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ANALYSIS OF ELECTROMAGNETIC INTERFERENCE FROM

POWER SYSTEM PROCESSING AND TRANSMISSION
COMPONENTS FOR SPACE STATION FREEDOM

1 Introduction

The goal of this research project is to analyze the potential effects of

electromagnetic interference (EMI) originating from power system processing and

transmission components for Space Station Freedom. The approach consists of four

steps:
1. Develop analytical tools (models and computer programs).

2. Conduct parameterization (what if?.) studies.

3. Predict the global space station EMI environment.
4. Provide a basis for modification of EMI standards.

This report summarizes work performed during the period January I - August
31, 1991.

2 Device Models

This portion of the investigation centers on the development of computer

models which can be used to predict the local electromagnetic fields for various power

system components or devices, including various transmission line configurations.
Recent work is summarized in the Master's thesis of Mr. Zemin Luo, which is

attached as Appendix A.

3 Radiation Sources

This portion of the investigation centers on the development of computer

models to simulate the propagation of electromagnetic waves in the ionospheric
plasma and the radiation from antennas simulating EMI sources on the space station.

Recent work is summarized in the Master's thesis of Mr. Brian J. Hurysz, which is
attached as Appendix B.

4 Future Work

Continuing work involves an investigation ofv x B effects and the development

of a more sophisticated method-of-moments model of the space station.
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Abstract

Ballooning techniques in conjunction with the two dimensional finite element (2DFE)

method are described for modeling and computing a two dimensional (2D) magne-

tostatic field in a two-wire parallel-pair transmission line problem in an unbounded

region. Solutions using the combined ballooning 2DFE method are shown in this

thesis to agree closely with analytical solutions for the two-wire parallel-pair trans-

mission line in the same unbounded region. These 2DFE techniques are used here

to study the effects of magnetic shielding and the effects of defects in such shield-

ing. The distribution and profiles of magnetic fields surrounding such transmission

lines are studied, for future use of investigating electromagnetic compatibility aspects

associated with power processors and systems in the future Space Station Freedom.

The combined ballooning 2DFE method is developed further for a 2D diffusion type

(eddy-current) field and then applied to solve the problem in the two-wire parallel-

pair transmission line with a conductive shield. Various cases such as the effects of

conductive shielding thickness, and the effects of defective shielding are considered.

Furthermore, in this thesis, a closed-form solution for the magnetostatic case in a

two-wire twisted-pair transmision line is derived using Biot- Savart Law. The flux

density comparisons between twisted-pair and parallel-pair cases are carried out and

the effects of the length of the pitch of the twisted-pair line on the magnetic field

profiles are obtained. The results shown in this thesis imply that a three-dimensional

(3D) ballooning method using finite elements is needed for the magnetic shielding

case as well as in the quasi-static diffusion type case. This quasi-static class can

involve transmission lines in plasma, with or without conductive metallic shielding.
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Chapter 1

INTRODUCTION

This work is one portion of a large research project centering on the "Analysis of

Electromagnetic Interference from Power System Processing and Transmission Com-

ponents for Space Station Freedom ", and is concerned with aspects of developing

device models for power system processing components and transmission lines in

aerospace, where an infinite boundary and a plasma environment exist.

1.1 Background and Literature Search

One of the purposes of this work is to develop capabilities to compute the electromag-

netic fields surrounding two-wire parallel-pair transmission lines and other possible

transmission line configu,'ations in aerospace applications, which can be solved as two

dimensional (2D) problems with infinite (open) boundaries.

The finite element method was applied to magnetostatic field solutions which

involved the calculation of electromagnetic fields in bounded regions governed by

quasi-Poissonian partial differential equations (PDE) in 1970 [1]. Boundary condi-

tions involving Neumann, Dirichlet and periodicity types were involved [1]. While

such boundary conditions occur when magnetic fields are confined by magnetic-type

or conductive-type materiMs, there are many problems without such confinement.

Many field problems are unbounded; i.e., they cannot be encased within a finite

boundary along which either the ,mrmal or tangential component of the field ,nay be



specified.As a consequence,the actual boundary is at infinity, with the potential zero

thereupon. When dealingwith integral methods,this boundary condition is automat-

ically taken careof and a greatereconomyof nodesand elementsaregiven, however,

the integral methodshavedisadvantagesin that the resulting matrices aredenseand

their formulation and inversionaremuch lessstraightforward than the equivalentdif-

ferentia] approach. However,it is difficult to accountfor partial differential equation

(p.d.e.) inhomogeneitieswith differential methods for an infinite boundary. On the

other hand, differential methodscan easily account for PDE inhomogeneities,while

requiring that the boundary be nearby so that the global matrix for the bounded

region solution is not excessivelylarge. Approximating an infinite (open) boundary

by a closeronemakesthe potential fall (or rise) morerapidly and distorts the solution

from the true open boundary results.

In a large number of electric and magnetic field problems, the solution requires

the representationof a boundary which is remote fl'om the regionof interest. Typical

of this class of problems are the single-sidedlinear machine, bus-bar impedance,

and so on. There is, consequently,a needfor a technique to combinea differential

approach in the region containing all the field sourcesand materials with a simple

representationof the exterior empty space.Thus additional work by Lowther (1978)

[3], and Antunes (]982) [2], on a recursive (ballooning) finite element technique was

developed for 2D planar magnetostatic field problems with open boundaries extending

to infinity. Brauer (19S2) [4] developed that ballooning technique for axisymmetric

problems and general skin effect problems in which the eddy current is confined in

the interior region and the Laplacian equation is satisfied in the exterior region.

Sometimes one is interested in the fields in both an interior region and an exterior

region in a given problem. However, the above mentioned ballooning technique only

uses the exterior region for the solution of the interior region. The solution of the

exterior region cannot be obtained by the ballooning technique. Overcoming this dif-

ficulty with exterior field problems has spurred a whole new area of research activity;

as a result, several schemes are now available for tackling this aspect. Some types

of algorithms of semi-analytic methods (or hybrid harmonic/finite element method)

tackling open boundary problems were presented by Lee and Cendes (19S7) [5], Chari



(1957) [6], and Chari and Bedrosian(1987,1988)[7, 8] respectively.They used a cir-

cle as a boundary. The solution in the exterior region is obtained analytically and
matched to the interior finite elementsolution.

To study the electromagneticfields surroundinga two-wire parallel-pair transmis-

sion line in aerospaceapplications,a ballooning techniquecanbe usedbecauseweare

only interested in the fields in the interior region near the wires. However,no such

ballooning techniqueshave been found in any literature for that type of problems

becauseeddy current fields canexist in both the interior regionand exterior region in

the expectedplasmaenvironment of SpaceStation Freedom. This thesis will derive

a new 2DFE ballooning method for the problem with eddy currents in both the inte-

rior regionand exterior regionand with an openboundary. Then this new ballooning

2DFE method is applied in this research which will be defined further in the next

section.

The other purpose of this work is to develop models which can help engineers

in studying the electromagnetic fields surrounding a two-wire twisted-pair transmis-

sion line and possible other configurations. To the best of this author's knowledge,

no similar papers on such problem have been found in the literature. It is one of

the purposes of this work to explain the nature of the field caused by this type of

transmission lines. In this thesis, we only consider the magnetostatic case for the

two-wire twisted-pair transmission line without shielding so that the closed-form an-

alytical formulation can be employed to deal with this possible three dimensional

(3D) problem. The results of this investigation will show the necessity of the need for

the ballooning in conjunction with 3DFE methods to solve the eddy current problem

with a twisted-pair transmission line with shielding.

1.2 Definition of the Problem

This research work centers on the development of computer models which can be used

to predict the local electromagnetic fields with infinite boundary for various power

system components or devices in aerospace applications, and specifically the case of

the Space Station Freedom.



The effort is started in the magnetostatic caseand is developed in the quasi-

static case because of the existence of a plasma environment surrounding the Space

Station. The first power system component to be analyzed is the two-wire parallel-pair

transmission line with no shielding. This example is chosen because it is the simplest

case of a two-wire transmission line for which there exists an analytical solution for

comparison with and verification of the detailed FE modeling which will follow.

A two-dimensional finite element (2DFE) method will be used to obtain the lo-

cal electromagnetic field distributions surrounding power system components and

devices. In order to simulate the problem with the open boundary, a ballooning tech-

nique is introduced. With the ballooning technique, a matrix recursion algorithm is

derived for a 2D problem in the static case and incorporated into the 2DFE method.

This combined 2DFE ballooning method is applied to the example. The validity of

this 2DFE method with the ballooning technique is demonstrated by comparison of

the results with those of the analytical solution in the magnetostatic case with no

shielding.

In the magnetostatic case, the 2DFE ballooning method is applied to the two-

wire parallel-pair transmission line with continuous permeable cylindrical shields to

determine the effects of the shielding. This method is applied further to the study of

the field distributions resulting fi'om discontinuitues in permeable shielding surfaces

due to accidental damage or to deliberate hardware design necessities.

The 2DFE ballooning model is developed in this work for the AC cases with

frequencies in the Hz,and kHz ranges. Ill the AC case, the magnetic vector potential

is a function of time. Assuming that the MVP varies sinusoidally, we can use phasor

vectors in the problems. The field in the plasma environment can be equivalent to

the eddy current field. A comp|ex 2DFE model for eddy current problems is obtained

and a complex matrix recursion algorithm is derived using the ballooning technique.

In this thesis, it is shown how the AC ballooning is working in each chosen frequency

(f= 0 Hz, 400 Hz, 2 kHz, and 20 kHz). With the AC 2DFE ballooning method, the

effects of conductive shielding are studied in lower frequencies and higher fi'equencies.

The effects of defective conducting shielding are also considered in a certain frequency

(f= 400 Hz). The relations between the flux density magnitude and shield thickness



areshownin both defectiveshieldsand shieldswithout defectcases.

The investigation of a 3D closed-formanalytical formulation using the Blot -

Savart Law is depicted for the magnetostatic field surrounding the two-wire twisted-

pair transmission line. That formulation is an integral expression and the Gaussian

numerical integral method is needed for the computer program. The results of this

investigation indicate whether the near-field or the far-field are of 3D nature. Several

different lengths of pitches are chosen for the flux density component comparisons,

which also show that this problem cannot be simplified by a 2D solution approach.

The 3D nature of this field means that it will be necessary to use 3DFE analysis to

evaluate the magnetic nlaterial-type or eddy current-type electromagnetic shields and

other related studies.
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Chapter 2

THEORETICAL

BACKGROUND

2.1 Formulation- the Governing Differential Equa-

tions

In this chapter the differential equation governing the magnetic fields within a two

dimensional (2D) continuum is derived from Maxwell's equations and the definition

of the magnetic vector potential. For the purpose of this study, the magnetic fields

surrounding the two-wire parallel-pair transmission line are treated as being two di-

mensional (2D) in nature of the infinitely long transmission line case. Consequently,

the conductor current can have a component in the axial-direction only. The materials

within this continuum are assumed isotropic.

The fields in such a device are governed by Maxwell's equations, equations (2-1)

through (2-4), as follows Ill]:

m

v. B = 0 (2.1)

m

V.D=p

-- - - 0-5
V x H = J, -4-J, 4- O--[

(2.2)

(2.3)



a_
V x _ = --- (2.4)Ot

All the symbols used throughout this thesis are defined in the list of symbols (Ap-

pendix A). The constitutive relationships are:

= pT/= !_ (2.5)
V

= e_ (2.6)

7,=oT (2.7)

g m

The magnetic vector potentialA and the magnetic flux density B are related as:

= V x _ (2.8)

The x and y components of _ are zero in the 2D case, therefore _ can be rewritten

as follows:

-- 0,4__ 8A__

B = -_-ya_- -_-a_ (2.9)

Rewriting the curl of A in terms of the magnetic field intensity gives:

vB = H = v(V _ x A) (2.10)

Substituting Equation(2.10) into the third Maxwell equation, Equation(2.3), one ob-

tains:

.... 0D (2.11)
V x H = V × (vV x A) = J, + Je + cg--"f

In 2D cartesian coordinates Equation(2.11) becomes:

_xO(vOA,._) + O(vOA')oyOy = -(J*" + J_" + _) (2.12)

In the static case, the eddy current density component, Je, and the displacement

current density component, O_/oqt are both equal to zero, hence the contributions

due to these terms will be zero. Ill the diffusion (eddy current) case, the displacement

current is very small compared to the source current. For this reason, the contribution



of the displacement current can be neglected. Assuming that the magnetic vector

potentials are functions of time which vary sinusoidally in both the diffusion (eddy

current) case and high frequency radiation case, one can use phasor form equations

in the frequency domain in these two cases. For convenience the subscripts of A, and

dz will be dropped in future developments and discussions throughout this thesis.

Equation(2.12) can therefore be rewritten as follows in the static case:

0 OA 0 (vOA._(_,_) + _ _ = -a. (2.13)

In the diffusion (eddy current) case, one can write the following:

o, o,_ o _)_t_-_) + N(" ov = -L + j_._A (2.14)

Also, in the high frequency radiation case, one can write the following:

0 0A 0 (0),) = -3, + j_,A-J_A (2.15)7x(_)+ N 0y

These are the well known nonlinear Poisson's equations in cartesian coordinates.

Usually, the reluctivity, v, is a function of both position and magnetic flux density

which is dependent upon the curl of the magnetic vector potential. However, in this

work, no nonlinear magnetic materials are expected to be encountered. Hence, v is

assumed as a constant in the various anticipated nonmagnetic materials. Accordingly,

the above three non-linear Poisson's equations become linear equations. In other

words, the reluctivity, v, can be moved outside of the partial derivative operators.

Obviously a closed form solution is near])' impossible to solve the magnetic fields

surrounding a two-wire parallel-pair transmission line with any shielding. One must

look towards numerical techniques . One of the best methods is the finite element

method which will be briefly summerized in the following section.

2.2 The Finite Element Method

The finite element method is used to solve bounded problems. Consider a 2D magnetic

fie]d problem with Dirichlet and Neumann boundary conditions. In the static case,

8



one can formulate the problem as follows:

+ ) = -J" (Co e,',ing
A = 0 (Dirichlet) (2.16)

OA (Neumonn)
v._=O

From variational principles it was previously shown that the appropriate energy

functional [11] for this problem is:

. 1 10A 2 _l(0A)2"_xF(A) = f JR[_{Z(_y ) + ) - Jo. A]dxdy (2.17)

Minimization of F(A) is equivalent to solving the partial differential equation (p.d.e.)

with Dirichlet or Neumann boundary conditions [11]. The solution region R can

be divided into many subregions (finite elements) on which interpolation functions

of the MVP's are defined. There are many different types of element shapes and

interpolation functions which are applicable to the finite element discretization [11].

Here, first order triangular elements R_ are chosen and interpolation functions can

be obtained in the form of polynomials of first order. The value of the MVP at an)'

point P(x,y) within this triangle is given by [11]:

A,(z,y) = N_A_ + N_A_ + N.A. (2.18)

where A_, A_, and N, are the form (or shape) functions which are complete first

degree polynomials. Meanwhile, Al, Am, and A, are the values of the MVPs at the

vertices of the triangle, e, in Figure(2.1). These polynomials are of the form:

Nl aj bl c_ 1

N,. = a_ b_ c_ x (2.19)

A_ a. b. c,, y

the constants a_, b. and ci are determined subject to the following conditions:

N_ = 1, N,. = N., = 0 at P(z_,y_)

A_ = 1, Nt = hk = 0 at P(x,,,,y_) (2.20)

N. = 1, h_ = h't= 0 at P(z,,, y,,)

9



Therefore, the expressionsof the form (or shape)functions canbe rewritten asfollows:

lipqr]i1]N._ = _-_ pm qm r,. Z

N,, p, q,_ r,_ y

(2.21)

where: A is the area of the triangular element, e, and

rt = x. - x._,q_ = y._ -- Yn,P_ = x_yn - x.ym

rm ---- xt -- zn, qm -- Yn -- yl,pm ---- ;TnYl -- Xtyn

r. = xm - zl, q. = y_ - y..,Pn = x_ym - xmyl

where, 2A = pt +pm + pn.

Now, one can write the interpolation function of the MVP in one element, e, as

follows:

1

A,(z,y) - 2,5 _ (p' + q,z + r,y)A, (2.22)
i=l,m,n

Substituting A_(x,y) into the previous functional equation and minimizing it, one

can get the following equation in matrix form [11]:

SeA " = I"

In expanded form we have:

s_ s_ s_.
S_nl • •Smm Smn

v

S_. -- -_(rlrj + qiqj)

hg,
L- i=l,m,n

3

where:

It should be noted that

I I 1

Xl Xm 2n

Yt Y_ Yn

Al

A,,,

A,_

11

= I_

I,

i,j = l,m,n

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
1

A=_

10



The element matrices S t given in the above summary are only valid for element

e. Representation of the entire region R requires that these element matrices be

assembled into a global coefficient matrix S. Then a global matrix equation can be

obtained as follows, after imposition of the proper boundary conditions:

A = t (2.2S)

The assembly process can be briefly summarized as follows:

Step(l): Initialize all entries of the S' and 2 matrices to zero.

Step(2): Add each contribution of an element matrix _ to its corresponding location

in the global 3' matrix.

Step(3): Add each entry of the element matrix/_ to its corresponding location in the

global forcing function, 2.

Step(4): Repeat step(2) and step(3) until all the elements have been assembled.

now the system of Equation(2.2$) would be ready for the numerical solutions.

11



P(xt, y_)

P(xm,ym)

P(x,,,y,_)

Figure 2.1: The First Order Triangular Finite Element
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Chapter 3

COMPARISONS BETWEEN

THE CLOSED-FORM

SOLUTION AND 2DFE

SOLUTION FOR THE

TWO-WIRE PARALLEL-PAIR

CASE

In this chapter, the magnetostatic fields surrounding a two-wire parallel-pair trans-

mission line which is shown in Figure(3.1) are computed by the analytical and 2DFE

methods. The results are compared for verification purposes.

3.1 The Closed-Form

According to Ampere's circuital law:

J-g._= l

Solution

(3.1)

13



one can get the following equations for conductor #1 in Figure(3.1):

_l •_1 = I (3.2)

fo 2" Hlrldol = I (3.3)

Hence,

H1 • 27rrl = I (3.4)

Therefore,

I
H1 --- n

2_r 1

That is,

Hi,= = -H1 sin(a1) =

(3.5)

(3.6)

H1 ,y

[j[ r

I x 9

= Hlcos(_l) = 2_1 rl (3.7)

Similarly, one can obtain the equations for conductor _2, Figure(3.1):

I Y

H2,= = H2 sin(a2) - 2rr2 r2
(3.s)

lV

1
H2,u = -H2 cos(o2) = +-2-'0- (3.9)

2_rr2 r2

With superposition of the fields due to the two conductors, the expressions of the

total flux density can be obtained as follows:

#I ,1 1

B. = _vt ri - --;) (3.1o)r[

IV W

By = _/(x--_
27r r_

x+-_) (3.11)

14



Becauseof the definition:

v × 2 = (3.12)

in the 2D case, equation(3.12) yields the following:

OA
= m (3.13)

B= by

OA

Bu = -0-7 (3.14)

Substituting equation(3.10) into (3.13) and integrating yields the following result:

A = _r ln( ) (3.15)

the quantities rl and r2 are defined in Figure(3.1). With the above formulations, the

MVP and flux density were computed for the case of Figure(3.1). The equipotentials

near to the conductors are shown in Figure(3.2) and the equipotentials away from the

conductors are shown in Figure(3.3). The MVP values and the flux density values at

various locations were computed and are listed in Tables(3.1) through (3.4).

3.2 The 2DFE Solution

Let us consider the region shown in Figure(3.4), which has a natural open boundary

near to the conductors. In conductor # 1, a current of I=500 A flows in the direction

out of the p]ane of the paper, and in conductor _ 2, a same value of the current

flows in the opposite direction. ]ts FE grid is shown in Figure(3.5). This bounded

problem can be solved using the 2DFE method summarized in the previous chapter.

The equipotentials obtained from the FE method with the grid of Figure(3.5) are

shown in Figure(3.6). One also needs to investigate the distribution of the magnetic

fields away from the conductors. Taking a region which has a remote open natural

boundary as shown in Figur(3-7), we can solve this bounded problem using the 2DFE

method and obtain the equipotentials shown in Figur(3.8). In the case of Figure(3.7),

some MVP values and flux density values at various locations are ]isled in Tables(3.1)

through (3.4).

15



3.3 Comparisons Between the Closed-Form Solu-

tion and 2D-FE Solution

In the two above sections, the analytical method and the 2DFE method were used

to solve the same problem. The "true" solution obtained fl'om the analytical method

was compared with the solution obtained from the 2DFE method. If the solution

obtained from the 2DFE method is not within reasonable bounds in comparison to

the true closed form analytical one, means of improvement in the 2DFE method, and

solution algorithm need to be arrived at.

Comparison between Figure(3.2) and Figure(3.6) leads one to conclude that the

equipotential lines obtained from the 2DFE method are obviously different from the

closed form solution. And comparing between Figure(3.3) and Figure(3.8), one finds

that in the area near to the conductors, the equipotential lines obtained from the

analytical method and 2DFE method are not much different, but in the area close to

the boundary, the lines are heavily distorted. The value comparisons for the MVP's

and flux densities are given in Tables(3.1) through (3.4). From these tables, it is seen

that the near-fields (close to the conductors) obtained from the 2DFE method have

higher accuracy and the far-fields (close to the boundary) obtained from the 2DFE

method have lower accuracy. In the other words, the more remote the boundary, the

less difference the near-fields have from the analytical solutions.

The facts from the above comparisons leads one to conclude that the farther

away the boundary in a problem the more improvement are obtained in the near-

field solution. In the enginerring problems, it is not possible and not necessary to

include an infinite boundary. Accordingly, it is better to have a recursion algorithm

to extend the boundary to as far away as possible, and to stop the recursion once no

further additional improvement can be achieved. That is the essence of the ballooning

technique which will be discussed in the next chapter.
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Lo.do_

r (inch)

3.5856

6.1959

18.501

e (deg.)

0.0

10.0

20.0

MVP(lines/inch)

Analy.

145.4

142.7
134.9

30.0 122.5

40.0 106.5

50.0 87.79

60.0

70.0

80.0

0.0

67.22

45.41

22.88

0.0

82.67

2DFE

142.7
140.1

132.4

120.2

104.6

86.35

66.20

44.78

22.58

-0.006140

84.11

MVP(Wb/m)

Analy.

0.5726x 10'-'j
0.5620 x 10-4

0.4192 x I0-4

0.3456 x 10 -4

0.2646 x 10-4

0.1788 x 10 -4

0.9'0060.0x 10 -s ]

0.3255 x 10-4

10.0 81.32 82.75 0.3202 x 10-'

20.0 77.35 " 78.72 0.3045 x 10 -4

30.0

40.0

70.95

62.40

52.05

40.26

?2.22

63.52

53.01

41.02

27.94

14.15

27.42

13.88

0.0 = -0.001766-

39.65

39.05

m

27.47

2?.05

50.0 i
60.0

70.0

80.0

90.0

0.0

10.0

20.0 25.80 37.25

'30.0 23.77 34.32

40.0 21.0i 30.34
I

25.44

19.78

50.0 17.62

13.6960.0

6.865

0.00043S6

70.0 9.363 13.53

80.0 4.752

90.0 0.0

0.2793 x 10 -4

0.2457 x 10 -4

0.2049 x I0 -4

0.1585 x 10 -_

0.1080 x 10 -4

0.5465 x 10-s

0.0

0.1080 x 10 -4

_0.1065x 10-4
0.1016 x 10 -4

0.9357 x 10 -_

0.8271 x 10 -s

0.6935 x 'i0 -_

0.5391 x I0 -s

0.3686 x'10 -_

0.1871 x 10 -_

0.0

2DFE

0.5619-x 10 -4

0.5514 x 10 -4

0.5211 x 10 -4

0.4734 x 10 :t

0.4119 x 10 -_

0.3400 x 10 -4

0.2606 x 10 -4

0.1763 x 10 -4

0.8889 x 10 -s

-0.2417 x 10 -s

0.331:2"x 10-'

0.3258 x I0 -4

0.3099 x I0 -4

0.2843 x 10 -4

0.2501 x 10 -4
J

0.2087 x 10 -4

0.1615x 10 -4

0.1100 x 10 -4

0.5571 x 10 -s

-.6952 x 10 -l°

O.1561 x 1'624

0.1537 X 10 -_

0.1467 x 10 -4

0.1351 x 10 -4

0.1194 x 10-4

0.1002 x 10 -_

0.7788 x 10 -s

0.5325 x 10 -s

0.2703 x 10 -s -

0.1727 x 10 -_

Difference

%

1.9

1.9
1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.8

1.8

1.8

1.8

1.8

1.8

1.9

1.9

1.9

44'136

44.37

44.37

44.39

44.42

44.43

44.45

44.47

44.47

Table 3.1: Comparison Between MVP's Obtained from Analytical and 2DFE Methods

at LocationsAway From the Conductors
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• d

Location Flux Density(Lines�in s )

r (inch) 0 (deg.) Ana_y.

3.9442

6.8155

20.351

5.0

15.0

25.0

34.84

34.54

34.00

35.0 33.31

45.0 32.57

55.0 31.88
i

65.0 31.31

75.0 30.90

85.0 30.69

95.0 30.69

5.0 11.17

15.0 11.14

25.0 ll.08

35.0 11.01

45.0 10.93

55.0 10.85

65.0

75.0

85.0

95.0

10.78

10.73

10.70

10.70

32.70

Flux Density( IJ,'b/ra_)

2DFE Analy.

33.03 0.5400 x 10 -3

33.16 0.5354 x 10 -3

32.51 0.5270 x 10 -3

- 0.5]63 x 10 -3

31.80 0.5048 x 10 -3

31.47 0.4941 x 10 -3

31.21 0.4552 x 10 -s

31.25 0.4790 x 10 -3

31.01 0.4757 x 10 -_

31.01 0.4757 x I0-a

10.14 0.1731 x 10 -5

10.2S 0.1726 x 10 -s

10.31 0.1718 x I0 -s

10.65 0.1706 x 10 -3

10.69 0.1694 x I0-_

11.02 0.1651 x 10 -_-

11.05 _ 0.1671 x 10 -a_

11.25 0.1663 x 10 -s

11.26 0.1659 x 10 -_J

11.26 0.1659 x 10 -3

5.0 1.229 0.5075

15.0 1.228 0.6868

25.0 1.228 0.9217

1.227

1.226

].225

1.224

1.223

35.0

45.0

55.0

65.0

75.0

85.0 1.223

95.0 1.223-

1.178

1.407

1.597

1.752

1.$60

1.912

1.912

0.1905 x 10 -4

0.1904 x 10-'

0.1903 x 10 -4

0.1902 x I0-4

0.1900 x 10-4

0.IS98

0.1597

0.1896

0.1895

0.1895

x 10 -4

x 10 -4

x 10 -4-

x 10-4-
x 10 -4

2DFE

0.5119 x I0 -_

0.5140 x 10 -3

0.5039 x 10 -3

0.5069 x I0 -_

0.4929 x 10 -_

0.4877 x 10-_

0.4837 x 10 -s

0.4807 x 10 -3

0.1571 x 10-3

0.1594 x 10 -3

0.1599 x 10-3

0.1708 x I0 -_

0.1656 x 10 -3

0.1708 x I0 -3

0.1713 x 10 -3

0.1743 x 10 -::)

0.1745 x 10 -s

0.1745 x 10 -s

0.7866 x 10 -s

0.1065 x 10 -4-

0.1429 x 10 -4

0.1826 x 10 -4-

0.2181 x I0-(

0.2476 x 10 -4

0.2715 x 10 -4

0.2883 x 10-4

0.2964 x 10---_-

0.2964 x I0-4

Difference

5.2

4.0

2.4

1.8

2.4

1.3

0.32

I.I

1.0

1.0

9.2
m i

I.I

6.9

3.3

2 o

1.6

2.5

4.8

5.2

5.2

58.7

44.09

24.93

4.0

14.$

30.4
43.1

52.1

56.4

56.4 J

Table 3.2: Comparison Between Flux Densities Obtained from Analytical and 2DFE

Methods at Locations Away From the Conductors
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Lo_:ation

r (inch)

0.6480

8 (deg.)
T 7

8.5

MVP(Wb/m)

Analy.

0.1486 x I0 -a

2DFE

Difference

%

4.1

MVP(lines/inch

Analy. 2DFE

377.40 361.83

207.45 199.57

84.38 80.23

278.48 269.36

199.21 193.59

I08.51 I05.79

0.5469 36.9 0.8167 x 10 -4 3.8

0.6035 68.7 0.3322 x 10 -4 0.3159 × 10 -4 4.9

1.7828

1.6968

0.1096 x 10-3

0.7843 x 10 -4

0.4272 x 10 -4

20.5

41.5

0.1060 x 10 -s

0.7622 x 10-4

0.4165 x 10 -463.61.5643

3.3

2.8

2.5

Table 3.3: Comparison Between MVP's Obtained from Analyt!cal and 2DFE Methods

at Locations Close to the Conductors
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Location
r (inch) 0 (deg.)

0.59627 6.1

0.51336 17.0

0.47085 36.0

1.61570 20.3

1.46200 38.4

Flux Density(Lines�in 2) Flux Den. sity(l/Vb/rn 2)

Analy. 2DFE Analy. 2DFE

772.80

638.60

531.01

258.82

7O3.37

591.04

485.37

235.96

236.63236.76

0.1198 x 10 -1

0.9898 x 10 -_

0.8231 x 10 -2

0,4012 x 10 -2

0.3670 x I0-2

O.1090x 10:_

0.9161 x I0-2

0.7523 x I0-2

0.3657 x i0-2

0.3668 x I0-2

Difference

%

9.0

7.4

8.6

8.8

0.05

Table 3.4: Comparison Between Flux Densities Obtained from Analytical and 2DFE

Methods at Locations Close to the Conductors
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Chapter 4

THE BALLOONING MODEL IN

THE 2D MAGNETO STATIC

CASE

Ballooning techniques to simulate infinite boundaries in 2D magnetostatic field so-

lutions using finite elements were developed by earlier investigators in various appli-

cations [11]. As seen in chapter 3, it was demonstrated that open boundary 2DFE

solution of the field surrounding the two-wire parallel-pair transmisssion line in open

space was inadequate. Hence, in this chapter ballooning techniques for 2DFE codes

of the type used by this investigator will be detailed here. That is, in this chapter, a

recursion algorithm will be derived using ballooning techniques [2, 3], and then this

algorithm will be incorporated into the 2DFE method which was summarized earlier

in chapter 2. This 2DFE ballooning model will be applied to an example and its

results will be examined by comparison to the analytical solutions. With the 2DFE

ballooning model, the study for the effects of the magnetic-type shielding and the ef-

fects of defects in such shielding surrounding parallel-pair transmission lines is carried

out.
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4.1 Ballooning Technique in the

Case

Magnetostatic

Consider the two round-wire parallel-pair transmission line shown earlier in Fig-

ure(3.4), a finite element grid of which is shown here in Figure(4.1). Using con-

ventional finite element techniques, the interior region in this FE grid which has a

boundary Fo, may be divided into triangular finite elements as shown in the figure.

Hence the node distribution on the surface Fo of the region R, Figure(4.1), is well de-

fined. The FE global matrix equation can be obtained using the conventional 2DFE

method for the region, R, and the boundary, Fo, as follows:

where the subscript in denotes the interior region, the subscript F0 (or 0) denotes the

nodes on boundary, r0, and the subscript R denotes the nodes in the region R.

Assume that the region exterior to R contains only free space, hence the external

field is purely Laplacian. The first step in the representation of the exterior region is

to define a finite element mesh for an annular region surrounding the region R. This

annulus has certain properties which can best be summarized as follows:

(a) The number of nodes on the inner and outer boundaries are the same and lie on

lines radiating from a star point.

(b) The outer boundary nodes for each successive ballooning annulus have a one-to-

one correspondence with those nodes on the original solution region boundary, r0.

This leads to useful geometric similarity properties to the FE triangles in the bal-

looning region.

(c) There is a fixed ratio k between the radii of the outer and inner sets of nodes of

every annulus, measured from the star point.

Such an exterior annular region with boundary annuli r0, rl, ... is shown in Fig-

ure(4.2). The exterior region should be matched with the interior region such as

shown in Figure(4.3).
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Hence,if the points on the inner boundary aredenoted:

x o) = (4.2)

then the outer boundary nodes are given by

X (') = (x,_,y,,) (') = kX (°) (4.3)

where k is the mapping ratio for the ballooning method at hand.

The FE matrix, ._=t, for this exterior annular region can now be constructed

and a process of matrix condensation is used to remove any equations corresponding

internal nodes occurring in the recursive ballooning step.

The FE matrix equation for nodes on F0 and Fa becomes:

IS'S 2][Ao][0]_-_t ' S_1 S_2 A1 = 0
(4.4)

where the subscript ext denotes the nodes on the exterior region, the subscript of

MVPs, 0, denotes the inner nodes on the F0 and the subscript 1 denotes the nodes

on the F1.

The contributions of each element on this annulus to q,_, are computed as follows:

v

Si_ - _-'_(rirj + q,q_) i,j - l, rn, n (4.5)

where: A is the area of the triangular element, e, and

rl = Sn -- Sin, rm = St-- Sn_ rn =Sm -- St

qt = Ym -- Yn, q,'n = Yn -- YI, qn = Yl -- Ym

In the same way,a second annulus for the nodes on F1 and F2 can be constructed:

T1A1a = [ T_IT_IT_2] [all = [0]T_ As 0 (4.6)

Because this second annulus is geometrically similar to the first and has the same

mapping ratio discussed earlier, it follows that one can write:

XC2)= kX ') = (4.7)

Applying the geometric similarity given in equation(4.7) yields a set of elemental

coefficients, S_'.i, equation(4.5), which remains unchanged as one progresses from one
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ballooning annulus to the next. That meansthe matrix T 1 in equation(4.6) is equal

to the matrix q_, in equation(4.4). That is, _-_t is identical to T 1, or

T' = _%, (4.s)

The two annuli may now be combined to yield the following:

S_, S_2 0 Ao 0

S], S]2+ T_1 T_2 A1 = 0 (4.9)

0 T]I T]2 A2 0

where A1 are nodal MVPs on the common boundary, F1, between the two annuli.

The equations for A0, A1, and A_ may be partially solved to eleminate A1, using the

fact that

(4.10)

Substituting Equation(4.10) into Equation(4.9) leads to the following:

,_.._zt A 0,2 --

hence,

m
n

1 1 1 1 -1 1

Sn - S12(Sn+ Til) S21

'Tq [ ¢lI .a_ TI _-I ¢]
_.L 21k,- 22 T .LII ) ""21

[:]
1 l 1

T_2- T_,(S n + T?I)-1T?_ A2

(4.11)

-s1:(s:: T_,)-IT_2 ]
Sn(S n + T_,)-I I I_., = S_1_ , 1 S], +

-T_,(Sn +-n, _2, - T_I(Sn + T?l)-lT]2

= [ S_1S_2]S_,S_2 (4.12)

The matrix equation (4.11) has the form of equation(4.4) but relates the two combined

annuti, which now has a mapping ratio of k _.

From the (i-1)th recursive ballooning step, applying the method given in equa-

tion(4.12) recurrsively, one could obtain the following equation:

xt x"A "-- i
Sn S_: A_ 0
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which relates the MVPs, A0 and Ai on the boundaries Fo and rl of the ballooned

solution region.

For the (i)th application, one can obtain:

[ ][ ] []TiAU+I = Tfi Tfi Ai = 0
T_I T_2 A;+1 0

(4.14)

One must recallwhich relates the MVPs of the nodes on boundaries F; and Fi+l.

that the above mentioned geometric similarity property of the successive ballooning

layers allow one to write the following:

Z;= _, (4.15)

Combining equation(4.13) and equation(4.14), and eliminating Ai, one can write

the following main recursive relationship for the ballooning technique, which is used

i ; Ti _-lTi ]-S12($22 + " 111 " 12

Jr_- T_,(& + T;,)-1T'_2

here:

i i i ' i

¢;+I Sn - S,2($22+ T_I)-IS2,

_-ext = i i i )-1 "

= '-'1, 0,2

s_t' s_+'
That is, one can write the following for the ballooned exterior region:

(4.16)

(4.17)= mo]=[o]"_"" s;t' s_+_1 A,+, 0

which relates the nodal MVPs on the F0 and r/+l, and has a mapping ratio of/:(;+1).

A new annular region can now be attached to the present outer nodes and the

process can be repeated indefinitely. Hence a recursive system has been defined with

the outer boundary moving away with the following geometric progression:

k 1, k 2, ka,..., ki,... (4.18)

The system is rapidly convergent and the Sn terms in equation(4.17) (representing

the error in the exterior solution) quickly approaches zero. After m applications, one

can write:

""" S_ S_ Am = 0
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Finally, the $11 terms are attached to the outer nodes of the interior solution region,

i.e., the matrix equation(4.1) is combined with the matrix equation(4.19), yielding

the following global FE system of equations:

S_ SRro 0

Sr0R Sr0r0 +S_ S_

o

A

Ao =

Am

I

I0

0

(4.20)

where A0 are nodal MVPs on the boundary, F0, and Am are the nodal MVPs on the

boundary, F_,. If F,_ is far enough, A,_ = Air., --4 0 and S_ --* 0.

If Am = 0, and S_ = 0, the previous equation(4.20) can be rewriten as follows:

Sr0R Sr0r0 + S_ Ao I0

In the computer algorithm of the 2DFE ballooning method, m, the number of bal-

looning layers (or annuli, which from now on will be used interchangably throughout

this thesis), is chosen large enough to lead to negligible coefficients for the matrix,

S_. Specific values for m will be discussed in the next section, accompanied by some

numerical results.

The process of the 2DFE ballooning method can be summarized as follows:

Step(l): Compute the global _._, matrix of the interior region using the conventional

2DFE method summerized in chapter 2, that is, obtain the FE global matrix _7__,and

the global forcing function I shown in equation(4.1).

Step(2): Choose a proper rn, the number of ballooning layers, and compute the con-

tribution of the exterior annular region F0 and F1 to obtain the FE matrix ,_._,.

Step(3): i=l

Step(4): Let T' = _-_z,.

Step(5): Use the main recursive equation(4.16) to combine the matrices ,_-_zt with T _

and therefore, obtain the matrix q_+_.

Step(6): If i is less than m, i = i + 1, go to step(4).

Step(7): Incorporate the matrix S_ into the FE global matrix ,q,, as shown in equa-

tion(4.21).

Step(8): Solve the FE equation(4.21).

Step(9): End.
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4.2 Exploration of the 2DFE Ballooning Model

by Test Examples

Now this 2DFE ballooning model will be applied to an example of a two-wire parallel-

pair transmission line problem with an infinite boundary, which was shown earlier in

Figure(3.1), and its validity should be examined by the comparison of its results with

those of the analytical solution whose formulations were given in equations (3.13)

through (3.15).

The interior region is shown in Figure(4.4) where the current flowing in the right

conductor has a value of 500 amperes and a direction out of the plane of the paper, and

the same value of current flows through the left conductor in the opposite direction,

that is into the plane of the paper. Its FE mesh is shown in Figure(4.5), where the

mapping ratio is k=l.3 and the start piont is at P(zo, I/0) = (0, 0).

The equipotentials of the theoretical "true" solution obtained from the analytical

method are shown in Figure(4.6). Figures(4.7) through (4.12) show the equipotentials

ob_alned from the 2DFE ballooning method with ballooning layers (annuli), m=0, 2,

5, 10, 15, and 20, respectively. The quantitive comparisons of the MVP's and flux

densities at arbitrarily selected locations shown in Figure(4.13) were carried out. The

MVP comparisons between the analytical and 2DFE ba]loonlng solutions in various

locations for the ballooning layers, m=0, 2, 5, 10, 15 and 20 are listed in Tables(4.1)

and (4.2). Also, the flux density comparisons between the solutions obtained from

these two methods are also listed in Tables(4.3) through (4.5)

Comparing Figure(4.6), which shows the analytical solution, with Figures(4.7)

through (4.12), one can easily find that while the number of ballooning layers, rn, is

lower (m=0, 2, and 5, which show various FE ballooning solutions, see Figures(4.7)

through (4.9), respectively), the equipotentials obtained from the 2DFE ballooning

solutions are obviously distorted, meanwhile when m is increased (m=10, 15, and

20, see Figures(4.10) through (4.12), respectively), the equipotentials of the 2DFE

ballooning solutions are closer and closer to those obtained from the "true" solution.

Again, from Tables(4.1) and (4.2), one can find that the errors of the MVPs were

reduced while the number of ballooning layers was going up, for example, the errors
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of the MVPs arein the rangeof (20_ 70)%with rn=O,and in the rangeof (10 -,_ 40)%

with m=5. For rn > 10, the errors are below 10 %. In Tables(4.3) through (4.5), the

errors of flux densities bear a similar relationship to the number of ballooning layers,

rn, to that relationship in the case of the MVP data explained above. Tables(4.1)

through (4.5) show one that while the number of ballooning layers, m, is big enough

(here, m >_ 10),the errors of both MVPs and flux densities are smaller and smaller

up to a number of ballooning layers, at which such errors are not further improved

by further addition of more ballooning layers. Such lack of continued improvement is

due to the inherent numerical errors associated with the FE discretization within the

FE grid of the internal region. That is, further improvements can only be obtained by

finer FE mesh discretizations in the interior region. Therefore, one can say that this

2DFE ballooning model is useful for magnetostatic problems with infinite boundaries.

4.3 The Effects of the

of Defects

shielding and the Effects

This 2DFE ballooning model can be used to investigate the effects of the material-type

magnetic shielding on the electromagnetic field distributions in a two-wire parallel-

pair transmission line case.

Let the cylindrical shell shown in Figure(4.4) surrounding the two-wire parallel-

pair transmission line be made of material with relative permeability _u, > 1.0. Finite

element magnetic field analysis was applied using the ballooning technique to simulate

the infinite free space surrounding the conductors (infinite boundary), with assumed

cylindrical shell relative permeabilities of p,=10, 100, 1000, and 5000. This was done

to study the effects of shielding on the magnetic field outside the shield. The equipo-

tentials are shown in Figures(4.14) through (4.17), for/zr=10, 100, 1000, and 5000,

respectively. These should be compared with the no shielding case in Figure(4.12)

for a qualitative appreciation of the effects of the shield's relative permeability, _, on

the field distribution. A quantitive comparison of magnetic flux densities at arbitrar-

ily selected locations outside the shield, shown in Figure(4.18), is given in Table(4.6).
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Notice the substantial effectof the shieldwhen/_r > 100,the flux densitiesoutsidethe

shieldingarevery small becauseof the magneticshieldingwith higher permeabilities.

Also this 2DFE ballooning model can be used to study field distributions resulting

from discontinuities in shielding surfaces due to accidental damage or to deliberate

hardware design necessities, such as openings for electrical leads. Examples given here

assume three possible cylindrical shielding shell discontinuities around the two-wire

parallel-pair transmission line under consideration. These defects and their corre-

sponding flux plots for defect angles, 6 = 10 °, 20 °, and 30 °, are shown in Figures(4.19)

through (4.24), respectively. The effects of the shielding defects were monitored at

the arbitrarily chosen locations given in Figure(4.25). The magnetic flux densities are

given in Table(4.7). The numerical results show how defects can adversely affect the

intended benifits of such shields, which is manifested here in a substantial increase in

the flux densities in element # 1305.

Next the combined FE-ballooning technique is developed and applied to the case

of shielding involving diffusion type reduced eddy currents in metalic shields for AC

type transmission line currents.
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Chapter 5

THE BALLOONING MODEL IN

THE 2D DIFFUSION

QUASI-STATIC CASE

The 2DFE ballooning model derived in the previous chapter can be used to solve the

magnetic field problems with open boundaries only in the static case. For the space

station applications of interest here, many field problems with infinite boundaries

should be dealt with in the quasi static case, so that an AC 2DFE ballooning model

is needed for the AC eddy current problems with open boundaries. In this chapter, the

previous ballooning 2DFE model will be developed further in the frequency domain for

use with the quasi static cases at hand. The new mode] will be applied to the study of

electromagnetic field distributions surrounding a two-wire parallel-pair transmission

line with conductive shielding in the (Hz to kHz) frequency range. The effects of

shielding thickness and the effects of defects are also investigated.

5.1 The 2DFE Ballooning Model in the Quasi

Static Case

5.1.1 The 2DFE Model in the Quasi Static Case
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From chapter 2, one shoulduseEquation(2.14)asthe governingdifferential equa-

tion in the 2D quasistatic casein the frequencydomain. Phasor vectorsand phasor

matrices should be used. The correspondingMVP boundary value problem can be

(thegoverning p.d.e.)

(Dirichlet condition on boundary Ca)

(Neumann condition on boundary C2)

formulated as follows [11]:

Jo2"a °_'a j,,,,,A

_,(-ff-Z/+ )= -L +Oy 2

2=0

oA
v. O----_=O

The energy functional for the above problem is given by the following [11]:

1 I(0A : I(0A') 2}-L'A+2jwa,4_]dxdy

(5.1)

(5.2)

Minimizing the functional in equation(5.2) is equivalent to solving the partial differ-

ential equation (p.d.e.) with Dirichlet and/or Neumann boundary conditions, equa-

tion(5.1). Using the FE method summarized in chapter 2, equation(5.2) can be dis-

cretized and minimized. Consequently, a complex matrix equation can be obtained

for every triangular element as follows [11]:

_._A,_ = (£_ + _)X = _¢ (5.3)

where:

--_--_(rirj + qiqj)

(5.4)

i,j = l,m,n (5.5)

fv:, ee:. eel.

A
2 1 1

121

112

(5.6)

i,] zxLi°=&_3
i.

i = l, YFI, n (5.7)
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and,

rl _ Xn -- Xm,

rm -- Xl -- Xn,

rn _ gCrn -- Xl,

qt = Ym -- Yn

qm = Yn -- Yt

qn = Yl -- Ym

(5.8)

1 1 1

1 (5.9)
A=_ xt x_ x.

Yl Ym Yn

Assembling the element matrices _._ and forcing function vectors _ given in Equa-

tion(5.3) for all elements, one can obtain an FE complex global matrix equation as

follows:

=/. (5.1o)

where:

_ ne

e=l e=l

where symbol ne denotes the total number of elements.

5.1.2 The Ballooning Technique in the Quasi Static Case

In [4], Brauer presented a ballooning model to compute eddy current problems

with open boundaries. In that model, eddy currents and all sources should be included

in the interior region, hence the exterior region must be free space. In this thesis, a

new AC 2DFE ballooning model will be derived for the diffusion type case in which

the eddy currents can exist everywhere. In this new model, the total region is also

divided into two subregions: the interior region which includes eddy currents and

all sources ,and the exterior region which includes eddy currents only. The exterior

region still consists of many annuli which have the same properties as in the previous

chapter such as the start point, the fixed mapping ratio, and the same number of

nodes on every boundary and the geometry similarity property to the FE triangular

elements in the ballooning region of the magnetostatic case of chapter 4.

This 2DFE ballooning model for the quasi static case is very similar to that for

the static case discussed in the previous chapter. However, the difference between
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these two models should be highlighted as given next. In the ballooning model for

the static case, every annular matrix is the same, that is, T i - _-_,, which leads to

the simple recursive algorithm discussed earlier. In the quasi static case, the element

matrices have imaginary components which are proportional to the element area,

A. Therefore, one should compute the annular matrix _i for every annular region

bounded by Fi and F;+I. This annular FE contribution can be written as follows:

=0 (5.12)

where:

_a

_, = _--_(£, + _ei) (5.13)

where the symbol na denotes the number of elements in the annular region. The real

components of the matrix _i are unchanged from one annular region to the next.

Hence, one can obtain the following:

l).i= ]_i-, = ]_,-2 =...= l)., (5.14)

However, the imaginary components of the matrix _i are not constant, that is:

2 1 1

-- 3_oO'T_"
121

1 1 2

Alk 2i
2 1 1

121

1 1 2

(5.15)

where, k is the mapping ratio between any two adjacent annuli.

Now, the FE matrix, q_._xt, for the exterior region can be constructed and any

internal nodal MVPs can be removed by a similar process of matrix condensation as

shown in the last chapter• Combining the AC ballooning model and the AC 2DFE

model,one can obtain the process of this AC 2DFE ballooning model as follows:

Step(l): Using Equations(5.3) through (5.6) and (5.11), compute the complex FE

global matrix _-i, and the forcing function ,/in the interior region R, Figure(4.5).

Step(2): Choose a proper m, the number of ballooning layers, and using equa-

tions(5.12) through (5•15), compute the matrix q,._xt which is the contribution of

the exterior annular region F0 and FI.

Step(3): i=l.
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Step(4): Using Equations(5.12) through (5.15), compute the matrix _ which is the

contribution of the exterior annular regionFi and Fi+l.
~i £iStep(5) Using the relationship between the matrices _-_,t and shown in equa-

_i+1tion(4.16), obtain the matrix _.=e,t, where:

+_ -. ]

"-q 1ei+ Sh+'
,.__., = ._i+ ' _+, (5.16)

Step(6): Repeat step(4) and step(5) until i > m.

Step(7): Incorporate the ballooning matrix S_ into the FE global equation (5.3),

that is:

Step(8): Solve for the complex MVPs from the equation(5.17).

Step(9): End.

5.2 The 2DFE

niques with

Solution Using Ballooning Tech-

Conductive Shielding

The AC 2DFE ballooning model for the eddy current case has been obtained in

the last section. Now it can be applied to a two-wire parallel-pair transmission line

problem with a conductive shield and an infinite boundary. The geometry of the

interior region was shown in Figure(5.1), where a current which varies sinusoidally

with a peak value I=500 A flows through the right conductor and in the direction

out of the plane of the paper, and the same value of current flows through the left

conductor in the opposite direction, that is, into the plane of the paper. Eddy currents

exist in the copper shielding and elsewhere is free space. For the ballooning model,

here the start point is chosen at (x0, y0) = (0, 0), and k = 1.3 is chosen as the mapping

ratio. The FE grid of the interior region is the same as shown in Figure(4.5).

The computations were carried out using the AC 2DFE ballooning model derived

in the previous section for the eddy current case in various chosen frequencies (f=O

74



Hz, 400 Hz, 2 kHz, and 20 kHz). Figures(5.2) through (5.6) showthe equipotentials

in the caseof frequencyf=O Hz, that is the magnetostatic case, and with ballooning

layers, re=O, 2, 5, 10, and 20, respectively. Figures(5.7) through (5.11) show those

case with m=O, 2, 5, 10, and 20, when f=400 Hz, respectively. Figures(5.12) through

(5.16) show those in the case of f=2 kHz and with ballooning layers, re=O, 2, 5,

10, and 20, respectively. Figures(5.17) through (5.21) show those in the case of

f=20 kHz and with the ballooning layers, rn=O, 2, 5, 10, and 20, respectively. The

magnitudes of flux densities at some selected locations shown in Figure(5.22) are

plotted in Figures(5.23) through (5.25) for various conductive shielding thicknesses.

Comparing Figures(5.2) through (5.21), one can arrive at some conclusions as

follows:

(1) In a certain frequency (here, in any one of the frequencies, f=0 Hz, 400 Hz, 2

kHz, and 20 kHz), while the number of ballooning layers, m, is larger and larger, the

variation in the contours of the equipotentials is smaller and smaller, which means

that when rn is large enough, the equipotentials may almost converge to those of the

"true" solution.

(2) In lower frequency cases, such as f=O Hz, and f=400 Hz, whenever m is greater

than 10, the equipotentials are almost unchangeable. In higher frequency cases, less

ballooning layers are sufficient to obtain more accuracy of the equipotential contours.

For example, in the case of f=2 kHz, it was found that a number of ballooning layers,

m=5, is quite sufficient. It is interesting to point out that in the case of f=20 kHz, no

ballooning layers are needed. These results reveal that the higher the frequency, the

strong the weakening effects of eddy currents in the shielding on fields outside that

shielding. That is, at higher frequencies the fields outside the shielding are effectively

diminished.

(3) In Figures(5.23) through (5.25), three shielding thicknesses are used. Those figures

show the effects of varying the conductive shielding thickness, from which one can

find that the thicker the conductive shielding the more effective it is reducing the

outer fields. That is, the weaker the fields outside the shielding.
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5.3 The 2DFE Solution Using Ballooning Tech-

niques with Defects of the Conductive Shield-

ing

In this section, the AC 2DFE ballooning model is used to study the field distribu-

tions resulting from various defects in the conductive shielding. For shielding defect

angles, 8 = 10 °, 20 °, and 30 °, the corresponding FE solution regions are shown in

Figures(4.19), (4.21), and (4.23), respectively. In the case of a frequency, f=400

Hz, the shielding thickness, Ao = 0.025 in, the number of ballooning layers, m=lO,

and an AC current with a peak value, I=500 A is assumed to pass through the two

conductors in the directions shown in the figures. The corresponding equipotential

plots for angular defects, 8 = 10 °, 20 °, and 30 °, are shown in Figures(5.26) through

(5.28), respectively. The effects of the defects were monitored at the arbitrarily cho-

sen locations given in Figure(5.29). In the case of a frequency, f=400 Hz, an angular

defect, _ = 20 °, and a shield thickness, A, = 0.025 in, the magnitudes of magnetic

flux densities at the locations shown in Figure(5.29) are given in Figure(5.30).

In the case of a frequency, f=400 Hz, comparing Figures(5.26) through (5.28)

which show the equipotentials for defect angles, 6 = 10 °, 20 °, and 30 °, respectively,

with Figure(5.11) which shows those with no defects in the shielding, leads one to

conclude that the larger the defect angle, _, the greater and greater the magnetic flux

densities leaking in the neighbourhood of the defect area. Comparing Figure(5.30)

which shows the effects of defects in the case of an angular defect, 8 - 20 °, and a

shielding thickness, A, = 0.025in, with Figures(5.23) through (5.25), which show the

effects of the shielding thickness without deflects, one can see the slight degradation

of the effectiveness of the magnetic field shielding near the defect region.

The AC 2DFE ballooning model can be used to solve parallel-pair transmission

line prblems with infinite boundaries. However, in space station applications, there

are potential situations which might involve twisted-pair type transmission lines, as

well as other configurations not available yet, for which the above model is not suit-

able. One of the simplest methods to solve the simplest twisted-pair transmission line
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problem is the closed-formanalytical method using the Biot - Savart Law in con-

junction with 3D integral type method. These will be discussed in the next chapter.
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Figure 5.23: Flux Density Magnitudes With Ballooning (m=10) and no Defects With

a Conductive Shield Thickness,A,=0.1 in, for i=0 Hz, 400 Hz, 2 kHz,

20 kHz and 100 kHz, for a Current I=500 A
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Figure 5.24: Flux Density Magnitudes With Ballooning (m=10) and no Defects With

a Conductive Shield Thickness,Ao=0.05 in, for f=0 Hz, 400 Hz, 2 kHz,

20 kHz and. 100 kHz, for a Current I=500 A
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Figure 5.25: Flux Density Magnitudes With Ballooning (m=10) and no Defects With

a Conductive Shield Thickness,As=0.025 in, for f=0 Hz, 400 Hz, 2 kHz,

20 kHz and' 100 kHz, for a Current I=500 A
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. Figure 5.30: Flux Density Magnitudes W!_th Ballooning (m=10) and a Conductive

.Shield With an Angular Defect,/5 = 20 °, Shield Thickness, A,=0.025 in,

for f=0 Hz, 400 Hz, 2 kHz, 20 kHz and 100 kHz, for a Current I=500 A
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Chapter 6

CLOSED FORM SOLUTION OF

THE TWISTED-PAIR

TRANSMISSION LINE

In chapter 4 and chapter 5, the 2DFE ballooning models have been developed in

the DC case and AC case and applied to the two-wire parallel-pair transmission line

problems with infinite boundaries which might become one of the common problems

in the space station power transmission line applications. Another potential problem

is that of the magnetic field surrounding twisted-pair transmission lines, again with

infinite boundaries. This will be shown here not to be amenable to solution by the

2DFE ballooning models. Therefore, some new methods are needed for those twisted-

pair problems. In this thesis, only the simplest twisted-pair case is considered so that

closed-form formulations can be derived by the Blot- Savart Law coupled with

integral methods. From the results of these closed-form solutions, some useful insight

into the nature of the magnetic field surrounding such transmission lines will be

obtained.

6.1 The Derivation of the Formulation

6.1.1 Biot - Savart Law
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The magnetostaticfield maybedescribedby the magneticvector potential (MVP)

_, which, in a homogeneousuniform linear medium, is governedby [11]:

= (6.:)

Equation(6.1) is called the MVP's Poisson equation and may be solved by the well

known integral formulation as follows:

--A= .-_# f __JdVr (6.2)

where, the symbol r denotes the distance from the field (or observatior/) point to the

source point. The relationship between the MVP and the flux density is given by

V × _ = B (6.3)

Premultiplying both side of equation(6.2) by the operator V x, and using the defini-

tion in equation(6.3), one could obtain an expression for the flux density as follows:

p f "Jdvv x (6.4)

Consider the following useful vector identity:

= xJ-Tx_'( ) (6.5)
r

where, ] is onlya function of the position of the source point, which leads to _ x J = 0,

and V( = -_. Equation(6.4) can therefore be rewritten as follows:

-_ = I_ / J x _ dv (6.6)4r r

that is known as the Blot - Savart Law.

If the cross section of the conductor is very small, the following relationship could

be obtained:

"ffdv = "ffdsdl = I_ (6.7)

Using equation(6.7), one can rewrite equation(6.2) and equation(6.6) respectively, as

follows:

- M r d7
A=_-_ j r (6.8)
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and

(6.9)

6.1.2 Analytical solutions for a two-wire twisted-pair transmission line by the

Blot - Savart Law

Now, consider a two-wire twisted-pair transmission line which consists of many

pitches in free space shown in Figure(6.1). The details of the geometry in one pitch

are shown in Figure(6.2), where a pair of DC currents (I=500 A) flow through the

pair of spiralling conductors, that is, one is spinning along the positive z axis and the

other along the negative z axis.

Now, consider the MVP formulation. Using the integral MVP method, equa-

tion(6.8), one can compute the MVP at any arbitary point, P(x,y,z), shown in

Figure(6.2), as follows:

poI dT1
y, z) - f

4r Jo rl
/1ol dT_ /1ol N_[_a (d71 _ d72) (6.10)

where: the symbol NP denotes the number of pitches, the subscript, s, denotes the

line source, F1 denotes the space vector from the source point on conductor #1 to

the field (observation) point, _2 denotes the space vector from the source point on

conductor #2 to the field (observation) point.

From the geometry shown in Figure(6.2), some useful relationships can be written

as follows:

X 1 _ r 0 cos 01

Yl = r0 sin 01

01 : (-rrNP, rNP)

(6.11)

X2 = rO COS _2 = --tO COS _1

y2 = ro sin 02 = -to sin 01

02 = 01 + rr

(6.12)
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h 2 1

,._= [(__ rocoso_)_+ (_- ,.osino_)_+ (z- _e,) ]_ (6.13)

,-5= [(x + ,,ocoso,)_+ (v + ,'osin o,)2+ (z- _o,)21½ (6.14)

d_a = -ro sin 01dOld, + ro cos OxdOld v + h doldz (6.15)

dT_ = ro sin OadOl d_ - ro cos 01dOl d u + h doa dz (6.16)

Substituting equations(6.11) through (6.16) into equation(6.10), one may obtain

the MVP as follows:

-- poI NP/2-1 2_r(i+l)E/
A - 4_r i=-NP/2a2_

ro sin 01d01 ro sin 01d01

F

,-ocos'O'ldO, "ocos81d0,
+

F r2

2_ "_

(6.17)

rl r2

Now, consider the flux density formulation. Using the Blot - Savart Law, equa-

tion(6.9), one can compute the flux density at any arbitary point, P(x, y, z), shown

in Figure(6.2), as follows:

/1oI for d71 x _ poI fj d72 x _
- 47r ra2 47r r_

_0I _,_-1 .,,.,(d, x ff dT_x _)

pol NP]2-1 rl,,l d 1 X _1 d 2 X _2

/ -. (6.18)

u

B

where _ and _ are the unit space vectors from the source points, P1 and P2, on

conductor #1 and conductor #2 to the field (observation) point, P, which are given

as follows:

= l[(x - rocosO1)d_ + (y -rosinOl)dv + (z - ho1)d_] (6.19)
rl zTr rl

= l[(x + rocosO,)d_ + (y - rosinO1)dv + (z- 9._O,)d, 1_= __.2r2 (6.20)
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Using vector operation rules,onemay obtain the following:

= -rosinOldOa

X m rO COS 01

a*_ dz
h

r0 cos Ol dOl "6"[d01

y - ro sin Pl z - k--_-81
L/r

and,

-d72 x _ =

h h
ro cos 8xd61(z - _-_1) -(Y - rosin 61)-£--d81

(x- r°c°s81)'_rdO'-zr +rosinOldOa(z ',___r81)z

-to sin 01dOa(y - ro sin/91) - ro cos 01d01(x - ro cos 01)

d_ d_ d_
]

-to sin 81d0, r0 cos 8xdal -o--n'd81

z+rocos81 y+rosin81 z-n-01
£T

(6.21)

rocosO,dOl(z- ._'-rex) + (y + ro sin 81)h-r dex
h

-(z + rocosOll_--_dO, + rosinOldOa(z- _"_01)

-rosinO, dO,(y + ro sin O,)- rocosO,dO,(x + ro cos 81)

(6.22)

Substituting equation(6.21) and equatlon(6.22) into equation(6.18), one can obtain

the formulation of the flux density as follows:

rocosOl(z_hOl)_(y_rosinox)h

-B i1ol NP/2-1 t2_r(i+l) 1

-- 4r i=__Np/_.i _ (x--r°c°sOx)2-_rlr+r°sinOl(z--:---_ 01)

--r0 sin 01 (y -- ro sin 01) -- ro cos 81 (z -- ro cos 01 )

1
+_

r 2

h h
rocosOl(z - _-'01) + (y + ro sin Oa)x--

h h

-ro sin 01(y + ro sin 01) - ro cos Oa(x + ro cos Oa)

(6.23)
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6.2 The Computation of Flux Densities

The closed-form analytical formulations of the magnetic field surrounding the two-

wire twisted-pair transmission line, which is depicted schematically in Figure(6.2),

was derived in the previous section. Those formulations can be programed with the

numerical integral method (see Appendix B) for use on computers. The magnetic flux

density, B, specifically the B, and B_ components, can be computed at any cross-

section and at any angle, 0, shown in Figure(6.2). Here, in this thesis, this calculation

was performed at locations along the three concentric circles shown by tlae dotted lines

in Figure(6.3). The resulting B field at various points along the three dotted circles

is shown by the B vector arrow displays, whose direction indicates the orientation of

the B field in the x - y plane or the z direction, and whose length is proportional to

the magnitude of the resultant B field along the x - y plane or along the z axis.

These B field results are shown in Figure(6.4) for the parallel-wire case discussed

in chapter 4, and in Figure(6.5) and (6.6) for the twisted-pair case for a pitch, h = 5",

and a plane with/9 = 0 °. There are no z-component B fields resulting from the parallel-

pair case as shown in Figure(6.4), while there are z-component B fields resulting from

the twisted-pair case as shown in Figure(6.6). These B field calculations were repeated

for a plane with 8 = 90 °, and the results are shown in Figures(6.7) and (6.8).

The effects of the choice of the pitch, h, shown in Figure(6.2), on the flux den-

sity components, B_, B_, Bz and resultant magnitudes, [[B[], are documented in

Figures(6.9) through (6.12) at the mid-plane point for a transmission line of length

20000 inches. For all these cases, in Figure(6.2), r0 is equal to 1.0 inch, and the DC

current flowing in each conductor is equal to 500 A.

Figures(6.5) through (6.S) demonstrate the 3D nature of the B field surrounding

a two-wire twisted-pair transmission line. Figures(6.9) through (6.12) show that

shorter lengths of the twist pitch make the B fields outside the transmission line

decay more quickly in the radially outward direction. That is, at locations far away

from the transmission line, the z-component of the fields, B_, is of the same order of

magnitudes of the x, and y components, B_, and B v. Accordingly, the z-component,

Bz, could not be neglected in comparison to the B_ and By. That is, the twisted-pair
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problem should be dealt with using 3D magnetic field computation methods.
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Chapter 7

CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

In this thesis, the ballooning methods incorporated into the 2DFE model have been

presented to solve the 2D electromagnetic problems with infinite boundaries in the

DC case and the quasi static (AC) case. The verification of this model was carried out

by comparison of the results with those of the analytical solution in the magnetostatic

case for a two-wire parallel-pair transmission line problem with no shielding and with

an infinite boundary. This is because there exists a closed-form solution for that type

of problem. Studies of the field distributions resulting from the magnetic shielding in

the DC case and the conductive shielding in the AC case were performed, and the

effects of possible defects in such shields were considered in both cases.

In the application to solve two-wire parallel-pair transmission line problems with

infinite boundaries, an interior region, R, including eddy currents and all sources,

with a circular boundary and an exterior annular region only representing free space

were chosen. Usually, in this 2DFE ballooning model, not only the free space but the

eddy current can be included in the exterior region, and because the field solution

is limited to the interior region, R, the consideration in choosing the contour F0

is that all regions of interest should be included in the interior region, R. This
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2DFE ballooning model is applicable to complicatedas well as simple shapesof the

boundary,F0,which must satisfy the criterion that no radial line from the start point

P0 intersects such a boundary more than once.

Recalling the procedure of the AC 2DFE ballooning method, after modeling the

interior region, R, by the FE method, it is necessary to form only one additional FE

matrix, for an annulus one element wide which shares interface nodes with R, and

then the FE matrix for the any other annulus is just the linear combination of the real

components and complex components of the first one. With this performance of the

annular matrices, the recursive computation to form the FE matrix for the exterior

region becomes quicker and simpler. Having developed the recursive algorithm and

obtained the FE matrix for the total exterior region, the only terms of interest in

the matrix are those associated with the interface nodes on F0, so that the size of

the matrix which has to be solved to compute the field in the interior region, R, is

unaffected by the addition of the exterior region.

According to ballooning theory, the accuracy of the solution can be improved by

increasing the number of ballooning layers, rn. Recalling the results shown in chapter

4 and chapter 5, one may find that the lower the number of ballooning layers, rn, the

more improvement can be achieved by increasing m. However, if m is already large,

little improvement could be obtained by increasing its value. Actually, there are three

facts which would affect the accuracy of the solution: (1) the number of ballooning

layers, rn; (2) the density of finite elements both in the interior region and the annuli;

(3) the order of the interpolation polynomials (shape functions) used in the finite

element formulation. Therefore, when the 2DFE ballooning model is applied to the

magnetic field problems with infinite boundaries,the number of ballooning layers, m,

should be chosen judiciously, and if further improvements of the results are required,

finer FE mesh discretizations such as smaller finite elements, or high order finite

elements will have to be adopted.

A closed-form solution for the magnetic fields surrounding a two-wire twisted-pair

transmission line in the static case was presented in the previous chapter. The results

show that the shorter the pitch of the twist,the weaker the magnetic fields surrounding

that twisted-pair transmission line. Comparing these results, one may find that three
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componentsof the flux densitiesare in the sameorder of magnitude,hence,for near

field effectsnoneof them canbe neglected.In other words, the twisted-pair problem

is a 3D problem.

7.2 Future Work

According to the conclusions in the previous section, the 3D nature of the field sur-

rounding a twisted-pair transmission line means that it will be necessary to use 3DFE

analysis or some equivalent method to evaluate the effects of magnetic material-type

shielding or eddy current-type electromagnetic field shielding in association with such

twisted pairs. It may be possible and necessary to develop 3D ballooning models for

twisted-pair problems or some other space station problems with infinite boundaries,

which is one of the possible future works stemming from this research.

In the space station applications, a future space station can be modeled as a long

wire structure (with a diameter of 1 m and a length of 100 m approximately). In

some cases, the space station orbits the earth at an altitude of 300 km with a velocity

of approximately 8 km/s. The motion of the space station through the geomagnetic

field results in an electromotive force v x B along its length. This electromotive force

(emf) causes a potential drop across the space station and a current existing between

the space station and the space plasma.

A 3DFE method and a 3D ballooning method may be adopted to compute the

electromagnetic field distribution for this problem. This may be accomplished as

follows:

(1) Choose a sphere as an interior region enclosing the space station.

(2) Use a conventional 3DFE method to build up the global matrix system on the

interior region where the v x B components aa-e considered.

(3) Divide the exterior region outside the interior region into many layers which are

concentric with the interior region.

(4) Compute the FE matrix for each layer and use ballooning techniques to obtain

the contribution matrix for the exterior region.

(/5) Incorporate the contribution matrix of the exterior region into the global system
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including the interior region to solvethe problem.

It seemspossible to obtain the local electromagneticfield distribution in detail

using such a 3DFE ballooning model. These fields can be used to calculate the

currents, as well asphysical quantities and phenomenaof interest.
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AP P ENDIX A

List of Symbols

Ax, Av, A,
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Bx, B_, Bz
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H_, Hu, H,

B

J_,J_,Jz
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I

V

#
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P

S

I

A

MVP

p.d.e.

The x, y and z components of the magnetic vector potential

Magnetic vector potential

The x, y and z components of the flux density

Magnetic flux density

Electric flux density

The electric field indensity

Energy functional

The x, y and"z components of the field intensity
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The source current density
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Material reluctivity

Material permeability
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Permitivity of medium
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Vector of MVP components
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Partial differential equation
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Direct current
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AP P ENDIX B

Gaussian Quadrature Integral Method

There is a large family of numerical integration formulas that conform to the

following pattern:

f'_. f(x)dx _ Alf(zl) + A2Y(z2) + ... + AJ(z12)
1

In using such a formula, it is only necessary to know the "nodes" xl,x2,..., x_

and the "weights" A1, A2,..., A12.

One major source of the previous fomula is in the theory of polynomial interpo-

lation. If the nodes have been fixed, then there is a corresponding Lagrange interpo-

lation fomula:
12

p(x) = _ f(xi)li(x)
i=1

12

whereli(x)= I-I ( z - xJ )"
j--1,j#i xi -- Xj

This formula provides a polynomial p of degree _< n - 1 that interpolate f at the

nodes; that is, p(xi) = f(x_) for 1 _< i _< n. If the circumstances are favorable, p

will be a good approximation to f, and f(z)dz will be a good approximation to

f bp(x)dz. Therefore

i=1 i=1

£where we have put Ai = Ii(x)dx. From the way in which the previous formula

has been derived, we know that it will give correct values for the integral of every

polynomial of degree < n - 1.

In the preceding discussion, the nodes have been arbitrary, although for practical

reasons they should belong to the interval in which the integration is to be carried

out. Gauss discovered that by a special placement of the nodes, the accuracy of the

numerical intgration process could be greatly increased. There exist tables in which

the numerical values of the nodes and weights are listed for the formula

2 f(x) ,_ _ A,f(x,)
1 i=1
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Thosenodeszl, z_,..., z, are called the Gaussian nodes with which the previous

formula will be exact for all polynomials of degree < 2n - 1.

Here the table for n = 10 is given.

n=10

z_) A_ )

0.14887 43390 0.29552 42247

i 0.43389 53941 0.26926 67193

± 0.67940 95683 0.21908 63625

± 0.86506 33667 0.14945 13492

± 0.97390 65285 0.06667 13443

Usually, the integral interval of function f(x) is on [a,b]. In order to use the

Gaussian quadrature formula, one should transfer interval [a,b] to interval [-1,1] using

a linear transformation, for example, for the twisted-pair case in section 6.1, the

following linear transformation can be carried out:

[ 2
J 2rri 1

where,

0 = rrt + (2i + l)r

if 0 = 2rri, then t = -1

if 0 = 2r(i + 1), then t = 1

dO = r dt.

Now, one can use the Gaussian quadrature formula as follows:

2"_(i+')f(O)dO = r _-_ "('_)",ak j(rz k(")+ (2i + 1)rr)
J 27ri

k=]

For further details reference [12] should be consulted.
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Abstract

A method is developed for modeling and analyzing electric fields from radi-

ating sources on a structure in the ionosphere. The ionosphere is approximated

as a zero-order plasma (zero magnetic field) with all sources radiating below the

characteristic plasma frequency, where electromagnetic waves are evanescent. The

moment-method numerical technique is modified to incorporate a zero-order plasma

and is shown to compare very well with analytical solutions for a dipole. Simula-

tions are performed on a wire structure with a radiating source in unbounded free

space and a zero-order plasma environment for comparison purposes. The con-

clusion is that the ionosphere serves to attenuate electromagnetic waves and thus

reduces potential electromagnetic interference problems.
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Chapter 1

Introduction

The goal of this research work is to analyze the potential effects of electromag-

netic interference (EMI) originating from power system processing and transmission

components for NASA Space Station Freedom. Particular emphasis is given to EMI

sources radiating in a plasma environment, i.e., the ionosphere. The approach con-

sists of three sequential steps:

1. Determine the characteristics of the ionospheric plasma and formulate a work-

ing model for purposes of EMI analysis.

2. Develop analytical tools (models and computer programs) to predict the elec-

tromagnetic fields from isolated sources radiating in unbounded free space or

a plasma environment.

3. Develop numerical tools (moment-method formulation) to predict the elec-

tromagnetic fields from radiating sources on a simple space station structure

in free space or a plasma environment.



1.1 Ionospheric Modeling

There is considerable information on the properties of the ionosphere and the

different natural phenomena that affect its electromagnetic characteristics. To start

with, the ionosphere is a region of the earth's atmosphere composed of molecules

that are ionized by solar radiation. Figure 1.1 shows the molecular content of

Atomic hydrogen

Hetium

I • I I ' i

I _(_zo 1(_'= ]0 -'t' tO-l:, i(_'z 10 °!° 10 -| 10 -6

Density (glc m3_

Figure 1.1: Atmospheric molecular density versus altitude [1].

the atmosphere as a function of altitude. Due to gravity, the heaviest molecules

(N2, 02) are at the lowest altitude and the lighter molecules (He, H) are at higher

altitudes. In the middle region, where the space station will be located, atomic

oxygen (O) is the most prevalent.

The degree of ionization of these molecules depends on many different factors.

The two strongest contributors are time of day and altitude. During the nighttime,

solar radiation does not reach the ionosphere and ions recombine resulting in the

electron density, N, decreasing. Figure 1.2 shows this effect and also the altitude
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Figure 1.2: Time of day variations of electron density versus altitude [2].

variation. The envelope can be qualitatively explained in simple terms. At higher

altitudes the solar radiation is very intense but there are few molecules. As the

altitude decreases, the molecular concentration increases and more solar radiation

is absorbed. Eventually, a point is reached where the high molecular concentration

absorbs most of the remaining solar energy and the ionization reaches a maximum.

Continuing to lower altitudes the electron density decreases. Since the atmosphere

is composed of many different gases with different ionization and recombination

characteristics, different layers and peaks in the electron density form [2]. These

have been labeled the D, E, and F layers. An important consequence of the layering

is that radio waves in certain frequency ranges can be bounced off of the ionosphere

to improve communication distances. Figure 1.3 shows how some of the properties

of the ionosphere are exploited in today's world for useful means.

Another important contributor to the electron density is sunspot activity. Fig-

ure 1.4 shows sunspot activity observed for the past few cycles, and the predicted

activity using the Lincoln-McNish method [3]. Increased sunspot activity increases

solar radiation which leads to increased ionization of the atmosphere. This of-
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Figure 1.3: Simple examples of ionospheric impact on radiowave systems [3].
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Figure 1.4: Observed and predicted sunspot numbers for several solar cycles [3].



ten disrupts the normal communication schemesin positive and negative ways.

On one hand, the layersbecomemore pronouncedwhich increasesreception and

transmissiondistancesin radio communications.On the other hand, satellite com-

munications can deteriorate if the frequencies are not high enough.

At the space-station altitude range of 450 to 550 km, the ionosphere is considered

fully ionized. It is a neutral region of mobile positive ions (predominantly O +)

and electrons (e-) that form a plasma. Plasmas are considered the fourth and

most energetic state of matter. They are also the most abundant state in the

universe [1], and occur in everyday life in fluorescent lighting, vacuum tubes, video

display terminals, and lasers.

A unique feature of the ionospheric plasma is the presence of the earth's mag-

netic field. This makes the ionosphere an anisotropic plasma, where the polarization

of the medium, P, and the electric field, E, are not in the same direction [4]. The

Lorentz formula, F = q (E + v x B), states that a free electron traveling with a

velocity, v, perpendicular to a constant magnetic field, B, will travel in a circular

orbit. This leads to an angular (cyclotron) frequency for an electron in the earth's

magnetic field of 5 × 10 -s Wb/m equal to 1.4 MHz. A consequence of this is that

radiowaves close to 1.4 MHz are highly attenuated [2]. Also, the current density,

J, and the electric field, E, are related by a tensor (matrix) quantity. It will become

evident from the formulations in the next chapter that a tensor permittivity instead

of a scalar value severely complicates the analysis of wave propagation in a plasma

medium.

In order to solve EMI type problems, the ionospheric plasma is usually dis-

cussed in simpler terms. The zero-order plasma model is used, where the effects

of the magnetic field of the earth are neglected. The theoretical formulation of



electromagneticwavepropagation is then basedon a scalarpermittivity. With this

approximation, electromagneticwavepropagation in a plasma becomessimilar to

wave propagation in a waveguide. The zero-orderplasma model also assumesa

homogeneousplasma. Although the ionosphere is locally homogeneous, motion of

the space station through the plasma creates ram/wake effects [5, 6] similar to that

of an aircraft passing through air. Thus the ion and electron densities are increased

in front of the space station and decreased behind the space station.

1.2 Electromagnetic Analysis

Computer analysis of EMI is a widely-used technique and sophisticated com-

puter programs are available to simulate the EMI for complex systems involving

hundreds of sources and susceptors [7]. Built into these programs are different types

of models for sources and susceptors and transfer functions for various forms of cou-

pling. To use the programs for analysis, a system must first be described in terms

of sources and susceptors and their geometrical arrangement. This is then entered

as parametric data into computerized data sheets. This procedure simplifies EMI

analysis on major aircraft and weapons systems, where the programs have been de-

veloped and proven effective. However, the complex procedure is not appropriate

for modeling electromagnetic radiation in the ionospheric plasma. For this reason,

attention turned to finding a general numerical code that could be easily worked

with, understood, and modified to predict EMI in a plasma environment.

The moment method is a numerical technique for solving electromagnetic field

problems. It was first unified into a general procedure by Roger F. Harrlngton in

1968 [8]. Since then it has been utilized on powerful computers to solve complex
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electromagneticradiation and scattering problems. The moment method utilizes

a few assumptions that increasesits ability to handle a problem as large as the

space station. The primary assumption is that all current flows in thin wires and

is axially directed. Both radiating sources and the space station structure are then

modeled with wires, like the airplane in Figure 1.5. The result is that the radiated

Figure 1.5: Wire-grid model of F-16 aircraft [9].

electromagnetic fields can be cMculated anywhere in space relative to the structure.

This shows what effect variations in the amplitude and location of sources on the

space-station structure have on potential EMI problems. It should be pointed

out that a parallel effort is under way to use the finite-element method for specific

source modeling [10, 11] that will lead to the development of equivalent sources that

can be input into the moment-method analysis. But, at this time, tools are being

developed that are more general in their source modeling to allow for flexibility in

design parameters.

MININEC3 was the selected moment-method code [12] to be modified for two

reasons. The first is that it is proven and well documented. It runs on a personal



computer, but it is limited by the sizeof the problem it canhandleand by the speed

at which it runs. This makesit ideal for the analysisof simple models, but not

practical for more complicatedand definedstructures. The secondreasonis that

MININEG3 is a scaled-downversionof NEC, numerical electromagneticcode [13],

which is oneof the most advancedcomputer codesavailable. If MININEC3 canbe

modified for a plasmaenvironment to accuratelypredict EMI for small problems,

then the samemethodology may be applied to NEC (or other moment-method

codes)to handle more complicatedproblems.

1.3 Overview of the Thesis

Many steps are required before the electric fields in the ionospheric plasma

medium can be predicted. Chapter 2 starts the work with theoretical formulations.

First, the analytical solution for a radiating source is derived. Then the moment-

method numerical technique is explained. Lastly, the zero-order plasma model is

discussed. In chapter 3 analytical results are compared for the radiating source

in free-space and a zero-order plasma. Chapter 4 starts with verification of the

moment-method code in free space and zero-order plasma. Then the simple space

station structure is explained and electric fields in free space and a zero-order plasma

are presented and compared. Chapter 5 contains the conclusions which were based

on the research and gives some suggestions for further work in this area.



Chapter 2

Theory

This chapter has three goals. The first is to derive the analytical solution for

the electric fields from a radiating elemental dipole. The elemental dipole was cho-

sen because its analytical solution is well understood and the theory behind the

moment method is closely related to that of the elemental dipole. The second goal

is to formulate and explain the moment method. The moment method is a numer-

ical approximation for determining electromagnetic fields from complex thin-wire

geometries. The final goal is to explain the zero-order plasma approximation. This

includes a consideration of electromagnetic wave propagation and incorporation of

the plasma into the moment method.

2.1 Radiating Sources- Analytical Solution

The formulation for determining the electric fields generated from an elemental

(short) dipole are documented in many textbooks [4, 14, 15]. The following for-
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mulation serves two important purposes. First, the analytical solution is used to

formulate the moment method. Second, a closed-form solution is developed for the

dipole radiating in a zero-order plasma. Since the elemental dipole is the fundamen-

tal building block of this research, a brief description of it precedes the formulation

of its fields.

An elemental dipole is a short linear conductor. By definition, its length, L, is

much less than the wavelength, ,k (L <:< ),), and the radius, a (d = 2a), is small

compared to the length (a << L). The current, I, can then be assumed constant

over its length. Figure 2. l(a) shows an elemental dipole and Figure 2. l(b) represents

its equivalent. The transmission lines are balanced and shielded to provided the

, t / L i°°! I
(a) (b}

Figure 2.1: An elemental dipole (a) and its equivalent (b) [14].

uniform current and no radiation. They are therefore, excluded in the equivalent

model. The elemental dipole can then be described as a thin linear conductor with

a constant current. The electric field components Er, Ee, and E¢, at an observation

point, P, from a dipole coincident with the z-axis and at the origin, are defined in

a spherical coordinate system as shown in Figure 2.2.

The formulation for the electric field components begins with Maxwell's equa-

tions relating the electric field intensity, E, to the magnetic field intensity, H,

V x E = -jw#H, (2.1)

10



Figure 2.2:

system [14].

E,

Electric field radiation of elemental dipole in a spherical coordinate

X7 × H = jweE + J, (2.2)

where J is the source current density,w is the angular frequency, # is the perme-

abilityof the medium, and e isthe permittivityof the medium. Using the identity

v. v × (.) = 0 on (2.1),

V.W × E = -jw#(W. H) = O. (2.3)

Since a vector with zero divergence can be expressed as the curl of some other

vector, H can be written as the curl of A,

H=VxA, (2.4)

where A is defined as the magnetic vector potential, MVP. Substituting (2.4) into

(2.1) gives

v x E = -j_V x A, (2.5)

V x E + V x jw#A = V x (E +jw#A) = O. (2.6)
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Since any curl-free vector is the gradient of some scalar,

E + jw#n = -VV, (2.7)

where V is the electric scalar potential. Substituting (2.4) and (2.7) into (2.2) yields

V x V x A = -jweVV+ k_A + J, (2.8)

where k is the wave number, wv/_"L

v (v. A) -V A, (2.8)reducesto

Using the vector identity V × V × A =

V (V. A) - V2A - k2A = -jweVV + J. (2.9)

Since only the curl of the MVP has been specified, its divergence can be chosen

to simplify (2.9). Common choices are the Coulomb Gauge and the Lorentz Gauge.

In this case the Lorentz Gauge

V. A = -jweV (2.1o)

is used to eliminate the electric potential term. Substituting this into (2.9) reduces

the formulation to

V2A + k2A = -J, (2.11)

which is the Helmholtz equation or the complex wave equation. It relates the MVP

to the source current density. Substituting (2.10) into (2.7) relates the electric field

to the MVP. The result is

E=-jw#A+ .1 V(V.A). (2.12)
3we

The electric field resulting from a source current density can be determined by

simultaneously solving (2.11) and (2.12). But this can be simplified further for an

elemental dipole, by solving for the MVP and combining the two equations. As

12



previously stated, the elementaldipole is centeredat the origin, and is coincident

with the z-axis as shown in Figure 2.2. Since the current on the wire is in the z

direction, the source current density and MVP are also in the z direction. At points

away from the origin (not on the wire), ,] = 0 and (2.11) reduces to

V2A, + k2A, = 0, (2.13)

where A, denotes the (scalar) MVP in the z direction. For observation points

sufficiently far enough away from the dipole, the source looks like a point. The

resulting Az from a point source, Idz', is spherically symmetric (a function of the

radius only), Az -- A_(r). Evaluating the Laplacian of the MVP with the radial

dependence only and substituting into (2.13) gives

1 O [ 2c3A_'_

r 2 Or _r "O'r-r ) +/_2A_ = 0 (2.14)

in spherical coordinates, where r is the distance between the source and observation

points. The two solutions for the MVP from (2.14) with r _ 0 (not at the origin)

are

A, = G'---2-_e-i_ (2.15)
r

and

A_ = C'--J-2eJ_r. (2.16)
r

Since (2.15) represents an outward traveling wave and (2.16) represents an inward

traveling wave, (2.15) is the appropriate solution for the radiating dipole. In order

to find the constant C1, let w --_ 0. Then (2.15) becomes

C1
A_ = m (2.17)

7"

and Helmholtz's equation (2.11) becomes

V2A, = -J_. (2.18)
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Helmholtz's equation for the case w - 0 is solved by noting its resemblance to

Poisson's equation,

V2V = -P", (2.19)

where p_ is the charge density. The solution of (2.19) is known to be

V (r) = _ ;_ (r') dr'ol 4_rer '
(2.20)

where r', the source point, is the location of p. and r, the field point, is where V is

observed. The volume of the source region is vol, and r = [r - r'[ is the distance

between the source and field points. Noting the mathematical analogy between

(2.18) and (2.19), A, is determined to be

Jz(r') dVA, (r) = -.a 4rr (2.21 )

Since the volume of the dipole can be written in terms of its cross sectional area

times its length, L, and the cross sectional area times the source current density,

J,, equals the source current, I, (2.21) becomes

A, = [ Idz'.
JL 4_rr

Equating (2.22) and (2.17), results in

C1 = [
Idz'

JC 4r

Substituting back into (2.15) leads to the solution

A, =/L

Idz'

4---_e J .

Performing the integration for the elemental dipole,

A, IL -i_"
- 4--r e .

(2.22)

(2.23)

(2.24)

(2.25)

This shows that the MVP can be determined at a specified distance from an ele-

mental dipole current source. If the magnetic field intensity were desired, it would
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be determined by taking the del crossproduct (or curl) of the MVP, (2.4). This is

the point from which the moment-methodformulation will be started in the next

section.

Sinceit is commonfor the analytical solution of E from an elemental dipole to

be expressed in spherical coordinates, the MVP in the z direction is transformed

into spherical coordinates using

Ar = _A, • _ = _.A, • _ cos 0 = A, cos 0 (2.26)

and

Ae = _A, • 0 = _A,. _ (- sin 8) = -A, sin 0, (2.27)

where Ar is the radial component of the MVP, and Ae is the theta component of

the MVP. The electric field expressed by (2.I2) is now

+

Evaluating V (V. A) in (2.28) and reducing E to the radial, Er, and theta, E6,

components yields

10(10 2 . 1 0 )Er = -jw#A_ + jwe Or r---i c3---_rA_ + r sin B 08 A0 sin B

and

(2.29)

1 0/10 _ 1 0

E_= -N_,_,A_+ j_," Oe[_'_ Ar + -rsine SeAesine) . (2.30)

The phi component, E¢, shown in Figure 2.2 is not present. Substituting (2.26)

and (2.27) into (2.29) and (2.30), and simplifying the expressions yields

cosBO (1 0 ()) 2c.os00 (__) (2.31)E, = -jwtzA, cos 6 + jwe Or _'_r r2A_ 3we Or

and

Ee = jwl_A, sin 0 sinB 0 (r2A,) +
jwer a Or

2A, sin 0

jLOE_ 2
(2.32)
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Substituting (2.25) into (2.31)and (2.32)and simplifying the expressionsresults in

the final analytical solutions for the electric field intensities,

1)E,=_e 7_ +j_, cose

and

ILe_ikr(__._ 1 _t_//'___ l )Ee = _ + 7_v_ + j_3
sin O.

Figure 2.3(a) shows E0 and Figure 2.3(b) shows Er.

(2.33)

(2.34)

In three dimensions, Ee has

Eo

(a)

EW (
Dipole

(b)

)
)

Figure 2.3: (a) Ee and (b) E, for an elemental dipole source on the z-axis [14].

a characteristic donut shape around the dipole and E, appears as equally sized

spheres on the top and bottom of the dipole.

Equations (2.33) and (2.34) are often referred to as the near-field patterns for

radiation from an elemental dipole. This is because, near the dipole E, and Eo are

similar in magnitude. But far away from the dipole E0 >> E,, so that Er can be

neglected. How far away is determined by examining the l/r, 1/r 2, and 1/r 3 terms

in (2.33) and (2.34). The three terms are equal at r = ,_/2_r in free space, where

is the wavelength. For r >> $/21r, the 1/r term is dominant and the electric field

reduces to

Be = ILe-Jt" Jw# sine. (2.35)
4r r
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If a frequencyof 1 MHz (A __ 300 m) is used as an example, the far field approx-

imation could be used if r >> 50 m. Since the maximum dimension of the space

station is about 100 m, the far field approximation cannot be used at this frequency.

The attention now turns to formulating the moment method.

2.2 Radiating Sources - Moment Method

The moment method is a numerical tool for predicting fields from thin-wire

structures for which there are no analytical solutions. It is a numerical method

capable of connecting a large number of small wire segments and determining field

patterns by enforcing electromagnetic boundary conditions on and between the seg-

ments. Since it is based on current segments and the elemental dipole approximates

a current segment, the analytical solution developed in the previous section for the

elemental dipole is utilized. This explanation of the moment method is similar to

that in Kraus [14].

In the previous section, the MVP was related to the electric field E in (2.12).

For an elemental dipole along the z-axis, it was shown that the MVP is in the z

direction only. Substituting A, into (2.12) and evaluating V (V • _A,) yields

1 [02A,_

.?we _,_ ] - jw#A,, (2.36)

which reduces to

E, - jwe _, c3z2 + k2A" " (2.37)

From the solution of the Helmholtz equation, the MVP was related to a current

pulse segment in (2.24). Substituting the value for A, into (2.37) yields Pockling-

17



ion's equation [14],

E,(r) - + re -'k" I(z')dz', (2.38)

where E, (r) is the radiated electric field at an observation point r from a current

source at z' and r is the distance between the two points, r = ]r - r'].

In the moment method, the solution in (2.38) is used twice. Obviously, the for-

mulation may be used to calculate the radiated electric fields from current sources.

But this is not chronologically the first time that it is used in the moment-method

solution. First, (2.38) is used to obtain the current in the wire from the voltage

applied across the dipole terminals. Then the radiated fields can be calculated. To

explain this, a closer look at the dipole source is needed.

The dipole source is physically a cylindrical current-carrying perfect conductor

as shown in Figure 2.4(a). Assuming that the conductivity of the wire is high, the

current is located entirely on the surface of the cylinder. For the dipole centered

at the z-axis, all of the current is then at a wire radius a from the z-axis. This is

shown in Figure 2.4(a). Since all of the current is equidistant from the center of the

cylinder (z-axis), the current density will be considered to flow in a thin filament a

distance a from and parallel to the z-axis. This is shown in Figure 2.4(b).

In any electromagnetic radiation or scattering problem involving a conductor,

there are two components of electric field, Eapp, which creates the current on the

conductor, and Erad, which is the electric field radiated by the current carrying

conductor. In the case of the elemental dipole antenna, Eapp results from a voltage

applied across the antenna terminals (see Figure 2.1(a)). The total electric field

Eapp + Erad = Eobs, (2.39)

where Eobs is the total observed electric field intensity. Since the skin depth is zero
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Figure 2.4: (a) Cylindrical conductor model of elemental dipole. (b) Current fila-

ment model used to replace the cylindrical conductor [14].

for a perfect conductor, the observed internal electric field, Eobs, is zero and

Erad = -Eapp. (2.40)

For the special case of the radiated electric field within the elemental dipole, (2.38)

becomes

-Eaw (z) - 1 " k _ •
4_rjwe ft (_--_2z_(_) + 7-e-'kr) Z (z')dz ', (2.41)

where r [(z z')a-.F aa] 1/2= - as shown in Figure 2.5. Since Eapp is known, (2.41) is

an integral equation which can be solved for I (z'). Then I (z') can be substituted

into (2.38) to obtain the electric field everywhere.

The electric field formulation is made more concise by substituting the Green's

function notation,

e-Jkr

G,_, - , (2.42)
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Figure 2.5: Current filament Idz' with field E, (z) at a distance r.

into (2.41). The result is

)-E=w(z) - 4rjwe _z 2G''' + k_G'_' I(z')dz'. (2.43)

It is shown in the Appendix that evaluation of the partial derivatives in (2.43) gives

-E=,(z)-4rjwe] ' r---_ (l+jkr) 2-3 +k2a _ I(z')dz'.(2.44)

Substituting w = _ and the intrinsic impedance of the medium _ = V/'__, yields

C)
The relationships in (2.38) and (2.45) form the theory behind the moment

method. They are the relationships between applied electric fields, radiated elec-

tric fields, and current sources. They have come directly from Maxwell's equations

with no assumptions about the medium that the radiation is traveling in. They are

therefore, valid for free space or a plasma, using the proper permittivity and per-

meability. The remaining part of this section incorporates the methodology behind

the evaluation of (2.45).
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The first transformation is to let observation points be denoted by subscript m

and source points by subscript n. This will be done gradually over several steps

starting with (2.45). It can be written as

-Eo_ (z) =/X (z')O(,.,,,,)dz', (2.46)

where

47rk r s (l+jkr) 2-3 +k2a _ , (2.47)

and r,,,, is substituted for r, where r,,,, is the distance between source point n

and field (observation) point m. The function, G (r=,_), consists of terms forming

a geometry matrix of source and observation points that are used in the moment

method. In any problem there are two of these matrices formed. One for the applied

field to calculate currents in filaments, and another to calculate radiated electric

fields from the currents. Although G (r,,,_) may seem like a complicated term, in

the moment-method formulation it is often simple compared to the current term.

The environmental parameters are also contained in G (r,,,_), but they do not vary

from source to observation point.

The current term in (2.46) can be approximated by the current series

hr

I (z') = _ I,r,_ (z'), (2.48)
n=l

where X,, is a constant magnitude and F, (z') is a pulse function (equal to zero or

unity) for incremental segments Az_. In other words, the current is constant over

a segment n in the same manner as with the elemental dipole. There are more

complicated current series using overlapping segments with plecewise sinusoidal or

triangular current distributions [14], but in MININEC3 the current pulse is used.

The contribution from each current pulse segment n can then be summed to

obtain the electric field at m. Incorporating this into (2.46) for the m t_' segment
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results in

-E°_(zm)= _/_ _.Fo(z')a(rm.)ez', (2.49)
n=l z"

where the integral and the summation have been interchanged and Az" is the

length of the n 'h segment. The current portion can be pulled outside of the integral

because its magnitude does not vary over a given segment. The result is

N

E i./_ e(r_.)dz'. (2.50)_ E_ _ Z_ _
n=l z_

Letting

G,,,,, =/_. a(r,,,n)dz', (2.51)

and assuming G (r,_,)is constant over the small interval Az', (2.51) becomes

Gm,= G(_,,,)Az'.

(2.50) can now be reduced to a matrix form.

- [E,,] = [G_,] [X,],

(2.52)

(2.53)

where [E,_] is the matrix of electric fields from the matrix of current segments, [L,].

Multiplying both sides by the segment length Az,

- [v_,]= [z_,] [_,], (2.54)

where V,_ is the applied voltage at the m th segment, and Z,,_ is the impedance

matrix. This equation can be solved for the vector of current amplitudes [In]. These

can then be substituted into (2.38) to obtain the radiated electric field anywhere.

2.3 Ionosphere- Zero-Order Plasma

The ionosphere is approximated by neglecting the earth's magnetic field. This

is the zero-order plasma approximation. In this section, electromagnetic waves
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radiating from an elementaldipole in a plasma will be shown to behave like an

electromagneticwavepropagating in a waveguide. The formulation parallels the

explanation given by Collin [2]. At the end, the zero-orderplasma model is incor-

porated into the moment-methodformulation.

It seemsappropriate to start the formulation for the zero-order plasma in simple

terms. Considering a moving electron point charge in the presence of an electric

field, E, the force on the particle is given as

dv

,-,',,-_/- = -eE, (2.55)

where me is the mass of the electron, v its velocity, and -e its charge. For the

sinusoidal case, (2.55) becomes

jwmev = -eE. (2.56)

Since the current density, if, equals eNv, substituting this into (2.56) yields

J =-eNv- Ne2 E. (2.57)
jwm,

This current density can then be substituted into Maxwell's equation (2.1),

V x H = jweoE + J = jweo (1 win, ] E, (2.58)

where eo is the permittivity of free space, 8.854 x 10 -12 (F/m). The equivalent

permittivity of the zero-order plasma is then

, = ,o 1 ,,,---:/, (2.59)

which is the scalar quantity times eo mentioned in chapter 1.

Plasma models can be discussed in more useful terms using their characteristic

plasma frequency. It is defined as

wv = _/Ne2 . (2.60)
V meeo
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Writing e in terms of wp yields

Since the wave number, k, is defined as wv_-_, k becomes

(2.61)

(2.62)

The permeability of free space, #o, is introduced since the plasma is not a magnetic

material. Writing k in terms of wavelength, A,

k = _ _- (2.63)

In section 2.1, the analytical solutions for the electric field components from the

elemental dipole were shown to be

E_= 2"-_e V + jw--er 3 cosO,

and

Eo= -:--e + + -3.3 sinO,

(2.64)

(2.65)

in (2.33) and (2.34). Substituting the expression for k from (2.63) into the expo-

nential term yields

e-jkr = e-J"__. (2.66)

In the zero-order plasma approximation, k is either a real or an imaginary term

depending on the frequency ratio. Then for k = fl- ja, where a equals the

attenuation constant and fl equals the propagation constant, either fl = 0 or a = 0.

Therefore, for w > wp, the wave propagates, and for w < wp, the wave does not

propagate, but decays exponentially as an evanescent wave,

e-°_, (2.67)
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where

a= _ V\_] --1" (2.68)

This behavior in the zero-order plasma is similar to electromagnetic waves in a

waveguide, where waves below a cutoff frequency become evanescent.

It will be shown in the following chapter that the plasma frequency of the iono-

sphere is typically in the 2 to 10 MHz range. Since the frequencies and harmonics

from the space station power system processing and transmission components are

below this, the radiated electromagnetic waves are evanescent. Electric field inten-

sities in a zero-order plasma can then be determined by multiplying the electric

field intensities in free space by an attenuation factor, e -_, where a is the real

number obtained from (2.66) when u: < wp. The free space phase term can sim-

ply be neglected since it does not effect the magnitude of the intensity. For the

moment-method formulation, e -at can replace the e -jk_ term in (2.38).

It is important to summarize the approximations that have been made in ac-

counting for the plasma:

1. the earth's magnetic field has been neglected, therefore the ionospheric plasma

is assumed to be isotroplc (the zero-order plasma approximation);

2. the frequencies of interest are assumed to be below the (electron) plasma

frequency, hence evanescent rather than propagating fields result;

3. the attenuation of the near-field evanescent fields is assumed to occur in the

same manner as for the far fields;

4. the attenuation factor, e -=_, is incorporated into the moment-method solution

only in the calculation of the radiated fields and not in the calculation of the

currents which produce the fields.

25



The approximations listed here simplified the development of a basic framework

for EMI analysis using the moment method in the ionospheric plasma. Continuing

work will improve the sophistication of the model by removing the first, third,

and fourth approximations, thereby resulting in a more realistic simulation of the

radiation problem.
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Chapter 3

Results - Analytical Solution

In Chapter 2, the analytical formulations for E_ and Ee from an elemental dipole

were given in (2.33) and (2.34). In the last section of the chapter, the zero-order

plasma model was incorporated into the formulations. In this chapter, the electric

fields are calculated and then compared for unbounded free space and the zero-

order plasma. But first, some input conditions are discussed as they relate to the

space station and the ionosphere. Then computerized simulations are performed

for different circumstances.

3.1 Attenuation Factor

The distinguishing property of the ionosphere was determined in Chapter 1

to be the electron density. In order to determine the electron density, curves for

the maximum and minimum charge density N, #/m 3, as functions of altitude are

shown in Figure 3.1 [5]. For a given altitude the maximum electron density occurs
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Figure 3.1: Ionospheric charge density as a function of altitude [5].

during the daytime and the minimum occurs at nighttime (also see Figure 1.2).

The two electron density curves in Figure 3.1 were digitized by approximating

them with linear equations and entering them into the computer program. For a

given altitude, a value is entered and used to interpolate between the minimum and

maximum electron density values, i.e., unity corresponds to maximum N. In a more

specific application, the program IRI-86 [6] could be used to give a more accurate

value of N based on all the parameters that influence the ionosphere. Since the

plasma serves to attenuate EMI, the worst case is for minimum N or free space.

Meanwhile, it should be pointed out that overdesigning EMI protection for the free

space case could be costly.

The space station is being designed to operate between an altitude of 450 and
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550 km. A conservative range for N would then be between 5 x 101° and 2 x 1012

electrons per cubic meter [5]. Figure 3.2 shows the plasma frequency versus the

electron density for the desired altitude range calculated from (2.60). Similar to

a waveguide, propagation occurs for frequencies above the plasma frequency and

attenuation below the plasma frequency. From the graph, it can be seen that the

minimum plasma frequency of 2 MHz corresponds to the minimum electron density.

As stated in Chapter 1, this analysis concentrates on frequencies below the plasma

frequency. Figure 3.3 shows this by plotting the attenuation versus frequency (2.68)

up to the plasma frequency for given electron densities. The attenuation in dB/m

is calculated from 20 log10 e=. The graph also shows that the dB/m attenuation is

fairly constant over frequency variations up to near the plasma frequency.

29



S.0

2.5

0 1.8
,l.q
a.t
od

_J

,_ 1.0

0.5

0°0

N = 2x10 TM _/m s

N = 0.5x10 _ #/m=

N = 0.05x10 TM #/m _

0.1 1 10

Frequency (MHz)

Figure 3.3: Attenuation versus frequency for specifiedelectron densities

30



3.2 Computer Simulation

The computer program was written to calculate the analytical solutions for the

elemental dipole in unbounded free space and the zero-order plasma. A quick review

of the equations and parameters follows:

and

E, = _ + j_-o_3 co_0 (3.1)

4, -_ + jWeor3 sin 0 (3.2)

As discussed in section 2.3, the free space permittivity and permeability are used

in the formulation. The remaining parameter, k, was determined to be equal to

__¢_0_0fo_=bo_odedf_ee_o _d __o_o_/_- (_)_for_ho_o_o-o_dorvl_m_
/

approximation. For the plasma, k is either real or imaginary, giving propagation or

attenuation, depending on whether the frequency, w, is above or below the plasma

frequency, wp, respectively.

By substituting the parameters into Er and Ee, the electric fields are obtained

as functions of (w, N, r, 0). The current, I, and length, l, were set equal to unity,

and for free space the phase term is neglected since only the magnitude of the

electric field is desired in the case of the elemental dipole. The final result of the

simulation is the electric field intensities for an elemental dipole in free space and

a zero-order plasma at given points.
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3.3 Zero-Order Plasma Compared to Free Space

The following simulations look at the distinguishing characteristics of the electric

field in the zero-order plasma compared to free space. The first case examines the

electric field components as the distance from the source increases. The next case

looks at the effect of changing the frequency. The final case addresses the issue

of variations in the electron density. Before any calculations can be made, the

parameters that do not vary for a particular simulation need to be set. The first

two are the length of and current through the elemental dipole. It was previously

mentioned that these are set equal to unity to normalize the electric fields. In the

next chapter when MININEC3 is compared to analytical solutions, the current and

length will be adjusted to physical values. The next consideration is choosing a

value for 8. Since the effect of 8 on field components is given in (3.1) and (3.2), its

value was set to 45 ° to normalize its contribution to E_ and E6.

To examine the plasma's effect on the electric field as the distance from the

source increases, it seemed appropriate to start the calculations at 1 m, and extend

out to the present design length of the space station, 100 m. Figure 3.4 shows the

fields over this distance for free space and the zero-order plasma. The frequency was

chosen to be 20 kHz because it corresponds to the switching frequency of converters

on the solar panels. The initial electron density, 1011 #/m s, was chosen because it

is in the middle of the specified range. As expected, the electric field components in

the plasma are attenuated. The electric field is expressed in clB#V/m to conform to

NASA's EMI documentation requirements [16]. This is calculated by expressing E

in #V/m, and taking 20 log10 E. It is effectively a comparison of the field compared

to a unit value of 1 lzV/m.
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To examine the plasma's effect on the electric fields at different frequencies, a

range must be set. Remembering that waves propagate above the plasma frequency

and are evanescent below, it wouldn't make any sense to choose a value above the

plasma frequency. What is known is that only values in the kHz range have ever

been mentioned by NASA for some of the power system components. With this

in mind, 1 MHz is established as the maximum test point. For the lower limit,

the 20 kHz switching frequency is chosen. Figure 3.5 compares Eo for the different

frequencies in both free space and zero order plasma. For both mediums, as the

frequency increases the magnitude decreases. This was also noticed in the Er

component. As was predicted in Figure 3.3, the dB attenuation in the plasma is

similar for both frequencies.

The final issue looked at is to vary the electron density. From Figure 3.3, an

increase in N should increase the attenuation. Figure 3.6 shows Ee for a typical

range of free space, N = 0, up to a maximum N = 1012 #/m 3. As expected, an

increase in N increases the attenuation.

3.4 Summary

In this chapter, a method was presented for determining the attenuation factor

from measured charge density curves. The dB/m attenuation from the zero-order

plasma was shown to be constant up to approximately one-half the plasma fre-

quency. The electric field components for the elemental dipole in free space and the

zero-order plasma were compared as functions of distance, frequency, and electron

density.
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Chapter 4

Results- Numerical Solution

In Chapter 3, the electric field for an elemental dipole was compared for free

space and a zero-order plasma environment. The goal of which was to obtain

preliminary results for some simple cases. However, the analytical approach is

only applicable to isolated sources, i.e., sources that radiate in unbounded space

without the presence of other structures. In this chapter, results for a more realistic

space station configurations are discussed. But first, a verification procedure for

MININEC3 is presented. This is done to insure that the program produces correct

results in both mediums, and to gain experience with choosing proper convergence

parameters.

MININEC3 is by no means a complex implementation of the moment method

like NEC is. It is small, runs on a PC, is written in BASIC, is not cluttered

with built in functions or designs, is well documented, and is easy to work with.

It provides a good test bed for ideas. As MININEC3 is a widely accepted code,

the validation procedures used to make sure the program produces correct results
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centeraround the type of modelsneededfor the spacestation structure, insteadof

complex antennadesigns.This meanstaking simpledipole and monopolesources

on simple wire structures and at relatively low frequencies in the KHz range. This

way the results can be qualitatively understood and provide proof of concept for

modifying a larger program like NEC.

MININEC3 is validated using two techniques. How accurate are MININEC3

results compared to analytical solutions? For problems were there are no analytical

solutions, how does MININEC3 results compare to more complex moment-method

solutions? Four tests were used to answer these concerns. The first test compares

solutions for the input impedance for some simple antenna configurations. The sec-

ond test looks at currents on a long-wire structure for different frequencies. A third

test looks at the numerical accuracy for determining far fields in free space from

dipoles of different numbers of segments. The final validation technique compares

MININEC3 and the analytical solution for near field radiation in free space and

the zero-order plasma. In all four cases, convergence of the solutions is obtained by

paying strict attention to the number of wire segments that are ased to discretize

a structure. A general rule of thumb is 10 segments per wavelength. 1"his allows

for accurate representation of the current waveform on the wire.

4.1 Input Impedance

The input impedance is a particularly sensitive measure of the numerical ac-

curacy of MININEC3 [14]. The reason for this is the use of pulse functions for

the current instead of more complicated functions (explained in section 2.2). In

the first two input impedance cases, MININEC3 is compared to solutions using
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Table 4.1: Input impedance of an isolated dipole, in ohms.

N, Modes MININEC King'sSolution"

1 N/A 2.000-j1921

3 1.927-j1980 1.892-j1916

5 1.902-j1970 1.864-j1905

7 1.887-j1957 1.856-j1899

15 1.856-j1922 N/A

* King calculated the solutions using piecewise sinusoidal functions [14].

length = _/10, wire radius = )_/10000

piecewise sinusoidal functions. In the third test, the analytical solution is known.

Table 4.1 shows the input impedance for an isolated dipole antenna of length _/10.

For convergence, the results show that approximating the antenna by only three

segments is sufficient to obtain the correct input impedance. Table 4.2 shows the

antenna impedance when another identical wire is located parallel to and at a dis-

tance of )_/100 from the first antenna. The wire coupling configuration is more

representative of the type of problem that would be of concern for an EMI analysis

on the space station. Once again, only a few segments are required to adequately

approximate the antenna input impedance. Table 4.3 completes the study of input

impedance by calculating it for a longer antenna, a _/2 dipole. Again, only a few

segments are required to accurately approximate the input impedance. The rule

of thumb dictated 10 segments/)_ for accurate results. For this dipole, 5 segments

would then be needed, so these results justify the rule of thumb.
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Table 4.2: Input impedanceof dipole 1 in the presenceof dipole 2, in ohms.

N, Modes MININEC King'sSolution*

1 1.264-j1908 1.382-j1822

3 1.281-j1918 N/A

15 1.256-j186S N/A

* King calculated the solution using piecewise sinusoidal functions [14].

d=dipole separation distance= _/100

length = _/10, wire radius = _/10000

Table 4.3: Input impedance of )_/2 dipole, in ohms.

N, Modes MININEC Known[14]

3 72.39+j60.75

5 75.90+j41.88

9 78.05+j41.88

19 79.28-{-j42.09

73.0+j42.5

length = A/2, wire radius = A/10000
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4.2 Current Distribution

Another method used in validating MININEC3 was solving for the induced

currents in the wire structure. These currents form a special type of conducted

EMI, i.e., currents induced in the space station structure by EMI sources. As

a test case, Figure 4.1 shows a 100 m wire (divided into 34, 3 m pulse segments)

/\

2 Segment

Honopot_
So_rcP

7-->Y

Figure 4.1: Simple wire model of the space station with a short monopole antenna

located at one end.

excited by a short monopole antenna at one end. The current distribution along the

simple structure is then calculated for a 20 KHz, 100 KHz, 1 MHz, and 5 MHz

source and shown in Figure 4.2. At the lower frequencies of 20 and 100 KHz,

the normalized current distribution is identical. This is attributed to the length of

the structure being less then 3 % of the wavelength. As the frequency increases

to 1 MHz, the distribution changes only slightly as the structure is then 1/3 of a

wavelength. At 5 MHz, which is higher than the maximum frequencies discussed,

the structure is 5/3 wavelengths. This higher frequency was used because it provides

nice qualitative results since the current standing wave pattern shows a wire length
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Figure 4.2: Current distribution along a 100 m wire divided into 34 pulse segments

with a monopole source on one end at 20 KHz, 100 KHz, 1 MHz, and 5 MHz.

of 5/3 wavelengths as expected. If the results for 10 MHz were shown, the current

waveform would approximate 3½ wavelengths. In the 4 cases shown, the current

solutions converge.

4.3 Comparison of Far-Field Results

Although the far-field approximation is not used for the space station config-

uration, it is the next logical step in validating MININEC3 and further increases

confidence in the program. In Figure 4.3, far-field radiation patterns for a /_/2

dipole antenna with an increasing number of segments calculated with MININEC3
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Figure 4.3: Calculated far-field radiation pattern for A/2 dipole antenna for an

increasing number of segments using MININEC3 and analytical solution.

are compared to the analytical solution. As with the input impedance of the x/2

dipole, the results converge to known values for 5 segments. The results for this

graph were normalized by dividing through by the source current and length of the

dipole.

4.4 Comparison of Near-Field Results

The final step in validating MININEC3 is to compare analytical near field solu-

tions to MININEC3 solutions. This point had been foreseen and was a reason for
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developingthe dipole simulation. Instead of comparing MININEC3 to analytical

solutions for each environment separately, it makes more sense to present them

together. In that respect, a detailed description of the dipole and conditions used

to determine the electric fields follows.

The dipole used in MININEC3 approximates the elemental dipole used in the

analytical solution. The elemental dipole assumes a constant current across its

entire length. In the moment method the current was shown to be distributed over

several pulse functions. Numerically this has a big advantage because the boundary

conditions at the ends of the dipole are satisfied by forcing the currents to be zero.

This was shown in Figure 4.2 but not pointed out until now. The elemental dipole

on the other hand, had a constant current over its entire length. This difference

needs to be corrected for comparison. The dipole used in MININEC3 is divided

into 5 pulses with the center being fed by a 1 volt, 100 kHz source. The current

distribution on it appears as a step-like triangular function. In a qualitative sense,

the analytical current distribution would look like a triangular step distribution if

half its length with zero current was added to each end. Therefore, the length used

in MININEC3 needs to be twice as long as its equivalent elemental dipole. In both

cases, the dipole is centered along the z-axis and the electric fields are calculated

along the x and z axis. The x and z components in this configuration then translate

to Er and Ee as formulated in (2.33) and (2.34).

Figures 4.4 and 4.5 show that MININEC3 results converge very closely to

analytical solutions. The wire length and source current determined by MININEC3

(shown on graph) are used as inputs for the analytical solutions. This was done

to obtain the actual electric field intensities in dB#V/m instead of normalizing the

data to the source parameters. As discussed in Chapter 2, the zero-order plasma

fields are calculated by multiplying the contribution from each pulse segment by the
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Figure 4.4: x-component of electric field calculated analytically and numerically for

unbounded free space and zero-order plasma.
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Figure 4.5: z-component of electric field calculated analytically and numerically for

unbounded free space and zero-order plasma.
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attenuation term, calculated from frequency, electron density, and distance between

source and observation point. The same electron density used previously is used

here, N = 1011 #/m s.

4.5 Electric Field Contour Plots for Space Station

Structure

A simple wire model of Space Station Freedom is shown in Figure 4.6. The 100 m

1
25m

lOm 25m

1
100m _ '

Figure 4.6: Wire model of NASA Space Station Freedom.

longitudinal wire consists of 20 segments, with a one-volt source on the left-most

segment. The source location was selected to simulate the switching associated

with the photovoltaic solar panels. The two vertical wires, representing habitation

and laboratory modules, are 50 m long and spaced 5 m either side from the center

of the 100 m wire. Each 50 m wire is divided into 10 segments. Using the rule

of thumb, 10 segments per wavelength, the shortest A for the 5 m wire segments

would be 50 m, or f < 6 MHz.
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A contour plot of the electric field intensity for unboundedfree spaceis shown

in Figure 4.7. To form this, the following parameterswereusedin MININEC3. The

abovementionedspacestation model wasenteredin the x-y planewith the source

on the 100 m boom at the origin and extending out into the positive x-axis. The

free spaceenvironmentwasselected.A sourcewith a frequencyof 1 MHz wasset,

becauseit offers the worst casefor attenuation when the zero-orderplasmamodel

is used.Starting at z = -10 m and V = -35 m, near electric fields were calculated

in 2 m increments till z = 110 m and y = 35 m. There is then a near-field moment-

method approximation since multiple field points exist along a single source point.

The contour lines are specified in 5 dB#V/m increments.

The results show the field strength to be relatively strong around the source as

expected. The strong fields at the far end of the structure indicates that conducted

EMI (currents induced on the structure) should be a major concern to the space

station designer. Especially if the attenuation over distance is a main strategy em-

ployed to alleviate EMI. The field then decreases as the distance from the structure

increases to a value of about 50 dB#V/m at the outer boundary of the grid. For the

zero-order plasma the attenuation at the boundary is expected to be much greater.

The same conditions used in the previous free-space contour plot were used to

determine the fields in the zero-order plasma model. The only difference being

the zero-order plasma environment was selected with an electron density of N =

101_ #/m 3. A contour plot of these fields is shown in Figure 4.8.

Immediately, the increase in the number of contour lines shows the electric

field to be much more attenuated. The yellow lines starting at 45 dB#V/m and

below, were not on the free space contour plot. This is the principal benefit of

the zero-order plasma, i.e., moving a platform a relatively small distance from the
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space station provides a cleaner electromagnetic environment with the plasma then

free space would. The fields close to the source, less than 10 m, are only slightly

attenuated as the theory would have suggested. But some of other positions near

the structure provide some interesting results that were not expected.

The plasma appears to limit the conducted EMI problem, but in doing so the

fields near the center of the structure are increased. In some areas (around x=40 m

and y=0 m) the field increases by around 30 dB_V/m. At first an error was

suspected in the data entry because stronger fields in the middle of the structure

would be caused by higher currents in the structure. The current data did not

support this conjecture because the current in each pulse segment was identical in

both mediums, as expected. So how could the sum of the electric fields from each

pulse increase in the zero-order plasma? Looking back at the formulations and

the difference in the two media indicates a possible explanation. In the zero-order

plasma, the fields are evanescent and have no phase term. This makes the individual

fields from each pulse segment add as scalar quantities. In the free space case, the

fields have phase terms associated with them so they add as vectors. Therefore, at

certain locations the field strength in the zero-order plasma could be higher because

of field components out of phase negating each other in free space. This effect was

not anticipated because the modeling of the plasma by attenuation has only been

applied to the far field in the past.

4.6 Summary

MININEC3 has been shown to produce correct results in free space and the zero-

order plasma by comparing solutions for input impedance, current distribution on a
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wire structure, far-field patterns, and near-field patterns to solutions obtained from

analytical results or more advanced moment-method codes. Results are presented

in the form of contour plots for electric fields from a simple space station structure,

showing the attenuation from the zero-order plasma compared to free space.
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Chapter 5

Conclusions and Further

Research

The contributions of this research work fall into two general categories. The first

is in modeling of the ionosphere and developing a working model for electromagnetic

wave propagation. The two interests that distinguish this area from others is the

indepth analysis of frequencies below the plasma frequency and the interest in the

near-field components. The second contribution centers around incorporating the

zero-order plasma into the moment-method and ultimately generating field plots

for a simple space structure.

A large portion of this research work, as with any research work, involved col-

lecting data, formulations, and theories on electromagnetic wave propagation in the

ionosphere. At the altitude of the space station, the ionosphere was approximated

as a zero-order plasma, i.e., the earth's magnetic field was neglected. The character-

istic properties are principally determined by the electron density which is mainly
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a function of altitude, time of day, and solar activity. From the electron density

the plasma frequency was determined. For radiation above the plasma frequency,

the waves propagate. For radiation below the plasma frequency, the waves decay

exponentially, i.e., they are evanescent. This behavior is similar to electromagnetic

wave propagation in a waveguide. It was also shown that up to about half the

plasma frequency, the attenuation from the plasma is fairly constant. For the space

station, half the minimum plasma frequency is about 1 MHz. Since the power

system components and their harmonics are usually well under 1 MHz, it was set

as the upper limit of frequencies to be considered in this analysis.

The moment method was then formulated as an analysis tool for performing

calculations. To do this, anaJytical solutions for the elemental dipole were developed

for both media. The solution for the fields radiated by an elemental dipole provided

the basis for an explanation of near and far fields. This raised two important

conclusions for the research. The first was that the far-field approximation could

not be used for the space station versus the more complicated near-field solution

because of the low frequency of radiation being analyzed. The second was that the

plasma models that have been developed have only been applied to the far field,

since the near field was never an issue before. The analytical solutions were then

used to test the modified version of MININEC3. This computer program, chosen

mostly for its simplicity in implementing the moment method, was shown to be

a good program to do test-case calculations. The dipole results showed that the

attenuation in a plasma medium was as expected and it provided accurate results

for both free space and the zero-order plasma.

Wire models were then formed for the space station. The main reason such a

simplistic program could handle something as large as the space station is the low

frequency consideration. In order for the moment method solutions to converge,
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pulse segments on the structure should be less then 1/10 of a wavelength. The

space stations longest part is the main boom at about 100 m. At the maximum

frequency of 1 MHz (wavelength=300 rn), the structure could be modeled with

under 4 segments. But because of resolution for determining grid plots, a smaller

segment length of 5 m was used in the structure. This was determined to be

adequate for the resolution in the contour plots and also near the maximum size of

a problem MININEC3 is designed for. Although a larger problems could be done,

the time to calculate field patterns starts to become an issue. The first test was to

calculate the current on a 100 m wire for several different frequencies.

A more complicated model of the space station was then developed for calcu-

lating field patterns. The electric field contour plots from the wire model for the

two media raised several interesting points. The first was the relatively high fields

at the opposite end of the structure resulting from the conducted EMI or currents

induced in the structure. Also, from the zero-order plasma contour plot, fields were

shown to be strongly attenuated for only a short distance from the structure com-

pared to the free space case. A not-so-obvious advantage of this is that EMI from

the space station will be reduced for structures that may be near the station, i.e.,

satellites and the space shuttle.

The zero-order plasma plot also showed some increases in field intensities near

the center of the structure. One conclusion was that this effect could be attributed

to the lack of a phase term in the waveguide model. But in interpreting these

results, they can only be as good as the model. Since this model is only proven in

far field cases, where phase would not have a large effect on the field intensities for

free space calculations, the waveguide model in the near field needs more work. It

is thought that since the currents were the same on the structure in the two media,

the fields are not expected to increase in a plasma. But the arguments seem to be
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all qualitative in this area.

Indications are that the moment method, MININEC3 in this case, properly

models the space station with thin wires and predicts the correct field results in

both environments.

5.1 Future Work

There are many areas of work that need further research. The main focus should

be around developing better models for near-field electromagnetic wave propaga-

tion in the plasma surrounding the space station structure. In particular, adding

the contributions for the electric fields from each pulse segment as scalar quantities

should be addressed. More testing and development on structures with MININEC3

needs to be completed to determine the effect of plasmas. The major problem of

work in this area will continue to be in developing models for near-field electromag-

netic radiation and analytical solutions for testing purposes.
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Appendix A

Evaluating Partial Derivatives

and Simplifying

The applied electric field at location z in terms of a current source at z' was

given in (2.43) as

1 ( 0 2-Z°w(z) - 4rjwe ft -_z 2 Gz_'

e-dkr

GZZr --

r

where

[(z- _')_+ ,,_]'"

and

+ k_G,,) I(z')dz', (A.1)

Evaluating in terms of r

05 02 e-Jk,

-5_z_G"' - Oz2 r
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Taking one partial

o _-_, -jk_-,_ (o_)-_-;_(o_)
OZ r ,/-2

_ e -jkr _ --e-Jkr (Or)Oz ,. - ,._ _ (jk, + 1).

Then taking the second

02 [j ( °2_ (jkr + 1) -_a,,, = 5,' ke-_"(o_)_(ikr+ _)-e-;_ _o,,j

e-Jh" [j7" kr2(jkr+l)(_)'-r2(jkr+l) °'_

s_,_(oe,)'+2,(_k,+_),o,_j.

Evaluating the partial of r,

r = y/(z- z')' + a',

yields

(-e,,, ,s_,÷_)- o,,(j_,,+,)]

Or I

- (_- ,'h/(,- _')'+ o',
Oz

(A.2)
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0_ 2 (_- z')_
/ = (_- _,)_+ ._"

But since (z - z') 2 = r 2 - a s,

The second partial of r is

0z 2

(A.3)

_2T

-- T-3(T s -- a s) -t- r -1.
0z s

0:r a 2 - r 2 1 a s

Oz 2 - r 3 + r r 3"

8Z 2 T 2 •

Substituting (A.3) and (A.4) into (A.2) results in

0__2_2 e -ik_
8zsG==, _ r s [@2_a s) (_kSr, + 2jkr + 2) _aS(jkr + l)] .

(A.4)

82 e-J kr

az _='=G=='- rS [a2 - jkra s - k 2r4 + 2J kr3 + 2r2 + a2k2r2 - 2jkra2 - 2a2] "

The final substitution is (A.5) into (A.1).

(A.5)

e --/hr k2T4E,.,,,,(_) _ f,--_(- + 2jk,'_+ 2,'_+ a_k_'2

-3jkra 2 - 3a 2 + k2r ') I (z')dz'.

-E=_(z)- 1 "e -jk" a2k2r 2 3jkra 2 3a2) I(z,)dz ,._,_j.,,J-7 (+2J_3+ 2_s+ - -

_E=_(z)_4_rjweJ, r a (l+jkr) 2-3 +k2a 2 I(z')dz'.(h.6)

(A.6) is the simplified form referred to in the text.
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