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SUMMARY 

A second-order finite difference and two spectral methods including a Cheby­
shev tau and a Chebyshev collocation method have been implemented to determine 
the linear hydrodynamic stability of an unbounded shear flow. The velocity profile 
of the basic flow in the stability analysis mimicks that of a one-stream free mixillg 
layer. Local and global eige~value solution methods are used to determine individ­
ual ejgenvalues and the eigenvalue spectrum, respectively. The calculated eigen­
value spectrum includes a discrete mode, a continuous spectrum associated with 
the equation singularity and a continuous spectrum associated with the domain 
unboundedness. The efficiency and the accuracy of these discretization methods in 
the prediction of the eigensolutions of the discrete mode have been evaluated by 
comparison with a conventional shooting procedure. Their capabilities in mapping 
out the contInuous eigenvalue spectra are also discussed. 
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1. INTRODUCTION 

This paper studies the numerical solutions of a boundary value problem using 
four different solution methods. The Rayleigh equationl governs the inviscid in­
stability properties of linearized disturbances. With the conventional normal mode 
representations for disturbances, the equation for the c~mplex amplitude, V, of the 
velocity perturbation in the y-direction is 

{ ~ ~U} 
(aU - w ) ( dy2 - a

2 
) - a dy2 V = 0 (1) 

In a spatial analysis, it is assumed that the disturbances with real frequency, w, 

traveling at the speed, w / a r , are amplified at the rate exp( -aix) upon the basic 
parallel flow described by the mean velocity in the x-direction, U(y). a denotes the 
complex wavenumber and w the frequency. The Rayleigh equation, together with 
the boundary conditions 

y ~ ± 00 (2) 

defines the basic linear inviscid instability problem, in the form of a boundary value 
problem for parallel free shear flows in an unbounded domain. Thus we are solving 
an eigenvalue problem to determine the dispersion relationship 

a = a(w) (3) 
., 

Traditionally, the hydrodynamic stability problem has been solved by shooting 
techniques2. This involves the solution of two initial value problems with the tw~ 
boundary conditions as their. respective initial conditions. Eigenvalues are deter­
mined by satisfying a matching condition at a certain intermediate point or bound­
ary in the flow. A good knowledge of the characteristics of the solutioris is ·~fteri. 
needed in the shooting technique in order to make a good initial guess for the eigen-' 
values. Also, the accuracy of the solutions is often limited by the accuracy of the 
numerical integration scheme. 

Recently, interest in the application of spectral approximation meth6ds'has 
grown in all branches of· science and engineering. Spectral methods are u\s~ful' 
in problems where high resolution is required3,4. These methods have also been 
studied in classical problems of computational fluid dynamics5,6 and in turbulence 
simulations7

. Canuto et al. 8 have given a detailed description of the technical as­
pects of the applications of various spectral methods in fluid dynamics. 

Another application of spectral methods has been in the solution of hydrody­
namic stability problems. For example, Orszag9 compared spectral methods based 
on different expansion polynomials and used a Chebyshev polynomial expansion to 
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study the temporal instability of plane Poiseuille flow. When this discretization is 
applied to the linearized equations of hydrodynamic stability with the appropriate 

. boundary conditions, an algebraic eigenvalue problem is obtained. For temporal 
.... instability, in which a fixed wavelength disturbance grows or decays in time, the 
.. complex frequency is the eigenvalue. This parameter appears linearly in the prob­

lem and standard algebraic eigenvalue techniques may be used to determine the 
eigenvalues. However, most shear driven instabilities are spatially unstable. In this 
case a disturbance of fixed real frequency grows or decays in space, and the com­
plex wavenumber of the disturbance is the eigenvalue. The wavenumber appears 
nonlinearly in the problem and standard algebraic eigenvalue techniques are not ap­
plicable. Bridges and Morris10 showed that the Linear Companion Matrix Method 
(LCM) and a method based on matrix factorization (MF) could be applied success­
fully to this problem. The LCM approximates the entire eigenvalue spectrum. The 
factorization method gives only a subset of the eigenvalue spectrum. However, the 
size of the companion matrix in the LCM is p times that of the original matrices 
where p is the order to which the eigenvalue appears. Note that neither of the two 
methods requires initial guesses for eigenvalue calculations. 

So far the applications of the spectral approximations in conjunction with the 
global eigenvalue solution methods have been limited to the boundary layer or 
bounded shear flow instability problem10,1l. In the present analysis, two spectral 
methods, the Chebyshev tau method and a Chebyshev collbcation:method are used 
to determine the spatial, inviscid stability.of a free shear layer. The resulting 
eigenvalue problem in which the parameter appears nonlinearly is solved using the 
LCM and MF. 

Moreover, the advent of these computational methods, LCM and MF, has 
made it feasible to solve the spatial stability problem using other discretization 
techniques, such as finite difference formulation. The application of the finite dif­
ference techniques also results in an eigenvalue problem in which the parameter 
appears nonlinearly. Therefore, standard algebraic eigenvalue techniques are not 
applicable in this case as well and the global eigenvalue solution methods have to 
be used as in the case of spectral approximations. For both spectral and finite dif­
ference discretizations, the accuracy of the solutions depends mainly on the order 
of approximations. In the present analysis, the order of approximation is measured 
by either the number of Chebyshev polynomials used in the spectral methods or the 
number of grid points at which differential equations are discretized in the finite dif­
ference formulation. Finite difference discretizations, however, are much simpler to 
implement than spectral methods. Therefore, the finite difference approximations 
provide a viable alternative for hydrodynamic stability analyses using the global 
eigenvalue solution methods. . 

In :the present paper two spect:ral approximations are used to determine the 
spatiaL, inviscid stability of a twcr-dimensional free shear layer. A simple finite 
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difference scheme is also considered. The solutions are compared with that us­
ing the shooting procedure. This stability analysis is.of interest as experimental 
observations12 ,13 have shown that the local .characteristics of large-scale coherent, 
turbulent structures in free mixing layers are described remarkably well as inviscid 
instability waves. If these observations are to form th.e basis of a turbulence model 
it is valuable to have efficient numerical schemes to solve the inviscid hydrodynamic 
stability problem. Liou 14 has successfully implemented these global approximation 
schemes in developing turbulence models based on a linear theory to simulate the 
evolution of a turbulent free mixing layer. 

In the following sections, the basic boundary value problem, the numerical 
discretizations and the eigenvalue solutions are first described. Comparisons of the 
accuracy and efficiency of the schemes are then given. The various features of 
the eigenvalue spectrum of the Rayleigh equation unveiled by the global numerical 
approximations are also discussed. 

2. FORMULATION 

A transformation 
z = fey) (4) 

which maps the unbounded physical domain onto the finite Chebyshev domaint-l,l] 
must be used to apply the Chebyshev spectral methods. The transformed Rayleigh 
equation becomes 

[Uv]a 3 
- [wv]a 2 

- [U ( v'm )' m - (U'm)' mv ] a + w ( v'm )' m = 0 (5) 

where m denotes the metric .of the transformation and ( )' denotes d/dz. The 
boundary conditions become 

v ~ 0, z ~ ±l (6) 

For the Rayleigh equation, it is shown below that the system of equations generated 
by each of the three approximation methods forms an eigenvalue problem with the 
eigenvalue, a, appearing nonlinearly. That is, 

D3(a)v = 0 (7) 

where 
D3(a) = C oa 3 + C 1 a 2 + C 2 a + C 3 . 

TheCo,C1 ,C2 and C 3 are the coefficient matrices of the lambda matrix D3(a). 
The components of the eigenvector v are .either the expansion coefficients of the 
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Chebyshev series approximation or the solution vectors themselves. The eigenvalues 
of the system are the roots of the characteristic equation 

detID3(a) I = 0 (8) 

2.1 Chebyshev Tau Method 

In the Chebyshev tau (CT) method the solution v is approximated by a trun­
cated finite series expan~ion of Chebyshev polynomials, 

N 

v(z) ~ v(z) = ~ + L Vn Tn(z) 
n=l 

(9) 

where TnCz) is the nth order Chebyshev polynomial of the first kind. The vari­
ous properties of Chebyshev polynomials can be found in Fox and Parker15 • For 
convenience the Rayleigh equation is now written in integral form: 

where 

A = J J Uv dzdz, 

iJ = - w J j v dzdz, 

6 - -m2Uv + i j(m;)'uv dz + 2 j m2U'v dz-

J j(~2 )"Uv dzdz - j j Cm2)'U'vdzdz, 

iJ = w {m2v - i j(m2)'v dz + j j(~2 )"v} dzdz, 

(10) 

and b1 , b2 are integration constants. The series representation of v( z) is substi-' 
tuted into equation (10) and the integrations are performed by making use of the 
Chebyshev relations 
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After the application of the above expressions to the integrated Rayleigh .eqUation~ 
equation (10)~ we obtain (N - 1) equations by equating thecoefficients.of the 
polynomials of degree n, n - 2, .. N. The resulting system of equations can 
be expressed in the form of equation (7). The details of the application of the 
Chebyshev tau method to hydrodynamic stability problems can be found in Bridges 
and Morris10 and Liou 16. 

2.2 Chebyshev Collocation Method 

It is well known that a smooth function, F( z)~ can be approximated by poly­
nomials in z. The resulting polynomials, such as the Lagrange interpolation poly­
nomial based on equally spaced collocation points, however, typically diverge as the 
number of collocation points increases. The poor convergence behavior of polyno­
mial interpolation can be avoided by relating the collocation points to the structure 
of orthogonal polynomials, like Chebyshev or Legendre polynomials. In the Cheby­
shev collocation (CC) method the collocation points, Z j are the extremaof the Nth 
order Chebyshev polynomials TN(Z). That is, 

J1r 
Zj = cos( N)' J = O, ... ,N (12) 

There are other choices of the collocation pointsl7 . The approximated solution 
becomes 

N 

v(z) = Lv(zj),bj(z) (13) 
j=O 

where bj(z) are the expansion orthogonal functions. The approximation simultane­
ously interpolates the solution at each collocation point. That is, 

(14) 

The details of these expressions can be found in yoigtl7. The resulting system 
of equations obtained by evaluating the differential equation, equation (5), at the 
collocation points can be put into the form of equation (7). 

2.3 Finite Difference Method 

The Rayleigh equation can also be discretized by finite difference (FD) methods 
The discretization is performed in the transformed plane where Z E [-1,1]. The finite 
difference approximation to the Rayleigh equation at grid point i is 

6 

After the application of the above expressions to the integrated Rayleigh .eqUation~ 
equation (10)~ we obtain (N - 1) equations by equating thecoefficients.of the 
polynomials of degree n, n - 2, .. N. The resulting system of equations can 
be expressed in the form of equation (7). The details of the application of the 
Chebyshev tau method to hydrodynamic stability problems can be found in Bridges 
and Morris10 and Liou 16. 

2.2 Chebyshev Collocation Method 

It is well known that a smooth function, F( z)~ can be approximated by poly­
nomials in z. The resulting polynomials, such as the Lagrange interpolation poly­
nomial based on equally spaced collocation points, however, typically diverge as the 
number of collocation points increases. The poor convergence behavior of polyno­
mial interpolation can be avoided by relating the collocation points to the structure 
of orthogonal polynomials, like Chebyshev or Legendre polynomials. In the Cheby­
shev collocation (CC) method the collocation points, Z j are the extremaof the Nth 
order Chebyshev polynomials TN(Z). That is, 

J1r 
Zj = cos( N)' J = O, ... ,N (12) 

There are other choices of the collocation pointsl7 . The approximated solution 
becomes 

N 

v(z) = Lv(zj),bj(z) (13) 
j=O 

where bj(z) are the expansion orthogonal functions. The approximation simultane­
ously interpolates the solution at each collocation point. That is, 

(14) 

The details of these expressions can be found in yoigtl7. The resulting system 
of equations obtained by evaluating the differential equation, equation (5), at the 
collocation points can be put into the form of equation (7). 

2.3 Finite Difference Method 

The Rayleigh equation can also be discretized by finite difference (FD) methods 
The discretization is performed in the transformed plane where Z E [-1,1]. The finite 
difference approximation to the Rayleigh equation at grid point i is 

6 



(15) 

where 

14 - (-wm 2 )i, 15 = (-m (mU')'k (i = 1. .. N) 

.0.z 
2 

and N denotes the total number of the grid points. The first and the second deriva­
tives are approximated by corresponding second order finite difference formulas. 
It is important to note that there are no additional computational difficulties if 
higher order difference formulas are used. The finite difference discretization has 

been found to be more straight forward to formulate than either the Chebyshev 
tau or the Chebyshev collocation methods described above. The application of the 
equation (15) at each grid point gives rise to a system of equations in the form of 
equation (7). . 

In the Chebyshev tau method, the eigenvectors of the eigenvalue proble~ give 
the spectrum of the expansion. While in the collocation and the finite difference 
method, the eigenvectors are the solution vectors themselves. 

2.4 Boundary Conditions 

The boundary conditions for the present problem are 

v(±oo) = 0 (16) 

since the spatial instability ~aves must decay far from the shear layer. In the 
Chebyshev tau method, the boundary conditions become 

N 

Vo '" v(±l) = 2" + ~ (±ltvn = 0 
n=l 

(17) 

The addition of these two equations to the set of equations formed in the approx­
imations above closes the resulting system of equations. The coefficient matrices, 
when written in the form of equation (7), are of order (N + 1) x (N + 1). The 
homogeneity of the boundary conditions, however, allows us to reduce the order of 
the lamda mat.rix by column operations to (N - 1) x (N - 1). The form of the 
boundary conditions are the same for both the collocation and the finite difference 
methods. T4ey are given by 

v(±l) = 0 (18) 
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The appropriate column operations and substitutions can once again reduce the 
order of the coefficient matrices to (N - 1) x (N - 1). 

2.5 Eigenvalue and Eigenfunction Calculations 

Two methods are used to solve the eigenvalue problem, equation (7), in which 
the parameter is of order three. The LCM linearizes the problem and reduces 
it to a general eigenvalue problem. But the resulting companion matrix for the 
matrix polynomial is of higher order, 3 X (N -1), in the present case. The method, 
nevertheless, provides an approximation to the complete eigenvalue spectrum. The 
matrix factorization method features only a subset of the eigenvalue spectrum. The 
method, however, involves only matrices of order (N -1). The details of these two 
methods can be found in Bridges and Morris10. 

In general, the continuous part of the eigenvalue spectrum may be ignored 
when seeking only criterion for stability18. In order to numerically distinguish the 
discrete part from the continuous part of the spectrum, a transformation is used in 
conjunction with the matrix factorization method. The transformation is 

(19) 

The lambda matrix then becomes 

(20) 

This transformation would insure that the eigenvalues of D3 ( 0:') in the vincinity of 
0:' f appear in the set of eigenvalues of the dominant solvent of D3 (&-). A solvent 
of D3 ( &-) is said to be dominant if every eigenvalue in the set has an absolute 
value greater than all the eigenvalues of D3 (&) that are not in it. An algorithm 
developed by Dennis et aU 9 has been used to find the dominant solvent of the 
matrix polynomial. The desired eigenvalue can then be identified. The eigenvalues 
obtained from each of the previous methods may be further refined by the iterative 
method of Lancaster20. To compute single eigenvectors the inverse iteration method 
is used,. 

(21) 

where (} is a scaling factor and is taken as 1 in the calculation. The initial guess for 
the iteration is the complex unit vector. 

In this section, we have summarized three global approaches to solve the eigen­
,:alue problem generated by the spatial stability analysis of a free shear layer, in 
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nomials are defined. Grosch and Orszag21 studied spectral solutions of differential 
equations in both semi-infinite and infinite domains and used three types of trans­
formations. These included a domain truncation, an algebraic mapping and an 
exponential mapping. They found that all of the three transformations are useful if 
the exact solution of the original differential equation decays exponentially fast as 
I y I ~ 00, but fail if solutions oscillate out to infinity. Their results also showed 
that when the solution of a problem is smooth in the mapped domain algebraiG map­
pings are preferred over the other two. Since the solution of the Rayleigh equation 
in the regions of constant mean flow properties can b~'written as, 

v ~ exp [=fay 1 as y ~ ±oo (23) 

a square-root transformation is used in the present analysis to avoid the singulari­
ties at the end points of the transformed domain, z = ±1, which would arise if an 
exponential mapping was used21 . As will be seen later, the square-root transforma­
tion also enables the CC ~nd the FD methods to predict accurately the continuous 
spectrum a,ssociated with the unboundedness even though the corresponding eigen­
solutions are highly oscillatory at infinity. The transformation used is, 

y 
z = 

(1'2 + y2 )1/2 

where l' is a scaling factor. Thein~tr~~. dz/dy is 

m·-
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The scaling factor r controls the distribution of grid points. Increasing r decreases 
the number of grid points clustered around y = O. Since the scaling factor determines 
the amount of the domain stretching, its optimum value, for which the solutions 
are most accurate, may depends on both the number of grid points used and the 
discretization scheme. However, the best grid distribution should be the same for 
a given problem, irrespective of the discretization scheme. Boyd22 used a steepest 
descent method to predict the optimum choice of the mapping parameter in applying 
a Chebyshev polynomial approximation to a known, explicit function. Nevertheless, 
computing analytically the optimum mapping parameter in the application of global 
approximations to a differential equation is difficult. Some preliminary numerical 
tests were performed using the matrix factorization method to evaluate the effects 
of domain stretchings on the prediction of the discrete eigenvalue spectrum. For 
w = 0.2 and N = 17, the results are given in Table 1. The error, €, in each case is 
based upon the corresponding solutions from a shooting method and is determined 
by 

(26) 

where as is the eigenvalue calculated by the shooting method. This yields the value 

as = 0.38260 - iO.22762. (27) 

In the shooting method the Rayleigh equation was integrated in the interval y E 
[-6,6] iIi 200 steps using a fourth-order, fixed step size Runge-Kutta procedure. 
Note that the solution decays exponentially at the far field and the center region 
around y = 0 is the region where there are large changes of the solution. To start 
a calculation, therefore, one can set r = 1. Since 

m (z = 0) = 1.0 (28) 

the region around z =0, where there are. large changes of flow properties, is not 
scaled for r = 1. Table 1 shows that the best scaling factors for the FD, the CC 
and the CT methods are 2.5, 2.0 and 2.5, respectively. Since the finite differencing 
is performed on equally spaced grids and the collocation points in the collocation 
method cluster at both ends of the computational domain, more domain stretching, 
or a bigger r, is needed for the finite differencing than for the collocation method. 
With N = 17, however, the dependence on the stretching parameters seems rather 
weak. The eigenvalues predicted by all the discretization methods are within 1 % of 
the value obtained by using the shooting method. As will be shown later, this weak 
dependence quickly disappears as N increases. In the following calculations, the 
scaling factors used are the "optimum values"for each case unless otherwise noted. 

Tables 2 and 3 give the order of the coefficient matrices required by each method 
to obtain'10% and 1% of accuracy in the eigenvalue calculations, respectively. 
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Table 1 Predicted Eigenvalues. w = 0..2, N = 17. 

FD € CC € 

(0..380.53,-0..14657) 0..18 (0..4110.7,-0..24395) 0..0.73 
(0..35426,-0..22327) 0..0.64 (0..38119,-0..22371 ) 0..0.0.9 
(0..37896,-0.23947) 0..028 (0..38171,-0..22870) 0..0.03 
(0..38575,-0.22985) 0..0.09 (0..38290,-0.22834) 0..0.0.2 
(0..38423,-0..22496) 0..0.0.7 (0..38313,-0..22931) 0..0.0.4 
(0..38231,-0..22319) 0..0.1 (0..38559,-0..23188) 0..0.12 
(0..38114,-0..22187) 0..0.13 (0..37169,-0..20.992) 0..0.47 
(0..38299,-0..220.50.) 0..0.16 (0..34586,-0..23982) 0..0.87 

CT € 

(0..36949,-0..180. 14) 0..11 
(0..37514,-0..23469) 0..0.23 
(0.38455,-0..22343) 0.006 
(0..3830.4,-0..22756) 0..001 
(0..38265,-0..22819) ·0..001 
(0..38319,-0..22877) 0..0.0.3 
(0..38615,-0..230.72) 0..011 
(0..38964,-0..23328 ) 0..0.34 

Table 1 Predicted Eigenvalues. w = 0..2, N = 17. 

r FD € CC € CT € 

0..5 (0.38053,-0.14657) 0.18 (0..4110.7,-0.24395) 0.073 (0..36949,-0.180.14) 0.11 
1.0 (0.35426,-0.22327) 0.064 (0.38119,-0.22371) 0.009 (0.37514,-0.23469) 0..023 

1.5 (0.37896,-0.23947) 0..028 (0..38171,-0.22870) 0.003 (0.38455,-0.22343) 0.006 
2.0 (0.38575,-0.22985) 0..009 (0..38290,-0.22834) 0.002 (0..38304,-0.22756) 0.001 
2.5 (0.38423,-0. .22496) 0.007 (0.38313,-0.22931) 0..004 (0.38265,-0.22819) ·0.001 
3.0 (0.38231,-0.22319) 0.0.1 (0.38559,-0.23188) 0..012 (0.38319,-0.22877) 0..0.03 

4.0 (0.38114,-0.22187) 0.013 (0..37169,-0.20992) 0.047 (0.38615,-0.23072) 0.011 
5.0. (0..38299,-0..22050.) 0..0.16 (0..34586,-0..23982) 0..0.87 (0..38964,-0..23328 ) 0.034 



It can be seen that the FD discretization predict the discete eigenvalue to the same 
order of accuracy as the CT and the CC methods do with the lowest order of the 
coefficient matrices. The two spectral methods performed almost equally well with 
proper choices of the mapping parameters. All the three discretization methods 
show rapid convergence at the low values of N. 

Table 2 Predicted Eigenvalues of less than 10% error. W = 0.2. 

N r a r -ai € X 102 

FD 5 2.0 0.38334 0.19239 7.9 
CC 8 1.5 0.38870 0.21940 2.2 
CT 7 2.5 0.41960 0.20607 9.6 

Table 3 Predicted Eigenvalues of less than 1% error. W = 0.2. 

N r a r -ai € X 102 

FD 9 2.5 0.38364 0.22812 0.3 
CC 11 1.5 0.38264 0.22364 0.9 
CT 10 3.0 0.38498 0.22597 0.6 

For the CC and the CT methods, the calculated eigenvalues converge from 10% to 
1 % error by increasing the number of the approximatIon functions by about 30%. 
The reason is that in the mapped domain equation (23) becomes 

~ [ arz' 1 v ~ exp =+= 1/2 as z -lo ±1 
(1 - z2) . 

(29) 

The solution is thus smooth in the mapped domain and the rapid convergence 
property of the global methods is retained. Comparisons of the rates of convergence 
for the various discretizations and solution techniques are given for the case W = 0.2 
in Table 4. All of the discretization methods show rapid (faster than algebraic) 
rates of convergence when the LCM is' applied. Similarly, the MF method also gives 
the same rapid rate of convergence using the CT and the CC methods. As was 
expected, the finite difference discretization predicts the eigenvalues well but with 
lower rates of convergence. 

Note that the maximum computer time required in all the calculations in Table 
4 is less than a minute on a VAX 8550 machine. In practical applications, therefore, 
the effect of the mapping parameter can be effectively minimized by increasing the 
order of approximations, or N, without a significant increase in computer time. 
This is f-Iso evident in the following eigenfunction calculations. Figures 1 and 2 
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show the real and the imaginary parts of the calculated eigenfunctions for cases with 
w = 0..2 and N =13 and 23, respectively. The error, €, of the corresponding calcu­
lated eigenvalues was less than 1%. The agreement between the results is excellent 
even in the cases with N=13. For the discrete mode, all the methods become less 
sensitive to the choice of the scaling factors as N increases. While the spectral meth­
ods performed better than the finite difference method in other calculations6,23, the 
finite difference formulation is competitive in the present application. Thus, the 
choice of solution methods appears to be problem-dependent. 

As can be seen from Table 5, the eigenvalues calculated by using the LCM 
argee to the fourth digits with those from theMF'method for all the discretization 
methods. 

Table 5 Predicted Eigenvalues. w = 0..2, N = 17. 

LCM MF r t x 10.2 

FD (0.38421,-0.22494 ) (0.38423,-0.22496) 2.5 0.7 
CC (0.38289,-0..22834 ) (0. .38290. ,-0..22834 r 2.0.' 0..2 
CT (0..3830.4,-0..22755 ) (0..3830.4,-0.22756 ) 2.0. . 0.1 

The a f in the matrix factorization method are chosen such that 
';-,"; 

aj = as. (30) ... 

and the eigenvalues thus obtained are/not refined by iterative methods. The as, 
however, are not always known a priori for other flow conditions. For example, the 
realistic velocity profiles of mixing layers may be different from the one assumed 
here and, therefore, their eigenvalues may be different. It may thus be difficult to 
obtain converged eigensolutiQnsusirig the shooting metliod. The eigenvalues and 
the. corresponding € for other choices of af are shown in Table 6. Both the FD 
and the CT methods give good results for up to 30.% under-shoot of a f, for which 
the shooting method would have failed had the a f been used as an initial guess. 
Therefore, in conjunction with the FD and the CT methods, the MF method is far 
less sensitive to the choice of a f than the shooting method is to its initial guess. 
On the other hand, the Chebyshev collocation discretization is more sensitive to 
the af. 

Figure 3 shows the growth rates of the spatially unstable modes of the free 
shear layer obtained by the various methods for N = 11. It was found that since 
the eigenfunctions decay more slowly in the far field as the frequency decreases, the 
mapping parameters selected for the mid frequency waves were not appropriate for 
the high and the low frequency wave calculations. The stretching parameters used 
were thus greater in the low frequency cases and smaller for the high frequencies. 
As was discussed earlier, the dependence quickly diminishes as N increases. 
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Table 6.. Eigenvalues and errors (f X 102 ) predicted using th~ matrix 
factorization method. 

a f X 102 

.(-0.3,0.2) , 
la, - a6 I X 102 • 20.0 a, • a. 

r D (0.376827,-0.224554) 1.4 

C C (0.283691,-0.203911) 22.0 

C T (0.377169,-0.220236) 2.1 

el, .. (-0.228,0.132), 
I a, - as I 2 

x 10 -. .... a. . 30.0 

F D (0.373056,-0.214566) 3~6 

c c (0.232942,-0.263733) 34.5 

C T (0.374547,-0.204189) 5.5 
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One of the advantages of using the global approaches is that we obtain an 
approximation to the complete eigenvalue spectrum, while in the shooting method 
each eigenvalue has to be determined separately. In addition to a finite number 
of discrete values of a that satisfies the dispersion relation (3), there are also con­
tinuous branches associated with the singularity of the Rayleigh equation. In the 
present stability calculations, for example, there are two continuous branches of 
the eigenvalue spectrum arising from the singularity, Yc, of the Rayleigh equation, 
where 

a U(Yc) - w = o. (31) 

For the hyperbolic-tangent velocity profile assumed here, these singular spectra are 

(32) 

(33) 

Figure 4a shows the calculated results with N=17 and w=0.2 using the FD and 
the LCM methods. The spectrum associated with the equations (32) can be clearly 
seen; however, the one associated with the equation (33) is cut out due to the 
magnitude of eigenvalues. 

Another continuous spectrum that can be observed in Figure 4 is associated 
with the bounded solutions of the asymptotic form of the Rayleigh equation in the 
far field, 

(34) 

since U" ---+ 0 as y ---+ ±oo. This is the continuous spectrum associated with the 
domain unboundedness and can be written as 

. a r = 0, (35) 

The corresponding eigenfunctions are purely perodic. As is shown in Figure 4b the 
numerical results predict better both of the continuous spectra, equation (32) and 
(35), with larger values of N. The finite approximations used here will converge to 
the solution of the equation as N ---+ 00. Similar characteristics of the eigenvalue 
spectrum have been observed in plane Couette flow calculations16 . The discrete 
part of the spectrum is associated with the convective instability. For w=0.2, the 
plane Couette flow is stable and the discrete spectrum is empty. Case24 obtained 
eigenfunctions corresponding to the eigenvalues in these singular branches by taking 
a Fourier transform with respect to x and a Laplace transform with respect to time 
of the linearized disturbance equations. The resulting equation is then solvable 
using a Green's function method. The method is applicable to the current cases, 
but will not be given here. 
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Figure 4 also shows that the presence of these continuous eigenvalue spectra 
may conceal or mask the discrete eigenvalues. The spurious solutions, however, 
are far away from the discrete spectrum in the complex wave speed plane. Figure 
5 shows this tendency clearly. The complex wave-speed of the discrete mode for 
w=0.2 is (0.51845,-0.87404). Thus, the discrete spectrum can be better observed in 
the wave-speed plane. 

If a transformation that produces singularities at the boundaries of the trans­
formed domain is used, the convergence property of the global approximations would 
no longer be retained. Figure 6 shows the approximated eigenvalue spectrum us­
ing a hyperbolic-tangent transformation the CT method and the LCM method for 
w = 0.2 and N = 27. The transformation is 

z = tanh (y). (36) 

Both the discrete and the continuous spectra are not well predicted even with the 
relative high order of approximation. 

Figures 7a, 7b and 7c show the eigenvalue spectrum with w = 0.2 using the 
CC, the FD and the CT methods, respectively, and the square-root transformation. 
The spectra associated with the equation singularity, equations (32) and (33) and 
the discrete spectra are well predicted. As was discussed earlier, the convective 
instability described by the discrete spectrum is associated with the local vortic­
ity distribution and is less sensitive to r as N increases. It can be observed from 

. the present results that the same is true for the continuum due to the equation 
singularity. Despite the oscillatory nature of the corresponding eigenfunctions as 
y ---? 00, the locations of the continuous spectra associated with the domain un­
boundedness predicted by the CC and the FD also agree well with the analytic 
expression, equation (35). Th,e square-root transformation used here seems to be a 
viable alternative to the three transformations tested by Grosch and Orszag21 for 
either the FD or the CC methods. However, the continuum predicted by the CT 
method is very sensitive to the mapping parameter, r, even for the relatively high 
values of N. This may be due to the aliasing terms that are not included in the 
Chebyshev spectral tau methods. The eigenvalue spectrum is made complete with 
the inclusion of the continuous branches and an arbitrary initial disturbance can 
not be represented without knowing the complete eigenvalue spectrum. Therefore, 
a good approximation of the eigenvalue spectrum associated with the domain un­
boundedness is important to the solution of the Rayleigh equation in an unbounded 
domain. 
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4. CONCLUSIONS 

Three discretization schemes, two spectral methods and a finite difference 
method have been applied to solve the spatial inviscid instability of a free mix­
ing layer with a hyperbolic-tangent velocity profile. Calculated eigenfunctions for 
the discrete mode using these global approximations show good agreement with 
that using a conventional shooting procedure. For the same order of accuracy of 
the calculated eigenvalues, when compared to that using the shooting metlfod, ,the 
finite'difference discretization is 'more Mficientthan both the Chebyshev i'~u and,i1ie 
Chebyshev collocation methods. On the other hand, the Chebyshev tau method is 
more efficient than the Chebyshev collocation method. The finite difference method 
is also easier to formulate and code. All of the three discretization schemes result in 
rapid rates of convergence when the LCM is used. The matrix factorization is les~ 

, sensitive to the a f than the shooting method is to its initial guess. The q f appears 
in the transformation that was used to identify the discrete eigenvalue. The LCM 
is preferred when the eigenvalue desired is not known a priori. The discrete part of 
the eigenvalue spectrum i~ very di,~tinguisha9Ie in the complex wave speed ;elane. 

All of the discretization methods used here, the' second-order finite difference, 
the Chebyshev tau and the Chebyshev collocation m~thods, are capable of pre­
dicting accurately the discrete spectrum and the continuous spectrum associated 
with the singularity of the Rayleigh equation. The continuous spectrum '~ssociC).ted 
with the unbounded domain can also be well predicted by the three methods, even 
though the Chebyshev tau predictions are somewhat more s~:nsitive to the mapping 
parameter in the square-root transformation. The global eigensolutioh methods 
studied here may be applied very efficiently to obtain either an approximation, to 
the complete eigenvalue spectrum or i'hiti'ru'-guesses for a local shootin'fprocedure 

, for the discrete part of the spectrum. ' --, 

REFERENCES 

1. L. Rayleigh, "On the Stability, or Instability of Certain Fluid Motions," Proc. 

London Math. Soc., 11, pp. 57-70 (1880). 

2. A. Michalke, "On the Spatially Growing Disturbances in an Inviscid Shear 
Layer," J. Fluid Mech, 23, pp.521-544 (1965). 

3. M. G. Macaraeg, "A Mixed Pseudospectral/Finite Difference Method for the 
Axisymmetric Flow in a Heated, Rotating Spherical Shell" J, Compo Phys., 
162, pp. 297-320 (1986). 

4. H. C. Ku and D. Hatziavramidis, "Chebyshev Expansion Methods for the So­
lution of the Extended Graetz Problem," J. Compo Phys., 56, pp. 495-512 
(1984). 

30 

4. CONCLUSIONS 

Three discretization schemes, two spectral methods and a finite difference 
method have been applied to solve the spatial inviscid instability of a free mix­
ing layer with a hyperbolic-tangent velocity profile. Calculated eigenfunctions for 
the discrete mode using these global approximations show good agreement with 
that using a conventional shooting procedure. For the same order of accuracy of 
the calculated eigenvalues, when compared to that using the shooting metlfod, ,the 
finite'difference discretization is 'more Mficientthan both the Chebyshev i'~u and,i1ie 
Chebyshev collocation methods. On the other hand, the Chebyshev tau method is 
more efficient than the Chebyshev collocation method. The finite difference method 
is also easier to formulate and code. All of the three discretization schemes result in 
rapid rates of convergence when the LCM is used. The matrix factorization is les~ 

, sensitive to the a f than the shooting method is to its initial guess. The q f appears 
in the transformation that was used to identify the discrete eigenvalue. The LCM 
is preferred when the eigenvalue desired is not known a priori. The discrete part of 
the eigenvalue spectrum i~ very di,~tinguisha9Ie in the complex wave speed ;elane. 

All of the discretization methods used here, the' second-order finite difference, 
the Chebyshev tau and the Chebyshev collocation m~thods, are capable of pre­
dicting accurately the discrete spectrum and the continuous spectrum associated 
with the singularity of the Rayleigh equation. The continuous spectrum '~ssociC).ted 
with the unbounded domain can also be well predicted by the three methods, even 
though the Chebyshev tau predictions are somewhat more s~:nsitive to the mapping 
parameter in the square-root transformation. The global eigensolutioh methods 
studied here may be applied very efficiently to obtain either an approximation, to 
the complete eigenvalue spectrum or i'hiti'ru'-guesses for a local shootin'fprocedure 

, for the discrete part of the spectrum. ' --, 

REFERENCES 

1. L. Rayleigh, "On the Stability, or Instability of Certain Fluid Motions," Proc. 

London Math. Soc., 11, pp. 57-70 (1880). 

2. A. Michalke, "On the Spatially Growing Disturbances in an Inviscid Shear 
Layer," J. Fluid Mech, 23, pp.521-544 (1965). 

3. M. G. Macaraeg, "A Mixed Pseudospectral/Finite Difference Method for the 
Axisymmetric Flow in a Heated, Rotating Spherical Shell" J, Compo Phys., 
162, pp. 297-320 (1986). 

4. H. C. Ku and D. Hatziavramidis, "Chebyshev Expansion Methods for the So­
lution of the Extended Graetz Problem," J. Compo Phys., 56, pp. 495-512 
(1984). 

30 



5. T. A. Zang and M. Y. Hussaini, ~'Mixed Spectral-Finite Difference Approxi- . 
mations for Slightly Viscous Flows," Proceedings of the Seventh International 
Conference on Numerical Methods in Fluid Dynamics, Ed. Reynolds, W. C., 
MacCormack, R. W., Springer-Verlag (1981). 

6. J. P. Drummond, M. Y. Hussaini and T. A. Zang, "Spectral Methods for Model­
ing Supersonic Chemically Reacting Fluid Fields," AIAA paper 85-0302 (.1985). 

7. S. A. Orszag and G. S. Patterson, "Numerical Simulation of Three-dimensional 
Homogeneous Isotropic Turbulence,"Phys. Rev. Lett., 28, pp. 76-79 (1972). 

8. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, etd., Spectral 
Methods in Fluid Dynamics, Springer-Verlag (1987). 

9. S. A. Orszag, "Accurat~ Solutioll ~f the Orr~Sommerfeld'Stability Equation," -
J. Fluid Mech., 50; pp. 689-703 (1971). ' ; 

10. T. 'J. Bridges and P. J. Morris, "Differential Eigenval";'e Problems in whic~ the 
Parameter Appears Nonlinearly," J. Compo Phys., 55, pp.' 437-460 (1984). 

11. R .. D . Joslin andP. J. Morris, "The Sensitivity of Flow and Surface Instabilities 
to Changes in Compliant Wall Properties," J. Fluid and Structures, 3, pp. 423-
437 (1989). 

12. M. Gaster, E. Kit and I. Wygnanski, "Large-scale Structures in a Forced Tur­
bulent Mixing Layer," J. Fluid Mech., 150, pp. 23-39 (1985). 

13. R. A. Petersen and M. M. Samet, "On the Preferred Mode of Jet Instability," 
J. Fluid Mech., 194, pp. 153-173 (1988). 

14. W. W. Liou, 'Weakly Nonlinear Models for Turbulent Free Shear Flows', Ph.D. 
Thesis, Department of Aerospace Engineering, The Pennsylvania State Univer­
sity (1990). 

15. L. Fox and I. B. Parker, Chebyshev Polynomials in Nmuerical Analysis, 
Oxford Univ. Press (1968). 

16. W. W. Liou, "The Computation of Reynolds Stress in an Incompressible Plane 
Mixing Layer," M.S. Thesis, Department of Aerospace Engineering, The Penn­
sylvania State University (1986). 

17. R. G. Voiget, D. Gottlieb and M. Y. Hussaini, ed., Spectral Methods for 
Partial Differential Equations, SIAM (1984). 

,31 

5. T. A. Zang and M. Y. Hussaini, ~'Mixed Spectral-Finite Difference Approxi- . 
mations for Slightly Viscous Flows," Proceedings of the Seventh International 
Conference on Numerical Methods in Fluid Dynamics, Ed. Reynolds, W. C., 
MacCormack, R. W., Springer-Verlag (1981). 

6. J. P. Drummond, M. Y. Hussaini and T. A. Zang, "Spectral Methods for Model­
ing Supersonic Chemically Reacting Fluid Fields," AIAA paper 85-0302 (.1985). 

7. S. A. Orszag and G. S. Patterson, "Numerical Simulation of Three-dimensional 
Homogeneous Isotropic Turbulence,"Phys. Rev. Lett., 28, pp. 76-79 (1972). 

8. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, etd., Spectral 
Methods in Fluid Dynamics, Springer-Verlag (1987). 

9. S. A. Orszag, "Accurat~ Solutioll ~f the Orr~Sommerfeld'Stability Equation," -
J. Fluid Mech., 50; pp. 689-703 (1971). ' ; 

10. T. 'J. Bridges and P. J. Morris, "Differential Eigenval";'e Problems in whic~ the 
Parameter Appears Nonlinearly," J. Compo Phys., 55, pp.' 437-460 (1984). 

11. R .. D . Joslin andP. J. Morris, "The Sensitivity of Flow and Surface Instabilities 
to Changes in Compliant Wall Properties," J. Fluid and Structures, 3, pp. 423-
437 (1989). 

12. M. Gaster, E. Kit and I. Wygnanski, "Large-scale Structures in a Forced Tur­
bulent Mixing Layer," J. Fluid Mech., 150, pp. 23-39 (1985). 

13. R. A. Petersen and M. M. Samet, "On the Preferred Mode of Jet Instability," 
J. Fluid Mech., 194, pp. 153-173 (1988). 

14. W. W. Liou, 'Weakly Nonlinear Models for Turbulent Free Shear Flows', Ph.D. 
Thesis, Department of Aerospace Engineering, The Pennsylvania State Univer­
sity (1990). 

15. L. Fox and I. B. Parker, Chebyshev Polynomials in Nmuerical Analysis, 
Oxford Univ. Press (1968). 

16. W. W. Liou, "The Computation of Reynolds Stress in an Incompressible Plane 
Mixing Layer," M.S. Thesis, Department of Aerospace Engineering, The Penn­
sylvania State University (1986). 

17. R. G. Voiget, D. Gottlieb and M. Y. Hussaini, ed., Spectral Methods for 
Partial Differential Equations, SIAM (1984). 

,31 



18. P. G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge Univer­
sity Press (1981). 

19. J. E. Dennis, J. F. Traub and R. P. Weber, "Algorithms for Solvent of Matrix 
Polynomial," SIAM, J. Numer. Anal., 15, pp 523-533 (1978). 

20. P. Lancaster, "Algorithms for Lambda-Matrices," Num. Math., 6, pp. 388-394 
(1964). 

21. C. E. Grosch and S. A. Orszag, "Numerical Solution of Problems in Unbounded 
Regions: Coordinate Transformations," J. Compo Phys., 25, pp. 273--295 
(1977). 

22. J. P. Boyd, "The Optimization of Convergence for Chebyshev Polynomial 
Methods in an Unbounded Domain," J. Compo Phys., 45, pp. 43--79 (1982). 

23. S. A. Orszag, "Spectral Methods for Problems in Complex Geometries," J. 
Compo Phys., 37; pp. 70-92 (1980). 

24. K. M. Case, "Stability of Inviscid Plane Couette Flow," Phys. Fluids, 3, pp. 
143-148 (1960). 

32 

18. P. G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge Univer­
sity Press (1981). 

19. J. E. Dennis, J. F. Traub and R. P. Weber, "Algorithms for Solvent of Matrix 
Polynomial," SIAM, J. Numer. Anal., 15, pp 523-533 (1978). 

20. P. Lancaster, "Algorithms for Lambda-Matrices," Num. Math., 6, pp. 388-394 
(1964). 

21. C. E. Grosch and S. A. Orszag, "Numerical Solution of Problems in Unbounded 
Regions: Coordinate Transformations," J. Compo Phys., 25, pp. 273--295 
(1977). 

22. J. P. Boyd, "The Optimization of Convergence for Chebyshev Polynomial 
Methods in an Unbounded Domain," J. Compo Phys., 45, pp. 43--79 (1982). 

23. S. A. Orszag, "Spectral Methods for Problems in Complex Geometries," J. 
Compo Phys., 37; pp. 70-92 (1980). 

24. K. M. Case, "Stability of Inviscid Plane Couette Flow," Phys. Fluids, 3, pp. 
143-148 (1960). 

32 



REPORT DOCUMENTATION PAGE I Form Approved 

OMB No. 0704·0188 
Public reporting burden for this collection of Information Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect 01 this 
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JeHerson 
Davis Highway, Suite 1204, Arlington, VA 22202·4302, and to the OHlce of Management and Budget, Paperwork Reduction Project (0704·0168), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 
1

3
. 

REPORT TYPE AND DATES COVERED 

August 1991 Technical Memorandum 
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

A Comparison of Numerical Methods for the Rayleigh Equation 
in Unbounded Domains 

WU - 505 - 62 - 21 
6. AUTHOR{S) 

W.W. Liou and P.J. Morris 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

National Aeronautics and Space Administration 
Lewis Research Center E-6476 
Cleveland, Ohio 44135 - 3191 

9. SPONSORING/MONITORING AGENCY NAMES{S) AND ADDRESS{ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration NASA TM-I05179 
Washington, D.C. 20546-0001 ICOMP-91-13 

CMOIT-91-4 

11. SUPPLEMENTARY NOTES 

W.W. Liou, Institute for Computational Mechanics in Propulsion and Center for Modeling of Turbulence and Transition, NASA Lewis 
Research Center (work funded by Space Act Agreement C - 99066 - G). P.]. Morris, Pennsylvania State University, Department of 
Aerospace Engineering, University Park, Pennsylvania 16802. Space Act Monitor: Louis A. Povinelli, (216) 433 -5818. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 64 

13. ABSTRACT (Maximum 200 words) 

A second-order finite difference and two spectral methods including a Chebyshev tau and a Chebyshev collocation 
method have been implemented to determine the linear hydrodynamic stability of an unbounded shear flow. The 
velocity profile of the basic flow in the stability analysis mimicks that of a one-stream free mixing layer. Local and 
global eigenvalue solution methods are used to determine individual eigenvalues and the eigenvalue spectrum, 
respectively. The calculated eigenvalue spectrum includes a discrete mode, a continuous spectrum associated with the 
equation singularity and a continuous spectrum associated with the domain unboundedness. The efficiency and the 
accuracy of these discretization methods in the prediction of the eigensolutions of the discrete mode have been 
evaluated by comparison with a conventional shooting procedure. Their capabilities in mapping out the continuous 
eigenvalue spectra are also discussed. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

Spectral methods; Finite difference; Linear hydrodynamic stability; Global eigensolution 
methods; Eigenvalue spectrum; Unbounded domain 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

NSN 7540·01·280·5500 

34 
16. PRICE CODE 

A03 
20. LIMITATION OF ABSTRACT 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39·18 
298·102 

REPORT DOCUMENTATION PAGE I Form Approved 

OMB No. 0704·0188 
Public reporting burden for this collection of Information Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect 01 this 
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JeHerson 
Davis Highway, Suite 1204, Arlington, VA 22202·4302, and to the OHlce of Management and Budget, Paperwork Reduction Project (0704·0168), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 
1

3
. 

REPORT TYPE AND DATES COVERED 

August 1991 Technical Memorandum 
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

A Comparison of Numerical Methods for the Rayleigh Equation 
in Unbounded Domains 

WU - 505 - 62 - 21 
6. AUTHOR{S) 

W.W. Liou and P.J. Morris 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

National Aeronautics and Space Administration 
Lewis Research Center E-6476 
Cleveland, Ohio 44135 - 3191 

9. SPONSORING/MONITORING AGENCY NAMES{S) AND ADDRESS{ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration NASA TM-I05179 
Washington, D.C. 20546-0001 ICOMP-91-13 

CMOIT-91-4 

11. SUPPLEMENTARY NOTES 

W.W. Liou, Institute for Computational Mechanics in Propulsion and Center for Modeling of Turbulence and Transition, NASA Lewis 
Research Center (work funded by Space Act Agreement C - 99066 - G). P.]. Morris, Pennsylvania State University, Department of 
Aerospace Engineering, University Park, Pennsylvania 16802. Space Act Monitor: Louis A. Povinelli, (216) 433 -5818. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 64 

13. ABSTRACT (Maximum 200 words) 

A second-order finite difference and two spectral methods including a Chebyshev tau and a Chebyshev collocation 
method have been implemented to determine the linear hydrodynamic stability of an unbounded shear flow. The 
velocity profile of the basic flow in the stability analysis mimicks that of a one-stream free mixing layer. Local and 
global eigenvalue solution methods are used to determine individual eigenvalues and the eigenvalue spectrum, 
respectively. The calculated eigenvalue spectrum includes a discrete mode, a continuous spectrum associated with the 
equation singularity and a continuous spectrum associated with the domain unboundedness. The efficiency and the 
accuracy of these discretization methods in the prediction of the eigensolutions of the discrete mode have been 
evaluated by comparison with a conventional shooting procedure. Their capabilities in mapping out the continuous 
eigenvalue spectra are also discussed. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

Spectral methods; Finite difference; Linear hydrodynamic stability; Global eigensolution 
methods; Eigenvalue spectrum; Unbounded domain 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

NSN 7540·01·280·5500 

34 
16. PRICE CODE 

A03 
20. LIMITATION OF ABSTRACT 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39·18 
298·102 


