSTS.

DURING THE NEXT QUARTER TASKS 4 AND 9 WILL JOINTLY INVESTIGATE GROUND PROCESSING MANPOWER REQUIREMENTS. IT IS BELIEVED THAT THE MANPOWER ESTIMATES TO DATE ARE SUCCESS ORIENTED, AND MAY NOT BE REALISTIC. A SIMILAR FEAR EXISTS REGARDING LEARNING CURVES. HISTORICAL SHUTTLE PROCESSING DATA WILL BE EXAMINED AND AN EMPIRICAL LEARNING CURVE WILL BE DERIVED FOR EVALUATION AND POSSIBLE INCORPORATION INTO GOCM.
Early Identified Cost Concerns

May not be substantiated by actual data

Success-oriented ground processing and learning curves

- Ground processing transition cost
- GSE / facility activation cost
- Horizontal processing facility

Identify new cost elements:

- Identify MLP sensitive cost drivers - MOD vs NEW

First Progress Review
Liquid Rocket Booster Integration

July 1988

Space Operations Company

Lockheed
KSC GOCM TOTAL STS LRB VS SRB COSTS

The current ground operations cost model (GOCM) was used to estimate the total STS costs at KSC for the current SRB baseline configuration and the LRB baseline configuration for RP1/LOX. The SRB configuration assumed baseline technology, parachute recoverable boosters, a payload of 65K lbs and STS configured facilities. The LRB configuration assumed advanced technology, expendable boosters, a payload of 75K LRBS, and new facilities required for processing consisting of: LRB processing, ET processing integration bay, and MLP.

Common factors chosen for comparison of both configurations included the following:

1. Either SRB or LRB launches (no mixed fleet operations).
2. No launches until 1996 with a ramp rate of 3, 6, 9, 12, 14 ...
3. A flight hardware surge factor of 15%.
4. Escalation rate of 0%.
6. Manpower rate of $186 per shift.
7. Work schedule of 6 days per week at 3 shifts per day.
8. Facility utilization of 85%.
9. No learning curve (100%).

It can be seen that costs are higher for the LRB configuration at first due to the new facilities required to support launch. As the launch rate increases second and/or third line facilities are added to support both LRB and SRB configurations. Steady state costs are achieved as steady state launches occur in the year 2001. Total costs are less for the LRB configuration due to shorter processing times and are not sensitive to booster recovery costs.
KSC GOCM - STS DELTA LRB VS SRB COSTS

AS NOTED PREVIOUSLY, ONCE STEADY STATE LAUNCHES ARE ACHIEVED IN THE YEAR 2001, LRB BOOSTERS WOULD BE LESS EXPENSIVE TO OPERATE AT KSC BY APPROXIMATELY 100 MILLION DOLLARS PER YEAR. HOWEVER, DURING THE START UP YEARS, BETWEEN 1995 THROUGH 2000, VARIOUS FACILITIES ARE COMING ON LINE AND ADDING COSTS AT KSC. THE FOLLOWING IS A BREAKDOWN OF FACILITIES REQUIRED TO SUPPORT THE LAUNCH RATE MODEL FOR EITHER LRB OR SRB CONFIGURATION:

1996 LRB A NEW LIQUID BOOSTER C/O BAY, TO SUPPORT LRB PROCESSING.
 A NEW ET CHECKOUT FACILITY TO MAKE ROOM FOR A NEW INTEGRATION BAY.
 A NEW INTEGRATION BAY.
 A NEW MLP
SRB No facilities required.

1997 LRB No facilities required.
SRB No facilities required.

1998 LRB A SECOND MLP.
SRB No facilities required.

1999 LRB A SECOND VEHICLE INTEGRATION BAY.
SRB A THIRD VEHICLE INTEGRATION BAY.

2000 LRB A SECOND LIQUID BOOSTER C/O BAY.
SRB A FOURTH MLP.

NOTE: THE CURRENT MODEL DOES NOT CONSIDER MODIFICATIONS. THEREFORE, THE LAUNCH PADS ARE NOT TAKEN INTO ACCOUNT.
KSC GOCM - LRB vs SRB CUMULATIVE COSTS

COMPARATIVE AND SOURCE DATA COLLECTION (2ND ITERATION)

SPC GROUND PROCESSING DATA IS BEING COLLECTED. THIS INCLUDES THE EXAMINATION OF KSC/WBS AND ORGANIZATIONAL DATA WHICH WILL BE USED TO ALLOCATE/VERIFY THE PAST BUDGETARY/FISCAL EXPENDITURES. ADDITIONAL GSE/FACILITY COST TO PROCESS THE NEW BOOSTER CONFIGURATIONS ARE BEING DEVELOPED THROUGH THE REVIEW OF SIMILAR EXISTING ITEM AND THEIR COSTS, COMPLEXITY FACTORS, DOLLARS PER FT3 OR FT2, OTHER EXTRAPOLATION TECHNIQUES, AND ENGINEERING BUDGETARY COST ESTIMATES. COST ESTIMATES FOR SIGNIFICANT GSE/FACILITY MODIFICATIONS ARE BEING DEVELOPED IN A MANNER SIMILAR TO THAT DESCRIBED ABOVE.
LIQUID ROCKET BOOSTER INTEGRATION
FIRST PROGRESS REVIEW
JULY 1988

COMPARATIVE AND SOURCE DATA COLLECTION

- CALIBRATE GOCM ACCURACY AND COMPLETENESS

- ANALYSIS OF KSC WBS AND ORGANIZATIONAL DATA TO ALLOCATE AND VERIFY EXISTING MANPOWER RESOURCES

- REQUIRED ADDITIONAL GSE / FACILITY COSTS TO PROCESS NEW VEHICLE CONFIGURATIONS ARE BEING DEVELOPED

- COST ESTIMATING FOR SIGNIFICANT GSE / FACILITY MODIFICATIONS IS UNDERWAY
I. INTRODUCTION

II. STUDY PROGRESS
A) LRB PROJECT INTEGRATION
B) BASELINE REQUIREMENTS
C) IMPACT ANALYSIS
D) PLANS, PRODUCTS AND MODEL

III. SUMMARY
GORDON ARTHLEY

PAT SCOTT
KEITH HUMPHRIES
GREG DEBLASIO
JERRY LEFEBVRE
GORDON ARTHLEY

AGENDA

LIQUID ROCKET BOOSTER INTEGRATION
FIRST PROGRESS REVIEW
JULY 1988
LRB PROJECT INTEGRATION

Although the MSFC contractors have completed the final report for their portion of the study, they have received a six-month extension. The working group integration will therefore continue through December. The KSC study will require major revision to accommodate further down-selection and/or up-selection. The expendable booster has been baselined at this time. The working group has expressed technical and cost concern with this decision. The pre-integration process of the LRB relies on the shipping configuration. Additional baselining is required to evaluate the impact of "ship to shoot" or subassembly scenarios. The transition to the LRB remains the most significant driver to KSC. The synergistic effect of future multiple programs has not yet been fully evaluated in light of ASRM, ALS, Shuttle C and Shuttle derivatives. Coordination with the working group will continue through the remainder of this year. Next period the launch processing scenarios will be finalized. These scenarios will be tailored to the six booster options and the optimum facility/ground systems configurations. Additional database will enable more refined and automated cost estimating to enhance cost/benefit analyses.
WORKING GROUP ISSUES:

- Formalize baselines for configuration options to provide control of revisions
- Recovery / reuse vs expendable transition planning to support DDT&E
- Interface of the element contractor with launch site
- Mixed fleet integration at launch site

NEXT PERIOD PLANS:

- Finalize the launch site scenario requirements
- Refine cost assessments
- Coordinate with the working group actions

STATUS:

- The project integration is completed for the MFSC phase A study. However, this funding will continue for another six months via the working group

LIQUID ROCKET BOOSTER INTEGRATION
FIRST PROGRESS REVIEW
JULY 1988
LRB BASELINE REQUIREMENT

THE TEST TEAM WILL JOINTLY EVALUATE THE COMBINATION OF REQUIREMENTS, FACILITIES/GROUND SYSTEMS AND PROCESSING PROCEDURES ESSENTIAL TO EACH OPTION CONFIGURATION. THE BASELINE PARAMETERS MUST BE FROZEN IN ORDER TO GENERATE THE FINAL PRODUCT. THIS PRECLUDES MAJOR MODIFICATIONS TO THE PROCESSING SCENARIO OR FACILITIES. THE ULTIMATE ELEMENT CONTRACTOR MAY HAVE AN OPTION TO FINALIZE ASSEMBLY AND CHECKOUT OF THE LRB AT OR NEAR KSC. THIS REQUIREMENT WOULD APPRECIABLY ALTER THE SCENARIO OF THE PRE-INTEGRATION PROCESSING. DURING THE ENSUING PERIOD THE REQUIREMENTS DATA WILL BE CONSOLIDATED BY CONFIGURATION OPTION AND SCREENED FOR INCORPORATION INTO THE APPROPRIATE 16 PRODUCTS. THE SCENARIO EFFORT WILL FOCUS ON THE FINALIZATION OF THE TIMELINES AND THE PROCESSING MANPOWER FOR EACH OF THE CONFIGURATION OPTIONS.
INTEGRATION AND REFINEMENT OF BOTH CURRENT AND ADDITIONAL DATA INTO FINIALIZED PRODUCTS

CONCEPT FOR LAB ON-SITE ELEMENT CONTRACTOR WORKING GROUP
MSFC EXTENDED PHASE A STUDIES AND PROGRAM

GENERATION OF NEW OR REVISED REQUIREMENTS FROM FINAL BOOSTER OPTIONS ARE UNDER FULL TEAM REVIEW TO INCORPORATE THE BASELINE, REQUIREMENTS AND SCENARIOS TASKS

THE BASELINE REQUIREMENT

FIRST PROGRESS REVIEW
JULY 1988
LIQUID ROCKET BOOSTER INTEGRATION
IMPACT ANALYSIS

USING THE LOX/RP-1 CONFIGURATION OPTIONS AS A BASELINE, A SERIES OF TRADE STUDIES ARE NEARING COMPLETION. THESE STUDIES INCLUDE ANALYSIS ACROSS ALL STATION SETS. THE PRINCIPAL EFFORT HAS BEEN TO ADDRESS THE MAJOR FACILITIES AND GROUND SYSTEMS. THE INITIAL COST DATA HAS BEEN DERIVED ALONG WITH ENVIRONMENTAL AND SAFETY INFLUENCES. CONSIDERABLE CONCEPT DATA HAS BEEN CRAFTED FOR NEW AND MODIFIED PROPELLANT STORAGE HANDLING/TRANSFER SYSTEMS. THIS DATA WILL BE AUGMENTED TO APPLY TO EACH OF THE CONFIGURATION OPTIONS. LRB TRANSITION DURING AN ON-GOING 14-FLIGHT PER YEAR SHUTTLE PROGRAM PRESENTS TWO PARAMOUNT CONCERNS. THERE IS NO AVAILABLE TIME FOR A REQUIRED LRB ACTIVATION PROGRAM. IN ADDITION, ALL USABLE LAUNCH FACILITIES ARE FULLY COMMITTED TO THE CURRENT MISSION. THE BOOSTER DIAMETER AND LENGTH HAVE IMPOSED EXCESSIVE MANDATES ON THE CONFIGURATION OF THE MLP, UMBILICALS/SWING ARMS, ACCESS PLATFORMS AND DEFLECTORS/FLAME TRENCH. THE IMPACT ANALYSIS FOR ALL STATION SETS WILL BE COMPLETED BY MID-SEPTEMBER. THE DETAIL DATA CREATED WILL BE THE FOUNDATION OF THE 16 DELIVERABLE PRODUCTS.
DETA FOR ALL OPTIONS
APPROACHES FOR ALL STATION SETS AND
FINALIZE THE IMPACTS AND DESIGN

STAND-ALONE PROCESSING
PAD BOOSTER ACCESS
DEFACTOR / FLAME TRENCH
BOOSTER LENGTH
BOOSTER DIAMETER

LAB TRANSITION VS AVAILABLE MOD AND ACTIVATION PERIODS
IMPACTS TO SHUTTLE MANIFEST

RECOMMENDED SOLUTIONS
IDENTIFIED AND BASELINED FOR FINAL ANALYSIS AND
THE MAJOR IMPACTS TO FACILITIES AND LSE HAVE BEEN

IMPACT ANALYSIS

FIRST PROGRESS REVIEW
LIQUID ROCKET BOOSTER INTEGRATION

JULY 1998
PLANS, PRODUCTS AND MODEL

THE GOCM STUDY IS ON SCHEDULE. THE USERS MANUAL IS IN PROCESS. SOFTWARE ADEQUACY HAS BEEN INVESTIGATED AND MODIFICATIONS ARE IN PROCESS, PRELIMINARY GOCM COST ESTIMATES HAVE BEEN PRODUCED. GOCM COST ESTIMATING RELATIONSHIPS (CERS) MUST BE ANALYZED FOR ACCURACY AND COMPREHENSIVENESS. THE ESTABLISHMENT AND CONFIRMATION OF AN HISTORICAL DATABASE IS ESSENTIAL FOR THE TRANSLATION OF PAST DATA TO FUTURE PLANS. THE COST TO BOTH SINGLE FLIGHT ELEMENTS AND THE IMPACT OF MODIFICATIONS/ACTIVATION TO REQUIRED FACILITIES/GROUND SYSTEMS WILL BE REFLECTED IN LIGHT OF NASA PROGRAMS. THIS DATA WILL BE CORRELATED WITH THE LRB STUDY ASSESSMENTS.
PLANS, PRODUCTS AND MODEL

STATUS: GOCM AND SYMPHONY SOFTWARE ANALYSIS COMPLETE
BASELINE DATA COLLECTION IN PROCESS
GOCM LRB BASELINE COST ESTABLISHED BY RUNNING
EXISTING MODEL

CONCERNS: EVALUATION OF COST ESTIMATING RELATIONSHIPS
WITH HISTORICAL DATA

NEXT PERIOD PLANS: ASSEMBLAGE AND EXTRAPOLATION OF HISTORICAL DATA
GENERATION OF DRAFT PLANS AND PRODUCTS
VOLUME IV

SECTION 6

SECOND PROGRESS REVIEW

October 14, 1988
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS

A. ACHIEVEMENT SUMMARY
B. ENGINE PROCESSING STUDY
C. LRB/ET PROCESSING EVALUATION
D. SAFETY & ENVIRONMENTAL IMPLICATIONS
E. GOCM STATUS

III. SUMMARY

Gordon Artley
Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider
Gordon Artley
PLANNED WORK

AT THE 1ST PROGRESS REVIEW (JULY), THE FOLLOWING WORK PLAN WAS PRESENTED FOR THE SECOND PERIOD:

1. CONTINUE TO SUPPORT AND RESPOND TO THE INTEGRATED WORKING GROUP

2. REFINE GROUND PROCESSING SCENARIOS AND INCORPORATE TIMELINES AND PROCESSING MANPOWER

3. CONTINUE THE IMPACT/ANALYSIS AND DESIGN APPROACH FOR ALL STATION SETS TO MEET LRB OPTION

4. ASSEMBLE APPROPRIATE HISTORICAL DATA AND EXERCISE/CALIBRATE THE COST MODEL

5. GENERATE PLANS AND PRODUCT DRAFTS

6. REFINE LIFE-CYCLE COSTS AND PREPARE DETAIL STATION SET LEVEL COST ESTIMATES
LIQUID ROCKET BOOSTER INTEGRATION
SECOND PROGRESS REVIEW
OCT 1988
SECOND PERIOD WORK PLAN

PROJECT INTEGRATION
MSFC LRB STUDY
OPTIONS
RECOMMENDATIONS

KSC STUDY MANAGER
OPTIONS
SELECTED OPTIONS

DESIGN APPROACH AT STATION SET LEVEL TO MEET LRB OPTIONS

INTEGRATED WORKING GROUP RESPONSE
TIMELINES AND MANPOWER INCORPORATION IN SCENARIO

GENERATE 10 PLANS AND PRODUCTS AND REFINE LIFE-CYCLE COSTS

EXERCISE GOGM WITH HISTORICAL DATA

BASELINE REQUIREMENTS
TASK 1 BASELINE
TASK 2 LRB REQUIREMENTS
TASK 3 PRELIMINARY LRB SCENARIOS

IMPACT ANALYSIS
TASK 4 IMPACT ANALYSIS

IMPACT REFINEMENT
TASK 6 LAUNCH SITE PLANS

PLANS, PRODUCTS AND MODEL
TASK 7 FOLLOW ON RECOMMENDATIONS
TASK 8 FINAL REPORT
TASK 9 GROUND OPERATIONS COST MODEL

Lockheed
Space Operations Company
IN ORDER TO PROVIDE A STATUS, THE FOLLOWING SIGNIFICANT SUBJECTS WILL BE ADDRESSED:

FIRST, WE HAVE EVALUATED THE MOST RECENT LRB CONFIGURATIONS AND ASSESSED THEIR IMPACT TO THE PROCESSING SCENARIO. SECOND, WE HAVE EXPANDED THE LAUNCH SITE SCENARIOS TO INCLUDE THE TRANSITION PLAN FOR PHASING IN LRBS. THIRD, WE HAVE MODIFIED THE PROCESSING FLOW TO MEET THE LATEST LRB REQUIREMENTS. FOURTH, WE HAVE PROVIDED A SUMMARY OF THE INFLUENCES OF THE LRB WORKING GROUP'S WORK ON ASCENT AND ABDT PERFORMANCE, LAUNCH TOWER CLEARANCE AND VEHICLE EXCURSION. IN ADDITION, WE WILL REVIEW THE WORKING GROUPS ANALYSIS OF LRB APPLICATIONS TO ALTERNATE VEHICLES, AND THE IMPACT TO GROUND PROCESSING.

SELECT TOPICS HAVE BEEN CHOSEN TO REVEAL KEY ISSUES AND IMPACTS. FIRST, AN LRB PROCESSING ASSESSMENT HAS SHOWN THE SIGNIFICANCE OF PROVIDING AN INTEGRATED VEHICLE WITH 11 LIQUID ENGINES VERSUS THE CURRENT 3. SECOND, THE INTEGRATION OF HI-BAY 4 FOR LRB INTEGRATION WILL PROVIDE THE FIRST IN A SERIES OF INFLUENCES TO DECENTRALIZE BOTH THE LRB AND THE ET PRE-INTEGRATION PROCESSING. THIRD, WE HAVE RECOGNIZED THE SIGNIFICANT SAFETY AND ENVIRONMENTAL IMPLICATION TO LRB PROCESSING THAT COULD BE AN IMPORTANT COST CONSIDERATION, A TIME INFLUENCE AND A DESIGN DRIVER. FOURTH, THE SENSITIVITY OF LRB TO COST HAS HIGHLIGHTED THE IMPORTANCE OF THE DEVELOPMENT OF THE GROUND OPERATIONS COST MODEL AND ITS APPLICATION TO LRB.
STUDY PROGRESS

STATUS SUMMARY

- BASELINE, SCENARIO AND WORKING GROUP INFLUENCES

SELECTED STUDY TOPICS

- LRB ENGINE PROCESSING ASSESSMENT
- ET AND LRB PROCESSING IMPACTS
- SAFETY AND ENVIRONMENTAL IMPLICATIONS
- GROUND OPS COST MODEL DEVELOPMENT
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY
A. ACHIEVEMENT SUMMARY

1. STUDY BASELINE ASSESSMENT
2. LRB TECHNICAL WORKING GROUP ACTIVITIES
3. ALTERNATE LRB APPLICATIONS
1. STUDY BASELINE ASSESSMENT

- LRB CONFIGURATION UPDATE
 - LRB PROPOSED ENGINE POSITIONS
- BASELINE LAUNCH SITE SCENARIO
 - TRANSITION PLAN OVERVIEW
- LRB PROCESSING FLOW UPDATE
LRB CONFIGURATION UPDATE

- MSFC LRB STUDIES
 - MARTIN (2): LOX/RP-1 PUMP-FED/PRESSURE-FED
 - GENERAL DYNAMICS (3): LOX/RP-1 PUMP/PRESSURE
 LOX/LH2 PUMP-FED

- FINAL REPORT PRESENTATION: JUNE 88

- MSFC CONTRACTS EXTENDED TO JAN 89
 - CONTINUING CONFIGURATION REFINEMENTS
SUMMARY OF LRB PHASE A FINDINGS (REF. GDSS/MMC)

- LRB SHOULD BE EXPENDABLE BOOSTER
- ALL CONFIGURATIONS ARE 4-ENGINED
- NEW LOW-COST ENGINE DEVELOPMENT REQUIRED
- LOX/RP-1 IS FAVORED PROPELLANT
- BOTH PUMP AND PRESSURE-FED OPTIONS ARE Viable
 (PRESSURE-FED REQUIRES TECHNOLOGY DEVELOPMENTS)
- ALL SELECTED CONFIGURATIONS CAN BE FLOWN WITHIN
 CURRENT STS CONSTRAINTS
- LRB WILL IMPACT KSC "MODERATELY"
LRB CONFIGURATION UPDATE

MARTIN MARIETTA

PUMP-FED CONFIGURATION HAS REMAINED UNCHANGED. DUAL 17-INCH FEED LINES ROUTE THE LOX AROUND THE RP-TANK. FORWARD THRUST ATTACH POINT IS LOCATED IN LRB FORWARD SKIRT AREA. AFT ATTACH IS IN MID-TANK AREA WHERE LOWER TRANSVERSE LOADS ARE DISTRIBUTED THROUGH A DEEP RING STIFFENER WITHIN THE TANK. DIAMETER AND LENGTH DIMENSIONS ARE CLOSEST TO SRB.
Pump-Fed - LO2/RP1

[Diagram of a spacecraft with dimensions labeled: 17.3', 22.1', 9.2', 24.9', 52.4', 15.3', 150.9']
Vehicle Configuration Summary - Pump-Fed 6/16/88

Vehicle Dimensions
- Length (in) 1,810.7
- Diameter (OD - in) 183.0
- Engine Exit Area (in 2) 7,359

Propellant Tank Volumes (Ft 3)
- LO2 10,769
- RP-1 5,796

Weight (lb)
- Structure 73,500
- Propulsion System 33,410
- Other Subsystems 9,695
- Inert Weight 116,665

Usable Impulse Propellant
- LO2 701,302
- RP-1 268,698
- Residuals Gases and Liquids 5,335

Glow 1,092,000
LRB CONFIGURATION UPDATE

MARTIN MARIETTA

PRESURE-FED CONFIGURATION IS SIGNIFICANTLY LARGER. TANK WALL THICKNESSES ARE APPROXIMATELY 1-INCH. ENGINE CHAMBER PRESSURE OF 800 PSI REQUIRE TANK PRESSURE OF 1000 PSI AND PRESSURIZATION SYSTEM OF 3000 PSI. HIGHER PROPELLANT LOADING INCREASES GROSS LIFT OFF WEIGHT TO 1,3 M POUNDS WHICH IS HEAVIER THAN CURRENT SRB. HIGHER ENGINE THRUST IS REQUIRED (APPROXIMATELY 750K EACH,) RESULTING IN 3M LBS PER BOOSTER)
Vehicle Configuration Summary - Pressure-Fed 6/16/88

<table>
<thead>
<tr>
<th>Vehicle Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (in)</td>
<td>1,952.0</td>
</tr>
<tr>
<td>Diameter (OD - in)</td>
<td>194.0</td>
</tr>
<tr>
<td>Engine Exit Area (in²)</td>
<td>9,365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propellant Tank Volumes (Ft³)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LO₂</td>
<td>12,012</td>
</tr>
<tr>
<td>RP-1</td>
<td>6,328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>143,160</td>
</tr>
<tr>
<td>Propulsion System</td>
<td>44,030</td>
</tr>
<tr>
<td>Other Subsystems</td>
<td>12,330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inert Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable Impulse Propellant</td>
<td></td>
</tr>
<tr>
<td>LO₂</td>
<td>782,084</td>
</tr>
<tr>
<td>RP-1</td>
<td>292,916</td>
</tr>
<tr>
<td>Residuals Gases And Liquids</td>
<td>5,910</td>
</tr>
<tr>
<td>Helium - Pressure System</td>
<td>11,790</td>
</tr>
<tr>
<td>Propellant - Pressure System</td>
<td>8,640</td>
</tr>
<tr>
<td>Glow</td>
<td>1,300,860</td>
</tr>
</tbody>
</table>
LRB PROPOSED ENGINE POSITIONS

0 ALL GD CONFIGURATIONS (EXCEPT PRESSURE-FED) HAVE ENGINES POSITIONED AT 45-DEGREES TO THE MAJOR VEHICLE AXES ("X" PATTERN). THIS FACILITATES GIMBAL ACTUATORS ALONG THE PRIME PITCH AND YAW VEHICLE AXES, BUT REQUIRES A BRIDGE ACROSS THE BOOSTER FLAME HOLE TO SUPPORT THE NORTH HOLDDOWNS.

0 ALL MMC CONFIGURATIONS HAVE ENGINES POSITIONED ALONG OR PARALLEL TO THE MAJOR VEHICLE AXES ("*" PATTERN). THIS FEATURE PERMITS THE USE OF THE SAME HAUNCH/HOLDDOWN LOCATIONS CURRENTLY IN USE ALONG THE SIDES OF THE FLAME HOLES, BUT MOVES OUTERMOST ENGINE CLOSER TO EDGE OF FLAME TRENCH - COMPLICATING FLAME DEFLECTOR DESIGN.

0 GD PRESSURE-FED LOX/RP-1 HAS ENGINES POSITIONED IN THE "*" PATTERN (SAME AS MMC CONFIGURATION).
LRB CONFIGURATION UPDATE

GENERAL DYNAMICS

0 PUMP-FED AND PRESSURE-FED LOX/RP1 CONFIGURATIONS REMAIN VIABLE OPTIONS. PUMP-FED SIZING IS CLOSEST TO SRB DIMENSIONS. PRESSURE-FED IS THE LARGEST AND USES CENTERED LOX FEED LINE THROUGH LOWER FUEL TANK. ET INTERFACE POINTS ARE NOTED ON THE CHART.

0 STUDIES ASSOCIATED WITH LOX/CH4 SPLIT EXPANDER HAVE SHOWN NO SIGNIFICANT ADVANTAGES AND THIS CONFIGURATION HAS BEEN DELETED. HOWEVER, AS SHOWN ON A SUBSEQUENT CHART THE ENGINE DESIGN IS BEING EVALUATED AS AN OPTION FOR THE LOX/LH2 CONFIGURATION.
LO₂/LH₂ PUMP FED LRB (LENGTH VS DIAMETER)

0 THE LO₂/LH₂ CONFIGURATION HAS BEEN RETAINED AND IS THE TARGET OF SOME RESIZING STUDIES. SHORTENED LENGTH ALLOWS CLEARANCE FOR ET GOX VENT ARM AT PAD WHILE RESULTING DIAMETER GROWS TO NEAR 18 FT.

0 THIS ALSO RESULTS IN FORWARD ET ATTACH POINT IN A MID-TANK AREA (NOT CONSIDERED A GOOD POINT FOR TRANSFERRING 3 M POUNDS OF THRUST).
LO2/LH2 PUMP FED LRB
LENGTH VS DIAMETER

ET ATTACH

169.5 FT

18 FT

18.3 FT

ET ATTACH

191 FT

16.3 FT

17.7 FT

FATBIRD
STRUCTURE WEIGHT=52,886
DRY WEIGHT=103,339
LIFT OFF WEIGHT=763,367

LO2/LH2
STRUCTURE WEIGHT=58,237
DRY WEIGHT=108,822
LIFT OFF WEIGHT=751,037
LRB CONFIGURATION UPDATE

GENERAL DYNAMICS

0 GD's DOWNSELECT RESULTS INDICATE THE ATTENTION GIVEN TO KSC LAUNCH SITE INTEGRATION AS A PROMINENT CRITERIA (NOTE THE HIGHLIGHTED AREAS).

0 WE THINK THEY ARE LISTENING - NOW IF WE CAN GET DOWN TO THE BEST TWO CONFIGURATIONS
DOWNSELECT RESULTS

CRITERIA
SAFETY
ENVIRONMENT
RELIABILITY
SIMPLICITY
INTEGRATION
KSC
STS
PERFORMANCE
COST
RISK

DISCRIMINATORS
LOWEST IMPACT TO KSC
LOW DEVELOPMENT RISK
NO COMMON FUEL, ENGINE TO ALS
CONTINUE TO REFINE - SIZE - COST

ALTERNATE APPLICATIONS & GROWTH

RP-1 PUMP-FED
LO2/LH2 PUMP-FED
LO2/CH4 SPLIT EXPANDER
RP-1 PRESSURE-FED

DELETED

FUEL CREW IN PLACE
ESTABLISHED SAFETY PROCEDURES
LOW DEVELOPMENT RISK
POTENTIAL COST SPLIT WITH ALS

LESS FAMILIAR WITH FUEL
SAFETY CONCERNS
NO SIGNIFICANT - COST - PERFORMANCE BENEFITS
DEVELOPMENT RISK
SPLIT EXPANDER FEATURES
- LOW COST
- ALS OPTION

CONTINUE OPTIMIZATION
- SYSTEM
- COST
TEST-BED ACTIVITY

LO2/LH2 ENGINE OPTION
LRB Requirements Summary (Per GDSS)

<table>
<thead>
<tr>
<th>Item</th>
<th>Total</th>
<th>Number with Ground Systems Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Guidelines Goals, Assumptions</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>B. Level I Requirements (Space Transportation System)</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>C. Level II Requirements (Space Shuttle Vehicle)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>D. Level III Requirements (Liquid Rocket Booster)</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>E. Level IV Requirements (Avionics / FLT Controls / Separation Systems)</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>48</td>
<td>33</td>
</tr>
</tbody>
</table>
LRB CONFIGURATION UPDATE

JSC

0 RENEGADE LRB OPTIONS SUCH AS THIS SIX-ENGINED "LAB RAT" CONFIGURATION STILL STRUGGLE FOR RESPECTABILITY AT OUR PERIODIC TECHNICAL WORKING GROUP MEETINGS.

0 HIDDEN ADVANTAGES OF THIS APPROACH INCLUDE FIXED ENGINES (NO GIMBALING) AND THRUST VECTOR CONTROL VIA DIFFERENTIAL THROTTLING. ADDITIONAL ENGINE-OUT CAPABILITY IS ALSO ACHIEVED.

0 IDEAS SUCH AS THESE WILL CARRY OVER INTO THE PHASE B ACTIVITIES - SO WE MUST STAY FLEXIBLE.
SIX-ENGINE PRESS-FED LRB "LAB RAT"
LRB PROCESSING SUMMARY

THE LRB PROCESSING SCENARIO BEGINS AT KSC WITH BARGE DELIVERY, AND HORIZONTAL TRANSPORTER TOW TO THE NEW LRB PROCESSING FACILITY. HERE ALL STANDALONE BOOSTER CHECKOUT AND TESTING IS CONDUCTED. THE ADJACENT ET HORIZONTAL PROCESSING FACILITY RELOCATES THE ET CHECKOUT AND STORAGE ACTIVITY SO THAT HB4 CAN BE USED.

THE CONVERSION OF VAB/HB4 TO A FULL INTEGRATION CELL PERMITS LRB TRANSITION WITHOUT IMPACT TO ON-GOING SHUTTLE LAUNCHES. A NEW MLP CUSTOM-BUILT FOR LRB WILL BE CONSTRUCTED TO SUPPORT THE LRB IOC, AND A SECOND NEW MLP IS NOW SCHEDULED TO SUPPORT THE LRB TRANSITION LAUNCH RATE BUILD-UP. THIS APPROACH REPLACES THE EARLIER PLANNED MODIFICATION OF EXISTING MLP'S.

THE LAUNCH CONTROL CENTER FIRING ROOMS WILL BE MODIFIED TO SUPPORT ANY NEW CONSOLES AND GROUND SOFTWARE REQUIRED FOR LRB PROCESSING AND LAUNCH OPERATIONS.

CHANGES SINCE LAST REVIEW:

- SECOND NEW MLP DUE TO: 1) DIFFICULTY OF MOD AND 2) IMPACT TO SRB LAUNCHES

- NEW MORE EXTENSIVE PAD MODS:
 1) DEFLECTOR REDESIGN IN FLAME TRENCH
 2) SIDE DEFLECTOR (PROXIMITY REQUIREMENTS)
 3) POSSIBLE FLAME TRENCH MODS
TASK 3 - PRELIMINARY LRB SCENARIOS

LRB PROCESSING SUMMARY

- BARGE DELIVERY
- NEW ET/LRB HORIZONTAL PROCESSING FACILITY
- NEW MLP(2)
- NEW INTEG. CELL
- VAB MODS
- PAD MODS
- OPF/ORBITER PROCESSING UNCHANGED
- LETF SUPPORT
- LCC MODS
LRB INTEGRATION - A PHASED APPROACH

0 LAUNCH SITE ACTIVATION BEGINS IN FY 91 TO SUPPORT INITIAL LRB LAUNCH CAPABILITY IN 1995. FIRST LINE NEW FACILITIES, REQUIRED FACILITY MODS AND NEW GSE/LSE ARE DESIGNED, CONSTRUCTED AND VALIDATED DURING THIS INITIAL FIVE YEAR PERIOD. THESE ACTIVATION SCHEDULES ARE LAID OUT IN AN ARTEMIS MODEL AND PLANNED ON A NON-INTERFERENCE BASIS.

0 THE TRANSITION PHASE BEGINS WITH 3 LAUNCHES OF LRB IN 1996 AND BUILDS TO THE FULL 14 ANNUAL LAUNCH MANIFEST BY THE YEAR 2000. DURING THIS PERIOD SRB-BOOSTED LAUNCHES ARE PHASED DOWN BY SIMILAR INCREMENTS. AS YOU CAN SEE, ADDITIONAL FACILITY (AND GSE) ACTIVATIONS ARE SCHEDULED OVER THIS TRANSITION - MAJOR ONES ARE NOTED HERE.

0 TOTAL LIFE CYCLE EVALUATIONS ARE DIMENSIONED OVER AN APPROXIMATE 10-YEAR LAUNCH PERIOD. THE LAST 5 YEARS ARE AT THE FULL 14/15 FLIGHTS PER YEAR RATE. A TOTAL LRB LIFE OF 122 MISSIONS IS CURRENTLY PROJECTED.
Phased Approach

<table>
<thead>
<tr>
<th>Milestones</th>
<th>CY</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Initial Activation</td>
<td></td>
</tr>
<tr>
<td>New MLP</td>
<td></td>
</tr>
<tr>
<td>HB4 / HPF</td>
<td></td>
</tr>
<tr>
<td>1st Pad Mod</td>
<td></td>
</tr>
<tr>
<td>LETF/LCC</td>
<td></td>
</tr>
<tr>
<td>II. Transition Phase</td>
<td></td>
</tr>
<tr>
<td>• Launch Ramp</td>
<td></td>
</tr>
<tr>
<td>• Cont'd Activations</td>
<td></td>
</tr>
<tr>
<td>2nd MLP</td>
<td></td>
</tr>
<tr>
<td>2nd HB</td>
<td></td>
</tr>
<tr>
<td>2nd Pad</td>
<td></td>
</tr>
<tr>
<td>III. Operations Phase</td>
<td></td>
</tr>
<tr>
<td>• Full Rate</td>
<td></td>
</tr>
<tr>
<td>• Optimization</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Operational Capabilities

- ILC
- LRB Launch Rate Build-up
- Ops Capability
- Mature Operations
GENERIC LRB PROCESS FLOW

After a detailed analysis and update of the 130-task LRB processing flow, it was found that the planned MLP mate and closeouts (prior to ET mate) could be reduced from 6 days to 4 days. This results in a total LRB flow of 51 days from receipt of hardware to launch. This summary of the 130-task flow illustrates major functional flow time in work days.

Other refinements added to this model include updated engine processing tasks and manpower model updates to all LRB task areas. The processing model is networked and man-loaded in Artemis and is currently in use for evaluations of both manpower and GSE requirements for each station set.

Major LRB activities are highlighted here in this top level summary chart.
Generic LRB Process Flow

- **LRB Barge on Dock KSC**
 - LRB Standalone Checkout (5/3)
 - Offload/Trans to HPF
 - REC/INSP
 - SYS FUNCT CHECKOUTS
 - ENGINE/PROP SYS LEAK & FUNCTIONAL

- **LRB Move to VAB**
 - MLP MATE & CLOSEOUTS (7/3)
 - LRB Flow = 51 Days

- **ET Mate**
 - ET/LRB CLOSEOUTS (7/3)
 - ORB MATE/INTEG SYS TEST (7/3)

- **SSV Preps/Transfer to Pad**
 - LAUNCH (6/3)
 - SSV STD OPS
 - PAYLOAD OPS
 - CDDT
 - LRB ENG SYS READINESS
 - LRB FUEL (RP) TANKING
 - ORB HYPER LOAD/CLOSEOUT
 - LAUNCH COUNTDOWN (INCLUDING CRYO LOAD)
STS BASELINE MODEL

0 MULTI-FLOW PROCESSING TIMELINES ARE COMPLETE FOR STS LAUNCHES 1991 THRU 2006 (ARTEMIS MODEL)

0 THIS SCHEDULE REPRESENTS THE STS TRANSITION FROM NEAR TERM MANIFEST (MAR 88) TO LONG RANGE LAUNCH RATE OF 14/15 PER YEAR

0 FACILITY UTILIZATION DIAGRAMS PRESENT WINDOWS FOR SCHEDULING LRB FACILITY MODS/ACTIVATION

0 PLANNING LAYOUTS FOR ACTIVATION/TRANSITION/OPERATIONS PHASES CAN NOW BE PREPARED/UPDATED

0 MINIMUM IMPACTS TO ON-GOING LAUNCH OPERATIONS CAN BE ASSURED
Facility Planning Chart

Lsb Study - SrB Baseline Manifest

<table>
<thead>
<tr>
<th>Dates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 1</td>
<td>Start of Integration Phase</td>
</tr>
<tr>
<td>Mar 15</td>
<td>Integration Complete</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Start of Stack Building</td>
</tr>
<tr>
<td>May 1</td>
<td>Stack Complete</td>
</tr>
<tr>
<td>Jun 1</td>
<td>Start of Final Integration</td>
</tr>
<tr>
<td>Jul 1</td>
<td>Final Integration Complete</td>
</tr>
</tbody>
</table>

Ksc Program Support

- Initial Review: May 15, 1988
- Preliminary Design Review: Jun 1, 1988
- Critical Design Review: Jul 15, 1988
- Final Design Review: Aug 1, 1988

Note:

- Original page is of poor quality.
- Page dimensions: 610.0x792.0
- Document type: Liquid Rocket Booster Integration,
 Second Progress Review

**Lockheed
Space Operations Company**
LRB/SRB FACILITY PLANNING COMPARISON

0 Graphically noted here are the flow time differences for LRB (shown solid black) on the backdrop of planned SRB flow processing timelines in the mid-to-late 90's.

0 All in-line ground processing to support an example flow is presented. Note major facilities and elements. The LRB changes are shown in the boxes for the four affected facilities.

0 The Artemis Multiflow processing model contains 224 missions of this detail over the period FY 91 thru FY 06. Insertion of the 122 LRB Life Cycle Mission Profile into this model will facilitate effective planning for KSC integration.
SRB/LRB FLOW COMPARISON

0 SUMMARIZED HERE ARE THE PROJECTED IMPROVEMENTS IN FLOW TIME FOR LRB VERSUS THE "PLANNED" SRB PROCESSING TIMES FORECAST FOR THE LATE 90's.

0 THESE IMPROVEMENTS REPRESENT A SIGNIFICANT REDUCTION IN DEMAND ON LAUNCH SITE RESOURCES REQUIRED TO SUPPORT A 14 TO 15 ANNUAL LAUNCH RATE - AND THEY PROVIDE THE FLEXIBILITY TO ACCOMMODATE ALTERNATE SHUTTLE "C" OR ALS LAUNCH CAPABILITIES.
SRB/LRB Flow Comparison

<table>
<thead>
<tr>
<th>Description</th>
<th>SRB</th>
<th>LRB</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAB HB (INTEG CELL)</td>
<td>21</td>
<td>4</td>
<td>81%</td>
</tr>
<tr>
<td>MLP USE PER FLOW</td>
<td>55</td>
<td>40</td>
<td>27%</td>
</tr>
<tr>
<td>INTEG CRITICAL PATH (BOOSTER STACK TO ORB MATE)</td>
<td>32</td>
<td>15</td>
<td>53%</td>
</tr>
<tr>
<td>PAD FLOW</td>
<td>18</td>
<td>20</td>
<td>-11%</td>
</tr>
<tr>
<td>BOOSTER FLOW (PRE-LAUNCH)</td>
<td>78</td>
<td>51</td>
<td>35%</td>
</tr>
</tbody>
</table>
OVERVIEW OF LAUNCH SITE PLAN

0 The overall launch site plan spans a period of 15 + years and contains the major phases shown here.

0 Our final report will document these phases in the form of study products such as:

- **Ground Operations Plan** - covers all aspects of LRB facility activations/MODS and GSE/LSE design/installation for all station sets.

- **Preliminary Transition Plan** - covers all aspects of the five-year change from SRB to LRB operations.
OVERVIEW OF LAUNCH SITE PLAN

FY 1991 1993 1995 1997 1999 2001 2003 2005

14 - SRB 0 - LRB SRB 0 - SRB 14 - LRB

FACILITIES ACTIVATION PHASE
(GROUND OPS)

STS TRANSITION PHASE
(PRELIMINARY TRANSITION PLAN)

FULL OPERATIONAL PHASE
(SRB CAPABILITY RETAINED)

LRB LAUNCH SITE PLAN*

* TIME LINE BASED ON ACCOMPLISHING A MINIMUM OF 122 LRB BOOSTER MISSIONS IN THE PROGRAM LIFE CYCLE
LRB PRELIMINARY TRANSITION PLAN

IN ORDER TO PROJECT NEW FACILITY "NEED" DATES AND TO OPTIMIZE EXISTING FACILITY "DOWN-TIME" FOR CONVERSION IT IS NECESSARY TO:

- PROVIDE FOR PARALLEL PROCESSING OF BOTH LRB AND SRB CONFIGURATIONS (A DUAL CAPABILITY IS TO BE RETAINED THROUGHOUT THE TRANSITION PERIOD)

- ANTICIPATE LAUNCH PROCESSING MANPOWER REQUIREMENTS (JOB ASSIGNMENT, NUMBERS, SKILLS AND LOCATION)

- CALCULATE THE BUDGETARY EXPENDITURES EXPECTED DURING THIS PERIOD (SOURCE OF FUNDS, YEARLY ACCOUNTING, RELATION TO TOTAL PROGRAM COSTS)

- ARRANGE THE AVAILABILITY OF DOCUMENTATION TO SUPPORT BOTH KSC FLIGHT HARDWARE PROCESSING AND GSE/LSE READINESS.
LIQUID ROCKET BOOSTER INTEGRATION
SECOND PROGRESS REVIEW OCT 88

KSC SRB TO LRB TRANSITION PLAN

1st LINE ACTIVATION
1st LRB MLP
ET/LRB HPF
VAB HB-4 MOD
1st LAUNCH PAD LRB MOD
LETF MODS
LCC/LPS MOD

TRANS 14-11 SRB
0-3 LRB

TRANS 11-8 SRB
3-6 LRB

$202 M

OPERATIONS 81 MISSION TOTAL 1st LINE CAPABILITY
3 6 8 8 8 8 8 8 8

2nd LINE ACTIVATION
2nd LRB MLP
VAB HB-3 MOD
2nd PAD LRB MOD

TRANS 8-5 SRB
6-9 LRB

TRANS 5-2 SRB
9-12 LRB

TRANS 2-0 SRB
12-14 LRB

$155 M

OPERATIONS 47 ADDITIONAL MISSION CAPABILITY
1 4 6 6 6 6 6 6 6

SRB MISSIONS 14 14 14 14 14 11 8 5 2 0 0 0 0 0 0 0 0
LRB MISSIONS 0 0 0 0 0 3 6 9 12 14 14 14 14 14 14 14 14
TOTAL LRB MISSIONS THRU 2006=128

Lockheed
Space Operations Company
LRB PRELIMINARY TRANSITION PLAN

PROGRESS MADE DURING THE LAST QUARTER

- DIVISION OF PROGRAM INTO
 0 1ST AND 2ND LINES OF FACILITY ACTIVATION
 0 3 PHASE APPROACH: ACTIVATION, TRANSITION AND OPERATIONS

- CORRELATION OF FACILITY ACTIVATION AND CONVERSION SCHEDULES WITH INCREMENTAL TRANSITION LAUNCH GOALS

- SELECTION OF THE FIRST LRB MISSION
 (STS 111 - FEB 20, 1996) AND PROVIDE FOR A LENGTHY FIRST FLOW.
 0 BASED ON PROJECTED 1991 PROGRAM START
 0 LATEST FLIGHT HARDWARE DELIVERY AND FACILITY COMPLETION DATES

LRB PRELIMINARY TRANSITION PLAN

FLOW CHART OF THE FIRST FOUR LRB MISSION PROCESSING CYCLES LEADING TO IOC

0 LENGTH OF PROCESSING TIME EXPECTED FOR AN OPERATIONAL MISSION MULTIPLIED BY A FACTOR OF 2.5 FOR FIRST FLOW THEN 2.0 AND 1.5 RESPECTIVELY FOR SECOND AND THIRD FLOWS

0 FOURTH FLOW IS EXPECTED TO DEMONSTRATE OPERATIONAL PROCESSING TIMELINES
LRB PRELIMINARY TRANSITION PLAN

- "MAJOR ISSUES" REMAINING TO BE ACCOMPLISHED

- COMPLETE INTEGRATION OF LRB GENERIC FLOWS AND FACILITY ACTIVATIONS INTO THE MULTI-MISSION MODEL

- IDENTIFY AND DOCUMENT ALL DESIGN AND SCHEDULE IMPACTS

- COMPLETE ESTIMATES OF KSC TRANSITION REQUIREMENTS FOR LRB AND THE ASSOCIATED MANPOWER AND SKILLS NEEDED

- SCOPE CHANGES REQUIRED IN GROUND SOFTWARE AND LAUNCH CONTROL CENTER FOR LRB

- DEFINE AND DOCUMENT ALL "DELTAS" BETWEEN SELECTED DESIGN CONFIGURATIONS AND PROPOSED VENDOR APPROACHES
2. TECHNICAL WORKING GROUP ACTIVITIES

- LRB ASCENT PERFORMANCE / ABORT ANALYSIS
- TOWER CLEARANCE STUDIES
- BASELINE VEHICLE EXCURSIONS AT PAD
- COORDINATION OF PHASE A COST ESTIMATES
LRB/STS INTEGRATION / ANALYSIS BY LESC/JSC

- STS/LRB ASCENT FLIGHT DESIGN
 - GD AND MMC CONFIGURATIONS (5)
 - ASCENT PERFORMANCE
 - INTACT ABORT PERFORMANCE
- CONTINGENCY ABORT ASSESSMENT
- LRB CONTROLLABILITY ANALYSIS
- LRB FMEA/CIL ANALYSIS
- JSC MISSION OPERATION DIRECTORATE (MOD) IMPACTS
LRB/STS TOWER CLEARANCE STUDIES

0 DRIFT CURVES/ENGINE OUT CONDITIONS
0 LRB ENGINE OUT/SSME ENGINE OUT (NO. 2)
0 THRUST/WEIGHT DESIGN GOALS (1.6 OR 1.2)
0 PRE-LAUNCH VEHICLE EXCURSIONS AT PAD (LRB VS SRB)
LRB TOWER CLEARANCE ANALYSIS R001A

ELEV OF LEFT SRB SKIRT CENTER, FT

T/W = 1.2

REF: SRB T/W = 1.55
BASELINE VEHICLE EXCURSIONS AT PAD

CURRENT SRB/SSV EXCURSIONS AT THREE SELECTED INTERFACE LOCATIONS ARE PRESENTED HERE IN THE VEHICLE COORDINATE SYSTEM. DISPLACEMENTS ARE FOR STEEL CASE SRB'S AND INCLUDE VEHICLE TOLERANCES, PAYLOAD WEIGHTS (ZERO AND 65K LB), WIND LOADS, ET TANKING, SRB JOINT FREEPLAY AND SSME IGNITION AND SHUTDOWN. THESE DATA ARE TAKEN FROM "DYNAMIC WORST-CASE EXCURSIONS" DEVELOPED BY ROCKWELL IN STRUCTURAL DESIGN LOADS DATA BOOK, VOL. 7, JULY 1988 (STS 85-0169).

OTHER INTERFACE LOCATIONS WHERE DISPLACEMENTS ARE DEFINED ARE INDICATED ON THE ILLUSTRATION IN THE NEXT CHART. THESE COMPUTED EXCURSIONS CORRESPOND TO THE SSV WITH FIRST MODE FREQUENCY OF 0.29 HZ AND SECOND MODE OF 0.44 HZ. IF LRB CHARACTERISTICS DROP BELOW THESE LEVELS MOST DYNAMIC EXCURSIONS WILL BE SIGNIFICANTLY HIGHER. THIS COMPOUNDS THE DIFFICULTY OF GROUND INTERFACE REDESIGN.
Baseline Vehicle Excursions at Pad

<table>
<thead>
<tr>
<th>Function</th>
<th>Timing</th>
<th>Location</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOX Vent</td>
<td>T-2 Min</td>
<td>ET Tip</td>
<td>+4.6</td>
<td>+1.4</td>
<td>+16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+0.2</td>
<td>-1.9</td>
<td>-3.8</td>
</tr>
<tr>
<td>GH2 Vent</td>
<td>T-0</td>
<td>ET FWD INTERTANK</td>
<td>+3.6</td>
<td>+1.8</td>
<td>+17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.6</td>
<td>-2.9</td>
<td>-22.7</td>
</tr>
<tr>
<td>TSM</td>
<td>T-0</td>
<td>ORB AFT</td>
<td>+7.1</td>
<td>+2.4</td>
<td>+2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-11.1</td>
<td>-3.1</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

* Maximum positive and negative motion in vehicle coordinate system (see illustration)
COORDINATION OF PHASE A COST ESTIMATES

- MMC AND GDSS COST SUMMARIES

- KSC COST ASSESSMENT STATUS
 - 10 MAY 88 EXERCISE
 - DETAILED BOTTOMS-UP (IN WORK)

- GROUND OPERATIONS COST MODEL (GOCM)
COMPARISON OF KSC LAUNCH SITE LCC COST ESTIMATES

These ROM data represent best current estimates of both recurring and non-recurring LRB Launch Site costs for the 122-Mission Model.

"LCC Launch Operations" covers recurring manpower costs of all direct and supporting contractors plus booster-supporting civil service personnel at the launch site.

"Facilities, GSE/LSE" cost cover all launch site equipment and facilities required to support the full LRB flight rate of 14 per year.

MMC is concurring with LSOC Launch Operations cost.

Total LCC shown here does not include 40% NASA load factor.

All costs shown here are based on May 88 estimates.

LSOC facility cost element estimates include:

1) FIRST LINE FACILITIES ($293M)
 - MLP (121M), HPF (59M), VAB/HB 4 (19M), PAD (60M), LETF/LCC (14M),
 GRD S/W (20M)

2) SECOND LINE FACILITIES ($183M)
 - MLP (109M), VAB/HB3 (6M), PAD (60M), LETF/LCC (8M)
COMPARISON OF KSC LAUNCH SITE LCC COST ESTIMATES

<table>
<thead>
<tr>
<th>TEAM</th>
<th>FACILITIES, GSE/LSE ($M)</th>
<th>LCC LAUNCH OPERATIONS ($M)</th>
<th>TOTAL LCC COST ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>337</td>
<td>758</td>
<td>1095</td>
</tr>
<tr>
<td>MMC</td>
<td>324</td>
<td>501*</td>
<td>825</td>
</tr>
<tr>
<td>LSOC</td>
<td>476</td>
<td>501</td>
<td>977</td>
</tr>
</tbody>
</table>

NOTE: COSTS DO NOT INCLUDE 40% NASA LOAD FACTOR
* MMC IS CONCURRING WITH LSOC LAUNCH OPS COST ESTIMATE
3. ALTERNATE LRB APPLICATIONS

- GDSS AND MMC ACTIVITIES
- LAUNCH SITE REQUIREMENTS FOR ALS
- MIXED FLEET OPERATIONS
- CANDIDATE PAD "C" CONCEPTS
Top Level Requirements for Alternate LRB Applications (2.0)

<table>
<thead>
<tr>
<th>Application</th>
<th>STS LRB</th>
<th>ALS</th>
<th>Shuttle "C"</th>
<th>Standalone</th>
<th>Shuttle "II"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>PAYLOAD (LBS)</td>
<td>PERFORMANCE (TOTAL BOOSTER IMPULSE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload (LBS)</td>
<td>70.5 K (160nm, 28.5°)</td>
<td>160 K (80x150nm, 90°)</td>
<td>102 K (220nm, 28.5°)</td>
<td>< 60 K (150nm, 28.5°)</td>
<td>20 K (262nm, 28.5°)</td>
</tr>
<tr>
<td>Performance (Total Booster Impulse)</td>
<td>500 M LBSEC</td>
<td>640 M LBSEC</td>
<td>500 M LBSEC</td>
<td>250+ M LBSEC</td>
<td>730 M LBSEC</td>
</tr>
<tr>
<td>MAN - RATED</td>
<td>YES</td>
<td>NO*</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Flight Rate/Year</td>
<td>14</td>
<td>20-30</td>
<td>2-3</td>
<td>(TBD)</td>
<td>~25</td>
</tr>
<tr>
<td>Engine - Out</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>(TBD)</td>
<td>YES</td>
</tr>
<tr>
<td>Booster Reusability</td>
<td>NO</td>
<td>(TBD)</td>
<td>(TBD)</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

* Will examine MAN-RATED DERIVATIVE.
APPLICATIONS OF WHOLE LRB ON ALS

- LO2/HP LRB
- ALS-LRB4 200kLbm PAYLOAD
- ALS-LRB3 120kLbm PAYLOAD
- ALS-LRB1 70kLbm PAYL.
Standalone LRB (4B)

<table>
<thead>
<tr>
<th>Upper Stage Gross Weight</th>
<th>Thrust T/W After Sep</th>
<th>Thrust T/W at Liftoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>359,965 Lbs</td>
<td>469,923 Lbs</td>
<td>1,326 40K Lbs</td>
</tr>
<tr>
<td>1,370,725 Lbs</td>
<td>1,933,911 Lbs</td>
<td>1.411</td>
</tr>
</tbody>
</table>

15 ft. Dia. = 46 ft.

Payload Cylinder
LAUNCH SITE REQUIREMENTS FOR ALS

- REQUIREMENTS DEFINITION
 - PROCESSING
 - LAUNCH OPERATIONS
 - RECOVERY OPS

- CANDIDATE SCENARIOS FOR EFFICIENT GROUND OPS CONCEPTS
 - PAYLOAD CANNISTER/SHROUD FLOW
 - CORE VEHICLE FLOW
 - BOOSTER OPTIONS/PROCESSING APPROACHES
 - VEHICLE INTEGRATION PLAN

- FACILITIES PLAN
 - HORIZONTAL VS VERTICAL PROCESSING
 - MLP (YES/NO)
 - VAFB LAUNCH SITE OPTIONS
 - PAD "C" CONCEPTS AT KSC
 - ALS GSE/LSE
 - SHARED STS FACILITIES

- LAUNCH SITE INTEGRATION MUST BE MERGED WITH ALS SYSTEM DESIGN TO ENSURE CONTROL OF LIFE CYCLE COST ELEMENTS
SHUTTLE "C" FLOW SUMMARY

0 THE SHUTTLE "C" LAUNCH SITE PROCESSING SCENARIO CONTAINS SIGNIFICANT NEW FACILITY ACTIVATION REQUIREMENTS.

0 SHOWN HERE IS THE FAVORED "SIDEMOUNT" PROCESSING FLOW ILLUSTRATING THE MAJOR NEW AND MODIFIED FACILITIES:

- CARGO CARRIER/PAYLOAD PROCESSING BLDG.
- NEW SRB BUILD-UP AND STACKING FACILITY (REMOTE STACKING)
- EXPANDED OR NEW RPSF/SURGE FACILITY

0 ESTIMATED SHUTTLE "C" LAUNCH SITE FACILITY CHANGES TOTALLED $320 M IN A FEB 1988 NASA ASSESSMENT. A PRELIMINARY COMPARISON USING LRB IS IN WORK.

0 SIGNIFICANT REDUCTION IN THIS LAUNCH SITE IMPACT COULD BE REALIZED THRU THE APPLICATION OF LRB TO THE SHUTTLE "C" SYSTEM.

0 THE MAJOR FACTORS ARE: 1) THE ELIMINATION OF THE REQUIREMENT FOR THE REMOTE STACKING FACILITY, 2) NO NEW OR EXPANDED RPSF/SURGE, AND 3) LOWER RISK OF IMPACT TO ON-GOING STS LAUNCH OPERATIONS.
GROUND OPS STUDY INTEGRATION

- MSFC PHASE A CONTRACT EXTENSIONS
 - LRB DESIGN OPTIMIZATION
 - LRB ALTERNATE APPLICATIONS
 - PRESSURE-FED ENGINE TEST BED SUPPORT

- LAUNCH SITE DESIGN RECOMMENDATIONS
 - UPDATE AND CONTINUE

- LIFE CYCLE COST ASSESSMENTS
 - CONTINUE REFINEMENTS
 - FINALIZE AND DOCUMENT
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY

Gordon Artley
Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider
Gordon Artley
• LRB ENGINE PROCESSING CONSIDERATIONS

- ENGINE CHARACTERISTICS
- OPERATIONS
- FACILITIES / EQUIPMENT
- PROCESSING FLOW
LRB ENGINE CHARACTERISTICS

• PROPELLANTS
 - LOX/RP-1 -- PRESSURE & PUMP FED
 - LOX/LH2 -- PUMP FED

• GAS REQUIREMENTS
 - NITROGEN
 - HELIUM

• ELECTRIC ACTUATORS
• SUPERVISORY CONTROLLER
• PHYSICALS / ENGINE WEIGHT
 - LOX/RP-1 -- PRESSURE -- 5700LB
 - LOX/RP-1 -- PUMP -- 8100LB
 - LOX/LH2 -- PUMP -- 6700LB
 - SIMILAR TO SSME IN SIZE
 - SSME: HT = 168", EXIT DIA = 90"

• EXPENDABLE
LRB PRESSURE FED ENGINE
LO2/RP1

<table>
<thead>
<tr>
<th>NPL</th>
<th>FPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>750</td>
</tr>
<tr>
<td>700</td>
<td>887</td>
</tr>
<tr>
<td>257</td>
<td>321</td>
</tr>
<tr>
<td>321</td>
<td>276</td>
</tr>
<tr>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td>630</td>
<td>800</td>
</tr>
<tr>
<td>154</td>
<td>4500</td>
</tr>
<tr>
<td>-6°</td>
<td>LO2/RP1</td>
</tr>
<tr>
<td>65 - 100%</td>
<td>Head End</td>
</tr>
</tbody>
</table>

Flex Seal (Optional)

Throttle Range

- Thrust, S.L., kips
- Thrust, Vac kips
- ISP, S.L. sec
- ISP, Vac. sec
- Mixture Ratio
- Total Flow Rate, lb/sec
- Chamber Pressure, psia
- Exit Pressure, psia
- Expansion Ratio
- Chamber Type
- Weight, Dry, lbs
- Propellants
- Gimbal Angle
- Gimbal Type

Combustion Chamber

Flex Seal

Oxidizer Valve

Fuel Valve

Nozzle

170°

109.2
LRB PUMP FED ENGINE
LO2/RP1

<table>
<thead>
<tr>
<th></th>
<th>NPL</th>
<th>EPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust, S.L. klbs</td>
<td>513</td>
<td>685</td>
</tr>
<tr>
<td>Thrust, Vac. kbs</td>
<td>623</td>
<td>788</td>
</tr>
<tr>
<td>ISP, S.L. sec</td>
<td>265</td>
<td>277</td>
</tr>
<tr>
<td>ISP, Vac, sec</td>
<td>322</td>
<td>318</td>
</tr>
<tr>
<td>Mixture Ratio</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Total Flow Rate, lb/sec</td>
<td>1933</td>
<td>2473</td>
</tr>
<tr>
<td>Chamber Pressure, Psia</td>
<td>1033</td>
<td>1300</td>
</tr>
<tr>
<td>Exit Pressure, Psia</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Expansion Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nozzle Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, Dry, lbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propellants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimbal Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimbal Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle Range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carbon-Carbon

6807
Gas Gen
LO2/RP1
Head End
±6°
65 - 100%
LRB ENGINE PROCESSING OPERATIONS

THE LRB ENGINE PROCESSING OPERATIONS HAVE BEEN BROKEN DOWN INTO FOUR BASIC CATEGORIES: HARDWARE HANDLING, HARDWARE REPLACEMENT (FROM ENTIRE ENGINE DOWN TO THE COMPONENT LEVEL), VERIFICATION OF ENGINE FUNCTIONAL INTEGRITY, AND, THE FINAL CLOSEOUT ITEMS REQUIRED FOR THE LAUNCH PHASE OF THE OPERATION.

• LRB ENGINE PROCESSING OPERATIONS

• HANDLING

• CHANGEOUT / LRU LEVEL

• CHECKOUT

• SERVICING FOR LAUNCH
LIQUID ROCKET BOOSTER INTEGRATION
SECOND PROGRESS REVIEW

LR8 ENGINE PROCESSING EQUIPMENT

FACILITY SUPPORT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CURRENT UNIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS PLATFORMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLE VERTICAL</td>
<td>A70 - 0643</td>
<td>USED TO REMOVE/INSTALL ENGINES</td>
</tr>
<tr>
<td></td>
<td>A70 - 0653</td>
<td></td>
</tr>
<tr>
<td>ACCESS PLATFORMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLE HORIZONTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESS PLATFORMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE SHOP</td>
<td>A70 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A70 -</td>
<td></td>
</tr>
<tr>
<td>CHAMBER ENTRY MASTLIFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS SPECTROMETER STATION (FIXED)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE / CHECKOUT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CURRENT UNIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENTAL PROTECTION SET</td>
<td>S70 - 0902</td>
<td>SEAL ENGINE OPENINGS FOR ENVIRONMENTAL CONTROL</td>
</tr>
<tr>
<td>INTERNAL INSPECTION EQUIPMENT</td>
<td>C70 -</td>
<td></td>
</tr>
<tr>
<td>TEST ADAPTER SET</td>
<td>C70 -</td>
<td></td>
</tr>
<tr>
<td>FLOW TESTER</td>
<td>C7A-8</td>
<td></td>
</tr>
<tr>
<td>REGULATOR PANELS</td>
<td>C70-97</td>
<td></td>
</tr>
<tr>
<td>REGULATOR PANELS</td>
<td>S7A - 97</td>
<td></td>
</tr>
<tr>
<td>REGULATOR PANELS</td>
<td>S12 - 97</td>
<td></td>
</tr>
<tr>
<td>FLUSH & DRYING UNIT CHAMBER SERVICING</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>THERMAL PROTECTION SYSTEM WELDER</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>ENGINE COMMAND AND DATA SIMULATOR</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

ENGINE HANDLING

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CURRENT UNIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYSTER LIFT TRUCK</td>
<td>H70-0764</td>
<td>INSTALL/REMOVE ENGINE - HORIZONTAL</td>
</tr>
<tr>
<td>HORIZONTAL INSTALLER</td>
<td>H70-0668</td>
<td>INSTALL/REMOVE ENGINE - HORIZONTAL</td>
</tr>
<tr>
<td>ENGINE HANDLER</td>
<td>H70-0901</td>
<td>BISP/STORE AND HORIZONTAL PROCESSING</td>
</tr>
<tr>
<td>ENGINE HANDLER BLIND</td>
<td>H70-0902</td>
<td>LOAD/UNLOAD ENGINE HANDLER</td>
</tr>
<tr>
<td>INTERFACE SUPPORT PANEL</td>
<td>H70-0911</td>
<td>ENGINE SUPPORT WITH HANDLER AND ROTATING BLIND</td>
</tr>
<tr>
<td>ROTATING BLIND</td>
<td>H70-0903</td>
<td>ROTATE ENGINE TO VERTICAL</td>
</tr>
<tr>
<td>VERTICAL INSTALLER</td>
<td>H70-0774</td>
<td>INSTALL/REMOVE ENGINE - VERTICAL</td>
</tr>
<tr>
<td>PROOFLOAD FIXTURE SET</td>
<td>S70-0911</td>
<td>PROOFLOAD/Critical Lift of Handling Equipment</td>
</tr>
<tr>
<td>ENGINE MOVER SET</td>
<td>H70-0899</td>
<td>MOVE ENGINE WITHOUT TVC ACTUATORS</td>
</tr>
<tr>
<td>ENGINE ALIGNMENT SET</td>
<td>A70-0645</td>
<td>SETTING OF TVC ACTUATORS</td>
</tr>
<tr>
<td>COMPONENT HANDLER SET</td>
<td>H70-0905</td>
<td>USED WHEN LIFTING LRU'S</td>
</tr>
<tr>
<td>ENGINE LRU INSTALL/REMOVAL SET</td>
<td>H70-0528</td>
<td>INSTALL/REMOVE LRU WITH VEHICLE IN EITHER HORIZONTAL OR VERTICAL</td>
</tr>
<tr>
<td>ENGINE/HANDLER MOVER</td>
<td>N/A</td>
<td>MOVE ENGINE/HANDLER IN SHOP AREAS</td>
</tr>
<tr>
<td>ENGINE DOLLY (VERTICAL)</td>
<td>N/A</td>
<td>USED TO PROCESS ENGINE IN VERTICAL</td>
</tr>
<tr>
<td>TVC ACTUATOR LOCKS</td>
<td>A70-0551</td>
<td>USED TO MAINTAIN ENGINE IN DESIRED FIX POSITION WHEN ENGINE INSTALLED IN VEHICLE</td>
</tr>
<tr>
<td>TVC ACTUATOR SUPPORTS</td>
<td>A70-0625</td>
<td></td>
</tr>
<tr>
<td>TVC ACTUATOR EXTEND/RETRACT LOCKS</td>
<td>A70-0883</td>
<td></td>
</tr>
</tbody>
</table>
LRB ENGINE HANDLING
LRB ENGINE/LRU CHANGEOUT

THE GROUND SUPPORT EQUIPMENT (GSE), REALIZED AT THIS TIME TO SUPPORT THE LIQUID ROCKET BOOSTER ENGINE OPERATIONS HAS BEEN ARBITRARILY GROUPED INTO THREE (3) OPERATIONAL CATEGORIES. THESE OPERATIONAL CATEGORIES WOULD INCLUDE: A) ENGINE HANDLING, B) CHECKOUT/SERVICING, AND C) FACILITY SUPPORT.

THE ENGINE HANDLING CATEGORY WOULD INCLUDE ALL ENGINE, AND ENGINE COMPONENT, MOVEMENT AND SUPPORT. SUCH ACTIVITIES AS RECEIVING/SHIPPING AN ENGINE, ENGINE PREPARATION FOR VEHICLE INSTALLATION AND REMOVAL, ENGINE INSTALLATION AND REMOVAL, AND, COMPONENT HANDLING/INSTALLATION/REMOVAL WOULD BE INCLUDED IN THIS CATEGORY.
LRB ENGINE HANDLING

ENGINE HANDLER

ROTATING SLING

PROOF LOADING
LRB ENGINE/LRU CHANGEOUT

VERTICAL INSTALLER

COMPONENT
LRU GSE

HORIZONTAL INSTALLER
LRB ENGINE CHECKOUT/SERVICING

ENGINE CHECKOUT AND SERVICING WOULD INCLUDE SUCH ITEMS AS ENGINE PROTECTION, INSPECTION, ALL MECHANICAL/FLUID/ELECTRICAL CHECKOUTS, AND THE SERVICING AND "CLOSEOUT" REQUIREMENTS FOR LAUNCH.
LRB ENGINE ACCESS REQUIREMENTS

TOTAL AND EASE OF ACCESS TO THE ENGINES IS A MUST FOR EFFICIENT AND EFFECTIVE PROCESSING OPERATIONS. "LESSONS LEARNED" EVOLVING FROM THE SSME PROCESSING AT ALL AREAS OF LC-39 HAS BEEN USED TO PROMOTE CONCEPTS FOR THE LRB ENGINE ACCESS THAT SHOULD ENHANCE THE SAFETY FOR PERSONNEL AND FLIGHT HARDWARE, AND PROVE TO BE COST EFFECTIVE.

FACILITY SUPPORT DENOTES THE "FACILITIES" TYPE GSE REQUIRED TO INSURE THE PERFORMANCE OF THE FIRST TWO OPERATIONAL CATEGORIES MENTIONED ABOVE.
LRB ENGINE PROCESSING FACILITIES

LRB ENGINE PROCESSING FACILITIES

- ENGINE SHOP
 - COMPONENT CHANGEOUT
 - SERVICING
 - CHECKOUT
 - GSE STAGING AREA
 - CENTRALIZED PERSONNEL

- VEHICLE AREA
 - ENGINE CHANGEOUT
 - SERVICING
 - TOTAL ACCESS
LRB HORIZONTAL PROCESSING FACILITY
LRB ENGINE SHOP

THE LRB ENGINE SHOP AREA WILL BE THE NUCLEUS FOR THE ENGINE RELATED PROCESSING OPERATIONS. THIS FACILITY SHOULD PROVIDE FOR THE RECEIPT, STORAGE, INSTALLATION/REMOVAL, MODIFICATION, CHECKOUT, AND MAINTENANCE OF THE ENGINES, AND, ANY RELATED OPERATIONS ASSOCIATED WITH THE GROUND SUPPORT EQUIPMENT NEEDED FOR ENGINE PROCESSING. USING THESE BASELINES, A GENERAL DESCRIPTION OF THE FACILITY CAN BE DEVELOPED TO SUPPORT ALL PHASES OF ENGINE PROCESSING AS DEFINED BY THE CONCEPTUAL DESIGN OF THE LRB PROPULSION SYSTEM.
LRB ENGINE PROCESSING FACILITIES

VEHICLE AREA

IN ORDER TO EFFECTIVELY SUPPORT THE PROCESSING FLOW, "SATELLITE" AREAS AT THE INTEGRATION AND PAD LOCATIONS WILL BE NEEDED FOR THE LRB ENGINE OPERATIONS. THESE AREAS WILL BE USED AS STAGING AREAS FOR PERSONNEL, TOOLS, MINOR EQUIPMENT, AND MINOR FLIGHT HARDWARE.

OTHER AREA(S)

SOME PRESENT LRB ENGINE OPERATION CONCEPTS INDICATE THE USE OF PACKAGE IGNITION SYSTEM AND PYRO CARTRIDGES FOR INITIAL GAS GENERATOR OPERATION. SPECIAL AREAS WILL HAVE TO BE CONSIDERED FOR THESE DEVICES AND SHOULD BE EASILY ACCESSIBLE TO SUPPORT COST EFFECTIVE LAUNCH "CLOSEOUT" OPERATIONS.
LRB ENGINE PROCESSING FACILITIES

• VEHICLE AREA
 - INTEGRATION CELL
 - LAUNCHER PLATFORM
 - LAUNCH AREA

• OTHER AREA(S)
 - IGNITION PACKAGE STORAGE
 - GAS GENERATOR CARTRIDGE STORAGE
LRB ENGINE PROCESSING FLOW

ENGINE SHOP
- RECEIVING
- DE-PACKAGE
- INSPECTION
- PREPS FOR INSTALLATION

<table>
<thead>
<tr>
<th>1 SHIFT</th>
<th>* 5 TECHS</th>
</tr>
</thead>
</table>

HORIZONTAL PROCESSING FACILITY
- INSTALLATION
- INTERFACE VERIFICATION
- ENGINE ALIGNMENT VERIFICATION
- GIMBAL PROFILE VERIFICATION
- EXTERNAL LEAK CHECKS
- INTERNAL LEAK CHECKS
- FLOW CHECKS
- ELECTRICAL CHECKOUT
- INTEGRATED CHECKOUT
- THERMAL PROTECTION SYSTEM INSTALLATION**

<table>
<thead>
<tr>
<th>3 SHIFTS</th>
<th>* 5 TECHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SHIFTS</td>
<td>* 11 TECHS</td>
</tr>
</tbody>
</table>

INTEGRATED CONFIGURATION
- INTEGRATED TESTING/FRT
- THERMAL PROTECTION SYSTEM INSTALLATION**

<table>
<thead>
<tr>
<th>1 SHIFT</th>
<th>* 2 TECHS</th>
</tr>
</thead>
</table>

LAUNCH PREPARATION
- IGNITION SYSTEM INSTALLATION
- GAS GENERATOR CARTRIDGE INSTALLATION
- FLUSH/DRY SYSTEMS
- PREPARE FUEL SYSTEM (ANTI-FREEZE)
- FINAL TPS INSTALLATION

<table>
<thead>
<tr>
<th>1 SHIFT</th>
<th>* 14 TECHS</th>
</tr>
</thead>
</table>

* PER ENGINE
** 18 SHIFT TOTAL - 10 TECHS
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY

Gordon Artley
Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider
Gordon Artley
REVIEW OF ACTIVITIES

THE FIRST PROGRESS REVIEW (JULY 1988) PRESENTED IMPACT ANALYSIS FOR EXISTING AND NEW FACILITIES BY STATION SET. THIS ANALYSIS AND REQUIREMENT DEFINITION IS CONTINUING, SINCE SCHEDULED COMPLETION OF THE ANALYSIS IS CLOSE TO THE FINAL PROGRESS REVIEW THE STATION SET REPORT WILL BE PRESENTED AT THAT TIME.

THIS PROGRESS REVIEW WILL CONCENTRATE ON THE SELECTED TOPIC OF THE EVALUATION OF USING THE VAB FOR PROCESSING AND STORAGE OF THE LRB.
REVIEW OF ACTIVITIES

- 1st PROGRESS REVIEW (JULY 1988) PRESENTED A NEW ET/LRB FACILITY CONCEPT

- DUE TO THE CONCERNS WITH THE RECOMMENDATION OF AN OFF-LINE LRB FACILITY AND RELOCATION OF ET PROCESSING TO AN OFF-LINE FACILITY THE SECOND PROGRESS REVIEW WILL PRESENT THE EVALUATION
REVIEW OF ACTIVITIES (CONT)

DRIVERS FOR NEW FACILITIES

INTRODUCTION OF LRB WITHOUT IMPACT TO EXISTING FACILITIES AND OPERATIONS

ACTIVATION OF LRB FACILITIES WITHOUT IMPACT TO LAUNCH SCHEDULE OF 12 TO 14 STS/YEAR

ACTIVATION OF LRB FACILITIES IMPACTS DUE TO SRB OPERATIONS IN VAB AND FLIGHT RATE REQUIREMENTS

NEW FACILITY REQUIREMENTS

NEED FOR A THIRD INTEGRATION CELL SO NOT TO IMPACT SRB FLIGHTS

NEED TO MOVE ETs OUT OF HB4 SO IT CAN BE USED AS THIRD CELL
ET/LRB PROCESSING EVALUATION

1. HB2/4 SPACE UTILIZATION
2. FLIGHT ELEMENT FLOW PATHS THROUGH VAB
3. CRANE/LIFT OPERATION REQUIREMENTS
4. ACTIVATION SCHEDULE
5. NEW ET/LRB HORIZONTAL PROCESSING SITE LOCATION
6. ET/LRB PROCESSING CONSTRAINTS IN VAB HB2/4
 (CONCEPT EVALUATION)
7. ET/LRB REQUIREMENTS FOR STORAGE & PROCESSING
8. CONCLUSIONS
PRESENT HB-2 SPACE AVAILABLE

THE FOLLOWING AREAS ARE AVAILABLE FOR LRB PROCESSING AND STORAGE CELLS:

AREA 1: ATTACHED TO TOWER "A" ABOVE LEVEL 10 (112') 104- FEET BY 76- FEET (BETWEEN COLUMN LINES Q, U, 12, 16)

AREA 2: IN FRONT OF HIGH BAY DOOR ABOVE LEVEL 10 (112') 76- FEET BY 76- FEET (BETWEEN COLUMN LINES U, X, 12, 14)

THE FLOOR SPACE BELOW LEVEL 10 ON EITHER SIDE OF THE DOOR IS 76- FEET BY 38'- FEET (BETWEEN COLUMN LINES U, X, 14, 16 AND U, X, 10, 12).
CONCEPT FOR HI-BAY 2 SPACE UTILIZATION FOR TWO LRB CELLS

THE FOLLOWING TWO LOCATIONS ARE AVAILABLE:

0 PROCESSING - AREA BETWEEN COLUMN LINES Q, U, 14, 15, ABOVE LEVEL 10 (ATTACHED TO TOWER "A")

0 STORAGE - AREA BETWEEN COLUMN LINES U, X, 13, 14 ABOVE LEVEL 10 (IN FRONT OF HIGH BAY DOOR)

THIS ARRANGEMENT OF CELLS WILL PERMIT STORAGE OF A LRB FLIGHT PAIR AND PROCESSING OF A FLIGHT PAIR

HAVING THE CELLS ABOVE THE LEVEL 10 ELEVATION WILL ALLOW FOR VERTICAL ENGINE REMOVAL/INSTALLATION AND ACCESS TO THE HIGH BAY DOOR AND TOWER "A".
PRESENT HB-4 SPACE AVAILABLE

THE FOLLOWING AREAS ARE AVAILABLE FOR LRB PROCESSING AND STORAGE CELLS:

AREA 1: BETWEEN THE ET CELLS AND SRB WORK STANDS 66-Feet BY 76-Feet (BETWEEN COLUMN LINES Q, U, 5, 7)

AREA 2: IN FRONT OF HIGH BAY DOOR ABOVE LEVEL 10 (112') 76-Feet BY 76-Feet (BETWEEN COLUMN LINES U, X, 5, 7)

THE FLOOR SPACE BELOW LEVEL 10 ON EITHER SIDE OF THE DOOR IS 76-Feet BY 38-Feet (BETWEEN COLUMN LINES U, X, 3, 5 AND U, X, 7, 9)

THE SRB WORK STAND MUST REMAIN TO PROVIDE BACK-UP FOR RPSF.
CONCEPT FOR HI-BAY 4 SPACE UTILIZATION WITH TWO LRB CELLS

THE FOLLOWING LOCATION IS AVAILABLE:

0 AREAS BETWEEN COLUMN LINES U, X, 5, 6 AND U, X, 6, 7 (IN FRONT OF HIGH BAY DOOR)
 ABOVE LEVEL 10.

THIS ARRANGEMENT OF CELLS WILL PERMIT STORAGE OF A LRB FLIGHT PAIR AND PROCESSING OF
A FLIGHT PAIR.

HAVING THE CELLS ABOVE LEVEL 10 ELEVATION WILL ALLOW FOR VERTICAL ENGINE
REMOVAL/INSTALLATION AND ACCESS TO THE HIGH BAY DOOR.

THE CAPABILITY TO PROVIDE BACK-UP TO THE RPSF REQUIRES MAINTAINING THE SRB WORK
STANDS IN THE HB.
TWO CONCEPTS FOR FLIGHT ELEMENT FLOW IN VAB

- CONCEPT 1- USING HB 2 & 4 FOR ET & LRB PROCESSING

- CONCEPT 2- USING NEW ET/LRB PROCESSING FACILITY
CONCEPT 1
FLIGHT ELEMENT FLOW PATH
VAB HB 1, 3 AS INTEGRATION CELLS
VAB HB 2, 4 AS ET/LRB C/O CELLS

THE FLOW PATH CONSISTS AS FOLLOWS:
0 SRB ARRIVE FROM RPSF AND LIFT OPERATION TO HB 1 OR 3
0 ORBITER ARRIVE FROM OPF AND LIFT OPERATIONS TO HB 1 OR 3
0 LRB RECEIVED FROM BARGE AND LIFTED TO HB 2 OR 4 FOR PROCESSING
 - FOR STACKING: LIFTING OPERATION FROM HB 2 TO 1 OR 4 TO 3.
 - IN HB 2 AND 4, THESE WILL BE LIFT OPERATIONS TO MOVE LRB FROM C/O TO
 STORAGE CELLS
0 ET RECEIVED FROM BARGE AND LIFTED TO HB 2 OR 4 FOR PROCESSING
 - FOR STACKING: LIFTING OPERATION FROM HB 2 TO 1 OR 4 TO 3
 - IN HB 2 AND 4, THESE WILL BE LIFT OPERATIONS TO MOVE ET FROM C/O TO
 STORAGE CELLS

THE SIGNIFICANT CONCERN AS THE NUMBER OF LIFT OPERATIONS, THE TIMELY ACTIVATION OF HB
3 AND 1 TO SUPPORT LRB AND SRB, AND ACTIVATION OF HB 4 AND 2 TO SUPPORT LRB
PROCESSING.

THE ACTIVATION REQUIREMENTS FOR THIS PROCESS INCLUDES
0 ACTIVATION/MODIFICATION OF HB 1 AND 3 AS INTEGRATION CELLS TO SUPPORT LRB AND
 SRB
0 ACTIVATION/MODIFICATION OF HB 2 AND 4 AS LRB PROCESSING FACILITIES.
CONCEPT 1

FLIGHT ELEMENT FLOW PATH
VAB HIGH BAY 1, 3 AS INTEGRATION CELLS
HIGH BAY 2, 4 AS ET/LRB PROCESSING CELLS

VAB FLOOR PLAN
CONCEPT 2
FLIGHT ELEMENT FLOW PATH
VAB HB 1, 3, 4 AS INTEGRATION CELLS
ET PROCESSING AT HORIZONTAL FACILITY

THE FLOW PATH CONSISTS AS FOLLOWS:

0 SRB ARRIVES FROM RPSF AND LIFT OPERATION TO HB 1 OR 3
0 ORBITER ARRIVES FROM OPF AND LIFT OPERATION TO HB 1, 3 OR 4
0 LRB ARRIVES FROM LRB FACILITY AND LIFT OPERATION TO HB 3 OR 4
0 ET ARRIVES FROM HORIZONTAL FACILITY AND LIFT OPERATION TO HB 1, 3 OR 4

THIS FLOW PATH PROVIDES THE MINIMUM CRANE/LIFT OPERATIONS

THE ACTIVATION REQUIREMENTS FOR THIS PROCESS INCLUDES:

0 ACTIVATION OF AN OFF LINE LRB FACILITY
0 ACTIVATION OF OFF LINE ET FACILITY
0 ACTIVATION OF VAB HB 4 AS AN INTEGRATION CELL
0 MODIFICATION/ACTIVATION OF VAB HB 3 AS AN INTEGRATION CELL SUPPORTING LRP AND SBD
0 RELOCATION OF SRB STANDS FROM HB 4 TO HB 2
VAB LIFT OPERATION SUMMARY

Excluding the Orbiter and SRB lift requirements, there is significant reduction in the number of flight element lifts when ET's and LRB's are processed horizontally.

If the planned use of the VAB remains as it is today utilizing HB 2 & 4 for ET and LRB processing 10 lift operations would be required to stack an LRB/STS. SRB/STS would remain unchanged.

If LRB/STS integration occurred in HB 3 or 4 and ET's and LRB's when processed horizontally elsewhere 4 lift operations would be required to stack. SRB/STS lift operations for HB 1 & 3 would decrease by 2.

Since lifting flight hardware is a hazardous operation reducing the lift operations represents a significant enhancement to ground operations safety.
VAB Lift Operations Summary

<table>
<thead>
<tr>
<th></th>
<th>Lifts Per Flight Set</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Booster</td>
<td>ET</td>
<td>ORB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURRENT SRB/STS</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>CONCEPT 1 LRB/STS</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>CONCEPT 2 LRB/STS</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
THE SIGNIFICANT IMPACT OF PROCESSING LRB's IN THE VAB TO MEET A 1/96 LAUNCH DATE WILL
BY THE NEED TO CONVERT VAB HB 3 FROM SRB ONLY TO LRB AND SRB CAPABILITY. OPEN WORK
TIMES TO MAKE THE CONVERSION WILL NOT ALLOW THE TIMELY COMPLETION. THE ESTIMATE
CONVERSION TIME IS 13 MONTHS WITHOUT INTERRUPTION. THERE ARE APPROX. 151 WORKDAYS
BETWEEN OCT. 1991 TO OCT 1994 AVAILABLE.

THE USE OF HB 4 AS AN INTEGRATION CELL PREVENTS THE LOSS OF FLIGHTS SINCE CONVERSION
OF HB 3 CAN BE DELAYED UNTIL LRB FLIGHTS HAVE COMMENCED AND SRB FLIGHTS ARE REDUCED.
THIS HOWEVER WILL REQUIRE HB 2 TO SUPPORT TWICE AS MANY ET's WITH LITTLE ROOM FOR
LRB.

THE OPTIMUM ACTIVATION SCHEDULE IS ALLOWED BY MOVING ET's TO A NEW FACILITY.
VAB High Bay Facility Open Periods

Fiscal Year - 1993

<table>
<thead>
<tr>
<th>Year</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>VAB-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>14</td>
<td>30</td>
<td>22</td>
<td>2</td>
<td>25</td>
<td>26</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>23</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>20</td>
<td>23</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>VAB-3</td>
<td></td>
</tr>
</tbody>
</table>

Fiscal Year - 1994

<table>
<thead>
<tr>
<th>Year</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>VAB-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>24</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>VAB-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14</td>
<td>27</td>
<td>31</td>
<td>11</td>
<td>16</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
ACTIVATION OF FIRST LINE FACILITIES

USING HB 3 FOR FIRST LRB STACKING AND HB 4 FOR FIRST LRB PROCESSING (CONCEPT 1) WILL REQUIRE SUSPENSION OF 5 - 7 SRB/SSV FLIGHTS DURING THE HB 3 MODIFICATION PERIOD. THE MODIFICATION IS ESTIMATED TO BE 13 MONTHS OF UNINTERRUPTED TIME BETWEEN THE CONCEPTUAL TIME FRAME OF OCTOBER 1993 TO OCTOBER 1994. THE AREA CONTROLS IN THE VAB DURING THE MODIFICATION OF HB 3 & HB 4 WILL BE EXTENSIVE DUE TO CONSTRUCTION AND SSV INTEGRATION (LIFTING, SRB STACKING) OCCURRING IN PARALLEL.

(USING THE HB 4 FOR FIRST LRB STACKING AND A NEW HPF FOR ET & LRB (CONCEPT 2) WILL NOT REQUIRE SUSPENSION OF SRB/SSV FLIGHTS. THE NEW HPF FOR ET CAN BE ACTIVATED PRIOR TO HB 4 MODIFICATION AND STACKING. MODIFICATION OF HB 3 AS A DUAL INTEGRATION FACILITY FOR SRB/SSV A LRB/SSV CAN OCCUR AFTER THE SRB FLIGHT RATE IS DOWN TO 7 PER YEAR.
ACTIVATION OF FIRST LINE FACILITIES

CONCEPT 1

- SUSPENSION OF 5 - 7 SRB / SSV FLIGHTS
- EXTENSION AREA CONTROL DURING MODIFICATION PERIOD

CONCEPT 2

- NO IMPACT TO SRB / SSV FLIGHTS
- ACTIVATE HB-3 WHEN SRB / SSV FLIGHT DOWN TO 7 PER YEAR
- MINIMIZE AREA CONTROLS DURING MODIFICATION PERIOD
ET/LRB PROCESSING

OCTOBER 1988

ET/LRB HORIZONTAL PROCESSING FACILITY SITE LOCATION

THIS PROPOSED SITE PROVIDES AN EXCELLENT POTENTIAL LOCATION. THE EXISTING PRESS SITE MAY BE RELOCATED WHICH WILL PROVIDE ADDITIONAL AREA. IT IS IN CLOSE PROXIMITY TO THE BARGE TERMINAL & TOW ROUTE. SAFETY CONCERNS ARE ELIMINATED SINCE THIS SITE IS BEYOND THE VAB QUANTITY-DISTANCE (QD) ENVIRONMENTAL CONCERNS ARE MINIMIZE SINCE AN EXISTING LOCATION IS BEING UTILIZED.

THIS SITE WAS ONE OF THE TWO PRIME CANDIDATE SITES PRESENTED AT THE FIRST PROGRESS REVIEW.
LIQUID ROCKET BOOSTER INTEGRATION
SECOND PROGRESS REVIEW
OCT 1988

ET/LRB PROCESSING FACILITY-SITING PLAN

ORIGINAL PAGE IS OF POOR QUALITY
ET/LRB DESIGN REQUIREMENTS FOR STORAGE AND PROCESSING OPERATIONS WITH SRB STANDS IN VAB

COMPARISON

<table>
<thead>
<tr>
<th>LRB</th>
<th>CONCEPT 1</th>
<th>CONCEPT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT/ROTATION</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>STORAGE/PROCESSING</td>
<td>VERTICAL ON HOLDDOWN</td>
<td>HORIZ (ON TRANSPORTER)</td>
</tr>
<tr>
<td>ENGINE CHANGEOUT</td>
<td>VERTICAL</td>
<td>HORIZ (ON TRANSPORTER)</td>
</tr>
<tr>
<td>ENVELOPE</td>
<td>38' X 76'</td>
<td>UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET</th>
<th>CONCEPT 1</th>
<th>CONCEPT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFTING/ROTATION</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>STORAGE/PROCESSING</td>
<td>VERTICAL</td>
<td>HORIZ (ON TRANSPORTER)</td>
</tr>
<tr>
<td>ENVELOPE</td>
<td>EXISTING</td>
<td>UNLIMITED</td>
</tr>
</tbody>
</table>
USING THE VAB HB 2 & 4 FOR LRB/ET PROCESSING/STORAGE. HAS CONSTRAINTS TO ACTIVATION AND PROCESSING.

ACTIVATION OF HB 1 & 3 TO SUPPORT LRB AS WELL AS SRB WILL REQUIRE AN UNINTERRUPTED OUTAGE OF 13 MONTHS. THIS WILL RESULT IN A SUSPENSION OF FLIGHTS. ACTIVATION OF HB 2 & 4 FOR LRB PROCESSING/STORAGE WILL IMPACT ET PROCESSING OR ET PROCESSING AND SRB STACKING WILL INTERRUPT ACTIVATION. ACTIVATION WILL BE REQUIRED TO BE COVERED BY THE INTEGRATED AREA CONTROL SCHEDULE.

PROCESSING CONSTRAINTS INCLUDE THE NEED TO PROCESS THE LRB VERTICALLY AND WILL INCREASE THE NUMBER OF CRANE LIFT OPERATIONS IN THE VAB. PROCESSING IN THE VAB WILL BE COMPLICATED BY THE NUMEROUS CRANE OPERATIONS AND AREA CONTROL SCHEDULES FOR SRB, LRB, ET AND ORBITER PROCESSING AND HAZARDOUS OPERATIONS. THE SURGE/STORAGE CAPACITY WILL BE LIMITED. CONTINGENCY USE OF THE SRB WORK STANDS FURTHER COMPlicate THE JOINT OCCUPANCY OF VAB HB 4. FUTURE USE OF THE VAB FOR ELEMENT STORAGE (ORBITER, PAYLOAD CANISTER) OR FUTURE PROGRAMS (ALS, SHUTTLE C) WILL BE ELIMINATED.
CONCEPT 1 EVALUATION

- Activation in VAB will impact on-going ops

- Processing in VAB complicated by numerous lifts/area control/schedule interaction

- Future use of VAB limited
CONCLUSION

BY THE IMPLEMENTATION OF CONCEPT 2, WHICH INCLUDES A NEW LRB/ET HORIZONTAL PROCESSING/STORAGE FACILITY AND ACTIVATION OF VAB HB 4 AS LRB INTEGRATION FACILITY MANY OF THE CONSTRAINTS ARE ELIMINATED.

ACTIVATION OF HB 4 WILL ELIMINATE THE NEED TO SUSPEND SCHEDULED FLIGHT TO BE INTEGRATED IN HB 3. CONVERSION OF HB 3 AS A LRB/SRB INTEGRATION FACILITY CAN BE DEFERRED UNTIL SRB LAUNCHES ARE BELOW SEVEN AND CAPABLE OF BEING SUPPORTED BY HB 1.

THE NUMBER OF CRANE/LIFT OPERATIONS TO PROCESS ET/LRB ELEMENTS IS REDUCED. LOCATING THE LRB PROCESSING IN A SEPARATE FACILITY PLACES THE PERSONNEL AND FLIGHT ELEMENTS OUTSIDE THE QUANTITY/DISTANCE INHABITED SAFETY ZONE OF THE VAB.

A NEW PROCESSING FACILITY FOR LRB & ET MINIMIZES AREA CONTROL SCHEDULE IMPACTS FOR THE VAB.
CONCLUSION

IMPLEMENTATION OF CONCEPT 2 WILL:

- MINIMIZE LIFT OPS
- ELIMINATE THE REQUIREMENT OF SUSPEND LAUNCHES
- PROVIDES REMOTE ET/LRB PROCESSING/STORAGE
- MINIMIZE AREA CONTROL, SCHEDULING INTERACTIONS
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY

Gordon Artley
Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider
Gordon Artley
SAFETY/ENVIRONMENTAL IMPLICATIONS

STUDY OBJECTIVES:

- IDENTIFY SAFETY AND ENVIRONMENTAL IMPLICATIONS FOR LRB INTEGRATION INTO CURRENT BASELINE
- ANALYZE SAFETY/ENVIRONMENTAL IMPLICATIONS - GENERIC AND STATION SET UNIQUE
- EVALUATE LRB VS SRB PROCESSING AND IDENTIFY ENHANCEMENTS
- DEVELOP CONCLUSIONS AND RECOMMENDATIONS BASED ON STUDY FINDINGS
- DOCUMENT FINDINGS IN FINAL REPORT
SAFETY/ENVIRONMENTAL IMPLICATIONS

INITIAL PITCH PRESENTED IN JANUARY 1988 ADDRESSED SAFETY/ENVIRONMENTAL IMPLICATIONS OF HYPERGOLS (MMH/N204), SUBSEQUENTLY HYPERGOLS WERE DROPPED FROM CONSIDERATION AS PROPELLANTS FOR THE LRB.

SAFETY/ENVIRONMENTAL IMPLICATIONS BEING ADDRESSED IN THE STUDY WERE PRESENTED AT THE FIRST PROGRESS REVIEW PRESENTED IN JULY 1988; UPDATE PRESENTED IN AUGUST 1988 REVIEW.

THIS PRESENTATION WILL ADDRESS THE MAJOR SAFETY AND ENVIRONMENTAL IMPLICATIONS IDENTIFIED IN THE STUDY TO DATE.
SAFETY AND ENVIRONMENTAL IMPLICATIONS

MAJOR ISSUES/STATUS

- EVALUATION OF HYPERGOLS AS PRIMARY LRB PROPELLANTS

- SUMMARY OF PROPELLANT AND SAFETY ISSUES BEING ADDRESSED IN THE BOOSTER STUDY

- DRAFT REPORT SUBMITTED AUG. 1988 FOR INTERNAL LSOC REVIEW

- UPDATES ARE IN PROGRESS. RESUBMISSION OF REPORT FOR FINAL REVIEW DRAFT MID OCT 1988 AND SUBMISSION OF FINAL REPORT MID NOV 1988

- MAJOR SAFETY AND ENVIRONMENTAL IMPLICATIONS ARE SUMMARIZED IN THIS PRESENTATION
OPERATIONAL SAFETY ADVANTAGES OF LRB

1. NO HANDLING OF LIVE PROPELLANTS DURING PROCESSING OPERATIONS
2. DECREASE IN HAZARDOUS CONTROL ZONES IN THE VAB
3. QUANTITY - DISTANCE REQUIREMENTS IN VAB AND RPSF DRASTICALLY REDUCED OR ELIMINATED
4. SRB STACKING OPERATIONS ELIMINATED - REDUCING LIFTING HAZARDS
5. REDUCES OR ELIMINATES WORKING UNDER SUSPENDED LOADS
6. NO LOWERING OF PERSONNEL INTO LIVE SEGMENTS
7. NO APU / HYPER BOOSTER OPERATIONS
MAJOR SAFETY IMPLICATIONS

QUANTITY DISTANCE REQUIREMENTS PREVIOUSLY ESTABLISHED FOR THE VAB, RPSF AND OPF (INTRALINE AND INHABITED BUILDING DISTANCES) DURING SRB AND ORBITER PROCESSING WERE TAKEN INTO CONSIDERATION WHEN SITING LOCATIONS FOR THE LRB/ET PROCESSING FACILITY.

THREE PROPOSED SITES WERE SELECTED AS SHOWN IN THE LRB/ET PROCESSING FACILITY SITING PLAN. SITE #1 (PRIMARY) IS IN THE GENERAL AREA OF THE EXISTING PRESS SITE. SITE #2 IS SOUTH OF THE LOGISTICS FACILITY. BOTH SITES ARE OUTSIDE THE QUANTITY DISTANCE REQUIREMENTS CURRENTLY ESTABLISHED, EVEN THOUGH THESE REQUIREMENTS ARE NOT BEING STRICTLY ENFORCED, WE DECIDED NOT TO INFRINGE ON THESE ZONES BY LOCATING THE FACILITY WITHIN IT. OTHER FACTORS WERE CONSIDERED IN THE SITE SELECTION WHICH WILL BE DISCUSSED IN THE ENVIRONMENTAL IMPLICATIONS.

QUANTITY DISTANCE REQUIREMENTS FOR SITING STORAGE FACILITIES AT THE PAD ARE BASED ON REQUIREMENTS CALLED OUT IN AFR 127-100, EXPLOSIVE SAFETY STANDARD, THE DISTANCES SHOWN ON THE SITE PLAN ARE FOR THE PROJECTED MAXIMUM STORAGE CAPABILITIES FOR SUPPORT OF THE LRB. THE DISTANCES WERE ESTABLISHED FOR LO2 (17,100,000 LBS), RP-1 (1,734,000 LBS), AND LH2 (1,062,000 LBS). SITING CAN BE ACCOMPLISHED WITHOUT IMPICATING EXISTING FACILITIES.
MAJOR SAFETY IMPLICATIONS

- QUANTITY DISTANCE REQUIREMENTS

 - SITING OF ET/LRB PROCESSING FACILITY
 - PRESS SITE (PRIMARY SITE)
 - N.E. OF VAB
 - SOUTH OF LOGISTICS FACILITY

 - SITING OF STORAGE FACILITIES AT THE PADS
MAJOR SAFETY IMPLICATIONS (CONTINUED)

QUANTITY DISTANCE REQUIREMENTS FOR THE VAB AS SHOWN ON THE ET/LRB PROCESSING FACILITY SITING PLAN AS FOLLOWS:

INTRALINE DISTANCE = 820 FT.

THIS IS THE MINIMUM DISTANCE REQUIRED FOR SEPARATION OF STRUCTURES HOUSING NONEXPLOSIVE OPERATIONS FROM EXPLOSIVE OPERATING BUILDING.

INHABITED BUILDING DISTANCE = 1,320 FT

THIS IS THE MINIMUM ALLOWABLE DISTANCE BETWEEN INHABITED BUILDINGS (STRUCTURES NOT DIRECTLY RELATED TO EXPLOSIVE OPERATIONS WHERE PEOPLE USUALLY ASSEMBLE TO WORK) AND AN EXPLOSIVE LOCATION.

MAJOR SAFETY IMPLICATIONS (CONTINUED)

THE QUANTITY DISTANCES SHOWN ON THE PAD A SITE PLAN FOR LRB PROPELLANTS REPRESENT MAXIMUM STORAGE CAPACITY. THE SMALLER INNER CIRCLE REPRESENTS THE INTRAGROUP/INTRALINE QUANTITY DISTANCE REQUIREMENT AND THE LARGER OUTER CIRCLE REPRESENTS EITHER THE INHABITED BUILDING QUANTITY DISTANCE REQUIREMENT FOR THE LO2 SITE OR THE PROTECTED DISTANCE REQUIREMENT FOR LH2. THE INHABITED BUILDING QUANTITY DISTANCE REQUIREMENT FOR RP-1 FALLS WITHIN THE PROTECTED DISTANCE REQUIREMENT FOR LH2 AND SINCE THEY ARE IN THE SAME COMPATIBILITY GROUP (LIQ-C) IT DOES NOT APPLY. LISTED BELOW ARE THE QUANTITY DISTANCE REQUIREMENTS FOR EXISTING, AS WELL AS, THOSE PROJECTED FOR LRB PROPELLANT REQUIREMENTS, PER AFR 127-100, EXPLOSION SAFETY STANDARD.

<table>
<thead>
<tr>
<th>UNPROTECTED DISTANCE</th>
<th>PROTECTED DISTANCE</th>
<th>INTRALINE DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING LH2 TANK</td>
<td>* 1,800 Ft</td>
<td>500 Ft</td>
</tr>
<tr>
<td>ADDITIONAL LH2 TANK</td>
<td>* 1,800 Ft</td>
<td>630 Ft</td>
</tr>
<tr>
<td>* NOT SHOWN ON SITE PLAN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: LH2 IS CLASSIFIED AS A HAZARD GROUP III LIQUID PROPELLANT AND COMPATIBILITY STORAGE GROUP LIQUID C BY AFR 127-100. PROTECTED AND UNPROTECTED DISTANCES APPLY ONLY TO THIS GROUP.

<table>
<thead>
<tr>
<th>INTRAGROUP/INTRALINE DISTANCE</th>
<th>INHABITED BUILDING STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1 EXISTING AND PROJECTED</td>
<td>175 Ft</td>
</tr>
<tr>
<td>EXISTING LO2 TANK</td>
<td>305 Ft</td>
</tr>
<tr>
<td>ADDITIONAL LO2 TANK</td>
<td>* 350 Ft</td>
</tr>
<tr>
<td>* DISTANCES DETERMINED BY COMBINING TOTAL QUANTITIES FOR EXISTING AND ADDITIONAL LO2 AND EXTRAPOLATING FROM DATA IN AFR 127-100.</td>
<td>* 700 Ft</td>
</tr>
</tbody>
</table>

Lockheed
Space Operations Company
D-4A
MAJOR SAFETY IMPACTS (CONT)

QUANTITY DISTANCE LRB PROPELLANT STORAGE SITES

EXIST LH2 TANK SITE
(900,000 GAL)

ADDITIONAL LH2 TANK FOR LRB
(900,000 GAL)

EXIST LOX TANK SITE
(900,000 GAL)

ADDITIONAL LO2 TANK FOR LRB
(900,000 GAL)

EXISTING RP-1 STORAGE FACILITY (PAD A)
(258,000 GAL TOTAL CAPACITY - 3 TANKS - SAME FOR LRB)

MMH (EXIST)

N204 (EXIST)

PAD A SITE PLAN
MAJOR SAFETY IMPLICATIONS (CONTINUED)

RP-1 IS CLASSED AS A COMBUSTIBLE LIQUID BY NFPA FLAMMABLE AND COMBUSTIBLE LIQUIDS CODES, CHAPTER 30, AND THE STORAGE/SERVICING FACILITY MUST MEET DESIGN, CONSTRUCTION, OPERATION AND MONITORING REQUIREMENTS SPECIFICATIONS AS CALLED OUT IN NFPA CODES, UNDERWRITERS LABORATORIES, INC. STANDARDS, AMERICAN PETROLEUM INSTITUTE STANDARDS AND SPECIFICATIONS, AND THE AMERICAN SOCIETY FOR TESTING AND MATERIALS STANDARDS.

RP-1 STORAGE FACILITY EXISTING AT PAD A USED DURING APOLLO PROGRAM. CONDITION OF STORAGE CONTAINERS AND PIPING UNKNOWN. NDE SHOULD BE PERFORMED TO DETERMINE CONDITION OF SYSTEM AND IF IT MEETS CURRENT REQUIREMENTS AS LISTED ABOVE, OTHERWISE NEW FACILITY WILL BE REQUIRED.

RP-1 STORAGE FACILITY WAS REMOVED FROM PAD B AND THEREFORE WILL REQUIRE NEW FACILITY.

A SUGGESTION HAS BEEN MADE TO CONSIDER A CENTRALIZED STORAGE FACILITY TO SERVICE BOTH PADS.

REGARDLESS OF THE SELECTED OPTION, THE REQUIREMENTS FOR CONSTRUCTION MATERIAL, VENTING, LEAK DETECTION, FIRE PROTECTION, VAPOR DETECTION, AND SAFETY HANDLING PRACTICES MUST BE MET.
MAJOR SAFETY IMPLICATIONS (CONT)

- RP-1 STORAGE FACILITY
 - REFURBISHMENT OF PAD A FACILITY OR TOTALLY NEW FACILITY
 - TOTALLY NEW FACILITY REQUIRED AT PAD B
 - SUGGESTION TO CONSIDER NEW CENTRALIZED FACILITY
 - FACILITY OR FACILITIES MUST COMPLY WITH CURRENT SAFETY REQUIREMENTS
MAJOR SAFETY IMPLICATIONS (CONTINUED)

According to GP-1098, the KSC STS Ground Safety Plan, there are 65 control zones established for current hazardous operations in the VAB, 21 of which could impact construction activities required to modify High Bay 4 for LRB processing.

These same control zones would affect LRB processing in the VAB during phase-in when simultaneous LRB and SRB processing occur.

According to GP-1098, there are 61 control zones established for current hazardous operations at the pads, many of which could impact construction activities required to modify the pads for LRB support. In addition, many of these same control zones will impact LRB processing activities during phase-in. However, these can be minimized by advanced planning and scheduling.

Our final report evaluates the control zones at the VAB and pads and their effects on LRB processing task.
MAJOR SAFETY IMPLICATIONS

CONTROL ZONES FOR HAZARDOUS OPERATIONS

VAB:

• CONSTRUCTION ACTIVITIES TO MODIFY HIGH BAY 4
• SIMULTANEOUS LRB AND SRB OPERATIONS DURING LRB PHASE-IN

PADS:

• CONSTRUCTION ACTIVITIES TO MODIFY PADS FOR LRB SUPPORT
• LRB PROCESSING ACTIVITIES DURING PHASE-IN
THE CONTROL ZONE SHOWN ON THE VAB FLOOR PLAN IS JUST ONE EXAMPLE OF A CONTROL ZONE ESTABLISHED FOR HAZARDOUS OPERATIONS IN THE VAB. THIS CONTROL ZONE IS ESTABLISHED FOR SRM HOISTING AND STACKING OPERATIONS IN HB 3. FOR THESE OPERATIONS THE ENTIRE TRANSFER AISLE BETWEEN TOWERS A/D AND C/F, HIGH BAYS 3 AND 4, AND TOWERS B, C, F, AND E REQUIRE CLEARING OF ALL NON-ESSENTIAL PERSONNEL.
MAJOR SAFETY IMPLICATIONS (CONTINUED)

SINCE THE LRB/ET PROCESSING FACILITY IS A NEW FACILITY THERE ARE NUMEROUS SAFETY REQUIREMENTS TO CONTEND WITH DURING DESIGN, CONSTRUCTION AND OPERATION PHASES, SUCH AS: (1) FIRE DETECTION/PROTECTION SYSTEMS; (2) CONSTRUCTION TO MEET FIRE RATINGS IN HAZARD CLASSIFIED AREAS; (3) O2 AND ENVIRONMENTAL MONITORING FOR HAZARDOUS VAPORS; (4) VENTILATION SYSTEMS TO MEET INDUSTRIAL HYGIENE REQUIREMENTS; (5) HAZARD/EXPLOSION PROOF ELECTRICAL EQUIPMENT IN HAZARD CLASSIFIED AREAS; (6) LIGHTING TO MEET INDUSTRIAL HYGIENE REQUIREMENTS IN DIFFERENT WORK AREAS. WE PLAN TO USE OMRF LESSONS LEARNED:

DELIVERY OF THE QUANTITIES OF RP-1 REQUIRED TO SUPPORT AN LRB LAUNCH POSES SAFETY, AS WELL AS ENVIRONMENTAL CONCERNS (WHICH WILL BE DISCUSSED LATER). FROM A SAFETY STANDPOINT IT IS RECOMMENDED THAT ALL DELIVERY BE MADE BY RAIL CAR RATHER THAN TANKER TRUCK. THIS REDUCES THE POTENTIAL FOR ACCIDENTS BY CUTTING DOWN ON THE DELIVERY TRAFFIC AND PRESENTS LESS IMPLICATION ON PAD OPERATIONS.
MAJOR SAFETY IMPLICATIONS (CONT)

• LRB/ET PROCESSING FACILITY
 - MANY SAFETY REQUIREMENTS TO CONTEND WITH DURING DESIGN, CONSTRUCTION AND OPERATION PHASES

• RP-1 DELIVERY TO SITE STORAGE FACILITIES
 - RAIL DELIVERY VS TANKER TRUCK DELIVERY
MAJOR ENVIRONMENTAL IMPLICATIONS

ENVIRONMENTAL REGULATIONS ARE BECOMING INCREASINGLY MORE STRINGENT WHEN APPLIED TO STORAGE OF HAZARDOUS MATERIALS (RP-1) IN STORAGE CONTAINERS. THEY IMPOSE STRICT REQUIREMENTS FOR LEAK DETECTION, NOT ONLY FOR THE STORAGE CONTAINER, BUT THE PIPING AS WELL. SPILL CONTAINMENTRequires CAPABILITY TO CONTAIN THE TOTAL CAPACITY OF THE FUEL STORAGE FACILITY, SUCH AS THE METHOD EMPLOYED AT PAD A BY PUTTING TANKS IN CONCRETE VAULTS. DUE TO THE ENVIRONMENT THE TANKS ARE EXPOSED TO AT THE PADS, PROTECTION FROM BLASTS IS NEEDED. THE PROTECTION PROVIDED FOR THE EXISTING RP-1 TANKS AT PAD A (CONCRETE VAULT COVERED WITH DIRT, WITH CONCRETE PAD ON TOP) SHOULD BE SUFFICIENT. A VAPOR RECOVERY SYSTEM MAY BE REQUIRED.

LOCATING THE LRB/ET PROCESSING FACILITY IN THE GENERAL PROXIMITY OF THE PRESS SITE, AS SHOWN PREVIOUSLY IN THE LRB/ET PROCESSING FACILITY SITE PLAN, MINIMIZES THE ENVIRONMENTAL IMPLICATIONS. IT IS CONVENIENT TO THE BARGE DELIVERY SITE, AS WELL AS THE TOW ROUTE TO THE VAB. THIS WILL ELIMINATE THE NEED TO CONSTRUCT AN EXTENSIVE TOW ROUTE AND ALSO REDUCES THE IMPLICATION OF CONSTRUCTION ACTIVITIES IN WET LANDS.

HANDLING LARGE QUANTITIES OF FUEL POSES A GREATER POTENTIAL FOR GROUND WATER CONTAMINATION DURING DELIVERY, TRANSFER AND SERVICING OPERATIONS. A LARGE SPILL IN THE AREA WOULD BE DIFFICULT TO CLEAN UP DUE TO HIGH WATER TABLE AND THE PERMEABILITY OF THE SOIL. FOR THIS REASON THE OPERATIONS SHOULD OCCUR AS MUCH AS POSSIBLE OVER IMPERVIOUS SURFACES WITH SPILL CONTROL MEASURES. IN ADDITION, MONITORING WELLS WILL BE REQUIRED IN THE VICINITY OF THE STORAGE FACILITY, WHICH ARE NOT IN EXISTENCE AT THIS TIME.
MAJOR ENVIRONMENTAL IMPACTS

• RP-1 STORAGE FACILITY
 - LEAK DETECTION REQUIREMENTS
 - SPILL CONTAINMENT REQUIREMENTS
 - CONSTRUCTION REQUIREMENTS

• ET/LRB PROCESSING FACILITY
 - SELECTED LOCATION WILL DETERMINE ENVIRONMENTAL IMPACT

• GROUND WATER CONTAMINATION
 - POTENTIAL FOR GROUND WATER CONTAMINATION
 - MONITORING WELLS REQUIRED
MAJOR ENVIRONMENTAL IMPLICATIONS (CONTINUED)

THE MOST SIGNIFICANT ENVIRONMENTAL IMPLICATION IMPOSED ON ENDANGERED SPECIES IS THAT POSED BY THE INCREASED BARGE TRAFFIC FOR LRB DELIVERY ON THE MANATEE. IT IS ESTIMATED THAT 10% OF THE MANATEE POPULATION LIVE IN THE WATER SURROUNDING KENNEDY SPACE CENTER. THIS IMPLICATION CAN BE MINIMIZED BY PLACING GUARDS AROUNDS THE PROPPELLER BLADES ON THE BARGE MOTOR AND POSTING MANATEE OBSERVERS ON BOARD. THE ET BARGE CURRENTLY USES THIS APPROACH.

THE MOST SIGNIFICANT IMPROVEMENT FROM AN ENVIRONMENTAL QUALITY STANDPOINT OF LRB OVER SRB IS IN THE AREA OF AIR QUALITY. DUE TO IGNITION BY-PRODUCTS AIR EMISSIONS WILL BE LESS HAZARDOUS FROM THE LRB THAN THOSE OF THE SRB. IN ADDITION, THE PROBLEM OF THE HCL CLOUD FORMED BY THE SRB IGNITION WILL BE ELIMINATED.
MAJOR ENVIRONMENTAL IMPACTS (CONT)

- ENVIRONMENTAL IMPACTS ON ENDANGERED SPECIES
 - IMPACT ON THE MANATEE

- ADVANTAGES OF LRB OVER SRB
 - IMPROVEMENT IN AIR QUALITY
 - ELIMINATION OF HCL CLOUD
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL
 IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY

Gordon Artley

Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider

Gordon Artley
GOCM IS A PARAMETRIC MODEL

THE GROUND OPERATIONS COST MODEL, AS A PARAMETRIC MODEL, USES ONLY VERY BASIC PARAMETERS, SUCH AS HEIGHT, AREA, VOLUME OR TYPE. BASED ON THESE FUNDAMENTAL INPUTS, THE MODEL GENERATES A VARIETY OF COST ESTIMATES. THESE ESTIMATES ARE DESIGNED TO PROVIDE DEPENDABLE AND CONSISTENT ROUGH ORDER OF MAGNITUDE (ROM) DOLLAR FORECASTS. THIS IS AN IDEAL MANAGEMENT TOOL FOR "WHAT IF" OR SENSITIVITY STUDIES.

THE LIQUID ROCKET BOOSTER INTEGRATION STUDY IS IN THE PROCESS OF EVALUATING HISTORICAL COST PERFORMANCE AND CORRELATING THIS DATA WITH THE GROUND OPERATIONS COST MODEL OUTPUTS. THIS ON-GOING ANALYSIS IS VERIFYING THE MODEL'S ORIGINAL CERS AND GENERATING THE INFORMATION NECESSARY TO REFINED THESE RELATIONSHIPS IN THE FUTURE. THIS HEURISTIC PROCESS WILL CONFIRM THE RELIABILITY OF THE MODEL'S FINANCIAL ESTIMATES.
E. GOCM STATUS

1. Flow Chart
2. Enhanced GOCM Software
4. "Actuals" Evaluation
GROUND OPERATIONS COST MODEL

1. Developed by NASA
2. Parametrically generates STS/equivalent ground processing costs using fundamental inputs, e.g. booster size, generic type
3. LSOC Task 9
 expand and enhance GOCM through the incorporation of lessons learned from the LRB Integration Study
4. Task 9 Study Products
 a. User's manual
 b. Recommendations
 c. Instructions
 d. Software
TASK 9 OVERVIEW

LSOC COST MODEL TASK CONTINUED TO BE ON SCHEDULE. COST ESTIMATING RELATIONSHIP (CER) DATA HAS BEEN COLLECTED AND IS UNDER ACTIVE EVALUATION. THIS HAS ALLOWED THE REALISM AND ACCURACY EVALUATION OF CERS IN THE ORIGINAL MODEL TO BEGAIN AS PLANNED. THESE ACCOMPLISHMENTS HAVE ALLOWED US TO INITIATE PRELIMINARY CER/MODEL MODIFICATIONS AND IDENTIFY PRELIMINARY SYSTEM/CER INADEQUACIES.

THE USER'S MANUAL CONTINUED TO MOVE TOWARDS COMPLETION AS ORIGINALLY PLANNED. THE TECHNICAL INSTRUCTIONS MANUAL IS ALSO ON TARGET. THE PRELIMINARY SET OF RECOMMENDATIONS, DISCUSSED LAST PERIOD, ARE BEING REFINED THIS PERIOD.
ENHANCED GOCM SOFTWARE

THE CERS OF THE ORIGINAL MODEL HAVE BEEN RETAINED. ALTHOUGH THE ORIGINAL CONCEPT IS THE SAME, IT HAS BEEN THOROUGHLY "REPACKAGED" WITH A NUMBER OF ENHANCEMENTS.

THESE ENHANCEMENTS HAD TWO GOALS. THE FIRST WAS TO ACHIEVE A HIGHER DEGREE OF USER FRIENDLINESS. THE SECOND WAS TO MAKE THE MODEL "EXPANSION READY." BOTH THESE GOALS SHOULD ALLOW INEXPERIENCED USERS TO UTILIZE GOCM AND IMPLEMENT MINOR MODIFICATIONS. ENHANCING USER FRIENDLINESS MAKES GOCM ACCESSIBLE TO A GREATER USER AUDIENCE, THEREBY EXPANDING ITS GENERAL UTILITY. THIS USER FRIENDLINESS ENCOMPASSES HELP SCREENS, USER PROMPTS AND PROMPTED MENUS.

GOCM WAS MADE EXPANSION READY IN ORDER TO READILY INCORPORATE FUTURE CER MODIFICATIONS AND ADDITIONS. AS ADDITIONAL CERS BECOME AVAILABLE, THEY CAN BE DIRECTLY INSERTED INTO AREAS ALREADY PROGRAMMED INTO THE SPREADSHEET. THIS MEANS THAT ADDITIONAL FORMULAS CAN BE EASILY INCORPORATED INTO THE SPREADSHEET WITHOUT RESTRUCTURING THE MODEL.
ENHANCED VERSION OF GOCM NEAR COMPLETION

1. Preserved original CERs
2. Enhanced user friendliness
3. GOCM is expansion ready

Result: Inexperienced users can now use GOCM effectively
GOCM USER'S MANUAL

THE GOCM USER'S MANUAL FOLLOWS THE MODULAR DESIGN OF THE GOCM PROGRAM. EACH PROGRAM MODULE HAS ITS OWN COUNTERPART IN THE USERS MANUAL. AN OUTLINE STYLE (WITH SCREEN FACSIMILES) ALLOWS EASY ACCESS TO FULL EXPLANATIONS. THIS SUPPLEMENTS THE EXTENSIVE ON-SCREEN USER HELP. THE LESSON LEARNED FROM INEXPERIENCED-USER FEEDBACK, OBTAINED DURING CLINICAL TRIALS OF MANUAL SOFTWARE, ARE BEING INCORPORATED INTO THE MANUAL ON A CONTINUING BASIS.
DRAFT GOCM USER'S MANUAL NEAR COMPLETION

1. Follows program modular design

2. User friendly
 a. Menus fully documented
 b. Grammatik III evaluation

3. Complete manual testing
 a. Inexperienced subjects used
 b. Lessons learned incorporated
"ACTUALS" EVALUATION

GOCM MODELS KSC AND THE GROUND PROCESSING ACTIVITY IN A REALISTIC MANNER. WE ARE CURRENTLY PERFORMING AN ASSESSMENT OF ACCURACY. THIS ASSESSMENT CONCENTRATES ON TWO COST CATEGORIES: THE PROCESSING SHIFTS/MANPOWER AND COST OF FACILITIES.

THE WORK BREAKDOWN STRUCTURE ACCOUNTING RECORDS FOR JAN 85 - DEC 85 WERE EVALUATED BY FLIGHT ELEMENT AND STATION SET. THIS WILL ALLOW US TO EFFECTIVELY EVALUATE THE GOCM PROCESSING CERS AND FACILITY O&M CERS.

USING HISTORICAL DATA, WE DERIVED A FORM OF LEARNING CURVE FOR THE GROUND PROCESSING ACTIVITY. THIS GROUND PROCESSING CURVE WILL BE USED IN THE GOCM MODEL. FURTHER DETAILS AND BACKUP WILL BE PROVIDED IN THE FINAL REPORT.
"ACTUALS" EVALUATION IN PROGRESS

1. SPC WBS manhours for Jan 85-Dec 85
 a. Flight element
 b. Work station
 collected and sorted by:

2. We can now more accurately
 a. assess GOCM processing CERs
 b. verify facility O&M CERs

3. Learning curve assessment with empirical data now in progress
GROUND OPERATIONS COST MODEL

Next Period's Goals

1. Totally complete a thorough evaluation of the original and enhanced GOCM
2. Deliver a commercial quality software product usable by inexperienced personnel
3. Deliver a complete and understandable User's Manual
4. Deliver a technically accurate and detailed set of program instructions
5. Deliver a practical and useable set of future recommendations
6. Present a Final Oral Report
AGENDA

I. INTRODUCTION

II. STUDY PROGRESS
 A. ACHIEVEMENT SUMMARY
 B. ENGINE PROCESSING STUDY
 C. LRB/ET PROCESSING EVALUATION
 D. SAFETY & ENVIRONMENTAL IMPLICATIONS
 E. GOCM STATUS

III. SUMMARY

Gordon Artley
Pat Scott
Glen Waldrop
Greg DeBlasio
Roger Lee
Stephen Schneider
LIQUID ROCKET BOOSTER INTEGRATION

SECOND PROGRESS REVIEW

OCT 1988

LRB INTEGRATION SCHEDULE - REVISED SEPT. 6, 1988

<table>
<thead>
<tr>
<th>MONTHS - BASIC STUDY</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>J</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILESTONES</td>
<td></td>
</tr>
<tr>
<td>PROJECT</td>
<td></td>
</tr>
<tr>
<td>CONTRACT AWARD</td>
<td></td>
</tr>
<tr>
<td>NOTIFICATION OF CONCURRENT OPTION</td>
<td></td>
</tr>
<tr>
<td>STUDY PLAN REVISION/APPROVALS</td>
<td></td>
</tr>
<tr>
<td>PROJECT REVIEWS</td>
<td></td>
</tr>
<tr>
<td>MONTHLY PROGRESS REPORTS</td>
<td></td>
</tr>
<tr>
<td>WORKING GROUP/BI-MONTHLY MEETINGS</td>
<td></td>
</tr>
<tr>
<td>PROJECT STUDY TASKS</td>
<td>1. BASELINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. LRB REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. LRB SCENARIOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. IMPACT ANALYSIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. DESIGN RECOMMENDATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. LAUNCH SITE PLANS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. FOLLOW-ON RECOMMENDATIONS (OPTIONS/PROPOSALS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. FINAL REPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. GROUND OPERATIONS COST MODEL</td>
<td></td>
</tr>
</tbody>
</table>

% COMPLETE

9/6/88
PRIME LRB IMPACTS

- LRB INTEGRATION DISRUPTIVE TO ONGOING OPERATIONS

- ACHIEVEMENT OF 1990's BASELINE MANIFEST REQUIRES IMPROVED AUTOMATED MANAGEMENT INFORMATION SYSTEMS AND PROCESS CONTROL

- NEW MOBILE LAUNCHER DESIGN

- ENGINE EXHAUST TRENCH/DEFLECTOR TO ACCOMMODATE BOTH LRB AND SRB

- PAD AND HIBAY 3 DESIGN FOR BOTH LRB AND SRB
LIQUID ROCKET BOOSTER INTEGRATION
SECOND PROGRESS REVIEW

LSOC PARTICIPATION IN LRB WORKING GROUP

ISSUES:

- WORK PRIME LRB IMPACTS TO KSC
- REFINEMENT OF THE LRB DESIGN
- DEVELOPMENT OF IGNITION AND LAUNCH SEQUENCE
- APPLICATION OF LRB CONCEPTS TO ALTERNATE VEHICLES
OBJECTIVES FOR FINAL PERIOD

THE FINAL REPORT WILL RESPOND TO ALL THE STUDY OBJECTIVES AND PROVIDE THE FOLLOWING PLANS AND PRODUCTS:

1. LRB GROUND OPERATIONS PLAN
2. LRB PROCESSING TIMELINES
3. LRB FACILITY REQUIREMENTS AND CONCEPTS FOR NEW FACILITIES
4. LRB LAUNCH SUPPORT EQUIPMENT DEFINITION
5. LRB GROUND SUPPORT EQUIPMENT DEFINITION
6. LRB MANPOWER
7. COST ESTIMATES INCLUDING TRANSITION
8. POTENTIAL IMPACTS TO ON-GOING LAUNCH SITE ACTIVITY
9. PRELIMINARY TRANSITION PLAN
10. POTENTIAL ENVIRONMENTAL AND SAFETY IMPLICATIONS
11. PROPELLANT ACQUISITION STORAGE AND HANDLING REQUIREMENTS
12. RECOMMENDED CHANGES TO LRB DESIGN FOR OPERATIONAL EFFICIENCY
13. A DETAILED USERS' MANUAL FOR GOCM OPERATION
14. INSTRUCTIONS FOR UPDATING/MODIFYING THE GOCM PROGRAM
15. ALL SOFTWARE DEVELOPED
16. RECOMMENDATIONS FOR FOLLOW-ON STUDY ACTIVITY
17. VLS ASSESSMENT
18. ENGINE SHOP REQUIREMENTS
19. LRB/ET HORIZONTAL PROCESSING FACILITY

Lockheed
Space Operations Company
FINAL PERIOD PLANS

- PREPARE THE FINAL LRBI ORAL PRESENTATIONS

- PREPARATION OF THE FINAL REPORT
LIQUID ROCKET BOOSTER INTEGRATION STUDY

FINAL ORAL PRESENTATION

KENNEDY SPACE CENTER
NAS10-11475
LIQUID ROCKET BOOSTER INTEGRATION

AGENDA

I. INTRODUCTION

II. LRBI RESULTS
 BASELINE / LAUNCH SITE SCENARIO
 FACILITIES AND GROUND SYSTEMS
 IMPLEMENTATION
 COST

III. SUMMARY

Gordon Artley
Pat Scott
Greg DeBlasio
Gordon Artley
Jerry Lefebvre
Gordon Artley
PURPOSE: ASSESS THE FEASIBILITY OF REPLACING SOLID ROCKET BOOSTERS WITH LIQUID ROCKET BOOSTERS

APPROACH: DEFINE OPTIMUM PUMP-FED AND PRESSURE-FED BOOSTERS AND THEIR IMPLEMENTATION PLANS

GOALS: INCREASE SAFETY AND RELIABILITY WITH MINIMUM IMPACT TO STS INTEGRATION AND PROVIDE INCREASED PERFORMANCE
THE STUDY METHODOLOGY USED TO ACHIEVE THE LRBI OBJECTIVES UTILIZED STUDY TASKS TO CREATE END PRODUCTS.

<table>
<thead>
<tr>
<th>STUDY PRODUCTS</th>
<th>TASKS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LRB GROUND OPS PLAN</td>
<td>LRB BASELINE</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 LRB TIMELINES</td>
<td>LRB REQUIREMENTS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 FACILITY REQMTS/CONCEPT</td>
<td>LRB SCENARIOS</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LAUNCH SUPPORT EQUIPMENT</td>
<td>IMPACTS / ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 GROUND SUPPORT EQUIPMENT</td>
<td>LRB DESIGN RECOMMENDATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 LRB MANPOWER</td>
<td>LAUNCH SITE PLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 COST ESTIMATES & TRANSITIONS</td>
<td>FOLLOW-ON RECOMMENDATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8 IMPACTS TO ON-GOING ACTIVITIES</td>
<td>FINAL REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9 PRELIMINARY TRANSITION PLAN</td>
<td>GROUND OPS COST MODEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10 ENVIRONMENTAL/SAFETY ISSUES</td>
<td></td>
</tr>
<tr>
<td>11 PROPELLANT STORAGE/HANDLING</td>
<td></td>
</tr>
<tr>
<td>12 DESIGN REC/OPER EFFICIENCY</td>
<td></td>
</tr>
<tr>
<td>13 GOCM USER MANUAL</td>
<td></td>
</tr>
<tr>
<td>14 GOCM INSTRUCTIONS</td>
<td></td>
</tr>
<tr>
<td>15 GOCM SOFTWARE</td>
<td></td>
</tr>
<tr>
<td>16 FOLLOW-ON RECOMMENDATIONS</td>
<td></td>
</tr>
<tr>
<td>17 VLS ASSESSMENT FOR LRB</td>
<td></td>
</tr>
<tr>
<td>18 LRB ENGINE PROCESSING REQUIRES</td>
<td></td>
</tr>
<tr>
<td>19 LRB/ET HPF</td>
<td></td>
</tr>
</tbody>
</table>

Lockheed
Space Operations Company
KSC - LRBI STUDY OBJECTIVES

- DEFINE FACILITY IMPACTS
- DEVELOP OPERATIONAL SCENARIOS
- PROVIDE BOOSTER DESIGN RECOMMENDATIONS
- PROMOTE OPERATIONAL EFFICIENT LRB SYSTEMS
- PERFORM COST ASSESSMENT UTILIZING GOCM
- GENERATE PRELIMINARY PROCESSING LSE-GSE REQUIREMENTS
- CREATE LAUNCH SITE SUPPORT PLAN
STUDY APPROACH

The LRB NASA / CONTRACTOR TEAM used the INTERCENTER WORKING GROUP as the CENTRAL COMMUNICATIONS POINT. This allowed the full and effective exchange of LRB REQUIREMENTS / LRBI IMPACTS AND RECOMMENDATIONS.

- PHASE A CONFIGURATION STUDY
- PROPULSION EVALUATION
- AERODYNAMIC SUPPORT
- SYSTEM DESIGN STUDIES

- LAUNCH SITE OPS INTEGRATION
- FACILITY ACTIVATION
- TRANSITION PLANNING

- STS INTEGRATION
- SYSTEM REQUIREMENTS
- ABORT CAPABILITIES
- SYSTEM EVALUATION

GORDON ARTLEY
STEVEN BURNS
DEBORAH CANNADAY
GREGORY DEBLASIO
H. GENE ELLIS (PAN AM)
KEITH HUMPHRYES (PAN AM)
DR. WILLIAM HUSEIONICA (PAN AM)
ROBERT KELLAR (PAN AM)
KENNETH LATHROP (PAN AM)
ROGER LEE
GERALD LEFEBVRE
JANET MOODY
PEERI PAPPAS, P.E.
STEPHEN SCHNEIDER
LELAND P. SCOTT
JAMES TEFFT
GLEN WALDROP (ROCKETDYNE)

LOCKHEED STUDY MANAGER
GROUND OPERATIONS PLAN/FACILITY ACTIVATION
TECHNICAL EDITOR
FACILITY, PROPPELLANTS, GSE/LSE REQUIREMENTS
MANPOWER ANALYSIS
OPERATIONS ANALYSIS/LAUNCH SITE PLAN
PROCESSING ANALYSIS
IMPLEMENTATION PLAN
TRANSITION PLAN/MANPOWER
SAFETY AND ENVIRONMENTAL IMPLICATIONS
COST MODELING/ANALYSIS
GRAPHICS COMPILATION
GROUND OPERATIONS COST MODEL
GROUND OPERATIONS COST MODEL
LOCKHEED DEPUTY STUDY MANAGER
VLS ASSESSMENTS
ENGINE SERVICING/OPERATIONS
LRB INTEGRATION SCHEDULE

MONTHS - BASIC STUDY

MILESTONES

PROJECT
CONTRACT AWARD
NOTIFICATION OF CONCURRENT OPTION
STUDY PLAN REVISION/APPROVALS
PROJECT REVIEWS
MONTHLY PROGRESS REPORTS
WORKING GROUP/BI-MONTHLY MEETINGS

PROJECT STUDY TASKS

1. BASELINE
2. LRB REQUIREMENTS
3. LRB SCENARIOS
4. IMPACT ANALYSIS
5. DESIGN RECOMMENDATIONS
6. LAUNCH SITE PLANS
7. FOLLOW-ON RECOMMENDATIONS (OPTIONS/PROPOSALS)
8. FINAL REPORT
9. GROUND OPERATIONS COST MODEL

Down Select Review
LRB Review
KSC MSFC
Final
KSC MSFC HQ
LRB STUDY FINDINGS

| FACILITY IMPACTS | MODIFY VAB HB-3 AND HB-4, PADS A AND B
PROVIDE 2 NEW MLPs, AND ET/LRB HPF
REACTIVATE MLP #2 PARKSITE |
|------------------|-----------------------------------|
| OPERATIONAL SCENARIOS | ACTIVATION PHASE, SRB/LRB PHASE
SUSTAINED LRB LAUNCH OPERATIONS
PHASE |
| BOOSTER RECOMMENDATIONS | 60% OF RECOMMENDATIONS INCORPORATED |
| EFFICIENT LRB SYSTEMS | ACCOMMODATED THE LRB PROGRAM LIFE
CYCLE COST GOALS |
| COST ASSESSMENT | ENHANCE GOCM AND BOTTOM-UP
ASSESSMENT |
| PROCESSING LSE/GSE REQUIREMENTS | VOLUME III, SECTION 4 AND 5 FINAL REPORT |
| LAUNCH SITE PLAN | IMPLEMENTATION PLAN/MANPOWER/IPOP |
AGENDA

I. INTRODUCTION

II. LRBI RESULTS

BASELINE / LAUNCH SITE SCENARIO

FACILITIES AND GROUND SYSTEMS

IMPLEMENTATION

COST

III. SUMMARY

Gordon Artley
Pat Scott
Greg DeBlasio
Gordon Artley
Jerry Lefebvre
Gordon Artley
• MSFC PHASE A STUDY RESULTS
• SELECTED LRB CONFIGURATIONS
 • MMC
 • GDSS
• LIQUID ENGINE DESIGNS
• LAUNCH SITE LRB DESIGN RECOMMENDATIONS
• GROUND SYSTEM DESIGN ISSUES
MSFC PHASE-A STUDY FINDINGS

- GDSS AND MMC STUDIES HAVE RESULTED IN THESE BASIC FINDINGS.

- A SELECTION OF PRELIMINARY LRB DESIGNS FOR BOTH PUMP AND PRESSURE-FED SYSTEMS HAS BEEN MADE.

- THE KSC "MODERATE" IMPACTS ARE ADDRESSED IN THIS PRESENTATION.
SUMMARY OF MSFC PHASE-A LRB FINDINGS

<table>
<thead>
<tr>
<th>MSFC LRB STUDY FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LRB SHOULD BE EXPENDABLE BOOSTER</td>
</tr>
<tr>
<td>• ALL CONFIGURATIONS ARE 4-ENGINED</td>
</tr>
<tr>
<td>• NEW LOW-COST ENGINE DEVELOPMENT IS REQUIRED</td>
</tr>
<tr>
<td>• LOX/RP-1 IS FAVORED PROPELLANT FOR STS</td>
</tr>
<tr>
<td>• LOX / LH2 PUMP-FED IS PREFERRED FOR ALTERNATE APPLICATIONS</td>
</tr>
<tr>
<td>• BOTH PUMP AND PRESSURE-FED OPTIONS ARE VIABLE (PRESSURE-FED REQUIRES TECHNOLOGY DEVELOPMENTS)</td>
</tr>
<tr>
<td>• ALL SELECTED CONFIGURATIONS CAN BE FLOWN WITHIN CURRENT STS CONSTRAINTS</td>
</tr>
<tr>
<td>• LRB WILL IMPACT KSC "MODERATELY"</td>
</tr>
<tr>
<td>• BOOSTER DIAMETERS (13.9 TO 18.0 FEET)</td>
</tr>
<tr>
<td>• BOOSTER LENGTHS (147 TO 197 FEET)</td>
</tr>
<tr>
<td>• ET / ORBITER INTERFACES MAINTAINED</td>
</tr>
<tr>
<td>• LIFT-OFF UMBILICALS BASELINED</td>
</tr>
</tbody>
</table>
PUMP-FED CONFIGURATION IS SHOWN HERE. DUAL 17-INCH FEED LINES ROUTE THE LOX AROUND THE RP-TANK. FORWARD THRUST ATTACH POINT IS LOCATED IN LRB FORWARD SKIRT AREA. AFT ATTACH IS IN MID-TANK AREA WHERE LOWER TRANSVERSE LOADS ARE DISTRIBUTED THROUGH A DEEP RING STIFFENER WITHIN THE TANK. DIAMETER AND LENGTH DIMENSIONS ARE CLOSEST TO SRB.
MMC PUMP-FED LO2/RP-1 CONFIGURATION

VEHICLE DIMENSIONS
0 LENGTH (IN) 1,810.7
0 DIAMETER (OD-IN) 183.0
0 ENGINE EXIT AREA (IN²) 7,359

PROPELLANT VOLUMES (FT³)
0 LO2 10,769
0 RP-1 5,798
0 FEEDLINES 245

WEIGHT (LB) INCLUDES 10% CONTINGENCY
0 STRUCTURE 77,840
0 PROPULSION SYSTEM 34,820
0 OTHER SUBSYSTEMS 11,060

DRI Y WEIGHT 123,720

0 USABLE IMPULSE PROPELLANT
0 LO2 701,302
0 RP-1 268,698

0 RESIDUALS GASES AND LIQUIDS 5,335

PROPELLANTS/GASES 975,335

GLOW (GROSS LIFTOFF WEIGHT) 1,099,055

[10% < SRB]
LRB SELECTED CONFIGURATIONS

(MARTIN MARIETTA)

0 PRESSURE-FED CONFIGURATION IS SIGNIFICANTLY LARGER. TANK WALL THICKNESSES ARE APPROXIMATELY 1-INCH. ENGINE CHAMBER PRESSURES REQUIRE HIGH TANK PRESSURES AND A PRESSURIZATION SYSTEM OF 3000 - 4000 psi. HIGHER PROPELLANT LOADING INCREASES GROSS LIFT OFF WEIGHT TO 1.3 M POUNDS WHICH IS HEAVIER THAN CURRENT SPB. HIGHER ENGINE THRUST IS REQUIRED (APPROXIMATELY 750K EACH.)
MMC PRESSURE-FED LO2/RP-1 CONFIGURATION

VEHICLE DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (in)</td>
<td>1,952.0</td>
</tr>
<tr>
<td>Diameter (OD-in)</td>
<td>194.0</td>
</tr>
<tr>
<td>Engine Exit Area (in²)</td>
<td>9,365</td>
</tr>
</tbody>
</table>

PROPELLANT VOLUMES (ft³)

<table>
<thead>
<tr>
<th>Propellant</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO2</td>
<td>12,012</td>
</tr>
<tr>
<td>RP-1</td>
<td>6,328</td>
</tr>
<tr>
<td>Feedlines</td>
<td>214</td>
</tr>
</tbody>
</table>

WEIGHT (LB) INCLUDES 10% CONTINGENCY

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>166,760</td>
</tr>
<tr>
<td>Propulsion System</td>
<td>44,030</td>
</tr>
<tr>
<td>Other Subsystems</td>
<td>10,730</td>
</tr>
</tbody>
</table>

DRY WEIGHT

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>221,520</td>
</tr>
</tbody>
</table>

USABLE IMPULSE PROPELLANT

<table>
<thead>
<tr>
<th>Propellant</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO2</td>
<td>782,084</td>
</tr>
<tr>
<td>RP-1</td>
<td>292,916</td>
</tr>
</tbody>
</table>

RESIDUALS GASES AND LIQUIDS

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium-Pressure System</td>
<td>11,790</td>
</tr>
<tr>
<td>Propellant-Pressure System</td>
<td>22,560</td>
</tr>
</tbody>
</table>

PROPELLANTS/SYSTEMS

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,115,260</td>
</tr>
</tbody>
</table>

GROSS LIFTOFF WEIGHT

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,336,780</td>
</tr>
</tbody>
</table>
MMC PRESSURE-FEI LO2 / RP-1 CONFIGURATION

- Booster Separation Motors
- Helium Pressurant Tank
- Thrust Fittings and Longeron
- ET/LRB Fwd Attach
- Access Door
- Forward Tank-LOX
- Access Door
- Aft Tank-RP-1
- Access Door
- Booster Separation Motors
- LRB Aft Attach
- 194.0 O/D
- 310.0 Dia
LRB SELECTED CONFIGURATIONS

(GENERAL DYNAMICS)

- Pump-fed and pressure-fed LOX/RP1 configurations are sized as shown. Pump-fed sizing is closest to SRB dimensions. Pressure-fed is the largest and uses centered LOX feed line through lower fuel tank. Length of pressure-fed is extreme.

- The LOX/LH₂ configuration has been selected and is the target of some resizing studies. Shortened length allows clearance for ET GOX vent arm at pad, while resulting diameter grows to near 18 ft.

- Studies associated with LOX/CH₄ split expander have shown no significant advantages and this configuration has been deleted. However, the engine design is being evaluated as an option for the LOX/LH₂ configuration.
GDSS SELECTED LRB CONFIGURATIONS

GENERAL DYNAMICS

Space Systems Division

DATA (ONE BOOSTER)

<table>
<thead>
<tr>
<th></th>
<th>SOLID ROCKET BOOSTER</th>
<th>LO2/RP-1 PUMP-FED</th>
<th>LO2/LH2 * PUMP-FED</th>
<th>LO2/RP-1 PRESS-FED</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRY WEIGHT (K lbs)</td>
<td>146</td>
<td>104</td>
<td>131</td>
<td>216</td>
</tr>
<tr>
<td>STRUCTURE (K lbs)</td>
<td>-</td>
<td>46.7</td>
<td>75.6</td>
<td>127</td>
</tr>
<tr>
<td>LRB GLOW (K lbs)</td>
<td>1,250</td>
<td>1,032</td>
<td>775</td>
<td>1,602</td>
</tr>
<tr>
<td>THRUST PER ENGINE (sea level)(K lbs)(nominal)</td>
<td>2,912</td>
<td>546</td>
<td>481</td>
<td>850</td>
</tr>
<tr>
<td>INITIAL T/W</td>
<td>1.5</td>
<td>1.37</td>
<td>1.34</td>
<td>1.54</td>
</tr>
<tr>
<td>BECO (sec)</td>
<td>120</td>
<td>123</td>
<td>126</td>
<td>119</td>
</tr>
</tbody>
</table>

* ALTERNATE: SPLIT EXPANDER CYCLE

81012-02S-V/G

A-8

Lockheed

Space Operations Company
DOWNSELECT RESULTS

CRITERIA

SAFETY ENVIRONMENT RELIABILITY SIMPLICITY INTEGRATION KSC

DISCRIMINATORS

STANDARD PERFORMANCE COST RISK

Alternates

APPLICATIONS & GROWTH

CONTINUE TO REFINE
- SIZE
- COST

ALS

COMMON
- FUEL
- ENGINES
- TEST & DEVELOPMENT

RP-1 PUMP-FED

LO2/LH2 PUMP-FED

DELETED

LO2/CH4 SPLIT EXPANDER

PRESSURE-FED

LOWEST IMPACT TO KSC

LOW DEVELOPMENT RISK

NO COMMON FUEL, ENGINE TO ALS

LOW DEVELOPMENT RISK

POTENTIAL COST SPLIT WITH ALS

STANDARD "C"

SPLIT EXPANDER

LESS FAMILIAR WITH FUEL

SAFETY CONCERNS

NO SIGNIFICANT COST PERFORMANCE BENEFITS DEVELOPMENT RISK

FEATURES
- LOW COST
- ALS OPTION

LO2/LH2 ENGINE OPTION

CONTINUE OPTIMIZATION
- SYSTEM
- COST
- TEST-BED ACTIVITY
LRB SELECTED CONFIGURATIONS

(GENERAL DYNAMICS)

LOX/LH₂ CONFIGURATION INCORPORATES ON-BOARD 4-INCH GH₂ VENT LINE TO ROUTE VENTED GASES THROUGH LIFT-OFF UMBILICAL, AVOIDING THE NEED FOR NEW PAD VENT ARM.
LRB PROPOSED ENGINE POSITIONS

0 ALL GD CONFIGURATIONS (EXCEPT PRESSURE-FED) HAVE ENGINES POSITIONED AT 45-DEGREES TO THE MAJOR VEHICLE AXES ("X" PATTERN). THIS FACILITATES GIMBAL ACTUATORS ALONG THE PRIME PITCH AND YAW VEHICLE AXES, BUT REQUIRES A BRIDGE ACROSS THE BOOSTER FLAME HOLE TO SUPPORT THE NORTH HOLDDOWN. THIS CONFIGURATION CONCENTRATES COMPLETE PRE-RELEASE TWANG LOADS ON ONLY TWO PAIRS OF HOLDDOWN POSTS.

0 ALL MMC CONFIGURATIONS HAVE ENGINES POSITIONED ALONG OR PARALLEL TO THE MAJOR VEHICLE AXES ("+" PATTERN). THIS FEATURE PERMITS THE USE OF THE SAME HAUNCH/HOLDDOWN LOCATIONS CURRENTLY IN USE ALONG THE SIDES OF THE FLAME HOLES, BUT MOVES OUTERMOST ENGINE OUTSIDE THE EDGE OF FLAME TRENCH - COMPLICATING FLAME SIDE DEFLECTOR DESIGN.

0 GD PRESSURE-FED LOX/RP-1 HAS ENGINES POSITIONED IN THE "+" PATTERN (SAME AS MMC CONFIGURATIONS).

0 ENGINE POSITION TRADE STUDIES SHOULD BE ANALYZED IN MORE DETAIL TO ESTABLISH BEST DESIGN APPROACH.
• PUMP-FED

• PRESSURE-FED

• SPLIT EXPANDER

• LRB ENGINE PROCESSING STUDY
 BY ROCKETDYNE
 - ENGINE SHOP/GSE/HANDLING
 - PRE-LAUNCH AND LAUNCH
 PROCEDURES, MANPOWER
 AND SCHEDULE
LRB LOX/RP-1 PUMP-FED ENGINE

TOP VIEW

LOX Ø12.0
TURBPUMP

119.26 IN.

178.88 IN.

42.10 IN.

43.10 IN.

163.23 IN.

108.00 IN.
LRB PUMP-FED ENGINE
LO2/RP-1

<table>
<thead>
<tr>
<th></th>
<th>NPL</th>
<th>EPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust, S.L. kIbs</td>
<td>513</td>
<td>685</td>
</tr>
<tr>
<td>Thrust, Vac. kIbs</td>
<td>623</td>
<td>788</td>
</tr>
<tr>
<td>ISP, S.L. sec</td>
<td>265</td>
<td>277</td>
</tr>
<tr>
<td>ISP, Vac. sec</td>
<td>322</td>
<td>318</td>
</tr>
<tr>
<td>Mixture Ratio</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Total Flow Rate, lb/sec</td>
<td>1933</td>
<td>2473</td>
</tr>
<tr>
<td>Chamber Pressure, Psia</td>
<td>1033</td>
<td>1300</td>
</tr>
<tr>
<td>Exit Pressure, Psia</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Expansion Ratio</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>Nozzle Type</td>
<td>Carbon-Carbon</td>
<td>6807</td>
</tr>
<tr>
<td>Weight, Dry, lbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propellants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimbal Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimbal Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle Range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

81025-02AG-V/G
LRF PRESSURE: HD LOX / RP-1 ENGINE

MAIN OXIDIZER VALVE
SEGMENTED INJECTOR

MAIN FUEL VALVE

OXIDIZER

FUEL

GIMBAL

Rockwell International

Lockheed
Space Operations Company
<table>
<thead>
<tr>
<th>NPL</th>
<th>EPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust, S.L. kips</td>
<td>Thrust, Vac kips</td>
</tr>
<tr>
<td>562</td>
<td>750</td>
</tr>
<tr>
<td>700</td>
<td>887</td>
</tr>
<tr>
<td>257</td>
<td>321</td>
</tr>
<tr>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>2165</td>
<td>2766</td>
</tr>
<tr>
<td>630</td>
<td>800</td>
</tr>
<tr>
<td>5.5</td>
<td>6.9</td>
</tr>
<tr>
<td>15.4</td>
<td>Ablative</td>
</tr>
<tr>
<td>4500</td>
<td>LO2/RP1</td>
</tr>
<tr>
<td>±6°</td>
<td>Head End</td>
</tr>
<tr>
<td>65% - 100%</td>
<td>Flex Seal (Optional)</td>
</tr>
</tbody>
</table>

Throttle Range

Diagram of LAB PRESSURE FED ENGINE LO2/RP-1:
- Oxidizer Valve
- Fuel Valve
- Combustion Chamber
- Flex Seal
- Nozzle

Diagram dimensions: 109.2 - 110.7
LO2/LH2 PUMP-FED ENGINES FOR LRB

BASELINE
- Engine Cycle
- Thrust, vac EPL
- Weight
- Isp, s/vac
- Mixture Ratio
- Area Ratio
- Pc, EPL
- Throttling Capability
- Engine Control
- Min Inlet Pressure
- POGO Suppression
- Bleed Systems
- Boost Pumps
- Engine Reliability

<table>
<thead>
<tr>
<th>LO2/LH2 Gas Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>612 kib</td>
</tr>
<tr>
<td>6,737 lb</td>
</tr>
<tr>
<td>374.1/426.3 sec</td>
</tr>
<tr>
<td>6.0</td>
</tr>
<tr>
<td>40.1</td>
</tr>
<tr>
<td>2538 psia</td>
</tr>
<tr>
<td>Continuous; 110% to 65%</td>
</tr>
<tr>
<td>Closed Loop</td>
</tr>
<tr>
<td>LO2 - 65; LH2 - 25 psia</td>
</tr>
<tr>
<td>He Accumulator Required</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>0.99 @ 90% Confidence</td>
</tr>
<tr>
<td>Low; Cost Verification is needed</td>
</tr>
</tbody>
</table>

ALTERNATE
- LO2/LH2 Split Expander
- 629 kib
- 5,089 lb
- 352.7/418.5 sec
- 6.0
- 16.2
- 840 psia
- Continuous; 100% to 65%
- Closed Loop
- LO2 - 47; LH2 - 25 psia
- He Accumulator Required
- None
| 0.99 @ 90% Confidence |
| Technology & Low Cost Verification is needed |
• LAUNCH SITE LRB DESIGN RECOMMENDATIONS
• OPERATIONAL EFFICIENCIES
• LAUNCH SITE CONSTRAINTS
• LRB DESIGN REQUIREMENTS ASSESSMENT
• GROUND SYSTEMS IMPLICATIONS
A representative list of recommendations has been prepared which reflect launch site constraints and improve operational efficiency. Many, but not all, of these have been incorporated into the phase-A LRB designs.
<table>
<thead>
<tr>
<th>INCORPORATED DESIGN FEATURE</th>
<th>DESIGN RECOMMENDATIONS</th>
<th>INCORPORATED DESIGN FEATURE</th>
<th>DESIGN RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>• NO HYDRAULICS/NO HYDRAZINE</td>
<td>✔</td>
<td>• MAKE BOOSTER AUTONOMOUS WITH MINIMUM ORBITER INTERFACES</td>
</tr>
<tr>
<td>✔</td>
<td>• USE LIFT-OFF UMBILICALS - NO SWING ARMS OR LUT</td>
<td>?</td>
<td>• USE SEPARATE BOOSTER DOWNLINK (RF)</td>
</tr>
<tr>
<td>✔/2</td>
<td>• MAXIMUM LRB DIAMETER LESS THAN 16 FEET</td>
<td>✔</td>
<td>• FACILITATE SEPARATE LRB STANDALONE TEST AND CHECKOUT</td>
</tr>
<tr>
<td>?</td>
<td>• LOCATE AVIONICS LRU'S IN AFT SKIRT AREA</td>
<td>✔</td>
<td>• ON BOARD LOX VENTS/NO BEANIE CAP</td>
</tr>
<tr>
<td>✔</td>
<td>• FACILITATE ENGINE R/R IN VERTICAL ON-MLP</td>
<td>(ALT)</td>
<td>• HARD MOUNTED ENGINES (NOZZLE GIMBALS FOR TVC)</td>
</tr>
<tr>
<td>✔</td>
<td>• USE EXPENDABLE DESIGN</td>
<td>✔</td>
<td>• MINIMIZE ET MODS</td>
</tr>
<tr>
<td>✔</td>
<td>• LOX/LH2 PROPELLANT HAS MINIMUM PAD IMPACTS</td>
<td>N.A.</td>
<td>• ELIMINATE ENGINE PURGES, BLEEDS AND SPECIAL PREPS</td>
</tr>
<tr>
<td>?</td>
<td>• NO FLAME TRENCH (CONCRETE) MODS AT PAD</td>
<td>N.A.</td>
<td>• CONSIDER EXTERNAL POD FOR AVIONICS AND BATTERIES TO FACILITATE ACCESS AND EASE OF SERVICE</td>
</tr>
<tr>
<td>✔</td>
<td>• FACILITATE VERTICAL AND HORIZONTAL CHECKOUT</td>
<td>✔</td>
<td>• AVOID ELEPHANT TRUNKS (TRAPS) IN PROPELLANT LINES THAT REQUIRE SPECIAL ATTENTION</td>
</tr>
</tbody>
</table>
LRB DESIGN REQUIREMENTS ASSESSMENT

Our study team reviewed the preliminary LRB design requirements published in GDSS final report. The total range of requirements was represented from top level guidelines to 4th level system requirements.

About 70% (33 out of 48) have ground system design implications.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>TOTAL</th>
<th>NUMBER WITH GROUND SYSTEMS IMPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. GUIDELINES GOALS, ASSUMPTIONS</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>B. LEVEL I REQUIREMENTS (SPACE TRANSPORTATION SYSTEM)</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>C. LEVEL II REQUIREMENTS (SPACE SHUTTLE VEHICLE)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>D. LEVEL III REQUIREMENTS (LIQUID ROCKET BOOSTER)</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>E. LEVEL IV REQUIREMENTS (AVIONICS / FLT CONTROLS / SEPARATION SYSTEMS)</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>48</td>
<td>33</td>
</tr>
</tbody>
</table>
DESIGN ISSUES

LRB DESIGN FEATURE → AFFECTED GROUND SYSTEM → DESIGN ISSUE
SYSTEMS/DESIGN ISSUES

<table>
<thead>
<tr>
<th>LRB DESIGN FEATURE</th>
<th>AFFECTED GROUND SYSTEM</th>
<th>DESIGN ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DIAMETER (13.9 TO 18.0 FT)</td>
<td>● MLP FLAME HOLES</td>
<td>● SIZE TO ACCOMMODATE (NEW MLP)</td>
</tr>
<tr>
<td></td>
<td>● VAB PLATFORMS</td>
<td>● VEHICLE CLEARANCES</td>
</tr>
<tr>
<td></td>
<td>● PAD FLAME TRENCH</td>
<td>● CONCRETE MODS & C/T TRACK WIDTH</td>
</tr>
<tr>
<td></td>
<td>● FLAME DEFLECTORS</td>
<td>● DESIGN ANGLES / PLUME IMPINGEMENT</td>
</tr>
<tr>
<td></td>
<td>● ET GH2 VENT</td>
<td>● VEHICLE LIFT-OFF CLEARANCE</td>
</tr>
<tr>
<td>2. LENGTH (147 TO 197 FT)</td>
<td>● VAB PLATFORMS</td>
<td>● ACCESS AT HIGHER LEVELS</td>
</tr>
<tr>
<td></td>
<td>● GOX VENT ARM</td>
<td>● 170 FT LENGTH LIMIT FOR CLEARANCE</td>
</tr>
<tr>
<td></td>
<td>● TRANSPORTER/BARGE AND PROCESS FACILITY</td>
<td>● SIZE TO ACCOMMODATE</td>
</tr>
<tr>
<td></td>
<td>● VAB DIAPHRAGM</td>
<td>● LIFT OVER HEIGHT LIMITS BOOSTER LENGTH TO 200 FT</td>
</tr>
<tr>
<td></td>
<td>● PAD ACCESS / FWD</td>
<td>● LENGTHS ABOVE 150 FT REQUIRE SIGNIFICANT NEW CONSTRUCTION</td>
</tr>
<tr>
<td>LRB DESIGN FEATURE</td>
<td>AFFECTED GROUND SYSTEM</td>
<td>DESIGN ISSUE</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3. ENGINE POSITIONS ('*' OR 'X' PATTERNS)</td>
<td>● MLP HOLDDOWN SYSTEM AND FLAME HOLES ○ PAD FLAME TRENCH AND DEFLECTORS</td>
<td>● HOLDDOWNS BETWEEN ENGINES FORCE FLAME HOLE BRIDGE FOR "X" PATTERN AND CONCENTRATES TWANG LOADS ON TWO HD POSTS ○ "*' PATTERN FORCES OUTBOARD ENGINES OUT OF FLAME TRENCH</td>
</tr>
<tr>
<td>4. BOOSTER BENDING STIFFNESS (FIRST MODE FREQUENCY) IGNITION SEQUENCE, LAUNCH LOADS</td>
<td>● ALL GROUND INTERFACES AT PAD ○ T-0 UMBILICALS</td>
<td>● STATIC / DYNAMIC EXCURSIONS UNDER ALL PRE-LAUNCH AND SHUTDOWN LOAD CONDITIONS / TRACKING REQMTS ○ TWANG DEFLECTIONS AT T-0, UMBILICAL TRACKING ABILITY, LRB / SSME IGNITION SEQUENCE ○ MLP STIFFNESS AND HD DESIGN</td>
</tr>
<tr>
<td>5. CRYO VENTING</td>
<td>● SWING ARMS FOR VENTS TO PREVENT ICE FORMATION</td>
<td>● ON-BOARD NON-ICING GOX VENTS VS NEW SWING ARMS, GH2 VENTS ROUTED TO LIFT-OFF UMBILICALS VS NEW SWING ARMS</td>
</tr>
<tr>
<td>6. LRB ENGINE THRUST BUILDUP, POGO SUPPRESSION AND LAUNCH LOADS</td>
<td>● HOLDDOWN SYSTEM, SOFT RELEASE ○ SIDE AND MAIN DEFLECTORS</td>
<td>● THRUST BUILDUP TIME AND HEALTH CHECKS REQUIRE NEW HD SYSTEM DESIGN TO REACT FULL VEHICLE THRUST PRIOR TO SOFT RELEASE / DEFLECTOR REDESIGN REQUIRED</td>
</tr>
<tr>
<td>LRB DESIGN FEATURE</td>
<td>AFFECTED GROUND SYSTEM</td>
<td>DESIGN ISSUE</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7. LRB/STS THRUST-TO-WEIGHT RATIO, ENGINE-TVC CONTROL</td>
<td>● LIFT-OFF CLEARANCES DRIFT AND PAD STRUCTURES</td>
<td>● VEHICLE SIZE AND DRIFT UNDER NOMINAL AND ENGINE-OUT CONDITIONS, PAD UMBILICALS AND HARD STRUCTURE DESIGN CLEARANCES</td>
</tr>
<tr>
<td>8. LRB INSTRUMENTATION FLIGHT AND LPS SOFTWARE INTERFACES</td>
<td>● LPS, CHECKOUT AND TERMINAL LAUNCH COUNT MODES (GROUND SOFTWARE DESIGN)</td>
<td>● GROUND S/W CHECKOUT, STANDALONE AND INTEGRATED. LPS PROPELLANT LOADING, INSTRUMENTATION AND LAUNCH OPS.</td>
</tr>
<tr>
<td>9. LRB/ET AND ORBITER INTERFACES</td>
<td>● INTERFACE VERIFICATION PROCEDURES (MECHANICAL AND ELECTRICAL)</td>
<td>● COMMON ET AND ORBITER INTERFACE DESIGN REQUIRED TO AVOID NON-STANDARD PROCEDURES AND STS MODIFICATIONS</td>
</tr>
<tr>
<td>10. PROPELLANT LOADING</td>
<td>● GROUND UMBILICALS AND MLP/PAD PROPELLANT SYSTEMS</td>
<td>● LIFT-OFF UMBILICALS VS NEW SWING ARMS, LUT APPROACH</td>
</tr>
<tr>
<td>LRB DESIGN FEATURE</td>
<td>AFFECTED GROUND SYSTEM</td>
<td>DESIGN ISSUE</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>11. LRB ENGINE TVC DESIGN</td>
<td>• CHECKOUT GSE AND PROCEDURES</td>
<td>• ELECTRO-MECHANICAL CHECKOUT AND GSE VS HYDRAULICS AND HPU HYDRAZINE PROCEDURES / GSE, GROUND ELECTRICAL PROVISIONS FOR TVC CHECKOUT</td>
</tr>
<tr>
<td>12. LRB ENGINE DESIGN APPROACH</td>
<td>• CHECKOUT GSE AND PROCEDURES</td>
<td>• ENGINE PURGES, BLEEDS AND SPECIAL CONDITIONING VS SIMPLIFIED, "ROBUST" ENGINE DESIGN W/AUTOMATED DIAGNOSTICS</td>
</tr>
<tr>
<td>13. ENGINE LRU DESIGN</td>
<td>• GROUND HANDLING GSE AND PROCEDURES</td>
<td>• MODULARIZED ENGINE-LEVEL LRU PLUS SHOP SERVICE VS INVOLVED LRU R/R IN-PLACE ON VEHICLE</td>
</tr>
<tr>
<td>14. LRB DESIGN FOR HORIZONTAL PROCESSING</td>
<td>• GROUND HANDLING, CRANE LIFTING OPERATIONS/PROCEDURES</td>
<td>• VERTICAL CHECKOUT AND LIFTING OPERATIONS VS HORIZONTAL SERVICING ON TRANSPORTER AND SINGLE ROTATION AND LIFT TO MATE MLP</td>
</tr>
<tr>
<td>15. LRB PRESSURIZED TANKS</td>
<td>• GSE FOR PRESSURIZING ON-BOARD SYSTEMS, AND LEAK CHECK PROCEDURES AND GSE FOR CHECKOUT</td>
<td>• NEW GROUND PRESSURIZATION SYSTEMS AND PROCEDURES VS TURBOPUMP CHECKOUTS FOR PUMP-FED SYSTEMS</td>
</tr>
</tbody>
</table>
LAUNCH SITE SCENARIO

- LRB PROCESSING REQUIREMENTS
- KSC / STS BASELINE MODEL
 - SRB PROCESSING
- LRB SCENARIO
 - PROCESSING TIMELINES
 - STANDALONE / INTEGRATED TASKS
- SRB / LRB COMPARISON
- LRB LAUNCH SITE PLAN
- KEY LRBI STUDY FINDINGS
LRB PROCESSING REQUIREMENTS CHECKLIST

- Our study team drafted a "KSC REQUIREMENTS CHECKLIST" early in the study and circulated it to both GDSS and MMC study teams. The checklist was organized into a questionnaire format dealing with these major areas of processing activities and systems.

- Responses were received and coordinated with both contractors and are included in our final report.

- The requirements checklist promoted discussions and design recommendations for LRB launch site operational efficiencies.
LRB PROCESSING REQUIREMENTS CHECKLIST

<table>
<thead>
<tr>
<th>PROPERTIES</th>
<th>GENERAL REQUIREMENTS</th>
<th>SYSTEM-SPECIFIC REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BOOSTER PROPERTIES</td>
<td>• CONFIGURATION DATA</td>
<td>• RECEIVING / HANDLING</td>
</tr>
<tr>
<td>- PUMP-FED</td>
<td>• EQUIPMENT DESCRIPTIONS</td>
<td>• ASSEMBLY / PROCESSING</td>
</tr>
<tr>
<td>- PRESSURE-FED</td>
<td>• OPERATING CRITERIA</td>
<td>• INTEGRATION</td>
</tr>
<tr>
<td>- SPLIT EXPANDER</td>
<td>• INTERFACE REQUIREMENTS</td>
<td>• SAFETY / ENVIRONMENTAL</td>
</tr>
<tr>
<td>• PROPELLANTS</td>
<td>• LAUNCH SITE CONSTRAINTS</td>
<td>• SPARES / LOGISTICS</td>
</tr>
<tr>
<td>- LOX / RP-1</td>
<td>• HANDLING REQUIREMENTS</td>
<td>• TEST / CHECKOUT</td>
</tr>
<tr>
<td>- LOX / LH2</td>
<td></td>
<td>• PRE-LAUNCH</td>
</tr>
</tbody>
</table>

Lockheed
Space Operations Company

B-2
MULTI-FLOW PROCESSING TIMELINES HAVE BEEN DEVELOPED FOR STS LAUNCHES 1991 THRU 2006 (ARTEMIS MODEL)

THIS SCHEDULE REPRESENTS THE STS TRANSITION FROM NEAR TERM MANIFEST (MAR 88) TO LONG RANGE LAUNCH RATE OF 14/15 PER YEAR

FACILITY UTILIZATION DIAGRAMS PRESENT WINDOWS FOR SCHEDULING LRB FACILITY MODS/ACTIVATION ACTIVITIES

PLANNING LAYOUTS FOR ACTIVATION/TRANSITION/OPERATIONS PHASES WERE PREPARED TO ACHIEVE LRB IMPLEMENTATION

MINIMUM IMPACTS TO ON-GOING LAUNCH OPERATIONS CAN BE ACHIEVED USING THIS PLANNING TOOL THROUGHOUT THE INTEGRATION ACTIVITIES, ACCOMMODATING SCHEDULE AND MANIFEST CHANGES AS THEY (MOST ASSUREDLY WILL) OCCUR.
1994 SRB PROCESSING BASELINE SUMMARY

18 JANUARY 1988

97 DAY FLOW

DAYS

△ AFT SKTS AT RPSF

17 BOOSTER BUILDUP - RPSF

12 6 INSPECTION/OFFLOAD - RPSF

21 STACK - VAB

△ FWD SKT AISLE XFER

11 ET MATE & C/O - VAB

5 INTEGRATED OPERATIONS - VAB

15-18 PAD OPERATIONS

△ PARACHUTES TO PRF

7 RETRIEVAL OPERATIONS

△ DISASSEMBLY OPERATIONS 10

FWD SKT XFER TO USBI REFURB

AFT SKT XFER TO USBI REFURB

△ START SEG XFER

△ SPENT SEG ONLOAD TO RAILCARS 10

NOTE: ● REMANUFACTURING AT UTAH NOT SHOWN

● USBI REFURB ARF AND PARACHUTE REPACK NOT SHOWN

SRB PRE-LAUNCH

TIMELINE = 78 DAYS

Lockheed

Space Operations Company
LRB PROCESSING SUMMARY

THE LRB PROCESSING SCENARIO BEGINS AT KSC WITH BARGE DELIVERY, AND HORIZONTAL TRANSPORTER TOW TO THE NEW LRB PROCESSING FACILITY. HERE ALL STANDALONE BOOSTER CHECKOUT AND TESTING IS CONDUCTED. THE ADJACENT ET HORIZONTAL PROCESSING FACILITY RELOCATES THE ET CHECKOUT AND STORAGE ACTIVITY SO THAT HB4 CAN BE USED.

THE CONVERSION OF VAB/HB4 TO A FULL INTEGRATION CELL PERMITS LRB TRANSITION WITHOUT IMPACT TO ON-GOING SHUTTLE LAUNCHES. A NEW MLP CUSTOM-BUILT FOR LRB WILL BE CONSTRUCTED TO SUPPORT THE LRB IOC, AND A SECOND NEW MLP IS NOW SCHEDULED TO SUPPORT THE LRB TRANSITION LAUNCH RATE BUILD-UP. THIS APPROACH REPLACES THE EARLIER PLANNED MODIFICATION OF EXISTING MLP's.

THE LAUNCH CONTROL CENTER FIRING ROOMS WILL BE MODIFIED TO SUPPORT ANY NEW CONSOLES AND GROUND SOFTWARE REQUIRED FOR LRB PROCESSING AND LAUNCH OPERATIONS. LETF SUPPORT FOR THE NEW MLP/FAP LSE QUALIFICATION/CERTIFICATION TESTING IS PLANNED.

SECOND NEW MLP DUE TO:

1) DIFFICULTY OF MOD AND 2) IMPACT TO SRB LAUNCHES

NEW MORE EXTENSIVE PAD MODS:

1) DEFLECTOR REDESIGN IN FLAME TRENCH
2) SIDE DEFLECTOR (PROXIMITY REQUIREMENTS)
3) POSSIBLE FLAME TRENCH MODS
PRELIMINARY L1B SCENARIO

OPF/ORBITER PROCESSING UNCHANGED

NEW MLP (2)

NEW INTEG. CELL

VAB MODS

LETF SUPPORT

BARGE DELIVERY

NEW ET/LRB HORIZONTAL PROCESSING FACILITY

PAD MODS

LCC MODS

REQUIRED NEW FACILITIES
A detailed processing assessment of the LRB requirements was performed which resulted in the development of a 130-task LRB flow schedule. This schedule includes standalone checkout and testing, MLP Mate and ET/LRB Mate/Closure, orbiter integration/test and pad operations.

A total LRB flow time of 58 days is presented here as the "generic" process flow time. The schedule is anticipated to be achieved on the 4th LRB launch processing flow known as the initial operational capability (IOC).

This model is networked in Artemis where hands-on manpower and shift durations for each task are displayed. Integration with major STS activities and milestones has been achieved.
GENERIC LRB PROCESS FLOW

▲ LRB BARGE ON DOCK KSC

18

- OFFLOAD/TRANS TO HPF
- REC/INSPECTION
- SYS FUNCTION CHECKOUTS
- ENGINE/PROP SYS LEAK & FUNCTIONAL

▲ LRB MOVE TO VAB

4 MLP MATE & CLOSEOUTS (7/3)

▲ ET MATE

11 ET/LRB CLOSEOUTS (7/3)

▲ 5 ORB MATE/INTEG SYS TEST (7/3)

SSV PREPS/TRANSFER TO PAD ▲

20

- SSV STD OPS
- PAYLOAD OPS
- CDDT
- LRB ENG SYS READINESS
- LRB FUEL (RP) TANKING
- ORB HYPER LOAD/CLOSEOUT
- LAUNCH COUNTDOWN (INCLUDING CRYO LOAD)

LRB FLOW = 58 DAYS
LRB/SRB FACILITY PLANNING COMPARISON

Graphically noted here are the flow time differences for LRB (shown solid black) on the backdrop of planned SRB flow processing timelines in the mid-to-late 90’s.

All in-line ground processing to support an example flow is presented. Note major facilities and elements. The LRB "Deltas" are shown in the boxes for the four major-affected functions.

The Artemis Multiflow processing model contains 224 missions of this detail over the period FY91 thru FY06. Insertion of the 122-mission LRB life cycle profile into this model will facilitate effective planning for KSC integration.
GENERIC LRB/SRB PROCESS FLOW COMPARISON

0 The LRB flow from receipt of hardware to launch is here compared with the late 90’s forecasted SRB timeline.

0 A total of 20 days is saved in the LRB activities due to the lengthy stack time for SRB. This stack time estimate varies from 21 to 24 days. STS-26R stack time was about 65 days.

0 This improved flow time for LRB results in lower demand on launch site resources for the same sustained STS flight rate.
GENERIC LRB/SRB PROCESS FLOW COMPARISON

LRB BARGE ON DOCK KSC

1. **18** Offload/LRB Stand Alone Checkout

LRB MOVE TO VAB

4. **MLP MATE**

11. **ET MATE AND C-O**

5. **STS Integ Test**

STS MOVE TO PAD

LAUNCH

PAD OPS

LRB FLOW = 58 DAYS

SRB AFT SKIRTS AT RPSF

17. **AFT Booster Buildup**

11. 6 **Inspection/Segment Offload**

21. **Booster Stacking**

11. **ET MATE AND C-O**

5. **STS Integ Test**

STS MOVE TO PAD

LAUNCH

PAD OPS

SRB FLOW = 78 DAYS

NOTE: SRB RETRIEVAL, DISASSEMBLY, REFURBISHMENT AND REMANUFACTURING ARE NOT SHOWN.
SRB/LRB FLOW COMPARISON

SUMMARIZED HERE ARE THE PROJECTED IMPROVEMENTS IN FLOW TIME FOR LRB VERSUS THE "PLANNED" SRB PROCESSING TIMES FORECAST FOR THE LATE 90's.

THESE IMPROVEMENTS REPRESENT A SIGNIFICANT REDUCTION IN DEMAND ON LAUNCH SITE RESOURCES REQUIRED TO SUPPORT A 14 TO 15 ANNUAL LAUNCH RATE - AND THEY PROVIDE THE FLEXIBILITY TO ACCOMMODATE ALTERNATE SHUTTLE "C" OR ALS LAUNCH CAPABILITIES.
<table>
<thead>
<tr>
<th></th>
<th>WORK DAYS</th>
<th></th>
<th>% REDUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAB HB (INTEG CELL)</td>
<td>21</td>
<td>4</td>
<td>81%</td>
</tr>
<tr>
<td>MLP USE PER FLOW</td>
<td>55</td>
<td>40</td>
<td>27%</td>
</tr>
<tr>
<td>INTEG CRITICAL PATH</td>
<td>32</td>
<td>15</td>
<td>53%</td>
</tr>
<tr>
<td>(BOOSTER STACK TO ORB MATE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAD FLOW</td>
<td>18</td>
<td>20</td>
<td>-11%</td>
</tr>
<tr>
<td>BOOSTER FLOW (PRE-LAUNCH)</td>
<td>78</td>
<td>58</td>
<td>25%</td>
</tr>
</tbody>
</table>
LAUNCH SITE PLAN

- KSC
 - PHASED PLANNING
 - TRANSITION ENVIRONMENT
 - DEFINED IMPACTS

- VLS
 - SUMMARY SCENARIO
LRB INTEGRATION - A PHASED APPROACH

0 LAUNCH SITE ACTIVATION BEGINS IN FY 91 TO SUPPORT INITIAL LRB LAUNCH CAPABILITY IN 1996. FIRST LINE NEW FACILITIES, REQUIRED FACILITY MODS AND NEW GSE/LSE ARE DESIGNED, CONSTRUCTED AND VALIDATED DURING THIS INITIAL FIVE YEAR PERIOD. THESE ACTIVATION SCHEDULES ARE LAID OUT IN AN ARTEMIS MODEL AND PLANNED ON A NON-INTERFERENCE BASIS.

0 THE TRANSITION PHASE BEGINS WITH 3 LAUNCHES OF LRB IN 1996 AND BUILDS TO THE FULL 14 ANNUAL LAUNCH MANIFEST BY THE YEAR 2000. DURING THIS PERIOD SRB-BOOSTED LAUNCHES ARE PHASED DOWN BY SIMILAR INCREMENTS. AS YOU CAN SEE, ADDITIONAL FACILITY (AND GSE) ACTIVATIONS ARE SCHEDULED OVER THIS TRANSITION - MAJOR ONES ARE NOTED HERE.

0 TOTAL LIFE CYCLE EVALUATIONS ARE DIMENSIONED OVER AN APPROXIMATE 10-YEAR LAUNCH PERIOD. THE LAST 5 YEARS ARE AT THE FULL 14/15 FLIGHTS PER YEAR RATE. A TOTAL LRB LIFE OF 122 MISSIONS IS CURRENTLY PROJECTED.
<table>
<thead>
<tr>
<th>MILESTONES</th>
<th>CY</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INITIAL ACTIVATION</td>
<td></td>
</tr>
<tr>
<td>NEW MLP</td>
<td></td>
</tr>
<tr>
<td>HB4 / HPF</td>
<td></td>
</tr>
<tr>
<td>1ST PAD MOD</td>
<td></td>
</tr>
<tr>
<td>LETF/LCC</td>
<td></td>
</tr>
<tr>
<td>II. TRANSITION PHASE</td>
<td></td>
</tr>
<tr>
<td>• LAUNCH RAMP</td>
<td></td>
</tr>
<tr>
<td>• CONT'D ACTIVATIONS</td>
<td></td>
</tr>
<tr>
<td>2ND MLP</td>
<td></td>
</tr>
<tr>
<td>2ND HB</td>
<td></td>
</tr>
<tr>
<td>2ND PAD</td>
<td></td>
</tr>
<tr>
<td>III. OPERATIONS PHASE</td>
<td></td>
</tr>
<tr>
<td>• FULL RATE</td>
<td></td>
</tr>
<tr>
<td>• OPTIMIZATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/15</td>
<td></td>
</tr>
</tbody>
</table>

PHASED APPROACH

Note: Diagram includes phases and milestones with timelines and indicators.
LAUNCH SITE PLANNING

- The developed study products support the phased planning of LRB launch site integration.

- *Activation* activities in the first phase are supported by these identified study products dealing with facility design/construction.

- *Transition* issues are described in the key products of the second phase.

- *Operational* issues dominate these study products of the third phase.

- The ground operations cost model (GOCM) summarizes cost elements parametrically over all three phases of launch site implementation.
LRB Launch Site Planning

Activation
- Ground Operations Plan
- Facility Concepts (GSE / LSE)
- Propellant Storage and Handling
- Environmental / Safety Implications

Transition
- Preliminary Transition Plan
- Manpower / Costs
- Impacts to Ongoing Activities

Operations
- LRB Processing Timelines
- Operational Efficiencies
- LRB Engine Processing

Ground Operations Cost Model
VLS/LRB PROCESSING SCENARIO

DELIVERY BY BARGE OF A COMPLETELY ASSEMBLED LRB TO THE EXISTING VLS DOCKING FACILITY SIMPLIFIED THE VLS FLOW PROCESSING FROM THE CURRENT RAIL DELIVERY OF SRB PROPELLANT SEGMENTS AND AIR DELIVERY OF ITS OTHER COMPONENTS. LAND TRANSPORTATION FROM THE DOCKING FACILITY WILL BE BY TRANSPORTER TOW, IDENTICAL TO THE KSC CONCEPT. ALL LRB STAND-ALONE CHECKOUT AND TESTING WILL BE CONDUCTED IN THIS FACILITY. EACH LRB WILL THEN BE TOWED ON ITS TRANSPORTER TO THE SLC-6 LAUNCH PAD WHERE IT WILL BE ERECTED BY THE EXISTING MST AND SAB CRANES. THE MST CRANE WILL THEN LIFT AND TRANSLATE EACH LRB IN A VERTICAL ATTITUDE TO ITS RESPECTIVE HOLDDOWN POSTS. THE BALANCE OF THE VLS SHUTTLE VEHICLE INTEGRATION WILL REMAIN UNCHANGED.

INCORPORATION OF EXTENSIVE LAUNCH MOUNT MODIFICATIONS OR REPLACEMENT BY A NEW LAUNCH FIXTURE WILL PROVIDE THE NECESSARY HOLDDOWN MODIFICATIONS AND ENLARGED BOOSTER DUCT ENTRANCE AREA. THIS ARRANGEMENT WILL PROVIDE CONTROL AND GUIDANCE OF THE EXHAUST PLUME INTO THE EXISTING VLS CLOSED DUCTS. THERE MAY BE A REQUIREMENT FOR STEAM INERTING THE BOOSTER CLOSEOUT DUCTS TO PRECLUDE A POTENTIALLY HAZARDOUS OVERPRESSURE.

VEHICLE LAUNCH PROCESSING WILL BE MODIFIED TO PROVIDE FOR EXPANDED LOX AND LH₂ CAPACITY AND LOADING (OR INSTEAD OF LH₂ THE ADDITION OF RP-1 FUEL CAPABILITY, IF IT IS SELECTED).

ADDITIONALLY, THE LAUNCH CONTROL CENTER WILL INCORPORATE THE NEW LRB CONSOLES AND GROUND SOFTWARE, SIMILAR TO KSC.
THE SHARED FACILITIES AND MANPOWER DURING TRANSITION CONSTITUTE SIGNIFICANT RISK OF LAUNCH DELAYS, EVEN THOUGH THE PLANNED LRB PROCESSING SCENARIO IS DESIGNED TO MINIMIZE RISKS TO THE SCHEDULE OF ON-GOING LAUNCH ACTIVITIES. SCHEDULE RISK IS, IN GENERAL, INSENSITIVE TO THE SELECTED LRB DESIGN.

INTEGRATION OF LRB AT KSC WILL REQUIRE NEW AND MODIFIED FACILITIES AND GSE.

NEW - MLPs (2)
- HORIZONTAL PROCESSING FACILITY FOR LRB AND ET OFFLINE PROCESSING

MODS - PADS (2)
- VAB (HB-4 AND HB-3)
- LCC (AND LPS)
- LETF (MODS AND TESTING)

PAD MODIFICATION TIMELINES DO NOT FIT THE AVAILABLE OPEN WINDOWS (AT 14 LAUNCHES PER YEAR) FOR THE CONSTRUCTION TO IMPLEMENT LRB CHANGES. DURING LRB PAD MODIFICATION APPROXIMATELY EIGHT MONTHS OF EXCLUSIVE ACCESS MAY BE REQUIRED. DURING THIS PERIOD ALL LAUNCHES ARE FORCED TO THE OTHER PAD. THESE SINGLE PAD LAUNCH OPERATIONS MUST BE COMPRESSED TO ACHIEVE THE PLANNED LAUNCH RATES.

NEW MLP DESIGN AND CONSTRUCTION IS THE CRITICAL PATH ACTIVITY TO MEET FIRST LRB LAUNCH IN FY96. (ASSUMES A FY91 ATP).

KEY LRB CONFIGURATION DESIGN FEATURES WERE IDENTIFIED WHICH RESULT IN ENHANCED LAUNCH SITE OPERATIONS.

LOX/RP-1 AND LOX/LH2 ARE BOTH Viable AND ACCEPTABLE PROPELLANTS FOR THE NEW LRB AT KSC. OTHER PROPELLANTS STUDIED WERE LESS ACCEPTABLE. LOX/LH2 IS THE PREFERRED PROPELLANT AT THE LAUNCH SITE.
OBJECTIVES/FINDINGS

<table>
<thead>
<tr>
<th>STUDY OBJECTIVES</th>
<th>LRBI KEY STUDY FINDINGS/ACCOMPLISHMENTS</th>
</tr>
</thead>
</table>
| 1. IMPACTS (OPS + FAC) | • SHARED FACILITIES/MANPOWER ARE SIGNIFICANT TRANSITION RISK
• NEW LRB FACILITIES REQUIRED PLUS MODS TO EXISTING
• MOST SCHEDULE-CRITICAL FAC. MODS ARE PADS A&B
• MOST SCHEDULE-CRITICAL NEW FAC. IS TWO MLPs |
| 2. SCENARIOS | • LRB PROC. SCENARIO DESIGNED TO AVOID SCHED. RISK
• DETAILED LRB PROCESSING TASKS DEFINED |
| 3. LRB DESIGN RECOM | • LRB DESIGN FEATURES ID'ED FOR L.S. OPS EFFICIENCY
• LOX/LH2 IS KSC PREFERRED PROPELLANT
• L.S. CONSTRAINTS ID'ED TO ACCOMMODATE LRB OPTIONS |
LRB has a significantly shorter integration timeline on the MLP, in the VAB, compared to SRB. This feature provides greater launch site capability to achieve a 14 per year launch rate.

The ground operations cost model (GOCM) has been shown to be a useful parametric tool for Phase-A cost analysis. The model has been enhanced, applied to the LRB launch site integration and documented. In its current form it is ready to apply to any emerging new launch vehicle evaluation at KSC.

Launch site costs are approximately $1B non-recurring and $1B recurring for a 10-year (122 mission) life cycle. Cost savings due to SRB phase-out still require further evaluation.

Extent of modifications to existing facilities and costs is highly sensitive to selected LRB design characteristics (propellant, length, diameter, etc.).

Manpower requirements will peak during FY94-FY95 at an additional 800 people to support activation, transition and operational phases of LRB implementation plus approximately 1500 A&E and construction installation contractor personnel.

KSC needs a dedicated activation team for LRB activation and transition planning with follow-thru to implement new booster operations.
OBJECTIVES/FINDINGS

<table>
<thead>
<tr>
<th>STUDY OBJECTIVES</th>
<th>LRBI KEY STUDY FINDINGS/ACCOMPLISHMENTS</th>
</tr>
</thead>
</table>
| 4. OPER. EFF. LRB | • KEY LRB DES FEATURES ID'ED FOR L.S. OPS EFFICIENCY
| | • L.S. PROCESSING ADVANTAGES OF LRB DEFINED |
| 5. COST MODEL | • GOCM IMPROVED AND DOCUMENTED
| | • LRB LAUNCH SITE PROJECTED COSTS DEFINED |
| 6. LSE - GSE | • CONCEPT LEVEL GSE - LSE DEFINED TO ACCOM. LRB |
| 7. LAUNCH SITE | • MANPOWER FOR ACTIVATION, TRANSITION, OPS DEFINED |
| SUPPORT PLAN | • KSC NEEDS DEDICATED ACTIVATION TEAM FOR LRB INTEG. |
AGENDA

I. INTRODUCTION
 Gordon Artley

II. LRBI RESULTS
 Pat Scott

 BASELINE / LAUNCH SITE
 SCENARIO

 FACILITIES AND GROUND
 SYSTEMS
 Greg DeBlasio

 IMPLEMENTATION
 Gordon Artley

 COST
 Jerry Lefebvre

III. SUMMARY
 Gordon Artley
- FACILITY REQUIREMENTS AND IMPACTS
- IDENTIFY NEW FACILITIES
- DEFINE LRB LAUNCH SUPPORT EQUIPMENT
- DEFINE LRB GROUND SUPPORT EQUIPMENT
- DEFINE LRB PROPPELANT REQUIREMENTS
EVALUATION OF LRB PROCESSING/STORAGE IN THE VAB

This study addressed facility requirements for receiving, processing, and storing LRB's in the Vehicle Assembly Building (VAB). The LRB processing flow was analyzed and activation, operational, and safety impacts were identified including crane lift operations and hazardous clear areas. Operational comparisons were made to evaluate use of an external ET and LRB facility.

Concept 1

The conceptual flight hardware flow path uses VAB high bays 1 and 3 as integration cells and VAB high bays 2 and 4 as LRB/ET processing and storage areas. The ET processing would not be changed. Phase 1 activation would be in high bays 3 and 4 to support first LRB flow.

Concept 2

This conceptual flight hardware flow path uses VAB high bay 1 as an integration cell for SRB/SSV, VAB high bay 3 as an integration cell for SRB/SSV or LRB/SSV, and high bay 4 as an integration cell for LRB/SSV. High bay 2 would be used for the SRB buildup workstand to backup the RPSF. Both LRB and ET processing and stopage requirements would be performed in a horizontal facility. The figure shows the flow path of all the elements.
LIFTING OPERATIONS IMPACTS/EVALUATION

THE CONCEPTS WERE EVALUATED TO ESTABLISH VAB CRANE UTILIZATION AND LIFT REQUIREMENTS.

THE CURRENT NUMBER OF LIFTS REQUIRED TO STACK A SRB/STS IS 14. THE TABLE SHOWS THAT 10 LIFTS ARE REQUIRED TO STACK/MATE THE BOOSTERS. THE PRESENT REQUIREMENT FOR ET's IS THREE (1 OFFLOAD, 1 FROM C-0 TO STORAGE CELL AND 1 TO MATE STACK).

CONCEPT 1 FOR LRB/STS WOULD REQUIRE SIX LIFT OPERATIONS TO STACK/MATE THE BOOSTERS IN HIGH BAY 1 OR 3. THE ET LIFTING REQUIREMENT REMAINS UNCHANGED AT THREE, FOR A TOTAL OF 10 LIFTS FOR STS.

CONCEPT 2 REQUIRES FOUR LIFT OPERATIONS TO STACK/MATE AN LRB/SSV IN HIGH BAY 3 OR 4. THE SRB/SSV STACKING/MATING OPERATIONS WOULD REQUIRE ONLY ONE LIFT OF AN ET USING THIS CONCEPT. THIS IS A TOTAL REDUCTION OF TEN LIFTS FROM THE CURRENT SRB/SSV INTEGRATION REQUIREMENTS.

SINCE LIFTING FLIGHT HARDWARE IS A HAZARDOUS OPERATION REQUIRING AREA CLEARS, MINIMIZING THE NUMBER OF LIFTS REPRESENTS A SIGNIFICANT SAFETY ENHANCEMENT FOR THE ENTIRE STS LAUNCH PROCESSING. AT A RATE OF 14 PER YEAR THERE WILL BE 140 LESS OPPORTUNITIES PER YEAR FOR MAJOR LIFTING INCIDENTS. THIS IS A 70% REDUCTION IN TOTAL REQUIRED LIFTS (AND THE LRB HAS TO LIVE PROPELLANTS ON-BOARD).
VAB LIFT OPERATIONS SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Booster</th>
<th>ET</th>
<th>Orb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT SRB/STS</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>CONCEPT 1 LRB/STS (ET/LRB PROCESSED IN VAB)</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>CONCEPT 2 LRB/STS (ET/LRB PROCESSED IN HFP)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
SRB PROCESSING IN THE VAB

Currently, the SRB's are built up and processed in the RPSF. They are then transported to the VAB, lifted, and stacked on the Mobile Launcher Platform (MLP). During the VAB SRB stacking operations, areas of the transfer aisle and high bays 2 and 4 are cleared. The figures show the clear areas for high bay 1 or 3 stacking. This requirement to clear for SRB stacking could impact the LRB processing schedule as well as the activation of any high bay for LRB processing or integration.
VAB PROCESSING AND STORAGE CONCLUSIONS

- PROCESSING IN VAB COMPLICATED BY NUMEROUS LIFTS / AREA CONTROLS / SCHEDULE INTERACTION

- ACTIVATION IN VAB WILL IMPACT ON-GOING OPERATIONS

- FUTURE USE OF VAB LIMITED
LRB HORIZONTAL PROCESSING REQUIREMENTS

THE METHODOLOGY OF THIS STUDY ESTABLISHED A COMPARISON BETWEEN THE LRB PUMP-FED PROPELLANT SYSTEM AND THE ORBITER/ET PUMP-FED PROPELLANT SYSTEM PROCESSING OPERATIONS SINCE THE ET AND ORBITER ENGINES CONTAIN SIMILAR PHYSICAL CHARACTERISTICS; E.G., THIN WALL CONSTRUCTED LIQUID PROPELLANT STORAGE TANKS, MAIN ENGINES, INTERTANK ACCESS, A NOSE CONE, A GROUND SUPPORT EQUIPMENT (GSE) INTERFACE, A TANK/ENGINE INTERFACE, AND AN EXTERIOR NETWORK OF SHUTTLE RANGE SAFETY SYSTEM (SRSS) ORDNANCE AND THERMAL PROTECTION SYSTEM (TPS).

THE STUDY TEAM DEFINED THE CONCEPTUAL FUNCTIONAL PROCESSING AND TEST REQUIREMENTS FOR LRB BY ANALYZING THE PRESENT DAY STORAGE AND CHECKOUT PROCEDURES FOR THE ET AND ORBITER MAIN ENGINES. THE FUNCTIONAL REQUIREMENTS FOR LRB STORAGE AND CHECKOUT PROCESSING WERE THEN DEVELOPED.
PROCESSING FUNCTIONAL REQUIREMENTS

NOSE CONE REQUIREMENTS
- ASCENT AIR DATA SYSTEM (AADS) ALIGNMENT
- FAIRINGS REMOVAL/INSTALLATION/INSPECTION
- NON-RETRIEVAL SYSTEM CHECKOUT

OXIDIZER TANK REQUIREMENTS
- PRESSURE MAINTENANCE/MONITORING
- PURGE/PRESSURIZATION SAMPLING
- LEAK AND FLOW CHECKS
- VENT/RELIEF VALVES FUNCTIONAL CHECKOUT

EXTERIOR REQUIREMENTS
- THERMAL PROTECTION SYSTEM (TPS) CLOSE OUT
- FLIGHT ACCESSORIES INSTALLATION/INSPECTION
- SUPPORT FIXTURE VERIFICATION
- FAIRINGS INSTALLATION/INSPECTION
- SRSS-SHUTTLE RANGE SAFETY SYSTEM

INTERTANK ACCESS REQUIREMENTS
- LEAK AND FLOW CHECKS
- ELECTRICAL/INSTRUMENTATION INSTALLATION
- HAZARDOUS PURGE SYSTEM VALIDATION
- SRSS-SHUTTLE RANGE SAFETY SYSTEM INSTALLATION

FUEL TANK REQUIREMENTS
- PURGE/PRESSURIZATION/SAMPLING
- PRESSURE MAINTENANCE/MONITORING
- LEAK AND FLOW CHECKS
- VENT/RELIEF VALVES FUNCTIONAL CHECKOUT

GSE INTERFACE FUNCTIONAL REQUIREMENTS
- LEAK CHECKS
- DISCONNECT FUNCTIONAL CHECKS

ENGINE REQUIREMENTS
- PURGE/PRESSURIZATION/SAMPLING
- HEATED PURGE
- LEAK CHECKS
- FUNCTIONAL CHECKOUT
- REMOVAL/INSTALLATION
FLUID GSE FOR LRB PROCESSING

A SOURCE FOR HIGH PRESSURE GASES AND COMPRESSED AIR TO SUPPLY THE ET/LRB HORIZONTAL PROCESSING FACILITY WILL BE REQUIRED. FABRICATION OF GSE WILL BE BASED ON EXISTING FACILITY GSE DESIGN AT THE ORBITER PROCESSING FACILITY (OPF).

THE OPF PNEUMATIC SYSTEM UTILIZES THREE PERMANENTLY INSTALLED PANELS OUTSIDE THE BUILDING. THESE PANELS MONITOR, CONTROL, AND DISTRIBUTE GASEOUS GN₂, GHe, AND A HAZARDOUS AIR PURGE AT VARIOUS PRESSURES, TEMPERATURES, AND FLOW RATES TO THE HIGH BAYS. THE FACILITY GSE FOR THE NEW HPF WILL CONSIST OF SIMILAR EQUIPMENT.

THE FACILITY WILL HAVE ITS OWN SUPPLY OF HIGH PRESSURE GASES AND COMPRESSED AIR SYSTEM FOR HAZARDOUS PURGE AND SHOP TOOLS. A SEPARATE AREA TO HOUSE THE 6000-psig HIGH PRESSURE GAS STORAGE TANKS FOR GHe AND GH₂ WOULD BE LOCATED AS NEAR TO THE CCF/VAB GHe PIPELINE AS POSSIBLE AND THE BIG THREE GN₂ PIPELINE. THE GHe WILL BE SUPPLIED FROM THE CCF, WHILE THE GN₂ WILL BE SUPPLIED BY A BIG THREE PIPELINE. A UTILITY ANNEX WILL BE REQUIRED AT THE HPF TO HOUSE THE AIR COMPRESSOR AND OTHER UTILITIES.

THE GROUND SUPPORT SYSTEM FOR SERVICING THE LRB TANKS CONSISTS OF A NETWORK OF PNEUMATIC PANELS TO REGULATE AND DISTRIBUTE FACILITY HELIUM AND NITROGEN GASES FOR PRESSURIZATION, MONITORING, AND MAINTENANCE OF TANK PRESSURES, VENT VALVES FUNCTIONAL CHECKS, AND VARIOUS LEAK CHECKS ASSOCIATED WITH LRB PROCESSING.
ET HORIZONTAL PROCESSING REQUIREMENTS

THE ET WILL BE PROCESSED WHILE INSTALLED ON AN ET TRANSPORTER IN THE NEW ET/LRB HORIZONTAL PROCESSING FACILITY.

CONCLUSIONS/RECOMMENDATIONS

THE ET TANK'S PROCESSING OPERATIONS IN A HORIZONTAL CONFIGURATION WOULD REQUIRE GSE AND OPERATIONAL PROCEDURES SIMILAR TO THOSE CURRENTLY IN USE. THE INTERFACING OF THIS EQUIPMENT TO THE ET WOULD REQUIRE ACCESS STANDS, FIXED PLATFORMS, AND PORTABLE PLATFORMS. THE HORIZONTAL INSTALLATION AND CHECKOUT OF THE GUCP IS QUESTIONABLE DUE TO LACK OF WORKSPACE AND CLEARANCES WITH ET IS ON THE TRANSPORTER; MODIFICATION OF THE TRANSPORTER WOULD BE REQUIRED TO ENABLE THE GUCP TO BE INSTALLED IN THE HORIZONTAL POSITION. A NEW CHECKOUT GSE INTERFACE MIGHT BE REQUIRED TO SUPPORT TANK PROCESSING. THE VERIFICATION MEASUREMENTS PERFORMED ON THE ET/ORBITER, LOX, AND HYDROGEN FLAPPER VALVES SHOULD BE PERFORMED VERTICALLY AFTER STACKING ON THE MLP TO PROTECT THE INNER TANK FROM CONTAMINATION.
ET FUNCTIONAL REQUIREMENTS

NOSE CONE REQUIREMENTS
- ASCENT AIR DATA SYSTEM (AADS) ALIGNMENT
- FAIRINGS REMOVAL/INSTALLATION/INSPECTION
- NON-RETRIEVAL SYSTEM CHECKOUT

OXIDIZER TANK REQUIREMENTS
- PURGE/PRESSURIZATION/SAMPLING
- PRESSURE MAINTAINANCE/MONITORING
- LEAK AND FLOW CHECKS
- VENT/RELIEF VALVES FUNCTIONAL CHECKOUT

INERTANK ACCESS REQUIREMENTS
- LEAK AND FLOW CHECKS
- ELECTRICAL/INSTRUMENTATION INSTALLATION
- HAZARDOUS PURGE SYSTEM VALIDATION
- SRSS-SHUTTLE RANGE SAFETY SYSTEM INSTALLATION

GSE INTERFACE FUNCTIONAL REQUIREMENTS
- LEAK CHECKS
- DISCONNECT FUNCTIONAL CHECKS

EXTERIOR REQUIREMENTS
- THERMAL PROTECTION SYSTEM (TPS) CLOSE OUT
- FLIGHT ACCESSORIES INSTALLATION/INSPECTION
- SUPPORT FIXTURE VERIFICATION
- FAIRINGS INSTALLATION/INSPECTION
- SRSS-SHUTTLE RANGE SAFETY SYSTEM

FUEL TANK REQUIREMENTS
- PRESSURE MAINTAINANCE/MONITORING
- PURGE/PRESSURIZATION/SAMPLING
- LEAK AND FLOW CHECKS
- VENT/RELIEF VALVES FUNCTIONAL CHECKOUT

ORBITER/ET INTERFACE REQUIREMENTS
- DISCONNECT VALVE ADJUSTMENTS

GUCP INTERFACE PLATE
- REQUIRES GSE AND PROCEDURES FOR HORIZONTAL PROCESSING

Lockheed
Space Operations Company
FLUID GSE FOR ET PROCESSING

THE GROUND SUPPORT SYSTEM FOR SERVICING THE EXTERNAL TANK (ET) WILL CONSIST OF A NETWORK OF PNEUMATIC PANELS TO REGULATE AND DISTRIBUTE FACILITY HELIUM AND NITROGEN GASES FOR PRESSURIZATION, MONITORING, AND MAINTENANCE OF TANK PRESSURES, VENT VALVES FUNCTIONAL CHECKS AND VARIOUS LEAK CHECKS ASSOCIATED WITH PROCESSING.

THE EXISTING ET PROCESSING GROUND SUPPORT SYSTEM PANELS IN THE VAB CAN BE RELOCATED TO THE NEW ET/LRB PROCESSING FACILITY.
THE NEW OFFLINE FACILITY WILL PROVIDE THE CAPABILITY TO PROCESS TWO ET'S AND FOUR LRB'S HORIZONTALLY. SHOP AREAS ARE PROVIDED FOR ENGINE, BATTERY, TPS, AND ELECTRONICS/AVIONICS ACTIVITIES. THE PROCESSING BAY WILL PROVIDE CRANE SUPPORT AND SPACE FOR GSE; PLATFORMS AND STRUCTURES REQUIRED FOR ACCESS AND INSTALLATION; AND REMOVAL OF ENGINES, LRU'S, AND OTHER COMPONENTS AND SUBSYSTEMS. FINAL CHECKOUT OF COMPONENTS AND SUBSYSTEMS OF THE LRB'S AND ET'S WILL BE CONDUCTED ON THE HPF. AREAS FOR LOGISTICS, GSE AND LRU STORAGE, OFFICE, AND CONTROL ROOM ARE PROVIDED. SPACE IS PROVIDED FOR FACILITY ELECTRICAL AND MECHANICAL EQUIPMENT, AND THERE WILL BE A HIGH PRESSURE GAS STORAGE AREA FOR HELIUM AND NITROGEN. FLOOR TRENCHES IN THE HIGH BAY AREAS ARE PROVIDED FOR CABLE AND GAS PIPING RUNS.
ET/LRP HPF LAYOUT

OFFICES
2nd FLOOR
CONTROL ROOM
TAR ROOM
BREAK ROOM
LOCKER ROOMS
OFFICES

1st FLOOR
ELEC. ROOM
BATTERY SHOP
TPS SHOP
OFFICES
ELEC/AVIONIC SHOP
TRENCH
LOGISTICS AREA
ENGINE SHOP

MACHINE SHOP
MECHANICAL ROOM
HIGH PRESSURE GAS STORAGE

SQUARE FOOTAGE
238,000 MINIMUM
263,000 MAXIMUM

Lockheed
Space Operations Company
HPF SITING

SELECTION TRADE STUDIES WERE CONDUCTED FOR FOUR POSSIBLE HPF SITES IN THE LC-39 AREA

1. SOUTH OF THE SPC LOGISTICS FACILITY ON CONTRACTORS ROAD
2. SOUTH OF THE TURN BASIN ADJACENT TO THE PRESS SITE
4. NORTH OF THE VAB AND EAST OF THE ORBITER, MAINTENANCE, AND PROCESSING FACILITY (OMRF)

THE SITE NEAR THE PRESS SITE LOCATION IS RECOMMENDED, SINCE IT BEST SATISFIES THE MAJORITY OF THE SELECTION CRITERIA. THE LOCATION WOULD BE IN CLOSE PROXIMITY TO THE VAB, BARGE TERMINAL, EXISTING TOW ROUTE TO THE VAB, AND EXISTING FACILITIES AND SERVICES. THE SITE IS BEYOND THE VAB QUANTITY/DISTANCE AREA AND OUTSIDE THE CURRENTLY DEFINED LAUNCH DANGER AREA. LC-39 TRAFFIC CONGESTION WOULD NOT BE SIGNIFICANTLY INCREASED. TOW ROUTE CONSTRUCTION WOULD BE MINIMUM. SITE PREPARATION COSTS WOULD BE MINIMIZED BECAUSE THIS AREA IS CURRENTLY UTILIZED AND HAS ALREADY HAD ENVIRONMENTAL IMPACT STUDIES PERFORMED. A MINIMUM OF DEMOLITION AND RELOCATION OF FACILITIES IS REQUIRED.

<table>
<thead>
<tr>
<th>PRIMARY TRADE SELECTION CRITERIA</th>
<th>SITE 1</th>
<th>SITE 2</th>
<th>SITE 3</th>
<th>SITE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC APPROXIMATION FACILITY PROXIMITY</td>
<td>NO</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>TURN BAY PROXIMITY</td>
<td>NO</td>
<td>GOOD</td>
<td>NO</td>
<td>NS</td>
</tr>
<tr>
<td>LAUNCH DANGER AREA (QUANTITY/DISTANCE)</td>
<td>OUT</td>
<td>OUT</td>
<td>IN</td>
<td>IN</td>
</tr>
<tr>
<td>ENVIRONMENTAL IMPACTS</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>SET & UNB TOW ROUTES PROXIMITY</td>
<td>NO</td>
<td>GOOD</td>
<td>GOOD</td>
<td>NO</td>
</tr>
<tr>
<td>LC-39 AREA CONGESTION (INCLUDING TRAFFIC)</td>
<td>GOOD</td>
<td>GOOD</td>
<td>NO</td>
<td>NS</td>
</tr>
<tr>
<td>AVAILABILITY OF UTILITIES/AREAS</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>DEMOLITION AND RELOCATION OF EXISTING FACILITIES</td>
<td>LOW</td>
<td>MED</td>
<td>MED</td>
<td>LOW</td>
</tr>
<tr>
<td>SITE PREPARATION COSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
NO = NOT GOOD
GOOD = GOOD
MED = MEDIUM
ET/LRB HORIZONTAL PROCESSING FACILITY - CONTROL ROOM REQUIREMENTS

USE OF THE FIRING ROOMS IN THE LAUNCH CONTROL CENTER (LCC) TO PERFORM TESTING CAN BE RULED OUT. BASED ON THE ESTIMATES OF NEW LRB SYSTEMS THAT ARE EXPECTED TO UNDERGO TESTING PRIOR TO FLIGHT, THE INCREASE IN FIRING ROOM REQUIREMENTS WOULD BE GREATER THAN COULD BE PROVIDED BY THE EXISTING LCC EQUIPMENT WITHOUT IMPACTING ON-GOING SHUTTLE OPERATIONS.

AN INDEPENDENT CONTROL ROOM WILL BE PROVIDED IN THE HPF FOR THE PERFORMANCE OF ALL PRE-MATE CHECKOUT. THE NEW CONTROL ROOM WILL BE A MINI-FIRING ROOM FOR INITIAL TESTING OF LRB's AND ET's SOON AFTER THEIR ARRIVAL AND RETEST AFTER MAINTENANCE, REPAIR, OR MODIFICATIONS. TESTING WILL INCLUDE FUNCTIONAL TESTS OF ENGINE COMPONENTS, THRUST VECTOR CONTROL (TVC) SYSTEMS, AVIONICS, INSTRUMENTATION, AND POWER SYSTEMS ON THE LRBs. SIMILAR TESTING OF ET SYSTEMS CURRENTLY PERFORMED IN THE VAB HIGH BAYS WILL ALSO BE PERFORMED.

THE CONCEPT OF A CONTROL ROOM IN THE HPF SEPARATE FROM THE LCC FIRING ROOM IS RECOMMENDED PRIMARILY BECAUSE IT WOULD SUPPORT PARALLEL SHUTTLE PROCESSING AND LRB IMPLEMENTATION.

IT IS STRONGLY SUGGESTED THAT LPS-2 BE UTILIZED TO SPECIFY AND PROVISION FOR THE HPF CONTROL ROOM LPS EQUIPMENT. THIS IS RECOMMENDED BECAUSE OF INITIAL FABRICATION COST AND RECURRING/REPLACEMENT COST. IF THE LPS EQUIPMENT IS SEPARATELY SPECIFIED AND THEN LATER UPGRADED TO LPS 2, A PROCESSING SCHEDULE IMPACT AND ADDED COST WILL BE EXPERIENCED.
• **PROCESSING** ET / LRB OFFLINE-INDEPENDENT OF INTEGRATED STS FLOW

• **ACTIVATION** OF FACILITY WILL NOT IMPACT ON-GOING OPERATIONS

• **PROCESSING** OUT OF VAB SAFETY ZONE

• **ET GROUND UMBILICAL CARRIER PLATE (GUCP)** INSTALLATION IN THE HPF WILL REQUIRE NEW GSE, PROCEDURES AND ET TRANSPORTER MOD
VAB HIGH BAY 3 - INTEGRATION

THE LRB WILL BE LIFTED AND STACKED ON THE MLP HOLD DOWN SYSTEM. THE ATTACH STRUT LOCATIONS WILL BE THE SAME AS FOR THE SRB'S. THEREFORE, EXISTING SRB ACCESS PLATFORMS CAN BE MODIFIED FOR DUAL CAPABILITY.

ONLY THREE LRB AREAS REQUIRE ACCESS: FORWARD, INTERTANK, AND AFT SKIRT;

THE STRUCTURAL INTEGRITY OF THE EXISTING EXTENSIBLE PLATFORMS WILL BE AFFECTED BY THE MODIFICATIONS REQUIRED TO CLEAR THE ENVELOPE OF THE LRB. EACH FLOOR LEVEL WILL BE ANALYZED ON A CASE-BY-CASE BASIS. THE LRB CONCEPT CHOSEN WILL DETERMINE THE EXTENT OF IMPACT ON THE STRUCTURAL MEMBERS.

ALL EXISTING SRB ACCESS REQUIREMENTS WILL BE REVIEWED TO ENSURE THAT THE NEW MODIFICATIONS FOR LRB WILL NOT ELIMINATE THE ABILITY TO PERFORM THE REQUIRED OPERATIONAL TASKS.

AS STATED IN THE GROUND RULES, THE MODIFICATION OF HIGH BAY 3 TO SUPPORT BOTH LRB'S AND SRB'S WILL NOT COMMENCE UNTIL HIGH BAY 4 IS OPERATIONAL FOR PROCESSING WITH LRB/SSVs. THIS SCENARIO WILL HAVE THE LEAST IMPACT ON THE ON-GOING FLIGHT SCHEDULE, SINCE SRB FLIGHTS WILL THEN BE BELOW SEVEN PER YEAR AND CAN BE SUPPORTED BY HIGH BAY 1 ONLY.
ACCESS REQUIREMENTS HB-3

2ND FLOOR ACCESS TO NOSE CONE
AVIONICS FOR GDSS LO2/LH2

AP 100 REDESIGNED TO ACCESS NOSE CONE
AVIONICS FOR MMC LO2/RP-1 AND SRB EL 180'-11"

AP 46 & 47 TO ACCESS GDSS LO2/LH2 INTERTANK
AREA AND SRB TOP/FWD ATTACH STRUT
EL 171'-6 3/8"

AP 98 (SRB FIELD JOINT ACCESS)
REDESIGNED TO CLEAR LRB EL 162'-2"

AP 50 (SRB FIELD JOINT ACCESS) REDESIGNED
TO ROLLBACK EL 134'-3 1/4"

AP 93 (SRB FIELD JOINT ACCESS) REDESIGNED TO
CLEAR LRB EL 109'-0"

NEW INTERTANK ACCESS PLATFORM FOR MMC
LO2/RP-1 APPROX. 6'-0" ABOVE 3RD FLOOR

AP 48 (SRB FIELD JOINT ACCESS) REDESIGNED TO
CLEAR LRB EL 80'-2 1/2"

MMC LO2/RP-1 PUMP FED LRB

VAB FLOOR
EL 0'-0"

MLP "O" DECK
EL 47'-0"

81005-01BB-V/G

Lockheed
Space Operations Company
VAB HIGH BAY LRB/SSV ROLLOUT CLEARANCES

AN EVALUATION STUDY WAS CONDUCTED ON VAB HIGH BAY 3 PLATFORMS AND VAB HIGH BAY 3 AND 4 DOORS FOR LRB/ET/ORBITER EXIT CLEARANCES FROM THE VAB.

IMPACTS TO HIGH BAY 3 PLATFORMS

PLATFORMS AT LEVELS D, B, E, AND C IN HIGH BAY 3 RETRACT OR FLIP UP TO ALLOW SRB/ET/ORBITER STACK CLEARANCE WHEN EXITING THE HIGH BAY.

PLATFORMS AFFECTED FOR THE MMC LO₂/RP1 PUMP-FED VEHICLE INCLUDE:
 A. ROOF AND MAIN PLATFORMS OF LEVEL D
 B. MAIN, SECOND, AND ROOF PLATFORMS OF LEVEL B
 C. MAIN PLATFORM OF LEVEL E

THE PLATFORMS NOT AFFECTED INCLUDE:
 A. SECOND AND THIRD PLATFORMS OF LEVEL D
 B. ROOF PLATFORM OF LEVEL E
 C. MAIN, SECOND, AND ROOF PLATFORMS OF LEVEL B

VAB DOOR EXIT CLEARANCE

VAB EXIT DOOR WIDTH FOR SRB/ET/ORBITER STACK CLEARANCE IS 71 FT 1 INCH. DOOR CLEARANCES HAVE BEEN EVALUATED FOR SEVEN CASES. ALL SELECTED LRB CONFIGURATIONS WILL PROVIDE ADEQUATE VAB DOOR CLEARANCES.
LRB INTEGRATION FLUID GSE FOR HIGH BAY 3 AND HIGH BAY 4

The integration processing ground support equipment for the liquid rocket boosters will consist of equipment to support tank monitoring, contingency pressurization, vent valve actuation, and LRB engine leak check operations. The baseline requirements for LRB servicing are similar to the ET processing operations performed in High Bay 3 of the VAB. A network of similar pneumatic panels are required in High Bay 4 and on the LRB-dedicated MLP.

The pneumatic system will consist of a network of pneumatic panels that will regulate and distribute facility helium and nitrogen gases for pressurization, monitoring, safing and maintenance of tank pressures, vent valve operations, and various leak checks.

The existing VAB facility helium and nitrogen high pressure regulation and control system can be used to regulate and distribute the facility gas to the pneumatic support system.
VAB HIGH BAY 3 CONCLUSIONS

- PLATFORMS TO SUPPORT LRB WILL BE REQUIRED
- ALL LRB CONFIGURATIONS INFRINGE ON HIGH BAY 3 PLATFORMS DURING EXIT
- ALL PLATFORMS REQUIRE MODIFICATION FOR LRB DIAMETER
- NEW GSE FOR LRB REQUIRED
VAB HIGH BAY 4 - INTEGRATION

TO MEET A LAUNCH RATE OF THREE LRB's IN 1996 AND STILL MAINTAIN SRB LAUNCH PROCESSING OPERATIONS IN HIGH BAY 1 AND HIGH BAY 3, IT WILL BE NECESSARY TO CONVERT HIGH BAY 4 INTO AN LRB STACKING AND INTEGRATION CELL.

AT PRESENT HIGH BAY 4 IS USED AS A STORAGE AND CHECKOUT CELL FOR THE ET AND HAS A BACKUP CAPABILITY OF PROVIDING BUILDUP STANDS FOR THE SRB AFT SEGMENTS. NO PLATFORMS ARE AVAILABLE TO ACCESS THE ORBITER, LRB, OR ET. NEW PLATFORMS WILL BE BUILT.

<table>
<thead>
<tr>
<th>LORN 1</th>
<th>LORH 1</th>
<th>LORH 2</th>
<th>LORN 3</th>
<th>LOUC 4</th>
<th>LOUH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOUH 1</td>
<td>LOUH 3</td>
<td>LOUH 2</td>
<td>LOUH 1</td>
<td>LOUH 4</td>
<td>LOUH 3</td>
</tr>
<tr>
<td>BOOMER DIAMETER</td>
<td>15-3</td>
<td>16.3</td>
<td>16.8</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>15.0</td>
<td>15.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>ENGINE LEVEL ACCESS</td>
<td>EL 47-6"</td>
<td>EL 47-6"</td>
<td>EL 47-6"</td>
<td>EL 47-6"</td>
<td>EL 47-6"</td>
</tr>
<tr>
<td>INTERTANK ACCESS</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>AP 14/17 EL 177.5"</td>
</tr>
<tr>
<td>EOD ACCESS</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
<td>PLATFORM</td>
</tr>
</tbody>
</table>

PRIME ACCESS REQUIREMENTS

- AFT FUSELAGE ACCESS DOOR: YES
- AFT ATTACH POINT: YES
- LORH FUSELAGE STEPS: YES
- MAIN FLOOR PLATFORM LEVEL 6 + AP 66
- INTERTANK ACCESS: YES
- CHESTER BAY ROOM - STAR TRACER DOOR: YES
- PB ATTACH POINT: YES
- ENGINE SERVICE PLATFORM: YES

TO CONVERT HIGH BAY 4 INTO AN STS INTEGRATION FACILITY, THE PRESENT ET CHECKOUT FUNCTION WILL BE RELOCATED TO THE NEW ET/LRB HORIZONTAL PROCESSING FACILITY. THE SRB BUILDUP STANDS WILL BE DISMANTLED AND RELOCATED TO HIGH BAY 2.

THREE OF THE FOUR MLP PEDESTALS IN HB-4 HAVE BEEN DISMANTLED AND STORED IN THE MLP PARKSITE AREA. THESE ARE NOT IN THE BEST SHAPE STRUCTURALLY AFTER BEING IN OPEN STORAGE FOR A NUMBER OF YEARS. NEW PEDESTALS WILL BE REQUIRED.

Lockheed
Space Operation Company

KSC FORM 29 43 (REV 4/86)
C-19h
REACTIVATION OF CRAWLERWAY TO VAB HIGH BAY 4

A LARGE SECTION OF CRAWLERWAY REQUIRES REFURBISHMENT FOR HB-4 USE. IT STARTS NORTHWEST OF THE OMRF WHERE IT JOINS THE EXISTING CRAWLERWAY AND PROCEEDS SOUTH AND EAST TO THE NORTHWEST CORNER OF THE VAB (HIGHT BAY 4).

THE OPF MODULAR COMPLEX WILL REQUIRE RELOCATION. A SECTION OF THE ORBITER TOWWAY FROM THE OPF TO THE VAB WILL HAVE TO BE MODIFIED TO BE COMPATIBLE WITH BOTH THE ORBITER AND CRAWLER. CURRENTLY, A PARKING AREA IS LOCATED EAST OF THE OPF MODULAR COMPLEX AND A PORTION OF THIS MUST BE DELETED; A SECTION OF RAILROAD WILL HAVE TO BE REROUTED; AND A SECTION OF FENCE CROSSING THE CRAWLERWAY SITE WILL BE RELOCATED. VARIOUS UNDERGROUND UTILITY LINES AND MANHOLES WILL REQUIRE RELOCATION. THE OMRF ECS DUCT AND CHILL WATER PIPING FROM THE VAB, WHICH RUNS ALONG THE WEST SIDE OF THE PARKING AREA AND UNDER THE TOWWAY MUST BE RELOCATED.

REACTIVATION REQUIREMENTS

THE OLD CRAWLERWAY BED MUST BE PREPARED WITH A NEW COMPACTED BASE COURSE, AS REQUIRED. A BITUMINOUS PRIME COAT SHOULD BE APPLIED AND THE BED RESURFACED WITH GRAVEL, AND CURBS ADDED.

UTILITY AND COMMUNICATIONS LINES BENEATH THE CRAWLERWAY WILL REQUIRE RELOCATION AND ADEQUATE PROTECTION AGAINST CRAWLER LOADS. NEW COMMUNICATION AND ELECTRICAL MANHOLES ARE REQUIRED. THE ECS CROSSCOUNTRY DUCT CAN BE REROUTED ADJACENT TO THE CRAWLERWAY AND NEW GATES INSTALLED WHERE THE FENCE CROSSES THE CRAWLERWAY.
• NEW PLATFORM STRUCTURES FOR ORBITER / ET / LRB REQUIRED

• ET PROCESSING MOVED TO HPF

• SRB WORK STANDS MOVE TO HIGH BAY 2

• CRAWLERWAY MUST BE REACTIVATED

• GSE FOR ORBITER / ET / LRB REQUIRED
MLP EXHAUST HOLES (MMC)

MMC LOX/RP1 PUMP-FED CONFIGURATION IMPACTS. THE IMPACTS OF THIS CONFIGURATION ON THE EXISTING MLP STRUCTURAL DESIGN ARE SHOWN IN THE FIGURE.

COMPARISONS BETWEEN PUMP-FED AND PRESSURE-FED CONCEPTS HAVE BEEN DEVELOPED. EXHAUST HOLE SIZES, GIRDER LOCATION CLEAANCES, AND IMPACTS HAVE BEEN IDENTIFIED. FOR EXAMPLE: GIRDER G-20 GOES AWAY TOTALLY IN THE PRESSURE-FED CONCEPT.

G-20 IS THE MAIN GIRDER OF MLP STRUCTURAL FRAMINGS. ANY RELOCATION NORTH OF THE PRESENT POSITION WOULD MAKE THE SSME EXHAUST HOLE SMALLER. RELocATING G-20 TOWARD THE SOUTH FROM ITS PRESENT POSITION WOULD GIVE IT HEAVY EXPOSURE TO LRB ENGINE BLAST. RESOLUTION OF THIS DILEMMA IN THE NEW MLP DESIGN WILL BE A CHALLENGE.

TO MEET THE GROUNDRULES, ALL STRUCTURAL DESIGNS REQUIRE A MINIMUM OF THREE ENGINE NOZZLE DIAMETERS CLEARANCE FROM ANY FLAT SURFACE, AS STATED IN PARAGRAPH 3.5 OF "STANDARD FOR FLAME DEFLECTOR DESIGN (KSC-STD-Z-0012)."

RELOCATING GIRDER G-20 WOULD SERIOUSLY AFFECT THE STRUCTURAL INTEGRITY OF THE EXISTING MLP, AND TOTAL OMISSION IS NOT FEASIBLE. DESIGN FEASIBILITY OF PROVIDING A NEW GIRDER IN THE REDESIGN IS QUESTIONABLE.

MODIFICATION OF MLP-1 & 2 FROM THE OLD APOLLO SYSTEM TOOK 5 YEARS EACH. ALL LRB MODIFICATIONS WOULD TAKE ABOUT THE SAME LENGTH OF TIME OR MORE IF PERMITTED BY DESIGN FEASIBILITY.

IT IS THEREFORE RECOMMENDED THAT A NEW MLP BE BUILD TO START THE LRB PROGRAM.
MLP EXHAUST HOLE WALL FLAME IMPINGEMENT

MMC LOX/RP-1 PUMP-FED

ENGINE LAYOUT

LRB HOLDDOWN POST HAUNCH

MLP 'O' DECK

NEW FOLDDOWN

MODIFIED SIDE FLAME DETECTOR

FLAME TRENCH
<table>
<thead>
<tr>
<th></th>
<th>LO2/RP-1 PUMP-FED</th>
<th>LO2/RP-1 PRESS-FED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER DIAMETER</td>
<td>15'-3"</td>
<td>16'-2"</td>
</tr>
<tr>
<td>SKIRT DIAMETER</td>
<td>22'-11/4"</td>
<td>26"-0"</td>
</tr>
<tr>
<td>G LRB FROM G ET</td>
<td>22'-5"</td>
<td>22'-9 1/2"</td>
</tr>
<tr>
<td>EXHAUST HOLE SIZE</td>
<td>29'-0" X 41"-4 1/4"</td>
<td>32'-0" X TBD</td>
</tr>
<tr>
<td>IMPACT TO G-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 6° ENGINE GIMBAL</td>
<td>APPROX .8" CLEARANCE FROM BLAST SHIELD</td>
<td>NO CLEARANCE; RELOCATE</td>
</tr>
<tr>
<td>G-10 TO RELOCATED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-25 AND G-4 TO RELOCATED G-2</td>
<td>6'-3 1/8"</td>
<td>3'-4 5/8"</td>
</tr>
<tr>
<td>ET TO RELOCATED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-23 AND G-24</td>
<td>6'-1 1/8"</td>
<td>4'-11 5/8"</td>
</tr>
<tr>
<td>LOCATION OF NEW HOLDDOWN POST HAUNCHES</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ENGINE LAYOUT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MLP EXHAUST HOLES (GDSS)

GDSS LOX/RP1 PUMP-FED CONFIGURATION IMPACTS. THE IMPACTS OF THIS CONFIGURATION ON THE EXISTING MLP STRUCTURAL DESIGN ARE SHOWN IN THE FIGURES.

COMPARISONS HAVE BEEN MADE BETWEEN GDSS LOX/RP-1 PUMP-FED, LOX/LH2 AND LOX/CH4 CONCEPTS. THE SIZE OF EXHAUST HOLES, LOCATION OF GIRDERS, AND IMPACT TO EXISTING GIRDER G-20 CAN BE SEEN IN THE FIGURE.

G-20 IS THE MAIN GIRDER OF MLP STRUCTURAL FRAMINGS. ANY RELOCATION NORTH OF THE PRESENT POSITION WOULD MAKE THE SSME EXHAUST HOLE SMALLER. RELOCATING G-20 TOWARD THE SOUTH FROM ITS PRESENT POSITION WOULD GIVE IT HEAVY EXPOSURE TO LRB ENGINE BLAST.

TO MEET THE GROUNDRULES, ALL STRUCTURAL DESIGNS REQUIRE A MINIMUM OF THREE ENGINE NOZZLE DIAMETERS CLEARANCE FROM ANY FLAT SURFACE, AS STATED IN PARAGRAPH 3.5 OF "STANDARD FOR FLAME DEFLECTOR DESIGN (KSC-STD-Z-0012)."

RELOCATING GIRDER G-20 WOULD SERIOUSLY AFFECT THE STRUCTURAL INTEGRITY OF THE MLP, AND TOTAL OMISSION IS NOT FEASIBLE. DESIGN FEASIBILITY OF PROVIDING A NEW GIRDER IN THE LRB EXHAUST HOLES MAY BE QUESTIONABLE.

MODIFICATION OF MLP-1 & 2 FROM THE OLD APOLLO SYSTEM TOOK 5 YEARS EACH. ALL LRB MODIFICATIONS WOULD TAKE ABOUT THE SAME LENGTH OF TIME OR MORE IF PERMITTED BY DESIGN FEASIBILITY.

IT IS THEREFORE RECOMMENDED THAT A NEW MLP BE BUILT TO START THE LRB PROGRAM.
COMPARISONS BETWEEN GDSS CONFIGURATIONS

<table>
<thead>
<tr>
<th></th>
<th>LO2/RP-1 PUMP-FED</th>
<th>LO2/RP-1 PRESS-FED</th>
<th>LO2 / LH2</th>
<th>LO2 / CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER DIAMETER</td>
<td>14'-1"</td>
<td>15'-0"</td>
<td>16'-2"</td>
<td>15'-0"</td>
</tr>
<tr>
<td>SKIRT DIAMETER</td>
<td>25'-11 1/8"</td>
<td>26'-9 1/2"</td>
<td>22'-3 1/2"</td>
<td>27'-3 1/4"</td>
</tr>
<tr>
<td>ξ LRB FROM ξ ET</td>
<td>21'-10"</td>
<td>22'-3 1/2"</td>
<td>22'-10 1/2"</td>
<td>22'-3 1/2"</td>
</tr>
<tr>
<td>EXHAUST HOLE SIZE</td>
<td>41'-4 1/2" X</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
</tr>
<tr>
<td></td>
<td>27'-6 1/4"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT TO GIRDER G-20</td>
<td>-2.5' CLEARANCE FROM BLAST SHIELD</td>
<td>NO CLEARANCE</td>
<td>-4.5' CLEARANCE FROM BLAST SHIELD</td>
<td>-1.8' CLEARANCE FROM BLAST SHIELD</td>
</tr>
<tr>
<td>Q ET TO RELOCATED G-23 AND G-24</td>
<td>6'-3"</td>
<td>6'-8 1/2"</td>
<td>8'-3 1/2"</td>
<td>6'-8 1/2"</td>
</tr>
<tr>
<td>Q G-10 TO RELOCATED G-25 AND G-4 TO RELOCATED G-22</td>
<td>7'-7"</td>
<td>7'-1 1/2"</td>
<td>5'-6 1/2"</td>
<td>7'-1 1/2"</td>
</tr>
<tr>
<td>LOCATION OF NEW GIRDER TO SUPPORT RELEASE MECH FROM ξ LRB</td>
<td>15'-7"</td>
<td>15'-7"</td>
<td>15'-7"</td>
<td>15'-7"</td>
</tr>
<tr>
<td>HAUNCH SIZE & SUPPORTS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ENGINE LAYOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• NEW MLPs FOR LRB REQUIRED
 • EXTENSIVE DEMOLITION
 • FLAME IMPINGEMENT IMPACT
 • G-20 STRUCTURAL IMPACT
 • G-20 COLUMN LINE FLAME IMPINGEMENT IMPACT
 • FOR X PATTERN ENGINES CROSS MEMBER FOR HOLDDOWN SUPPORT
 • INFRINGEMENT OF BOOSTER EXHAUST WITH SSME EXHAUST
ACCESS FOR ENGINE MAINTENANCE CAN BE PROVIDED BY BUILDING PLATFORMS SIMILAR TO THE SSME PLATFORMS. AT PRESENT THE SSME SERVICE PLATFORMS ARE LIFTED INTO THE ORBITER EXHAUST HOLE OF THE MLP UTILIZING WINCHES. SIMILAR SERVICE PLATFORMS ARE USED FOR SRBs.
FRAME TRENCH

THE ANALYSIS OF THE FLAME TRENCH IS BASED ON THE ASSUMPTION THAT MODIFICATIONS TO THE EXISTING FLAME TRENCH MUST BE AVOIDED.

THIS STUDY HAS ANALYZED THE IMPACTS ON MAIN AND SIDE DEFLECTORS. THE BASELINE LRBs FOR THE ANALYSIS WERE THE GDSS AND MMC PUMP-FED CONCEPTS USING LOX/RP-1.

SIDE FLAME DEFLECTOR IMPACTS

MAIN FLAME DEFLECTOR IMPACTS

FLAME TRENCH DEFLECTORS (SOUTH ELEVATION)

GENERAL DYNAMICS PUMP-FED CONCEPT

MARTIN MARIETTA PUMP-FED CONCEPT

108 IN. DIA.
22'-0"

22'-0"

3° GIMBAL

3° GIMBAL

96.8 IN. DIA.

73°

71°

FLAME TRENCH 79K04400

SIDE FLAME DEFLECTOR

MLP 'O' DECK

7'-0 1/2"

5'-8 1/4"

21'-10"

22'-5"

MAIN FLAME DEFLECTOR INTERIOR

FLAME TRENCH

81005-01C-V/G

VE2
SIDE FLAME DEFLECTORS

There are basically two LRB engine configurations; one by General Dynamics Space Systems Division and another by Martin Marietta Space Manned Systems. Each has a four-engine configuration with the basic difference between them being a clocking angle of 90°.

Both concepts of the LRB engines have the capability of gimbaling 6° maximum from the neutral position. This introduces higher blast pressures on the side deflectors at maximum gimbal position.

Maximum impingement angle of the flame deflectors is dependent on the position of the LRB engines. The blast pressures introduced on the flame deflector can be extreme.

The figures show both GDSS and MMC impact concepts. All engines are shown in the 6° gimbaled positions and the area of impact on side deflector is illustrated. At present SRB blast pressure has no direct impingement on side flame deflectors. The existing sound suppression system also receives direct blast pressures from LRB engines. Further evaluation and study are required.

A new sealing concept and design will be required to stop exhaust from going between the MLP and the top edge of the side deflectors.

Significant redesign of the side flame deflector will be required. A 6.4 per cent scale model test and recertification for flight readiness of the new deflectors is required.
SIDE DEFLECTOR LAME IMPINGEMENT

MMC LOX/RP-1 PRESSURE-FED

ENGINE LAYOUT

GIMBAL

FOLDDOWN MODIFIED SIDE FLAME DETECTOR

MLP 'O' DECK

FLAME TRENCH
MAIN FLAME DEFLECTOR

AN EVALUATION OF THE EXISTING MAIN FLAME DEFLECTOR REVEALED MAJOR PROBLEMS. WITH THE CONFIGURATION OF THE NEW LRB ENGINES, THE BOOSTER BLAST PRESSURES HAVE SHIFTED SOUTH ON THE MAIN DEFLECTOR INTRODUCING A DIRECT HIT TO THE APEX OF THE DUAL ANGLE DEFLECTOR. THIS IS TRUE EVEN WITH THE LRB ENGINES IN THE NULL POSITION. THESE PRESSURES WILL INCREASE AS THE LRB ENGINES GIMBAL TO THEIR MAXIMUM POSITION AND SPILL-OVER INTO THE SSME SIDE IS LIKELY. THE MAIN DEFLECTOR NEEDS TO BE REDESIGNED AND POSITIONED SOUTH OF THE PRESENT LOCATION TO AVOID THIS CONDITION.
LPB ACCESS REQUIREMENTS

FORWARD (NOSE CONE) AREA ACCESS - THIS AREA IS ABOUT THE SAME LEVEL AS FOR SRB FORWARD AREA ACCESS. WITH DOME MODIFICATIONS TO THE EXISTING PLATFORM, ACCESS TO THE FORWARD AREA FOR LR6 CAN BE ACHIEVED. THIS IS GOOD FOR MMC LOX/RP-1 PUMP-FED AND GDSS CONCEPTS. BUT, FOR TALLER BOOSTERS THERE IS NO EXISTING STRUCTURES TO SUPPORT ACCESS. A FURTHER STUDY WILL BE REQUIRED. THIS STUDY WILL EXAMINE THE POSSIBILITY OF ADDING STRUCTURAL MEMBERS FROM FSS/RSS STRUCTURES TO SOLVE THESE ACCESS PROBLEMS. A PROPOSED CONCEPT IS SHOWN. THIS CONCEPT REQUIRES IN-DEPTH ANALYSIS AND DESIGN.
ORBITER/ET UMBILICAL IMPACTS

This section describes the impact to existing LC-39 umbilicals and swing arms that will result from a conversion from SRBs to LRBs in the space shuttle program.

Five major umbilicals and three swing arms are required to service the SRB-configured shuttle system at the launch pad. Of these, all but the SRB joint heater umbilicals will still be required for an LRB-equipped shuttle.

Existing orbiter and ET ground interfaces will remain at current position relative to LC-39. Number and size of connections across existing orbiter and ET ground interfaces will not change significantly. Although it is assumed for the purpose of this study that the vehicle excursions will not change, the impact of an increase should be considered. A significant increase in vehicle excursions could affect all the existing systems requiring hardware modifications and require LETF testing. Two systems in particular, the Gox vent and TSM's, currently have very little capability for excursion growth without hardware modification. Also, the ET GH2 vent and OAA have limited capability for excursion increases. Although vehicle launch drifts will change due to a decrease in the thrust-to-weight ratio and blast loads will change they still need to be addressed in greater detail in Phase B.

Based on the assumptions of this study, the primary concern for LRB compatibility is that LRBs have sufficient clearance for all prelaunch conditions. Ground systems must clear LRB's during disconnect and retraction. The LRB's must clear systems for worst case launch drifts.
ORBITER LSE LETF TEST REQUIREMENTS

<table>
<thead>
<tr>
<th>CANDIDATE LSE</th>
<th>LSE MOD / RETEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORBITER ACCESS ARM (1 EACH PAD)</td>
<td>MOD / RETEST DEPENDENT ON EXCURSIONS OF LRB / SSV</td>
</tr>
<tr>
<td>ET INTERTANK ACCESS ARM (1 EACH PAD)</td>
<td>MOD / RETEST DEPENDENT ON EXCURSIONS OF LRB / SSV</td>
</tr>
<tr>
<td>MOD OF ET GH2 VENT LINE / ARM SYS (1 EACH PAD)</td>
<td>MOD / RETEST DUE TO LRB DIAMETER</td>
</tr>
<tr>
<td>MOD OF ET GOX VENT ARM AND SYS (1 EACH PAD)</td>
<td>MOD / RETEST DUE TO LRB LENGTH</td>
</tr>
<tr>
<td>MOD OF LOX / LH2 TSM (2 EACH MLP)</td>
<td>MOD / RETEST DEPENDENT ON EXCURSIONS OF LRB / SSV</td>
</tr>
</tbody>
</table>
GOX VENT ARM

THIS ARM WILL BE GENERALLY UNAFFECTED BY THE DIAMETER FOR ANY OF THE LRB CONCEPTS. HOWEVER, LRB LENGTHS OVER 170 FT WILL HAVE HARD INTERFERENCE WITH THE EXISTING STRUCTURE.

TO ACCOMMODATE THE ET GOX VENTING FOR THE LONGER LRBs, IT WILL BE NECESSARY TO PLACE THE VENT ARM ALONGSIDE THE BOOSTER RATHER THAN OVER IT, AS IN THE EXISTING DESIGN. FOR A GDSS-L02/LH2 LRB TO OBTAIN A 2-FT CLEARANCE, IT WOULD BE NECESSARY TO PLACE THE VENT ARM AT 45 DEGREES TO THE BOOSTER CENTERLINE. THE ARM COULD BE PROJECTED NORTH OR SOUTH OF THE VEHICLE. NORTH WAS CHOSEN TO PLACE THE PIVOT CLOSER TO THE EXISTING POSITION, THEREBY SIMPLIFYING ROUTING OF FLUID AND ELECTRICAL SERVICE LINES.

THE CONCEPT WILL USE AS MUCH OF THE EXISTING ARM AND ASSOCIATED COMPONENTS AS POSSIBLE, BUT IT WOULD REQUIRE A NEW OR MODIFIED HOOD ASSEMBLY, A NEW AFT ARM SEGMENT, NEW HINGE AND HINGE ACTUATING MECHANISM, AND STRUCTURAL ADDITIONS TO THE FSS. ADDITIONALLY, A MODIFICATION OF THIS MAGNITUDE WOULD ALMOST CERTAINLY REQUIRE LAUNCH EQUIPMENT TEST FACILITY (LETF) REQUALIFICATION.
GOX VENT ARM MOD

180 DEGREE ROTATION TO RETRACTED POSITION

LOCATION OF PIVOT IF USING ENTIRE EXISTING ARM

NEW AFT ARM SEGMENT HINGE AND HINGE ACTUATING MECHANISM

EXISTING FORWARD ARM SEGMENT

ASSUME 2' MIN CLEARANCE

EXISTING LOCATION OF VENT ARM PIVOT

FSS

16'-2" D (LO2/LH2)

22'-10.5"

ROTATE HOOD 31.5 DEGREES TO MAINTAIN SEAL ALIGNMENT

45° (WAS 13.5°)

76'-6"
ET H2 VENT

There are two major areas of concern for LRB compatibility with this umbilical. The first and most significant concern deals with vehicle drift clearance to the ET vent support structure. The minimum clearance occurs as the skirt passes the 222-ft 6.5-in level. A plan view is shown of the SRB skirt to structure clearance at the 222-ft 6.5-in level. Note the minimum clearance is 2.7 ft.

Assuming a similar drift for the LRB's vs SRB and applying the larger skirt diameters, the structure-to-vehicle relationship is shown. Note that all the LRB concepts show interference at the 222-ft 6.5-in level. Unless the drifts could be modified to obtain clearance, it will be necessary to relocate the ET vent structure. But relocating the structure would obviously produce some major system impacts. First, since the ET intertank access arm is mounted on the structure, it would have to be lengthened to reach the ET. Also, the distance the structure is moved would require additional umbilical vent lines. And lengthening the vent line would necessitate modifying the lower level of the ET vent structure and deceleration unit, since the vent line would extend to a lower level in the retracted position. (Vent line is vertical when retracted.) Furthermore, lengthening the vent line would aggravate the already marginal safety factor for the pyro-bolt, which holds the umbilical to the vehicle. Maintaining the pyro-bolt load within acceptable limits could prove very difficult and could lead to revision of the basic operating design of the umbilical.

In summary, if relocating the ET vent structure is necessary, an extensive design and modification effort would be required, along with LETF requalification testing.

Lockheed
Space Operations Company
SRB SKIRT ET H2 VENT CLEARANCE

VVENT LINE
TOWER
UP 127.5'
NORTH 23.3'
WEST 37.3'
23.9'
20.9'
34.5'
34.9'
EL 222'-6.5''

SRB SKIRT 127.54' RISE NO ENG. FAILURES WORST WEST DRIFT
SRB SKIRT 127.54' RISE SSME NO.2 OUT & WORST WEST DRIFT
SRB SKIRT 0' RISE

N

Lockheed
Space Operations Company

C-41
ET H2 VENT

The second area of concern for the ET vent deals with clearance of the LRB during umbilical disconnect and retract. The figure shows the resulting clearance (or interference) after substituting the larger LRB diameters. As shown, only the GDOSS RP-1 pump-fed has any clearance remaining. Assuming a clearance of 12 inches is desired for all cases, some modification would have to be made to the umbilical.

A concept which could alleviate this problem involves using a cam arrangement on the vent line pivot, which would swing the umbilical around the LRB during retract. This concept could conceivably be implemented without major modifications to the system. However, some LETF testing would be required.
ET GH2 VENT

LRB INTERFERENCE
RP-1 PUMP 2'-9"
RP-1 PRES 3'-7"
CH4 3'-10"
LH2 1'-10"

ET VENT STRUCTURE AT 222'-6.5"

HOLDDOWN APPROXIMATED FROM SRB

USING WORST WEST DRIFT FOR SRB (SSME NO 2 OUT)

* MM RP-1 PUMP AND PRESS HAVE SIMILAR INTERFERENCES
ET H2 VENT ARM MOD LOCATION

WILL REQUIRE SHORTENING STRUCTURE 4.3'

WILL HAVE TO MOVE STRUCTURE NORTH 2.5'

TO OBTAIN CLEARANCE FOR GDSS RP-1 PUMP, NEED TO MOVE END OF STRUCTURE APPROXIMATELY 5 FT.*

ASSUME 2' MIN. CLEARANCE

ET VENT STRUCTURE

FSS

N

* ALL THE LRB CONCEPTS REQUIRE RELOCATION OF ET VENT STRUCTURE (ASSUMING SRB DRIFTS).
 - WORST CASE GDSS LO2/CH4 = 6 FT. RELOCATION
 - BEST CASE GDSS LO2/LH2 = 4 FT. RELOCATION
LRB UMBILICALS

NEW CRYOGENIC UMBILICAL REQUIREMENTS

CRYOGENIC VENT UMBILICAL REQUIREMENTS

ALTHOUGH AN ASSUMPTION WAS MADE THAT VENT INTERFACES FOR THE CRYOGENIC PROPELLANTS WOULD BE PROVIDED IN THE SKIRT AREA AND LOX WOULD VENT TO ATMOSPHERE, THERE IS THE POSSIBILITY THAT UMBILICALS MIGHT BE LOCATED AT UPPER ELEVATIONS.

IT WILL BE REQUIRED TO CAPTURE H2 AND CH4 BECAUSE OF THEIR HAZARDOUS NATURE. THE LRB CONFIGURATION USING LH2 AND LCH4 MAY HAVE UMBILICALS WHICH WOULD REQUIRE SWING ARMS AND TOWERS.

CONCLUSIONS/RECOMMENDATIONS

THE REQUIREMENT FOR NEW VENT UMBILICAL AND SWING ARM SYSTEMS, ASSOCIATED FSS MODIFICATIONS, AND A NEW SUPPORT TOWER STRUCTURE CAN BE ELIMINATED BY REQUIRING THE GDSS LO2/LH2 AND LO2/LCH4 LRB CONCEPTS TO HAVE AFT SKIRT VENT UMBILICALS.
LRB LSE LETF TEST REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW LO2 UMB FOR EACH LRB (2 EACH MLP)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NEW LH2 UMB FOR EACH LRB (2 EACH MLP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NEW CH4 UMB FOR EACH LRB (2 EACH MLP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NEW GH2 VENT LINE & SWING ARM FOR EACH LRB (2 EACH PAD IF REQD)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NEW CH4 VENT LINE & SWING ARM FOR EACH LRB (2 EACH PAD IF REQD)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NEW HOLDDOWN SYSTEM (8 EACH MLP)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NEW POWER / INST. FOR EACH LRB (2 EACH MLP)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NEW RP-1 UMB & SERVICE MAST FOR EACH LRB (2 EACH PAD)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
ORBITER WEATHER PROTECTION SYSTEM

This section will identify the impacts to swing path of the -Y curtain wall by the LRB concepts.

A dynamic clearance of 1 foot six inches must be maintained from flight hardware to hard steel.

The MMC LOX/RP-1 pump-fed LRB concept in the figure shows a clearance of 8 inches from the -Y curtain wall during the extend/retract operation. All other LRB concepts with larger diameters will have a greater impact.

This direct impact on the existing orbiter weather protection system cannot be addressed thoroughly in this study. The modifications required would be determined by structural analysis and further design study upon completion of LRB down selection.
PRESURE-FED LRB PRESSURIZATION GSE

THE LRB PRESSURE-FED SYSTEM WILL BE EQUIPPED WITH ONBOARD PRESSURANT BOTTLES THAT WILL BE PRESSURIZED TO APPROXIMATELY 3,000 psig.

THERE ARE TWO PRESSURANT CANDIDATES BEING PROPOSED FOR LRB USE:

THE GENERAL DYNAMICS CONFIGURATIONS USE TRIDYNE (He, H2, O2.) TRIDYNE WOULD BE SUPPLIED IN TUBE BANK TRAILERS BY GENERAL DYNAMICS. THE TRAILER WILL BE PARKED INSIDE THE PAD HIGH PRESSURE GAS STORAGE FACILITY. SUPPLY GAS FROM THE TUBE BANK IS CONVEYED TO A PRESSURANT REGULATION PANEL WHERE IT WILL BE REGULATED, MONITORED, AND DELIVERED TO THE LRB'S.

THE MARTIN MARIETTA CONFIGURATIONS USE HELIUM 6,000 psig; GHe WOULD BE SUPPLIED TO THE PRESSURANT CONTROL PANEL FROM THE EXISTING PAD HIGH PRESSURE GAS STORAGE FACILITY. THE GHe LINE ALREADY EXISTS IN THE MLP AND WILL BE TAPPED AND ROUTED INTO THE LRB PRESSURANT CONTROL PANEL WHERE IT WILL BE REGULATED, MONITORED, AND DELIVERED TO THE TWO LRBs.

IF THE LRB BOTTLE FILL INTERFACE IS LOCATED ON THE LRB FORWARD SEGMENT, THE PRESSURE REGULATION WILL BE DONE WITH THE PANEL MOUNTED ON THE PCR ROOFTOP.

IF HELIUM IS USED FOR THE LRB PRESSURIZATION SYSTEM, THE HELIUM HIGH PRESSURE STORAGE BATTERY SHOULD BE EXPANDED. ADDITION OF 10 HIGH PRESSURE STORAGE BOTTLES WITH A CAPACITY OF 200 CUBIC FEET IS RECOMMENDED.

IF TRIDYNE IS USED FOR THE LRB PRESSURIZATION SYSTEM, A MINIMUM OF 11 TUBE BANK TRAILERS (ASSUMING EACH TUBE BANK TRAILER CAPACITY OF 200 CUBIC FEET) ARE REQUIRED.

HELIEUM SHOULD BE USED WITH THE LRB PRESSURE-FED SYSTEM. IT IS AN EXISTING AND KNOWN COMMODITY, AND DISTRIBUTION LINES ARE ALREADY IN PLACE.

THE ONBOARD PRESSURANT BOTTLE FILL INTERFACE SHOULD BE LOCATED ON THE AFT SEGMENT OF THE LRB FOR CONVENIENCE AND LESS INTERFERENCE WITH OTHER SHUTTLE SYSTEMS.
PROPELLANT ACQUISITION, STORAGE, AND HANDLING

THE PROPELLANTS REVIEWED INCLUDE LIQUID OXYGEN (LOX), LIQUID HYDROGEN (LH₂), ROCKET GRADE KEROSENE (RP1), AND LIQUID METHANE (LCH₄).

THE BASELINED LRB IS THE LOX/RP1 CONFIGURATIONS AND A REVIEW OF THE SYSTEM REQUIREMENTS ARE PRESENTED.

THE PRESENT PAD PROPELLANT STORAGE AREAS WILL BE UTILIZED.
LIQUID OXYGEN SYSTEM

THE ANALYSIS OF THE LRB LOX REQUIREMENTS IS BASED ON DATA PROVIDED BY GENERAL DYNAMICS AND MARTIN MARIETTA, KNOWN EXTERNAL TANK (ET)/SPACE SHUTTLE MAIN ENGINE (SSME) PROCESSING OPERATIONAL DATA, AND PRESENT SPACE SHUTTLE VEHICLE (SSV) INTERFACE CONTROL REQUIREMENTS. THE SIX LRB CONFIGURATIONS WERE ANALYZED TO DEFINE FILL AND DRAIN REQUIREMENTS, INCLUDING ANTICIPATED BOILOFF LOSES. SCRB/TURNAROUND OPTIONS WERE DEFINED. LOX STORAGE AND ACQUISITION REQUIREMENTS WERE EVALUATED. A DESCRIPTION OF A LRB LOX FACILITY WAS DEVELOPED.

CONCEPT: PROVIDE A NEW 5000-GPM VARIABLE PUMP AND 8 INCH TRANSFER LINE FOR THE LRB. THIS CONCEPT DOES NOT CHANGE ANY OF THE EXISTING MPS OPERATIONAL PROCEDURES.

THE CONCEPT WILL REQUIRE A SECOND 900,000-GALLON STORAGE VESSEL TO MEET TURNAROUND REQUIREMENTS WITHOUT STORAGE VESSEL REFILL. ALSO IN THE RECOMMENDED DESIGN IS THE CAPABILITY TO OFFLOAD 10 TANKERS AT A TIME INSTEAD OF THE PRESENT 5.

CONCLUSION/RECOMMENDATIONS

THE EXISTING LOX FACILITY CANNOT MEET PROGRAM REQUIREMENTS FOR SCRUB/TURNAROUND WITH LRB IN 24 HOURS; THEREFORE, DOUBLING THE FACILITY SIZE IS REQUIRED. ALSO INCLUDED IN THE RECOMMENDATION IS THE DOUBLING OF THE TANKER FLEET SO THAT NUMBER OF SHIFTS REQUIRED TO FILL THE STORAGE VESSEL IS REDUCED.
LRB LOX SYSTEM FLUID GSE REQUIREMENTS FOR PAD/MLP

THE PNEUMATIC SYSTEM WILL INCLUDE NITROGEN AND HELIUM PNEUMATIC DISTRIBUTION SYSTEMS. NITROGEN IS USED FOR REMOTE OPERATION OF VALVES AND IN THE PURGE SYSTEM TO PROTECT FACILITY LINES, COMPONENTS, AND EQUIPMENT FROM MOISTURE AND CONTAMINATION. NITROGEN IS SUPPLIED FOR BLANKET PRESSURE WHEN THE LOX SYSTEM IS IN STANDBY CONFIGURATION, AND FOR LEAK CHECKS OF SYSTEM CONNECTIONS. HELIUM IS USED FOR LRB LOX TANK ANTI-GEYSERING, PREPRESSURIZATION AND VENT VALVE OPENING ACTUATION. IT IS ALSO USED FOR LRB UMBILICAL ANTI-ICING.
RP1 SYSTEM

THE GDSS AND MMC LOX/RP1 DATA YIELDS FOUR CONFIGURATIONS/OPTIONS FOR THE LOX/RP1 SYSTEM. THESE OPTIONS INVOLVE THE USE OF EITHER PUMP- OR PRESSURE-FED LIQUID ROCKET BOOSTERS. ALSO INCLUDED IN THIS STUDY IS AN EVALUATION OF THE TRANSFER METHOD FROM STORAGE TO VEHICLE.

DUE TO THE PHYSICAL PROPERTIES OF RP1, TRANSFER AND STORAGE FACILITIES WILL NOT INVOLVE A MASS LOSS OF RP1 (SUCH AS BOILOFF). THIS SIMPLIFIES A SCRUB/TURNAROUND OPERATION, AND NO ADDITIONAL STORAGE SPACE WOULD BE REQUIRED ABOVE THAT NECESSARY TO SUPPORT THE VEHICLE AND MAINTAIN THE REQUIRED MASS STORAGE CAPABILITY. ONE OF THE ADVANTAGES OF RP1/LOX IS THE EXPERIENCE GAINED DURING THE APOLLO PROGRAM. A NEW BASELINE WOULD BE REQUIRED, AND A REBIRTH OF THE APOLLO DOCUMENTATION AND PROCEDURES SHOULD PROVE SUFFICIENT. THERE ARE STILL SOME EXISTING INSTALLATIONS INVOLVING RP1, SUCH AS STORAGE FACILITIES ON PAD A; HOWEVER, THESE FACILITIES HAVE BEEN ABANDONED IN PLACE AND TO ASSUME THEIR USABILITY WOULD BE UNREALISTICALLY OPTIMISTIC. TO PRESUME THE WORST, THE RP1 SYSTEM WOULD REQUIRE THE INSTALLATION OF AN ENTIRELY NEW STORAGE AND TRANSFER MECHANISM.

DESIGN CONCEPT FOR PUMP TRANSFER

THE USE OF A PUMP-FED RP1 SYSTEM INVOLVES THE INSTALLATION OF A NEW TRANSFER (AND PROBABLY STORAGE) FACILITY AT KSC. THREE 85,000-GALLON STORAGE TANKS WOULD HOLD THE RP1, WHILE A REDUNDANT TWO-PUMP SYSTEM WILL PROVIDE THE MOTIVE FORCE. A NEW EDUCTOR SYSTEM WOULD AID THE HYDRAULIC PRESSURES IN THE EVENT A SCRUB TURNAROUND WAS REQUIRED. FINALLY, THE SECONDARY 1,000 GPM-PUMPING SYSTEM WOULD PROVIDE A PURIFICATION CAPACITY AS REQUIRED.
RPI SYSTEM FLUID GSE REQUIREMENTS FOR PAD/MLP

This report assumes that the LRB RPI system will be similar to the Apollo RPI propellant loading system. The propellant will be stored at the launch pad and be transferred to the vehicle fuel tank using pumps.

The valve complexes will require control panels and consoles consisting of pneumatically operated valves to provide control of the transfer components, operate the LRB RP-1 tank vent valves, pressurize the vehicle RPI tank in preparation for flight, and provide blanket pressures for the system for moisture protection when the system is not in use.

The block diagram depicting these systems is described here.
LRB RP-1 SYSTEM BLOCK DIAGRAM

- RP-1 STORAGE TANK AREA
 - RP-1 STORAGE TANKS
- RP-1 PROPELLANT CONTROL CONSOLE
- RP-1 FACILITY PURGE PANEL
- RP-1 SYSTEM BLANKET PRESSURE AND PURGE PANEL
- RP-1 TANK PRESSURE AND PURGE PANEL
- MLP VALVE COMPLEX
- LRB
- MOBILE LAUNCHER PLATFORM (MLP)
- DISCONNECT TOWER

- LRB / RP-1 VENT VALVE ACTUATION PANEL
- LRB / RP-1 INTERTANK PURGE PANEL

LRBI FINAL ORAL PRESENTATION

81019-052.VG
COMPARISON OF LH2 VS RP-1 LRB

THE LRB'S USED AS A BASELINE TO STUDY THE KSC IMPACTS WAS THE LOX/RP-1 CONFIGURATIONS FROM BOTH CONTRACTORS. THIS CHOICE OF CONFIGURATION ALLOWED THE COMPARISON OF APPLES AND APPLES AND WAS NOT INTENDED TO ADVOCATE RP-1 AS A FUEL. THE FUEL CHOICE AT THE LAUNCH SITE FOR ANY FUTURE PROPULSION SYSTEM IS LIQUID HYDROGEN. ALTHOUGH THE GDSS LOX/LH2 CONFIGURATION HAS FACILITY IMPACTS WHICH ARE MORE EXTENSIVE THAN THE FOUR LOX/RP-1 CONFIGURATIONS (SEE SECTION 3), FROM A PROPELLANT POINT OF VIEW THE LH2 LRB'S ARE PREFERRED.

TO COMPARE LH2 WITH THE RP-1 SYSTEM, A LH2 SYSTEM WOULD BE MORE EXPENSIVE TO IMPLEMENT BUT THE BENEFITS OUTWEIGHT THE COST. THE INTANGIBLES INCLUDE ENVIRONMENTAL IMPACTS (EMISSION - AIR QUALITY, POLLUTION - GROUND WATER (QUALITY), AVAILABILITY, ENGINE REQUIREMENTS AND SYSTEM MAINTENANCE.

FROM A HAZARD POINT OF VIEW LH2 VAPOR IS MORE HAZARDOUS THAN RP-1 VAPOR BUT THE SAFETY SYSTEM FOR H2 CURRENTLY EXISTS AND THE ENVIRONMENTAL IMPACTS ARE LOW.

ALL LRB CONFIGURATIONS POSE FACILITY IMPACTS (ACCESS, UMBILICAL REDESIGNS, FLAME DEFLECTOR REDESIGNS) WHICH MUST BE SOLVED WITH ENGINEERING AND OPERATIONAL CHANGES. THE TALLER LOX/LH2 LRB WILL INTERFERE WITH THE GOX VENT ARM (THIS PROBLEM EXISTS WITH THE LOX/RP-1 GDSS PRESS FED CONFIGURATION ALSO. THIS IMPACT TO THE GOX VENT ARM CAN BE SOLVED EITHER WITH A CONFIGURATION CHANGE TO THE VENT ARM OR A DESIGN CHANGE TO THE ET.

EVEN WITH THE FACILITY IMPACTS THE VERSATILITY OF LH2 IS FAR SUPERIOR TO RP-1 FOR LAUNCH VEHICLE PROGRAMS OF THE FUTURE.

Lockheed
Space Operations Company
COMPARISON OF LH2 vs RP-1

<table>
<thead>
<tr>
<th></th>
<th>RP-1</th>
<th>LH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-RECURRING COST</td>
<td>LEAST @ $6.6M</td>
<td>MOST @ $25.9M</td>
</tr>
<tr>
<td>RECURRING COSTS INCLUDE</td>
<td>• PUMP MAINTENANCE</td>
<td>• VJ EQUIP / VESSEL MAINTENANCE</td>
</tr>
<tr>
<td>TECHNOLOGY / SYSTEM</td>
<td>• GROUND WATER MONITORING</td>
<td>• H2 MONITORING</td>
</tr>
<tr>
<td></td>
<td>• AIR QUALITY MONITORING</td>
<td>• MODIFY EXISTING SYSTEM</td>
</tr>
<tr>
<td></td>
<td>• NEW ENGINEERING STAFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NEW INSTALLATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NEW SUPPORT / SAFETY SYSTEM</td>
<td></td>
</tr>
<tr>
<td>COMMODITY COST / LAUNCH</td>
<td>WORST LRB $348,000 (1)</td>
<td>$455,000</td>
</tr>
<tr>
<td>(SUCCESSFUL - NO SCRUB)</td>
<td>BEST LRB $261,000 (2)</td>
<td></td>
</tr>
<tr>
<td>ACQUISITION - COST</td>
<td>$3.00/GALLON PETROLEUM</td>
<td>$1.00 / GALLON NATURAL GAS, PETROLEUM</td>
</tr>
<tr>
<td>MADE FROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>LIMITED NEW FLEET</td>
<td>EXPANDING EXISTING FLEET</td>
</tr>
<tr>
<td>TRANSPORTATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. GDSS PRESSURE
2. MMC PUMP
3. GDSS LOX / LH2
4. GDSS FATBIRD
5. GDSS PUMP
6. MMC PRESSURE
<table>
<thead>
<tr>
<th></th>
<th>LH2</th>
<th>RP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>● ENVIRONMENTALLY CLEAN</td>
<td>● ENVIRONMENTALLY DIRTY</td>
</tr>
<tr>
<td>Engine Servicing</td>
<td>HIGH IGNITION POINT HAZARD</td>
<td>HOTTER THAN LOX / LH2</td>
</tr>
<tr>
<td>Hazard</td>
<td>LOW VAPOR IGNITION HAZARD</td>
<td>WATER GLYCOL INSTALLATION OF PROPPELLANT IGNITION CARTRIDGES</td>
</tr>
<tr>
<td>LRB Site - Shirt Diameter</td>
<td>24.4'</td>
<td>26.8'</td>
</tr>
<tr>
<td>Length</td>
<td>22.3'</td>
<td>22.1'</td>
</tr>
<tr>
<td>Diameter</td>
<td>191.0'</td>
<td>195.7'</td>
</tr>
<tr>
<td>Best</td>
<td>22.1'</td>
<td>148.3'</td>
</tr>
<tr>
<td>Worst</td>
<td>17.7'</td>
<td>16.2'</td>
</tr>
</tbody>
</table>

NOTES: (1) GDSS PRESSURE (2) MMC PUMP (3) GDSS FABTIRD
LAUNCH AD CONCLUSIONS

- SIDE DEFLECTOR ACTS AS AN EXTENSION OF FLAME TRENCH
 - FLAME IMPINGEMENT
- MULTI-BOOSTER (LRB / SRB) MAIN DEFLECTOR REQUIRED
- NEW ACCESS REQUIRED
- ACCESS ABOVE PCR ROOF NOT AVAILABLE
- EXISTING UMBILICALS / MECHANISMS REQUIRE REDESIGN AND LETF TESTING
 - MAJOR IMPACT TO ET H2 VENT DUE TO DIAMETER
 - GOX VENT IMPACT DUE TO LENGTH
- NEW LRB UMBILICALS REQUIRED
- WEATHER PROTECTION SYSTEM REQUIRES REDESIGN
- NEW PROPELLANT STORAGE REQUIRED
- NEW GSE REQUIRED
FIRING ROOM LPS REQUIREMENT FOR LRB

TO ACCOMMODATE LRBs DURING LAUNCH COUNTDOWN NEW APPLICATION SOFTWARE WILL BE REQUIRED. EACH OF THE FIRING ROOMS WILL REQUIRE ADDITIONAL LPS HARDWARE. EACH OF THE FOUR FIRING ROOMS WILL NEED: THREE NEW LPS TYPE-1 CONSOLES, AND EITHER TWO OR FOUR NEW PCM-TYPE FEPs, DEPENDING ON WHETHER OR NOT THE LRB PCM DATA COMES INDEPENDENTLY FROM THE ORBITER 128 KB PCM. REALLOCATION OF THE EXISTING BOOSTER TEST CONDUCTOR PERSONNEL AND SOFTWARE WILL ALSO BE NECESSARY.

TO ACCOMMODATE NEW COMMAND TYPES, DATA STREAMS, AND DATA TYPES REQUIRED BY LRB SYSTEMS, APPROXIMATELY 900,000 LINES OF CCMS SYSTEM SOFTWARE WILL BE REQUIRED. FURTHER STUDY WILL BE REQUIRED TO DETERMINE THE IMPACT OF EXCEEDING THE CURRENT LIMITATION OF FIFTEEN CONSOLES IN A FIRING ROOM.

THE EXISTING CCMS EQUIPMENT IN THE FIRING ROOMS WILL NOT SUPPORT THE EXPANSION NEEDED TO SUPPORT LRBs. NO EQUIPMENT OF THIS TYPE IS AVAILABLE, LPS 2 WILL BE NECESSARY FOR THE UPGRADE OF THE FIRING ROOM CCMS EQUIPMENT. THIS PROPOSED USE OF LPS 2 EQUIPMENT SHOULD BE FEASIBLE BECAUSE THE TIMELINES FOR LPS 2 DEVELOPMENT VERY CLOSELY MATCH THOSE PROJECTED FOR THE LRB.
Lines of CCMS Software Required

<table>
<thead>
<tr>
<th>System</th>
<th>Lines Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Build</td>
<td>250,000</td>
</tr>
<tr>
<td>Executors</td>
<td>100,000</td>
</tr>
<tr>
<td>Operating System</td>
<td>100,000</td>
</tr>
<tr>
<td>FEP</td>
<td>150,000</td>
</tr>
<tr>
<td>Retrieval</td>
<td>200,000</td>
</tr>
<tr>
<td>Console</td>
<td>50,000</td>
</tr>
<tr>
<td>SGOS</td>
<td>100,000</td>
</tr>
<tr>
<td>RPS</td>
<td>100,000</td>
</tr>
<tr>
<td>Total</td>
<td>950,000</td>
</tr>
</tbody>
</table>
LPS APPLICATION SOFTWARE REQUIREMENTS FOR LRB

THE LPS APPLICATIONS SOFTWARE ASSESSMENT WAS BASED ON A PERCENTAGE OF EXISTING SOFTWARE EXPECTED TO CHANGE OR BE ADDED AS A RESULT OF SWITCHING TO A LIQUID ROCKET BOOSTER. THE EXISTING FIRING ROOM APPLICATION SOFTWARE WAS REVIEWED BY USING EQUIVALENT SHUTTLE SYSTEMS TO REPRESENT THE LRB ONBOARD SYSTEMS, AS WELL AS KNOWLEDGE OF EXISTING GSE, PROCEDURES, AND OPERATING METHODS. SGOS MODELS USED TO PERFORM SOFTWARE VERIFICATION AND VALIDATION WERE ESTIMATED IN THE SAME MANNER. THE EXPECTED CONFIGURATIONS OF THE VARIOUS SYSTEMS AND SUBSYSTEMS WERE ESTIMATED BY COMPARATIVE ANALYSES TO SIMILAR SYSTEMS ABOARD THE ORBITER. RELATIVE NUMBERS OF CONSOLE DISPLAY USED DURING THE DIFFERENT TESTS PERFORMED ON THE SHUTTLE DURING BOTH PROCESSING AND LAUNCH COUNTDOWN WERE ASSESSED.

THE OPERATIONAL PHILOSOPHY AND CURRENT ASSIGNMENTS OF SYSTEM RESPONSIBILITIES WITHIN THE FIRING ROOM MAKE IT FEASIBLE FOR ALL SYSTEMS TO BE OPERATED AND MONITORED BY PERSONNEL CURRENTLY PERFORMING THESE TASKS ON THE ORBITER, ET, AND SRBs, WITH THE EXCEPTION OF LRB ENGINES AND PROPELLANT SYSTEMS.

THE GROUND LAUNCH SEQUENCER (GLS) IS AN EXCEPTIONALLY TIME CRITICAL SET OF APPLICATION SOFTWARE. THE EFFECTS OF ADDING EIGHT NEW ENGINES AND THEIR IMPACTS ON THE TERMINAL COUNTDOWN, ABORT, AND SAFING PROCEDURES WILL NECESSITATE THE REWRITE OF THE ENTIRE GLS TO INCLUDE LRBS.

APPROXIMATELY 900,000 LINES OF CODE WILL HAVE TO BE WRITTEN OR MODIFIED TO INCORPORATE LRBS INTO FIRING ROOM APPLICATION SOFTWARE. IN ADDITION THERE WILL BE APPROXIMATELY 1,000 NEW OR MODIFIED DISPLAY SKELETONS THAT WILL BE REQUIRED.
LAUNCH CONTROL CENTER CONCLUSIONS

- 950,000 LINES OF CODE FOR CCMS REQUIRED

- 900,533 ADDITIONAL LINES OF CODE REQUIRED FOR APPLICATION SOFTWARE
C-5 SUBSTATION AND EMERGENCY GENERATOR

THE POWER REQUIREMENTS OF ALL LC-39 FACILITIES WILL RESULT IN THE NEED FOR 12 NEW 13.8 KV FEEDERS FROM THE C-5 SUBSTATIONS. THE C-5 SUBSTATION IS AT OR NEAR CAPACITY AT THIS TIME. ADDITIONAL SWITCHES AND TRANSFORMERS WILL BE REQUIRED IN THE SWITCHYARD TO ACCOMMODATE THIS NEW CAPACITY.

THERE WILL BE FIVE NEW 480 V ac FEEDERS REQUIRED FROM THE C-5 EMERGENCY GENERATORS. SUFFICIENT GENERATOR CAPACITY EXISTS TO SUPPORT THE ADDITIONAL POWER LOADS RESULTING FROM THE ADDITION OF EMERGENCY SUBSTATIONS. TRANSFORMER CAPACITY IN THE EXISTING GENERATOR BUILDING WILL BE EXCEEDED AND THEREFORE TWO NEW TRANSFORMERS WILL BE REQUIRED TO ACCOMMODATE THE NEW EMERGENCY FEEDERS. THE EXISTING CABLE TRENCHES ARE AT CAPACITY.

TO SUPPORT THE ADDITION OF NEW FEEDERS, SOME NEW MANHOLES, CABLE TRENCHES, AND DUCT BANKS WILL BE REQUIRED.
LC-39 POWER REQUIREMENTS

<table>
<thead>
<tr>
<th>SITE</th>
<th>FACILITY 60 Hz POWER</th>
<th>EMERGENCY GENERATOR 60 Hz POWER</th>
<th>UPS</th>
<th>FIBER DATA LINKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRB AT ET PROCESSING FACILITY</td>
<td>4-13.8KV FEEDERS 2-2000 AMP SUBSTATION (DOUBLE ENDED)</td>
<td>1-480V @ 400 AMP FEEDER</td>
<td>1-600KVA @ 480V</td>
<td>N/R</td>
</tr>
<tr>
<td>MLP PARK SITE</td>
<td>2-13.8KV FEEDERS</td>
<td>1-480V @ 400 AMP FEEDER</td>
<td>N/R</td>
<td>20-LCC</td>
</tr>
<tr>
<td>PAD A LOX</td>
<td>1-13.8KV FEEDER 1-2000 AMP SUBSTATION</td>
<td>N/R</td>
<td>N/R</td>
<td>3-LCC</td>
</tr>
<tr>
<td>PAD A FUEL</td>
<td>1-13.8KV FEEDER 1-2000 AMP SUBSTATION</td>
<td>N/R</td>
<td>N/R</td>
<td>3-LCC</td>
</tr>
<tr>
<td>PAD B LOX</td>
<td>1-13.8KV FEEDER 1-2000 AMP SUBSTATION</td>
<td>N/R</td>
<td>N/R</td>
<td>3-LCC</td>
</tr>
<tr>
<td>PAD B FUEL</td>
<td>1-13.8KV FEEDER 1-2000 AMP SUBSTATION</td>
<td>N/R</td>
<td>N/R</td>
<td>3-LCC</td>
</tr>
<tr>
<td>LCC</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>54</td>
</tr>
<tr>
<td>VAB HI-BAY 4 (ALL NEW)</td>
<td>2-13.8KV FEEDERS</td>
<td>1-480V @ 400 AMP FEEDER</td>
<td>N/R</td>
<td>20-LCC</td>
</tr>
<tr>
<td>C-5 POWER STATION</td>
<td>12-200 AMP @ 13.8KV FEEDERS</td>
<td>3-400V @ 480 AMP FEEDERS</td>
<td>N/R</td>
<td>12-LCC</td>
</tr>
<tr>
<td>C-5 EMERGENCY GENERATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGENDA

I. INTRODUCTION
 Gordon Artley

II. LRBI RESULTS
 BASELINE / LAUNCH SITE SCENARIO
 Pat Scott
 FACILITIES AND GROUND SYSTEMS
 Greg DeBlasio
 IMPLEMENTATION
 Gordon Artley

III. SUMMARY
 Jerry Lefebvre
 Gordon Artley
LRB LAUNCH SITE PLAN

THE LRB LAUNCH SITE PLAN PRESENTS AN IMPLEMENTATION CONCEPT FOR INTEGRATION OF THE NEW BOOSTER ELEMENT INTO THE STS. THIS PLAN SATISFIES THE PHASE-A STUDY GROUND RULE OF MINIMIZING OR ELIMINATING SRB/STS OPERATIONAL IMPACTS DURING LRB IMPLEMENTATION. IN ADDITION, AT THE CONCLUSION OF THE TRANSITION PHASE, SRB/STS OPERATIONAL CAPABILITY IS RETAINED.

THIS PLAN SPANS A PERIOD OF APPROXIMATELY 15 YEARS, FROM PHASE C/D AUTHORITY TO PROCEED THROUGH LRB MISSION #122 AND CONSISTS OF THREE NON-AUTONOMOUS LAUNCH SITE PHASES; ACTIVATION, TRANSITION AND OPERATIONS. THESE PHASES ARE INTEGRATED WITH THREE DISCRETE PROGRAM ASPECTS: FUNDING, MULTI-CENTER DESIGN DEVELOPMENT, AND THE FLIGHT ELEMENT HARDWARE DELIVERY TO THE LAUNCH SITE.

ACTIVATION INCLUDES THE END-TO-END IMPLEMENTATION OF THE 1ST LINE FACILITIES, REQUIRED TO SUPPORT THE PROPOSED LRB PATHFINDER PROGRAM AND ILC; AND THE 2ND LINE FACILITIES, REQUIRED AS THE LRB FLIGHT RATE RAMPS UP.

TRANSITION IS EFFECTIVELY THE 5 YEAR PERIOD OF MIXED-FLEET PROCESSING ACTIVITY OF SRB AND LRB FLIGHT HARDWARE.

THE OPERATIONAL PHASE EXTENDS OVER THE 15 YEAR PROGRAM DURATION, INITIATING WITH SUPPORT TO THE ACTIVATION DESIGN DEVELOPMENT, PROCEEDING WITH STAFFING AND TRAINING, AND CONCLUDING WITH FULL OPERATIONAL CAPABILITY SUPPORTING A SUSTAINED LRB FLIGHT RATE OF 14 MISSIONS PER YEAR.
LRB LAUNCH SITE PLAN SYNOPSIS

TODAY'S FACILITIES
USE AS IS
- BARGE DOCKS
- OPF

MODIFY
- VAB HIGH BAYS
- CRAWLERWAY
- LETF
- LCC
- LAUNCH PAD FAC
- ELEC. PWR. DIST.

ADDITIONAL FACILITIES
- LRB/ET PROCESSING
- MLPs

SUPPORTING DOCUMENTATION
- OMD
- OMl / PM-OMls

SOFTWARE CHANGES
- RSLs & GLS
- FLIGHT

TRANSITION

△ HARDWARE ON DOCK

△ INITIAL LAUNCH CAPABILITY

GRADUATED LAUNCH RATE
- 3 MISSIONS IN 1996

△ INITIAL OPERATIONAL CAPABILITY
- 6 MISSIONS IN 1997
- 9 MISSIONS IN 1998
- 12 MISSIONS IN 1999
- 14 MISSIONS IN 2000

TRANSITION COMPLETE
14-LRB 0-SRB MISSIONS/YEAR

OPERATIONS

INITIAL GOAL
(MINIMUM SUSTAINED LAUNCH RATE 14/YR)

FUTURE POTENTIAL
- SHUTTLE 'C'
- ALS
- STANDALONE
FACILITY TRANSITION OVERVIEW

This graph shows the two lines of facilities planned and the associated part of the transition flight rate covered. The operational capability is also illustrated with the final mix of STS missions summarized at the bottom.
TRANSITION OVERVIEW

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st LINE ACTIVATION</td>
<td></td>
</tr>
<tr>
<td>1st LRB MLP</td>
<td></td>
</tr>
<tr>
<td>ET/LRB HPF</td>
<td></td>
</tr>
<tr>
<td>VAB HB-4 MOD</td>
<td></td>
</tr>
<tr>
<td>1st LAUNCH PAD LRB MOD</td>
<td></td>
</tr>
<tr>
<td>LETF MODS</td>
<td></td>
</tr>
<tr>
<td>LCC/LPS MOD</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>14-11 SRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3 LRB</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>11-9 SRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6 LRB</td>
<td></td>
</tr>
<tr>
<td>OPERATIONS 81 MISSION TOTAL 1st LINE CAPABILITY</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd LINE ACTIVATION</td>
<td></td>
</tr>
<tr>
<td>2nd LRB MLP</td>
<td></td>
</tr>
<tr>
<td>VAB HB-3 MOD</td>
<td></td>
</tr>
<tr>
<td>2nd PAD LRB MOD</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>8-5 SRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9 LRB</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>5-2 SRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12 LRB</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>2-0 SRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-14 LRB</td>
<td></td>
</tr>
<tr>
<td>OPERATIONS 47 ADDITIONAL MISSION CAPABILITY</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| SRB MISSIONS | 14 | 14 | 14 | 14 | 11 | 8 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| LRB MISSIONS | 0 | 0 | 0 | 0 | 0 | 3 | 6 | 9 | 12 | 14 | 14 | 14 | 14 | 14 | 8 |

TOTAL LRB MISSIONS THRU MID 2006 = 122
FIRST LINE FACILITY ACTIVATION

The first line facilities are identified in this graphic, and the end-to-end implementation durations for each station set are displayed. These facilities are required to support the proposed LRB Pathfinder program and ILC, and result in the capability to support LRB flight rates of 6 to 9 missions per year.

The current launch site critical path is the design, construction, verification and certification of the new LRB MLP #4.

Conversion of LC-39 Pad B to LRB /STS capability, poses the greatest technical and programmatic schedule risk in the scope of LRB activation at KSC. Design is challenged by the constraint of maintaining SRB/STS launch capability. Schedule challenges are associated with maintaining the STS program flight rate while modifying an operational launch pad.
FIRST LINE FACILITY ACTIVATION

ACTIVATION PHASE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP PARKSITE #2 (M)</td>
<td></td>
</tr>
<tr>
<td>LRB MLP #4 (N)</td>
<td></td>
</tr>
<tr>
<td>LETF (M)</td>
<td></td>
</tr>
<tr>
<td>ET HORIZ. PROC. FAC. (N)</td>
<td></td>
</tr>
<tr>
<td>VAB HB-4 (M)</td>
<td></td>
</tr>
<tr>
<td>HB-4 CRAWLER WAY (M)</td>
<td></td>
</tr>
<tr>
<td>LRB HORIZ. PROC. FAC. (N)</td>
<td></td>
</tr>
<tr>
<td>PAD B (M)</td>
<td></td>
</tr>
<tr>
<td>LCC.LPS (M)</td>
<td></td>
</tr>
<tr>
<td>HIGH VOLT. PWR. DIST. (M)</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- **Scheduled Work**
- **Float**
- **MOD**
- **NEW CONSTRUCTION**
SRB/LRB PROCESSING FACILITY UTILIZATION

THIS GRAPH (ONLY ONE OF TEN YEARS COVERED IN THE FINAL REPORT) SHOWS THE KSC ACTIVATION ACCOMMODATIONS THAT HAD TO BE MADE AS WELL AS THEIR IMPACT ON SRB/LRB FLOW PROCESSING.

0 ALL MISSION PROCESSING FLOWS KEEP THE ORIGINALLY SCHEDULED LAUNCH DATE (LRB FLOWS WERE "BACKED OFF" THIS DATE USING THE NEW FACILITIES AND TIME LINES).

0 ARROWS INDICATE PROCESSING ACTIVITIES DISPLACED TO ALTERNATE FACILITIES.

0 X'S INDICATE FLOW PROCESSING REQUIREMENTS CANCELLED OR SUBSTANTIALLY CHANGED DUE TO CHANGE FROM SRB TO LPB.
LRB/STS-111-1ST LAUNCH TABLE

FY 1996-I.L.C. FIRST LRB POWERED STS MISSION

<table>
<thead>
<tr>
<th>KSC LOCATION</th>
<th>PROCESSING FUNCTION</th>
<th>GENERIC WORK DAYS</th>
<th>LOCATION SCHEDULE (DAYS/SHIFTS (FACTOR))</th>
<th>CALENDAR START</th>
<th>CALENDAR COMPLETE</th>
<th>CALENDAR DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>STS-111 MISSION</td>
<td>7</td>
<td>7/3 (1.00)</td>
<td>FEB 20</td>
<td>FEB 27</td>
<td>7</td>
</tr>
<tr>
<td>PAD</td>
<td>FINAL C/O & CD</td>
<td>50</td>
<td>6/3 (1.14)</td>
<td>DEC 26</td>
<td>FEB 20</td>
<td>57</td>
</tr>
<tr>
<td>VAB</td>
<td>ORB MATE & INTEG TEST</td>
<td>13</td>
<td>7/3 (1.00)</td>
<td>DEC 13</td>
<td>DEC 25</td>
<td>13</td>
</tr>
<tr>
<td>OPF</td>
<td>ORBITER PROCESSING</td>
<td>55</td>
<td>5/3 (1.29)</td>
<td>OCT 03</td>
<td>DEC 12</td>
<td>71</td>
</tr>
<tr>
<td>VAB</td>
<td>LRB/ET MATE AND C/O</td>
<td>27</td>
<td>7/3 (1.00)</td>
<td>NOV 16</td>
<td>DEC 12</td>
<td>27</td>
</tr>
<tr>
<td>ET-HPF</td>
<td>ET PROCESSING</td>
<td>20</td>
<td>5/3 (1.29)</td>
<td>OCT 21</td>
<td>NOV 15</td>
<td>26</td>
</tr>
<tr>
<td>VAB</td>
<td>LRB MATE TO MLP</td>
<td>10</td>
<td>7/3 (1.00)</td>
<td>NOV 06</td>
<td>NOV 15</td>
<td>10</td>
</tr>
<tr>
<td>LRB-HPF</td>
<td>LRB STAND ALONE PROC.</td>
<td>45</td>
<td>5/3 (1.29)</td>
<td>SEP 08</td>
<td>NOV 05</td>
<td>58</td>
</tr>
<tr>
<td>MLP</td>
<td>STS INTEGRATION SUPPORT (INCLUDING 5-DAY HOLDDOWN POST VALIDATION)</td>
<td>55</td>
<td>7/3 (1.00)</td>
<td>NOV 01</td>
<td>DEC 25</td>
<td>55</td>
</tr>
<tr>
<td>MLP</td>
<td>LAUNCH READINESS (INCLUDING 10 DAYS FOR POST LAUNCH REFURB)</td>
<td>60</td>
<td>6/3 (1.14)</td>
<td>DEC 26</td>
<td>MAR 01</td>
<td>69</td>
</tr>
</tbody>
</table>

* Function not subject to Learning Curve Factor (LCF), All others multiplied by a LCF of 2.5 for this flow only.
SECOND LINE FACILITY ACTIVATION

ACTIVATION OF THE SECOND LINE FACILITIES IS REQUIRED TO SUPPORT THE INCREASED LRB FLIGHT RATE, PROJECTED DURING THE THIRD, FOURTH AND FIFTH YEARS OF TRANSITION; CONCLUDING WITH THE CAPABILITY TO SUPPORT 14 LRB MISSIONS PER YEAR DURING THE SUSTAINED OPERATIONAL PHASE.

THE ON-SITE IMPLEMENTATION ACTIVITY FOR THE VAB HIGH BAY 3 AND LC-39 PAD A STATION SETS, ARE SIGNIFICANT SCHEDULING CHALLENGES. MODIFICATION WINDOWS ARE SHORT IN DURATION, FORCING WORK TO PROCEED "AROUND THE CLOCK." CONTINGENCY TIME HAS BEEN ELIMINATED IN THE CONCEPTUAL PROJECT PLANNING.
SECOND LINE FACILITY ACTIVATION

<table>
<thead>
<tr>
<th>ACTIVATION PHASE</th>
<th>TRANSITION PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY1990</td>
<td>FY1991</td>
</tr>
<tr>
<td>FY1992</td>
<td>FY1993</td>
</tr>
<tr>
<td>FY1994</td>
<td>FY1995</td>
</tr>
<tr>
<td>FY1996</td>
<td>FY1997</td>
</tr>
<tr>
<td>FY1998</td>
<td>FY1999</td>
</tr>
<tr>
<td>FY2000</td>
<td></td>
</tr>
</tbody>
</table>

- **LRB MLP #5 (N)**
- **LETF (M)**
- **VAB HB-3 (M)**
- **PAD A (M)**
- **HIGH VOLT. PWR. DIST. (M)**

Legend:
- **Scheduled Work**
- **Float**
- **Mod**
- **New Construction**

Lockheed Space Operations Company

D-9
FACILITY PLANNING CHART

0 HIGHLIGHTED MISSIONS WERE CHOSEN FOR CONVERSION FROM SRB's TO LRB's

0 CIRCLED NUMBER INDICATES LRB MISSION SEQUENCE

- MISSION (1) EXERCISES THE INITIAL LAUNCH CAPABILITY
- MISSION (4) ESTABLISHES INITIAL OPERATIONAL CAPABILITY

0 FISCAL YEAR DIVISIONS PORTRAY THE 3/6/9/12/14 LRB RAMP RATE

• FLIGHT HARDWARE DRAWINGS AND LRU SPECIFICATIONS (NEW)
• GSE AND LSE DRAWINGS, FMEA/CIL ANALYSIS, AND PM OMIs (NEW)
• LOGISTICAL SPARES LISTS, AND SPARES AND PROPELLANT ACQUISITION PLANS (NEW)
• OMRSD AND ASSOCIATED PROCESSING OMIs AND JOB CARDS (REVISION)
 - HORIZONTAL ET PROCESSING (REVISION)
 - STAND ALONE HORIZONTAL LRB PROCESSING (NEW)
 - INTEGRATED MATE, TESTING, AND CLOSE OUT - VAB (REVISED)
 - PAD OPERATIONS (REVISION)
• LAUNCH PROCESSING SYSTEM SOFTWARE (NEW)
 - LAUNCH COMMIT CRITERIA (REVISION)
 - FLIGHT RULES (REVISION)
• STANDARD PRACTICE INSTRUCTIONS AND MANUALS (REVISION)
NASA/CONTRACTOR MANPOWER REQUIREMENTS

THESE MANPOWER REQUIREMENTS ARE THE CUMULATIVE SUPPORT REQUIREMENT FOR THE LRB PROGRAM. THREE TEAMS MAKE UP THE SUPPORT GROUP.

ACTIVATION MANAGEMENT TEAM
- RESPONSIBLE FOR COORDINATION OF DESIGN, CONSTRUCTION AND ACTIVATION OF FACILITIES.
- INTERFACE BETWEEN THE LRB ACTIVATION AND OPERATION, SRB PROGRAM MIGRATE TO TO LRB TEAM AS CORE GROUP FOR OPERATIONAL PHASE.

NASA ENGINEERING INTERFACE TEAM
- PERFORM ENVIRONMENTAL IMPACT STUDIES FOR NEW FACILITIES AND MODIFICATIONS TO EXISTING FACILITIES.
- ENGINEERING DOCUMENT - CHANGE AND APPROVAL LOOPS SYSTEM WALK-DOWNS/TEST SURVEILLANCE
- SCHEDULES AND APPROVALS
- SITE CONTROL

NASA OPERATIONS INTERFACE TEAM
- OPERATIONS AND ENGINEERING OMD
- OPERATIONS AND ENGINEERING SOFTWARE
- OPERATIONS AND ENGINEERING CERTIFICATIONS
- OPERATIONS AND ENGINEERING ORI's
- OPERATIONS AND ENGINEERING PATHFINDER
- OPERATIONS AND ENGINEERING TURNOVER/ACCEPTANCE
- OPERATIONS AND ENGINEERING CDR's
- OPERATIONS AND ENGINEERING TRAINING
PROCESSING MANPOWER REQUIREMENTS

THE GENERIC ARTEMIS LRB FLOW MODEL CPM WAS RESOURCE LOADED WITH PROJECTED TECHNICIAN HEADCOUNT FOR EACH LRB PROCESSING ACTIVITY. THERE WAS NOT AN ATTEMPT TO LEVEL MANPOWER. PEAKS WERE ALLOWED TO DEVELOP TO MAINTAIN MINIMUM PROCESSING TIME IN EACH FACILITY. CRITICAL PATH ITEMS ARE OUTLINED WITH THE DARK BROAD LINES. PARALLEL TASKS ARE ACCOMPLISHED AT THE EARLIEST START POINT AND COMPLETED AT THE EARLIEST FINISH TIME. THE TECHNICIANS ARE STATIONIZED AT THE FACILITY AND DO NOT MOVE WITH THE BOOSTER. THE GRAPHS ARE BY SHIFT AND MUST BE SUMMED TO DETERMINE PEAK HEADCOUNT. THE PEAK HEADCOUNT BY FACILITY ARE AS FOLLOWS:

HPF. = 260 ON THE 4TH DAY
VAB = 70 ON THE 4TH DAY
PAD = 107 ON THE 16TH DAY
TOTAL = 437
PROCESSING MANPOWER REQUIREMENTS

TECHNICIAN MANLOADING BY LOCATION

HPF

VAB

PAD
TECHNICAL SKILL MIX

THE PERCENTAGES OF SKILLS REQUIRED FOR LRB GROUND PROCESSING WERE DETERMINED BY AN EXAMINATION OF EACH WORK TASK IN THE ARTEMIS LRB FLOW MODEL. BECAUSE OF THE REQUIREMENT FOR ELECTRICAL TVC/FLIGHT CONTROLS, THERE IS A HIGH PERCENTAGE OF ELECTRICAL SKILLS. ENGINE SKILLS SEEM LOW, BUT THAT IS BASED ON A "SHIP AND SHOOT" CONCEPT AND SCHEDULED TASK. IF THE POTENTIAL FOR UNSCHEDULED WORK IS CONSIDERED BASED ON SSME AND ET PROCESSING, THE PERCENTAGE COULD GO MUCH HIGHER. ANOTHER FACTOR WAS THE PREMISE THAT WORK ON THE TVC ACTUATORS WAS ASSIGNED TO ELECTRICIANS AND ENGINE PLUMBING WAS ASSIGNED TO MECHANICAL TECHNICIANS. IF THESE ASSUMPTIONS WERE REVERSED THE RATIO WOULD INCREASE FOR ENGINE TECHNICIANS. THE PERCENTAGES FOR SRB's IS SHOWN FOR COMPARISON. WHILE IT IS UNUSUAL THAT THE PERCENTAGE FOR ELECTRICAL SKILLS IS THE SAME, IT CAN BE EXPLAINED. MTI CROSS UTILIZES ELECTRICIANS ONE WAY TO MECHANICAL WORK.
MANPOWER REQUIREMENTS - LRB PROCESSING

MANPOWER COUNTS AND RATIOS WERE DEVELOPED FROM THE BASELINE STUDY WHICH COMPARED SRB/ET/ORBITER MANPOWER AND SUPPORT TO LRB PROCESSING TASKS.
TIME PHASED LRB INTEGRATION HEADCOUNT

LRB PROCESSING PERSONNEL GRADUALLY REPLACE SRB PROCESSING PERSONNEL. EACH GROUP CONTAINS TECHNICIANS AND THEIR DIRECT SUPPORT FROM ENGINEERING, FACILITY/GROUND SUPPORT, LOGISTICS, QUALITY, SAFETY, OPERATIONS PLANNING AND CONTROL, OVERHEAD AND LPS.

THE NASA/NON SPEC PROCESSING SUPPORT (CS & BOC) PERSONNEL PROVIDE DIRECT SUPPORT TO BOTH SRB AND LRB PROCESSING ACTIVITIES.

THE USBI-KSC REFURBISHMENT/SUPPORT AND SRB RETRIEVAL/DISASSEMBLY PERSONNEL PHASE OUT WITH SRB LAUNCH PHASE OUT.

THE ACTIVATION MANAGEMENT TEAM SUPPORTS THE FACILITY PREPARATIONS.

THE NASA ENGINEERING INTERFACE AND NASA OPERATIONS INTERFACE PERSONNEL SUPPORT THE INTENSIVE ACTIVITIES OF ALL LRB INTERFACE AREAS IN PREPARATION FOR SUSTAINED OPERATIONAL CAPABILITY.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td>Sustained</td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td></td>
</tr>
<tr>
<td>NASA/Non-SPC</td>
<td></td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1342</td>
<td>1597</td>
<td>1704</td>
<td>1789</td>
<td>2050</td>
<td>1603</td>
<td>1546</td>
<td>1295</td>
<td>1145</td>
<td>719</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>NASA Operations Interface</td>
<td>36</td>
<td>123</td>
<td>145</td>
<td>145</td>
<td>116</td>
<td>58</td>
<td>44</td>
<td>44</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Engineering Interface</td>
<td>79</td>
<td>157</td>
<td>142</td>
<td>135</td>
<td>127</td>
<td>102</td>
<td>64</td>
<td>57</td>
<td>51</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activation Mgmt. Team</td>
<td>141</td>
<td>176</td>
<td>246</td>
<td>363</td>
<td>286</td>
<td>83</td>
<td>66</td>
<td>69</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRB Processing</td>
<td>110</td>
<td>147</td>
<td>221</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USBI Refurb/Support</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>474</td>
<td>342</td>
<td>216</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRB Retrieval/Disassemble</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>126</td>
<td>91</td>
<td>57</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRB Processing</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>336</td>
<td>264</td>
<td>192</td>
<td>120</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LRB PROGRAM OPERATING PLAN

LO2/RP-1 PUMP-FED BOOSTERS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM PHASES</td>
<td></td>
</tr>
<tr>
<td>FACILITY ACTIVATION</td>
<td></td>
</tr>
<tr>
<td>RECURRING</td>
<td></td>
</tr>
<tr>
<td>PROCESSING</td>
<td>8.35</td>
<td>8.35</td>
<td>8.35</td>
<td>10.45</td>
<td>11.15</td>
<td>10.85</td>
<td>13.10</td>
<td>11.35</td>
<td>9.50</td>
<td>8.35</td>
<td>8.35</td>
<td>8.35</td>
<td>8.35</td>
<td>8.35</td>
<td>9.35</td>
<td></td>
</tr>
<tr>
<td>SPC/BOC/SUPT</td>
<td>5.50</td>
<td>7.35</td>
<td>11.05</td>
<td>22.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPARES/MAT'L</td>
<td>1.09</td>
<td>2.49</td>
<td>21.33</td>
<td>21.33</td>
<td>22.73</td>
<td>28.81</td>
<td>27.81</td>
<td>33.47</td>
<td>33.47</td>
<td>33.47</td>
<td>33.47</td>
<td>33.47</td>
<td>16.73</td>
<td>8.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>8.35</td>
<td>8.35</td>
<td>9.44</td>
<td>18.44</td>
<td>40.32</td>
<td>44.70</td>
<td>60.82</td>
<td>65.62</td>
<td>65.24</td>
<td>70.73</td>
<td>70.73</td>
<td>70.73</td>
<td>70.73</td>
<td>53.99</td>
<td>42.69</td>
<td></td>
</tr>
<tr>
<td>NON-RECURRING</td>
<td></td>
</tr>
<tr>
<td>1ST LINE FAC</td>
<td>52.62</td>
<td>65.53</td>
<td>88.95</td>
<td>121.08</td>
<td>78.56</td>
<td>3.05</td>
<td>23.17</td>
<td>27.46</td>
<td>31.11</td>
<td>36.32</td>
<td>49.26</td>
<td>25.63</td>
<td>19.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ND LINE FAC</td>
<td></td>
</tr>
<tr>
<td>ACTIVATION MGMT TEAM</td>
<td>7.90</td>
<td>9.86</td>
<td>13.78</td>
<td>20.33</td>
<td>16.02</td>
<td>4.65</td>
<td>5.38</td>
<td>7.45</td>
<td>3.86</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>60.52</td>
<td>75.39</td>
<td>105.78</td>
<td>155.58</td>
<td>122.04</td>
<td>35.76</td>
<td>41.70</td>
<td>56.71</td>
<td>29.49</td>
<td>22.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>68.87</td>
<td>83.74</td>
<td>115.22</td>
<td>174.02</td>
<td>162.36</td>
<td>80.46</td>
<td>102.52</td>
<td>122.33</td>
<td>94.73</td>
<td>92.86</td>
<td>70.73</td>
<td>70.73</td>
<td>70.73</td>
<td>70.73</td>
<td>53.99</td>
<td>42.69</td>
</tr>
</tbody>
</table>

* NUMBERS ARE '87$M
SLC-6 CONVERSION TO LRB

Detailed studies of VLS re-activation from the planned mothball status have not been performed. For the purpose of this assessment the VLS studies for re-activation from minimum facility caretaker status were modified to account for additional staffing time required and increased facility restoration time. The engineering assessment of the VLS modifications required to convert to LRB operation shows that the effort can be completed prior to the initiation of the re-activation GSTS and flow tests. It is anticipated that the LRB conversion schedule will be paced by the procurement and installation of the new cryogenic dewar(s).

As a result of the VLS cursory review, two recommendations have been received from our VLS team, which provide some interesting program opportunities.

1.) Consider using VLS to pathfind the LRB implementation into the Shuttle program

 o Processing development would be achieved without any impact with KSC SRB Shuttle launches
 o Integration of a developed system at KSC would be low technical and schedule risk

2.) VLS should be considered as the LRB vehicle development static hot firing test facility

 o Required modification could be cost effective
 o Testing would not interfere with other Shuttle facilities
AGENDA

I. INTRODUCTION

II. LRBI RESULTS
 BASELINE / LAUNCH SITE SCENARIO
 FACILITIES AND GROUND SYSTEMS
 IMPLEMENTATION
 COST

III. SUMMARY

Gordon Artley
Pat Scott
Greg DeBlasio
Gordon Artley
Jerry Lefebvre
Gordon Artley
LRBI CONCLUSIONS

THE CRITICAL PATH FOR THE ACTIVATION TO MEET THE FIRST LAUNCH IS THE COMPLETION OF A NEW LRB MOBILE LAUNCH PLATFORM (MLP). IN ADDITION TO THE MLP CONSTRUCTION AND EQUIPMENT INSTALLATION EFFORT, A COMPLETE SYSTEMS CHECKOUT MUST BE ACCOMPLISHED FOR THE FIRST LAUNCH. THIS WILL INCLUDE FIT CHECKS AT THE VAB AND PAD, CRYO FLOWS AND SUPPORT TO THE PATHFINDER STATIC FIRING. ADDING THESE EFFORTS TO THE PAD TIME FOR THE FIRST 3 LAUNCHES CONSUMES 10-12 MONTHS OF DEDICATED PAD ACCESS. ALTHOUGH SOME PAD ACCESS WINDOWS EXIST FOR SRB CONFIGURED LAUNCHES, THERE IS A SUBSTANTIAL ELEMENT OF RISK.

THE PROPELLANT OPTIONS AND THE BOOSTER CONFIGURATIONS DO NOT IMPOSE NEW HAZARDS OR TECHNOLOGY TO THE KSC SAFETY AND ENVIRONMENTAL COMMUNITY.

THE TRANSITION OF THE SHUTTLE PROGRAM TO LIQUID ROCKET BOOSTER CONFIGURATION GENERATES A PROGRAM LIFE CYCLE COST IN EXCESS OF $15 BILLION. THE OPERATIONS COST WILL BE LESS THAN 10 PERCENT OF THIS LIFE CYCLE COST.
• WE CAN ACHIEVE THE 1990 - 2006 LRB INTEGRATION SCENARIO

• THE PRINCIPAL RISK IS THAT THE LRBI ACTIVATION AND OPERATIONS IMPLEMENTATION MAY IMPACT THE 14 FLIGHTS/YEAR PROGRAM

• WE CAN ACCOMMODATE THE ENVIRONMENTAL AND SAFETY IMPLICATIONS WITH ESTABLISHED KSC POLICIES

• THE LIFE CYCLE COSTS AT KSC WILL BE LESS THAN 10% OF THE TOTAL LRB PROGRAM COSTS. THE KSC NON-RECURRING COST WILL BE LESS THAN 6%
MAJOR PROGRAM RISKS

CRITICAL GROUND SYSTEMS RISKS

PAD A & B
- ACCESS TO EXISTING FACILITIES FOR LRB ACTIVATIONS
- FLAME TRENCH AND DEFLECTOR DESIGNS

MLP
- SCHEDULE CRITICAL PATH
- FLAME HOLES AND HOLDDOWN STRUCTURAL DESIGN
RECOMMENDATIONS FOR FOLLOW-ON STUDY

THE LRBI STUDY HAS IDENTIFIED A NUMBER OF ISSUES THAT WILL REQUIRE FURTHER STUDY AND IN-DEPTH ANALYSIS. WE SHOULD CONTINUE TO SUPPORT THESE CRITICAL ISSUES WITH THE DEVELOPMENT OF MORE RIGOROUS STUDY TOOLS AND MORE COMPLETE DATABASES. ADDITIONAL INFORMATION, AS IT BECOMES AVAILABLE FROM MSFC, WILL REQUIRE KSC LAUNCH OPERATIONS IMPACT ASSESSMENT. FOR INSTANCE, BOOSTER IMPACTS TO THE PAD WILL REQUIRE FURTHER DESIGN ANALYSIS. THE RESOLUTION OF THESE PROBLEMS WILL REQUIRE FURTHER SUPPORT AND COOPERATION WITH THE MSFC WORKING GROUP.

WE ALSO NEED BETTER TECHNIQUES TO PROVIDE IMPROVED ACCURACY IN DEVELOPING MIXED-MISSION SCHEDULES AND COST. THESE TECHNIQUES MIGHT INCLUDE ENHANCED VERSIONS OF THE ARTEMIS-BASED SRB/STS GROUND PROCESSING FLOW MODEL AND AUGMENTED EDITIONS OF THE GROUND OPERATIONS COST MODEL (GOCM). THE EXPANSION OF GOCM WOULD ALLOW MORE REFINED COST PROJECTIONS THAN CURRENTLY AVAILABLE WITH THE PRESENT PARAMETRIC MODEL.

WE SHOULD ALSO ASSESS ALTERNATIVE LAUNCH SITE CONFIGURATIONS AND SCENARIOS. WE CURRENTLY PLAN TO INTEGRATE THE LRB INTO ON-GOING KSC OPERATIONS. THIS ESTABLISHES A FORMIDABLE CONSTRAINT IN LRB GROUND OPERATIONS PLANNING. THUS, WE MUST EVALUATE A WIDE VARIETY OF LAUNCH SITE CONFIGURATIONS AND SCENARIOS IN ORDER TO FIND AND SELECT THE BEST ALTERNATIVES. THIS INFORMATION WILL BE VALUABLE NOT ONLY TO THE LRB EFFORT, BUT ALSO TO THE LRB-DERIVED PROGRAMS, SUCH AS UNMANNED SHUTTLES OR ALS.
• CONTINUE TO SUPPORT MSFC WORKING GROUP

• ENHANCE THE LRBI EVALUATION TECHNIQUES FOR MULTI-MISSION ASSESSMENT

• ASSESS ALTERNATIVE LAUNCH SITE CONFIGURATIONS AND SCENARIOS
AGENDA

I. INTRODUCTION
II. LRBI RESULTS
 BASELINE / LAUNCH SITE SCENARIO
 FACILITIES AND GROUND SYSTEMS
 IMPLEMENTATION
 COST
III. SUMMARY

Gordon Artley
Pat Scott
Greg DeBlasio
Gordon Artley
Jerry Lefebvre

Gordon Artley
LRBI CONCLUSIONS

THE CRITICAL PATH FOR THE ACTIVATION TO MEET THE FIRST LAUNCH IS THE COMPLETION OF A NEW LRB MOBILE LAUNCH PLATFORM (MLP). IN ADDITION TO THE MLP CONSTRUCTION AND EQUIPMENT INSTALLATION EFFORT, A COMPLETE SYSTEMS CHECKOUT MUST BE ACCOMPLISHED FOR THE FIRST LAUNCH. THIS WILL INCLUDE FIT CHECKS AT THE VAB AND PAD, CRYO FLOWS AND SUPPORT TO THE PATHFINDER STATIC FIRING. ADDING THESE EFFORTS TO THE PAD TIME FOR THE FIRST 3 LAUNCHES CONSUMES 10-12 MONTHS OF DEDICATED PAD ACCESS. ALTHOUGH SOME PAD ACCESS WINDOWS EXIST FOR SRB CONFIGURED LAUNCHES, THERE IS A SUBSTANTIAL ELEMENT OF RISK.

THE PROPELLANT OPTIONS AND THE BOOSTER CONFIGURATIONS DO NOT IMPOSE NEW HAZARDS OR TECHNOLOGY TO THE KSC SAFETY AND ENVIRONMENTAL COMMUNITY.

THE TRANSITION OF THE SHUTTLE PROGRAM TO LIQUID ROCKET BOOSTER CONFIGURATION GENERATES A PROGRAM LIFE CYCLE COST IN EXCESS OF $15 BILLION. THE OPERATIONS COST WILL BE LESS THAN 10 PERCENT OF THIS LIFE CYCLE COST.
LRBI CONCLUSIONS

- WE CAN ACHIEVE THE 1990 - 2006 LRB INTEGRATION SCENARIO

- THE PRINCIPAL RISK IS THAT THE LRBI ACTIVATION AND OPERATIONS IMPLEMENTATION MAY IMPACT THE 14 FLIGHTS/YEAR PROGRAM

- WE CAN ACCOMMODATE THE ENVIRONMENTAL AND SAFETY IMPLICATIONS WITH ESTABLISHED KSC POLICIES

- THE LIFE CYCLE COSTS AT KSC WILL BE LESS THAN 10% OF THE TOTAL LRB PROGRAM COSTS. THE KSC NON-RECURRING COST WILL BE LESS THAN 6%
MAJOR PROGRAM RISKS

The SRB baseline manifest throughout the 1990's assumes 14 launches per year, alternatively using pads A and B. This provides less than 6 weeks for maintenance, refurbishment and recertification between launches at each pad. The intent is to launch consecutively from one pad while extended refurbishment or modifications is required at the other. This single pad approach cannot be sustained for an extended period. The LRB modification activity may require more than 6 months of dedicated access to the pad. This represents a significant risk to on-going launch operations. The increased flame-hole size in the MLP creates a complex structural design concept. The design solution, as well as the non-availability of the present 3 mobile launchers, drives the baseline of the LRB to provide new MLPs. This requires, in addition to the new launch platform, a complete set of STS GSE and ground systems. The schedule for implementation must include an extensive utilization of the LETF for certification of two complete sets of GSE/LSE.
PAD A & B

- ACCESS TO EXISTING FACILITIES FOR LRB ACTIVATIONS
- FLAME TRENCH AND DEFLECTOR DESIGNS

MLP

- SCHEDULE CRITICAL PATH
- FLAME HOLES AND HOLDDOWN STRUCTURAL DESIGN
STATION SET MAXIMUM TIME SCHEDULE

MLP PARK SITE
MLP-1
LETF
HPF
HIGH BAY 4
VAB CRAWLERWAY 4
PAD CONV
LCC
LPS
LRB MLP-2
LRB FLT TEST ARTICLE
VAB HIGH BAY 3
2ND LRB PAD

△ FIRST LRB LAUNCH

EARLIEST START LATEST FINISH SCHEDULE

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
RECOMMENDATIONS FOR FOLLOW-ON STUDY

THE LRBI STUDY HAS IDENTIFIED A NUMBER OF ISSUES THAT WILL REQUIRE FURTHER STUDY AND IN-DEPTH ANALYSIS. WE SHOULD CONTINUE TO SUPPORT THESE CRITICAL ISSUES WITH THE DEVELOPMENT OF MORE RIGOROUS STUDY TOOLS AND MORE COMPLETE DATABASES. ADDITIONAL INFORMATION, AS IT BECOMES AVAILABLE FROM MSFC, WILL REQUIRE KSC LAUNCH OPERATIONS IMPACT ASSESSMENT. FOR INSTANCE, BOOSTER IMPACTS TO THE PAD WILL REQUIRE FURTHER DESIGN ANALYSIS. THE RESOLUTION OF THESE PROBLEMS WILL REQUIRE FURTHER SUPPORT AND COOPERATION WITH THE MSFC WORKING GROUP.

WE ALSO NEED BETTER TECHNIQUES TO PROVIDE IMPROVED ACCURACY IN DEVELOPING MIXED-MISSION SCHEDULES AND COST. THESE TECHNIQUES MIGHT INCLUDE ENHANCED VERSIONS OF THE ARTEMIS-BASED SRB/STS GROUND PROCESSING FLOW MODEL AND AUGMENTED EDITIONS OF THE GROUND OPERATIONS COST MODEL (GOCM). THE EXPANSION OF GOCM WOULD ALLOW MORE REFINED COST PROJECTIONS THAN CURRENTLY AVAILABLE WITH THE PRESENT PARAMETRIC MODEL.

WE SHOULD ALSO ASSESS ALTERNATIVE LAUNCH SITE CONFIGURATIONS AND SCENARIOS. WE CURRENTLY PLAN TO INTEGRATE THE LRBI INTO ON-GOING KSC OPERATIONS. THIS ESTABLISHES A FORMIDABLE CONSTRAINT IN LRBI GROUND OPERATIONS PLANNING. THUS, WE MUST EVALUATE A WIDE VARIETY OF LAUNCH SITE CONFIGURATIONS AND SCENARIOS IN ORDER TO FIND AND SELECT THE BEST ALTERNATIVES. THIS INFORMATION WILL BE VALUABLE NOT ONLY TO THE LRBI EFFORT, BUT ALSO TO THE LRBI-DERIVED PROGRAMS, SUCH AS UNMANNED SHUTTLES OR ALS.
RECOMMENDATIONS FOR FOLLOW-ON STUDY

- CONTINUE TO SUPPORT MSFC WORKING GROUP

- ENHANCE THE LRBI EVALUATION TECHNIQUES FOR MULTI-MISSION ASSESSMENT

- ASSESS ALTERNATIVE LAUNCH SITE CONFIGURATIONS AND SCENARIOS
Abstract

The impacts of introducing Liquid Rocket Boosters (LRB) into the STS/KSC Launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Pre-launch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with on-going launch activities are enumerated.

The LRB Integration Study Final Report is presented in five volumes as follows:

- **VOL I** Executive Summary
- **VOL II** Study Summary
- **VOL III** Study Products
- **VOL IV** Reviews and Presentations
- **VOL V** Appendices

Subject Terms

- Liquid Rocket Boosters for STS
- Launch Site Operations
- Launch Site Facility Requirements
- Mixed Flap Operations

Security Classification

- **OF REPORT**: Unclassified
- **OF THIS PAGE**: Unclassified
- **OF ABSTRACT**: Unclassified