
.
. ~

NASA Contractor Report 187605

ICASE Report No. 91-59 NASA-CR-187605
19910021435

\~----------

leASE
ASYNCHRONOUS AND CORRECTED-ASYNCHRONOUS
NUMERICAL SOLUTIONS OF PARABOLIC PDES
ON MIMD MULTIPROCESSORS

Dganit Amitai
Amir Averbuch
Samuel Itzikowitz
Eli Thrkel

Contract No. NASI-18605
July 1991

LIBRARY COpy
SEP I 81991

UNGLEY RESEARCH CENTER
UBRARY NASA

HAMPTON VIRGINIA

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Vrrginia- 23665-5225

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

langley Research Center
Hampton, Virginia 23665-5225

In
- D -n,." OR q 1', t~ ':":'"R:r.-"i\YCE .. ~ ... "0--" -.. ..t-: 1. ~ ~ ,I '.,

IrOT TO BE .,_.,
TA,·.£-... FRol' .. < -HIS '"

'. • '100)4'

, 11\\111\1 \1\\ IIII \\111 \\111 1\\1\ 1\1\1 11\1 1\\1
'\ NF00791
L

ASYNCHRONOUS AND CORRECTED-ASYNCHRONOUS
NUMERICAL SOLUTIONS OF PARABOLIC PDES

ON MIMD MULTIPROCESSORS*

Dganit Amitai t
Amir A verbuch t

Samuel Itzikowitz +t
Eli Turkel h

t Department of Computer Science

:j: Department of Applied Mathematics

School of Mathematical Sciences

Sackler Faculty of Exact Sciences

Tel-A viv University

Tel-Aviv 69978, Israel

ABSTRACT

A major problem in achieving significant speed-up on parallel machines is the overhead

involved with synchronizing the concurrent processes. Removing the synchronization con

straint has the potential of speeding up the computation. We present asynchronous (AS)

and corrected-asynchronous (CA) finite difference schemes for the multi-dimensional heat

equation. Although our discussion concentrates on the Euler scheme for the solution of the

heat equation, it has the potential of being extended to other schemes and other parabolic

PDEs. These schemes are analyzed and implemented on the shared-memory multi-user

Sequent Balance machine. Numerical results for one and two dimensional problems are pre

sented. It is shown experimentally that synchronization penalty can be about 50% of run

time: in most cases, the asynchronous scheme runs twice as fast as the parallel synchronous

scheme. In general, the efficiency of the parallel schemes increases with processor load, with

the time-level, and with the problem dimension. The efficiency of the AS may reach 90%

and over, but it provides accurate results only for steady-state values. The CA, on the other

hand, is less efficient but provides more accurate results for intermediate (non steady-state)

values.

* A reduced version of the paper was presented at the Fourth SIAM Conference on Parallel Processing for
Scientific Computing, December 11-13, 1989, Chicago, USA.

tThe work by this author was supported by Research Grant 337 of the Israeli National Council for
Research and Development.

tThis research was supported by the National Aeronautics and Space Administration under NASA Con
tract No. NASl-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1 Introduction

As parallel machines become more popular, most algorithms used on parallel machines

still rely heavily on synchronizing the concurrent processes. There is an inherent inefficiency

in the synchronization requirement, which is two-fold. First, a fast processor is delayed until

the slowest processor finishes. Thus, the pace of the algorithm is dictated by the slowest

processor. There are various reasons why certain processors will be ahead of the others, even

when they are physically configured at the same speed.

• Random noise
Any unpredictable perturbation that can cause a momentary delay.

• Multi-user environment

In such an environment many tasks are simultaneously assigned to each processor.

Since a single processor can be used for any of those tasks at any particular time, we

cannot predict how much will be devoted for the computation of our algorithm.

• Master/Slave
In such an environment one processor, the master, is doing additional tasks to those

performed by the other processors for example, i/o operations, scheduling or load

balancing tasks. Therefore, it may be slow in performing our algorithm.

• Load Balancing
In many problems it may be logical to divide the problem unequally among the proces

sors due to different boundary conditions or approximation schemes that are used. In

general the partition of nodes among processors is dictated by numerical and physical

considerations rather than just by computer architecture considerations. This extends

the duration of an iteration for those processors that are assigned to do more work and

therefore those would be slower than the others.

Second, there is a delay period associated with the synchronization mechanism itself

whether it is setting the semaphores in a shared memory environment or waiting on a message

to arrive in a message-passing environment, or any other possible implementation (i.e. when

possible, setting a time bound on the duration of an iteration, so that the next iteration

starts only after this time bound is exhausted). No matter what implementation is used,

a slow communication channel slows the progress of the entire computation. Moreover, in

some situations synchronization may cause contentions over communication resources and

1

memory access, that require careful implementation using additional mechanisms such as

locking.

A particular case where tasks are to be repeated is that of iterative computation. Numer

ical properties of iterative solutions to PDEs are usually based on the assumption that the

iterations are synchronized. This is equivalent to assuming that the algorithm is governed

by a global clock so that the start of each iteration is simultaneous for all processors. In

implementing a synchronous algorithm in an inherently asynchronous architecture a synchro

nization mechanism is used in order to guarantee the correct execution. This considerably

degrades the efficiency of those algorithms. An asynchronous algorithm can potentially re

duce the synchronization penalty since each processor can execute more iterations when it

is not constrained to wait for the most recent results of the computation in other processors.

In addition, asynchronous algorithms eliminate the programming efforts involved in setting

up and debugging the synchronization mechanism and also simplify the task management.

The usage of asynchronous iterations for an iterative solution of systems of linear equa

tions, is due to [6]. Asynchronous Iterative Methods for Multiprocessors are also discussed

in [4], and are used for the solution of ordinary differential equations by [11]. In this paper,

we present an asynchronous iterative methods for the solution of partial differential equa

tions. These methods are based on Euler explicit finite difference schemes. In Section 2 we

present the parabolic PDE which will serve as our model problem, the corresponding finite

difference scheme and its asynchronous parallel modification. Section 3 analyzes our asyn

chronous scheme and determines the conditions under which the asynchronous iterations

work. To compensate for the inaccuracy of non steady-state values of this asynchronous

scheme, we propose and discuss in Section 4 the corrected-asynchronous scheme, that while

still being asynchronous, performs some extra extrapolation calculations. Numerical results

are presented in Section 5. Finally, our results are summarized in Section 6.

2 The Problem and its Asynchronous Solution

We demonstrate our approach for asynchronous solution on the multi dimensional heat

equation. The same approach can be extended and generalized to other types of problems.

For our model problem we consider the simplest parabolic equation, the heat equation in

d-variables,

(1)
au d a2u -=Ea2

-at 8=1 8 aXs2

in a rectangular domain, with accompanying initial and boundary conditions, where a~

(1 :::; s :::; d) are constant positive coefficients. For our model problem we consider Dirichlet

2

,

~ ~
~ ~
,~ ~
~ ~

~ ~ ~ ~
1-1 1 HI p,:

S2(t)

+1
f(x)

Figure 1: Model problem - Domain discretization

boundary conditions. However, other conditions are equally applicable. A one dimensional
model problem is,

with initial condition,

au 2a2U
- - a - for 0 < x < 1 0 < t ::; T at - lax2

u(x,O) = f(x)

and Dirichlet boundary conditions,

u(O, t) = 91(t)

u(l, t) = 92(t)

where a~ is a constant positive coefficient.

After discretizing the domain (see Fig. 1) we approximate Eq. (1) at grid-point (Xi, tn)
by the forward Euler finite difference approximation:

(2)

where, rs = (~~~)2 1 ::; s ::; d are held as constants; i (1 ::; i ::; p) denotes the index of

the spatial coordinate X of a particular grid point; d denotes the dimension of the problem;

and the operator 8; denotes a central difference in the direction of s.

The one dimensional version of this scheme is,

where, r = (~~; is held constant, and the values of v? (1 ::; z ::; p), va, and v;+1 are
determined by the initial and boundary conditions, respectively.

3

It is well known that the scheme of Eq. (2) is stable if

(3)

Although the following discussion concentrates on the Euler scheme for the solution of the

heat equation, it has the potential of being extended to other schemes and other equations.

In this paper we only consider the simple scheme (2). Extensions to other explicit schemes

are straightforward. We emphasize in this study the analysis of asynchronous schemes.

Comparisons for ADI schemes will be performed in a work in preparation.

2.1 Asynchronous (AS) Model

We now present the model of asynchronous iterations to the numerical problem described.

The definition of chaotic iteration was presented in [6]. The formal definition of asynchronous

iteration presented below is a modified version of what is discussed in [4], [7], and [11].

Definition 1 Let Fi be a computational task to be done on the ith component of a given

vector it, taking as its arguments components of it in the neighborhood of i. Asynchronous

iterations (F, it, J, A) corresponding to these tasks and starting with a given vector, UO, are

a sequence of vectors defined recursively by:

(4)
{

n
n+l Ui

ui = D.(ni+d(l,i,n) n+d(2,i,n) n+d(L,i,n))
£, Ul ,U2 '''',UL

if i rt I n

if i E I n

where, n is a global value of an itprntion level, it = (Ul, ... , UL), F = (FI , ... , FL) , J =

{Jnln = 1,2, ... } is a sequence of non-empty subsets of {I, ... , L}, A = {At, ... , Ad, and

Ai is a sequence of elements in ~L, Ai = {(d(l,i,n), ... ,d(L,i,n))ln = 1,2, ... } Vi =

1, ... ,L.

No assumptions are made on the relations between the calculations of the grid points,

except a non-starvation condition which guarantees that the ith grid point is updated an

infinite number of times, i.e i occurs infinitely often in the sets I n . This means that no point

is abandoned forever, and consequently, no processor is held forever executing the same

iteration. Synchronous iterations are obtained from this model when d(k, i, n) = 0 Vk, i, n.

A single or several grid points may be assigned to each processor of a MIMD machine with

p asynchronous processors. For simplicity also assume that values stored by each processor

are available to the rest by means of a shared memory. Yet, with some minor modifications

this model is equally applicable to message-passing architectures, where in fact, the overhead

of synchronization is more significant.

4

Let us now take the local point of view and consider the ith grid point which is assigned,

perhaps with some of its neighbors, to a specific processor. We present the following modified

asynchronous difference equation for the multi-dimensional heat equation:

(5)

Here, ni denotes the last completed iteration at the ith grid point and b;uii is a central

difference of the value of Ui at the n!h iteration, using the most recent available values of the

neighboring points. In the sth coordinate direction the neighboring values are denoted by
ni+a7i ni+.a?i .

ui-1. • and ui+1. • , respectIvely.
The values of a~i and f3~i correspond to the delay or advancement of the iteration number

of the neighboring grid point along the s-coordinate axis, relative to the ith grid point, when

evaluating its (ni + 1)th iteration.

For example, in one dimension we obtain

h a2~t were, r = (~x)2'

For our analysis we require a and f3 to be bounded, i.e. no node falls infinitely behind

its neighbors. We note that for each iteration, a and f3 are functions of i, the number of the

processor, and not of x. Hence as we add more intermediate points, the difference between

the adjacent iteration levels does not approach zero.

3 Analysis of the Asynchronous Scheme

Lemma 1 When a and f3 are bounded, the asynchronous finite difference approximation Eq.

(5) is consistent with the following heat equation:

(6) ~~ = J«i, t)V . [Vu]

where, K(i, t) = Ld 1 , and rs = (~;~)t2 are constants.
1- .=1 r.[a.(.i',t)+.a.(.i',t)) X.

Proof: Taylor series expansion of Eq. (5) yields,

+ [L~=lrS(a;i + f3: i)](uii
+1 - ui i

)

(7)
, y ,

original scheme perturbation

+O[(~t)2 + L~=l (~t)(~Xs)]
. Thus,

5

approximates Eq. (6) with truncation error of O[(~i) + I:~=1 (~xs)] .•
The coefficient, I<, in Eq. (6) depends on as and f3s and thus can become negative. It

is well-known that the multi-dimensional heat equation Eq. (6) is well-posed for a positive

coefficient, I< > 0, and can be ill-posed for a negative coefficient. Thus, a sufficient condition

for well-posedness is 1-I:sr s(as + f3s) > o. Consequently, for the special case where r s = r V s
and r ~ 2

1
d we obtain, I:s(as + f3s) < 2d. However, this leads to a severe restriction on a and

f3 so the scheme is not completely asynchronous. A weaker condition for the well-posedness

of Eq. (6) can be set, requiring positiveness only in some average sense.

Lemma 2 A sufficient condition for the well-posedness of Eq. (6) for large times when

is

for t large

Proof: Assume I«i, t) satisfies, I<1(i) ~ I«i, i) < I<2(t) Vi. Using separation of

variables we obtain a general solution to the equation Vt = I<1 (i) \1 . [\1 v] :

v(i, i) = l::=1 Ane->.nP(t)<Pn(i)

where, P(i) = I~f{I(e)de and \1. [\1'Pn] + A'Pn = O. 'Pn(i) are the appropriate eigenfunctions

of the steady-state equation with eigenvalue An > o. Accordingly, Vt = I<2(i)\1 . [\1v] has a

solution

v(i, i) = 2::=1 Bne->'nI~K2(e)de'Pn(i)

For the one-dimensional case we obtain, An = n2 > 0 j <Pn(x) = sin(mrx) and for two

dimensions, An = n2 + m2 > OJ 'Pn(x,y' = sin(mrx)sin(m7rY).

For large times only the first mode 'PI (i) is important. In this case the equation is

reducible to an ordinary differential equation and hence

Thus, sufficient conditions for u to converge to a steady-state are:

1. P(i) > -0 Vi for some 0

6

P(I}

Figure 2: Well-posedness

A possible way of achieving convergence is restricting f{ > 0 at the beginning. This ensures

that P(t) is initially positive (see Fig. 2). If condo 2 is not true and P(t) is negative for

some t, then
\7 . [\7v] = -2::=1).2 Ane>.nP(t}c.pn(x)

may not converge. To enforce condo 2 we can start synchronously and only later let the

processors run asynchronously. Another possibility in case P(t) becomes negative, P(t) >
-8 'Vt, is to filter the initial conditions, to damp the high frequencies

and An satisfies condo 2, e.g An = Ane-xn for n > N .•

Lemma 3 The asynchronous finite difference scheme Eq. (5) is stable for

d 1
O<2: rs ::;2"

s=1

Proof: Assume that the ni th iteration of the ith grid point had been completed and its next

iteration is currently being performed (see Fig. 3). Since (3) is valid, then the absolute

values of the coefficients of U values on the right hand side of Eq. (5) sum to 1.

ni+c/'i ni+,oni
luii+11 ::; max{luiil, lUi-I, "1, IUi+l. "1 11::; s ::; d}

Using the last inequality recursively by backtracking the origins of each relevant grid point,

we finally reach the initial values, thus

IU~i+11 ~ maxjlu~1

•
By lemma 1, lemma 3, and the Lax Equivalence Theorem the scheme is convergent in

the maximum norm. (We also note that this proof applies to any scheme for which all the

coefficients are between 0 and 1. For parabolic type of equations, higher order schemes can

be constructed with this property.) Hence,

7

Iteration

counter
1\ ••
l

. .
:.. ..-. . . .

~···1""

r
j-I Processor

Figure 3: Stability analysis - processors status

Lemma 4 The asynchronous finite difference scheme is convergent to Eq. (6), under the

same restrictions as Lemma 3.

This approach for proving the convergence of the AS scheme was separately derived and

used by the third author in the paper [1], and it was presented in the [10].

Assume now that the solution of the asynchronous scheme in Eq. (5) had been completely

evaluated up to a time level T = N t1t, and it is now interpolated into a smooth function

w(x, t) over the entire region under discussion. We denote by v the discrete solution of the

synchronous solution of Eq. (2) and assume that both wand v are satisfying the required

boundary and initial conditions. Let ci be the difference between them at an interior grid

point Pi for a global value of n;

(8) c"!- = w"!- - v"!-, , ,

and let,

be the corresponding difference vector, in some specific order, associated with all interior

spatial grid points Pi (1 ~ z ~ J) at the same global time level t = nt1t (n < N). In

addition, let

n 2:~=1 rs
Ii =

1 - 2:~=1 rs(a~ + f3~)
(9)

where a~ and f3~ are the corresponding delays or advancements d(k, i, n) in Eq. (4) of the

neighbors of the ith grid point along the s-coordinate axis, while wi+! had been evaluated.

Then we can prove the following lemma which bounds ci, given a specific grid spacing.

8

Lemma 5 If a and (3 are bounded by M and

(10) O n 1 <"Y. <
It - 2 Vi,n

then for ntlt :5 T

n-l
(11) I/C:<n)I/oo :5 M E m~x Ivr+! - vrl + T . O[(tlt) + E(tlxs)]

k=O t s

Remark 1 The last inequality should be read as follows: there exists a constant R (which

is, in fact, the bound on the second-order derivative of w(i, t)) such that

n

"C:<n+!)" :5 M E m~x Ivr+1
- vfl + R· T[(tlt) + E(tlxs)]

k=O 1 s

for all sufficiently small tlt and tlxs (1 :5 s :5 d). Note that R depends on w(i, t), which in

turn depends on the mesh spacing.

Proof: Using the Taylor Theorem of the Mean and neglecting terms of O[(tlt)2+ Ls(tlxs)(tlt)]

we obtain from Eqs. (5) and (8),

(12)

in which ci:.l. and ci+!. denote the difference values at the neighbors of the ith grid point
along the s-coordinate axis. In a matrix form one obtains,

(13)

In Eq. (13) A(n) is a (2d + I)-diagonal matrix with main diagonal terms of the form

1 - 2L:~=lrs - L:~=lrs(ai. + (3~)
1 - L:~=lrS(ai. + (3~)

and d additional diagonals on each side with terms of the form

1 - L~=l rs{af. + ;3i~)

while §'n) is a vector whose components are given by

(14)

9

Following is an example of a 9 x 9 matrix, corresponding in some specific order to a 3 x 3

interior grid, for the two dimensional problem:

!=5..t ..2:L!l...-
1-111 1-111 1-111

..2:L 1-6 ..2:L!l...-
1-"2 1-"2 1-"2 1-"2

..2:L !=ll!l...-
1-113 1-113 1-113

....!l...- l-e4 ..2:L!l...-
1-114 1-114 1-114 1-114

....!l...- ..2:L ~ ..2:L!l...-
1-115 1-115 1-115 1-115 1-115

....!l...- ..2:L 1-$6!l...-
1-116 1-116 1-116 1-116

....!l...- 1-$7 ..2:L
1-117 1-117 1-117

....!l...- ..2:L 8a. ..2:L
1-118 1-118 1-118 1-118

....!l...- ..2:L l-e9

1-119 1-119 1-119

c;n
1 c;rl

c;n
2 c;r2

c;n
3 c;r3

e<n) = c;~ C:~1
C;s - C: 22

c;n
8 C;~2

c;n
9 C;~3

where c:ij is the error of the grid point at the ith row and the ph column at the nth time level.

It follows from Eq. (10) that all the elements of A(n) are positive and that IIA(n)lIoo = 1.

Since e<O) = 0, we obtain from Eq. (13) that
n

(15) lIg{n+l) 1100 :::; L IIg(k) 1100
k=O

In addition, Ed 1 (n n) = EJI so that,
1- ,=1 r, OI i , +.8i , .=1 r.

1 E~=lr8(ai.+f3~) 1< If l~r(ar:+f3!l)1<2M"V!l
1 ~d (n f3n) - ~d L..J 8 t. t, - It

- L-8=1 r 8 ai, + i. L-s=1 r 8 8=1

Then (11) follows from the last inequality, from Eq. (10) and from Eq. (15) .•

Note from Eq. (12) that in the steady-state case when vi+1
- vf --t 0, 1Ic:(n) 1100 does not

increase as n --t 00, neglecting terms of O[(~t)2 + E8(~X8)(~t)l.

4 Corrected-Asynchronous (CA) Scheme

We have shown that the asynchronous iterations are consistent with a PDE that is

different than the original one. Consequently, time accuracy is lost. This suggests that if we

10

apply a correction during each iteration we can improve our approximation, without requiring

explicit synchronization. For each processor we now require an extra variable that will serve

as an iteration counter for that processor. The correction we apply is an extrapolation based
on those variables.

Hence, we construct a modified equation whose asynchronous approximation is time

consistent with the original Eq. (1) by subtracting the perturbation term of Eq. (7),

where, 8; denotes a central difference in the space coordinates, with each point in its own

completed time level. Thus, our Corrected-Asynchronous (CA) scheme is:

(16)

provided that,

(17)

Lemma 6 If a~i and f3~i are bounded \In, i, s then the Corrected-Asynchronous approxima
tion Eq. (16) is consistent with Eq. (1).

Proof: Using the Taylor Theorem of the Mean we have,

Substituting in Eq. (16) we obtain,

d d

uii+I = uii + L rsb;uii + L O(~xs)O(~t) + O(~t2)
s=1 s=1

or,
U~i+I _ U~i d b2u~i d

, ~t ' =?; (~x:)2 + ?; O(~xs) + O(~t)
Hence the scheme of Eq. (16) is consistent with Eq. (1) .•

Lemma 7 If

(18)

then the CA scheme of Eq.

0< l:srs < ~
1 + " r (a~i + f3!li) - 2

L.Js s '. '.

(16) is stable.

11

l

Proof: Analogous to the proof of lemma 3 .•

By the Lax Equivalence Theorem, lemma 6 and lemma 7 imply that the CA scheme is

convergent, provided that condition (18) is valid.
Condition (18) can be interpreted either as restrictions on a and {3, or as a bound on ra·

Practically, the bounds on a and (3 are determined by various factors as discussed earlier.

Consequently, they impose the above restriction on ra·

Finally, similar to lemma 5, we now show that at a given point of a specific mesh spacing,

the difference between the solutions of Eq. (16) and Eq. (2) is bounded by O[(~t)+ L:a(~xa)],

provided that condition (3) is valid.

Lemma 8 Let

where wi is the smooth interpolation of the CA scheme, Eq. (16), solution and vi is the

solution of the synchronous scheme Eq. (2) both with the same initial/boundary conditions.

In addition, let

be the corresponding difference vector, in some specific order, with all interior spatial grid

points Pi (1 ::; i ::; I) at the same global time t = n~t (n < N). If (3) is valid then for

n~t ::; T

(19) 118(n)1I00 ::; T· O[(~t) + l:(~xs)]
s

provided that (17) holds.

Proof: Along the same lines of the proof of lemma 5 we can show from Eq. (7) that wi
satisfies Eq. (2) with an error of O[(~t)2 + L:s(~Xa)(~t)]. Hence, if (3) is valid then

a

Since 118(0)1100 = 0, by using the inequality recursively, we obtain (19) .

•
5 Numerical Results

We have implemented the above algorithms on the shared-memory multi-user Sequent

Balance [15]. The Sequent systems are commercial multiprocessors, that incorporate identical

general-purpose 32-bit microprocessors and a single common memory. Each processor can

12

execute both user and kernel code. All processors share a single pool of memory, in addition

to their own local memory, to enhance resource sharing and communication among different

processes. Processors, memory modules, and i/o controllers are all plugged into a high-speed

bus. Thus, the Sequent systems fit our model of an asynchronous multi-processor with the

ability to exchange data between its processors via shared memory.

The Sequent systems run the DYNIX operating system, a version of UNIX that supports

a multi-user environment. Therefore the overhead of a single operation cannot be predicted.

For example, task creation on another processor involves allocation of a free processor,

allocation of memory and free entries in system tables, re-mapping, and finally context

switching. The duration of allocations of both processors and memory is unpredictable

as it is effected by numerous factors, although context switching itself takes only a few

hundred machine cycles. As such, the Sequent is an example of a machine where no a priori

assumptions can be made regarding relative speeds of processing.

We investigated a serial (SR) implementation of Eq. (2), a parallel synchronous (SY) ver

sion of Eq. (2), an asynchronous (AS) implementation Eq. (5), and corrected-asynchronous

(CA) implementation Eq. (16).

In our synchronous (SY) version we delay all processors until the last one finishes the

current iteration using a barrier. In this implementation every processor increments a counter

upon finishing the current iteration. While checking the counter it can determine whether

it is the last to finish. If it is, it changes a special hardware managed variable to inform the

other processors that the iteration is finished. If it is not, it waits for a signal from the last

processor. For other possible implementations see [8] and [9].

Note also that our task was simplified since each processor updates only his own specific

values, although it may read some other values. Therefore, there is no requirement for

simultaneous access to update global data. A special mechanism known as locking can be

used in order to prevent such access in cases where the algorithm permits it.

The following parameters were considered:

• .6. x , .6.y - represent the discretization lengths along the x-axis and the y-axis, respec

tively.

• .6.t - represents the discretization length along the t-axis.

• T - The time level to be reached for the given problem. We seek the solutions for

u(x, t) where t ~ T = N.6.t .

• p - The number of processing elements used for the calculation.

• L - The number of' ,., 1 grid points in the considered domain.

13

• T - The clock time elapsed before a specific algorithm completed the calculation of the

given problem.

• e - The maximal error magnitude

• E - The maximal absolute relative error of the numerical result (relative to the analytic

solution).

• scheme - Three types of parallel schemes were used: Eq. (2) (SY - Synchronous), Eq.

(5) (AS - Asynchronous), Eq. (7) (CA - Corrected Asynchronous), and the serial (SR)

version of Eq. (2).

We examined both a one dimensional problem, as well as a two dimensional problem.

The one dimensional problem considered was

with the initial condition,

au a2u
at - ax2

u(X,O) = sin(7rx)

and the Dirichlet boundary conditions,

u(fl. t) = u(l, t) = 0.

The calculated results were compared ,,·ith the analytic result given by

For the two-dimensional problem we examined the following non-homogeneous problem

au a2u a2u
at = ax2 + ay2 + F

where,
F = 57r2 sin(7rx) sin(27rY)

with the initial condition,

u(X,y,O) = °
and the boundary conditions:

u(O, y, t) = ° u(l, y, t) = ° u(x, 0, t) = 0 u(x, 1, t) = 0

The calculated results were compared with the analytic result given, for the steady-state, by

14

T = 2 (e = 10-8) T = 3 (e = 10-9
) T = 4 (e = 10-1°)

P SY AS CA p SY AS CA p SY AS CA
10 0.08 0.1 0.09 10 0.11 0.15 0.13 10 0.13 0.19 0.15
11 0.1 0.12 0.11 11 0.12 0.16 0.14 11 0.14 0.2 0.16
12 0.09 0.12 0.1 12 0.11 0.18 0.15 12 0.13 0.21 0.17
13 0.09 0.12 0.11 13 0.12 0.18 0.15 13 0.15 0.22 0.18
14 0.09 0.13 0.12 14 0.12 0.19 0.16 14 0.15 0.23 0.18
15 0.1 0.14 0.12 15 0.12 0.21 0.16 15 0.15 0.26 0.19
16 0.1 0.15 0.12 16 0.12 0.2 0.16 16 0.12 0.25 0.2

Table 1: Efficiency for the steady-state one dimensional problem with one grid point per
processor; L = p, ~x = t, (t::.~)2 = 0.5

we also considered the homogeneous non steady-state problem

with the initial condition,

u(x, y, 0) = cos(7rx) cos(7rY)

and the following Dirichlet boundary conditions:

u(O, y, t) = cos(7ry)e-2
1r

2t

u(l, y, t) = - cos(7ry)e-2
1!"2t

u(x,O,t) = cos(7rx)e-2
1r

2t

u(x, 1, t) = - cos(7rx)e-2
1r

2t
•

The calculated results were compared with the analytic solution given by

u(x, y, t) = cos(7rx) cos(7ry)e-21r2t

Performance results are shown in Table 1 for the one dimensional problem with one grid

point per processor, and in Tables 2 and 3 for the one dimensional problem with several

points per processor, all for the steady-state problem. In Table 4 we present results for

the two-dimensional non-homogeneous steady-state problem. Non steady-state results are

shown in Table 5 for the one dimensional problem with several points per processor, and in

Table 6 for the two-dimensional problem.

Table 1 presents the efficiency, which is r I by:

Effi
. TSR(l, l)

clency = -
p . Tscheme (p, 1)

15

p T = 2 (e = 10 .~) T = 3 (e = 10 13) T = 4 (e = 10 17)
SY AS CA SY AS CA SY AS CA

2 0.78 0.96 0.53 0.79 0.96 0.53 0.79 0.96 0.53
3 0.76 0.95 0.52 0.77 0.96 0.52 0.77 0.96 0.52
4 0.74 0.95 0.52 0.75 0.96 0.52 0.74 0.96 0.52
6 0.66 0.91 0.51 0.68 0.93 0.51 0.66 0.93 0.51
8 0.6 0.87 0.49 0.62 0.89 0.5 0.62 0.9 0.5
12 0.49 0.77 0.49 0.5 0.8 0.49 0.5 0.82 0.51
16 0.37 0.67 0.41 0.4 0.73 0.44 0.4 0.75 0.44

Table 2: Efficiency for the steady-state one dimensional problem with k points per processor;
p

L = 48, ~x = 0.02128, (:;)2 = 0.5

where TSR(l, L) is the run time of the serial version, solving with its single processor a

problem of L grid points, and Tscheme (p, L) is the run time of the above parallel schemes,

solving the same problem with p processors.

We observe from Table 1 that for several processors (more than 10) the efficiency is 10%

- 25 %. We emphasize, however, that much better preformance is obtained when several grid

points are assigned to each processor, as shown in Table 2. In this case, the efficiency of the

AS scheme reaches about 90% and more, for small number of processors, while the efficiency

of the CA scheme is about 50%. It decreases slightly for the CA, and more significantly for

the AS, as the number of processors increases. For large number of processors, the efficiency

of CA is slightly higher than that of the SY. In most cases, as T increases, the efficiency

of all the parallel algorithms slightly improves. In any case, the AS is the most efficient

scheme to compute a fixed number of time steps. The synchronization penalty is indicated

clearly by Table 3, which shows the run time of the AS and CA schemes relative to the SY

run time. As expected, the AS scheme proves to be the fastest scheme. In most cases it

is almost twice as fast as the SY scheme. The CA scheme is faster than the SY only for

large number of processors, and even then, as was mentioned above, its efficiency is about

the same as that of the SY. In general, as the number of processors increases, there are

more independent entities to synchronize, and there is a better chance for one to delay the

rest. Yet, the effect of this increase is not dramatic if all processors are hardware identical

and are synchronized per iteration and therefore they are executing more or less the same

number of iterations. Note that, the overall system 1o. 'as a direct impact on the execution

of sophisticated system tasks such as synchronizatio; :vices, in multi-users environments

such as the Sequent system. Thus, we may see significant delays as the system is loaded

16

with other tasks. This increases the run time of the SY scheme, as the number of processors

increases and thereby decreases the relative run time of AS and CA, as observed in Table 3.

However, these delays also cause loss of accuracy of the AS and the CA schemes.

" p " A~ = ~A " A~ = ~A " A~ = ~A "
2 0.82 1.49 0.82 1.5 0.82 1.5
3 0.8 1.46 0.8 1.46 0.8 1.46
4 0.77 1.43 0.77 1.43 0.77 1.42
6 0.72 1.31 0.73 1.33 0.71 1.29
8 0.69 1.23 0.69 1.24 0.69 1.24
12 0.63 0.99 0.65 1.0 0.61 0.99
16 0.55 0.89 0.54 0.89 0.55 0.9

Table 3: Run time relative to SY for the steady-state one dimensional problem with L. points
• p

per processor; all parameters are as III Table 2

Results for the non-homogeneous two-dimensional problem shown in Table 4 indicate

similar performance. In this case, we have a non-trivial steady-state. The iterations are
l)U-UA)2. 2

calculated until L IJ < 10- . Again the AS is much faster than the SY and the CA

is at best as fast as the SY.

p pts in Efficiency ReI. Run Time
blk SY AS CA AS CA

2 8 x 16 0.66 1.0 0.60 0.59 1.11
4 4 x 16 0.38 0.645 0.35 0.58 1.09
8 2 x 16 0.22 0.38 0.205 0.56 1.07
16 1 x 16 0.11 0.20 0.10 0.55 1.03

Table 4: Efficiency and run time relative to SY for the 2-dim. steady-state non-homogeneous
. bl . L - 256 A - A - 0 0667 6.t 6.t - 0 5' C I 1 t d t'l / L (Uij-UA)2 pro em, - ,i...l.X - i...l.y -. , (6.x)2 + (6.y)2 - ., a cu a e un 1 v L

< 10-2

The efficiency and the accuracy of intermediate (non steady-state) values are shown

III Table 5. In general, for relatively small times T, the asynchronous scheme provides

the least accurate results. Therefore, the asynchronous scheme should be applied only to

steady state problems. Note that unlike synchronous iterations that steadily converge, the

convergence of asynchronous iterations may not be monotone, thus affecting the stopping

criteria. The efficiency of these schemes, however, decreases as the number of processors

17

increases. Then, the overhead of initiating another processor becomes more significant than

the work it actually performs. The CA scheme is a compromise of the two. It improves the

II p II
Efficiency II

SY AS CA SY

2 0.78 0.96 0.5 0.00367
3 0.74 0.94 0.49 0.00367
4 0.69 0.91 0.47 0.00367
6 0.59 0.82 0.45 0.00367
8 0.5 0.74 0.42 0.00367
12 0.36 0.56 0.35 0.00367
16 0.28 0.42 0.29 0.00367

E
AS
0.9
0.9
0.9
0.9
0.9
0.9
0.9

0.02
0.05
0.05
0.05
0.04
0.07
0.04

SY
0.000026
0.000026
0.000026
0.000026
0.000026
0.000026
0.000026

e
AS CA II

0.007 0.00008
0.007 0.00023
0.007 0.00025
0.007 0.0002
0.007 0.00013
0.007 0.00018
0.007 0.00012

Table 5: Efficiency and accuracy for the one dimensional problem and with ~ grid points

per processor; L = 48, ~x = 0.02128, (::)2 = 0.5, T = 0.5

accuracy lost in the asynchronous version, by doing some extra extrapolation calculations,

at the cost of increasing the calculation time. Note that although CA is significantly more

accurate than AS, it is still less accurate than the SY scheme, because of the lower order of

its truncation error (O(~xs) instead of O(~x/)).

Two dimensional results are shown in Table 6. In this case, the efficiency of all schemes

proves to be much better than the one dimensional case (in some cases, it is close to and

even higher than one). The run time improvement for the AS and CA schemes relative to

SY, is significant when the communication is significant relative to computation. With a

small number of processors the synchronization penalty is small in comparison to the extra

computation needed by the CA scheme (as compared to the AS and SY schemes). However,

as the number of processors increases and there is less work per processor, the run time of

the CA is close to that of AS.

Although the intermediate time-level results of the CA scheme are significantly more

accurate than those of the AS, they are still much less accurate than those of the SY scheme.

This is due to the dimensional additivity of the truncation error which, as indicated earlier, is

of lower order than that of the synchronous scheme. Hence, in multi-dimensional problems,

one should either use a very fine grid, or else higher order schemes.

18

p pts in Efficiency E e

\I blk SY AS CA SY AS CA SY AS CA

2 8 x 16 0.95 1.05 0.51 0.07 0.99 0.17 0.0000036 0.000051 0.0000030
4 4 x 16 0.79 0.90 0.45 0.07 0.99 0.5 0.0000036 0.000051 0.000018
8 2 x 16 0.67 0.81 0.42 0.07 0.97 0.16 0.0000036 0.000049 0.0000028
16 1 x 16 0.45 0.60 0.37 0.07 0.99 0.17 0.0000036 0.000051 0.0000030

Table 6: Efficiency and accuracy for the 2-dim. problem; L = 256,.6.x = .6.y = 0.0667, (::)2 +
(tyt)2 = 0.5, T = 0.5

6 Summary

This paper presents asynchronous (AS) and corrected-asynchronous (CA) finite differ

ence schemes (based on the Euler explicit scheme) for the multi-dimensional heat equation,

to be implemented on MIMD multiprocessors. Although we consider only the heat equa

tion, our analysis can be easily modified and extended to other parabolic partial differential

equations, and other finite difference schemes. Our schemes are analyzed and implemented

on the shared-memory multi-user Sequent Balance machine. They are compared with the

corresponding serial (SR) scheme and the parallel synchronous (SY) scheme. In general, the

efficiency of the parallel schemes increases as more mesh points are assigned to each proces

sor, as the time-level increases and as the problem dimension increases. It is proved that

the AS scheme converges to the solution of a differential equation other than the original

one. However, it provides accurate steady-state results and its efficiency may reach 90% and

over. AS may be almost twice as fast as the parallel synchronous (SY) scheme. It is proved

that unlike the AS scheme, the CA scheme does converge to the solution of the original heat

equation, under certain requirements. Its efficiency, however, is only about 50% in the best

cases considered here. Nevertheless, CA offers more accurate results for the intermediate

(non steady-state) time-levels. Yet, its accuracy is less than the SY scheme, especially in the

multi-dimensional case, due to the loss of order in the truncation error in each spatial co

ordinate. Hence, for intermediate time-level results one should either use a very fine spatial

net, or else use higher order schemes.

19

References

[1] Dganit Amitai, Amir Averbuch, Moshe Israeli, and Samuel Itzikowitz. Time-stabilizing

method for the numerical solution of parabolic PDEs. Submitted to Journal of Parallel

Computation.

[2] Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency of synchronous

versus asynchronous distributed systems. Journal of the ACM, 30(3):449-456, July

1983.

[3] R. Barlow and D. Evans. Synchronous and Asynchronous Iterative Parallel Algorithms

for Linear Systems. Comput. J., 25:56-60, 1982.

[4] G. M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the

ACM, 25:226-244, 1978.

[5] D. P. Bertsekas. Distributed asynchronous computation of fixed points. Math. Prog.,

27:107-120, 1983.

[6] D. Chazan and W. Miranker. Chaotic relaxations. Journal of Linear Algebra Applica

tions, 2:199-222, 1969.

[7] P. Dubois and F. Briggs. Performance of Synchronized Iterative Processes in Multipro

cessor Systems. IEEE Trans. Soft. Eng., SE-8:419-431, 1982.

[8] Franc;oise Andre, Daniel Herman and Jean-Pierre Verjus Translated by J. Howlett.

Synchronization of Parallel Programs. The MIT Press Cambridge, Mass., 1985.

[9] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,

21(8):666-677, August 1978.

[10] Moshe Israeli. Self-Stabilizing Asynchronous Schemes for Solving Parabolic and Hyper

bolic Problems. In Conference of the Israeli Union of Mathematics, May 1990.

[11] D. Mitra. Asynchronous relaxations for the numerical solution of differential equations

by parallel processors. SIAM J. Sci. Stat. Comput., 8:43-53, 1987.

[12] James M. Ortega and Robert G. Voigt. Solution of parallel differential equations on

vector and parallel computers. SIAM Review, 27(2):149-239, June 1985.

[13] D. Reed and M. Patrick. A Model of Asynchronous Iterative Algorithms for Solving

Large Sparse Linear Systems. In Proceedings 1984 International Conference on Parallel

Computing, pages 402-409, 1984.

20

[14] Daniel A. Reed, Loyce M. Adams, and Merrell L. Patrick. Stencils and Problem Par

titioning: Their Influence on the Performance of MUltiple Processor Systems. ICASE
Report 86-24, NASA, May 1986.

[15] Sequent Systems. The Sequent Guide to Parallel Programming, 1987.

21

I\U\SI\ Report Documentation Page
'-110'U' """'Y.auIC:; ~nc
">: .iC,:, ·\o.-.""5'·3IoQf'

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-187605
ICASE Report No. 91-59
4. Title and Subtitle 5. Report Date

ASYNCHRONOUS AND CORRECTED-ASYNCHRONOUS NUMERICAL July 1991
SOLUTIONS OF PARABOLIC PDES ON MIMD MULTIPROCESSORS

6. Performing Organization Code

7. Authorls) 8. Performing Organization Report No.

Dganit Amitai
91-59 Amir Averbuch

Samuel Itzikowitz 10. Work Unit No.

Eli Turkel
505-90-52-01

9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering
NASl-18605

Mail Stop l32C, NASA Langley Research Center
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Contractor Report National Aeronautics and Space Administration

Langley Research Center 14. Sponsoring -!'<gency Code

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to SIAM Journal on
Michael F. Card Scientific and Statistical

Computing

Final Report
16. Abstract

A major problem in achieving significant speed-up on parallel machines is
the overhead involved with synchronizing the concurrent processes. Removing the
synchronization constraint has the potential of speeding up the computation. We
present asynchronous (AS) and corrected-asynchronous (CA) finite difference schemes
for the multi-dimensional heat equation. Although our discussion concentrates on
the Euler scheme for the solution of the heat equation, it has the potential of
being extended to other schemes and other parabolic PDEs. These schemes are ana-
lyzed and implemented on the shared-memory multi-user Sequent Balance machine.
Numerical results for one and two dimensional problems are presented. It is shown
experimentally that synchronization penalty can be about 50% of run time: in most
cases, the asynchronous scheme runs twice as fast as the parallel synchronous
scheme. In general, the efficiency of the parallel schemes increases with processor
load, with the time-level, and with the problem dimension. The efficiency of the
AS may reach 90% and over, but it provides accurate results only for steady-state
values. The CA, on the other hand, is less efficient but provides more accurate
results for intermediate (non steady-state) values.

17. Key Words ISuggested by AuthorlsH 18. Distribution Statement

61 - Computer Programming and Software
asynchronous, parabolic, MIMD 64 - Numerical Analysis

Unclassified - Unlimited
19. Security Classif. lof this report) 20. Security Class if . lof this page) 21. No. of pages 22. Price

Unclassified Unclassified 23 A03

NASA FORM 1626 OCT 86

NASA-Langley, 1991

End of Document

