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ABSTRACT 

Let {vE( X, t) }E>O be a family of approximate solutions for the nonlinear scalar conservation 

law Ut + fx(u) = ° with CJ-initial data. Assume that {vE(x, t)} are Lip+-stable in the sense 

that they satisfy Oleinik's E-entropy condition. We prove that if these approximate solutions 

are Lip'-consistent, i.e., if IIvE(·,O) - u(·,O)IILip'(x) + IIv: + fx(v E)IILip'(x,t) = O(c:), then they 

converge to the entropy solution and the convergence rate estimate, IIvE(., t) -u(·, t)IILip'(x) = 
O(c:), holds. Consequently, sharp LP and pointwise error estimates are derived. 

We demonstrate these convergence rate results in the context of entropy satisfying finite­

difference and Glimm's schemes. 
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1. INTRODUCTION 

We are concerned here with the convergence rate of approximate solutions for the nonlin­

ear scalar conservation law, Ut+ Ix(u) = 0 with CJ-initial data. In this context we first recall 

Strang's theorem which shows that the classical Lax-Richtmyer linear convergence theory 

applies for such nonlinear problem, as long as the underlying solution is sufficiently smooth 

e.g., [Ri-Mo, §5]. Since the solutions of the nonlinear conservation law develop spontaneous 

shock-discontinuities at a finite time, Strang's result does not apply beyond this critical 

time. Indeed, the Fourier method as well as other L2-conservative schemes provide simple 

counterexamples of a consistent approximations which fail to converge (to the discontinuous 

entropy solution), despite their linearized L2-stability, e.g., [Ta3],[Ta4]. 

In this paper we extend the linear convergence theory into the weak regime. The extension 

is based on the usual two ingredients of stability and consistency. On the one hand, the 

counterexamples mentioned above show that one must strengthen the linearized L2-stability 

requirement. We assume that the approximate solutions are Lip+ -stable in the sense that 

they satisfy a one-sided Lipschitz condition, in agreement with Oleinik's E-condition for 

the entropy solution. On the other hand, the lack of smoothness requires to weaken the 

consistency requirement, which is measured here in the Lip'-(semi)norm. In §2 we prove for 

Lip+ -stable approximate solutions, that their Lip' -convergence rate to the entropy solution is 

of the same order as their Lip'-consistency. The Lip'-convergence rate is then converted into 

stronger LP convergence rate estimates. In particular, we recover the usual L1-convergence 

rate of order ~, and we obtain new sharp pointwise error estimates which depend on the 

local smoothness of the entropy solution. 

In §3 we implement these error estimates for finite-difference approximations, using a 

finite-element representation which is interesting for its own sake. In §4 we apply these error 

estimates for the Glimm scheme. Other applications of the current framework, to spectral 

viscosity approximations and various viscosity regularizations, can be found in· [Ta5],[Sc­

Ta],[Ta6]. 

2. APPROXIMATE SOLUTIONS 

We study approximate solutions of the scalar, genuinely nonlinear conservation law 

(2.1) 
a a 
at u(x, t) + axl(u(x, t)) = 0, I" 2: a > 0, 

with compactly supported initial conditions prescribed at t = 0, 

(2.2) u(x, t = 0) = uo(x). 
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Let {vf:(x, t)}f:>o be a family of approximate solutions of the conservation law (2.1), (2.2) 

in the following sense. 

DEFINITION. 

A. We say that {vf:(x, t)}f:>o are conservative solutions if 

(2.3) 1 vf:(x, t)dx = 1 uo(x)dx, t ~ O. 

B. We say that {vf:(x, t)}f:>O are Lip'-consistent with the conservation law (2.1), (2.2) if 

the following estimates are fulfilletP : 

(i) consistency with the initial conditions (2.2), 

(2.4a) 

(ii) consistency with the conservation law (2.1), 

(2.4b) IIv;(x, t) + fx(vf:(x, t))IILip'(x,[O,T)) ::; J(T' c. 

We are interested in the convergence rate of the approximate solutions, vf:(x, t), as their 

small parameter c L O. This requires an appropriate stability definition for such approximate 

solutions. Recall that the entropy solution of the nonlinear conservation law (2.1), (2.2) 

satisfies the a priori estimate [Br - Os], [Ta5] 

(2.5) 
1 

lIu(.,t)IILip+ ::; II 11-1 + t' t ~ O. 
Uo Lip+ a 

The case lIuollLip+ = 00 is included in (2.5), and it corresponds to the exact rv t-1 decay rate 

of an initial rarefaction. 

DEFINITION. We say that {vf:(x, t)}f:>o are Lip+ -stable if there exists a constant fJ ~ 0 

(independent oft and c) such that the following estimate, analogous to (2.5), is fulfilled: 

(2.6) 

Remarks. 

2We let 1I~IILiP' IItfJllLip+ and II tfJ II Lip' denote respectively, esssup#y I ¢("'t:(y) I, esssup""FY [(*tt(y)] + 

d (¢-¢o."') h 1. - J. A. an sup", iI"'ilLip' were '1'0 - BUpP¢ '1" 
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(i) The case of an initial rarefaction subject to the quadratic flux f(u) = ~U2 demonstrates 

that the a priori decay estimate of the exact entropy solution in (2.5) is sharp. A 

comparison of (2.6) with (2.5) shows that a necessary condition for the convergence of 

{v~}~>o is 

(2.7) o ~ f3 ~ Q, 

for otherwise, the decay rate of {v~(., t)} (and hence of its c -+ 0 limit) would be faster 

than that of the exact entropy solution. 

(ii) The case f3 > 0 in (2.6) corresponds to a strict Lip+ -stability in the sense that 

IIve
(., t)IILip+ decays in time, in agreement with the decay of rarefactions indicated 

in (2.5). 

(iii) In general, any a priori bound 

(2.8) IIv~(., t)IILip+ ~ ConstT < 00, 0 ~ t ~ T, 

is a sufficient stability condition for the convergence results discussed below. In par­

ticular, we allow for f3 = 0 in (2.6), as long as the approximate initial conditions are 

Lip+ -bounded. We remark that the restriction of Lip+ -bounded initial data is indeed 

necessary for convergence, in view of the counterexample of Roe's scheme discussed in 

§3. Unless stated otherwise, we therefore restrict our attention to the class of Lip+­

bounded (i.e., rarefaction-free) initial conditions, where 

(2.9) 

Finally, we remark that in case of strict Lip+ -stability, i.e., in case (2.6) holds with 

f3 > 0, then one can remove this restriction of Lip+ -bounded initial data and our 

convergence results can be extended to include general L~c-initial conditions. The 

discussion of this case will be dealt elsewhere. 

We begin with the following theorem which is at the heart of matter. 

THEOREM 2.1. 

A. Let {ve(x, t)}~>o be a family of conservative, Lip+ -stable approximate solutions of the 

conservation law (2.1),(2.2), subject to the Lip+ -bounded initial conditions (2.9). Then the 

following error estimate holds 

(2.10a) 
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where 
maxf" 

CT tv (1 + f3LtT)TJ, 1] = f3 ~ 1. 

B. In particular, if the family {v~(x, t)}~>o is also Lip/-consistent of order 0(6), z.e., 

(2.4a),(2.4b) hold, then v~(x, t) converges to the entropy solution u(x, t) and the following 

convergence rate estimate holds 

(2.10b) \lv~(., T) - u(·, T)\lLip' ~ MT ·6, MT = (/(o + /(T )(1 + f3LtT)TJ. 

PROOF. We proceed along the lines of [Ta5]. The difference, e~(x, t) = v~(x, t) - u(x, t), 

satisfies the error equation 

(2.11) 

where aAx, t) stands for the mean-value 

and F~(x, t) is the truncation error, 

Given an arbitrary 4>(x )f:W~IOO, we let {4>~(x, t)}o9~T denote the solution of the backward 

transport equation 

(2.12a) 4>~(x, t) + a~(x, t)4>~(x, t) = 0, t ~ T, 

corresponding to the endvalues, 4>(x), prescribed at t = T, 

(2.12b) 4>~(x, T) = 4>(x). 

Here, the following a priori estimate holds [Ta5, Theorem 2.2] 

The Lip+ -stability of the entropy solution (2.5) and its approximate solutions in (2.6), pro­

vide us with the one-sided Lipschitz upper-bound required on the right-hand side of (2.13): 

(2.14) 
_ max f" ~ max f" 

\la~(·,r)\lLip+ ~ 2 [\Iv (.,r)IILip+ + \lu(·,r)IILip+] ~ -&- + f3r· 
o 
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Equipped with (2.13), (2.14) we conclude 

(1 + {JLciTyl 
< (1 + {JLcit)TJ 1i<P(X)IiLip ~ 

(2.15a) 

< CT Ii <p(X) Ii Lip, 0 ~ t ~ T, CT = (1 + f3LciT)TJ, 

and employing (2.12a) we also have 

(2.15b) 

Of course, (2.12) is just the adjoint problem of the error equation (2.11) which gives us 

Conservation implies that eo == f eE(x, O)dx = 0 and by (2.15a) we find 

I( eE(., 0), <pE(., 0)) I < lieE(., 0) IILip/1i<pE(., 0) IILip ~ 
(2.17a) 

< (1 + f3LtT)TJlieE(·,O)IiLipl . II <p(x) Ii Lip; 

similarly, conservation implies ~hat FJ = fx,[O,T) FE(X, t)dxdt = 0 and by (2.15a),(2.15b) we 

find 

I(FE(X, t), <pE(X, t))£2(x,[O,T)) I < IiFE(X, t)IiLip'(X,[O,T))Ii<PE(X, t)IILip(x,[O,T) ~ 
(2.17b) 

< (1 + laloo)CTIiFE(x, t) II Lip'(X,[O,T) Ii <p(x) Ii Lip· 

The error estimate (2.10a) follows from the last two estimates together with (~.16). 0 

The Lip'-convergence rate estimate (2.10b) can be extended to more familiar Wl~:­

convergence rate estimates. The rest of this section is devoted to three Corollaries which 

summarize these extensions. 

We begin by noting that the conservation and Lip+ -stability of VE(., t) imply that vE
(., T) 

- and consequently that eE
(., T), have bounded variation, 

(2.18a) 

Using this, one can extend Theorem 2.1 into a general W-l,p error estimate (consult [Ta5, 

Theorem 5.1]); namely, there exists a constant (depending on MT and lieE(·,T)IiBV) such 

that 

(2.18b) 
tl! 

IIvE(·,T) - u(·,T)lIw-l,P ~ ConstT· c 2P, 1 ~ P ~ 00. 
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The case p = 1 would correspond to the Lip/-error estimate (2.10). 

Theorem 2.1 also enables us to estimate the LP-convergence rate of the Lip+ -stable ap­

proximate solutions {v!' (x, t)}!'>o, To this end we use a OJ-unit mass mollifier ((x) to denote 

<Ps = <p * ~((i). By Theorem 2.1 we have 

(2.19) 

This, together with the straightforward estimate (see e.g. [Ta5,§3]) 

(2.20) 

imply that for any compactly supported <pELoo we have 

(2.21) 

Choosing the free parameter 8 I"V ve, (2.21) with truncated <p = [e!'(., T)]p-1 yields 

(2.22) 
1 

/Iv!'(., T) - u(., T)/ILP ~ Consh . C;2p , 1 ~ p ~ 00. 

Summarizing (2.18b) and (2.22) we state 

COROLLARY 2.2. Let {v!'(x, t)}!'>o be a family of conservative, Lip/-consistent and Lip+­

stable approximate solutions of the conservation law (2.1), (2.2), with Lip+ -bounded initial 

conditions (2.9). Then the following convergence rate estimates hold 

(2.23) 
!til. 

/Iv!'(" T) - u(·, T)/Iw-.,P ~ ConstT . c; 2p , 1 ~ p ~ 00, s = 0,1. 

The error estimate (2.23) with (s,p) = (0,1) yields L1 convergence rate of order O( ve), 
which is familiar from the setup of monotone difference approximations [Ku], [Sa]. Of course, 

uniform convergence (which corresponds to (s,p) = (0,00)) fails in this case, due to the 

possible presence of shock discontinuities in the entropy solution u(., t). Instead, one seeks 

pointwise convergence away from the singular support of u(·, t). To this end, we employ a 

06(-1, I)-unit mass mollifier of the form (s(x) = ~((f). The error estimate (2.10) asserts 

that 

(2.24) 
!' c; d( 

I(v (.,T) * t,c;)(x) - (u(·,T) * (s)(x)1 ~ MT 82 Ii dxliLoo, 

Moreover, if ((x) is chosen so Lj"lt 

(2.25a) J xk((x)dx=O fork=I,2, ... ,p-l, 
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then a straightforward error estimate based on Taylor's expansion yields 

(2.2Sb) 
8P 

l(u(·,T) * (s)(x) - u(x,T)I:::; ,11(11£1 ·lu(p)lloc, 
p. 

where lu(p)lloc measures the degree of local smoothness of u(·, t), 

ap 

lu(p)lloc = II-a u(.,T)IILOO(x+SllPp()· xP loe 

The last two inequalities imply 

COROLLARY 2.3. Let {v€(x, t)}€>o be a family of conservative, Lip/-consistent and Lip+­

stable approximate solutions of the conservation law (2.1), (2.2), with Lip+-bounded initial 

conditions (2.9). Then, for any p-order mollifier (s(x) = t((~) satisfying (2.25a), the 

following convergence rate estimate holds 

(2.26) 

Corollary 2.3 shows that by post-processing the approximate solutions v€(·, t), we are able 

to recover the pointwise values of u(x, t) with an error as close to 6 as the local smoothness 

of u(·, t) permits. A similar treatment enables the recovery of the derivatives of u(x, t) as 

well, consult [TaS, §4]. 

The particular case p = 1 in (2.26), deserves special attention. In this case, post­

processing of the approximate solution with arbitrary CJ-unit mass mollifier ((x), gives 

us 

(2.27) 
1 1 

I( v€(·, T) * (s)(x) - u(x, T)I :::; Const . (1 + luX(., T)lloc) .63 , 8 '" 6 3 . 

We claim that the pointwise convergence rate of order O(6~) indicated in (2.27) holds 

even without post-processing of the approximate solution. Indeed, let us consider now the 

difference 

v€(x,T) - (v€(·,T) * (s)(x) - ~[v€(x,T) - v€(x - y,~)](s(y)dy = 

( [V€(x, T) - v€(x - y, T)]. -1l.((1l.)dy. 
Jy -y 8 8 

By choosing a positive CJ-unit mass mollifier (( x) supported on (-1,0) then, thanks to the 

Lip+ -stability condition (2.6), the integrand on the right does not exceed Const· 8, and hence 

(2.28a) v€(x,T) - (v€(-,T) * (s)(x)::; Const· 0 . 
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Similarly, a different choice of a positive CJ-unit mass mollifier ((x) supported on (0,1) leads 

to 

(2.28b) vt:(x,T) - (vt:(.,T) * (s)(x) ~ Const· o. 

The last two inequalities (with 0 rv d) together with (2.27) show that the approximate' 

solution itself converges with an O( d)-rate, as asserted. 

We summarize what we have shown by stating the following. 

COROLLARY 2.4. Let {vt:(x, t) }t:>o be a family of conservative, Lip'-consistent and Lip+­

stable approximate solutions of the conservation law (2.1), (2.2), with Lip+ -bounded initial 

conditions (2.9). Then the following convergence rate estimate holds 

(2.29) 

Remark. The above derivation of pointwise error estimates applies in more general situations. 

Consider, for example, a family of approximate solutions, {vt:(x, t)}t:>o which satisfies a 

standard L1 (rather than Lip') error estimate 

(2.30) 

Then our previous arguments show how to post-process v e (., T) in order to recover the 

pointwise values of the entropy solution, u(x, T) with an error as close to Ve as the local 

smoothness of u(·, T) permits. In particular, using (2.30) with a positive CJ-unit mass 

mollifier, (s(x) = ~((~) we obtain 

(2.31) l(ve(·,T) * (s)(x) - (u(.,T) * (s)(x)1 ~ ConstT' fll(lIvx). 

Using this together with 

we find 

(2.32) 
1 1 

I(v(', T) * (s)(x) - u(x, T)I ~ ConstT(1 + lux(', T)lloc)C;4, 0 rv C;4. 

If the approximate solutions {ve(x, t)}e>O are also Lip+ -stable, then we may augment (2.32) 

with (2.28) to conclude the pointwise error estimate 

(2.33) Ivt:(x,T) - it(x,T)1 ~ Constx,T' c;t, Constx T rv 1 + lux(-, T)I ( Ie Ie). , LOO x-t:4,x+e4 
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3. FINITE DIFFERENCE APPROXIMATIONS 

We want to solve the conservation law (2.1) - (2.2) by difference approximations. To this 

end we use a grid (XII = vb",x, tn = nb",t) with a fixed mesh-ratio ). = t: = Const. The 

approximate solution at these grid points, v~ == v(x lI , tn), is determined by a conservative 

difference approximation which takes the following viscosity form, e.g., [Tal] 

and is subject to Lip+ -bounded initial conditions, 

(3.2) o 1 l x
"+t ()d t VII = A Uo e ,-, 

~x X,,-t 
Lci = lI u ollLip+ < 00. 

Let v~(x, t) be the piecewise linear interpolant of our grid solution, V~(XII' tn) = v~, depending 

on the small discretization parameter c = b",x t o. It is given by 

(3.3) V~X(x, t) = E vjAj(x, t), Aj(x, t) = Aj(x)Am(t), 
j,m 

where Aj(x) and Am(t) denote the usual 'hat' functions, 

To study the convergence rate of v~X(x, t) as b",x t 0, we first have to verify the conser­

vation and the Lip'-consistency of the difference approximation. To this end we proceed as 

follows. 

We first note that v~X(x, t) are clearly conservative, for by the choice of the initial con­

ditions in (3.2), 

J v~X(x, t)dx = ~x E v~ + V~+l = ~x E v~ + v~+1 = J uo(x)dx. 

Moreover, these initial conditions are Lip'-consistent - in fact the following estimate which 

is left to the reader holds, (v~X(x,O) - uo(x),¢(x)) ~ Const· (b",x?lIuo(x)IIBv . 1I¢(x) II Lip· 

Finally, we turn to consider the Lip'-consistency with the conservation law (2.1). To this 

end we compare v~(x, t) with certain entropy conservative schemes constructed in [Ta2]. 

A straightforward computation (carried out in the Appendix) shows that there exists a 

bounded piecewise-constant function, Dn (x) = Ej Dj+ ~ Xj+ t (x), (Xj+ ~ (x) = characteristic 

function of (xj, Xj+1)) , such that the difference approximation (3.1) recast into the equivalent 
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(3.4) 

Hence, for arbitrary <pf.cg\ we may rewrite (3.4) as 

4 

(3.5) (vtx + jx(vf).X) , <p)x,t = "LTfx. 
k=l 

The sum on the right-hand side of (3.5) represents the truncation error of the difference 

approximation (3.1), and according to (3.4), it consists of the following four contributions 

(here, ¢(x, t) = Lv,n <p(xv, tn)A~(x, t) denotes the piecewise-linear interpolant of <p(x, t)): 

We want to show that the difference approximation (3.1) is consistent with the conservation 

law (2.1), in the sense that the Lip'-size of its truncation error is of order O(.6.x). The 

required estimates in this direction are collected below. We begin with a straightforward 

estimate of the first term, 

ITll < ~xllv~xlI£1(ID(x)I,f).t) ·11¢xIlLOO(x,f).t) 
(3.6a) 

< c1 • .6. x Ii vf).X(x, t)IIL1([O,T],BV(x» . II <p(x, t)IILip(x,[O,T])' 

The difference approximation (3.1) enables us to upper bound time-differences in terms of 

spatial differences to yield the following upper-bound on the second term, 

f).t f). A IT21 < TIlVt xlI£1(f).x,t) . lI<ptIlLOO(f).x,t) 
(3.6b) 

< C2 • .6.x//vf).X(x, t)//£1([O,T],BV(x» . 1I¢>(x, t)IILip(x,[O,Tj)' 

3The Euclidean and weighted L2-inner products are denoted by (p, t/J)x = J p(x)t/J(x)dx and (p, t/J)D(x) = 
I p(x)1/J(x)D(x)dx. The corresponding discrete [2_ inner product reads (p,1/J)l1x = LvP(xv)t/J(xv)~x. 
Similar notations are used for (x, t)-functions, e.g., (p,1/J)D(x),l1t = Ln Ix p(x, tn)1/J(X, tn)D(x)dx~t, 
"P"~P(l1x,t) = it Lv Ip(XVI t)/P ~xdt, etc. 
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The third contribution to the truncation error we rewrite as 

We have (abbreviating <fJi == <fJ(xj, tm)): 

T31 = ~ ~(v~+1 - v~-1)<fJj(Av(x),Aj(x))x - ~ ~(V~+1 - v~-1)<fJ~Lix 
~~ ~~ 

2: ~(v~+1 - v~-1)~(<fJ~+1 - 2<fJ~ + <fJ~_1)~X, 
v,n 

and hence n1 is upper bounded by 

This together with the standard interpolation error estimate 

give us that the third term does not exceed 

IT31 < Const· ~xllv~xlI£1(x,t)II<fJ(x, t)IILip(x,[O,T]) 
(3.6c) 

< C3 · ~xllv~X(x, t)IILl([O,Tl,BV(x)) . 11<fJ(x, t)IILip(x,[O,T])' 

A similar treatment of the fourth term implies 

(3.6d) 
. 

Equipped with the last four estimates (3.6a) - (3.6d), we return to (3.5), obtaining 

(3.7) l(v~X + fx(v~X), <fJ)xl ~ Const . ~xllv~X(x, t)II£1([O,Tl,BV(x)) . II <fJ(x, t)IILip(x,[O,T])' 

This shows that the Lip/-consistency estimate (2.4b) holds with £ = ~x and 

J{T rv IIv~X(x, t)IILl([O,Tl,BV(x))' Thus, Corollaries 2.2 - 2.4 apply and their various error 

estimates are put together in the following. 

THEOREM 3.1. Assume that the difference approximation (3.1) -(3.2) is Lip+ -stable in 

the sense that the following one-sided Lipschitz condition is fulfilled: 

~V\l 1 
v 2" < + ,0 ~ t n ~ T, ~v~+! = VV+1(tn) - vv(tn). 
~x - [La ]-1 + f3t n 2 

(3.8) 

Then the following error estimates hold: 

(3.9a) 
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(3.9b) /VAX(X, T) - u(x, T)/ :::; Constx,T' (~x)t, 

EXAMPLES. The following first order accurate schemes (identified in an increasing order 

according to their numerical viscosity coefficient, Q II+~ == Q~+t) are frequently referred to 

in the literature. 

(3.10a) 

(3.10b) 

(3.10e) 

(3.10d) 

Roe scheme: 
_ n _ f(v::±1)-f(v~) 

a ll+l = a +1 - A n 
2 II 2 .... vv+t 

Godunov scheme: QG _ \ [f(V::+l)+f(V~)-2f(v)l 
+ 1 - Amaxv A n II - .... v l. 

2 V+ Z 

Engquist - Osher scheme: Q~~! = AV~ f::+1 /!'(v)/dv 
2 v+t 

Lax - Friedrichs scheme: QLxF = 1 
+ 1 - • II 2 

We comment briefly on the Lip+ -stability condition of these schemes. 

For the Roe (or Courant-Isaacson-Rees) scheme, Lip+-stability (3.8) with f3 = 0 (no 

decay), was proved in [Br]. Note that the assumption of Lip+-bounded initial conditions is 

essential for convergence to the entropy solution in this case, in view of the discrete steady­

state solution, v~ = sgn(v + !), which shows that convergence of Roe scheme to the correct 

entropy rarefaction fails due to the Lip+ -unboundedness of the initial data. 

The Godunov and Lax-Friedrichs schemes can be viewed as cell averaging of the exact 

Riemann solver associated with (2.1): for which (2.5) holds: 

(3.11) 

Arguing along the lines of [Br - as] we conclude from (3.11) that both Godunov and Lax­

Friedrichs schemes satisfy the Lip+-stability (and in fact the Lip+-decay) (3.8) with f3 = Q 

in agreement with (2.8). One then recovers the convergence rate estimates quoted in the 

previous section, with error coefficients depending on MT rv (1 + o:LtT)7), TJ = :::f:. 
Finally, let us consider the Lip+ -stability of the Engquist-Osher scheme. It coincides with 

Godunov's scheme except for sonic shock cells (where a(vlI+l) < 0 < a(vv)), which leads to 

(3.12) 
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Hence the forward differences of E-O scheme are upper-bounded by 

(3.13) 1 (QEO QG) A n 1 (QEO QG) A n + 2" ,,+~ - ,,+~ L.l.V,,+~ + 2" ,,-t - ,,-t L.l.V,,_t 

We distinguish between two cases. If ~V~+l ~ 0, then the first term on the right of (3.13) 
2 

does not exceed (1 - Q~+l)~V~+l' and hence the E-O satisfies the one-sided Lipschitz 
2 2 

condition in this case because Godunov's scheme does. Otherwise, ~V~+l and therefore 
2 

(1 - Q~~d~V~+l is negative, hence 
2 2 

and the Lip+-bound follows in view of (3.12) and the CFL condition "\maxlf'l <!. 

Using Theorem 3.1 we conclude 

COROLLARY 3.2. Consider the conservation law (2.1), (2.2) with Lip+-bounded initial 

data (2.9). Then the Roe, Godunov, Engquist-Osher, and Lax-Friedrichs difference approx­

imations (3.1), (3.10) with discrete initial data (3.2) converge, and their piecewise-linear 

interpolants v~X(x, t), satisfy the convergence rate estimates (3.9a), (3.9b). 

4. GLIMM SCHEME 

We recall the construction of Glimm approximate solution for the conservation law (2.1), 

see [GIl, [Sm]. We let vex, t) be the entropy solution of (2.1) in the slabs t n :::; t < tn+!, n ~ o. 
To proceed in time, the solution is extended with a jump discontinuity across the lines 

tn+!, n ~ 0, where vex, t n+!) takes the piecewise constant values 

(4.1) vex, tn+!) = L v(x" + on~x, t n+1 
- O)X,,(x). 

" 
Notice that in each slab, vex, t) consists of successive noninteracting Riemann solutions 

provided the CFL condition, ,.\ . max laC u) I :::; ! is met. This defines the Glimm approximate 
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solution, v(x, t) = ve(x, t), depending on the mesh parameters c = .0.x = )'.0.t, and the set of 

random variables {on}, uniformly distributed in [-~, ~]. In the deterministic version of the 

Glimm scheme, Liu [Li] employs equidistributed rather than random sequence of numbers 

{on}. We note that in both cases, one makes use of exactly one random or equidistributed 

choice per time step (independently of the spatial cells), as was first advocated by Chorin 

[Cho]. This implies that both versions of Glimm scheme share the exact Lip+ -decay of the 

entropy solution, for by (2.5) 

IIv(" tn+1
) II Lip+ < IIv(·, tn+! - 0) II Lip+ :5 

(4.2) 1 1 

< IIv(·, tn)II:L;p+ + a.0.t :5 IIv(·, O)II:Li~+ + atn+! . 

Namely, the Lip+ -stability (2.6) holds with {3 = a. 

Although Glimm approximate solutions are conservative "on the average," they do not 

satisfy the conservation requirement (2.3). We therefore need to slightly modify our previous 

convergence arguments in this case. 

We first recall the truncation error estimate for the deterministic version of Glimm scheme 

[Ho - Sm, Theorem 3.2], 

(4.3) 
(vfX(x, t) + fAvD.X(x, t)), ¢>(x, t)) < £2(x,[O,T]) -

:5 ConstT [(.0.x) ~ /log .0.x / . II ¢> II Loa + .0.x . II ¢>( x, t) II LiP(x,[O,T])] . 

Let ¢>(x, t) = ¢>D.X(x, t) denote the solution of the adjoint error equation (2.12). Applying 

(4.3) instead of (2.17b) and arguing along the lines of Theorem 2.1, we conclude that Glimm 

scheme is Lip/-consistent (and hence has a Lip/-convergence rate) of order (.0.x)~/log.0.x/, 

To obtain an improved LP-convergence rate estimate we employ (4.4) with ¢>5 = ¢>*t( C~), 
obtaining 

(4.5) 

Using this estimate (instead of (2.19)) together with (2.20) and choosing the free param­

eter 8 rv (.0.x)~, we end up with an (almost) LP-convergence rate of order O(.0.x/log.0.x/)21p
• 

As noted before, the Lip+ -stability of Glimm's approximate solutions enables us to convert 

the Ll into pointwise convergence rate estimate. 
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We close this section by stating the following. 

THEOREM 4.1. Consider the conservation law (2.1), (2.2) with sufficiently small Lip+­

bounded initial data (2.9). Then the (deterministic version of) Glimm approximate solution 

vAx(x, t) in (4.1) converges to the entropy solution u(x, t), and the following convergence rate 

estimates hold: 

(4.6) IIvAx
(., T) - u(., T)lIv> :5 ConstT . (~xllog ~xl)t;, 1:5 p < 00, 

(4.7) 

Remarks. 

1. A sharp L1-error estimate of order O(~x)t can be found in [Lu], improving the 

previous error estimates of [Ho-Sm]. 

2. Theorem 4.1 hinges on the truncation error estimate (4.3) which assumes initial data 

which sufficiently small variation [Ho - Sm]. Extensions to strong initial discontinuities for 

Glimm scheme and the front tracking method can be found in [Che, Theorems 4.6 and 5.2]. 

15 



APPENDIX 

We want to show that the piecewise-linear interpolant vAx(x, t) in (3.3) serves as an 

approximate weak solution of the conservation law (2.1). 

Let 

vn(x) = Lv:Av(x) and vv(t) = Lv:An(t) 
v n 

denote the spatial and temporal interpolants of the discrete grid solution {v: }v,n. 
Straightforward integration by parts yields [Ta2] 

(la) 
-HQ:+t(t)~vv+t(t) - Q:_t(t)~vv-t(t)] 

where ( we abbreviate vv+!(e, t) = Hvv(t) + Vv+1(t)] + e~vv+!(t)) 

(lb) 

In particular, for f(v) = v we have Q* = 0 and (la) yields 

Exchanging the role of the x and t variables in the last equality we get 

(2) 

Moreover, with D(x) = L:vDv+tXv+t(x) we have 

and by exchanging the role of the x and t variables in (3) we get 

(4) ~t 1 
2(v~X(x, t), (An(t))t)t = -2[vn+1(x) - 2vn (x) + vn - 1 (x)]. 

The equalities (1) - (4) imply 

(Jx(vAx(x, t)), A~(x, t))x,At = 
(1') 

(2') 
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(3') 

( 4') ~t( .c::.X( ) (An( )) ) _ ~x[ n+l 2 n n-l] 2 Vt x, t, "x, t t .c::.x,t - -2 v" - v" - v" . 

The difference approximation (3.1) reads 

(5) ~x[v~+1 - v~] = - ~2t[f(v~+1) - f(V~-l)] + ~2x[Q~+1~V~+1 - Q~_l~V;_l]' 
2 2 2 2 

By (2') and (4'), the left-hand side (LHS) of (5) equals 

~x ~x . 
LHS = _[vn+1 _ vn- 1] + _[vn+1 _ 2vn + vn- 1] = 

2" " 2" "" 

- (vtX(x, t), A~(x, t)).c::.x,t - ~t (vtX(x, t), (A~(x, t))t).c::.x,t. 

Next, we set D~+!. = tQ~+l - Q:+l(tn)j then by (1') and (3') the right-hand side (RHS) of 
2 2 2 

(5) equals . 

RHS - - ~2t[J(v~+1 - f(V~_l)] + ~2t[Q:+l~V~+1 - Q:_l~v~+d+ 
2 2 2 2 

and (3.4) now follows. 
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