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ABSTRACT

NASA Lewis Research Center and Rockwell

International, Rocketdyne Division, are responsible
for the design, development, and testing of the

Space Station Freedom (SSF) Electrical Power
System (EPS). Tile SSF EPS has evolved from an

early baseline of a Hybrid Solar
Dynamic/Photovoltaic Power Generation with
20kHz AC power distribution system to a
Photovoltaic power generation with a DC power

distribution system. In order to help identify

technology risks and system level issues during this
EPS evolution, and during the design and
development phase, a supporting development
end-to-end Power Management and Distribution

(PMAD) DC testbed program has been initiated
and various phases completed. One of the testbed

program main objectives is to build a power system
testbed that will serve as the platform for the
evaluation of various power system control

techniques. These power system control techniques

have been developed based on high level EPS
system requirements and operating scenarios.

Because of the Space Station Program
Restructure that took place in November/December
1990, the allocation of control functions between

ground and on-orbit is being reassessed. However,
because of the maturity of the work, it was decided

to complete the original implementation of the
control system described in this paper. Efforts are

currently underway to adapt to this revised
allocation of functions.

The PMAD DC Testbed Control System has

been developed using a top down approach based
on classical control system and conventional

terrestrial power utilities design techniques. The
design methodology includes the development of a

testbed operating concept. This operating concept
describes the operation of the testbed under all
possible scenarios. A unique set of operating states
has been identified and a description of each state,

along with state transitions, was generated. Each

state is represented by a unique set of attributes and
constraints, and its description reflects the degree

of system security within which the power system
is operating. Using the testbed operating states

description, a functional design for the control
system was developed. This functional design
consists of a functional outline, a text description,

and a logical flowchart for all the major control
system functions.

The detail design phase consists of performing

functional decomposition and allocation of the
functional design, and generating detailed

flowcharts, or pseudo code, input/output
descriptions, timing and data format constraints,
and software implementation considerations. A

software implementation of the detail design
includes the generation of a Software Requirement

Specifications and a Software Development Plan.

This paper describes the control system design

techniques utilized, a brief description of the
various control system functions, and the status of

the design and implementation.

INTRODUCTION

The NASA LeRC DC PMAD Testbed is a

reduced scale representation of the EPS on the

SSF. The testbed program's main objective is to

support the identification of electrical power system
technology risks and system level issues during the
design and development phase of the SSF EPS.
In addition, the unique capabilities afforded by the
testbed will allow the evaluation of candidate power

system design concepts, and early prototypes of

space power components. System level issues like
end-to-end system stability, power system

protection, power system control, and subsystems
interactions, among others, are being evaluated in
the testbed. A complete description of the

development and evolution of power system
testbeds to support the Space Station Freedom

Program is found in reference I1].



In its final configuration, the PMAD Testbed
will consist of two DC power channels as shown
in Figure 1. Each power channel consists of a Solar

Array Sequential Shunt Unit (SSU), a DC
Switching Unit (DCSU), Battery Charge and
Discharge Units (BCDU), Battery Simulators, a
Main Bus Switching Unit (MBSU), DC to DC

Converter Units (DDCU), Secondary Power
Distribution Units (SPDU), Tertiary Power

Distribution Units (TPDU), and Load Converter
Units (LCU). A detailed description of the DC
Testbed architecture and all its major components

is found in reference [21 .

CONTROL SYSTEM DESCRIPTION

The SSF EPS, because it spans the entire SSF
structure,lends itself to a distributed control system

architecture. The DC testbed control system, in its
final configuration, will consist of eleven standard

controllers arranged in a distributed, hierarchical
architecture as shown in Figure 1. This hierarchical

control system provides the monitoring and control
functions for the testbed power system. The testbed
control system requirements are to continuously
monitor and determine the state of the testbed

electrical power system, and to periodically provide
its status to the Operator Interface System (OIS).

The control system design will augment power
system fault protection and provide manual and
automatic power component control.

The overall testbed operation is overseen by the

OIS. The OIS serves as the testbed operator
interface and provides some of the functions that
the Operations Management System (OMS) will

perform for the SSF EPS. The Power Management

Controller (PMC) is the highest level controller in
tile EPS, and serves as the overall EPS coordinator.

The PMC performs all high level functions
associated with the operation of a safe and robust
power system. The PMC coordinates the various

levels of the hierarchy; it receives high level
commands from the OIS and provides EPS status
information to the testbed operator.

The PMC coordinates the operation of the
control system subsidiary controllers. The lower
level controllers consist of Photovoltaic Controllers

(PVC) and Main Bus Controllers (MBC). The

PVCs provide monitoring and control functions to
the SSUs, BCDUs, and switchgear (Remote Bus
Isolators, RBIs) tl_at comprise the DCSU. The
M BCs monitor and control the operation of the

DDCUs and the RBIs that comprise the MBSUs.
A Load Management Controller (LMC) serves as

the secondary and tertiary power distribution

controller and coordinates the operation of the
Secondary Power Controllers (SPC) and Tertiary
Power Controllers (TPC). The SPCs control the
operation of the switchgear that comprises the

Secondary Power Distribution Units and the TPCs
control the operation of the switchgear that
comprises the Tertiary Power Distribution Units.

The secondary and tertiary switchgear consists of
RBIs and Remote Power Controllers (RPCs). The

LMC provides the PMC with secondary and tertiary
power distribution status information; although this
function is not currently in WP-04, it is needed to

demonstrate end-to-end operation of the testbed.
A hierarchical, functional breakdown of the control

system is shown in Figure 2. In this diagram, the
major functions associated with the different levels
of the architecture are shown allocated to the

various controllers.

The control system standard controllers are 20

MHz, Compaq 386/20e personal computers. Each

standard controller is configured with operating
software and the appropriate peripheral hardware

to perform its given function. The PMC provides
command and control data to the subsidiary
controllers via an 802.4 Token Bus, local area

network. The subsidiary controllers provide
command and control data to the testbed power

components via a MIL STD L553B Data Bus.

CONTROL SYSTEM STATES

The operation of the DC Testbed power system
can be represented using state space analysis and

conventional terrestrial utility power system design
techniques. A state transition diagram of the DC

testbed power system is shown in Figure 3. The

testbed power system is considered to have seven
operating states. Each state is described by a
unique set of attributes and constraints, and

characterizes the degree of system security within
which the power system is operating. The operating
states can be classified as being either MANUAL
or AUTOMATIC, based on the degree of operator

intervention that is required to operate the testbed.
The testbed is operating in the MANUAL mode

when the testbed operator is in complete contrQl
of the testbed components. The operator can
select a testbed configuration and can set testbed

component operating parameters to satisfy a
specific component or subsystem test. The

MANUAL mode of operation is unique to the
testbed and is being used extensively during
integration of the various elements of the testbed

and during evaluation of power system design

concepts.
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Figure 1 DC PMAD Test Bed Control System Block Diagram

The AUTOMATIC mode of operation is

characterized by the autonomous operation of the
testbed EPS. The functions that comprise the
AUTOMATIC mode of operation are designed to

maximize the degree of power system security.
System security is a function of the robustness and
efficiency with which the power system reacts to

disturbances. Power system disturbances include
overloading by the users and faults and failures
within the power system. Unlike a terrestrial utility

power system where loads can be turned on and off
without being scheduled, the SSF will have to
scheduled loads carefully due to limited power

source capacity. Consequently, the SSF will
require a highly autonomous EPS for maximum

power utilization. The functions that comprise each
of the AUTOMATIC states will consist of a

combination of power system hardware, and power
system control software and hardware. Scheduled

disturbances within the operating constraints are
dictated by a Short Term Plan (STP). The STP

is a time correlated load schedule that is provided

to the testbed control system by the OIS, and

represents the users load requirements as a function
of time.

The six autonomous states of operation are:
START-UP, SHUT-DOWN, NORMAL,
ALARM, EMERGENCY, and RESTORATIVE.

The Start-Up and Shut-Down states are unique to
the testbed and are considered for completeness in
the state space analysis. These states comprise the

necessary functions to perform an orderly and safe
start-up and shut-down of the testbed components.

The other four states are commonly found in utility
power system security monitor designs [5].

The NORMAL state of operation is

characterized by a high degree of system security.
The power system is operating in the NORMAL
state if the STP is being serviced autonomously, the
power distribution hardware is operating within

rated values, sufficient energy is available to satisfy

the users, and power system constraints are not
violated.
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Figure 2 Hierarchical Functional Breakdown

The ALARM state of operation is
characterized by a decrease in the system security
level. The power system monitoring function has

detected a contingency that decreases the operating
margins. Tile functions that comprise the ALARM
state are suited to try to remove the contingency
and return the power system to its NORMAL state

of operation. The ALARM state is not a secure
state and consequently the power system control

will try to transition the system to NORMAL state.
if these control functions fail, the system transitions
to the EMERGENCY state.

The EMERGENCY State of operation is

characterized by a drastic reduction of system
security. In this state the power system operating

has=be_ff:i_eques-ted. =:==ifi [fiis =_securdd state, the

operator will manually reset parameters in order to

transition the system to a more secure state. The
users- i0ad requirements in :the: STP-cannot be fully

met and system operating parameters are violated.

The -operator[ takes -t-he-fippr0pri_ite actibn-s to
transition the power system to the RESTORATIVE

state, in the testbed, the operator has the option
to shut-d0wn the testbed power system partially or

completely to avoid further damage. In the Space

Station Freedom the scenario will be slightly
different with the station management system taking
appropriate action to transition the system to a

secure state by either shutting down portions of the
power system or sending repair crews to fix the
problem.

The RESTORATIVE state is a transitional state

and its major function is to restore the power system
to a safe operating condition. The functions that

comprise this state are designed to transition the

power system to the NORMAL state. The power
system can transition back to the EMERGENCY
state, from which automatic sating again is

implemented. The ALARM, EMERGENCY, and
RESTORATIVE states of operation can be
collectively referred to as Off-NORMAL States.

CONTROL ALGORITHMS DESCRIPTION

The state diagram shown in Figure 3 represents
the operation of the i.estbed power sysiem. The
power system is composed ofth:ree e!emem_: the

power distribution sysieffi-15ardware, power Sysiem
control hardware, and the power system control

software. The functions that comprise each one of
the states deplci-ed in _he tes-tbed state diagram are

implemented by a combination of the three

i

1



elements described above [3]. The remainder of
this paper will address the functions being
implemented by the control system hardware and

software.

..... ....... _/ ......
MANUAL

l_lgure 3 DC PMAD Testbed Control System State Diagram

Table 1 lists the allocation of the major control
algorithms for the different states of the power

system. A complete functional design of the control
system algorithms that implements the state diagram

shown in Figure 3 has been completed at the NASA
LeRC. Each power system state is characterized

by a unique set of attributes, which can be
translated into functions that can be implemented

either as algorithms or hardware functions. All the
functions defined up until now can be classified
either as cyclic, or synchronous, or event driven.
A cyclic function is based on the periodic
occurrence of a task or a known disturbance. Event

driven functions are activated by the detection of
an unscheduled disturbance in the power system.
Most of the work completed at NASA LeRC has

been in the area of NORMAL state of operation.
The following is a detailed description of the major
functions that comprise the NORMAL state of

operation and provides an insight into the
specifications needed for software implementation.

The NORMAL State algorithms are classified
as either event driven or cyclic functions, and are

collectively referred to as NORMAL State
Processing. The cyclic functions include Short
Term Plan (STP) Implementation, System

Monitoring, and Off-NORMAL Detection. The

event driven functions include Operator Override

and Off-NORMAL Processing.

Optimal operation of the power distribution
system will require that:

(1) The control computers pre-approve user
loads for operation during specific time slots.

(2) The control computers accurately monitor
the power system.

(3) The control computers backup the hardware
protection schemes.

State

Normal

Alarm

Emergenc)

Restorativt

ALGORITHM

STP ImnlementatioD
System Monitor
Fault Protection
STP Implementation
System Monitor
Fault Protection

Contingency
System Monitor
Fault Protection
Contingency
Manual Override
STP Implementation
System Monitor
Fault Protection

Contingency

CONTROLLER

I'M( PV(' Mill' Sill'

4 ,/
4 4 4 4
4 4 4 4
4 4
4 4 4 4

4 4 4 4
4
4 4 4 4
,/ ,1 ,/ ,/
4 ,/ 4
4

4 4
4 4 4 ./

4

Table 1 Functional Allocation
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SHORT TERM PLAN & SYSTEM INITIALIZATION

System Initialization can be defined as the

sequence of procedural calls which, based on
present system constraints and parameters,

determines the appropriate setpoints for the system
to operate in a NORMAL State during the

upcoming user demand cycle.

Unlike a terrestrial utility's load profile which
is statistically predicted, Space Station Freedom's
STP must be carefully planned and regulated due

to the limited energy availability. The STP defines
the load type, location, and the peak and nominal

requirements for users, batteries, and DDCUs. The
STP is created by the Operator Interface System,

using a default topology and ideal hardware
parameters, and is verified before the testbed is
"turned-on." However, the runtime conditions will

cause these parameters to change and preclude
certain topologies (e.g., sources available). Thus,

the objectives of STP Implementation, which is a
dynamic process, are to ensure energy availability
throughout the operating orbit, ensure safe
operation of the power distribution hardware,

accommodate changes in the distribution system's
runtime parameters (e.g., topology, line
parameters, DDCU efficiencies, actual energy

available), and adjust setpoints (e.g., battery
operation mode, source balancing, and hardware
trippoints).

Because the user loads are fed by DDCUs, each
channel of the testbed power distribution system is

broken into a primary and two subsidiary
distribution systems (Figure 1). This leads to three

initialization procedures: one for the PMC and two
for the LMC. The tool used to initialize the

subsystems is Load Flow [Ref. 6], because constant
power, current, and resistive loads are defined.

The LMC implements two STPs which define
the specific user loads (i.e., the loads connected to
tile Tertiary Power Distribution UnitsT. The PMC

implements an STP which characterizes the loading

of the DDCUs (as predicted by the LMC and
reflected to the primary distribution system).

Each subsystem initialization requires two load
flows. One is for nominal load requirements, and
the other for peak requirements. The objectives
of each are given below.

Nominal requirements must be analyzed to:
(17 Initialize the digital filters.

(2) Assure nominal operating voltages are

acceptable.
(3) Assure sufficient energy and power for

USerS.

(4 7 Assure that the steady state ratings of
hardware are not exceeded.

Peak demands are analyzed to:

(17 Set the "soft limits" on switchgear. These

are the maximum expected current flows and
minimum voltages, and serve as thresholds to set

Caution & Warning flags. The "soft limits" of
hardware are the expected maximum values, which
are below the ratings of a device.

(2) Determine the maximum energy and

power required from the sources.
(3) Seed the Power Interrupt Detection

algorithms.

Limited, predictive, autonomous,
batch-contingency analyses are implemented

whenever the present system setpoints and
topological parameters would result in an unsafe or

unacceptable operating point, Violations include
insufficient energy, over-stressed sources and

hardware, and unacceptable bus voltages.

Upon completion of an acceptable operating
point, the LMC and PMC send the results of their

respective initialization procedures to the subsidiary
controllers. The subsidiary controllers (MBC,
PVC, SPCs, and TPCs) control and monitoring

functions are then initialized, according to the load
flow results. The system is then ready to implement

the setpoints at the onset of the next demand period
and continue system monitoring.

SYNCHRONOUS SYSTEM MONITORING &
POWER SYSTEM PROTECTION

System Monitoring can be defined as the
process in which controllers periodically and
synchronously sample and collect sensor data,

smooth it, analyze it for acceptable system
performance, and prepare an appropriate message

for a control node, which implements the required
control function.

By definition, the power system must be

monitored for the following reasons:
(1) To ensure the safe operation of the system.

(2) To track energy consumption and storage.
(3) To verify locally detected power interrupts

and faults.

(4 7 To smooth data and update the Operator
Interface System with EPS operating parameters.

System Monitoring occurs at two levels. The
local processors (PVC, MBC, SPCs, and TPCs7

collect data synchronously, and the PMC

asynchronously receives the MBC and PVC data to
perform an asynchronous, but periodic, state

estimation (SET [Ref. 71.



Power system operating points, voltages and

currents, are sampled at a 10Hz rate in the testbed
[41. All sampled data is digitally filtered by a third
order, Butterworth algorithm, which smooths out

load modulations, reduces the effects of sample
skewing, and reduces the occurrences of "bad data

identification" by the SE. Data which is smoothed
by the Butterworth filter is referred to as prefiltered.

It should be stressed that the software

monitoring and protection schemes are intended to
be a backup to the hardware. As such, the response
times of the software are slower than the worst case

hardware times, but not so slow as to cause

continued, degraded or dangerous system

operation. An overview of the levels of backup is:

(l) At the tertiary distribution levels the
controllers implement undervoltage detection

(UVD), power interrupt detection (PID), and
overcurrent detection (OCD) algorithms.

(2) At the secondary distribution levels the

controllers provide backup protection to the
DDCUs and secondary subsystems. Thus, in
addition to UVD, OCD, and PID, bus and line hard

fault detection (HFD) are implemented. HFD is
implemented in the LMC because the TPCs and
SPCs do not have access to all required data.

(3) At the primary distribution level, the
software should provide backup protection for the
sources, roll rings, switchgear, and distribution

lines, and it should ensure energy availability.
Thus, UVD, PID, OCD, and HFD are all

implemented in the MBC and PVC. Furthermore,
SE is implemented in the PMC to detect "soft
faults" on lines and buses.

PID, which is resident in all subsidiary
controllers, uses two consecutive, unfiltered values

and a boolean expression (Eq. 1) to identify a
power interrupt condition in switchgear that is
expected to be closed (E=I) and carrying power.
Unfiltered values are used because fast action is

required. The required electrical values are voltage

and current. If the readings are greater than 60%
of the expected minimum values, then the logical
terms V and I are set to "1," else they are set to

"0." Also, switchgear provides the following
additional information: a relay status bit (l=ciosed,
0=open) and a trip bit (l=tripped, 0=not tripped).

The trip bit is used to indicate whether the PI is a
result of a local (T=I) or upstream (T=0) "fault."

Pl = E (Vk_/_-, + _-])k = present sample / Eq. 1

detection."

redundant (at
each bus, the

majority of
accuracies.

Under Voltage Detection uses prefiltered data

to identify bus voltages operating under q0% of the
expected minimum value, but over the 60% "power

interrupt value." Thus, this is "brownout
Furthermore, because there are

least two) voltage measurements at
UV condition is detected only if a

readings agree to within sensor

OCD scans the switchgear readings for currents

in excess of the expected peak values ("soft"
overcurrents) and over the device ratings ("hard"

overcurrents). Because caution & warnings or

preventative control should not be implemented
due to transients, OCD uses prefiltered data.

HFD (bus and line) is also performed in the

subsidiary controllers with prefiltered values, and
is referred to as "hard" because the level of faults

detectable is limited to values greater than
full-scale, sensor accuracies of the actual current

flow. (Thus if a line is carrying 100Amps, 5%

measurements can only detect faults greater than
approximately 5Amps.) The method used to detect

such faults is differential protection, which simply

requires that the sum of currents into a node equal
zero. Applied to measurements in the testbed, this
requirement translates to the generalized nodal

equation (Eq. 2).

l.O- Acc< _ input currents < 1.0 + Ace
1.0 + Acc g output currents 1.0-Ace

Acc= Measurement accuracy

Eq. 2

A description of the software implementation
of the above mentioned functions in the Ada

programming language is found in reference 141.

CONCLUSIONS

Unlike terrestrial utility power systems, the SSF
EPS will have to carefully schedule and monitor
loads, due to the limited available energy. The EPS

control system will play an important roll when

maximizing the use of electric power in the Space
Station Freedom. In its initial configuration, the
SSF EPS control system functionality will be kept
to a minimum to comply with program constraints.

As the SSF EPS evolves and becomes operational,

the EPS control system functionality is expected to
approach that of an autonomous electrical power

system. The SSF EPS control system functions will
be implemented on board the space station and in
the ground based control center. This paper has
presented power system control algorithms, being

implemented in the PMAD DC Testbed, that are
considered to be essential to the operation of an



autonomouselectrical power system. These
algorithmsarecandidatesfor implementationon
boardtheSpaceStationFreedom,or in theground
controlcenter.
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