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ANALYSIS OF ELECTROMAGNETIC INTERFERENCE FROM
POWER SYSTEM PROCESSING AND TRANSMISSION
COMPONENTS FOR SPACE STATION FREEDOM

1 Introduction

The goal of this research project is to analyze the potential effects of
electromagnetic interference (EMI) originating from power system processing and
transmission components for Space Station Freedom. The approach consists of four
steps:

1. Develop analytical tools (models and computer programs).
2. Conduct parameterization (what if?) studies.

3. Predict the global space station EMI environment.

4. Provide a basis for modification of EMI standards.

This report summarizes work performed during the period January 1 - August
31, 1991.

2 Device Models

This portion of the investigation centers on the development of computer
- models which can be used to predict the local electromagnetic fields for various power
system components or devices, including various transmission line configurations.
Recent work is summarized in the Master’s thesis of Mr. Zemin Luo, which is
attached as Appendix A.

3 Radiation Sources

This portion of the investigation centers on the development of computer
models to simulate the propagation of electromagnetic waves in the ionospheric
plasma and the radiation from antennas simulating EMI sources on the space station.
Recent work is summarized in the Master’s thesis of Mr. Brian J. Hurysz, which is
attached as Appendix B.

4 Future Work

Continuing work involves an investigation of v x B effects and the development
of a more sophisticated method-of-moments model of the space station.
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Abstract

Ballooning techniques in conjunction with the two dimensional finite element (2DFE)
method are described for modeling and computing a two dimensional (2D) magne-
tostatic field in a two-wire parallel-pair transmission line problem in an unbounded
region. Solutions using the combined ballooning 2DFE method are shown in this
thesis to agree closely with analytical solutions for the two-wire parallel-pair trans-
mission line in the same unbounded region. These 2DFE techniques are used here
to study the eflects of magnetic shielding and the effects of defects in such shield-
ing. The distribution and profiles of miagnetic fields surx‘ouﬁding such transmission
lines are studied, for future use of investigating electromagnetic compatibility aspects
associated with power processors and systems in the future Space Station Freedom.
The combined ballooning 2DFE method is developed further for a 2D diffusion type
(eddy-current) field and then applied to solve the problem in the two-wire parallel-
pair transmission line with a conductive shield. Various cases such as the effects of
conductive shielding thickness, and the effects of defective shielding are considered.
Furthermore, in this thesis, a closed-form solution for the magnetostatic case in a
two-wire twisted-pair transmision line is derived using Biot — Savart Law. The flux
density comparisons between twisted-pair and parallel-pair cases are carried out and
the effects of the length of the pitch of the twisted-pair line on the magnetic field
profiles are obtained. The results shown in this thesis imply that a three-dimensional
(3D) ballooning method using finite elements is needed for the magnetic shielding
case as well as in the quasi-static diffusion type case. This quasi-static class can

involve transmission lines in plasma, with or without conductive metallic shielding.
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Chapter 1

INTRODUCTION

This work is one portion of a large research project centering on the “Analysis of
Electromagnetic Interference from Power System Processing and Transmission Com-

”, and is concerned with aspects of developing

ponents for Space Station Freedom
device models for power system processing components and transmission lines in

aerospace, where an infinite boundary and a plasma environment exist.

1.1 Background and Literature Search

One of the purposes of this work is to develop capabilities to compute the electromag-
netic fields surrounding two-wire parallel-pair transmission lines and other possible
transmission line configurations in aerospace applications, which can be solved as two
dimensional (2D) problems with infinite (open) boundaries.

The finite element method was applied to magnetostatic field solutions which
involved the calculation of electromagnetic fields in bounded regions governed by
quasi-Poissonian partial differential equations (PDE) in 1970 [1]. Boundary condi-
tions involving Neumann, Dirichlet and periodicity types were involved [1]. While
such boundary conditions occur when magnetic fields are confined by magnetic-type
or conductive-type materials, there are many problems without such confinement.
Many field problems are unbounded; i.e., they cannot be encased within a finite

boundary along which either the normal or tangential component of the field may be



specified. As a consequence, the actual boundary is at infinity, with the potential] zero
thereupon. When dealing with integral methods, this boundary condition is automat-
ically taken care of and a greater economy of nodes and elements are given, however,
the integral methods have disadvantages in that the resulting matrices are dense and
their formulation and inversion are much less straightforward than the equivalent dif-
ferential approach. However, it is difficult to account for partial differential equation
(p.d.e.) inhomogeneities with differential methods for an infinite boundary. On the
other hand, differential methods can easily account for PDE inhomogeneities, while
requiring that the boundary be nearby so that the global matrix for the bounded
region solution is not excessively large. Approximating an infinite (open) boundary
by a closer one makes the potential fall (or rise) more rapidly and distorts the solution
from the true open boundary results.

In a large number of electric and magnetic field problems, the solution requires
the representation of a boundary which is remote from the region of interest. Typical
of this class of problems are the single-sided linear machine, bus-bar impedance,
and so on. There is, consequently, a need for a technique to combine a differential
approach in the region containing all the field sources and materials with a simple
representation of the exterior empty space. Thus additional work by Lowther (1978)
[3], and Antunes (1982) (2], on a recursive (ballooning) finite element technique was
developed for 2D planar magnetostatic field problems with open boundaries extending
to infinity. Brauer (1982) [4] developed that ballooning technique for axisymmetric
problems and general skin effect problems in which the eddy current is confined in
the interior region and the Laplacian equation is satisfied in the exterior region.

Sometimes one is interested in the fields in both an interior region and an exterior
region in a given problem. However, the above mentioned ballooning technique only
uses the exterior region for the solution of the interior region. The solution of the
exterior region cannot be obtained by the ballooning technique. Overcoming this dif-
ficulty with exterior field problems has spurred a whole new area of research activity;
as a result, several schemes are now available for tackling this aspect. Some types
of algorithms of semi-analytic methods (or hybrid harmonic/finite element method)

tackling open boundary problems were presented by Lee and Cendes (1987) [5], Chari



(1987) [6], and Chari and Bedrosian (1987,1988) |7, 8] respectively. They used a cir-
cle as a boundary. The solution in the exterior region is obtained analytically and
matched to the interior finite element solution.

To study the electromagnetic fields surrounding a two-wire parallel-pair transmis-
sion line in aerospace applications, a ballooning technique can be used because we are
only interested in the fields in the interior region near the wires. However, no such
ballooning techniques have been found in any literature for that type of problems
because eddy current fields can exist in both the interior region and exterior region in
the expected plasma environment of Space Station Freedom. This thesis will derive
a new 2DFE ballooning method for the problem with eddy currents in both the inte-
rior region and exterior region and with an open boundary. Then this new ballooning
2DFE method is applied in this research which will be defined further in the next
section.

The other purpose of this work is to develop models which can help engineers
in studying the electromagnetic fields surrounding a two-wire twisted-pair transmis-
sion line and possible other configurations. To the best of this author’s knowledge,
no similar papers on such problem have been found in the literature. It is one of
the purposes of this work to explain the nature of the field caused by this type of
transmission lines. In this thesis, we only consider the magnetostatic case for the
two-wire twisted-pair transmission line without shielding so that the closed-form an-
alytical formulation can be employed to deal with this possible three dimensional
(3D) problem. The results of this investigation will show the necessity of the need for
the ballooning in conjunction with 3DFE methods to solve the eddy current problem

with a twisted-pair transmission line with shielding.

1.2 Deﬁnition of the Problem

This research work centers on the development of computer models which can be used
to predict the local electromagnetic fields with infinite boundary for various power
system components or devices in acrospace applications, and specifically the case of

the Space Station Freedom.



The effort is started in the magnetostatic case and is developed in the quasi-
static case because of the existence of a plasma environment surrounding the Space
Station. The first power system component to be analyzed is the two-wire parallel-pair
transmission line with no shielding. This example is chosen because it is the simplest
case of a two-wire transmission line for which there exists an analytical solution for
comparison with and verification of the detailed FE modeling which will follow.

A two-dimensional finite element (2DFE) method will be used to obtain the lo-
cal electromagnetic field distributions surrounding power system components and
devices. In order to simulate the problem with the open boundary, a ballooning tech-
nique is introduced. With the ballooning technique, a matrix recursion algorithm is
derived for a 2D problem in the static case and incorporated into the 2DFE method.
This combined 2DFE ballooning method is applied to the example. The validity of
this 2DFE method with the ballooning technique is demonstrated by comparison of
the results with those of the analytical solution in the magnetostatic case with no
shielding.

In the magnetostatic case, the 2DFE ballooning method is applied to the two-
wire parallel-pair transmission line with continuous permeable cylindrical shields to
determine the effects of the shielding. This method is applied further to the study of
the field distributions resulting from discontinuitues in permeable shielding surfaces
due to accidental damage or to deliberate hardware design necessities.

The 2DFE ballooning mode! is developed in this work for the AC cases with
frequencies in the Hz,and kHz ranges. In the AC case, the magnetic vector potential
is a function of time. Assuming that the MVP varies sinusoidally, we can use phasor
vectors in the problems. The field in the plasma environment can be equivalent to
the eddy current field. A complex 2DFE model for eddy current problems is obtained
and a complex matrix recursion algorithm is derived using the ballooning technique.
In this thesis, it is shown how the AC ballooning is working in each chosen frequency
(f= 0 Hz, 400 Hz, 2 kHz, and 20 kHz). With the AC 2DFE ballooning method, the
effects of conductive shielding are studied in lower frequencies and higher frequencies.
The effects of defective conducting shielding are also considered in a certain frequency
(f= 400 Hz). The relations between the flux density magnitude and shield thickness



are shown in both defective shields and shields without defect cases.

The investigation of a 3D closed-form analytical formulation using the Biot —
Savart Law is depicted for the magnetostatic field surrounding the two-wire twisted-
pair transmission line. That formulation is an integral expression and the Gaussian
numerical integral method is needed for the computer program. The results of this
investigation indicate whether the near-field or the far-field are of 3D nature. Several
different lengths of pitches are chosen for the flux density component comparisons,
which also show that this problem cannot be simplified by a 2D solution approach.
The 3D nature of this field means that it will be necessary to use 3DFE analysis to
evaluate the magnetic material-type or eddy current-type electromagnetic shields and

other related studies.



Chapter 2

THEORETICAL
BACKGROUND

2.1 Formulation - the Governing Differential Equa-
tions

In this chapter the differential equation governing the magnetic fields within a two
dimensional (2D) continuum is derived from Maxwell’s equations and the definition
of the magnetic vector potential. For the purpose of this study, the magnetic fields
surrounding the two-wire parallel-pair transmission line are treated as being two di-
mensional (2D) in nature of the infinitely long transmission line case. Consequently,
the conductor current can have a component in the axial-direction only. The materials
within this continuum are assumed isotropic.

The fields in such a device are governed by Maxwell’s equations, equations (2-1)
through (2-4), as follows [11]:

V.-B=0 (2.1)
V.-D=p (2.2)
Vxﬁ=7.+—,+?£ (2.3)



6B
\% XE= ——8-t— (24)

All the symbols used throughout this thesis are defined in the list of symbols (Ap-

pendix A). The constitutive relationships are:

B=,0-= %77 | (2.5)
D=¢E (2.6)
J.=0E (2.7)

The magnetic vector potentialA and the magnetic flux density B are related as:
B=VxA4 (2.8)

The x and y components of A are zero in the 2D case, therefore B can be rewritten

as follows:

0A, O0A,_

B = 3y 4z — =0, (2.9)
Rewriting the curl of A in terms of the magnetic field intensity gives:
vB=H =v(V x A) (2.10)

Substituting Equation(2.10) into the third Maxwell equation, Equation(2.3), one ob-

tains:

Vxﬁ:Vx(quX)=7,+7,+%? (2.11)
In 2D cartesian coordinates Equation(2.11) becomes:
0,6 0A, 0, 0A, oD,

)=—=(J. +Je, + ) (2.12)

5"z 5, 5, 51

In the static case, the eddy current density component, J,, and the displacement
current density component, 8D/dt are both equal to zero, hence the contributions
due to these terms will be zero. In the diffusion (eddy current) case, the displacement

current is very small compared to the source current. For this reason, the contribution

-
{



of the displacement current can be neglected. Assuming that the magnetic vector
potentials are functions of time which vary sinusoidally in both the diffusion (eddy
current) case and high frequency radiation case, one can use phasor form equations
in the frequency domain in these two cases. For convenience the subscripts of A, and
J. will be dropped in future developments and discussions throughout this thesis.

Equation(2.12) can therefore be rewritten as follows in the static case:

8, 8A 3, 94

51('/51— t Oy V??—y-
In the diffusion (eddy current) case, one can write the following:
9, 0A 3, 6 0A
g(ugg) + O_y(ua
Also, in the high frequency radiation case, one can write the following:

2,94), 2,9,
9z Bz dy Uay

These are the well known nonlinear Poisson’s equations in cartesian coordinates.

)= —J, (2.13)

)= =J, + jwoA (2.14)

—J, + jwo A — WA (2.15)

Usually, the reluctivity, v, is a function of both position and magnetic flux density
which is dependent upon the curl of the magnetic vector potential. However, in this
work, no nonlinear magnetic materials are expected to be encountered. Hence, v is
assumed as a constant in the various anticipated nonmagnetic materials. Accordingly,
the above three non-linear Poisson’s equations become linear equations. In other
words, the reluctivity, v, can be moved outside of the partial derivative operators.

Obviously a closed form solution is nearly impossible to solve the magnetic fields
surrounding a two-wire parallel-pair transmission line with any shielding. One must
look towards numerical techniques . One of the best methods is the finite element

method which will be briefly summerized in the following section.

2.2 The Finite Element Method

The finite element method is used to solve bounded problems. Consider a 2D magnetic

field problem with Dirichlet and Neumann boundary conditions. In the static case,



one can formulate the problem as follows:

Z4, A |
502 ay2’ ~ ~Y* (Governingpd.e.)
A= (Dirichlet) (2.16)
,. 94 _ (Neumann)
377.

From variational principles it was previously shown that the appropriate energy

functional [11] for this problem is:
1,104, 104,
= [ 234 L84 _ 17
P = [ 5 GG+ 2y - a,- aaeay @17

Minimization of F(A) is equivalent to solving the partial differential equation (p.d.e.)
with Dirichlet or Neumann boundary conditions [11]. The solutjon region R can
be divided into many subregions (finite elements) on which interpolation functions
of the MVP’s are defined. There are many different types of element shapes and
interpolation functions which are applicable to the finite element discretization [11].
Here, first order triangular elements R. are chosen and interpolation functions can
be obtained in the form of polynomials of first order. The value of the MVP at any
point P(z,y) within this triangle is given by [11):

Ae(z,y) = NJAi + Np Am + N, A, (2.18)

where N;,N,., and N, are the form (or shape) functions which are complete first
degree polynomials. Meanwhile, A;, A,,, and An are the values of the MVPs at the
vertices of the triangle, e, in Figure(2.1). These polynomials are of the form:

N a b q 1
Ne |l =1lam bn ¢, ||z (2.19)
N, a, b, ¢, Y

the constants a;, &, and c; are determined subject to the following conditions:
N =1, N, = n=20 atP(.r;,y;)

No=1, Ni=N.=0 atP(zn,yn,) (2.20)
No=1 N,=N=0 at P(r,,yn)



Therefore, the expressions of the form (or shape) functions can be rewritten as follows:

N, 1 poa 1

= — 2.21
Nm 2A Pmn Gm Tm I ( )
N, Pn 4n Tn y

where: A is the area of the triangular element, €, and
N=Zn=TImy i = Ym — Ynsy Pl = Tm¥Yn — Tnlm
Tm =TI — TnyGm = Yn — Y, Pm = Tnlt — TiYn
Tn =ZTm — Ty @n = Y1 — YmyPn = TiYm — ITmlYi
where, 2A = p; + pm + Pn.
Now, one can write the interpolation function of the MVP in one element, e, as
follows:
L

Ac(l',y) = QA

Y (b + gz + riy) A (2.22)

i=l,mn
Substituting A.(z,y) into the previous functional equation and minimizing it, one

can get the following equation in matrix form [11]:

SA =T (2.23)
In expanded form we have:
Si Sim Sia A I
renl S:nm S:nn Am = ]m (224)
:11 Sreim S:m Aﬂ Iﬂ
where
. v ..
S = Zz(r.-r,- + 9iq;) t,7=1l,mn (2.25)
I, = A:;’z i=1lmn (2.26)
It should be noted that
1 1 1 1
A= 5| T Em Ta (2.27)
Yi Ym Yn

10



The element matrices S° given in the above summary are only valid for element
e. Representation of the entire region R requires that these element matrices be
assembled into a global coefficient matrix S. Then a global matrix equation can be

obtained as follows, after imposition of the proper boundary conditions:
S-A=1 (2.28)

The assembly process can be briefly summarized as follows:

Step(1): Initialize all entries of the S and I matrices to zero.

Step(2): Add each contribution of an element matrix S° to its corresponding location
in the global S matrix.

Step(3): Add each entry of the element matrix [° to its corresponding location in the
global forcing function, [.

Step(4): Repeat step(2) and step(3) until all the elements have been assembled.

now the system of Equation(2.28) would be ready for the numerical solutions.

11



P(Ih yl)

P(Tmsym)

P(l'm yﬂ)

Figure 2.1: The First Order Triangular Finite Element



Chapter 3

COMPARISONS BETWEEN
THE CLOSED-FORM
SOLUTION AND 2DFE
SOLUTION FOR THE
TWO-WIRE PARALLEL-PAIR
CASE

In this chapter, the magnetostatic fields surrounding a two-wire parallel-pair trans-
mission line which is shown in Figure(3.1) are computed by the analytical and 2DFE

methods. The results are compared for verification purposes.

3.1 The Closed-Form Solution
According to Ampere's circuital law:

fﬁ-d?:l (3.1)

13



one can get the following equations for conductor #1 in Figure(3.1):

f H,-d=1 (3.2)
2n
A Hyrido, =1 (3.3)
Hence,
H1 . 27!'7‘1 =17 (34)
Therefore,
H, = ! (3.5)
27TT'1
That is,
Hy. = —Hsin(a)) = ——— % (3.6)
1 = — 8 1) = 2y .
W
I — —
Hy, = H cos(e) = ! 2 (3.7)
Ty T
Similarly, one can obtain the equations for conductor #2, Figure(3.1):
: I y
H;,. = H;sin(a;) = Srrars (3.8)
W
H H 1175 3.9
2y = —Hjcos(az) = BT — (3.9)

With superposition of the fields due to the two conductors, the expressions of the

total flux density can be obtained as follows:

411
B; = 27ry(r'§’ - 7'?) (310)
. 44 s+ W
T 72
Bv - 27T( T‘? T% ) (311)

14



Because of the definition:
VxA=B (3.12)

in the 2D case, equation(3.12) yields the following:

0A
= — 13
0A
B, = e (3.14)

Substituting equation(3.10) into (3.13) and integrating yields the following result:
_
A= o ln(rl) (3.15)

the quantities r, and r; are defined in Figure(3.1). With the above formulations, the
MVP and flux density were computed for the case of Figure(3.1). The equipotentials
near to the conductors are shown in Figure(3.2) and the equipotentials away from the
conductors are shown in Figure(3.3). The MVP values and the flux density values at

various locations were computed and are listed in Tables(3.1) through (3.4).

3.2 The 2DFE Solution

Let us consider the region shown in Figure(3.4), which has a natural open boundary
near to the conductors. In conductor # 1, a current of I=500 A flows in the direction
out of the plane of the paper, and in conductor # 2, a same value of the current
flows in the opposite direction. Its FE grid is shown in Figure(3.5). This bounded
problem can be solved using the 2DFE method summarized in the previous chapter.
The equipotentials obtained from the FE method with the grid of Figure(3.5) are
shown in Figure(3.6). One also needs to investigate the distribution of the magnetic
fields away from the conductors. Taking a region which has a remote open natural
boundary as shown in Figur(3-7), we can solve this bounded problem using the 2DFE
method and obtain the equipotentials shown in Figur(3.8). In the case of Figure(3.7),
some MVP values and flux density values at various locations are listed in Tables(3.1)
through (3.4).

15



3.3 Comparisons Between the Closed-Form Solu-
tion and 2D-FE Solution

In the two above sections, the analytical method and the 2DFE method were used
to solve the same problem. The “true” solution obtained from the analytical method
was compared with the solution obtained from the 2DFE method. If the solution
obtained from the 2DFE method is not within reasonable bounds in comparison to
the true closed form analytical one, means of improvement in the 2DFE method, and
solution algorithm need to be arrived at.

Comparison between Figure(3.2) and Figure(3.6) leads one to conclude that the
equipotential lines obtained from the 2DFE method are obviously different from the
closed form solution. And comparing between Figure(3.3) and Figure(3.8), one finds
that in the area near to the conductors, the equipotential lines obtained from the
analytical method and 2DFE method are not much different, but in the area close to
the boundary, the lines are heavily distorted. The value comparisons for the MVP’s
and flux densities are given in Tables(3.1) through (3.4). From these tables, it is seen
that the near-fields (close to the conductors) obtained from the 2DFE method have
higher accuracy and the far-fields (close to the boundary) obtained from the 2DFE
method have lower accuracy. In the other words, the more remote the boundary, the
less difference the near-fields have from the analytical solutions.

The facts from the above comparisons leads one to conclude that the farther
away the boundary in a problem the more improvement are obtained in the near-
field solution. In the enginerring problems, it is not possible and not necessary to
include an infinite boundary. Accordingly, it is better to have a recursion algorithm
to extend the boundary to as far away as possible, and to stop the recursion once no
further additional improvement can be achieved. That is the essence of the ballooning

technique which will be discussed in the next chapter.

16
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Location MVP (lines/inch) MVP(Wb/m) Difference
r (inch) | 6 (deg.) | Analy. | 2DFE Apaly. | 2DFE % |
~ 0.0 145.4 142.7 [0.5726 x 10~% ] 0.5619 x 10~* 19 |
100 | 142.7 7401 | 0.5620 x 10-* | 0.5514 x 10~* 1.9
200 | 134.9 132.4 | 0.5309 x 10-¥ | 0.5211 x 10~* 1.9
300 | 1225 | 1202 |0.4522 x10-7| 0.4734 x 10~* 1.8
3.5856 | 40.0 | 106.5 1046 | 04192 x 10-7| 0.4119 x 10-¢ 1.7
50.0 | 87.79 86.35 |0.3456 x 10-% | 0.3400 x 10~* 1.6
60.0 | 67.22 6620 | 0.2646 x 10~ | 0.2606 x 10-¢ 1.5
70.0 | 45.41 4478 101788 x10-%] 0.1763 x 10~* 14
80.0 | 22.88 52.58 | 0.9006 x 105 | 0.8889 x 10> 1.3
90.0 0.0 | -0.006140 0.0 —0.2417 x 10”7 ]
00 18267 | 8411 ]0.3255 x 10-¢] 0.3312 x 107* 18 |
100 | 81.32 §2.75 10.3202 x 107 | 0.3258 x 10-* 1.8
20.0 | 71.35 78.72 1 0.3045 x 10-% | 0.3099 x 10-* 1.8
300 | 70.95 72.22 | 0.2793 x 10-% | 0.2843 x 10~* 1.8
6.1959 | 40.0 | 62.40 63.52 | 0.2457 x 10-7 | 0.2501 x 10~* 1.8
50.0 | 52.05 53.01 | 02049 x 10-%| 0.2087 x 10-* 1.8
60.0 40.26 41.02 0.1585 x 10-% | 0.1615 x 10~* 1.9
70.0 27.42 27.94 0.1080 x 10~ | 0.1100 x 10~¢ 1.9
80.0 | 13.88 14.15 | 0.5465 x 10-° | 0.5571 x 10~° 1.9
90.0 0.0 | -0.001766 0.0 —.6952 x 10°T° ]
0.0 27.47 39.65 | 0.1080 x 10-*| 0.1561 x 10~* 44.36 |
100 | 27.05 39.05 101065 x10-7| 0.1537 x 10~* 44.37
20.0 | 25.80 37.25 |0.1016 x 10-¥ | 0.1467 x 10~* 44.37
30.0 | 23.77 34.32 | 09357 x 10-5 | 0.1351 x 10~* 44.39
18.501 400 | 21.01 3034 |08271 x10-°| 0.1194 x 101 44.42
50.0 | 17.62 2544 | 0.6935 x 10-° | 0.1002 x 10~* 44.43
60.0 | 13.69 19.78 | 0.5391 x 10~ | 0.7788 x 10~ 44.45
70.0 | 9.363 13.53 | 0.3686 x 105 | 0.5325 x 10~ 44.47
50.0 | 4.752 6.865 |0.1871 x10-%| 0.2703 x 10°° 44.47
90.0 0.0 |0.00043S6 | 0.0 0.1727 x 10~°

Table 3.1: Comparison Between MVP’s Obtained from Analytical and 2DFE Methods

at Locations Away From the Conductors
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Location Flux Density(Lines/in?) Flux Density(Wb/m*) Diflerence
r (inch) [ 6 (deg.) | Analy. | 2DFE Analy. | 2DFE %
5.0 34.84 33.03 0.5400 x 10-° [ 0.5119 x 103 52 |
15.0 | 34.54 33.16 0.5354 x 10~ | 0.5140 x 10-3 4.0
250 | 34.00 32.51 0.5270 x 10-° | 0.5039 x 103 2.4
350 | 33.31 32.70 0.5163 x 10-3 | 0.5069 x 10-3 1.8
3.9442 [ 450 | 32.57 31.80 0.5048 x 10-3 | 0.4929 x 10~3 2.4
550 | 31.88 31.47 0.4941 x 10~ | 0.4877 x 10-3 1.3
65.0 | 31.31 31.21 0.4852 x 10~2 | 0.4837 x 10-3 0.32
75.0 | 30.90 31.25 0.4790 x 10-3 | 0.4843 x 10-3 .
§5.0 | 30.69 31.01 0.4757 x 10~3 | 0.4807 x 103 1.0
950 | 30.69 31.01 0.4757 x 103 | 0.4807 x 10-3 1.0 |
5.0 11.17 10.14 0.1731 x 10-3 [ 0.1571 x 10-3 9.2 |
150 | 11.14 10.28 0.1726 x 10-3 | 0.1594 x 10-° 7.7
250 | 11.08 10.31 0.1718 x 10-3 [ 0.1599 x 103 6.9
350 | 11.01 10.65 0.1706 x 10~ | 0.1708 x 1073 33
6.8155 | 45.0 | 10.93 10.69 0.1694 x 10~ | 0.1656 x 10~ 2.2
550 | 10.85 11.02 0.1651 x 103 | 0.1708 x 10-3 1.6
650 | 10.78 11.05 | 0.1671 x 10-3 ] 0.1713 x 10-° 2.5
75.0 | 10.73 11.25 0.1663 x 10-5 | 0.1743 x 10-3 18
850 | 10.70 11.26 0.1659 x 10-3 | 0.1745 x 10-° 5.2
95.0 10.70 11.26 0.1659 x 10~ 1 0.1745 x 10-3 5.2
5.0 1.229 0.5075 0.1905 x 10-* | 0.7866 x 10-3 58.7
150 | 1.228 0.6868 0.1904 x 10~ | 0.1065 x 10-¥ | 44.09
250 | 1.228 0.9217 0.1903 x 10~V [ 0.1429 x 10~ | 24.93
350 | 1.227 1.178 0.1902 x 10~% [ 0.1826 x 10-7 4.0
20.351 [ 450 ] 1.226 1.407 0.1900 x 10-* ] 0.2181 x 10~* 14.8
55.0 | 1.225 1.597 0.1S98 x 10~ | 0.2476 x 10~% 30.4
65.0 | 1.224 1.752 0.1897 x 107 | 0.2715 x 10-* 431
75.0 | 1.223 1.860 0.1896 x 10-% | 0.2883 x 10—% 52.1
§5.0 | 1.223 1.912 0.1895 x 10-¥ | 0.2964 x 10~ | 564
950 | 1.223 1.912 0.1895 x 10~7 | 0.2964 x 103 56.4

Table 3.2: Comparison Between Flux Densities Obtained from Analytical and 2DFE

Methods at Locations Away From the Conductors
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Lotation MVP(lines/inch) MVP(Wb/m) Difference
r (inch) | 6 (deg.) | Analy. | 2DFE Analy. | 2DFE % |
0.6480 8.5 377.40 | 361.83 | 0.1486 x 107> { 0.1425 x 10-3 4.1
0.5469 36.9 207.45 | 199.57 | 0.8167 x 10~* | 0.7857 x 10~* 3.8
0.6035 68.7 84.38 80.23 | 0.3322 x 10-% [ 0.3159 x 10~* 4.9
1.7828 20.5 | 278.48 | 269.36 | 0.1096 x 10~> | 0.1060 x 10-° 3.3
1.6968 41.5 199.21 | 193.59 | 0.7843 x 10-* | 0.7622 x 10-* 2.8
1.5643 63.6 10851 | 105.79 | 0.4272 x 10~* ] 0.4165 x 10~* 2.5

Table 3.3: Comparison Between MVP’s Obtained from Analytical and 2DFE Methods

at Locations Close to the Conductors
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Location Flux Density(Lines/in?) Flux Density(Wb/m?) Difference
r (inch) | 6 (deg.) | Analy. 2DFE Analy. | 2DFE % |
0.59627 6.1 772.80 703.37 0.1198 x 10-' [ 0.1090 x 10~ 9.0
0.51336 17.0 638.60 591.04 0.0898 x 10~2 | 0.9161 x 107 74
0.47085 36.0 531.01 485.37 0.8231 x 10-2 | 0.7523 x 10~* 8.6
1.61570 20.3 258.82 235.96 0.4012 x 102 { 0.3657 x 10~* 8.8
1.46200 | 38.4 | 236.76 236.63 0.3670 x 10~ | 0.3668 x 10~* 0.05

Table 3.4: Comparison Between Flux Densities Obtained from Analytical and 2DFE

Methods at Locations Close to the Co;lductors
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Chapter 4

THE BALLOONING MODEL IN
THE 2D MAGNETOSTATIC
CASE

Ballooning techniques to simulate infinite boundaries in 2D magnetostatic field so-
lutions using finite elements were developed by earlier investigators in various appli-
cations [11]. As seen in chapter 3, it was demonstrated that open boundary 2DFE
solution of the field surrounding the two-wire parallel-pair transmisssion line in open
space was inadequate. Hence, in this chapter ballooning techniques for 2DFE codes
of the type used by this investigator will be detailed here. That is, in this chapter, a
recursion algorithm will be derived using ballooning techniques [2, 3], and then this
algorithm will be incorporated into the 2DFE method which was sumimarized earlier
in chapter 2. This 2DFE ballooning model will be applied to an example and its
results will be examined by comparison to the analytical solutions. With the 2DFE
ballooning model, the study for the effects of the magnetic-type shielding and the ef-
fects of defects in such shielding surrounding parallel-pair transmission lines is carried

out.
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4.1 Ballooning Technique in the Magnetostatic

Case

Consider the two round-wire parallel-pair transmission line shown earlier in Fig-
ure(3.4), a finite element grid of which is shown here in Figure(4.1). Using con-
ventional finite element techniques, the interior region in this FE grid which has a
boundary Iy, may be divided into triangular finite elements as shown in the figure.
Hence the node distribution on the surface I'p of the region R, Figure(4.1), is well de-
fined. The FE global matrix equation can be obtained using the conventional 2DFE

method for the region, R, and the boundary, I'g, as follows:

Srr  Srr, Ar | _ Ir (41)
Ao I '

SroR Sroro
where the subscript in denotes the interior region, the subscript I'g (or 0) denotes the

SinAin = [

nodes on boundary, I'g, and the subscript R denotes the nodes in the region R.
Assume that the region exterior to R contains only free space, hence the external

field is purely Laplacian. The first step in the representation of the exterior region is

to define a finite element mesh for an annular region surrounding the region R. This

annulus has certain properties which can best be summarized as follows:

(a) The number of nodes on the inner and outer boundaries are the same and lie on

lines radiating from a star point.

(b) The outer boundary nodes for each successive ballooning annulus have a one-to-

one correspondence with those nodes on the original solution region boundary, T'g.

This leads to useful geometric similarity properties to the FE triangles in the bal-

looning region.

(¢) There is a fixed ratio k between the radii of the outer and inner sets of nodes of

every annulus, measured from the star point.

Such an exterior annular region with boundary annuli Iy, T4, ... is shown in Fig-

ure(4.2). The exterior region should be matched with the interior region such as

shown in Figure(4.3).
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Hence, if the points on the inner boundary are denoted:
X0 = (20,ya) (4.2)
then the outer boundary nodes are given by
X1 = (2n,yn)V) = kX (4.3)

where k is the mapping ratio for the ballooning method at hand.

The FE matrix, S.,,, for this exterior annular region can now be constructed
and a process of matrix condensation is used to remove any equations corresponding
internal nodes occurring in the recursive ballooning step.

The FE matrix equation for nodes on 'y and I'; becomes:

Sl S A 0

1 407 1 12 0

S .rA o= = 4.4
! [ n Su } A } [ 0 ] (44

where the subscript ext denotes the nodes on the exterior region, the subscript of
MVPs, 0, denotes the inner nodes on the I'y and the subscript 1 denotes the nodes
on the I';.

The contributions of each element on this annulus to S.., are computed as follows:
[ 1 4 .
S5 = 4—A-(r,-rj + qig;) i,j=1,m,n (4.3)
where: A is the area of the triangular element, e, and

M=Zn =Ty Tm =T — Ty Tn =TI, — I}

Q=Ym —Yns Gm = Yn =Y, gn = Y = Ym
In the same way,a second annulus for the nodes on I'; and I'; can be constructed:

1412 Tlll Txlz A 0
o= = 46
ta [ T211 T'zlz Az 0 (40

Because this second annulus is geometrically similar to the first and has the same

mapping ratio discussed earlier, it follows that one can write:
X® =kx = X0 (4.7)

Applying the geometric similarity given in equation(4.7) yields a set of elemental

coefficients, S¢;, equation(4.5), which remains unchanged as one progresses {rom one

1)
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ballooning annulus to the next. That means the matrix T? in equation(4.6) is equal
to the matrix S.,, in equation(4.4). That is, S1_, is identical to I, or

T =8, (4.8)

The two annuli may now be combined to yield the following:

S%l 52}2 + Tlll T112 Al =10 (4.9)

where A; are nodal MVPs on the common boundary, I'y, between the two annuli.
The equations for Ap, A;, and A, may be partially solved to eleminate A, using the
fact that

A= —(53 + T1) 7 (S5 Ao + THhA2) (4.10)

Substituting Equation(4.10) into Equation(4.9) leads to the following:

2 402 - S = 51,(53, + )™ Sy =51,(S5 + TH)'TY, Ao
i | -TH(SL+TH)SL  ThH-Th(SL+TH)'Th | | 4
[0
= 4.11
_0] 1)
hence,

S _ [ St — 81(83: + 1)1 55 —=51,(5%, + T})7'T,
= L —T.},(ng + Tlll)_lsél T212 - Tzll(ng + Tllx)_lTxlz

[ @2 2
St Siz

= 4.12
s, sy, ] (412)

The matrix equation (4.11) has the form of equation(4.4) but relates the two combined
annuli, which now has a mapping ratio of k?.
From the (i-1)th recursive ballooning step, applying the method given in equa-

tion(4.12) recurrsively, one could obtain the following equation:

EinAo.i - [ il 5?2} ::0] = [g} (4.13)

1 1
21 522
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which relates the MVPs, Ap and A; on the boundaries 'y and I'; of the ballooned
solution region.

For the (i)th application, one can obtain:
Tl‘l T1.2 Ai — 0 (4.14)
Tn T Ain 0

which relates the MVPs of the nodes on boundaries I'; and I'i;;. One must recall

Il'Ai,i+l = I:

that the above mentioned geometric similarity property of the successive ballooning

layers allow one to write the following:
Ii = S:zt (41‘5)

Combining equation(4.13) and equation(4.14), and eliminating A,, one can write
the following main recursive relationship for the ballooning technique, which is used
here:

cirt _ | Shi=Sh(Sh+ TS =SSk + T T ]
et T i (ol i \=1Ci i i (Qf i V=1
“T5(S5+ 1) 'S To = Th(Sn+ 1) ™' T,
[ it gitl
_ 11 12 (4.16)

i+1 141
21 522

That is, one can write the following for the ballooned exterior region:

t+1 141
Sitt S ] AAo }= [g] (4.17)
1+1

s si
which relates the nodal MVPs on the I'; and Ty4;, and has a mapping ratio of k(+1),

s - |

A new annular region can now be attached to the present outer nodes and the
process can be repeated indefinitely. Hence a recursive system has been defined with

the outer boundary moving away with the following geometric progression:
30 L S R (4.18)

The system is rapidly convergent and the S;; terms in equation(4.17) (representing
the error in the exterior solution) quickly approaches zero. After m applications, one

can write:

| ”;ng'm = 11 12 AO — 0 (419)
n Sh Am 0
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Finally, the Sy, terms are attached to the outer nodes of the interior solution region,
i.e., the matrix equation(4.1) is combined with the matrix equation(4.19), yielding

the following global FE system of equations:

Srr Srr, 0 A I
SFoR Sroro + S{’; 1"5 AD = Io (4-20)
0 sm sonl | An 0

where Ag are nodal MVPs on the boundary, Iy, and A, are the nodal MVPs on the
boundary, Iy,. If Ty, is far enough, A = A|r,, = 0 and 571 — 0.

If A, =0, and S5 = 0, the previous equation(4.20) can be rewriten as follows:

Srr Sgr, A _ I (4.21)
Sror  Stero + ST Ao Iy

In the computer algorithm of the 2DFE ballooning method, m, the number of bal-
looning layers (or annuli, which from now on will be used interchangably throughout
this thesis), is chosen large enough to lead to negligible coefficients for the matrix,

7. Specific values for m will be discussed in the next section, accompanied by some
numerical results.

The process of the 2DFE ballooning method can be summarized as follows:
Step(1): Compute the global S, matrix of the interior region using the conventional
" 2DFE method summerized in chapter 2, that is, obtain the FE global matrix S;, and
the global forcing function [ shown in equation(4.1).

Step(2): Choose a proper m, the number of ballooning layers, and compute the con-
tribution of the exterior annular region I'p and T'; to obtain the FE matrix S} _,.
Step(3): i=1

Step(4): Let ' = S1...

Step(5): Use the main recursive equation(4.16) to combine the matrices S, with T"
and therefore, obtain the matrix Sit}.

Step(6): If 1 is less than m, i =i+ 1, go to step(4).

Step(7): Incorporate the matrix S} into the FE global matrix S;, as shown in equa-
tion(4.21).

Step(8): Solve the FE equation(4.21).

Step(9): End.
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4.2 Exploration of the 2DFE Ballooning Model
by Test Examples

Now this 2DFE ballooning model will be applied to an example of a two-wire parallel-
pair transmission line problem with an infinite boundary , which was shown earlier in
Figure(3.1), and its validity should be examined by the comparison of its results with
those of the analytical solution whose formulations were given in equations (3.13)
through (3.15).

The interior region is shown in Figure(4.4) where the current flowing in the right
conductor has a value of 500 amperes and a direction out of the plane of the paper, and
the same value of current flows through the left conductor in the opposite direction,
that is into the plane of the paper. Its FE mesh is shown in Figure(4.5), where the
mapping ratio is k=1.3 and the start piont is at P(zo,¥0) = (0,0).

The equipotentials of the theoretical “true” solution obtained from the analytical
method are shown in Figure(4.6). Figures(4.7) through (4.12) show the equipotentials
obtained from the 2DFE ballooning method with ballooning layers (annuli), m=0, 2,
5, 10, 15, and 20, respectively. The quantitive comparisons of the MVP’s and flux
densities at arbitrarily selected locations shown in Figure(4.13) were carried out. The
MVP comparisons between the analytical and 2DFE ballooning solutions in various
locations for the ballooning layers, m=0, 2, 5, 10, 15 and 20 are listed in Tables(4.1)
and (4.2). Also, the flux density comparisons between the solutions obtained from
these two methods are also listed in Tables(4.3) through (4.5)

Comparing Figure(4.6), which shows the analytical solution, with Figures(4.7)
through (4.12), one can easily find that while the number of ballooning layers, m, is
lower (m=0, 2, and 5, which show various FE ballooning solutions, see Figures(4.7)
through (4.9), respectively), the equipotentials obtained from the 2DFE ballooning
solutions are obviously distorted, meanwhile when m is increased (m=10, 15, and
20, see Figures(4.10) through (4.12), respectively), the equipotentials of the 2DFE
ballooning solutions are closer and closer to those obtained from the “true” solution.
Again, from Tables(4.1) and (4.2), one can find that the errors of the MVPs were

reduced while the number of ballooning layers was going up, for example, the errors
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of the MVPs are in the range of (20 ~ 70)% with m=0, and in the range of (10 ~ 40)%
with m=5. For m > 10, the errors are below 10 %. In Tables(4.3) through (4.5), the
errors of flux densities bear a similar relationship to the number of ballooning layers,
m, to that relationship in the case of the MVP data explained above. Tables(4.1)
through (4.5) show one that while the number of ballooning layers, m, is big enough
(here, m > 10),the errors of both MVPs and flux densities are smaller and smaller
up to a number of ballooning layers, at which such errors are not further improved
by further addition of more ballooning layers. Such lack of continued improvement is
due to the inherent numerical errors associated with the FE discretization within the
FE grid of the internal region. That is, further improvements can only be obtained by
finer FE mesh discretizations in the interior region. Therefore, one can say that this

2DFE ballooning model is useful for magnetostatic problems with infinite boundaries.

4.3 The Effects of the shielding and the Effects
of Defects

This 2DFE ballooning model can be used to investigate the effects of the material-type
magnetic shielding on the electromagnetic field distributions in a two-wire parallel-
pair transmission line case.

Let the cylindrical shell shown in Figure(4.4) surrounding the two-wire parallel-
pair transmission line be made of material with relative permeability x4, > 1.0. Finite
element magnetic field analysis was applied using the ballooning technique to simulate
the infinite free space surrounding the conductors (infinite boundary), with assumed
cylindrical shell relative permeabilities of x,=10, 100, 1000, and 5000. This was done
to study the effects of shielding on the magnetic field outside the shield. The equipo-
tentials are shown in Figures(4.14) through (4.17), for y4,=10, 100, 1000, and 5000,
respectively. These should be compared with the no shielding case in Figure(4.12)
for a qualitative appreciation of the effects of the shield’s relative permeability, ., on
the field distribution. A quantitive comparison of magnetic flux densities at arbitrar-

ily selected locations outside the shield, shown in Figure(4.18), is given in Table(4.6).
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Notice the substantial effect of the shield when u, > 100, the flux densities outside the
shielding are very small because of the magnetic shielding with higher permeabilities.

Also this 2DFE ballooning model can be used to study field distributions resulting
from discontinuities in shielding surfaces due to accidental damage or to deliberate
hardware design necessities, such as openings for electrical leads. Examples given here
assume three possible cylindrical shielding shell discontinuities around the two-wire
parallel-pair transmission line under consideration. These defects and their corre-
sponding flux plots for defect angles, § = 10°, 20°, and 30°, are shown in Figures(4.19)
through (4.24), respectively. The effects of the shielding defects were monitored at
the arbitrarily chosen locations given in Figure(4.25). The magnetic flux densities are
given in Table(4.7). The numerical results show how defects can adversely affect the
intended benifits of such shields, which is manifested here in a substantial increase in
the flux densities in element # 1305.

Next the combined FE-ballooning technique is developed and applied to the case
of shielding involving diffusion type reduced eddy currents in metalic shields for AC

type transmission line currents.
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Chapter 5

THE BALLOONING MODEL IN
THE 2D DIFFUSION
QUASI-STATIC CASE

The 2DFE ballooning model derived in the previous chapter can be used to solve the
magnetic field problems with open boundaries only in the static case. For the space
station applications of interest here, many field problems with infinite boundaries
should be dealt with in the quasi static case, so that an AC 2DFE ballooning model
is needed for the AC eddy current problems with open boundaries. In this chapter, the
previous ballooning 2DFE model will be developed further in the frequency domain for
use with the quasi static cases at hand. The new model will be applied to the study of
electromagnetic field distributions surrounding a two-wire parallel-pair transmission
line with conductive shielding in the (Hz to kHz) frequency range. The effects of

shielding thickness and the effects of defects are also investigated.

5.1 The 2DFE Ballooning Model in the Quasi
Static Case

5.1.1 The 2DFE Model in the Quasi Static Case
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From chapter 2, one should use Equation(2.14) as the governing differential equa-
tion in the 2D quasi static case in the frequency domain. Phasor vectors and phasor
matrices should be used. The corresponding MVP boundary value problem can be

formulated as follows [11]:

924  9%A s s .

u(-5x—2- + a—;) = ~J,+ jwoA (thegoverning p.d.e.)

A= (Dirichlet condition on boundary C,) (5.1)
. g—/: = (Neumann condition on boundary C)

The energy functional for the above problem is given by the following [11]:

F(A) = //R[1 -:; %)2 ;(g’j) }-J, A+ §JwaA2]dmdy (5.2)
Minimizing the functional in equation(5.2) is equivalent to solving the partial differ-
ential equation (p.d.e.) with Dirichlet and/or Neumann boundary conditions, equa-
tion(5.1). Using the FE method summarized in chapter 2, equation(5.2) can be dis-
cretized and minimized. Consequently, a complex matrix equation can be obtained

for every triangular element as follows [11]:

SAA=T+0)A =T (5.3)
where:

) Vi Vi Vi

Vo= e V. Vi (5.4)
Vi Viem  Visa

(e v ..

Vi = gx(nirs + gig;) i,j=1,m,n (5.5)
Wi Wi W NERR

W= | Wey Wepn Wi, | =dwop |1 21 (5.6)

q W We, 11 2

Floan !

I'=|I.|= 3’ 1 i=I,mn (5.7)
I 1
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TN=Zpn—=Tmy §=Yn—Yn
Tm = Tl =Zny, qm =Yn— Y (5.8)

Th=Tm — T, =Y —Ym

and,
. 1 1 1
A= 2| T FTm T (5.9)
Y Ym Yn

Assembling the element matrices S° and forcing function vectors I given in Equa-

tion(5.3) for all elements, one can obtain an FE complex global matrix equation as

follows:

§A=1 (5.10)
where:

5=§5°=§<z°+mf> (5.11)

where symbol ne denotes the total number of elements.

5.1.2 The Ballooning Technique in the Quasi Static Case

In [4], Brauer presented a ballooning model to compute eddy current problems
with open boundaries. In that model, eddy currents and all sources should be included
in the interior region, hence the exterior region must be free space. In this thesis, a
new AC 2DFE ballooning model will be derived for the diffusion type case in which
the eddy currents can exist everywhere. In this new model, the total region is also
divided into two subregions: the interior region which includes eddy currents and
all sources ,and the exterior region which includes eddy currents only. The exterior
region still consists of many annuli which have the same properties as in the previous
chapter such as the start point, the fixed mapping ratio, and the same number of
nodes on every boundary and the geometry similarity property to the FE triangular
elements in the ballooning region of the magnetostatic case of chapter 4.

This 2DFE ballooning model for the quasi static case is very similar to that for

the static case discussed in the previous chapter. However, the difference between
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these two models should be highlighted as given next. In the ballooning model for
the static case, every annular matrix is the same, that is, T = S!_,, which leads to
the simple recursive algorithm discussed earlier. In the quasi static case, the element
matrices have imaginary components which are proportional to the element area,
A. Therefore, one should compute the annular matrix f for every annular region

bounded by T'; and T';;;. This annular FE contribution can be written as follows:

iiAl'.H'l =0 (512)
where:
I' =S (& + 1% (5.13)
e=x=]

where the symbol na denotes the number of elements in the annular region. The real
components of the matrix I are unchanged from one annular region to the next.

Hence, one can obtain the following:
Ve =y ?t=...20 (5.14)

However, the imaginary components of the matrix T' are not constant, that is:

A 211 A2 211

e i . 1k

W = jwo |1 2 1| = jwe—py 1 21 (5.15)
112 112

where, k is the mapping ratio between any two adjacent annuli.

Now, the FE matrix, S.., for the exterior region can be constructed and any
internal nodal MVPs can be removed by a similar process of matrix condensation as
shown in the last chapter. Combining the AC ballooning model and the AC 2DFE
model,one can obtain the process of this AC 2DFE ballooning model as follows:
Step(1): Using Equations(5.3) through (5.6) and (5.11), compute the complex FE
global matrix S;, and the forcing function [ in the interior region R, Figure(4.5).
Step(2): Choose a proper m, the number of ballooning layers, and using equa-
tions(5.12) through (5.15), compute the matrix S:m which is the contribution of
the exterior annular region Iy and T',.

Step(3): i=1.
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Step(4): Using Equations(5.12) through (5.15), compute the matrix l-:i which is the
contribution of the exterior annular region I'; and T'i4;. '
Step(5) Using the relationship between the matrices S, and I' shown in equa-

tion(4.16), obtain the matrix S_;::, where:
Si+l  Fitl
&itl 0 o2
‘Serf - [ Gitl i+l :| (5'16)
21 22

Step(6): Repeat step(4) and step(5) until ¢ > m.
Step(7): Incorporate the ballooning matrix SJ% into the FE global equation (5.3),
that is:

SRR SRTo o (5.17)
Sror  Srere + ST Ar, Ir,

Step(8): Solve for the complex MVPs from the equation(5.17).
Step(9): End.

5.2 The 2DFE Solution Using Ballooning Tech-

niques with Conductive Shielding

The AC 2DFE ballooning model for the eddy current case has been obtained in
the last section. Now it can be applied to a two-wire parallel-pair transmission line
problem with a conductive shield and an infinite boundary. The geometry of the
interior region was shown in Figure(5.1), where a current which varies sinusoidally
with a peak value 1=500 A flows through the right conductor and in the direction
out of the plane of the paper, and the same value of current flows through the left
conductor in the opposite direction, that is, into the plane of the paper. Eddy currents
exist in the copper shielding and elsewhere is free space. For the ballooning model,
here the start point is chosen at (zg,y0) = (0,0), and k = 1.3 is chosen as the mapping
ratio. The FE grid of the interior region is the same as shown in Figure(4.5).

The computations were carried out using the AC 2DI'E ballooning model derived

in the previous section for the eddy current case in various chosen frequencies (f=0
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Hz, 400 Hz, 2 kHz, and 20 kHz). Figures(5.2) through (5.6) show the equipotentials
in the case of frequency f=0 Hz, that is the magnetostatic case, and with ballooning
layers, m=0, 2, 5, 10, and 20, respectively. Figures(5.7) through (5.11) show those
case with m=0, 2, 5, 10, and 20, when f=400 Hz, respectively. Figures(5.12) through
(5.16) show those in the case of f=2 kHz and with ballooning layers, m=0, 2, 5,
10, and 20, respectively. Figures(5.17) through (5.21) show those in the case of
f=20 kHz and with the ballooning layers, m=0, 2, 5, 10, and 20, respectively. The
magnitudes of flux densities at some selected locations shown in Figure(5.22) are
plotted in Figures(5.23) through (5.25) for various conductive shielding thicknesses.
Comparing Figures(5.2) through (5.21), one can arrive at some conclusions as
follows:
(1) In a certain frequency (here, in any one of the frequencies, f=0 Hz, 400 Hz, 2
kHz, and 20 kHz), while the number of ballooning layers, m, is larger and larger, the
variation in the contours of the equipotentials is smaller and smaller, which means
that when m is large enough, the equipotentials may almost converge to those of the
“true” solution.
(2) In lower frequency cases, such as f=0 Hz, and f=400 Hz, whenever m is greater
than 10, the equipotentials are almost unchangeable. In higher frequency cases, less
ballooning layers are sufficient to obtain more accuracy of the equipotential contours.
For example, in the case of f=2 kHz, it was found that a number of ballooning layers,
m=D>5, is quite sufficient. It is interesting to point out that in the case of f=20 kHz, no
ballooning layers are needed. These results reveal that the higher the frequency, the
strong the weakening effects of eddy currents in the shielding on fields outside that
shielding. That is, at higher frequencies the fields outside the shielding are effectively
diminished.
(3) In Figures(5.23) through (5.25), three shielding thicknesses are used. Those figures
show the effects of varying the conductive shielding thickness, from which one can
find that the thicker the conductive shielding the more effective it is reducing the
outer fields. That is, the weaker the fields outside the shielding.



5.3 The 2DFE Solution Using Ballooning Tech-
niques with Defects of the Conductive Shield-

ing

In this section, the AC 2DFE ballooning model is used to study the field distribu-
tions resulting from various defects in the conductive shielding. For shielding defect
angles, § = 10°, 20°, and 30°, the corresponding FE solution regions are shown in
Figures(4.19), (4.21), and (4.23), respectively. In the case of a frequency, f=400
Hz, the shielding thickness, A, = 0.025 in, the number of ballooning layers, m=10,
and an AC current with a peak value, I=500 A is assumed to pass through the two
conductors in the directions shown in the figures. The corresponding equipotential
plots for angular defects, § = 10°, 20°, and 30°, are shown in Figures(5.26) through
(5.28), respectively. The effects of the defects were monitored at the arbitrarily cho-
sen locations given in Figure(5.29). In the case of a frequency, f=400 Hz, an angular
defect, § = 20°, and a shield thickness, A, = 0.025 in, the magnitudes of magnetic
flux densities at the locations shown in Figure(5.29) are given in Figure(5.30).

In the case of a frequency, f=400 Hz, comparing Figures(5.26) through (5.28)
which show the equipotentials for defect angles, § = 10°, 20°, and 30°, respectively,
with Figure(5.11) which shows those with no defects in the shielding, leads one to
conclude that the larger the defect angle, é, the greater and greater the magnetic flux
densities leaking in the neighbourhood of the defect area. Comparing Figure(5.30)
which shows the eflects of defects in the case of an angular defect, § = 20°, and a
shielding thickness, A, = 0.025:n, with Figures(5.23) through (5.25), which show the
effects of the shielding thickness without deffects, one can see the slight degradation
of the effectiveness of the magnetic field shielding near the defect region.

The AC 2DFE ballooning model can be used to solve parallel-pair transmission
line prblems with infinite boundaries. However, in space station applications, there
are potential situations which might involve twisted-pair type transmission lines, as
well as other configurations not available yet, for which the above model is not suit-

able. One of the simplest methods to solve the simplest twisted-pair transmission line
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problem is the closed-form analytical method using the Biot — Savart Law in con-

junction with 3D integral type method. These will be discussed in the next chapter.
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Figure 5.9: The Parallel-Pair MVP Equipotentials Obtained From FE Solutions With

400H z With Conductive Shielding
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Figure 5.11: The Parallel-Pair MVP Equipotentials Obtained From FE Solutions :

400H z With Conductive Shielding
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Figure 5.23: Flux Density Magnitudes With Ballooning (m=10) and no Defects With

a Conductive Shield Thickness,A,=0.1 in, for f=0 Hz, 400 Hz, 2 kHz,
20 kHz and 100 kHz, for a Current =500 A
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Chapter 6

CLOSED FORM SOLUTION OF
THE TWISTED-PAIR |
TRANSMISSION LINE

In chapter 4 and chapter 5, the 2DFE ballooning models have been developed in
the DC case and AC case and applied to the two-wire parallel-pair transmission line
problems with infinite boundaries which might become one of the common problems
in the space station power transmission line applications. Another potential problem
is that of the magnetic field surrounding twisted-pair transmission lines, again with
infinite boundaries. This will be shown here not to be amenable to solution by the
2DFE ballooning models. Therefore, some new methods are needed for those twisted-
pair problems. In this thesis, only the simplest twisted-pair case is considered so that
closed-form formulations can be derived by the Biot — Savart Law coupled with
integral methods. From the results of these closed-form solutions, some useful insight
into the nature of the magnetic field surrounding such transmission lines will be

obtained.

6.1 The Derivation of the Formulation

6.1.1 Biot — Savart Law



The maghetostatic field may be described by the magnetic vector potential (MVP)

A, which, in a homogeneous uniform linear medium, is governed by [11]:
V*A = —uJ (6.1)

Equation(6.1) is called the MVP’s Poisson equation and may be solved by the well

known integral formulation as follows:

A= Jdv (6.2)
47r r
where, the symbol  denotes the distance from the field (or observation) point to the

source point. The relationship between the MVP and the flux density is given by
VxA=B (6.3)

Premultiplying both side of equation(6.2) by the operator Vx, and using the defini-

tion in equation(6.3), one could obtain an expression for the flux density as follows:

B——/V J@) (6.4)
Consider the following useful vector identity:

pré=1Vx7_7xv@) (6.5)
where, J is only a function of the position of the source point, which leads to VxJ = 0,
and V( ) = —3. Equation(6.4) can therefore be rewritten as follows:

B—Z;/J:r@ (6.6)

that is known as the Biot — Savart Law.
If the cross section of the conductor is very small, the following relationship could
be obtained:

Jdv = Jdsdl = Idl (6.7)
Using equation(6.7), one can rewrite equation(6.2) and equation(6.6) respectively, as
follows:

=_ dl

A= ol (6.8)
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and

]

i dl x (6.9)
r
6.1.2 Analytical solutions for a two-wire twisted-pair transmission line by the

Biot — Savart Law

Now, consider a two-wire twisted-pair transmission line which consists of many

B=

.c-l'x:
3|y

pitches in free space shown in Figure(6.1). The details of the geometry in one pitch
are shown in Figure(6.2), where a pair of DC currents (I=500 A) flow through the
pair of spiralling conductors, that is, one is spinning along the positive z axis and the
other along the negative z axis.

Now, consider the MVP formulation. Using the integral MVP method, equa-
tion(6.8), one can compute the MVP at any arbitary point, P(z,y,z), shown in
Figure(6.2), as follows:

X(x,y,z)=ﬁﬁfaﬁlﬁ—”ﬁ/’ﬂ3—”d~§1 (o _ g (6.10)

47 Ty 47 T dr =5 Jso M ()

where: the symbol NP denotes the number of pitches, the subscript, s, denotes the
line source, 7; denotes the space vector from the source point on conductor #1 to
the field (observation) point, ¥; denotes the space vector from the source point on
conductor #2 to the field (observation) point.

From the geometry shown in Figure(6.2), some useful relationships can be written

as follows:

4

T1 = rgcos b,

y; = rosinf,

< h (6.11)

2 = 2—ﬂ_01

6,:(—xNP,=NP)

Zy = rgcosfl; = —rgcos by
Y2 = rosinf; = —rgsiné, ( )
\ h h 6.12
2y = —2—7;(02 -7)= 5;01
\ 02 = 91 + 7
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h
ri=[(z —rocos))? + (y — rosiny)® + (z — -2-;91)2]% (6.13)

h
ra = [(z + rocos 6;)* + (y + rosin 6, + (z — -2-;61)2]% (6.14)
= : . ., b
dly = —rgsin 0,d6,d; + rocos 8,d0,d, + E;dglaz (6.15)
= : 3 A
dlz = TroSIN 01d61ar — Tp COS 01(191(1!, + E;dolaz (616)

Substituting equations(6.11) through (6.16) into equation(6.10), one may obtain
the MVP as follows:

[ To sin oldgl To sin gldgl b
- - ~
7 NP[2-1 gn(41) | ToCOS 911 df, rocos §1d01
— o +
a=te [ r m (6.17)
T i=INpj27%™ ) h
—d0] —d01
27 _ 2z
™ T2

Now, consider the flux density formulation. Using the Biot — Savart Law, equa-
tion(6.9), one can compute the flux density at any arbitary point, P(z,y, z), shown

in Figure(6.2), as follows:

5 o kol /’ dly x 7 pol /’ dl, x 79
T dr Jo r? 47 Jo 13
_ E_(ﬁ NP/2-1 /I!-H (ﬁ] X Fcl) Cﬁg X fg)
dr _Fpp i r? 3
[10] NF/2-1 ligs dTl X Ty dig X T
=k 3 /: e ) (6.18)
i=-NP/27k 1 2

where 70 and 73 are the unit space vectors from the source points, P, and P,, on

conductor #1 and conductor #2 to the field (observation) point, P, which are given

as follows:
o _ 1 . . A h . i
7 = —[(z —rocos bh)d; + (y — rosinby)dy + (2 — ——0,)d;] = — (6.19)
T 2% 2
-0 _ 1 . . . h . T2
72 = —[(z + rocosby)d; + (y — rosinb1)dy + (z — =—=0,)d.} = — (6.20)
) 27!’ T2
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Using vector operation rules, one may obtain the following:

A a A

Az ay a,
dl, x7, =| —Tosinbidf; rocosbdb; —h—d01
2r L

T—rgcosb, y—rosinb; z—-2—91
T

h ) h
ro cos 6,d6,(z — 5;91) — (y — rosin 01)2—d01

h .
= (z — rocos 91)-2?d01 + rosin 6,d0,(z — -2701) (6.21)

—r1osin 6,d8;(y — rosin ;) — ro cos §;d6,(z — ro cos 6,)

and,
d"’ dﬂ dz
7 h
—dl, x ¥, = | —Tosin1d0; rocos 0,d6, —E;r-dol
: h
z+rocosty y+rosind z— -6

h ) h
o cos 6;d0(z — .2_71'01) + (y + rosin 91)5;‘”1

_ k . h
= ~(z + rocos 61)5=db) + rosin 1d0:(z — 520) (6.22)

| —Tosin 60,d0,(y + rosin ;) — ro cos ,d8, (z + ro cos b,)

Substituting equation(6.21) and equation(6.22) into equation(6.18), one can obtain

the formulation of the flux density as follows:

h . h
el M e | rocosf,(z — 5—91) — (y — rosin 0;1)-27
b= 4 i=§P/2 -/;wi E (z — 1o cos 91)'2—7; + rosin0,(z — 5'7;91)
—rgsin 8,(y — rosin6,) — ro cos 6,(z — rocos 4;)
h , h
rocosby(z — —6;) + (y + rosin ;) —
1 27"h h27r
+',§ ~(x + rocos 01)5; + rosinf,(z — 5;9,) b, (6.23)

—rosin 6y (y + rosin ) — ro cos 8y (x + ro cos b,)
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6.2 The Computation of Flux Densities

The closed-form analytical formulations of the magnetic field surrounding the two-
wire twisted-pair transmission line, which is depicted schematically in Figure(6.2),
was derived in the previous section. Those formulations can be programed with the
numerical integral method (see Appendix B) for use on computers. The magnetic flux
density, B, specifically the B, and B, components, can be computed at any cross-
section and at any angle, 8, shown in Figure(6.2). Here, in this thesis, this calculation
was performed at locations along the three concentric circles shown by the dotted lines
in Figure(6.3). The resulting B field at various points along the three dotted circles
is shown by the B vector arrow displays, whose direction indicates the orientation of
the B field in the z — y plane or the z direction, and whose length is proportional to
the magnitude of the resultant B field along the z — y plane or along the z axis.

These B field results are shown in Figure(6.4) for the parallel-wire case discussed
in chapter 4, and in Figure(6.5) and (6.6) for the twisted-pair case for a pitch, h = 5",
and a plane with 8 = 0°. There are no z-component B fields resulting from the parallel-
pair case as shown in Figure(6.4), while there are z-component B fields resulting from
the twisted-pair case as shown in Figure(6.6). These B field calculations were repeated
for a plane with § = 90°, and the results are shown in Figures(6.7) and (6.8).

The effects of the choice of the pitch, h, shown in Figure(6.2), on the flux den-
sity components, B;, B,, B, and resultant magnitudes, ||B||, are documented in
Figures(6.9) through (6.12) at the mid-plane point for a transmission line of length
20000 inches. For all these cases, in Figure(6.2), ro is equal to 1.0 inch, and the DC
current flowing in each conductor is equal to 500 A.

Figures(6.5) through (6.8) demonstrate the 3D nature of the B field surrounding
a two-wire twisted-pair transmission line. Figures(6.9) through (6.12) show that
shorter lengths of the twist pitch make the B fields outside the transmission line
decay more quickly in the radially outward direction. That is, at locations far away
from the transmission line, the z-component of the fields, B,, is of the same order of
magnitudes of the r, and y components, B,, and B,. Accordingly, the z-component,

B,, could not be neglected in comparison to the B, and B,. That is, the twisted-pair
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problem should be dealt with using 3D magnetic field computation methods.
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Chapter 7

CONCLUSIONS AND FUTURE
WORK

7.1 Conclusions

In this thesis, the ballooning methods incorporated into the 2DFE model have been
presented to solve the 2D electromagnetic problems with infinite boundaries in the
DC case and the quasi static (AC) case. The verification of this model was carried out
by comparison of the results with those of the analytical solution in the magnetostatic
case for a two-wire parallel-pair transmission line problem with no shielding and with
an infinite boundary. This is because there exists a closed-form solution for that type
of problem. Studies of the field distributions resulting from the magnetic shielding in
the DC case and the conductive shielding in the AC case were performed. and the
effects of possible defects in such shields were considered in both cases.

In the application to solve two-wire parallel-pair transmission line problems with
infinite boundaries, an interior region, R, including eddy currents and all sources,
with a circular boundary and an exterior annular region only representing free space
were chosen. Usually, in this 2DFE ballooning model, not only the free space but the
eddy current can be included in the exterior region, and because the field solution
is limited to the interior region, R, the consideration in choosing the contour I'g

is that all regions of interest should be included in the interior region, R. This
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2DFE ballooning model is applicable to complicated as well as simple shapes of the
boundary, I'g, which must satisfy the criterion that no radial line from the start point
P, intersects such a boundary more than once.

Recalling the procedure of the AC 2DFE ballooning method, after modeling the
interior region, R, by the FE method, it is necessary to form only one additional FE
matrix, for an annulus one element wide which shares interface nodes with R, and
then the FE matrix for the any other annulus is just the linear combination of the real
components and complex components of the first one. With this performance of the
annular matrices, the recursive computation to form the FE matrix for the exterior
region becomes quicker and simpler. Having developed the recursive algorithm and
obtained the FE matrix for the total exterior region, the only terms of interest in
the matrix are those associated with the interface nodes on Tg, so that the size of
the matrix which has to be solved to compute the field in the interior region, R, is
unaffected by the addition of the exterior region.

According to ballooning theory, the accuracy of the solution can be improved by
increasing the number of ballooning layers, m. Recalling the results shown in chapter
4 and chapter 5, one may find that the lower the number of ballooning layers, m, the
more improvement can be achieved by increasing m. However, if m is already large,
little improvement could be obtained by increasing its value. Actually, there are three
facts which would affect the accuracy of the solution: (1) the number of ballooning
layers, m; (2) the density of finite elements both in the interior region and the annuli;
(3) the order of the interpolation polynomials (shape functions) used in the finite
element formulation. Therefore, when the 2DFE ballooning model is applied to the
magnetic field problems with infinite boundaries,the number of ballooning layers, m,
should be chosen judiciously, and if further improvements of the results are required,
finer FE mesh discretizations such as smaller finite elements, or high order finite
elements will have to be adopted.

A closed-form solution for the magnetic fields surrounding a two-wire twisted-pair
transmission line in the static case was presented in the previous chapter. The results
show that the shorter the pitch of the twist,the weaker the magnetic fields surrounding

that twisted-pair transmission line. Comparing these results, one may find that three
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components of the flux densities are in the same order of magnitude, hence, for near
field effects none of them can be neglected. In other words, the twisted-pair problem

is a 3D problem.

7.2 Future Work

According to the conclusions in the previous section, the 3D nature of the field sur-
rounding a twisted-pair transmission line means that it will be necessary to use 3DFE
analysis or some equivalent method to evaluate the effects of magnetic material-type
shielding or eddy current-type electromagnetic field shielding in association with such
twisted pairs. It may be possible and necessary to develop 3D ballooning models for
twisted-pair problems or some other space station problems with infinite boundaries,
which is one of the possible future works stemming from this research.

In the space station applications, a future space station can be modeled as a long
wire structure (with a diameter of 1 m and a length of 100 m approximately). In
some cases, the space station orbits the earth at an altitude of 300 km with a velocity
of approximately 8 km/s. The motion of the space station through the geomagnetic
field results in an electromotive force v x B along its length. This electromotive force
(emf) causes a potential drop across the space station and a current existing between
the space station and the space plasma.

A 3DFE method and a 3D ballooning method may be adopted to compute the
electromagnetic field distribution for this problem. This may be accomplished as
follows:

(1) Choose a sphere as an interior region enclosing the space station.

(2) Use a conventional 3DFE method to build up the global matrix system on the
interior region where the v x B components are considered.

(3) Divide the exterior region outside the interior region into many layers which are
concentric with the interior region.

(4) Compute the FE matrix for each layer and use ballooning techniques to obtain
the contribution matrix for the exterior region.

(5) Incorporate the contribution matrix of the exterior region into the global system
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including the interior region to solve the problem.
It seems possible to obtain the local electromagnetic field distribution in detail
using such a 3DFE ballooning model. These fields can be used to calculate the

currents, as well as physical quantities and phenomena of interest.
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APPENDIX A
List of Symbols

Az,A,,A. The x, y and z components of the magnetic vector potential
A Magnetic vector potential

B.,B,,B, The x,y and z components of the flux density
B Magnetic flux density

D Electric flux density

E The electric field indensity

F(A) Energy functional

H.,H,,H, Thex,y and z components of the field intensity
B Magnetic field intensity

Iy Iy I The x, y and z components of the source current density
T, The source current density

J. The eddy current density

I Source current

v Material reluctivity

i Material permeability

o Conductivity of medium

p Charge density

€ Permitivity of medium

w Angular speed

S Global FE coefficient matrix

I Forcing function vector

A Vector of MVP components

MVP Magnetic vector potential

p.d.e. Partial differential equation
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AC Alternate current
DC Direct current
2DFE Two dimensional finite element

3DFE Three dimensional finite element
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APPENDIX B
Gaussian Quadrature Integral Method

There is a large family of numerical integration formulas that conform to the
followling pattern:

[ @)z = Auf(@) + Aaf (@) + ... + Anf(20)

In using such a formula, it is only necessary to know the “nodes” z;,z;,...,2,
and the “weights” Ay, A,,..., A,.

One major source of the previous fomula is in the theory of polynomial interpo-
lation. If the nodes have been fixed, then there is a corresponding Lagrange interpo-

lation fomulna:

p(z) = Z:f(:c.-)l.'(z)
where [;(z) = ﬁ ( ).

NS PAY FRu )
J=1j#i 7F J
This formula provides a polynomial p of degree < n — 1 that interpolate f at the

I — Iy

nodes; that is, p(z;) = f(z;) for 1 £ 1 < n. If the circumstances are favorable, p

b
will be a good approximation to f, and / f(z)dz will be a good approximation to

/abp(.r)da:. Therefore
/ab f(z)dz = /ab p(z)dr = 'z:;f(z,-) /ab li(z)dz = gAif(xi),

where we have put A; = /b li(z)dz. From the way in which the previous formula
has been derived, we know that it will give correct values for the integral of every
polynomial of degree < n — 1.

In the preceding discussion, the nodes have been arbitrary, although for practical
reasons they should belong to the interval in which the integration is to be carried
out. Gauss discovered that by a special placement of the nodes, the accuracy of the
numerical intgration process could be greatly increased. There exist tables in which

the numerical values of the nodes and weights are listed for the formula

[ 1@~ Z s
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Those nodes z;,z;,...,z, are called the Gaussian nodes with which the previous
formula will be exact for all polynomials of degree < 2n — 1.

Here the table for n = 10 is given.

x’(cn) Aﬁn)
+ 0.14887 43390 | 0.29552 42247
=+ 0.43389 53941 | 0.26926 67193
n=10 | + 0.67940 95683 | 0.21908 63625
+ 0.86506 33667 | 0.14945 13492
=+ 0.97390 65285 | 0.06667 13443

Usually, the integral interval of function f(z) is on [a,b]. In order to use the
Gaussian quadrature formula, one should transfer interval [a,b] to interval [-1,1] using
a linear transformation, for example, for the twisted-pair case in section 6.1, the

following linear transformation can be carried out:

2n(i41) 1
/2 0y = /_ F(rt+ (26 + 1))t
where,

0=mt+ (2t 4+ 1)7

if @ =27, thent = -1
if0=2r(i+1),thent=1

df = =dt.

Now, one can use the Gaussian quadrature formula as follows:
2m(i+1) n

/2 U F(0)d0 = 1> AP flral + (2 + 1))
m k_

=1
For further details reference [12] should be consulted.
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Abstract

A method is developed for modeling and analyzing electric fields from radi-
ating sources on a structure in the ionosphere. The ionosphere is approximated
as a zero-order plasma (zero magnetic field) with all sources radiating below the
characteristic plasma frequency, where electromagnetic waves are evanescent. The
moment-method numerical technique is modified to incorporate a zero-order plasma
and is shown to compare very well with analytical solutions for a dipole. Simula-
tions are performed on a wire structure with a radiating source in unbounded free
space and a zero-order plasma environment for comparison purposes. The con-
clusion is that the ionosphere serves to attenuate electromagnetic waves and thus

reduces potential electromagnetic interference problems.
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Chapter 1

Introduction

The goal of this research work is to analyze the potential effects of electromag-
netic interference (EMI) originating from power system processing and transmission
components for NASA Space Station Freedom. Particular emphasis is given to EMI
sources radiating in a plasma environment, i.e., the ionosphere. The approach con-

sists of three sequential steps:

1. Determine the characteristics of the ionospheric plasma and formulate a work-
ing model for purposes of EMI analysis.

2. Develop analytical tools (models and computer programs) to predict the elec-
tromagnetic fields from isolated sources radiating in unbounded free space or
a plasma environment.

3. Develop numerical tools (moment-method formulation) to predict the elec-
tromagnetic fields from radiating sources on a simple space station structure

in free space or a plasma environment.



1.1 Tonospheric Modeling

There is considerable information on the properties of the ionosphere and the
different natural phenomena that affect its electromagnetic characteristics. To start
with, the ionosphere is a region of the earth’s atmosphere composed of molecules

that are ionized by solar radiation. Figure 1.1 shows the molecular content of

Atomic hydrogen
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Figure 1.1: Atmospheric molecular density versus altitude [1].

the atmosphere as a function of altitude. Due to gravity, the heaviest molecules
(N3, 0,) are at the lowest altitude and the lighter molecules (He, H) are at higher
altitudes. In the middle region, where the space station will be located, atomic

oxygen (O) is the most prevalent.

The degree of ionization of these molecules depends on many different factors.
The two strongest contributors are time of day and altitude. During the nighttime,
solar radiation does not reach the ionosphere and ions recombine resulting in the

electron density, N, decreasing. Figure 1.2 shows this effect and also the altitude
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Figure 1.2: Time of day variations of electron density versus altitude [2].

variation. The envelope can be qualitatively explained in simple terms. At higher
altitudes the solar radiation is very intense but there are few molecules. As the
altitude decreases, the molecular concentration increases and more solar radiation
is absorbed. Eventually, a point is reached where the high molecular concentration
absorbs most of the remaining solar energy and the ionization reaches a maximum.
Continuing to lower altitudes the electron density decreases. Since the atmosphere
is composed of many different gases with different ionization and recombination
characteristics, different layers and peaks in the electron density form [2]. These
have been labeled the D, E, and F layers. An important consequence of the layering
is that radio waves in certain frequency ranges can be bounced off of the ionosphere
to improve communication distances. Figure 1.3 shows how some of the properties

of the ionosphere are exploited in today’s world for useful means.

Another important contributor to the electron density is sunspot activity. Fig-
ure 1.4 shows sunspot activity observed for the past few cycles, and the predicted
activity using the Lincoln-McNish method [3]. Increased sunspot activity increases

solar radiation which leads to increased ionization of the atmosphere. This of-
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ten disrupts the normal communication schemes in positive and negative ways.
On one hand, the layers become more pronounced which increases reception and
transmission distances in radio communications. On the other hand, satellite com-

munications can deteriorate if the frequencies are not high enough.

At the space-station altitude range of 450 to 550 km, the ionosphere is considered
fully ionized. It is a neutral region of mobile positive ions (predominantly O%)
and electrons (e~) that form a plasma. Plasmas are considered the fourth and
most energetic state of matter. They are also the most abundant state in the
universe [1], and occur in everyday life in fluorescent lighting, vacuum tubes, video

display terminals, and lasers.

A unique feature of the ionospheric plasma is the presence of the earth’s mag-
netic field. This makes the ionosphere an anisotropic plasma, where the polarization
of the medium, P, and the electric field, E, are not in the same direction [4]. The
Lorentz formula, F = ¢(E + v x B), states that a free electron traveling with a
velocity, v, perpendicular to a constant magnetic field, B, will travel in a circular
orbit. This leads to an angular (cyclotron) frequency for an electron in the earth’s
magnetic field of 5 x 107° Wb/m equal to 1.4 MHz. A consequence of this is that
radiowaves close to 1.4 M Hz are highly attenuated [2]. Also, the current density,
J, and the electric field, E, are related by a tensor (matrix) quantity. It will become
evident from the formulations in the next chapter that a tensor permittivity instead
of a scalar value severely complicates the analysis of wave propagation in a plasma

medium.

In order to solve EMI type problems, the ionospheric plasma is usually dis-
cussed in simpler terms. The zero-order plasma model is used, where the effects

of the magnetic field of the earth are neglected. The theoretical formulation of



electromagnetic wave propagation is then based on a scalar permittivity. With this
approximation, electromagnetic wave propagation in a plasma becomes similar to
wave propagation in a waveguide. The zero-order plasma model also assumes a
homogeneous plasma. Although the ionosphere is locally homogeneous, motion of
the space station through the plasma creates ram/wake effects [5, 6] similar to that
of an aircraft passing through air. Thus the ion and electron densities are increased

in front of the space station and decreased behind the space station.

1.2 Electromagnetic Analysis

Computer analysis of EMI is a widely-used technique and sophisticated com-
puter programs are available to simulate the EMI for complex systems involving
hundreds of sources and susceptors [7]. Built into these programs are different types
of models for sources and susceptors and transfer functions for various forms of cou-
pling. To use the programs for analysis, a system must first be described in terms
of sources and susceptors and their geometrical arrangement. This is then entered
as parametric data into computerized data sheets. This procedure simplifies EMI
analysis on major aircraft and weapons systems, where the programs have been de-
veloped and proven effective. However, the complex procedure is not appropriate
for modeling electromagnetic radiation in the ionospheric plasma. For this reason,
attention turned to finding a general numerical code that could be easily worked

with, understood, and modified to predict EMI in a plasma environment.

The moment method is a numerical technique for solving electromagnetic field
problems. It was first unified into a general procedure by Roger F. Harrington in

1968 [8]. Since then it has been utilized on powerful computers to solve complex



electromagnetic radiation and scattering problems. The moment method utilizes
a few assumptions that increases its ability to handle a problem as large as the
space station. The primary assumption is that all current flows in thin wires and
is axially directed. Both radiating sources and the space station structure are then

modeled with wires, like the airplane in Figure 1.5. The result is that the radiated
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Figure 1.5: Wire-grid model of F-16 aircraft [9].

electromagnetic fields can be calculated anywhere in space relative to the structure.
This shows what effect variations in the amplitude and location of sources on the
space-station structure have on potential EMI problems. It should be pointed
out that a parallel effort is under way to use the finite-element method for specific
source modeling [10, 11] that will lead to the development of equivalent sources that
can be input into the moment-method analysis. But, at this time, tools are being
developed that are more general in their source modeling to allow for flexibility in

design parameters.

MININEC3 was the selected moment-method code [12] to be modified for two

reasons. The first is that it is proven and well documented. It runs on a personal



computer, but it is limited by the size of the problem it can handle and by the speed
at which it runs. This makes it ideal for the analysis of simple models, but not
practical for more complicated and defined structures. The second reason is that
MININECS is a scaled-down version of NEC, numerical electromagnetic code [13],
which is one of the most advanced computer codes available. If MININEC3 can be
modified for a plasma environment to accurately predict EMI for small problems,
then the same methodology may be applied to NEC (or other moment-method

codes) to handle more complicated problems.

1.3 Overview of the Thesis

Many steps are required before the electric fields in the ionospheric plasma
medium can be predicted. Chapter 2 starts the work with theoretical formulations.
First, the analytical solution for a radiating source is derived. Then the moment-
method numerical technique is explained. Lastly, the zero-order plasma model is
discussed. In chapter 3 analytical results are compared for the radiating source
in free-space and a zero-order plasma. Chapter 4 starts with verification of the
moment-method code in free space and zero-order plasma. Then the simple space
station structure is explained and electric fields in free space and a zero-order plasma
are presented and compared. Chapter 5 contains the conclusions which were based

on the research and gives some suggestions for further work in this area.



Chapter 2

Theory

This chapter has three goals. The first is to derive the analytical solution for
the electric fields from a radiating elemental dipole. The elemental dipole was cho-
sen because its analytical solution is well understood and the theory behind the
moment method is closely related to that of the elemental dipole. The second goal
is to formulate and explain the moment method. The moment method is a numer-
ical approximation for determining electromagnetic fields from complex thin-wire
geometries. The final goal is to explain the zero-order plasma approximation. This
includes a consideration of electromagnetic wave propagation and incorporation of

the plasma into the moment method.

2.1 Radiating Sources — Analytical Solution

The formulation for determining the electric fields generated from an elemental

(short) dipole are documented in many textbooks [4, 14, 15]. The following for-



mulation serves two important purposes. First, the analytical solution is used to
formulate the moment method. Second, a closed-form solution is developed for the
dipole radiating in a zero-order plasma. Since the elemental dipole is the fundamen-
tal building block of this research, a brief description of it precedes the formulation

of its fields.

An elemental dipole is a short linear conductor. By definition, its length, L, is
much less than the wavelength, A (L <« ), and the radius, a (d = 2a), is small
compared to the length (¢ <« L). The current, I, can then be assumed constant
over its length. Figure 2.1(a) shows an elemental dipole and Figure 2.1(5) represents

its equivalent. The transmission lines are balanced and shielded to provided the
]
|1
I,
(@) b)

d e
=,

Transmission
line

|
|

Figure 2.1: An elemental dipole (a) and its equivalent (b) [14].

uniform current and no radiation. They are therefore, excluded in the equivalent
model. The elemental dipole can then be described as a thin linear conductor with
a constant current. The electric field components E,, Ey, and Ey, at an observation
point, P, from a dipole coincident with the z-axis and at the origin, are defined in

a spherical coordinate system as shown in Figure 2.2.

The formulation for the electric field components begins with Maxwell’s equa-

tions relating the electric field intensity, E, to the magnetic field intensity, H,

V x E=—jwuH, (2.1)

10



Figure 2.2: Electric field radiation of elemental dipole in a spherical coordinate

system [14].
V x H = jweE + J, (2.2)

where J is the source current density, w is the angular frequency, g is the perme-
ability of the medium, and ¢ is the permittivity of the medium. Using the identity
V.V x(-)=0o0n(2.1),

V.VxE=—jwp(V-H) =0, (2.3)

Since a vector with zero divergence can be expressed as the curl of some other

vector, H can be written as the curl of A,
H=VxA, (2.4)

where A is defined as the magnetic vector potential, MVP. Substituting (2.4) into
(2.1) gives

VxE=—=jwuV x A, (2.5)

VXE+V X jwpA =V x (E + jwpA) =0. (2.6)

11



Since any curl-free vector is the gradient of some scalar,
E + jupA = —VV, (2.7)
where V is the electric scalar potential. Substituting (2.4) and (2.7) into (2.2) yields
VXVxA=—jweVV+Ek*A+17J, (2.8)

where k is the wave number, w,/pe. Using the vector identity V X V x A =
V(V.A)—-V2A, (2.8) reduces to

V(V-A) - VA - k’A = —jweVV + 1. (2.9)

Since only the curl of the MVP has been specified, its divergence can be chosen
to simplify (2.9). Common choices are the Coulomb Gauge and the Lorentz Gauge.

In this case the Lorentz Gauge
V.A =—jweV (2.10)

is used to eliminate the electric potential term. Substituting this into (2.9) reduces

the formulation to
V2A + k*A = -7, (2.11)

which is the Helmholtz equation or the complex wave equation. It relates the MVP
to the source current density. Substituting (2.10) into (2.7) relates the electric field
to the MVP. The result is

1
E = —jwpA + —V(V-A). (2.12)
Jwe
The electric field resulting from a source current density can be determined by

simultaneously solving (2.11) and (2.12). But this can be simplified further for an
elemental dipole, by solving for the MVP and combining the two equations. As

12



previously stated, the elemental dipole is centered at the origin, and is coincident
with the z-axis as shown in Figure 2.2. Since the current on the wire is in the 2z
direction, the source current density and MVP are also in the z direction. At points

away from the origin (not on the wire), J = 0 and (2.11) reduces to
V24, + k?A, =0, (2.13)

where A, denotes the (scalar) MVP in the z direction. For observation points
sufficiently far enough away from the dipole, the source looks like a point. The
resulting A, from a point source, Idz’, is spherically symmetric (a function of the
radius only), A, = A,(r). Evaluating the Laplacian of the MVP with the radial
dependence only and substituting into (2.13) gives

10 (204:) 12y _
a5 <r 0r)+k A, =0 (2.14)

in spherical coordinates, where r is the distance between the source and observation

points. The two solutions for the MVP from (2.14) with r # 0 (not at the origin)

are

A, = %e"ﬂ" (2.15)
and

A, = %ejk'. (2.16)

Since (2.15) represents an outward traveling wave and (2.16) represents an inward
traveling wave, (2.15) is the appropriate solution for the radiating dipole. In order
to find the constant Cy, let w — 0. Then (2.15) becomes

4= (2.17)

T
and Helmholtz’s equation (2.11) becomes

V4, = ~J,. (2.18)
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Helmholtz’s equation for the case w = 0 is solved by noting its resemblance to

Poisson’s equation,

vy = -2 (2.19)
€

where p, is the charge density. The solution of (2.19) is known to be

Vi(r)= / . M, (2.20)

dner
where r', the source point, is the location of p, and r, the field point, is where V 1s
observed. The volume of the source region is vol, and » = |r — r| is the distance
between the source and field points. Noting the mathematical analogy between
(2.18) and (2.19), A, is determined to be

A, (r) = /wl ﬁi—‘;ﬁ. (2.21)

Since the volume of the dipole can be written in terms of its cross sectional area
times its length, L, and the cross sectional area times the source current density,

J:, equals the source current, I, (2.21) becomes

Idz’'

A= T (2.22)
Equating (2.22) and (2.17), results in
Idz'
= ) 2.
Cy . I (2.23)
Substituting back into (2.15) leads to the solution
Idz' _,;
= ~3kr
2= e (2.24)
Performing the integration for the elemental dipole,
IL _.
— L gk
2= e (2.25)

This shows that the MVP can be determined at a specified distance from an ele-

mental dipole current source. If the magnetic field intensity were desired, it would

14



be determined by taking the del cross product (or curl) of the MVP, (2.4). This is
the point from which the moment-method formulation will be started in the next

section.

Since it is common for the analytical solution of E from an elemental dipole to
be expressed in spherical coordinates, the MVP in the z direction is transformed

into spherical coordinates using

A,

2A, P =2A, -2cosf = A,cosb (2.26)
and
Ag=3A, -6 =3A,-3(—sinf) = —A,siné, (2.27)

where A, is the radial component of the MVP, and Ay is the theta component of
the MVP. The electric field expressed by (2.12) is now

E = —jon (A, +84s) + ===V (V- (74, +640)) . (2.28)

Evalﬁating V(V-A) in (2.28) and reducing E to the radial, E,, and theta, E,,

components yields

1 9(10, 1 0
E, = —jwud, + — Goeor ( 75" A+ :;1—9%.49 sin 9) (2.29)

and

Es = —jwudg + 1 0 (1 9 24 1 9 Agsm0> (2.30)

jwer 08 2or T trsimé rsin 8 94
The phi component, E4, shown in Figure 2.2 is not present. Substituting (2.26)
and (2.27) into (2.29) and (2.30), and simplifying the expressions yields

E, = —jwyuA, Cose+c0506 (1 a ( A)) 2cosf 0 (A) (2.31)

jwe Or \r?0r Jwe or
and

Ey = jwpA,sinf — sinf 0 ( A) 24,86 (2.32)

Jwer3d Or jwer?

15



Substituting (2.25) into (2.31) and (2.32) and simplifying the expressions results in

the final analytical solutions for the electric field intensities,

IL _,. (1 [& 1
E, = P ’ (r_z e t jwer3> cos (2.33)
and
IL _ 4 (jwp 1 [§ 1 .
Eg = 4—7re ’ (T + ‘;2" ; + jwer3 sin§. (234)

Figure 2.3(a) shows E4 and Figure 2.3(b) shows E,. In three dimensions, Fy has

Ee E'
: / :
Dipole Dipole
(a) ®)

Figure 2.3: (a) Eg and (b) E, for an elemental dipole source on the z-axis [14].

a characteristic donut shape around the dipole and E, appears as equally sized

spheres on the top and bottom of the dipole.

Equations (2.33) and (2.34) are often referred to as the near-field patterns for
radiation from an elemental dipole. This is because, near the dipole E, and Fy4 are
similar in magnitude. But far away from the dipole Eg 3> E,, so that E, can be
neglected. How far away is determined by examining the 1/r, 1/r%, and 1/r® terms
in (2.33) and (2.34). The three terms are equal at r = A/27 in free space, where A
is the wavelength. For r > A/27, the 1/r term is dominant and the electric field
reduces to

IL _ . jwu
E —Jkr . :
6=y e " sin 6 (2.35)

16



If a frequency of 1 MHz (A ~ 300 m) is used as an example, the far field approx-
imation could be used if 7 3> 50 m. Since the maximum dimension of the space
station is about 100 m, the far field approximation cannot be used at this frequency.

The attention now turns to formulating the moment method.

2.2 Radiating Sources — Moment Method

The moment method is a numerical tool for predicting fields from thin-wire
structures for which there are no analytical solutions. It is a numerical method
capable of connecting a large number of small wire segments and determining field
patterns by enforcing electromagnetic boundary conditions on and between the seg-
ments. Since it is based on current segments and the elemental dipole approximates
a current segment, the analytical solution developed in the previous section for the
elemental dipole is utilized. This explanation of the moment method is similar to

that in Kraus [14].

In the previous section, the MVP was related to the electric field E in (2.12).
For an elemental dipole along the z-axis, it was shown that the MVP is in the z

direction only. Substituting A, into (2.12) and evaluating V(V . 24,) yields

1 [8%A, .
E, = T ( 5.7 ) — jwuA;, (2.36)
which reduces to
1 [8%A, 2
E, = 3';'6' ('5';- + k A,) . (2.37)

From the solution of the Helmholtz equation, the MVP was related to a current
pulse segment in (2.24). Substituting the value for A, into (2.37) yields Pockling-
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ton’s equation [14],

E.(r)= . /I ( ;:2 (e_jkr) + k72e"f’°') I(Z)d7, (2.38)

dTjwe T
where E, (r) is the radiated electric field at an observation point r from a current

source at 2z’ and r is the distance between the two points, r = |r — r'|.

In the moment method, the solution in (2.38) is used twice. Obviously, the for-
mulation may be used to calculate the radiated electric fields from current sources.
But this is not chronologically the first time that it is used in the moment-method
solution. First, (2.38) is used to obtain the current in the wire from the voltage
applied across the dipole terminals. Then the radiated fields can be calculated. To

explain this, a closer look at the dipole source is needed.

The dipole source is physically a cylindrical current-carrying perfect conductor
as shown in Figure 2.4(a). Assuming that the conductivity of the wire is high, the
current is located entirely on the surface of the cylinder. For the dipole centered
at the z-axis, all of the current is then at a wire radius a from the z-axis. This is
shown in Figure 2.4(a). Since all of the current is equidistant from the center of the
cylinder (z-axis), the current density will be considered to flow in a thin filament a

distance a from and parallel to the z-axis. This is shown in Figure 2.4(b).

In any electromagnetic radiation or scattering problem involving a conductor,
there are two components of electric field, Eqpp, which creates the current on the
conductor, and E,aq, which is the electric field radiated by the current carrying
conductor. In the case of the elemental dipole antenna, Eapp results from a voltage

applied across the antenna terminals (see Figure 2.1(a)). The total electric field
Eapp + Erad = Eobs, (2'39)
where Egpg 15 the total observed electric field intensity. Since the skin depth is zero
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Figure 2.4: (a) Cylindrical conductor model of elemental dipole. () Current fila-

ment model used to replace the cylindrical conductor [14].

for a perfect conductor, the observed internal electric field, Eqps, i1s zero and
Erad = _Eapp. (2.40)

For the special case of the radiated electric field within the elemental dipole, (2.38)

becomes

2 —gkr k? .
CEopy(2) = — /I ( 522 (e ) + 7e-1’") I1(2)dz, (2.41)

4mjwe T

where r = [(z -2V + az]l/2 as shown in Figure 2.5. Since Eqpp is known, (2.41) is
an integral equation which can be solved for I(z'). Then I (2') can be substituted

into (2.38) to obtain the electric field everywhere.

The electric field formulation is made more concise by substituting the Green’s

function notation,
e—jkr
G, = pat (2.42)
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Figure 2.5: Current filament Idz’ with field E, (z) at a distance 7.

into (2.41). The result is

2
-—Eapp (Z) = ! [( 9 G,y + szu,) I(Z’) dz'. (243)

drjwe Ji \ 022

It is shown in the Appendix that evaluation of the partial derivatives in (2.43) gives

_Ey(2) = — / i ((1 +jkr) (2 _3 (-;‘5)2) 4 kzaz) () d7.(2.44)

47ywe rd

k
N

Substituting w = and the intrinsic impedance of the medium 7 = \/g , yields

B, ()= 0 [ ((1 + jkr) (2 3 (3)2) + k%ﬁ) I()d2. (2.45)
drk i 13 r

The relationships in (2.38) and (2.45) form the theory behind the moment
method. They are the relationships between applied electric fields, radiated elec-
tric fields, and current sources. They have come directly from Maxwell’s equations
with no assumptions about the medium that the radiation is traveling in. They are
therefore, valid for free space or a plasma, using the proper permittivity and per-
meability. The remaining part of this section incorporates the methodology behind

the evaluation of (2.45).
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The first transformation is to let observation points be denoted by subscript m
and source points by subscript n. This will be done gradually over several steps

starting with (2.45). It can be written as
~Eupp (2) = [1(2') G (romn) d2/, (2.46)

where

G (rmn) = 221 ((1 +jkr) (2 ~3 (3)2) + k%?) , (2.47)
4rk 13 r

and 7, is substituted for r, where r,,, is the distance between source point n
and field (observation) point m. The function, G (7mn), consists of terms forming
a geometry matrix of source and observation points that are used in the moment
method. In any problem there are two of these matrices formed. One for the applied
field to calculate currents in filaments, and another to calculate radiated electric
fields from the currents. Although G (rm,) may seem like a complicated term, in
the moment-method formulation it is often simple compared to the current term.
The environmental parameters are also contained in G (7, ), but they do not vary

from source to observation point.

The current term in (2.46) can be approximated by the current series

N
I(z') = Y. LF.(2), (2.48)

n=1

where I, is a constant magnitude and F, (2’) is a pulse function (equal to zero or
unity) for incremental segments Az/. In other words, the current is constant over
a segment n in the same manner as with the elemental dipole. There are more
complicated current series using overlapping segments with piecewise sinusoidal or

triangular current distributions [14], but in MININEC3 the current pulse is used.

The contribution from each current pulse segment n can then be summed to

obtain the electric field at m. Incorporating this into (2.46) for the m** segment
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results 1n

N
~Eupp(2m) = 3 [ InFa () G (rmn) d2' (2.49)

n=1

where the integral and the summation have been interchanged and Az, is the
length of the nt* segment. The current portion can be pulled outside of the integral

because its magnitude does not vary over a given segment. The result is

N
—Eupp(2m) = 3. I / G (Tmn) d2'. (2.50)
n=1 Azl
Letting
Gmn = /Az:‘ G (rmn) dZ, (2.51)

and assumning G (Tmn) is constant over the small interval Az}, (2.51) becomes
Gn = G (Tmn) Dz, (2.52)
(2.50) can now be reduced to a matrix form.
= [Em] = [Gmn] 1], (2.53)

where [E,,] is the matrix of electric fields from the matrix of current segments, [I,,].

Multiplying both sides by the segment length Az,

- [Vm] = [Zmn] [In] ) (2~54)

where V,, is the applied voltage at the m** segment, and Z,,, is the impedance
matrix. This equation can be solved for the vector of current amplitudes [I,]. These

can then be substituted into (2.38) to obtain the radiated electric field anywhere.

2.3 Ionosphere — Zero-Order Plasma

The ionosphere is approximated by neglecting the earth’s magnetic field. This

is the zero-order plasma approximation. In this section, electromagnetic waves
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radiating from an elemental dipole in a plasma will be shown to behave like an
electromagnetic wave propagating in a waveguide. The formulation parallels the
explanation given by Collin {2]. At the end, the zero-order plasma model is incor-

porated into the moment-method formulation.

It seems appropriate to start the formulation for the zero-order plasma in simple
terms. Considering a moving electron point charge in the presence of an electric

field, E, the force on the particle is given as

dv
Mo = —eE, (2.55)

where m, is the mass of the electron, v its velocity, and —e its charge. For the

sinusoidal case, (2.55) becomes
jwm.v = —eE. (2.56)

Since the current density, J, equals e Nv, substituting this into (2.56) yields

2
J=—-eNv= .Ne
jwm,

E. (2.57)

This current density can then be substituted into Maxwell’s equation (2.1),

. . Neée?
VxH=jweE+T=jwe |1~ E, (2.58)
wm,
where ¢, is the permittivity of free space, 8.854 x 10~? (F/m). The equivalent

permittivity of the zero-order plasma is then

€= e (1 - Nez) : (2.59)

wme,

which is the scalar quantity times €, mentioned in chapter 1.

Plasma models can be discussed in more useful terms using their characteristic

plasma frequency. It is defined as

Ne?
wp = \/m ~. (2.60)
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Writing € in terms of w, yields

2
€= e (1 - (ﬁ) ) . (2.61)
w
Since the wave number, k, is defined as w./€x, k becomes
w2
k= wyepot/1 — (f) . (2.62)

The permeability of free space, u,, is introduced since the plasma is not a magnetic

material. Writing k in terms of wavelength, A,

- .2:\1 - (-“iﬂ)z. (2.63)

w

In section 2.1, the analytical solutions for the electric field components from the

elemental dipole were shown to be

IL _. 1 [p 1
_ Jkr [ = [P .64
E = 5 e (1'2 . +j er3> cos @, (26 )

IL _. ] 1
Eg“z‘;e—"kr (M'f‘— ﬁ‘}'

and

= 1 3) siné, (2.65)

r?Ve jwer
in (2.33) and (2.34). Substituting the expression for k from (2.63) into the expo-

nential term yields
et = I EVI-(E) (2.66)

In the zero-order plasma approximation, k is either a real or an imaginary term
depending on the frequency ratio. Then for £k = 8 — ja, where a equals the
attenuation constant and 5 equals the propagation constant, either 8 = 0or a = 0.
Therefore, for w > w,, the wave propagates, and for w < w,, the wave does not

propagate, but decays exponentially as an evanescent wave,
e, (2.67)
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where

_ 27" (%) 1 (2.68)

This behavior in the zero-order plasma is similar to electromagnetic waves in a

waveguide, where waves below a cutoff frequency become evanescent.

It will be shown in the following chapter that the plasma frequency of the iono-
sphere is typically in the 2 to 10 MHz range. Since the frequencies and harmonics
from the space station power system processing and transmission components are
below this, the radiated electromagnetic waves are evanescent. Electric field inten-
sities in a zero-order plasma can then be determined by multiplying the electric

—or where a is the real

field intensities in free space by an attenuation factor, e
number obtained from (2.66) when w < w,. The free space phase term can sim-
ply be neglected since it does not effect the magnitude of the intensity. For the

-ar

moment-method formulation, e*" can replace the e=7*" term in (2.38).

It is important to summarize the approximations that have been made in ac-

counting for the plasma:

1. the earth’s magnetic field has been neglected, therefore the ionospheric plasma

is assumed to be isotropic (the zero-order plasma approximation);

2. the frequencies of interest are assumed to be below the (electron) plasma

frequency, hence evanescent rather than propagating fields result;

3. the attenuation of the near-field evanescent fields is assumed to occur in the

same manner as for the far fields;

4. the attenuation factor, e™", is incorporated into the moment-method solution
only in the calculation of the radiated fields and not in the calculation of the

currents which produce the fields.
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The approximations listed here simplified the development of a basic framework
for EMI analysis using the moment method in the ionospheric plasma. Continuing
work will improve the sophistication of the model by removing the first, third,
and fourth approximations, thereby resulting in a more realistic simulation of the

radiation problem.
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Chapter 3

Results — Analytical Solution

In Chapter 2, the analytical formulations for F, and Ey from an elemental dipole
were given in (2.33) and (2.34). In the last section of the chapter, the zero-order
plasma model was incorporated into the formulations. In this chapter, the electric
fields are calculated and then compared for unbounded free space and the zero-
order plasma. But first, some input conditions are discussed as they relate to the
space station and the ionosphere. Then computerized simulations are performed

for different circumstances.

3.1 Attenuation Factor

The distinguishing property of the ionosphere was determined in Chapter 1
to be the electron density. In order to determine the electron density, curves for
the maximum and minimum charge density N, #/m3, as functions of altitude are

shown in Figure 3.1 [5]. For a given altitude the maximum electron density occurs
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Figure 3.1: Ionospheric charge density as a function of altitude [5].

during the daytime and the minimum occurs at nighttime (also see Figure 1.2).
The two electron density curves in Figure 3.1 were digitized by approximating
them with linear equations and entering them into the computer program. For a
given altitude, a value is entered and used to interpolate between the minimum and
maximum electron density values, i.e., unity corresponds to maximum N. In a more
specific application, the program IRI-86 [6] could be used to give a more accurate
value of N based on all the parameters that influence the ionosphere. Since the
plasma serves to attenuate EMI, the worst case is for minimum N or free space.

Meanwhile, it should be pointed out that overdesigning EMI protection for the free

space case could be costly.

The space station is being designed to operate between an altitude of 450 and
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Plasma Frequency (f,) MHz

550 km. A conservative range for N would then be between 5 x 10'° and 2 x 102
electrons per cubic meter [5]. Figure 3.2 shows the plasma frequency versus the
electron density for the desired altitude range calculated from (2.60). Similar to
a waveguide, propagation occurs for frequencies above the plasma frequency and
attenuation below the plasma frequency. From the graph, it can be seen that the
minimum plasma frequency of 2 MHz corresponds to the minimum electron density.
As stated in Chapter 1, this analysis concentrates on frequencies below the plasma
frequency. Figure 3.3 shows this by plotting the attenuation versus frequency (2.68)
up to the plasma frequency for given electron densities. The attenuation in dB/m

is calculated from 20log,, e*. The graph also shows that the dB/m attenuation is
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Figure 3.2: Plasma frequency versus electron density.
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fairly constant over frequency variations up to near the plasma frequency.
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3.2 Computer Simulation

The computer program was written to calculate the analytical solutions for the
elemental dipole in unbounded free space and the zero-order plasma. A quick review

of the equations and parameters follows:

n _.. (1 [pe 1
E, = 7€ 3 (r_2 < + jweor3) cos § (3.1)
and
Il _ . (Jjwpe 1 [pe 1 .
SO | - had ol U f il
Eg = e ( . + r”/ . + jweor3) sin § (3.2)

As discussed in section 2.3, the free space permittivity and permeability are used
in the formulation. The remaining parameter, k, was determined to be equal to
wy/Fo€, for unbounded free space and w,/Lo€,4/1 — (%)2 for the zero-order plasma
approximation. For the plasma, k is either real or imaginary, giving propagation or
attenuation, depending on whether the frequency, w, is above or below the plasma

frequency, w,, respectively.

By substituting the parameters into E, and Eg, the electric fields are obtained
as functions of (w, N,r,8). The current, I, and length, I, were set equal to unity,
and for free space the phase term is neglected since only the magnitude of the
electric field is desired in the case of the elemental dipole. The final result of the
simulation is the electric field intensities for an elemental dipole in free space and

a zero-order plasma at given points.
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3.3 Zero-Order Plasma Compared to Free Space

The following simulations look at the distinguishing characteristics of the electric
field in the zero-order plasma compared to free space. The first case examines the
electric field components as the distance from the source increases. The next case
looks at the effect of changing the frequency. The final case addresses the issue
of variations in the electron density. Before any calculations can be made, the
parameters that do not vary for a particular simulation need to be set. The first
two are the length of and current through the elemental dipole. It was previously
mentioned that these are set equal to unity to normalize the electric fields. In the
next chapter when MININEC3 is compared to analytical solutions, the current and
length will be adjusted to physical values. The next consideration is choosing a
value for 4. Since the effect of # on field components is given in (3.1) and (3.2), its

value was set to 45° to normalize its contribution to E, and Fj.

To examine the plasma’s effect on the electric field as the distance from the
source increases, it seemed appropriate to start the calculations at 1 m, and extend
out to the present design length of the space station, 100 m. Figure 3.4 shows the
fields over this distance for free space and the zero-order plasma. The frequency was
chosen to be 20 kH z because it corresponds to the switching frequency of converters
on the solar panels. The initial electron density, 10'! #/m3, was chosen because it
is in the middle of the specified range. As expected, the electric field components in
the plasma are attenuated. The electric field is expressed in dBpV/m to conform to
NASA’s EMI documentation requirements [16]. This is calculated by expressing E
in pV/m, and taking 20log,, E. It is effectively a comparison of the field compared

to a unit value of 1 uV/m.
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To examine the plasma’s effect on the electric fields at different frequencies, a
range must be set. Remembering that waves propagate above the plasma frequency
and are evanescent below, it wouldn’t make any sense to choose a value above the
plasma frequency. What is known is that only values in the kHz range have ever
been mentioned by NASA for some of the power system components. With this
in mind, 1 MHz is established as the maximum test point. For the lower limit,
the 20 kH z switching frequency is chosen. Figure 3.5 compares Ey for the different
frequencies in both free space and zero order plasma. For both mediums, as the
frequency increases the magnitude decreases. This was also noticed in the E.
component. As was predicted in Figure 3.3, the dB attenuation in the plasma is

similar for both frequencies.

The final issue looked at is to vary the electron density. From Figure 3.3, an
increase in N should increase the attenuation. Figure 3.6 shows Ey for a typical
range of free space, N = 0, up to a maximum N = 102 #/m3. As expected, an

increase in N increases the attenuation.

3.4 Summary

In this chapter, a method was presented for determining the attenuation factor
from measured charge density curves. The dB/m attenuation from the zero-order
plasma was shown to be constant up to approximately one-half the plasma fre-
quency. The electric field components for the elemental dipole in free space and the
zero-order plasma were compared as functions of distance, frequency, and electron

density.
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Chapter 4

Results — Numerical Solution

In Chapter 3, the electric field for an elemental dipole was compared for free
space and a zero-order plasma environment. The goal of which was to obtain
preliminary results for some simple cases. However, the analytical approach is
only applicable to isolated sources, i.e., sources that radiate in unbounded space
without the presence of other structures. In this chapter, results for a more realistic
space station configurations are discussed. But first, a verification procedure for
MININECS is presented. This is done to insure that the program produces correct
results in both mediums, and to gain experience with choosing proper convergence

parameters.

MININECS is by no means a complex implementation of the moment method
like NEC is. It is small, runs on a PC, is written in BASIC, is not cluttered
with built in functions or designs, is well documented, and is easy to work with.
It provides a good test bed for ideas. As MININECS is a widely accepted code,

the validation procedures used to make sure the program produces correct results
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center around the type of models needed for the space station structure, instead of
complex antenna designs. This means taking simple dipole and monopole sources
on simple wire structures and at relatively low frequencies in the K Hz range. This
way the results can be qualitatively understood and provide proof of concept for

modifying a larger program like NEC.

MININECS is validated using two techniques. How accurate are MININEC3
results compared to analytical solutions? For problems were there are no analytical
solutions, how does MININEC3 results compare to more complex moment-method
solutions? Four tests were used to answer these concerns. The first test compares
solutions for the input impedance for some simple antenna configurations. The sec-
ond test looks at currents on a long-wire structure for different frequencies. A third
test looks at the numerical accuracy for determining far fields in free space from
dipoles of different numbers of segments. The final validation technique compares
MININEC3 and the analytical solution for near field radiation in free space and
the zero-order plasma. In all four cases, convergence of the solutions is obtained by
paying strict attention to the number of wire segments that are used to discretize
a structure. A general rule of thumb is 10 segments per wavelength. This allows

for accurate representation of the current waveform on the wire.

4.1 Input Impedance

The input impedance is a particularly sensitive measure of the numerical ac-
curacy of MININEC3 [14]. The reason for this is the use of pulse functions for
the current instead of more complicated functions (explained in section 2.2). In

the first two input impedance cases, MININEC3 1s compared to solutions using
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Table 4.1: Input impedance of an isolated dipole, in ohms.

N,Modes | MININEC | King'sSolution®
1 N/A 2.000-j1921
3 1.927-51980 1.892-31916
5 1.902-j1970 1.864-j1905
7 1.887-51957 1.856-j1899
15 1.856-j1922 N/A

* King calculated the solutions using piecewise sinusoidal functions [14].

length = A/10, wire radius = /10000

piecewise sinusoidal functions. In the third test, the analytical solution is known.
Table 4.1 shows the input impedance for an isolated dipole antenna of length A/10.
For convergence, the results show that approximating the antenna by only three
segments is sufficient to obtain the correct input impedance. Table 4.2 shows the
antenna impedance when another identical wire is located parallel to and at a dis-
tance of A/100 from the first antenna. The wire coupling configuration is more
representative of the type of problem that would be of concern for an EMI analysis
on the space station. Once again, only a few segments are required to adequately
approximate the antenna input impedance. Table 4.3 completes the study of input
impedance by calculating it for a longer antenna, a A/2 dipole. Again, only a few
segments are required to accurately approximate the input impedance. The rule
of thumb dictated 10 segments/X for accurate results. For this dipole, 5 segments

would then be needed, so these results justify the rule of thumb. '
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Table 4.2: Input impedance of dipole 1 in the presence of dipole 2, in ohms.

N,Modes | MININEC | King'sSolution*
1 1.264-31908 1.382-j1822
3 1.281-j1918 N/.l{
15 1.256-j1868 N/A

* King calculated the solution using piecewise sinusoidal functions [14].
d=dipole separation distance= A/100
length = A/10, wire radius = A/10000

Table 4.3: Input impedance of A/2 dipole, in ohms.

N,Modes | MININEC | Known[14]

3 72.39+j60.75
5 75.90+j41.88 | 73.0+j42.5
9 78.05+j41.88

19 79.28+j42.09

length = A/2, wire radius = A/10000
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4.2 Current Distribution

Another method used in validating MININEC3 was solving for the induced
currents in the wire structure. These currents form a special type of conducted
EMI, i.e., currents induced in the space station structure by EMI sources. As
a test case, Figure 4.1 shows a 100 m wire (divided into 34, 3 m pulse segments)

7
AN

2 Segment
Monopole
Source

1<v>[ -

= >Y

/K—— 100 m structure in 34 segments H

Figure 4.1: Simple wire model of the space station with a short monopole antenna

located at one end.

excited by a short monopole antenna at one end. The current distribution along the
simple structure is then calculated for a 20 KHz, 100 KHz, 1 MHz,and 5 MHz
source and shown in Figure 4.2. At the lower frequencies of 20 and 100 K Hz,
the normalized current distribution is identical. This is attributed to the length of
the structure being less then 3 % of the wavelength. As the frequency increases
to 1 M Hz, the distribution changes only slightly as the structure is then 1/3 of a
wavelength. At 5 M Hz, which is higher than the maximum frequencies discussed,
the structure is 5/3 wavelengths. This higher frequency was used because it provides

nice qualitative results since the current standing wave pattern shows a wire length
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Figure 4.2: Current distribution along a 100 m wire divided into 34 pulse segments

with a monopole source on one end at 20 KHz, 100 KHz, 1 MHz, and 5 MHz.

of 5/3 wavelengths as expected. If the results for 10 M Hz were shown, the current

waveform would approximate 3% wavelengths. In the 4 cases shown, the current

solutions converge.

4.3 Comparison of Far-Field Results

Although the far-field approximation is not used for the space station config-
uration, it is the next logical step in validating MININEC3 and further increases

confidence in the program. In Figure 4.3, far-field radiation patterns for a A/2

dipole antenna with an increasing number of segments calculated with MININEC3
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z —direction

— — 3 pulse segments

*kkick § pulse segments

- =~ 8 pulse segments
Closed form solution

Figure 4.3: Calculated far-field radiation pattern for A/2 dipole antenna for an

increasing number of segments using MININEC3 and analytical solution.

are compared to the analytical solution. As with the input impedance of the A/2
dipole, the results converge to known values for 5 segments. The results for this
graph were normalized by dividing through by the source current and length of the
dipole.

4.4 Comparison of Near-Field Results

The final step in validating MININEC3 is to compare analytical near field solu-

tions to MININECS solutions. This point had been foreseen and was a reason for
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developing the dipole simulation. Instead of comparing MININEC3 to analytical
solutions for each environment separately, it makes more sense to present them
together. In that respect, a detailed description of the dipole and conditions used

to determine the electric fields follows.

The dipole used in MININEC3 approximates the elemental dipole used in the
analytical solution. The elemental dipole assumes a constant current across its
entire length. In the moment method the current was shown to be distributed over
several pulse functions. Numerically this has a big advantage because the boundary
conditions at the ends of the dipole are satisfied by forcing the currents to be zero.
This was shown in Figure 4.2 but not pointed out until now. The elemental dipole
on the other hand, had a constant current over its entire length. This difference
needs to be corrected for comparison. The dipole used in MININECS3 is divided
into 5 pulses with the center being fed by a 1 volt, 100 kHz source. The current
distribution on it appears as a step-like triangular function. In a qualitative sense,
the analytical current distribution would look like a triangular step distribution if
half its length with zero current was added to each end. Therefore, the length used
in MININEC3 needs to be twice as long as its equivalent elemental dipole. In both
cases, the dipole is centered along the z-axis and the electric fields are calculated

along the z and 2 axis. The x and z components in this configuration then translate

to E, and E, as formulated in (2.33) and (2.34).

Figures 4.4 and 4.5 show that MININECS3 results converge very closely to
analytical solutions. The wire length and source current determined by MININEC3
(shown on graph) are used as inputs for the analytical solutions. This was done
to obtain the actual electric field intensities in dBuV/m instead of normalizing the
data to the source parameters. As discussed in Chapter 2, the zero-order plasma

fields are calculated by multiplying the contribution from each pulse segment by the
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Figure 4.4: z-component of electric field calculated analytically and numerically for

unbounded free space and zero-order plasma.
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Figure 4.5: z-component of electric field calculated analytically and numerically for

unbounded free space and zero-order plasma.
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attenuation term, calculated from frequency, electron density, and distance between
source and observation point. The same electron density used previously is used

here, N = 10" #/m3.

4.5 Electric Field Contour Plots for Space Station

Structure

A simple wire model of Space Station Freedom is shown in Figure 4.6. The 100 m

!
l
—
e 100m - —>

Figure 4.6: Wire model of NASA Space Station Freedom.

longitudinal wire consists of 20 segments, with a one-volt source on the left-most
segment. The source location was selected to simulate the switching associated
with the photovoltaic solar panels. The two vertical wires, representing habitation
and laboratory modules, are 50 m long and spaced 5 m either side from the center
of the 100 m wire. Each 50 m wire is divided into 10 segments. Using the rule

of thumb, 10 segments per wavelength, the shortest A for the 5 m wire segments

would be 50 m, or f <6 MHz.
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A contour plot of the electric field intensity for unbounded free space is shown
in Figure 4.7. To form this, the following parameters were used in MININEC3. The
above mentioned space station model was entered in the x-y plane with the source
on the 100 m boom at the origin and extending out into the positive x-axis. The
free space environment was selected. A source with a frequency of 1 MHz was set,
because it offers the worst case for attenuation when the zero-order plasma model
is used. Starting at z = —10 m and y = —35 m, near electric fields were calculated
in 2 m increments till £ = 110 m and y = 35 m. There is then a near-field moment-
method approximation since multiple field points exist along a single source point.

The contour lines are specified in 5 dBuV/m increments.

The results show the field strength to be relatively strong around the source as
expected. The strong fields at the far end of the structure indicates that conducted
EMI (currents induced on the structure) should be a major concern to the space
station designer. Especially if the attenuation over distance is a main strategy em-
ployed to alleviate EMI. The field then decreases as the distance from the structure
increases to a value of about 50 dBuV/m at the outer boundary of the grid. For the

zero-order plasma the attenuation at the boundary is expected to be much greater.

The same conditions used in the previous free-space contour plot were used to
determine the fields in the zero-order plasma model. The only difference being
the zero-order plasma environment was selected with an electron density of N =

10" #/m®. A contour plot of these fields is shown in Figure 4.8.

Immediately, the increase in the number of contour lines shows the electric
field to be much more attenuated. The yellow lines starting at 45 dBuV/m and
below, were not on the free space contour plot. This is the principal benefit of

the zero-order plasma, i.e., moving a platform a relatively small distance from the
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space station provides a cleaner electromagnetic environment with the plasma then
free space would. The fields close to the source, less than 10 m, are only slightly
attenuated as the theory would have suggested. But some of other positions near

the structure provide some interesting results that were not expected.

The plasma appears to limit the conducted EMI problem, but in doing so the
fields near the center of the structure are increased. In some areas (around x=40 m
and y=0 m) the field increases by around 30 dBuV/m. At first an error was
suspected in the data entry because stronger fields in the middle of the structure
would be caused by higher currents in the structure. The current data did not
support this conjecture because the current in each pulse segment was identical in
both mediums, as expected. So how could the sum of the electric fields from each
pulse increase in the zero-order plasma? Looking back at the formulations and
the difference in the two media indicates a possible explanation. In the zero-order
plasma, the fields are evanescent and have no phase term. This makes the individual
fields from each pulse segment add as scalar quantities. In the free space case, the
fields have phase terms associated with them so they add as vectors. Therefore, at
certain locations the field strength in the zero-order plasma could be higher because
of fleld components out of phase negating each other in free space. This effect was
not anticipated because the modeling of the plasma by attenuation has only been

applied to the far field in the past.

4.6 Summary

MININECS has been shown to produce correct results in free space and the zero-

order plasma by comparing solutions for input impedance, current distribution on a
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wire structure, far-field patterns, and near-field patterns to solutions obtained from
analytical results or more advanced moment-method codes. Results are presented
in the form of contour plots for electric fields from a simple space station structure,

showing the attenuation from the zero-order plasma compared to free space.
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Chapter 5

Conclusions and Further

Research

The contributions of this research work fall into two general categories. The first
is in modeling of the ionosphere and developing a working model for electromagnetic
wave propagation. The two interests that distinguish this area from others is the
indepth analysis of frequencies below the plasma frequency and the interest in the
near-field components. The second contribution centers around incorporating the
zero-order plasma into the moment-method and ultimately generating field plots

for a simple space structure.

A large portion of this research work, as with any research work, involved col-
lecting data, formulations, and theories on electromagnetic wave propagation in the
ionosphere. At the altitude of the space station, the ionosphere was approximated
as a zero-order plasma, i.e., the earth’s magnetic field was neglected. The character-

istic properties are principally determined by the electron density which is mainly
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a function of altitude, time of day, and solar activity. From the electron density
the plasma frequency was determined. For radiation above the plasma frequency,
the waves propagate. For radiation below the plasma frequency, the waves decay
exponentially, i.e., they are evanescent. This behavior is similar to electromagnetic
wave propagation in a waveguide. It was also shown that up to about half the
plasma frequency, the attenuation from the plasma is fairly constant. For the space
station, half the minimum plasma frequency is about 1 M Hz. Since the power
system components and their harmonics are usually well under 1 M Hz, it was set

as the upper limit of frequencies to be considered in this analysis.

The moment method was then formulated as an analysis tool for performing
calculations. To do this, analytical solutions for the elemental dipole were developed
for both media. The solution for the fields radiated by an elemental dipole provided
the basis for an explanation of near and far fields. This raised two important
conclusions for the research. The first was that the far-field approximation could
not be used for the space station versus the more complicated near-field solution
because of the low frequency of radiation being analyzed. The second was that the
plasma models that have been developed have only been applied to the far field,
since the near field was never an issue before. The analytical solutions were then
used to test the modified version of MININEC3. This computer program, chosen
mostly for its simplicity in implementing the moment method, was shown to be
a good program to do test-case calculations. The dipole results showed that the
attenuation in a plasma medium was as expected and it provided accurate results

for both free space and the zero-order plasma.

Wire models were then formed for the space station. The main reason such a
simplistic program could handle something as large as the space station is the low

frequency consideration. In order for the moment method solutions to converge,
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pulse segments on the structure should be less then 1/10 of a wavelength. The
space stations longest part is the main boom at about 100 m. At the maximum
frequency of 1 MHz (wavelength=300 m), the structure could be modeled with
under 4 segments. But because of resolution for determining grid plots, a smaller
segment length of 5 m was used in the structure. This was determined to be
adequate for the resolution in the contour plots and also near the maximum size of
a problem MININECS is designed for. Although a larger problems could be done,
the time to calculate field patterns starts to become an issue. The first test was to

calculate the current on a 100 m wire for several different frequencies.

A more complicated model of the space station was then developed for calcu-
lating field patterns. The electric field contour plots from the wire model for the
two media raised several interesting points. The first was the relatively high fields
at the opposite end of the structure resulting from the conducted EMI or currents
induced in the structure. Also, from the zero-order plasma contour plot, fields were
shown to be strongly attenuated for only a short distance from the structure com-
pared to the free space case. A not-so-obvious advantage of this is that EMI from
the space station will be reduced for structures that may be near the station, i.e.,

satellites and the space shuttle.

The zero-order plasma plot also showed some increases in field intensities near
the center of the structure. One conclusion was that this effect could be attributed
to the lack of a phase term in the waveguide model. But in interpreting these
results, they can only be as good as the model. Since this model is only proven in
far field cases, where phase would not have a large effect on the field intensities for
free space calculations, the waveguide model in the near field needs more work. It
is thought that since the currents were the same on the structure in the two media,

the fields are not expected to increase in a plasma. But the arguments seem to be
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all qualitative in this area.

Indications are that the moment method, MININEC3 in this case, properly
models the space station with thin wires and predicts the correct field results in

both environments.

5.1 Future Work

There are many areas of work that need further research. The main focus should
be around developing better models for near-field electromagnetic wave propaga-
tion in the plasma surrounding the space station structure. In particular, adding
the contributions for the electric fields from each pulse segment as scalar quantities
should be addressed. More testing and development on structures with MININEC3
needs to be completed to determine the effect of plasmas. The major problem of
work in this area will continue to be in developing models for near-field electromag-

netic radiation and analytical solutions for testing purposes.
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Appendix A

Evaluating Partial Derivatives

and Simplifying

The applied electric field at location z in terms of a current source at z' was

given in (2.43) as

1 32 2 7 7
o (2) = 47rjwe/z(8z2G"’ +k G) 1(2")d7,

where

and

r= [(z —2)+ a2]1/2 .

Evaluating in terms of r

62 62 e—jkr

e, =L
0z2 % 0z2 r
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Taking one partial

2 e—jkr = _jkre—jkr (Z:) _Jkr (az)
0z r r2

8 e-ikr  _e=dkr (5n\
P (5;) (7kr+1).

Then taking the second

%G,y = &t (ke (%) (hr +1) — e (£5) Gkr +1) -
g—ikr (%)23,6] 4 ik (%)2 Gkr +1)2r.
0? —ike . . 2 ; o%r
5 = S [ ke +1) () =7 e +1) -
ik (&) + 2r (ke + 1) (‘3‘)2] :
%Gu' _ LTJ:; [—k2r3 (a_:)z _ jkr3-§—i€- - r2giz+
2507 ()" + 2r (%)
0= T [y (v i ) - 22 4]
ke [
B S [[2) (o35 ).

Evaluating the partial of r,

r=/(z—2')?+ a?,

% =(z—-2'1(z~-2')? + a?,
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o\ (z—2)?
z) (z—2)+a?
But since (z — 2')? = r? — a?,

(67‘)2 _r-da (A.3)

Oz r?

The second partial of r is

& -4 -4
0—7; =— ((z -2+ az) + ((z -2+ az) :
2
% = —r 3% — a?) 4+ 1
z
r a2—r2+l_a_2
822 3 r 3
8 1 (a®
Substituting (A.3) and (A.4) into (A.2) results in
9’ e, 2.2 - 2/
ﬁG,zfz — [(r —a)(—kr +2ﬂcr+2)—-a (]kT+1)].
62 e-jkr
— Gy = — [a2 — jkra® — k*r* + 25kr® + 2r% + a?K? % — 2jkra® — 2a2] .
0z2? rs _
9’ eIk 2,4 73 2 2722 . 2 2
3—z;'G"’ =3 [—k r® +27kr® 4 2r* 4+ a’k*r* — 3jkra’ — 3a ] . (A.5)

The final substitution is (A.5) into (A.1).

—Eop (2) = 2= [ 55

drjwe r

(—=k*r* + 25kr® + 2r? + a?k?r?
—3jkra? — 3a? + kK*r*) 1(2')d2.

—gkr
—Eapp(2) = ! /le (+2jkr3 +2r% + a?k*r? — 35kra® — 3a2) I(Z')dz.

4drjwe rs
Eupp(2) = — /e_ﬂ" (1 +kr) (2 3(3)2 + Ka?) I(2)d7. (A.6)
~Forp 2 T 4rjwei 13 IR - r @ A

(A.6) is the simplified form referred to in the text.
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