
NASA Contractor Report 187171

Isothermal Thermogravimetric Data
Acquisition Analysis System

(NASA-CR-187171) ISOTHERMAL N91-30743
THERMOGRAVIMETRIC DATA ACQUISITION ANALYSIS
SYSTEM Final Report (Transylvania Univ.)
64 0 CSCL 098 Unclas

G3/61 0033609

Kenneth Cooper, Jr.
Transylvania University
Lexington, Kentucky

August 1991

Prepared for
Lewis Research Center

NASA
National Aeronautics and
Space Administration

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection o(Information is estimated to average 1 hour per response, including the time lor reviewing instruction*, searching existing d»t» ***«•
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other sioo-t of trii
collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Oper*«ons »iwj Reports 1215 J^Ttt '
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-016BJ. Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1991

3. REPORT TYPE AND DATES COVERED

Final Contractor Report

4. TITLE AND SUBTITLE
Isothermal Thermogravimetric Data Acquisition Analysis System

6. AUTHOR(S)

Kenneth Cooper, Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Transylvania University
Brown 315
Lexington, Kentucky 40508

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-6474

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center
Cleveland,Ohio 44135-3191

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-187171

11. SUPPLEMENTARY NOTES

Project Manager, James L. Smialek, Materials Division, NASA Lewis Research Center, (216) 433-5500.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The description of an Isothermal Thermogravimetric Analysis (TG A) Data Acquisition System is presented. The system consists of
software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C**.
The hardware consists of a 486/25 MHz machine with a Capital Equipment Corporation IEEE488 interface card. The interface is to a
Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for
16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is
done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during
shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering)
is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial
runs were conducted to demonstrate system stability. Extensive parameter variation between runs, many simultaneous runs, simulation
of power outages have demonstrated system stability and reliability under a variety of operating conditions. This system has improved
on the prior one in these main areas:
A. Recover from abnormal termination conditions with no loss of data.
B. Preprogramming all phases, allowing unattended startup and shutdown of a run.
C. Ease of operation - utilizing disk based systems as opposed to a tape based system.
D. Ready availability of data during a run.

14. SUBJECT TERMS

Thermogravimetry; Metal oxides; Oxidation; Data acquisition

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

64

16. PRICE CODE

ACM
20. LIMITATION OF ABSTRAC

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89
Prescribed by ANSI Std. Z39-16
298-102

TABLE OF CONTENTS

ABSTRACT 1

DEFINITIONS 2

SYSTEM HARDWARE AND SOFTWARE 3

SYSTEM CAPABILITIES 4

ADDITION OF DATA ITEM TO struct channel 5

SYSTEM OPERATION 6
Disk operations 7
End channel acquisition 8
Start channel acquisition 8
eXit program 10

PROGRAM MAIN.C 11
activate_relay() 14
deactivate_relay() 15
disk_opns() 16
do_fast_acq() 18
do_nor_acq() 22
end_channel() 25
get_channel_data() 27
get_nor_data() 33
get_reply() 36
get_startup_data() 38
get_temp_coeff() 40
mainQ 43
make_menu_display() 47
make_solid_box() 49
reset_3497A() 50
setup_data() 51
start_channel() 52
system_shutdown() 54
terminate channelQ 56

PROGRAM STARTUP.C 58
startupQ 59

ISOTHERMAL THERMOGRAVIMETRIC ANALYSIS DATA ACQUISITION
SYSTEM

Kenneth Cooper, Jr.*
Transylvania University
Lexington, KY 40508

ABSTRACT

The description of an Isothermal Thennogravimetric Analysis (TGA) Data Acquisition System is
presented. The system consists of software and hardware to perform a wide variety of TGA experiments.

The software is written in ANSI C using Borland's Turbo C* *. The hardware consists of a 486/25MHz
machine with a Capital Equipment Corporation IEEE488 interface card. The interface is to a Hewlett Packard
3497A data acquisition system using two analog input cards and a digital actuator card.

The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data
collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate
during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the
rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also
programmable. Provision is made for automatic restart in the event of power failure or other abnormal
terminations.

Initial trial runs were conducted to demonstrate system stability. Extensive parameter variation between
runs, many simultaneous runs, simulation of power outages have demonstrated system stability and reliability
under a variety of operating conditions. This system has improved on the prior one in these main areas:

A. Recovery from abnormal termination conditions with no loss of data.
B. Preprogramming all phases, allowing unattended startup and shutdown of a run.
C. Ease of operation - utilising disk based systems as opposed to a tape based system.
D. Ready availability of data during a run.

'NASA Lewis-ASEE Summer Faculty Fellow 1991.

DEFINITIONS

I. The purpose of the system is the acquisition of isothermal Thermogravimetric analysis (TGA) data. At
the present time it is not designed for cyclic operation.

II. The system consists of software written in ANSI C, hardware consisting of a 486 done machine, and an
interface card to the data acquisition apparatus. A channel is a single apparatus and two voltage readings
corresponding to weight and temperature values.

m. The data is analyzed offline. Typical analysis includes importing the resultant ASCII data files into a
spreadsheet, Le. Lotus 1-2-3, and preparing graphics. The data may also be imported into a number of
data analysis programs for curve fitting, etc.

TV. There are two acquisition modes:
A. FAST ACQUISITION - The sampling period is measured in seconds and the total sampling

time is measured in minutes. A fast acquisition mode precedes and succeeds a normal
acquisition mode.

B. NORMAL ACQUISITION - The sampling period is measured in minutes and the total
sampling time is measured in hours. The total sampling time may be preprogrammed to a
specified value for completely automatic operation. In addition, the ability to 'look' at the data
during a run allows the researcher to terminate a run at their discretion.

SYSTEM HARDWARE AND SOFTWARE

I. The working system directory is C:\ACQUIRE and contains main.exe and startup.exe. The data save
subdirectory, C:\ACQUIRE\SAVE_DAT, is discussed in SYSTEM OPERATIONS, Disk operations. The
working directory for program modification is C:\BORLAND\TC\SOURCE.

II. HARDWARE: The hardware implementation consists of three components, computer, data acquisition
equipment, and interface board.
A. The computer is a 486/25 MHz machine with 4 MB of RAM, a 122 MB hard disk (C:), and

5 V4" (A:) and 31/4" (B:) diskettes. DOS 5.0 is the operating system. The system, theoretically,
could be implemented on a 286 machine. However, it is very unlikely that 16 channels could
be supported. In addition, future modifications to the system, i.e. graphics, could not be
supported. As a minimum, a 386/25 MHz machine is recommended.

B. The data acquisition equipment'is a Hewlett Packard 3497A with two analog input (AI) cards
and a digital actuator (DA) card. The first AI card, slot 0, acquires weight measurements. The
second AI card, slot 1, collects temperature information and incorporates hardware temperature
compensation. Typical input ranges are the order of hundredths of a volt, and less, for both
cards. The DA card is in slot 3. Sixteen (0-15) of the twenty actuators are used. The relay
systems for furnace control, controlled by the DA card, are designed inhouse.

- C. The interface card is a Capital Equipment Corporation (CEC) PC488 IEEE-488 (HPIB) card.
It provides for connection of an IEEE-488 device to a PC. CEC may be contacted at 99 South
Bedford Street #107; Burlington MA 01803.

III. SOFTWARE: The software is written and compiled in ANSI C using Borland TURBO C*+, 2nd
edition. In addition IEEE488.LIB and IEEE-C.H from CEC are required. Both of these files are
supplied by CEC on their distribution diskette. The LARGE memory model as well as the 80x87 floating
point and instruction set is used. The program is compiled as a PROJECT file, MAIN.PRJ, which
contains main.c and IEEE488.LIB. The project file is contained included in
C:\BORLAND\TC\SOURCE. IEEE488.LIB must be in the C:\BORLAND\TC\LIB directory. The
IEEE-C.H header file must be in the C:\BORLAND\TC\INCLUDE directory. In addition to TURBO
C+ + the compilation requires access to TASM.EXE (Turbo Assembler). TASM.EXE should be in the
C:\BORLAND\TC\SOURCE\BIN directory.

SYSTEM CAPABILITIES

I. The system has a 16 channel capacity.

II. Toe default times associated with each acquisition mode are identified and discussed in the SYSTEM
OPERATION section of this manual. The default times may be respecified by the user on channel
startup:
A. Actual data collection times are two seconds less than the sampling period.
B. Normal acquisition mode acquisition time is 28 seconds starting at the beginning of the

sampling period.

III. The fast acquisition mode has two additional 'features' associated with it.
A. Fast acquisition is done at the start and termination of all runs. The parameters used for the

termination fast acquisition are the same as for the startup fast acquisition.
B. A 'delay time' has been implemented into the fast acquisition mode. This is the number minutes

after fast acquisition starts that a digital signal is issued which may be used to raise or lower
the furnace for the apparatus. The default delay time is specified as the integer portion of 1/3
of the total fast acquisition time. For example, a 16 minute fast acquisition time will have a
default delay time of 5 seconds.

IV. The type thermocouple may be respecified on startup and up to 60 characters of general comments may
be stored with the channel data. Six types of thermocouples are specifiable with no program
modification: E, J, K, R, S, and T. Temperature ranges for thermocouples are specified in SYSTEM
OPERATIONS section S.IV.

V. After the user specifies all startup parameters the system will automatically start itself, raise the furnace,
run to completion, and lower the furnace. The preprogrammed normal sampling time may be manually
overridden by means of the end channel option in the main menu.

VI. Data, as acquired during a run, is stored in individual files of the form CHANcc.DAT. After a run
terminates, the month, day, and hour are used to time stamp the data file giving it a 'unique' name, i.e.
CHccmmdd.Dhh.

cc - channel number
mm - month run was started
dd - day run was started
hh - hour run was started

It is imperative for the system operator to maintain a log book of all runs started showing the
starting date:time and other identifying information to facilitate finding a given data file.

VII. All data, as it is collected, is stored on the system hard disk. Data files for an individual channel, in
process of acquisition or completed, may be copied to a diskette at any time. The resulting data files
may imported as an ASCII file and analyzed by any spreadsheet.

In the event of abnormal termination, i.e. power failure, the system will restart all channels which were
active and continue with the programmed parameters. An active channel has the name CHANcc.DAT.

DC The 3497A internal dock is synchronized with the PC CPU clock.

ADDITION OF DATA ITEM TO struct channel

To add an additional item to the structure channel the following functions must be considered. This may not be
an all inclusive list depending on the purpose of the data item.

I. Change the struct channel definition, in the beginning of the program, to include the new data item.

II. Set the default value for the data item, along with the other defaults, in function mainQ.

in. To initialize the data item:
A. If the data item requires no input/response from the user it is initialized in get_startup_dataO-

Typical of this type of data are filenames the ending time of the acquisition, etc.
B. If the user must be prompted for input this is handled by the function get_channel_data().

Typical of this type of data is the length, in hours, of the run.
C. If the data item is one which is written to the output data file for subsequent use by the

automatic startup section of the program, the function get startup_dataO must be referenced.

IV. setup_dataQ, inputs data from the output data file during automatic startup, will need to be modified
if get startup_dataO was used to output the data item to the channel's data file.

V. All channels have their default values reset in terminate_channel() to the same values specified in
mainQ. Therefore, this function must be referenced.

SYSTEM OPERATION

The system consists of two programs - main.c and startups. Both of which are compiled by Borland
Turbo C+* to their *.EXE files. Program main.exe, hereinafter referred as main, is the data acquisition
program. startup.exe hereinafter referred to as startup, provides for unattended startup of main in the event of
an abnormal system failure and may be used to start main upon system boot.

To implement startup the following lines must be placed in the AUTOEXEC.BAT file of the system
machine:

CD \Absobtie pathname to directory containing startup
STARTUP

For the present system the following lines:

CD \ACQUIRE
STARTUP

would be placed at the end of the AUTOEXEC.BAT file! In addition, startup and main MUST be in the same
directory. Another method of starting the program would be to place the above two lines in a batch file, i.e.
TGA.BAT, and simply execute the batch file.

In the event of a boot the program startup is always executed and displays the following message:

Press a/A to start data acquisition

If any key, other than a/A, is pressed the system returns the DOS prompt and you are in the directory containing
the programs. If the a/A is pressed, or no key is pressed for 15 seconds main is invoked via execvQ from
startup.

Another way to start the data acquisition program is from the DOS command line. Switch to the
directory containing main, via a CD DOS command, then invoke main from the command line by entering:

Cidirectory containing startup > main

For example, the following DOS commands perform this function on the present system:

CD \ACQUIRE
MAIN

On startup, the first function performed by main is to check for the presence of the file NORMAL. This
file is created by the orderly termination of main. If NORMAL is not present main assumes an abnormal
termination, Le. power failure, and invokes its restart recovery function using the file(s) CHANcc.DAT. If none
of these files are present main displays the main menu and waits for user input. If any of these files are present,
main will process the respective channels, cc, before displaying the main menu. Processing of channels on restart
recovery may involve a single normal acquisition or a normal acquisition followed by a fast acquisition, in the
event termination time for the channel expired during abnormal termination.

Abnormal system termination is indicated by the absence of the file NORMAL and the presence of the
files CHANcc.DAT. Normal startup always occurs if the file NORMAL is present. Therefore, if a file with this

name is in the startup/main directory normal startup will occur. If it is decided to manually create NORMAL
a decision must also be made as to what to do with the files CHANcc.DAT. They may be deleted, saved and
dumped for subsequent analysis, or left as is. In the latter case the system will overwrite these files the next time
channel cc is started. In general, this function should ONLY handled by the system operator.

Once main has been started and displays the MAIN MENU any one of the following four options may
be selected.

D Disk operations: The option provides for the dumping of acquired data to a diskette for
subsequent analysis. This option requires a preformatted 5 1/4" diskette to be placed in the A:
drive, on the present machine. If the A: drive is changed to a 3 /2" drive then the
corresponding diskette must be used. Either high or double density diskettes may be used after
being properly formatted. Capacities of the two sizes are as shown below:

DISK CAPACITIES (HOURS)*

Disk size

S1/,

3'/2

Double Density

690

. 1380

High Density

2300

2760

- Assuming nor delta_t = 6 min and fast_total_time = 30 min

The first prompt is:

WHICH CHANNEL DO YOU WANT(* for all):

At this point the user may request all files be dumped or only the files for a specified channel.

I. If an asterisk is entered, all files of the form CHccmmdd.Dhh and CHANcc.DAT are
dumped. As each file is dumped its name is displayed.

II. The second option is to simply enter the channel number of the desired channel. In
this case all Mies are dumped wherein cc is the desired channel number. For example,
if channel 5 is to be dumped then all files of the form CH5m/ra&/.Dhh and
CHAN5.DAT will be dumped and their names displayed.

After the channel(s) has(have) been specified the following prompt is displayed:

INSERT A PREFORMATTED DISKETTE IN DRIVE A:
PRESS < ENTER > WHEN READY

After the diskette has been inserted in the A: drive and the < ENTER > key pressed all
requested files are dumped. If an error occurs, unformatted diskette, diskette full, etc, a
condition specific error message is displayed and the system returns to the MAIN MENU.

When a specified channel is dumped, see II above, all files of the form CHcanmdd.Dhh are
dumped to the diskette and then moved to a subdirectory, SAVE_DAT, of the program

directory. The files in SAVE DAT may only be accessed from the DOS prompt. NO FILES
MAY BE DELETED FROM WITHIN main.

Therefore, a point to be addressed is the 'cleaning out' of old data files. Again, this must be
done from the DOS prompt. Care must be taken to not delete files which have not been backed
up. It is suggested that all files be dumped as needed, backed up on a periodic basis and the
system purged of all unneeded data files. Eventually, if this is not done, enough data files will
accumulate so that a diskette will not be able to contain them. Whatever method is used, it
should be done on a regular basis in a systematic manner as determined by the system
operator. REMEMBER THERE IS NO SUBSTITUTE FOR AN ADEQUATE BACKUP
SYSTEM!! It is a lot easier to recover data from a backup diskette than to rerun a sample.

E End channel acquisition: This option is used to terminate a channel prior to its scheduled
termination time. As indicated in option S, section m.B. indefinite times may be specified for
the normal acquisition. This option would be used to terminate a channel in this instance. The
prompt:

Channel number to terminate:

is displayed and the channel number to terminate is entered. If an invalid channel or an inactive
channel is specified, an error message is specified and the user is returned to the MAIN
MENU.

S Start channel acquisition: Typically the first option selected. This invokes the channel startup
function. For the following entries the characters accepted may only be a minus (-), and
numeric characters (0-9). Note that a backspace does not fall into this category and will be
ignored! Permitted values are specified in the table below:

VARIABLE VALUES

Variable name

channel

fast delta t

fast total time

fast delay time

nor delta t

nor total time

thermocouple

Comments

Minimum

0

10 sec

1 min

0 min

1 min

Ihr

Maximum

15

<n sec

oo min

last total time

oo min

oo hr

E, J, K, R, S, T

0 char 60 char

Default

none

30 sec

15 min

intV3

fast total time

6 min

100 hr

R

Ochar

I. First the channel to startup is specified:
A. If the specified channel is in use, the user will be informed, not permitted to

continue with the channel and returned to the MAIN MENU.

8

B. If the user enters a negative number they will be returned to the MAIN
MENU.

C. If the channel number is valid the succeeding entries on the screen will
prompt them for the acquisition startup data.

II. Next the fast acquisition parameters are specified:
A. Interval time(sec): (fast_delta_t). This is the length of time between fast

acquisition samples. Of this time, the actual sampling is done for fast_delta_t -
2 seconds. The 2 seconds gives the program adequate time to calculate and

write the collected data to disk.
B. Total acquisition time(min): (fast total time) is the total length of time for

fast acquisition expressed in minutes.
C. Fast acquisition delay(min): (fast de!ay_Ume) This is the time, after fast

acquisition starts, that a digital signal is made available through the digital
actuator card (in slot 3), for furnace raising or lowering. Startup fast
acquisition will raise the furnace and termination fast acquisition will lower
the furnace. Each apparatus must be equipped with an automatic relay system
controlled by this signal for this parameter to be of any use. If no automatic
furnace control is available any delay time may be used and furnaces must be
manually raised.

III. Next the normal acquisition process parameters are requested.
A. Interval time(min), nor delta_t. The length of time between normal samplings.
B. Total acquisition time(hr), nor_total_time. Any time of 999, or any LARGE

value, may be used for an indefinite time. Also see option E above. -

IV. TC. The type of thermocouple is specified next as upper or lower case letters. Any
characters other than these are ignored. Temperature ranges for the various
thermocouples are given below.

THERMOCOUPLE TEMPERATURE RANGES (»C)

Thermocouple

E

J

K

R

S

T

Minimum
temperature

-100

0

0

0

0

-160

Maximum
temperature

1000

760

1370

1760

1750

400

Error
± »C

0.5

0.1

0.7

0.5

1.0

0.5

V. comment May consist of up to 60 characters. A backspace may be used to erase
incorrect characters on input.

After the comment is entered and the < ENTER > key is pressed the user is prompted

with the following message to check the data.

If the above is correct enter a y/Y otherwise < ENTER >:

If the user enters a y/Y the data is accepted and the acquisition process starts. If any other key
is entered the entire data entry process is restarted, beginning with the channel number.
Therefore, if the user decided during the data entry process that the desired channel was not
ready, a negative value for the channel number would be entered and the program would return
to the MAIN MENU.

If the data is accepted, the program enters the fast acquisition mode for the specified
channel. The fast acquisition screen will display the channel number, current data:time, and
temperature after each fast acquisition sampling. During the fast acquisition process, if the
automatic relays have been installed, at the specified delay time the furnace will be raised. This
requires 50-120 seconds depending on the apparatus. After fast acquisition, the program checks
all other active channels to determine if any of them missed a normal acquisition during the
fast acquisition. If normal acquisition was missed, it is done for the required channels and then
the user is returned to the MAIN MENU. Further, the next normal acquisition sampling time
is based on this most recent sampling time, i.e. current time + nor_delta_t.

eXit program: Provides for an orderly termination of main. If ANY channels are active or an
incorrect channel number is specified, an error message is displayed and the user is returned
to the MAIN MENU. ALL channels MUST be terminated, either by preprogrammed time
expiration or via option E before main may be terminated.

If no channels are active the prompt:

ARE YOU SURE (Y/y):

is displayed. If Y/y is entered main terminates and returns the user to the DOS prompt in the
directory which contains main. Any other entry will return the user to the MAIN MENU.

10

PROGRAM MAIN.C

FUNCTION DESCRIPTIONS

AND FLOWCHARTS

11

FUNCTION RELATIONSHIPS - 1/2

make_solid_box()

activate_relay()

do_nor_acq() ->{NA

get_chamel_data()

L get_reply<)

12

FUNCTION RELATIONSHIPS - 2/2

solid box()

>• terminate channel()

get_temp_coeff()

make_solid_box()

reset_3497A<)

FA) >- do_f ast_acq()

activate_relay()

^-deactivate_relay()

get_ternp_coeff()

make_sotid_box()

reset_3497A()

13

FUNCTION activate_relay0

CALLED BY: do_fast_acqQ

CALLS:

PROTOTYPE: void activate_relay(int which_channel)

SEE: deactivate_relayO

This function simply creates a string of the form DCr,cTD which is used to close a digital relay. The s
is the slot in the 3497A which contains the digital relay board and c is the channel number to be dosed. Channels
are numbered from 0 to 19 on a relay board, however, only 0-11 are used.

This signal is used to raise the furnace for the apparatus in accordance with fast_delay_time as discussed
in mainQ.

No flowchart displayed.

14

FUNCTION deactivate_re!ayO

CALLED BY: setup_data()
do_fast_acq()

CALLS:

PROTOTYPE: void deactivate_relay(int which_channel)

SEE: activate_relay()

This function simply creates a string of the form DOsfTD which is used to open a digital relay. The s
is the slot in the 3497A which contains the digital relay board and c is the channel number to be opened.
Channels are numbered from 0 to 19 on a relay board, however, only 0 -11 are used.

This signal is used to lower the furnace for the apparatus in accordance with fast_delay_time as
discussed in mainQ.

No flowchart displayed.

15

FUNCTION disk opnsQ

CALLED BY: mainQ

CALLS: void do_nor_acq(void)

PROTOTYPE: void disk_opns(void)

SEE:

This function is used to copy, to the B: drive, the requested files. This may be changed to the A: drive
by simply replacing B: with A: in this function and recompiling. At the present time the B: drive is a 1.44MB
drive.

The user is prompted for the data to copy. If the user enters an '*' ALL data files are dumped to the
diskette, i.e. *.DAT is copied. This will include files presently being acquired as well as all files previously
collected. If the user enters a channel number, i.e. 5, then the data for that channel presently being acquired.
Le. CHAN5.DAT, is copied to the diskette.

Errors from the systemQ function may be generated by unformatted diskettes, disk full, etc.-An
appropriate error message is generated via perror().

After the data is copied a normal acquisition is performed in the event a channel was to be acquired
during the copy process. When the normal acquisition is finished the program returns to main() and redisplays
the main menu.

16

disk_opns - 1/1

Create string to
copy desired

channel

fdisk_opnso1

Change from
graphics to text

mode

(
Prompt for

:hannel desired

'Prompt to input disk,

Execute system
command to copy
data file(s)

Create string to
copy all

do_nor_acq()

1 i

I return j

17

FUNCTION do fast acqO

CALLED BY: do_nor_acq()
start_channelQ
terminate_channelO

CALLS: void activate_relay(int which_channel)
void deactivate_relay(int which channel)
void make solid_box(int lower_left_x, int lower_left_y,

int upper_right_x, int upper right_y,
int FILL_COLOR, int BORDER_COLOR)

int reset_3497A(vbid);

PROTOTYPE: void do_fast_acq(channel channel_data[12], int channel)

SEE: mainO
terminate_channel()

This function's purpose is to provide for a fast acquisition at the beginning and end of an experiment.
In addition, the user may supply a 'delay time' which is used to determine when the furnace is raised or lowered,
see below. For each acquisition point the data is written to disk immediately. Data is collected as specified in
maioQ and the average of the datum is reported as a single point. The time of collection is specified as the end
of the acquisition period for the point.

I. The function resynchonizes the 3497A clock to the CPU clock, see mainQ. Various
initializations are performed, i.,e. the display, end_sec, delay_sec, etc. Two strings are
constructed to perform an AI function. The first, sendchan is used to collect the weight while
the second, sendchan20, is used to collect the temperature.

II. The following functions are performed while end_sec is greater than the current time.

A. Then the TI function on the 3497A is activated and the function waits for the first
interrupt from the 3497A in the form of a SRQ.

B. When the SRQ is activated it is cleared, the fast acquisition screen is displayed and
parameters are initialized. The variable end_period_sec is calculated as 2 seconds less
than the fast_delta_t variable.

C. The furnace is raised if the delay time has passed and the system is not INACTIVE.
The furnace is lowered if the delay time has passed and the channel has been made
INACTIVE.

D. Data is repetitively collected and summed as long as the end of the acquisition period
exceeds the current time. After each send command the function delays 20ms to allow
the 3497A voltmeter to stabilize prior to the enter command.

E. After the data has been collected its average is determined and the temperature data
is displayed. In addition the weight and temperature data is output to the requisite file.

F. This process is repeated from 2.

18

III. When the fast acquisition process is finished the TI is inactivated, the current time is updated
and the next time for acquisition is determined and stored. The next time is the first normal
acquisition time. In the case of a channel which is INACTIVE this is still calculated but ignored
as the channel is terminated, see terminate channel0-

19

do fast acqQ -1/2

©

[do_fast_acq() J

Reset the 3497A,
switch to graphics
mode, do an spoilO

Create the display
and set times

Create the AI
strings to acquire
data and setup TI

Do an spott(),
output to display
time, initialize

parameters

time is correc
AND (INACTIVE

©

20

do_fasl_acq() - 2/2

©

time is correc
AND INACTIVE

©

Iteratively collect
data until end of

period

Determine average to
be reported and

convert to a string

)isplay data and
send to file /

Deactivate TI,
update current_time

and next time

return

21

FUNCTION do nor acqQ

CALLED BY: disk_opns()
end_channel()
mainQ
setup_dataQ
start_channelO

CALLS: void do fast acq(struct 'channel data, int which_channel)
void get_nor_data(void)
void make_solid_box(int lower_left_x, int lower_left_y,

int upper rightjc, int upper right_y,
int FILl/COLOR, int BORDER_COLOR)

int reset_3497A(void)
void terminate_channel(int channel)

PROTOTYPE: void do_nor_acq(void)

SEE: mainQ

This function's purpose is to provide for normal acquisition. In addition it checks for end of time for
a channel and terminates the channel if necessary. It also determines the next channel to be sampled.

1. Any active TA are turned off and the SRQ is cleared, if it was active. Next the normal
acquisition display is created and the 3497A clock is synchronized with the CPU.

2. All channels are checked to determine if their termination time has expired. If it has these
channels are terminated via terminate_channel().

3. Next all channels are checked to see if their next_time is < or equal to the current time. If so
flag is changed to COLLECT and the flag past_time is set to TRUE. If the flag past_time is
TRUE then all channels whose flag has been set to COLLECT are sampled via get_nor_data().

4. After sampling, the channel whose next_time is closest to the current time is selected. There
may be more than one channel with the same next_time. This is irrelevant as the function is
simply looking for the next time to sample, whether it is one or more channels.

5. If a channel is found, from step 4, Its next_time is used to determine the next TA for the
3497A. If no active channel was found TA is inactivated.

22

do nor acq() - 1/2

do_nor_acq<)

Turn off TA, clear
SRO if needed,

display normal acq
screen, resync 3497A

clock with CPU

any channel
INACTIVE terminate

it
terminate channel()

set channel's flag
to COLLECT and set
past time to true

if a channel is
INACTIVE and next ti

< current time

get_nor_data()

set min_time to large
number, get current

time, set Mhich_channel
to large number

Compare alt channels
next time to current
time to find next
channel to sample

do nor acq() 1 2/2

Create TA string and
activate TA for next

sampling time

24

FUNCTION end channel Q

CALLED BY: main()

CALLS: void do_nor_acq(void)
int get_reply(void);
void terminate_channel(int which_channel)

PROTOTYPE: void end_channel(void)

SEE:

This function is called from the main menu of mainQ to terminate acquisition prior to the scheduled
termination time for the channel.

1. The screen is set to text mode and the channel number is requested.

2. If the channel number is valid the channel is terminated via terminate_channelO-

3. A normal acquisition is requested via do_nor_acq().

25

end channel () - 1/1

end channel()

Set to text mode and
output prompt for

channel to terminate

nhich_channel
get_reply

26

FUNCTION get_channel_dataO

CALLED BY: get_startup_dataQ

CALLS: int get_reply(void)

PROTOTYPE: int get_channel_data(struct channel channel_data[12])

SEE: mainO

This function acquires user data values for the data structure channel_data for a given channel. The
description of the individual fields are found in the description for mainO-

1. The screen is set to text mode and the parameters screen is displayed.

2. First the desired channel number is requested. If it is an invalid number, outside the range of
0-11 inclusively, and error message is displayed and the user must reinput a valid number. If
the channel has already been selected, again an error message is output and a valid channel
must be input.

3. The next set of data requests deals with the fast acquisition process. The fast_delta_t,
fast_total_time, and fast_delay time are requested. In each case the value is checked against
its limits, see mainQ- If the input is outside its limits the default values are used. In the case
of fast_delay_time a value less than fast_total_time must be entered.

4. Next the data values for the normal acquisition are requested. Values for nor_delta t and
nor_total_time are requested and handled as per 3 above.

5. The type of thermocouple is requested. Only valid types are permitted with R as the default if
no type is input by simply pressing 'ENTER'.

6. Finally up to 60 characters are requested for a comment. Typically, this would be used as
identification for the run.

27

get_channel_data() - 1/5

fgetjchannel dataO

1 r

Clear & initialize
screen, assume
invalid channel

nunber

FALSE

/return with a -1j

FALSE

28

get_channel_data() - 2/5

/Prompt for /
fast_delta \J

"7

temp total =
fast Total time

^
Prompt for /
>t_total_tipfe

_/

fast_delta_t
tenip_int~&

display

fast_total_time
= tenp_int &

display

29

get_channel_data() - 3/5

Input delay^time
/ to tetnp_fht/

delay_time =
temp_int &

display

delay_time = 1/3
fast total time

emp_total !=
st total ti

nor_delta_t & npr_total_time
are handled in the same

manner as for fast_delta_t &
fast total time

get_channel_dataQ - 4/5

Input converted to
uppercase

Input converted to
uppercase

31

get_channel_dataO - 5/5

©

Display TC

/Prompt/Input for /
/ comment /

i
f return channel j

32

FUNCTION get_nor_data()

CALLED BY: do_nor_acq()

CALLS: get_temp_coeff()
make_solid boxQ
reset_2497A

PROTOTYPE: void activate_relay(int which_channel)

SEE: do_nor_acqQ
mainQ

This function performs the actual collection of data for the normal acquisition process. The
determination of which ACTIVE channels will have their flag set to COLLECT is done in do_nor_acqO- The
function displays the channels to be collected, creates the required strings to be sent to the 3497A^ and reads
the data from cc (weight) and cc+20 (temperature). In the present implementation channel numbers, cc, are
numbered from 0-11. The data are summed into the array data_arrayf] []. A single collection cycle lasts for 30
seconds. During this tune the weight and temperature readings are stored in the above array. The average of
these numbers is determined, the temperature determined and the raw weight and calculated temperature data
are stored on the hard disk.

1. Various initializations are performed. The 3497A clock is synchronized with the CPU clock, the
arrays to be used to sum the data are cleared and the normal acquisition screen showing the
channels being collected from is displayed.

2. While end time is greater then the current time the following functions are performed:

A. All of the channels whose flag has been set to COLLECT have their weight and
temperature data collected. The weight data comes from channel cc while the
temperature data comes from channel cc+20.

B. . This resulting data is summed into data_array[cc] [0] (weight) and data_array[cc] [1]
(temperature).

C. The current time is redetermined and a counter, iteration, is incremented.

3. As the last pass through the while loop in step 2 results in the counter iteration being set to
one greater than the number of times the channels are read, iteration is decremented.

4. For all of the channels whose flag has been set to COLLECT the following steps are
performed:

A. The average of the datum are determined. The function get_temp_coeff() is called to
determine the actual temperature.

B. The flag is reset to ACTIVE and the resulting relative time from the start of the run
to the present time, the weight, temperature, and actual date:time are stored to the file
whose name is in filename.

5. The function then returns.

33

get nor_data() -1/2

get_nor_data()

Initialize
data_array[) [],

reset clock, display
screen

/Display channels
/being acquired /

lie end_time >
current time

FALSE

TRUE

Create AI strings to
collect data, accumulate

data into
data_array[] D,

increment iteration

34

get_nor_data() - 2/2

FALSE

Determine average of
data_array[] [] data

get_temp_coeff()

/Output data to
CHANcc.DAT ,

Determine next
acquisition time

f return j

35

FUNCTION get replyO

CALLED BY: do_fast_acq()
do nor_acq()
get_channel dataQ
mainQ

CALLS:

PROTOTYPE: int get_reply(void)

SEE:

This function permits only numeric characters and the minus sign to be input via a cscanfO- If valid
characters are input the function returns the resulting number otherwise a -1 is returned.

36

get_reply() -1/1

get_reply{)

/input -, 0-9,
only /

return integer

return

return -1

37

FUNCTION get_startup_dataO

CALLED BY: start_channel()

CALLS: int get_channel_data(struct channel *channel_data)

PROTOTYPE: int get_startup_data(struct channel channel_data[12])

SEE: get_channel_data()
setup_data()

get_startup_dataQ calls get channel dataQ which prompts the user for the runs starting parameters.
It also sets the channels flag to ACTIVE and writes the following starting parameters to CHANcc.DAT:

Filename
Channel data as numeric day, month, year, text day
Comment, up to 60 characters
Type of thermocouple
fast_delta_t
fast_total_time
fast_delay_time
nor delta_t
nor total_time
start time
end_time

These 11 items are the FIRST records written to the data file. They may be used by setup_data() or for
reference when analyzing the data.

The functions performed are as follows:

1. As long as the data is incorrect:

A. get channel dataQ is called. If it returns a -1, indicating the user did not want to
proceed get startup_dataQ returns to start channel() with a -1.

B. Otherwise, the keyboard input buffer is cleared and the user is prompted to accept the
data as correct.

2. If the data was correct from step 1 it is then written to the file specified in filename.

3. The function returns the channel number.

38

get_startup_data() 1/1

get_startup_data()

Prompt for
?correct dat

/ Store all
/startup data in

CHANcc.DAT ,

return channel
number

39

FUNCTION get_temp_coeffO

CALLED BY: do_fast_acqQ
get_nor_data()

CALLS:

PROTOTYPE: float get_temp_coeff(float TC_volts, char TC_type)

SEE: get_temp_coeff()

The actual temperature is calculated by this function for a specified type of thermocouple. The permitted
types are E, J, K, R, S, T. Other types may be easily added, probably even Don could do this. The function loads
an array, TC_datant], with coefficients for a 9th order polynomial. This polynomial is used to determine the
temperature from the voltage readings of the 3497A, channels cc+20. The data for all but one of the
thermocouples is taken form the OMEGA TEMPERATURE HANDBOOK", copyright 1988, see the program
listing. The one exception is the type R thermocouple for the temperature range 1000-1760 degrees Celsius.
These coefficients were determined by specifying the millivolt/temperature pairs over the range 900-1760 degrees
Celsius in 10 degree increments starting with 900 degrees. Again the data were taken from the afore mentioned
reference. These ordered pairs were input to "SIGMAPLOT" and the coefficients for a third order polynomial
were determined. The determined regression value for these data was 1.00000.

Input data to these equations MUST be in VOLTS. Also note that all calculations and variables are
specified as type double due to the required precision of the coefficients.

The function does the following:

1. An index into the array TC_array[J [J is determined based on the type of thermocouple and
the temperature range in the case of the R thermocouple.

2. A 9th order polynomial uses the determined coefficients to calculate the temperature.

3. The temperature is returned as a type cast float variable.

40

get_temp_coefT() -1/2

get_temp_coeff()

Initialize temperature
equation coefficients in

declaration section

© 0

get_temp_coeffO - 2/2

© 0

case S: TC index
= 5~

B

^̂I i

case T: TC index
= 6~

Calculate temperature

| return]
I temperature I

42

FUNCTION mainO

CALLED BY:

CALLS: void disk_opns(void)
void do nor_acq(void)
void end_channel(void)
void make_menu_display(void)
void make_solid_box(int lower_left_x, int lower_left_y,

int upper_right_x, int upper right_y,
int FILL_COLOR, int BOR~DER_COLOR)

int reset_3497A(void)
void setup_data(void)
void start_channel(struct channel *channel_data);

PROTOTYPE: void main(void)

SEE:

General considerations are:
1. The program can handle 12 apparatuses or channels. The channels are numbered from 0 to 11.

2. The program synchronizes the 3497A clock to the CPU clock. The primary reason for this is
that the 3497A clock will lose its time after a power outage of about 24 hours. Therefore, with
the automatic startup feature incorporated in this system, the 3497A clock may be reset after
any length of power shutdown. This enables the program to pick up right where it left off.

3. Time for the acquisition process is measured in seconds since 1 January 1970. The reason for
this is that this greatly simplifies the determination of start, collection, and ending times as all
times are in seconds. A consequence of this is that one does not have to be concerned with
time changes at midnight, e.nd of month, and end of year.

4. All acquisitions are started and stopped by a fast acquisition. The characteristics of each being
the same except as noted for fast_delay_time below.

The mainO function is the data acquisition controlling function which performs the following actions:

1. Initializes the 3497A by insuring its dock is in sync with the CPU operating the
program. In addition, immediately before any data is acquired another clock sync is
performed. The CEC EEEE-488 board is initialized, see the CEC manual.

2. The array of data structures, channel_data[12], is set to default values. The meaning
of the individual fields are:
flag - May have three values, INACTIVE, ACTIVE, and COLLECT. The first value indicates
that no acquisition is to be performed on the specified channel. If the channel is ACTIVE or
COLLECT then data will be collected for any channel whose collection time is due or past due.
fast_delta_t - Time between fast acquisition samples in seconds. Minimum time is 10 seconds,
default is 30 seconds. The actual length of time data is collected is (fast delta_t - 2).

43

fast_total_time - TotaJ length of time allowed for fast acquisition, in minutes. Minimum time
is 1 minute, default is 15 minutes.
fast_delay_time - The length of time, in minutes, from the start of the fast acquisition process
before a digital output signal is set. This signal may be used to raise the furnace. Likewise this
delay time is used to lower the furnace. In which case it is the time in minutes before the run
termination when a digital output signal is reset. This may be used to lower the furnace. The
default delay time is 1/3 of the fast_total_time.
nor delta_t - Time between normal acquisition samples in minutes. Minimum time is 1 minute,
default is 6 minutes. The length of time data is collected is 30 seconds.
nor_total_time - Total length of time allowed for fast acquisition, in hours. Minimum time is
1 hour, default is 1 hours.
next_time - The time for collection of the next normal acquisition sample. This time is specified
in seconds since 1 January 1970.
end_time - The time for termination of the acquisition for the channel. This time is specified
in seconds since 1 January 1970.
start_time - The time the acquisition for the channel started. This time is specified in seconds
since 1 January 1970.
filename * Filename for the collected data in the form CHANr.DAT. Where x is the channel
number.
comment - Up to 60 characters of any comments may be entered. Default is a NULL string.
chan_date - The date and day, spelled out, the channel acquisition was started.
TC - The type of thermocouple used in the acquisition process. Type R is default. The only
permitted types are E, J, K, R, S, and T.

2. The file NORMAL is checked for. If it is present it signifies that the program was terminated
in an orderly fashion, option E on the main menu. Further, NORMAL is deleted. If the
NORMAL is not present at startup this indicates an abnormal shutdown and the function
setup_data() is called to reset all channel parameters to their original values prior to shutdown.
All of the requisite data is stored in the files CHANx.DAT by get_startup_data() upon channel
startup.

3. An assembler routine is used to insure the keyboard buffer is clear.

4. The program simply waits in a loop for a key to be struck or for SRQ to be asserted. If SRQ
is asserted, it is cleared by an spoil then a normal acquisition is performed. If a key is pressed
it is serviced depending on the key pressed. In any event, the function associated with the key
is performed before another normal acquisition.

5. Correct responses to the master menu are either D/d, E/e, S/s, or X/x. The first case results
in a disk operation by disk_opnsQ- The second case is used to start the acquisition process for
a channel. The third case is used to terminate a channel. The last case provides an orderly
shutdown of the system. This is critical with regard to 2 above. If none of the above keys are
struck then the default option is performed indicating an error and requesting reinput of data.

44

mainO -1/2

mainO

Initialize the
3497A. IEEE-488

Set all channel
defaults

NO
>B setup_data()

Xfor i=foreverX-

Display initial
menu, clear keyboard

buffer, and set
correct to FALSE

lie corr
answer menu
response

Reset answer to
correct

Do an spoUO,
do nor acq(),
an3 redisplay
main menu

45

mainO - 2/2

0- /

/Input menu
response

(selection)/

case D/d:
disk_opns()

case E/e:
•end channel()

case S/s:
start channel(}

case X/x:
system_shutdown()

default:
If an invalid option
say so, delay 1 sec,
specify correct is
FALSE and return to

main menu

46

FUNCTION make_menu_display()

CALLED BY: main()

CALLS: make_solid_box()

PROTOTYPE: void make_menu display(void)

SEE:

The main menu display is prepared by this function. Don's favorite text font, GOTHIC, is used to title
the screen. The menu options are presented and finally the active channels are displayed. Additional options may
be added by expanding the box created in step 2 below.

The function:

1. Initializes the graphics system.

2. Outputs the solid box for the options, displays the screen title, then enters the options in the
box.

3. The user prompt for an option selection is displayed.

4. Finally, all channel's flags are scanned to determine which channels have been activated, flag
! = 0, and these channel numbers are displayed.

47

make_menu_displayO -1/1

make_menu_d j splay()

Initialize
graphics system

/D

/

isplay menu

.Display menu
'options and /

prompt /

48

FUNCTION make solid boxQ

CALLED BY: do_fast_acq()
do_nor_acq()
get_nor_data()
mainQ
make_menu_display()

CALLS:

PROTOTYPE: void make_solid_box(int lowerjeftjc, int lower_left_y,
int upper_right_x, int upper_right_y,
int FILL_COLOR, int BORDER_COLOR)

SEE:

Uses the ANSI C function fillpoIyO to create a polygon, rectangle filled with FILL COLOR and having
a border of color BORDER_COLOR. The polygon is initialized form the parameter list.

No flowchart displayed.

49

FUNCTION reset 3497AQ

CALLED BY: do_fast_acq()
do_nor_acq()
get_nor_data()
mainQ

CALLS:

PROTOTYPE: int reset_3497A(void)

SEE:

Reads the current time from the CPU using the ANSI C function localtimeO- The ANSI function
strftimeO is used to create a time string which is sent to the 3497A with a TD command to reset the 3497A
dock. The primary reason for using the CPU clock is that it will, typically, be more stable in terms of battery
life than the 3497A batteries. Past experience has shown that if the 3497A is powered off for over 24 hours that
it will lose its time. This requires the operator to manually reset the clock.

No flowchart displayed.

50

FUNCTION setup dataQ

CALLED BY: mainQ

CALLS: void activate_relay(int which_channel)
void do_nor_acq(void)

PROTOTYPE: void setup_data(void)

SEE: do_nor_acq()
get_startup_dataO
startupQ - separate program

In the event of an abnormal termination the startup data written to the file(s) CHANcc.DAT is read
back into channel data[]. A normal acquisition is started and the acquisition continues. Channels are restarted
with a fast acquisition if the current time is less than Regardless of the duration of the shutdown, upon a restart
via this function all channels are restarted with a normal acquisition via do_nor_acq(). This means that if a
channel had just completed a sampling and the power failed for a brief period of time then the next normal
acquisition time would be relatively close to the previous acquisition time.

1. The function checks for the existence of all channels files of the type CHANcc.DAT. For each
of these files the initialization data, see get_startup_data() is read into channel_data[].

2. The furnace is reactivated. It should still be in the up position unless the failure occurred before
the delay_time on startup or after the delay_time on termination. In these latter two cases the
furnace is raised, and in the last case it will be lowered during the termination of the channel
when do nor acqO is called.

3. do_nor_acq() is called to restart the channels.

No flowchart displayed.

51

FUNCTION start channcIQ

CALLED BY: mainQ

CALLS: int get_startup_data(struct channel channel_data[12j)
void do_fast_acq(struct channel channel_data[12], int channel)
void do_nor_acq(void)

PROTOTYPE: void start_channel(stnict channel *channel_data)

SEE:

1. It first calls get_startup_data() to get the channel to be started.

2. If the returned channel is -1 the function returns to main() which redisplays the main menu.

3. If a valid channel is returned first do_fast_acq() is called then do nor_acqO is called.

4. After step three the function also returns to main().

52

start channelQ - 1/1

start_channel()

which_charmel =
get_startup_data()

FALSE

do_fast_acq()

do_nor_acq()

f return 1

53

FUNCTION system_shutdown()

CALLED BY: mainQ

CALLS:

PROTOTYPE: int system_shutdown(void)

SEE: mainQ

system shutdown 0 is used in response to option X/x of the main menu. It provides an orderly method
of terminating the acquisition program. If this option is not used the file NORMAL will not be created leading
to possible problems the next time the system is started. It also insures that the system cannot be stopped if ANY
channels are active. All channels must be terminated via option E/e of the main menu before this function will
terminate the system.

1. The graphics system is first initialized and the variable result is set to 0, indicating a possible
shutdown.

2. All channel's flag is checked to determine if any channels are active. If any channel is active
result is set to 1.

3. If result, from 2 above, is still 0 and additional prompt is output to insure that the operator
wants to terminate the system. If so the function returns 0.

4. If result was set to 1 the function do_nor_acq() is called then the system returns to the main
menu with a 1.

54

system_shutdown() -1/1

system_shutdown()

)r

Initialize graphics
system, result = 0

TRUE

Repeat question to terminate,
if YES result = 0 and create
file NORMAL, if not return to

main menu

55

FUNCTION terminate channcIQ

CALLED BY: end_channel()
do_nor_acq()

CALLS:

PROTOTYPE: void terminate_channel(int channel)

SEE: do_fast_acqQ

terminate_channelO is used to stop data acquisition either manually, via end_channel() or when its time
is expired, via do_nor acqQ-

channel_data[].flag is first set to INACTIVE and a fast acquisition is performed. A fast acquisition
terminates all channels in the same manner as start up. After this final data is stored in the file as specified in
channel data [].filename. This file is renamed according to the following:

CHcchhmm.DAT cc - The channel number, a one or two digit number
hh - Hour of termination, 24 hour clock,
mm - Minute of termination

This scheme insures unique channel names UNLESS, a channel is stopped at precisely the same time as a
previous acquisition was stopped. It was assumed this was a remote possibility. Also as the channels are going
to be dumped to a diskette on a periodic basis any previous channel with the same name will be retained on
another diskette. It is incumbent for the apparatus operator be aware of this potential disaster and store data
on a periodic basis on floppy diskettes. In addition, on a periodic basis all data files, files ending in a DAT,
should be purged from the hard disk. This would be done by returning to the DOS system and manually deleting
these files.

The final action of this function is to reestablish the channel default values so the channel may be used
for another acquisition.

This signal is used to raise the furnace for the apparatus in accordance with fast_delay_time as discussed
in mainQ-

56

terminate channel() - 1/1

ternrinate_channel()

Set flag to
INACTIVE

do_fast_acq()

Rename channel to time
stamped filename

Reset channel with
default values

return

57

PROGRAM STARTUP.C

58

FUNCTION startupO

CALLED BY:

CALLS: void main(void) - via execv()

PROTOTYPE: void startup(void)

SEE: SYSTEM OPERATION section

startupO is used to restart execution of mainQ in the event of an abnormal termination. Its execution
is started by placing the file name in the AUTOEXEC.BAT file.

1. It displays a prompt to input an a/A.

2. If no response occurs within IS seconds main.exe is started via an execv().

3. If a/A is entered within 15 seconds, again main.exe is started via an execv().

4. If any other key is entered the system returns the user to the DOS prompt in the working
directory.

59

startupO - 1/2

startup

Prompt to start/
return to DOS /

)r

Determine end
of 15 second
• time

FALSE

a/A> >/return (to

© 0

60

startupO - 2/2

© © 0

[execv(main) j

If time is >
ending time

61

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden lor this collection of information Is estimated to average t hour per response. Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor information OpensSons arid Reports, 1215 Jefferson
Davis (Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01 SB). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1991
3. REPORT TYPE AND DATES COVERED

Final Contractor Report

4. TITLE AND SUBTITLE

Isothermal Thermogravimetric Data Acquisition Analysis System

6. AUTHOR(S)

Kenneth Cooper, Jr.

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Transylvania University
Brown 315
Lexington, Kentucky 40508

PERFORMING ORGANIZATION
REPORT NUMBER

E-6474

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-187171

11. SUPPLEMENTARY NOTES

Project Manager, James L. Smialek, Materials Division, NASA Lewis Research Center, (216) 433-5500.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited
Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum ZOO words)

The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of
software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++.
The hardware consists of a 486/25 MHz machine with a Capital Equipment Corporation IEEE488 interface card. The interface is to a
Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for
16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is
done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during
shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering)
is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial
runs were conducted to demonstrate system stability. Extensive parameter variation between runs, many simultaneous runs, simulation
of power outages have demonstrated system stability and reliability under a variety of operating conditions. This system has unproved
on the prior one in these main areas:
A. Recover from abnormal termination conditions with no loss of data.
B. Preprogramming all phases, allowing unattended startup and shutdown of a run.
C. Ease of operation - utilizing disk based systems as opposed to a tape based system.
D. Ready availability of data during a run.

14. SUBJECT TERMS

Thermogravimetry; Metal oxides; Oxidation; Data acquisition

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

64

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, Ohio 44135

Official Business
Penalty for Private Use $300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

NASA

