025921-22T

USE OF EDGE-BASED FINITE ELEMENTS FOR
- SOLVING THREE DIMENSIONAL
SCATTERING PROBLEMS

A. Chatterjee

J.M. Jin

J.L. Volakis

NASA-Ames Research Center Pacific Missile Test Center \
Moffet Field, CA 94035 Pt. Mugu, CA 03042-5000

Grant NAG-2-541

Technical Report 025921-22T

August 1991

THE UNIVERSITY OF MICHIGAN

Radiation Laboratory
Department of Electrical Engineering
‘and Computer Science
- Ann Arbor, Michigan 48109-2122
~USA _ , , R

'(ﬁASA;CR-188735) USE OF EDGE-BASED FINITE N91-30860
- ELEMENTS FOR SOLVING THREE OIMENSIONAL
SCATTERING PROBLEMS Technical Report, Feb. -

Sep. 1991 (Michigan Univ.) 39 p CSCL 12A unclas
' G3/64 0033700

— e - -

025921-22T

TECHNICAL REPORT

FOR

NASA Grant NAG-2-541

NASA Technical Monitor: Alex Woo

Grant Title:

Institution:

Period Covered:

Report Authors:

Principal Investigator:

Use of Edge-Based Finite Elements for Solving
Three Dimensional Scattering Problems

The Radiation Laboratory

Department of Electrical Engineering
and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

February 1991 - September 1991

A. Chatterjee, J.M. Jin and J.L. Volakis

John L. Volakis
Telephone: (313) 764-0500

Table of Contents

Use of Edge-Based Finite Elements for Solving
Three Dimensional Scattering Problems

Page

Introduction
Formulation
Derivation of finite element equations
Basis functions
Mesh termination
Vector ABC
Ficticious absorber model
Solution of the finite element equations
Vector ABC
Ficticious absorber model
Results

Conclusions and Future Work

O WO 0 N0 N0 18 NN N

Appendix: Derivation of matrix elements

[—
o

References

Tables and figures follow page 11

Computer Program listings follow page 14

USE OF EDGE-BASED FINITE ELEMENTS FOR
SOLVING THREE DIMENSIONAL SCATTERING
PROBLEMS

A. Chatterjee, J.M. Jin and J.L. Volakis
Radiation Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

Abstract

Edge-based finite elements are free from the drawbacks associated with node-
based vectorial finite elements and are, therefore, ideal for solving three-
dimensional scattering problems. The finite element discretization using edge
elements is checked by solving for the resonant frequencies of a closed in-
homogeneously filled metallic cavity. Significant improvements in accuracy
are observed when compared to the classical node-based approach with no
penalty in terms of computational time and with the expected absence of
‘spurious’ modes. A performance comparison between the edge-based tetra-
hedra and rectangular brick elements is carried out and tetrahedral elements
are found to be more accurate than rectangular bricks for a given storage
intensity. A detailed formulation for the scattering problem with various
approaches for terminating the finite element mesh is also presented.

1 Introduction

The problem of computing the electromagnetic field scattered by a material
body, when a field is incident on it, has great theoretical and practical im-
portance. It is, usually, desirable to relate the characteristics of the scattered
field in the far zone with the shape of the scatterer. Finite elements can be
used to model complicated geometries but are of no help in computing the
far field. The far field effect is thus represented in finite element analysis
by enclosing the target within a fictitious boundary and enforcing a special
boundary condition, often called the absorbing boundary condition, on the
outer boundary. In this report, we discuss the choice of finite elements in the
inner region. As a first step, we solve Maxwell’s equations for the resonances
of a closed cavity to verify the finite element discretization and decide on the
type of basis functions and elements to use.

The occurrence of ‘spurious’ modes(l] in the node-based finite element
approach has plagued the computation of cavity eigenvalues for years. This
difficulty can be circumvented with the introduction of a penalty term[2] to
render the finite element vector field solutions non-divergent. However, it
is difficult to satisfy continuity requirements across material interfaces(3] or
for geometries with sharp edges[4] using classical finite-elements, obtained
by interpolating the nodal values of the vector field components. This is es-
pecially critical in solving scattering problems using classical finite elements
where special techniques need to be used for satisfying normal and tangential
continuity of the electric displacement and the electric field, respectively[5].
Edge elements, a type of vector finite element with their degrees of free-
dom associated with the edges of the mesh, have been shown to be free of
these shortcomings|6],[7]. Edge-based finite elements are, therefore, a nat-
ural choice for treating three dimensional geometries. Generally these lead
to more unknowns but the higher variable count is balanced by the greater
sparsity of the finite element matrix so that the computation time required
to solve such a system iteratively with a given accuracy is less than the
traditional approach(8].

In this report, we have discussed the formulation for both the cavity and
the scattering problems but have presented results only for the former. We
have solved for the eigenvalues of an arbitrarily shaped metallic cavity using
node-based and edge-based vector finite elements. The computed data are
then compared with analytical results for empty and partially filled cavities.
A comparison between the storage intensity and computational accuracy for
edge-based rectangular bricks and tetrahedra is also presented. Finally, we
compute the eigenvalues of a metallic cavity with a ridge along one of its
faces.

2 Formulation

2.1 Derivation of finite element equations

Consider a three dimensional inhomogeneous body occupying the volume V.
To discretize the electric field E inside this volume, we subdivide it into a
number of small tetrahedra or rectangular bricks, each occupying the volume
V(e =1,2,---, M), where M is the total number of elements. Within each
element, the electric field satisfies the vector wave equation

1
Vx—VxE-klE=0 (1)

Hr :
in which p, is the permeability of the medium, ¢, is the medium permittivity
and k, is the free space wave number. For a numerical solution of (1), we
expand the electric field within the eth volume element as

E=) EW: (2)

i=1

where W¢ are edge-based vector basis functions, Ef denote the expansion
coeflicients of the basis, m represents the number of edges in the element and
the superscript stands for the element number. On substituting (2) into (1)
and upon applying Galerkin’s technique, we obtain

ZE;/ W - (V X ——V x W — kge,W;?) dv = 0
o V. Pr

Further, upon making use of basic vector identities and the divergence the-
orem, we obtain the weak form of Maxwell’s equation

ZEC/ [#r (V x We) . (V x W) — k2, WE. we] dv =1k, Z, 74 W¢.(n x H)ds

where n x H is the tangential magnetic field on the exterior dielectric sur-
face, S, denotes the surface enclosing V. and Z, is the free-space intrinsic
impedance. Equation (3) can be conveniently written in matrix form as

(BT} = R[BV{E} +{C°) ()
where

AL = /V (VX WD) (Y x W) (5)

B = /V & WEWedy (6)

C: = k2, jé We.(n x H)ds (7)

On assembling the equations from all the elements making up the geometry,
we obtain the system

3)

M M

M
L ATHEY} = k2 [BI{E) +>_{c} (8)

e=1 e=1

Due to the continuity of tangential H at the interface between two di-
electrics, an element face lying inside the body does not contribute to the last
term of (8) in the final assembly of the element equations. As a result, the
last term of (8) reduces to a column vector containing the surface integral
of the tangential magnetic field only over the exterior surface of the body.
In this paper, we are interested in a perfectly conducting surface surround-
ing the volume V and in this case, the surface integral vanishes altogether.
Therefore, this system can be more compactly written as

[Al{E} = A[B{E} (9)

where [A] and [B] are N x N symmetric, sparse matrices with NV being the
total number of edges resulting from the subdivision of the body, {E} is a
N x 1 column vector denoting the edge fields and A = k2 gives the eigenvalues
of the system. Solving (9), we obtain the resonant wavenumber k, and the
resonant field distribution {E£} as well.

In the case of the scattering problem, (3) can be conveniently written in
matrix form as

[a°]{E} = {C%) (10)

where

e 1 e e e e
A,ij = A (;(v X W') . (V X W]) — k:ﬁrw,’-wj) dv (11)

ce = k.2, fs We.(n x H)ds (12)

Summing over all M elements in the geometry, we obtain a system of equa-
tions whose solution yields the field components over the entire body.

M M
;[A/c] {Ee} — Z‘{Ce}

which gives
[AT{E} = {C} (13)

where {E} are defined as in (9), [A’] is a N x N matrix and {C} is a
column vector of size N related to the tangential magnetic field over the
exterior surface of the body. On separating the on-surface edges from the
edges inside the body for ease of representation, we obtain

[A'ss] {Es} + [Alsi] {E,} = {Cs}
(A {E:} + [AG{E} = 0
{C:} = [B'.]{H,} (14)

where the subscript s denotes the edges on the surface and 7 represents the
edges inside the body. It is thus readily seen that (14) relates the electric field
inside and on the surface of the body to the on-surface tangential magnetic
field. However, (14) contains two unknown vectors {E£} and {H} and the
system can, therefore, be solved only when we relate the electric field with the
magnetic field. This is done by introducing an absorbing boundary condition
at the outer boundary of the mesh as discussed in section 2.3.

2.2 Basis functions

The vector edge basis functions for rectangular bricks are outlined in detail
in [9). The basis functions for tetrahedral elements merit detailed mention
since they are more involved.

Vector fields within tetrahedral domains in three dimensional space can be
conveniently represented by expansion functions that are linear in the spatial
variables and have either zero divergence or zero curl. The basis functions
defined in [8] are associated with the six edges of the tetrahedron and have
zero divergence and constant curl. Assuming the four nodes and the six
edges of a tetrahedron are numbered according to Table 1, the vector basis
functions associated with the (7 —z)th edge of the tetrahedron are defined as

_) fo_i+g7-i xr, rin the tetrahedron
Wr_i = { 0; otherwise (15)
with
br_;
f7_,‘ = E‘—/-I‘,'l X Ty, (16)
bibr_;e;
g7—. 6V (17)
where 1 = 1,2,---,6, V is the volume of the tetrahedral element, e; = (r;, —

r;,)/b; is the unit vector of the ith edge and b; = |r;, — r; | is the length of
the ith edge. All distances are measured with respect to the origin.

Since there are two numbering systems, local and global, a unique global
edge direction is defined (e.g., always pointing from the smaller node number
to the larger node number)[10] to ensure the continuity of n x E across all
edges. This implies that (15) should be multiplied by (-1) if the local edge
vector (as defined in Table 1) does not have the same direction as the global
edge direction, i.e. the local vector points from the larger node number to
the smaller node number. Finally, since V- W; = 0 the electric field obtained
through (2) exactly satisfies the divergence equation within the element, i.e.
V - E = 0. Therefore, the finite element solution is free from contamination
of spurious solutions.

2.3 Mesh termination

Differential equation methods, such as finite elements, can only solve bound-
ary value problems. Since electromagnetic problems are open boundary-

4

infinite domain types, a means to truncate the solution domain to lie within
a finite boundary must be found. On this boundary, a condition is enforced
thus ensuring that the fields will obey the Sommerfeld radiation condition
at distances asymptotically far from the object. These absorbing boundary
conditions (ABCs) have a significant advantage over the global methods of
solving unbounded problems using finite elements in that they are local in
nature. Due to this, the sparse matrix structure of the finite element formu-
lation is retained. One disadvantage, however, is that ABCs are approximate
and do not model the exterior field exactly.

The objective of absorbing boundary conditions is to truncate the finite
element mesh with boundary conditions that cause minimum reflections of
an outgoing wave. These ABCs should provide small, acceptable errors while
minimising the distance from the object of interest to the outer boundary.
This minimal distance is required to reduce the number of unknowns in the
problem for computational efficiency.

There are two ways to approach this problem. The first approach is to
employ a three dimensional vector boundary condition for terminating the
finite element mesh of the body described in section 2.1. The second method
involves placing an artificial conducting boundary (electric or magnetic) to
truncate the infinite region and then coating the inner surface of the bound-
ary with a layer or several layers of fictitious dielectric whose thickness and
constitutive parameters are chosen to minimise the non-physical reflections
of the scattered field over a wide range of incidence angles[11].

2.3.1 Vector ABC

We begin with the Wilcox representation[12] of the electric field which has
an expansion

eIk 20 AL(0, 4)

B - - 3 40 (19)
From (18), we get
o 1+Dl} ek 2 nA,,
VxE=343k -
/ X {] X — E =) - (19)

n=1

where A,; = 7 X A, is the transverse component of A,, and, for a vector F,
D, F is given by

1o, . OF,
DIF = sind [-a—a(sznGF)—a—¢]r
1 [9F" _ N OF™ | .
sinG[@H —sm@F‘bJO-{—[F&— aa}d) (20)

Using the recursion relation

—2]knAnt = Tl(Tl - l)An—l,t + .D4An_1

where

DA, = (D A%+ DyA,)0+ (D A%+ Dy A.) ¢
0A;, 1 ., 2cosfdA?
Do An =2 00 sin20° " sin20 99
, 6
D, A, = 2 0A] 1 4 2c0s6 0 A,

sind 9p sin?0" " | 5in0 04

and D is Beltrami’s operator[10], we can derive the representation correct to
r~4. Applying the recursion relation in (19) yields the desired relationship
for the vector ABC: :

VxE = «ar)E+ B(r)D,E (21)

where
o (o)) e
Br) = s (23)

2jkr? (1 + 1/7kr)

The ABC formulated above was derived for spherical boundaries and hence
would be storage intensive and numerically inefficient when used to terminate
the mesh of long and thin geometries. It would be highly desirable to choose
an outer boundary that conforms to the shape of the object. It is the authors’
intention to extend the boundary condition discussed above to conformal
boundaries. Another way to introduce a conformal outer boundary is to use
the fictitious absorber model discussed below.

2.3.2 Fictitious absorber model

In this section, our intention is to develop a model which can absorb the
reflections of the scattered field from the artificial outer boundary over as
wide a range of incidence angles as possible. The reflection coeflicient on
applying the appropriate boundary condition can be symbolically written as

R = f(t1,€1,r1582, €2y fr2;** 3 tny €rny frn; A, 0) (24)

for an n-layer absorber. Here, t;,¢,; and g,; denote the thickness, relative
permittivity and relative permeability of the i¢th dielectric layer. Using a
multi-dimensional minimization algorithm such as that based on the downhill
simplex method, we can find a set of t;, €,;, 4,; that minimises the magnitude
of the reflection coeflicient over a wide range of incidence angles. Further,
the outer boundary of the mesh can be made conformal to the shape of the
scatterer reducing the number of unknowns compared to the earlier approach
which works solely for spherical outer boundaries.

6

2.4 Solution of the finite element equations

2.4.1 Vector ABC

An inspection of (13) reveals that for an inhomogeneous body, there is no a
priori information about the tangential magnetic field over the exterior sur-
face of the body. Relation (13) therefore contains two unknown vectors, { £'}
and {C}, and thus another condition is required involving the two variables
to permit an evaluation of the fields inside and on the surface of the body.
This condition relating the tangential electric field to the tangential magnetic
field on the surface is provided by (21). Since the ABC in (21) refers to the
scattered field, we can rewrite it as :

VxE! = «or)E]+ B(r)DLE:
H' = L [a(r)E + B(r)DE]
wp
= KE: (25)
where X = ;’; [a(r) + B(r)D,) and the subscript s denotes the field on the
surface and the superscript s represents the scattered field. As the total field

is a sum of the incident field and the scattered field, therefore from (25), we
obtain

H,-H™ = K (E,-E™) (26)

Since {H,} = [B,,]"'{C,} from (14), we obtain on substituting (26) into
(14)
(4] = Bl K) B} + [AW{E} = [Ba] ({#} - K {E"})
(A {Es} + [AG]{E} = 0 (27)

The above equation can thus be solved for the unknown electric fields both
inside and on the surface of the body.

2.4.2 Fictitious absorber model

Since an artificial outer boundary is placed in this case, the column vector
{C} in (13) is a function of the incident field and the integration is carried
out over the outer and inner surfaces. Therefore, we can rewrite (14) as

AJE) + AHES = {C7)
(A" { B} + [A":]{E} = 0 (28)
where the superscript inc stands for the incident field, the superscript s

denotes the scattered field, the subscripts are as defined in (14) and [A”]
contains contributions from the surface integral as well as [A’].

7

3 Results

In Table 2, the eigenvalues for a lemXx.5cmx.75cm rectangular cavity are
calculated using nodal basis functions. This particular derivation is outlined
in [13] and the existence of ‘spurious’ modes is clearly observed when the
zero divergence condition is not rigidly enforced (s = 0). For non-zero values
of s, ‘spurious’ modes do not appear. However, arbitrary values of s lead to
inaccuracies and, therefore, the most suitable value needs to be determined
by trial and error.

Using edge-based rectangular bricks results in better accuracy as observed
in Table 3. However, on comparing bricks with tetrahedra, it is seen from
Table 4 that the tetrahedral edge element is the best in terms of accuracy for
the same storage requirement. The maximum edge length for the rectangular
brick elements was .15cm whereas that for the tetrahedral elements was .2cm.

In Tables 4-7, we compare the eigenvalues computed using edge-based
tetrahedral finite elements with their analytical counterparts. The finite ele-
ment mesh was generated using SDRC I-DEAS, a commercial pre-processing
package and it is seen that the numerical results are in excellent agreement
with the exact values for both homogeneous and inhomogeneous cavities. In
Table 4, the edge-based approach predicts the first six distinct non-trivial
eigenvalues with less than 4 per cent error for an empty rectangular cavity.
The exact eigenvalues of the half-filled cavity as described in Table 5 are
computed by solving the transcendental equation obtained by matching the
tangential electric and magnetic fields at the air-dielectric interface. As seen,
these results agree with the results of the finite element code to within 1
per cent. Table 6 compares the analytical and computed eigenvalues of a
cylindrical cavity having a base radius of 0.5cm and a height of 0.5cm. The
eigenvalues are again seen to be quite accurate and the accuracy is expected
to increase further with higher mesh density. Similar comparisons are given
in Table 7 of a sphere of 1cm radius. Finally, Table 8 presents the eigenvalues
of the geometry shown in Fig. 1. This i1s basically a closed metallic cavity
with a ridge along one of its faces. We note again that it is difficult to treat
such a geometry having sharp edges and corners using node-based finite el-
ements. The storage requirement for the geometries discussed above can be
further reduced by taking symmetry into account. Since we are interested
in developing a code for arbitrary geometries, boundary conditions taking
advantage of symmetry have not been introduced.

It is noted that as the degeneracy of the eigenvalues increases, the matrix
becomes increasingly ill-conditioned and the numerical solution correspond-
ingly less accurate{14]. This is clearly observed from the data in Table 7 for
the case of a perfectly conducting hollow spherical cavity. Since the second
lowest TM mode has five-fold degeneracy, the computational error is seen
to be the greatest. However, for the partially filled rectangular cavity, the
absence of degenerate modes gives results which are accurate to within 1 per
cent of the exact eigensolutions.

4 Conclusions and future work

It has been shown that the resonant frequencies of an arbitrarily shaped
inhomogeneously filled metallic resonator can be computed very accurately
using edge-based tetrahedral elements. The nodal method is not very reliable
and is dependent on the value of the s parameter which is a measure of how
strongly one wants to enforce the divergence-free condition. Edge-based rect-
angular bricks do not provide as good an accuracy as edge-based tetrahedral
elements and is limited to a small class of geometries. It has, therefore, been
established that it is best to use edge-based tetrahedral elements for solving
three-dimensional problems. _
In the future, we intend to work on three dimensional scattering problems
using edge-based tetrahedra and employing the mesh termination techniques
discussed in section 2.3. We also plan to focus on the derivation of new
absorbing boundary conditions conformal to the shape of the scatterer.

5 Appendix

5.1 Derivation of matrix elements

The derivation of the matrix elements in (9) amounts to evaluating the
integrals in (5) and (6). Therefore, from (5), we have

1 4
—(V x W) . We) = g g
/v, ur(X Wi) . (V x W) L g;Ve (29)

since V x W¢ = 2g;. The evaluation of the integral in (6) is more cumber-
some. Substituting into (6) the basis functions defined in (16) and (17),
we obtain

6, /V WeWedo = e /V {(£:£;) + (r.D) + (g; x r).(g; x r)} dv (30)
= ¢(h+ L+ 1)

where
D = (fixg;)+(f; xg)

and
L = /Vef,-.f,dv (31)
I, = /Ver.de (32)
I = /(g,xr).(g,xr)dv (33)

Since f is a constant vector, I; reduces to
L = fif; V. (34)

Since
4
Tr = EL,'III,‘
i=1
4
y= Ly
=1
4
z= Z Liz;
i=1

where L; are the shape functions for the tetrahedral element and z;, y;, z:(: =
1,---,4) denote the z,y and z co-ordinates of the vertices of the tetrahedral
element. Using the standard formula for volume integration within a tetra-
hedral element and simplifying, we have

4 4 4
ho= %[0S a0, 3+ 0.3 5] (35)
i=1 =1 =1

where D,, is the mth component of D. The evaluation of I3 can be simplified
by the use of basic vector identities. Therefore,

I, = g.g, Ir|*dv — | (gir)(g;.r)dv
V. V.

= (9iy9jy + 9i2952) /V 22dv + (9iz9jz + Gi29;2) /V y2dv + (9iz9z + 9iy95y) /V

22dv

— (9iz95y + 9jzGiy) /V zydv = (9iz9jz + 9jz9iz) /V zxdv — (giy9j; + 9jy9iz) /V yzdv

where g;,, represents the mth component of the vector g;. Each of the inte-
grals in (36) can be easily evaluated analytically and the result expressed in
the following general form:

V. [4 4
/ qandv = — {Z Wilmi + Y@ Y amt] (37)
Ve 20 ;o i=1 i=l

where ,m = 1,---,3 and a, represents the variable x, a, stands for the
variable y and a3 denotes the variable z.

6 References

1. Z.J. Cendes and P. Silvester, “Numerical solution of dielectric loaded

waveguides: I - Finite element analysis”, IEFEE Trans. Microwave Theory
Tech., vol. 18, pp.1124-31, 1970.
2. B.M.A. Rahman and J.B. Davies, “Penalty function improvement of

10

(36)

waveguide solution by finite elements”, IEEE Trans. Microwave Theory
Tech., vol. 32, pp.922-8, Aug. 1984.

3. J.P. Webb, “The finite-element method for finding modes of dielectric-
loaded cavities”, IEEE Trans. Microwave Theory Tech., vol. 33, no.7,
pp.635-9, July 1985.

4. J.P. Webb, “Finite element analysis of dispersion in waveguides with
sharp metal edges”, IEEE Trans. Microwave Theory Tech., vol. 36, no.12,
pp-1819-24, Dec. 1988.

5. X. Yuan, D.R. Lynch and K. Paulsen, “Importance of normal field con-
tinuity in inhomogeneous scattering calculations”, IEEE Trans. Microwave
Theory Tech., vol. 39, no.4, pp.638-42, April 1991. A

6. A. Bossavit, “A rationale for ‘edge-elements’ in 3-D fields computations”,
IEEE Trans. Magn., vol. 24, no.1, pp.74-9, Jan. 1988.

7. A. Bossavit, “Solving Maxwell equations in a closed cavity, and the
question of ‘spurious’ modes”, IEEFE Trans. Magn. , vol. 26, no.2, pp.702-5,
March 1990.

8. M.L. Barton and Z.J. Cendes, “New vector finite elements for three-
dimensional magnetic field computation”, J. Appl. Phys., vol. 61, no.8,
pp-3919-21, April 1987.

9. J.M. Jin and J.L. Volakis, “Electromagnetic scattering by and trans-
mission through a three-dimensional slot in a thick conducting plane”, IEEE
Trans. Antennas Propagat., vol. 39, no.4, pp. 543-50, April 1991.

10. X. Yuan, “Three-dimensional electromagnetic scattering from inhomo-
geneous objects by the hybrid moment and finite element method”, IEEFFE
Trans. Microwave Theory Tech., vol. 38, no.8, pp. 1053-9, Aug. 1990.

11. J.M. Jin, J.L. Volakis and V.V. Liepa, “An engineer’s approach for
terminating finite element meshes in scattering analysis”, to appear.

12. C.H. Wilcox, “An expansion theorem for electromagnetic fields”, Comm.
Pure Appl. Math., vol. 9, pp. 115-134, May 1956.

13. J.M. Jin and J.L. Volakis, “A finite element-boundary integral formu-
lation for scattering by three-dimensional cavity-backed apertures”, IEFFE
Trans. Antennas Propagat., vol. 39, no.1, pp. 97-104, Jan. 1991.

14. G.H. Golub and C.F. Van Loan, Matriz Computations, pp. 202-4, The
Johns Hopkins University Press, 1985.

11

Edge no. | 4; | 22
1 112
2 113
3 114
4 213
5 412
6 314

Table 1: Tetrahedron edge definition

Mode no. | Exact | s=0 | s=.5 | s=1 | s=5§
spurious 2.010
spurious 3.312
spurious 4.443
spurious 4.928
TE101 5.236 | 5.318 | 5.427 | 5.447 | 5.571
spurious 5.759
spurious’ 6.255
spurious 6.804
TM 110 | 7.025 | 7.067 | 6.574 | 7.543 | 7.940
spurious 7.305
TE 011 7.531 | 7.389 | 7.476 { 7.635 | 8.014
TE 201 7.531 | 7.640 | 7.659 | 8.072 | 8.348

Table 2: Eigenvalues for an empty lcm x0.5cm x0.75cm rectangular cavity
computed using nodal basis (230 unknowns)

Mode no. | Analytical | Computed | Error(%)
TE 101 5.236 5.307 -1.36
T™ 110 7.025 7.182 -2.23
TE 011 7.531 1.725 -2.58
TE 201 7.531 1.767 -3.13
™™ 111 8.1789 8.350 -2.09
TE 111 8.1789 8.350 -2.09
™™ 210 8.886 9.151 -2.98
TE 102 8.947 9.428 -5.38

12

Table 3: Eigenvalues for an empty lcm x0.5cm x0.75cm rectangular cavity
using edge-based rectangular bricks (270 unknowns)

Mode no. | Analytical | Computed | Error(%)
TE 101 5.236 5.213 .44
TM 110 7.025 6.977 .70
TE 011 7.531 7.474 1.00
TE 201 7.531 7.573 -.56
T™ 111 8.1789 7.991 2.29
TE 111 8.1789 8.122 .70
TM™ 210 8.886 8.572 3.53
TE 102 8.947 8.795 1.70

Table 4: Eigenvalues for an empty lcm x0.5cm x0.75cm rectangular cavity
(260 unknowns)

Mode no. | Analytical | Computed | Error(%)
TEz 101 3.538 3.534 A1
TEz 201 5.445 5.440 .10
TEz 102 5.935 5.916 .32
TEz 301 7.503 7.501 .04
TEz 202 7.633 7.560 97
TEz 103 8.096 8.056 .50

Table 5: Eigenvalues for a half-filled 1cm x0.1cm x1lcm rectangular cavity
(e, = 2) (192 unknowns)

Mode no. | Analytical | Computed | Error(%)
TM 010 4.810 4.809 .02
TE 111 7.283 7.202 1.1
7.288 -.07
T™™ 110 7.650 7.633 22
7.724 -.97
TM 011 7.840 7.940 -1.28
TE 211 8.658 8.697 -.45
8.865 -2.39

Table 6: Eigenvalues for an empty cylindrical cavity of base radius 0.5cm
and height 0.5 cm (380 unknowns)

13

Mode no. Analytical | Computed | Error(%)
TM™M 010 2.744 2.799 -2.04
TM 111,even 2.802 -2.11
TM 111,0dd 2.811 -2.44
TM 021 3.870 3.948 -2.02
TM 121,even 3.986 -2.99
TM 121,0dd 3.994 -3.20
TM 221,even 4.038 -4.34
TM 221,0dd 4.048 -4.59
TE 011 4.493 4.433 1.33
TE 111,even 4.472 47
TE 111,0dd 4.549 -1.25
Table 7: Eigenvalues for an empty spherical cavity of radius lcm (300 un-
knowns)

1 | 4.941

2 | 7.284

3 | 7.691

4 | 7.855

5 | 8.016

6 | 8.593 0.1cm}

7 | 8.906 ~—0.4cm—s ~<——0.4cm—s

8 19.163

9 19.679 Figure 1: A ridged cavity

10 | 9.837

Table 8: Ten lowest non-trivial eigenvalues of Fig. 1 (267 unknowns)

14

The following is a listing of the computer programs
generating the node-based and edge-based elements,
interfacing with SDRC IDEAS and computing the eigenvalues of an

inhomogeneously filled, arbitrarily shaped cavity.

ek/users/+research/+arnd/+ideas/proc PAGE1 ' 07/26/91 3:16

Processes a universal file obtained from IDEAS and converts the nodal info

to edge info needed for constructing an edge-based three-dimensional finite
element mesh using tetrahedral elements.

Stores the node numbers and respective nodal coordinates in ’noddy’

Stores the element numbers and corresponding nodes in ‘elno’

Processes ’‘noddy’ and ‘elno’ and stores the edge nos. and nodal connections
in ‘glob’ and edge nos. with corresponding edge vector in ‘edgy’

Note: Edge overlaps are taken care of.

Storage limit: 800 nodes, 3000 elements, 4300 edges

program unv_file processor
character string*80, yastrn*40, unv*20
integer nl(3000,4),tab(4300,2),nn(100),tr(3000),nun(3000),
1 bc (3000, 3) ,edgv (18000, 3) ,mat (3000)
real x(800),y(800),z(800)
common /bank/nl,x,y,z,ne,mat
common /dbase/edgv
common /local/ncount
write(6,*)’1) Cavity problem 2) Scattering problem’
read (5, *)ivar
write (6, *) 'Name of universal file ?’
read (5, (A) ')unv
open{(l, file=unv)
open (2, file='enoddy’)
open(3,file='elno’)
open{4,file='eglob’)
open(7,file='edgy’)
open(8,file='esurfed’)
.Processing universal file for info on various parameters
read(1l,’ (A)’)string
1=0
if (string(4:6).eq.’151’) then
write (6, *) 'Encountered header’
go to 15
elseif (string(4:6).eq.’747') then
read(1l,’ (A)‘)string
if (string(5:6).ne.’-1') then

if (string(9:9).ne.’ ') then
write (4, *)string(2:13)
do ik=1,4

read(l,’ (A)’)string

enddo

endif

go to 2

endif

.Processing nodal info; data stored in ’noddy’
elseif (string(4:6).eq.’ 15') then
read(1l,’ (A)’)string
if (string(5:6).ne.’-1’) then
write(2,*)string(7:10),’ ’,string(41:53),’ ’,string(54:66),’
1 ,string(67:79)
1=1+1
go to 5
endif
11=1
write(6,*)’'There are ’',1,’ nodes.’
write(4,*)1
.Processing element info; data stored in ‘elno’

PM

sk/users/+research/+arnd/+ideas/proc PAGE2

elseif (string(4:6).eq.’ 71’) then

read(l,’ (A)‘)string

if (string(5:6).ne.’-1’) then
read(1,’ (A)’)yastrn
write(3,*)string(7:10),’ ’,yastrn(7:10),

1 r f,yastrn(27:30)," ’,yastrn(37:40),°

1=1+1
go to 10

else
write(6,*)’There are ’,1l,’ elements.’
write(4,*)1l
12=1

endif

elseif (string(4:6).eq.’752’) then

ltmp=0

nn (1) =0

read(l,’ (A)’)string

if (string(19:20).eq.’ 07) then
ltmp=ltmp+1l
read(string(57:60),’ (I4)’)numb
nn (ltmp+l) =numb+nn (ltmp)

elseif (string(5:6).eq.’-1’) then
write(6,*)'There are ’',ltmp,’ surfaces.’

f fr,yastrn(l17:20),
‘,string(49:50)

go to 20
elseif (string(l:1).eq.’ ‘) then
do i=1,4
if (string((20*i-3):20*i).ne.’ ‘) then
1=1+1 :
read(string((20*i-3) :20*1i),’ (I4)’)tr (1)
endif
enddo
endif
go to 30
endif
go to 15
close (1)
.Data from '‘noddy’ and ’‘elno’ stored in
nl - table of nodes making up the corresponding element
X,¥,2z - nodal coordinate table
rewind 2
rewind 3
do i=1,11
read(2,*)na,x(i),y(i),z (i)
enddo
do i=1,12
read(3,*)nk,nl(i,1),nl(i,2),nl (i, 3),nl(1,4),mat (i)
enddo
.Close "noddy’ and ’‘elno’ for good
close(2)
close(3)
ncount=0
write(6,*)'Be patient #*!?2/#@*!11!/
do ne=1,12

.Store edge info in an integer array ‘tab’ after checking for

overlap. The subroutine ‘compare’ is the heart
call compare(tab)

of the program.

.Commenting out the following statement causes a speedup of 250%
write(6,*)’Processed element no. ’,ne,” :edge count= ’,ncount

enddo

07/26/91

3:16 PM

:k/users/+research/+arnd/+ideas/proc PAGE3
write(6,*)'Edge count = ’‘,ncount
rewind (4)
write (6, *) 'No.
read(5,*)itemp
read (4, *) (xtmp,i=1,itemp)
read (4, *) (nj,i=1, 2)
do i=1, (6*12)
read (4, *)nk,edgv (i, 1) ,edgv (i, 2),edgv(i,3),n)
enddo
close (4)
close(7)
nsurf=0
if (ivar.eq.l) then
do i=1l,ltmp
write (6, *) 'Processing surface ’,i,’
do j=nn(i)+1l,nn{(i+1)
do k=nn(i)+l,nn(i+l)
do 1=1,ncount
if (tab(l,1).ne.0) then
if ((tr(j).eqg.tab(l,l)).and. (tr(k).eqg.tab(l,2)))
write(8,*)1
tab(l,1)=0
nsurf=nsurf+1l
go to 40
endif
endif
enddo
enddo
enddo
enddo
write (6, *)'Total no. of on-surface edges= ’,nsurf
write(6,*)’'Fem matrix to be solved is of order ’, (ncount-nsurf)
else
ncnt=0
do ii=1,1ltmp
do ik=1,12
nun(ik)=0
enddo
do i=nn(ii)+1l,nn(ii+1)
do j=1,12
do k=1,4
if (tr(i).eq.nl(j,k)) then
nun (j)=nun(j)+1
be(j,nun{(j))=nl(j, k)
if (nun(j).eq.3) then
call edge(j,bc(3,1),bc(j,2),bc(],3))
ncnt=ncnt+1
go to 80
endif
endif
enddo
enddo
enddo
enddo
write(6,*) ' There are ',ncnt,’
endif
close (8)
stop
end

of dielectric layers?’

for on-surface edges.’

then

surface elements.’

07/26/91

3:16 PM

sk/users/+research/+arnd/+ideas/proc

PAGE4

07/26/91 3:16 PM

‘compare’

checks for all -possible edges avoiding overlap and stores the
info in an array ‘tab’. The file ‘edgy’ contains the element no.

and the six edge vectors corresponding to that element.

subroutine compare (tab)

integer nl(3000,4),mat (3000)
real x(800),y(800),z(800)
integer nt (6,2),tab(4300,2)

common /bank/nl,x,y,z,ne,mat
common /local/ncount

nt(1l,1)=nl(ne,1)
nt (1,2)=nl (ne, 2)
nt(2,1)=nl(ne,1)
nt (2,2)=nl (ne, 3)
nt (3,1)=nl (ne, 1)
nt (3,2)=n1l (ne, 4)
nt(4,1)=n1(ne,2)
nt (4, 2)=nl (ne, 3)
nt (5,1)=nl (ne, 2)
nt(5,2)=nl ({ne, 4)
nt (6,1)=nl (ne, 3)
nt (6, 2)=nl (ne, 4)

do i=1,6

if (nt(i,1).gt.nt(i,2))then

ntmp=nt {(i,1)

nt (i, 1l)=nt (i, 2)

nt (i, 2) =ntmp
endif
enddo

l=ncount
do ii=1,6

if (ne.eq.l) go to 32

do i=1,ncount

if ((tab(i,l).eq.nt(ii,1)).and. (tab(i,2).eq.nt(ii,2))) then

.Arranging node couplets in ascending order; a personal choice

.A brute force search for overlapping edges

write(4,*)ne,i,nt(ii,1),nt(ii, 2),mat (ne)

go to 35
endif
enddo
1=1+1

tab(l,1)=nt (ii, 1)
tab(l,2)=nt (ii, 2)

write(4,*)ne,l,nt(ii,1l),nt (ii, 2),mat (ne)

write(7,*)l,x(nt(ii,2))"X (nt(iil 1)) lY(nt (iirz))-Y(nt(llrl)) ’
z(nt (ii,2))-z(nt (ii,1))

enddo
ncount=1
return
end

>etermines edges corresponding to the surface element

subroutine edge(m, jl, j2,3j3)
integer edgv(18000,3),tmp(3)

common /dbase/edgv
do ij=(6*m) -5, (6*m)
if (jl.eq.edgv(ij,2))

then

k/users/+research/+arnd/+ideas/proc PAGES

if (j2.eg.edgv{ij,3)) then
tmp (1) =edgv (ij,;1)
elseif (j3.eq.edgv(ij,3)) then
tmp(2)=edgv(ij, 1)
endif
elseif (j2.eq.edgv(ii,2)) then
if (j3.eqg.edgv(ij,3)) then
tmp (3) =edgv (ij, 1)
endif
endif
enddo
write(8,*)m, jl,j2,33,tmp
return
end

07/26/91

3:16 PM

ek/users/+research/+arnd/+ideas/alt PAGE1l

.Computes the eigenvalues of an inhomogeneous cavity having arbitrary
shape using edge elements.

program fem
integer edna(15000),gnn(15000,2),tab(6,3),sed(2000),edst (3000,2)
1 ,mat (2500)
character bit (6)*1
real xyz(3000,3),al(6,6),x(500),y(500),2z(500),bl(6,6),eps(10)
double precision a(700,700),b(700,700),alfr(700),alfi(700)
1 ,beta(700)
logical matz
common /bank/edna,gnn,xyz,eps,mat
common /mess/x,y,z
.Reading in info
write (6, *)’'Number of edges’
read (5, *)ned
write(6,*) 'Number of on-surface edges’
read (5, *)nes
write(6,*)’If inhomogeneous, enter 1’
read (5, *)ivar
if (ivar.eq.l) then
write(6,*) ' 'Number of different permittivities’
read (5, *)nl
endif
open(l,file='eglob’)
open(2,file="edgy’)
open (3, file='enoddy’)
open(4,file='eigl’)
open(7,file='esurfed’)
read(1l,*) {(eps(i),i=1,nl)
read(1l, *)nn
do i=1,nn
read(3,*) k,x(i),y(i),z (1)
enddo
write(6,*)’Finished reading in nodes’
read(1l, *)nel
do i=1, 6*nel
itemp=1+(i/6.)
read(l, *)elm,edna(i),gnn(i,1),gnn{i,2),mat (itemp)
enddo
write(6,*)eps(mat (1)) ,eps(mat(47)),eps(mat (48)),eps (mat (74))
write(6,*)'Finished reading in elements’
do i=1,ned
read(2,*)k,xyz(i,1) ,xyz(i,2),xyz (i, 3)
enddo
write(6,*)’Finished reading in edges’
read(7,*) (sed(i),i=1, nes)
close (1)
close(2)
close(3)
close(7)
.The following program segment generates the FEM matrix and imposes
the boundary condition for the on-surface nodes simultaneously.
It compares the on-surface edges stored in the array ’'sed’ and
stores the complement in ‘a’ and ’'b’. It also keeps a record of
the new edge numbers and their corresponding old edge numbers in
the pointer array ‘edst’.
net=ned-nes

07/26/91

3:17 pM

ok /users/+research/+arnd/+ideas/alt PAGE2

do i=1,net
do j=1, net
a(i,j)=0.do
b(i, j)=0.40
enddo
enddo
write(6,*)’'Generating FEM matrix’
do i=1,3000
edst (i,1)=0
edst (1,2)=0
enddo
nptrx=1
do i=1l,nel
.Generate the matrix elements for the corresponding finite element
and store the result in ‘al’ and ’'bl’. ‘tab’ is a pointer array
which stores the node combinations and local and global edge nos.
call crux(i,al,bl, tab)
do ij=1,6
bit (1j)="0'
enddo
.Run a check for the on-surface edges in the corresponding finite
element. The character array ’‘bit’ sets a flag for each on-surface
edge in the finite element.
do 100 j=1,6
do ichk=1,nes
.If the element edge is an on-surface edge, set bit(i) ='1’
if (tab(j,3).eq.sed(ichk)) then

bit (j)="1"
go to 100
endif
enddo

enddo
.If bit(i)= ’1’, forget it. If bit(i) =’'0’, check to see whether
the edge has occurred previously; if not, increment ’nptrx’ and
store the new edge no. and corresponding old edge no. in 'edst’
de j=1,6
if (bit(j).eq.’0’) then
if (edst(tab(j,3),2).ne.tab(j,3)) then
edst (tab(j, 3),1)=nptrx
edst (tab(j,3),2)=tab(j, 3)
npt rx=nptrx+1
endif
endif
enddo
.Only the edges inside the body are stored in the final array,
‘a’ and ‘b’.
do j=1,6
do k=1,6
if ((bit(j).eq.’0’).and. (bit(k).eq.’0’)) then
a(edst (tab(j,3),1) ,edst (tab(k,3),1))=
1 a(edst (tab(j,3),1),edst(tab(k,3),1))+dble(al(j, k))
b (edst (tab(j,3),1) ,edst (tab(k,3),1))=
1 b(edst (tab(j,3),1),edst (tab(k,3),1))+dble(bl(j,k))
endif
enddo
enddo
enddo
write(6,*)'Finished FEM matrix generation’
write(6,*)’Matrix is of order ’,nptrx-1

07/26/91

3:17 PM

k/users/+research/+arnd/+ideas/alt PAGE3

if (net.ne. (nptrx-1)) then
write(6,*)’Error in matrix assembly’
stop
endif
ir=0
do i=1,nptrx-1
do j=1,nptrx-1
if ((b(i,3)-b(j,i)).gt..000001) then
write(6,*)b(i, j),b(3,1i),1i,3
ir=1
endif
enddo
enddo
if (ir.eq.0) then
write (6, *) ' Symmetry test passed’
else
write (6, *)’Symmetry test failed’
endif

Solving the generalised eigenvalue problem: Ax=lambda*Bx

epsl=.000001

matz=.false.

call gzhes (700,net,a,b,matz, z)
write(6,*)’'Step 1 done’

call gzit (700,net,a,b,epsl,matz,z,ier)
write (6, *)’Step 2 done’
write(6,*)’error= ’,ier

call qzval(700,net,a,b,alfr,alfi,beta,matz, z)

write(6,*)’Step 3 done’
do i=1,nptrx-1
alfr(i)=alfr(i) /beta(i)
enddo
A bubble sort through the eigenvalue spectrum
do i=1l,net-1
do j=net,i+l,-1
if (alfr(j).lt.alfr(j-1)) then
beta (j)=alfr(j)
alfr(j)=alfr(j-1)
alfr(j-1)=beta(j)
endif
enddo
if (alfr(i).ge.0.) then
write (4, *)sqgrt(alfr(i))
endif
enddo
close (4)
stop
end

subroutine crux(l,a,b, tab)

integer edna(15000),gnn(15000,2),tab(6,3),mat (2500)
real xyz(3000,3),x(500),y(500),z(500),a(6,6),b(6,6),£(6,3),

1 g(6,3),tmp(3),eps(10)
common /bank/edna,gnn,xyz,eps,mat
common /mess/x,y,z

common /local/sumx, sumy, Sumz, Xx,VYy,zZZ,Xy,YZ, ZX

lv=6*(1-1)

do j=1,6
tab(j,1l)=gnn(lv+j,1)
tab(j,2)=gnn(lv+j,2)

07/26/91 3:17 PM

ek/users/+research/+arnd/+ideas/alt PAGE4) 07/26/91 3:17 PM

tab(j, 3)=edna (1v+3j)
enddo .
.Sorting the array ‘tab’ arranges it according to local node nos. so
that the array looks like the one in file ‘input’.
call sort (tab) :
.’calc’ calculates some data corresponding to the element
call calc(tab(1,1),tab(1,2),tab(2,2),tab(3,2))
."volume’ computes six times the volume of the tetrahedral element
call volume(tab(1l,3),tab(2,3),tab(3,3),vol)
do j=1,6
- call cross(x(tab(7-3j,1)),y(tab(7-3,1)),z(tab(7-3,1)),x(tab(
1 7-3,2)),y(tab(7-3,2)),z(tab(7-3,2)), tmp)
.’bj’ stores the length of the ’j’ th edge.
bj=sqrt ((xyz (tab(j,3),1) **2) + (xyz(tab (3, 3),2) **2) + (xyz
1 (tab(j,3),3)**2))
.The constant vectors, ‘f’ and 'g’, are computed and the result
stored in ‘f’ and ‘g’, respectively.
do k=1,3
£(j,k)=bj*tmp (k) /vol
g(j,k)=bj*xyz(tab(7-3,3),k)/vol .
if (j.eq.2) then
g(i,k)=-1.*g(j,k)
elseif (j.eq.5) then
£(j, k)=-1.*£(3, k)
g(jlk)=—1‘*g(jlk)
endif
enddo
enddo
vol=vol/6.
do 3=1,6
do k=1,6
."a’ contains the elemnts of the ‘a’ matrix in the main program.
This equals the volume integral over curl W_i . curl W_j and
is the same as 4.*g i*g j*V
a(j,k)=4.*dot (j,k,qg)*vol
.The function ‘fl’ computes the elements of the ‘b’ matrix in the
main program. This is taken directly from the formulation and
equals the volume integral over W_i . W_j
b(j,k)=£f1(j, k, £,9) *eps (mat (1)) *vol
enddo
enddo
return
end

subroutine sort (tab)
integer tab (6, 3)
nc=1
do ik=4,2,-1
if (nc.eq.l) then
ij=6
else
ij=ik
endif
do ii=1,ij-1
do j=ij,ii+1,-1
if (tab(j,nc).lt.tab(3-1,nc)) then
do jk=1,3
call exchg(tab(j, jk),tab(j-1, jk))
enddo

ek /users/+research/+arnd/+ideas/alt PAGES

endif
enddo
enddo
nc=2
enddo
if (tab(5,2).1lt.tab(4,2)) then
do jk=1,3
call exchg(tab (5, jk),tab(4, jk))
enddo
endif
¢call exchg(tab(5,1),tab(5,2))
return
end

subroutine volume (31,32, 3j3,v)
integer edna(15000),gnn(15000,2),mat (2500)
real xyz(3000,3),b1(3),b2(3),b3(3),eps(10)
common /bank/edna,gnn,xyz,eps,mat
do it=1,3

bl (it)=xyz(jl,it)

b2 (it)=xyz (j2,1it)

b3(it)=xyz(j3,it)
enddo

v=abs (bl (1) * ((b2(2)*b3(3))-(b2(3)*b3(2)))-b1(2)*((b2(1)*b3
(3))=(b2(3)*b3 (1)))+b1 (3) * ((b2 (1) *b3(2)) - (b2(2) *b3(1))))

return
end

subroutine cross(xl,yl, zl,x2,y2,2z2,tempo)
real tempo (3) ’

tempo (1)=yl*z2-y2*zl

tempo (2)=z1*x2-z2*x1

tempo (3)=xl*y2-x2*yl

return

end

subroutine calc(jl, 32, 33, j4)
real x(500),y(500),z(500)
common /mess/x,y,z

cormon /local/sumx,sumy, sumz,XX,YY,Z2Z,XY,VZ, ZX

sumx=x (Jj1) +x (j2) +x (33) +x(j4)
sumy=y (j1)+y (j2)+y (33) +y (j4)
sumz=z (j1)+z (j2)+z (j3)+z (j4)

xx=sumx*sumx+x (J1) *x (JL)+x(J2) *x (§2)+x(J3) *x (33) +x (j4) *x (J4)
yy=sumy*sumy+y (§1) *y (§1)+y (32) *y (J2) +y (3I3) *y (33) +y (J4) *y (]4)
zz=sumz*sumz+z (j1) *z (j1)+z(j2) *z (J2)+z(33) *z(j3)+z(j4) *z (j4)
xy=sumx*sumy+x (j1) *y (j1)+x(J2) *y (§2)+x (§3) *y (13) +x (j4) *y (j4)
yz=sumy*sumz+y (J1) *z (j1)+y (32) *z (j2) +y (33) *z (§3) +y (j4) *z (34)
zx=sumz*surmx+z (1) *x (L) +z2 (J2) *x (J2) +z (J3) *x (§3) +z (j4) *x (34)

return
end

real function dot(jl, j2,vec)
real vec (6, 3)

dot=(vec(jl,1)*vec(32,1))+(vec(jl,2)*vec(j2,2))+(vec(]jl, 3) *vec

(32,3))
return
end

07/26/91

3:17 pM

k/users/+research/+arnd/+ideas/alt PAGE6

[\N]

real function f1(j1,3j2,f£,9)
real £(6,3),g9(6,3),tmpl (3),tmp2(3)
common /local/sumx, sumy, sumz,XX,VY, 2Z,XY,YZ, ZX
call cross(£(j1,1),£(31,2),£(31,3),9(32,1),9(32,2),9(j2,3),tmpl)
call cross(f(j2,l),f(j2,2),f(j2,3) :g(jlrl) ,g(jlrz) ’g(Jll3) ,tmp2)
terml=dot (jl1, j2,f)
term2=((tmpl (1) +tmp2 (1)) *sumx+ (tmpl (2) +tmp2 (2)) *sumy+
(tmpl (3) +tmp2 (3)) *sumz) /4.
term3=(g(jl,2)*g(3j2,2)+g(j1,3) *g(j2,3)) *xx+(g(3jl,1) *g(j2,1)+
g(j1,3)*g(32,3)) *yy+(g(j1,1) *g(j2,1)+g(31,2) *g(j2,2)) *zz
-(g(31,1)*g(j2,2)+g(jl,2)*g(j2,1)) *xy-(g(I31,1) *g(j2,3)+
g(j1l,3)*g(j2,1)) *zx-(g(31,2)*g(32,3)+g(jl,3) *g(j2,2)) *yz
fl=terml+term2+ ({term3/20.)
return :
end

subroutine exchg(jl, j2)
ntmp=3jl

jl=52

j2=ntmp

return

end

07/26/91

3:17 pM

:k/users/+research/+arnd/+ideas/procn PAGE1l : 07/26/912 3:16

'rocesses a universal file obtained from IDEAS and stores the nodal info.
‘hecks the surface nodes and imposes suitable boundary conditions on them.

‘tores the node numbers and respective nodal coordinates in ‘noddy’
‘tores the element numbers and corresponding nodes in ‘elno’
torage limit: 4000 nodes, 25000 elements

program unv_file processor
character string*80, yastrn*40, unv*20
integer nl(25000,4),nn(50),nun{25000),bc (25000, 3)
integer count,tr(25000),tmp
real x{(4000),y(4000),=z(4000)
write(6,*)’1l) Cavity problem 2) Scattering problem’
read (5, *)ivar
write (6, *)’Name of universal file 2’
read (5, (A) ')unv
open (1, file=unv)
open (2, file='noddy’)
open(3,file='elno’)
open(8,file='surfed’)
Processing universal file for info on various parameters
read(l,’ (A)')string
1=0
if (string(4:6).eq.’151’) then
write (6, *)’Encountered header’
go to 15
Processing nodal info; data stored in ‘noddy’
elseif (string(4:6).eq.’ 15’) then
read(1l,’ (A)')string
if (string(5:6).ne.’-1’) then
write(2,*)string(7:10),’ ‘,string(41:53),' ’,string(54:66),"
1 (String(67:79)
1=1+1
go to 5
endif
11=1
write (6,*)’'There are ’,1,’ nodes.’
write(8,*)1
Processing element info; data stored in ‘elno’
elseif (string(4:6).eq.’ 71’) then
read(1l,’ (A)')string
if (string(5:6).ne.’-1’) then
read(l,’ (A)’)yastrn
write(3,*)string(7:10),’ ',yastrn(7:10),’ ‘,yastrn(l7:20),
1 r f,yastrn(27:30),’ ’,yastrn(37:40)
1=1+1
go to 10
else
write (6, *) ' There are ’,1l,’ elements.’
write(8,*)1
12=1
endif
elseif (string(4:6).eq.’752’) then
ltmp=0
nn(1l)=0
read(l,’ (A)')string
if (string(19:20).eq.’ 0’) then
ltmp=ltmp+1l

PM

ok/users/+research/+arnd/+ideas/procn PAGE2

read(string(57:60),’ (I4)')numb
nn (ltmp+1) =numb+nn (ltmp)
elseif (string(5:6).eq.’-1’) then
write (6, *)’ There are ’,ltmp,’ surface divisions.’
go to 20
elseif (string(l:1).eq.’ ‘) then
do i=1,4
if (string((20*i-3):20*i).ne.’) then
1=1+1
read (string((20*i~3):20*i),’ (I4)’)tr(l)
endif
enddo
endif
go to 30
endif
go to 15
close (1)
.Data from ‘noddy’ and ‘elno’ stored in
nl,..,n4 - table of nodes making up the corresponding element
X,¥,2 - nodal coordinate table
rewind 2
rewind 3
do i=1,11
read(2,*)na,x(i),y(1),z (1)
enddo
do i=1,12
read(3,*)nk,nl(i,1),nl(i,2),nl(i,3),nl(i,4)
enddo :
.Close ‘noddy’ and ‘elno’ for good
close (2)
ncnt=0
do i=1,12
do 3j=1,3
bc(i, j)=0
enddo
enddo
if (ivar.eq.l) then
do i=1,ltmp
write(6,*)’'Processing surface ’,i,’ for on-surface nodes.’
do j=nn(i)+2,nn(i+l)
if (x(tr(nn(i)+1l)).eq.x(tr(j))) then
flagx=0.
else
flagx=1.
endif
if (y(tr(nn(i)+l)).eq.y({tr(j))) then
flagy=0.
else
flagy=1.
endif
if (z(tr(nn(i)+1l)).eq.z(tr(j))) then
flagz=0.
else
flagz=1.
endif
enddo
do k=nn(i)+1l,nn(i+1)
if (flagx.eq.0.) then
bc(k,1)=1

07/26/91 3:16 PM

sk/users/+research/+arnd/+ideas/procn PAGE3

elseif (flagy.eq.0.) then

be(k,2)=1
elseif (flagz.eq.0.) then
bc(k, 3)=1
endif
enddo
enddo
do i=1,1-1

do j=1,i+1,-1
if (tr(j).lt.tr(j-1)) then
call exchg(tr(j),tr(j-1))
do k=1,3
call exchg(bc(j,k),bc(j-1,k))
enddo
endif
enddo
enddo
nuk=0.
do i=1,1
if (i.eq.l) then
trmp=0
else
tmp=tr (i-1)
endif
if (tr(i).ne.tmp) then
count=1
if (tr(i+count).eq.tr(i)) then
count=count+1
go to 50
endif
ntl=1
nt2=1
nt3=1
! do j=1,count
ntl=ntl*bc(i+j-1,1)
nt2=nt2*bc (i+j-1,2)
| nt3=nt3*bc(i+j-1, 3)
enddo
write(8,*)tr(i),ntl,nt2,nt3
ncnt=ncnt+1
nuk=nuk+ (1-ntl)+ (1-nt2)+(1-nt3)
else
go to 100
endif
enddo

write(6,*)’'No. of unknowns = ‘,3*11-nuk
else
do i=1,ltmp
write(8,*)i,nn(i+1)
enddo
do ii=1,1ltmp
do ik=1,12
nun (ik)=0
enddo
do i=nn(ii)+1l,nn(ii+l)
do j=1,12
do k=1,4
if (tr(i).eq.nl(j,k)) then

write(6,*)’'No. of on-surface nodes = ’,ncnt

07/26/91

3:16 PM

2k /users/+research/+arnd/+ideas/procn PAGE4

nun (j)=nun (j) +1

be (j,nun{j))=nl (3, k)

if (nun(j).eq.3) then
write(8,*)j,bc(j,1),bc(j,2),bc(j,3)

ncnt=ncnt+1l
go to 200
endif
endif
enddo
enddo
enddo
enddo
write(6,*)’'There are ’,ncnt,’
endif
close(3)
close (8)
stop
end

surface elements.’

subroutine exchg(jl, j2)
ntmp=7jl

31=32

j2=ntmp

return

end

07/26/91 3:16 PM

ek /users/+research/+arnd/+ideas/femn PAGEl

.This program computes the eigenvalues of a rectangular cavity

using divergenceless nodal basis and tetrahedral elements.

Storage limit: 500 nodes, 2000 elements, 300 surface nodes
1500 matrix size

.To run program on Apollos:

Need to run ’‘procn.obj’ first; ’'noddy’, ’‘elno’ and ‘surfed’ are created.

ftn ‘filename’
bind ‘filename’ .bin /progs/math/naas/eispack.lib -b ‘filename’.obj
ffilename’ .obj

program fem nodal_ basis_3d
logical matz
integer elm(2000,4),surf(300),bc(300,3),tab(4)
real al(12,4),b1(12,4),x(500),y(500),z(500)
double precision a(1500,1500),b(1500,1500),alfr(1500),alfi(1500)
1 (beta (1500)
common /dbase/x,y,z,elm
common /var/s,vol
write(6,*)’'No. of on-surface nodes’
read (5, *)nsn
write(6,*)’'Penalty factor’
read (5, *)s
open(l, file='noddy’)
open(2,file='elno’)
open (3, file='surfed’)
open(4,file='eig’)
read (3, *)nn
nn2=2*nn
read (3, *)ne
do i=1,nn
read (1, *)nk,x(i),y i),z (1)
enddo
do i=1,ne
read(2,*)nk,elm(i,1),elm(i,2),elm(i,3),elm(i,4)
enddo
do i=1,nsn
read (3, *)surf(i),bc(i,1),bc(i,2),bc(i, 3)
enddo
write(6,*) 'Finished reading in data’
close (1)
close (2)
close (3)

do iv=1,3
do i=1,ne
call crux(i,iv,al,bl,tab)
do j=1,12
do k=1,4
nt=(iv-1) *nn
if (j.le.4) then
a(tab(j), (nt+tab(k)))=a({tab(j), (nt+tab(k)))+dble(al (j, k))
b(tab(j}, (nt+tab(k)))=b(tab(j), (nt+tab(k)))+dble (bl (j,k))
elseif ((j.gt.4).and.(j.le.8)) then

a((nn+tab(j-4)), (nt+tab(k)))=a((nn+tab(j-4)), (nt+tab(k)))
1 t+dble (al(j,k))

b((nn+tab(j-4)), (nt+tab(k)))=b((nn+tab(j-4)), (nt+tab(k)))
1 +dble (bl (j, k))

else

07/26/91 3:18 PM

k/users/+research/+arnd/+ideas/femn PAGE2 . 07/26/91 3:18 PM

a((nn2+tab(j-8)), (nt+tab(k)))=a((nn2+tab(j-8)), (nt+tab(k)))
1 +dble(al(j, k)) .

b{((nn2+tab(j-8)), (nt+tab(k)))=b((nn2+tab(j-8)), (nt+tab(k)))
1 +dble (bl (3, k))

endif
enddo
enddo
enddo
enddo

write(6,*)'Applying bc’
do j=1,nsn
if (bc(j,1).eq.0) then
-a(surf (j),surf(j))=-1.d0

endif
if (bc(3j,2).eq.0) then
a (nn+surf (j),nn+surf (j))=-1.d0
endif
if (bc(j,3).eq.0) then
a(nn2+surf (j),nn2+surf (j))=-1.d0
endif
enddo

write(6,*)’shifting rows’
nptr=3*nn+1
do 3j=1, (3*nn)
if (float(j/15).eq.(3j/15.)) then
write(6,*) j,nptr
endif
if (a(j,j) .eq.-1.d0) then
nptr=nptr-1
if (j.gt.nptr) go to 30
if (a(nptr,nptr).ne.-1.d0) then
do k=1,nptr
call exchg(a(j,k),a(nptr,k))
call exchg(b(j,k),b(nptr,k))
enddo
do k=1,nptr
call exchg(a(k,j),a(k,nptr))
call exchg(b(k, j),b(k,nptr))
enddo
else
go to 20
endif
endif
enddo

ir=0
write(6,*) ‘Matrix generation complete; matrix of order /,nptr
do i=1,nptr
do j=1,nptr
if ((a(i,j)-a(j,i)).gt..000001) then
ir=1
write(6,*)a(i,j),a(j,i),3j,1i
endif
enddo
enddo
if (ir.eq.l) then
write(6,*)’'Symmetry test failed for A’
else

2k/users/+research/+arnd/+ideas/femn PAGE3

write (6, *) ' Symmetry test passed for A’
endif

epsl1l=.00001

matz=.false.

call gzhes (1500,nptr,a,b,matz, z)
write(6,*)’Step 1 done’

call gzit (1500, nptr,a,b,epsl,matz, z,ier)
write(6,*)’'Step 2 done’
write(6,*)'error= ’,ier

if (ier.ne.0) then

write(6,*)’Erroneous computation; check FE matrices’

stop
endif

call gzval(1500,nptr,a,b,alfr,alfi,beta,matz, z)

write(6,*)’'Step 3 done’
do i=1,nptr
alfr(i)=alfr (i) /beta(i)
enddo
do i=1,nptr-1
do j=nptr,i+l,-1
if (alfr(j).lt.alfr(j-1)) then
beta (j)=alfr(j)
alfr(j)=alfr(j-1)
alfr(j-1)=beta (3j)
endif
enddo
if (alfr(i).gt.0.) then
write (4, *)sqgrt(alfr(i))
endif
enddo
close (4)
stop
end

subroutine crux(l,iv,a,b,tab)
integer elm(2000,4),tab(4)
real a(l2,4),b(12,4),x(500),y(500),z(500)
common /dbase/x,y,z,elm
common /var/s,vol
do j=1,4

tab(j)=elm(1, j)
enddo
call calc(iv,tab(l),tab(2),tab(3),tab(4))
call volume(tab(l),tab(2),tab(3),tab(4),vol)
do 3=1,12

do k=1,4

call matx(iv, j,k,a(j,k),b(3j, k))

enddo
enddo
return
end

1

subroutine volume(jl, j2, 33, j4,v)
integer elm(2000,4)

real x(500),y(500),2(500)

common /dbase/x,y,z,elm

vi=(x(3j1)-x(34))* ({y (32) -y (J4)) *(2(33) -z (J4)) - (y (33) -y (J4)) * (2 (]

2)=-2(34)))

07/26/91 3:18 PM

2k/users/+research/+arnd/+ideas/femn PAGE4

1

v2=(y (34) -y (31)) * ((x(32)-x(J4)) * (2 (13) -2z (34)) - (x(33) -x(F4)) *(z (3

2)-z(34)))

v3=(z (j1) -z (34)) * ((x(32)-x(J4)) *(y (33) -y (JD)) - (x () -x (3D) * (¥ (]

2)-y(34)))
v=abs (vl+v2+v3) /6.
return
end

“hecking routine follows;
2nough of the matrix generation process

subroutine calc(iv, j1,32,33,34)

integer elm(2000,4)

real x(500),y(500),z(500),p(4),g(4),r(4)

common /dbase/x,y,z,elm

common /local/p,q,r
P(l)=(y(32)-y(34)) *(z(33)-2(34)) - (y(33) -y (34)) *(z(j2) -z (34))
P(2)=(y(33) -y (j4))*(2(J1) -z (34)) - (y (31) -y (34)) * (z(33) -z (j4))
P(3)=(y (31) -y (34)) *(2(32) -2 (34))~ (y (I2) -y (J4)) * (2 (j1) -z (j4))
P(4)=(y(33) -y (1)) *(2(J2) -z (F1)) - (y (32) -y (IJ1)) *(z(33) -z (j1))
q(l)=(z(32)-z(34)) *(x(33)-x(J4))-(2(33) -z (F4)) * (x(F2) -x (j4))
q(2y=(z(33) -z (FJ)) *(x(j1)-x(34)) - (z (1) -2 (34)) * (x(33) -x (j4))
g(3)=(z (1) ~z (§4)) *(x(J2)-x(j4)) - (z(32) -2 (FJ4)) * (x (1) -x (j4))
q(4)=(z(33) -z (1)) *(x(J2)-x(31))-(Z2(32) -z (FL)) * (x(F3) -x (j1))
r(L)=(y(j3) -y (j4))*(x(32)-x(34)) - (y (32) -y (34)) *(x(33) -x (j4))
r(2)=(y (J1) -y (34))Y *(x(33) -x(34)) - (y (33) -y (34)) *(x(j1) -x (F4))
r(3)=(y(j2) -y (34)) *(x(j1) -x(34)) —(y (31) -y (34)) * (x (j2) -x (F4))
r(4)=(y(32) -y (31)) *(x(33)-x(31)) = (y(33) -y (1)) * (x(j2) -x (j1))

tl=0.

t2=0.

t3=0.

do ijk=1,4
tl=tl+p(ijk)
t2=t2+q(ijk)
t3=t3+r(ijk)

enddo

if (tl.gt..000001) then
write(6,*)tl,t2,t3

endif

return

end

can be deleted if the user feels confident

subroutine matx(m, j, k, fa, fb)
real p(4),q(4),r(4)
common /local/p,q,r
common /var/s,vol
tt=0.
if (m.eq.l) then
if (j.le.4) then
t={(s*p(J) *p(k))+(q(I) *q(k))+(r(3)*r(k))
if (j.ne.k) then

tt=.05
else
tt=.1
endif
elseif ((j.gt.4).and.(j.le.8)) then
ji=j-4
t=(s*q(j3j) *p(k))-(p(3j)*q(k))
else

jj=3-8

07/26/91

3:18 PM

ek/users/+research/+arnd/+ideas/femn PAGES

t=(s*r(jj)*p(k))-1p (i) *r(k))

endif

elseif (m.eq.2) thern

if (j.le.4) then
t=(s*p(j) *q(k))-(q(j) *p(k))

elseif ((j.gt.4).and.(j.le.8)) then
ji=ji-4
t=(p (3 *pP(k)) +(s*q (I *q(k))+(r(3Jj) *r(k))
if (jj.ne.k) then

tt=.05
else
tt=.1
endif
else
ji=3j-8
t=(s*r(jj) *q(k))-(q(3ij) *r(k))
endif

else
if (j.le.4) then
t=(s*p(Jj) *r(k))-(r(3)*p(k))
elseif ((j.gt.4).and.(3j.le.8)) then
ji=3-4
t=(s*q (i) *r(k)) -(x(3i) *q(k))
else
j3=3-8
t=(p(jj) *p(k))+(g(3j) *a(k))+(s*r(jj) *r(k))
if (jj.ne.k) then
tt=.05
else
tt=.1
endif
endif
endif
fa=t/ (36.*vol)
fb=tt*vol
return
end

subroutine exchg(x1l,x2)
tmp=x1

*1=x2

x2=tmp

return

end

07/26/91 3:18 PM

