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? b a c r r t a l r m n b a d ~ d p s r r n e r a ~ f o a r d m t h e l i t a o t l n t h r l t s e 6 c t i -  
t i o u s t i m e , s , ~ b y t h e S ~ w m t ~ r = d r M s 9 s ~ t v s r i r b k .  
?be nrost aot4ble beiag KS. gusrsanbdmo and SrieW (11J21. Bur& 01. BG14. Band a d  
GoaW [4], and BG148. BoodIlZ]. Tbae nvo problems tbtt arise when fiaihts fimC 
isdasindependmtvaripblt. lhcbntistbatstoppiagoatimcbecamessnirrati~po- 
cess,drbeacondmaresaiopfproMemis~arithwccore,Ibemerbodsmeatimd 
a b m  may to walr a b g c k r  for catein chscs dpoblems ia this papaa simple 
d a i v a t i o a d d ~ o f ~ m d r o d s o s i n g u n i v a s a l v P r i a b i e s i s g i v e e  A 
schanatic of vPriatiar of pamaus is given whicb points out I& cause d 
thefailmcdpeviasmethods i t i s thcnshowabarvdie iadcpcndeavariaMe(~ 
~ ) d o d r a c o a s u l a t s m a y b e c b o s e n s o t b a t s t a b i l i t y a n d a c c m a c y m a y b e ~ a e d  
e v t o f a ~ c ~ d p P o b k m s t b a t c a u s e d p e v i ~ ~ ~ m e t h o d s B o f a i l . ~ e n t i n g t b e  
energy variable all the way to tbe Jacobi conslant as was Qae in [a] is post@ until tbe 
end of rbe papm because it was felt drat it would disrraa the rea&r from the issue of 
interest aamely, the optimal ant of ktitious time. In addition, it is shown how to baadle 
multipkvehiclesandcaastaattimesteps. 'Iheaseofconstanttimeslepsinamjmction 
with BG14 was folnd m be as r r c c ~ ~ e  as fictitious rime alone for oear circular abits. 
Noncircularorbitswaenottested. 

T b i s w a r k ~ a r p r o m ~ b y t h e ~ o f t w o c l a s s e s o f p o M e m s t h a t c a u s e d t h e v a r i a -  
tion of panmeters methods KS. and BG14 to fail, in the sense that the computa pograms 
would either stop poduclng outpa, or would prodwe mneous output The two classes of 
problems wexe long tam low thrust to escape. and rcenay to the ground. It was found 
that resEaning these problems at intermediae points caused than to proceed to a solutiaa. 
Tbisindicated~thedifticultyingatingLhantoworlrwithoutnstaningwasinsmre 
sense dated to eitha the size of the bwxeasing independent variable (secular m s ) .  or h e  
Wng of tbe aigin. a both. Bond [12] nspead  that the elemination of secular terms in 
the aiginal fonnuhtioa (41 would cfftct a am and poposed BG146. AlUmgh it is stated 
in [I21 that the removal of smh terms cmes the insmb'dity prublem, further experiments- 
tion has shown that, aWuiugh they mn a linle f d .  & long mn low thrust to escape, 
and reartry to the gmrmd pmblems cause BG146 to fail just like the orhers. This meant 
that rtgtarting was the answer, but a total resran would mean a loss of accuracy. This is 
true because redundant wkbles are carried. and a total resuln would mean that some of 
hem would have lo be ignored. Thedore, this paper examines how to resm in such a 
way as to lose no infamation. That is to say full use is ma& of the redundant variables. 
and none is remmputed The way to do this is motivated by examining whal is going on in 
the derivation of a variation of parameter method. Th~s restan without loss of information 
is what is refared IO as the optimal use of fictitious time. 11 turns out that &is feature 
ahme, without concem for secular terms, cures the numerical problems, mentioned above, 
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tbat plagued previous iaiplemearations of BG14 and by infamce KS. 

DERIVATION OF EQUATIONS 

wbae t is the position vector of one of drc bodies with respect to tbe ohm. p is drt gravi- 
c a C i 0 d m . f  i s d r t v s c . r d a u j m u r b h g ~  V ~ J ) i s t h C ~  
poreatisl .snd+isdwMcsuofsllmg-mdaivableWapoleatial .  
Although eq(1) is easily writtea Qwn. and is seen often. it is &cult to integra~e accu- 

n r l y f n l o n g p s i o d s .  TkpDblcmisthe j e n r  T h i s t a m ~ c q ( 1 ) t o b c o m -  

linear. and to bave a siagnlaphy at r = 0. lkse objectioas cau bc removal ia laro steps 
Tbc firs step is to makc a change in indcpendau variable fnnn h e .  t, to fiaitions time. s. 
whaesis&fiacdby 

TbisiskmwnssdreS-W-ImdwashPsedinatheoreticalind- 
@OII of dw thc+body pfobkan IR Us@ drt cbain rule for diffmtation. and demting 
differentation af ( ) witb respect to s by ( )', red6 in 

also, since r2 = f - f 

'Ihe seumd step is to rcplact the (7' - )3 tam in eq(6). It was evidently Sperling [6], 
who fim ranwed the (P - i)? term by using the Laplace or perigee vector. p .  of two- 
body motion, where 

l k d a r e .  using q t l )  and e q 0  in q (6 )  results in 

p " = r 2 - - w +  

The coefficient of ?' is easily ~ c 0 g n M  as twice the energy integral of Keplerian motion, 
so. defining 

eq(8) may be written 

t m = a t r ) + r Y - p p '  

The inooduction of the Laplace vector linearizes the P  " equation when 7 = 0. The real 
advantage of Spaling's insight will be apparent later. 

Now, assuming A and t are arbiaary constants, add W and t to eq(l0). and subtract W 



ardVhmsp(l0). T b L r w i l l l e r v e 7 ' " ~ m m a m s w l m t b a V n .  
~ n ~ r ~ ~ h r r s t i d p r t i o a d b d n g r M t m c b o o s e t h a D ~ t b o s t b e  
bWmWty d the vrsittiaa d pametc~s equations (developad in the next section) is 
impoved. Rewriting cq(10) 

~ " = ~ P + ~ ~ ~ - ~ + w - M + v - v  (1 1) 

Now. de6aisg 

a - % + k  

P-p#+v 

d - f l - p  
f '-&?+T? 

M l l )  - 
t"=art+i'-r (13) 

Usiag as(9 

r " = @ - i + t - 3 ) 1  (14) 

Now, use eq(1). eq(9). and the definitioos of a and & in eq(14) results in 

r n = w  + p + i - b  (15) 

vhcrci=Z. & t h i s ~ i i s i n f ~ r m a t i v e m - i n e U r d c r i v n i v s s o f a d t  Stan- 
r 

ing with a. and recalling that b is a consant 

Using q(1) and cq(5). a' nry casily reduces to 

a ' = 2 ( ~ ' -  J )  
The derivative o f t  is 

Simplifying and using eq(1) and eq(5). t ' reduces to 

F ' = ~ ( ~ ' . ~ ) P - ( + . ~ ) P ~ - ~ - P ~ ) ~  (19) 

Note that if f = 8, both a and t are constank otherwise. they vary with s. Having anne 
this far. it is possible to define a nry good (but not yet elegant) method of solving h e  afi- 
giml sa of differential equations Using s as hrdependent variable. and realizing that X and 
V can be arbitrarily cbosen to be 0, integrate the set 

The redundant equations are integrated because it has been shown that it is mote accurate 
to i n t e r n  them than to calculate r. a and T from Lhe integrated values of F and 7' ' . In 
faa, as a gareral rule, which shall be applied again later, if a1 any level of knowledge he.. 
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at my l t d  of inoegrtian) inotgratcd vrriables me eambnad in a single qnmtion. it is  
m a t a c u m e t o i a r e ~ a v r r i r M e d t d n s d t o b t t b a l ~ a n .  Altaoiively,apar- 
o i o a s M ~ i d a r t i t i ~ s w a g i v m l c w l n p o b M y s q W y ~ e x c e p t h a t s n i d e a -  
t i tywitbchefewescn~mrberofintegraredvairbleswil lmostWybethtwrst~ 
~ f m d s m e a t a l p o M e m w i l b ~ c q s O i s t h p t P i s b e i a g ~ d i r t c l l y , a n d  
rn use is being ma& of the fm tbat a conk d u b  could be used to rwwwc the cffect of 
the cauml forcc tam. ldtany tbca, one would compute a cmic solution. and tbcn camplr 
~ v r i r t i o a i n t b e c o r r s m r ~ d r b u s d u t i o r r c a u s u j b y t h e ~ ~ c c e l a ~ t i m . ~ . ~ b i s  
~ w i l l y i t l d ~ r c c m r c y t b s n ~ ~ ~ m d i s ~ r r ~ d  
prrmeud ~ v r i r C i o a d p p s m # c r s m c t b o d s v t y d i f f ~ l m t ~ b u t a k y  
r I l b e g i n w i d r r r n l m i m m d r e ~ p r o b l e m .  AvaydtgmcoaiEvrhlttrrcanbe 

byeJrpPDdiaetPadtinTIybrsmksrbootdreiaithlpoiss.and~ht 
~ = f =  8. ' I h c 6 r a t f c w d t b t h i g k r d a i v r t i v e s n n L Y l i n d y ~ f a 1 1 1 ~  
givenbelow. ~ d r u a ~ q r 6 d d y ~ a g s . s o t b a t m y o f I h c d a i v a t i v c s c o P l d b t  
wriaeadrrwnbyinspeE.tion 

etc. 

Using aqs(21) m ~ ( 2 2 )  and collecting caeff~cieats results in 

Following the same appoach, 

etc. 

Note how the linearization resulting from the muoduction of the Laplace vector makes the 
camputation of these derivatives trivial. The Taylor sefies expansion for F' is, of course 

s2 ,#*L t=p, +C9s+<"-+% 4 . .  . 
2! 3! 

(25) 



T b ~ ~ a k a i a c r l t b u s f a r ~ b e s i o l p l i 6 e d ~ y b y & h b g d r e f ~ ~ -  
deatel fimtiolls given by Goodyea 171 wbich are a form of Stumpff hmctions @I. 

Also. dre derivatives witb respec! to s can be deduced by inspection (recall that when 7 is 
zao, a is constant ) 

So0= asl 

A summary of the identities used in this paper are given in Appendix L 

Using the new wnscendental functions, the prcvious results can be written 

This then is the solution to the mper&mj conic case. Eqs(30) may be used to determine 4 
r. r ', F', and F' ' as a function of s and the initial conditions, t o .  ro , ro ', < ',. ', a, and Z!. 
These equatians are valid on any conic, (i.e.. elliptic, parabolic. or hyperbolic), without 
exception and without singularity. Also. very efticient routines exist for computing the 
Stumpff functions for any value of s or a. A very elegant method of computing the series 
is outlined in [q. 

The appearance of the terms p + wo and e0 - t in eqs(30) result f m  taking the deriva- 
tive of So with respect to s. In the variation of parameters method thru is to follow. all 
parameters that are cumant now, for the unperturbed case, will be considered to be vari- 
ables. This means that the sum and differences of inkgrated variables will be used to 



canputet 'andr' .  T b i s i s m t a p r r t i c a l a r l y @ c h i n g m & f a t b e f ~ - .  
Eachofthembbks,~',andC willlmhavemtcgratio11umrassociatcdwitbthcm. 

Forming the diffamcc as iadicatcd in cqs(30) cwld lead to a mapi6mia1 of this am 
due to a lass of leading signi6cant digits. This plobkm can be avoided by dtbning 
go = --E and 7, r f l +  W0. Then. with the use of aqs(28), eqs(30) can be n-wriaca 
as f d w s  

Tbis form of aqs(30) sbould be as accmatt as possible since w b  member depends on dre 
fewest number of (what wil l  be) intqped pmamcms. 

T h c ~ o f t b e ~ o f ~ m a b o d i s t o ~ a p ~ f o r I h e v s r i s t i o n  
of Ihe pammetcrs used m the sollltion. la the paurbed cast. wkm 7. 8, and 
T arc mt tao. aqsC30) or qs(3b) can stin bc Psed to compute f r. r', P. and f '. provided 
tbccommtsaparama~sof the motioa, i& ro . ro , ro ' , r ' , ,~ ' .do ,y , ,a  andtaream- 
sidaedtobcfrmctionsoftheindependentvariablt,~. Becausetheparameurssbouldvary 
so much mcre slowly tban the stare, a signilicant improvement in the accuracy of cornput- 
ingdrestatecanbeexpected. 
Ddhmtial qmtbns fa tbea pmmcms art developed below. I doesn't really maria 

whether aqs(30) a eqs(30a) an used m the developnent. dre end results diffa only by 
idu~citks. Tkfefote. eqs(30) will be used now, and the computation of d and y will be 
postponed until lam. 

DC-~ p E p', and $ = c*, e q m )  can bc used to compute t and t as 

P = V @  + B s 1 - ~ 2  (31) 

and 

podd the derivative of eq(31) with respect to s is the same as eq(32). and the derivative 
of eq(32) with respect to s is the same as eq(13) which is repeated below 

P ' * = ~ P + T - o  (13) 

The imposition of these two criteria are sufficient to develop the variation of parameter 
equations for p and $. Differentiating eq(31) 

t '=p ' s ,  +p*s, - e ~ s 2 + p s 0 # + p , # - ~ ;  (33) 

In this case, the compltation of the Si' variables must take into account the fact that a is 
no longex constant. Demoting by ( )' and recalling eqs(29) 

aa 
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Tbe cvahd011 of tbt pamals with respect to a will be add& lam. For now. using 
cqs(34) in q(33). and nquiring drat ~ ( 3 2 )  still be valid, results in 

Similarly. the daivat in  of eq(32) with respect to s, and quiring Wu aq(l3)still be 
valid. and using ~ ( 2 8 ) .  results in 

Using the identity 

which is proven in Goodycar by compariag tams in the expansim. and eq(28). it is 
casytoshcnvlbat 

s: - S0S2 = S2 (39) 
Also, using the idartities 2S,a=sS1 and 2SP =.tS2-S3. it is easy 
SoS,O-aSISP =s'G?. Goodyear171 proves the identitiesSISF-SoSf = 
and SISP - So Sf = ~ $ 1 2  Using these identities in eq(37) results in 

Now, multiplying eq(35) by aS and eq(36) by So and subarting, results in 

so?= ( ~ , 2  - OS:)$*- (so - a 3 S 1 f ' +  (41) 

[(stso + a&Sf - S:Sl)w + ( S s 0  - uSpSl)V- (SFSO - aSf~ ,+a '  

Using the identities given previously. and the following two. also given by Goodyear [71. 
2SP + SoS3 = SIS2, and 2Sf  + SIS; = s;, it is easy to show Lhat 

FoUowing a similar procedure, define p = ro and ro '. Then r and r * from eq(30) can 
be umiuen 

and 

r ' = U + w ) S t  + B S o  

Taking a derivative of eq(43) with respect to s. and insisting h f  eq(44) be valid leads to 

Sop8+SlV+ (pS,O+ $SF + @?)a8= 0 (45) 

Now. taking a krivative of eq(44) with re~pect to s, and insisting Lhat eq(15) and eq(43) be 
valid leads to 

~ s ~ ~ ~ + s ~ ~ +  [u+op)S~ + ~ / + ~ , ~ ] a ' = i  . g  (46) 

Now, multiply eq(45) by So and eq(46) by S1 and subtract u, get 
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Using the ideatitics given carlia, tq(47) can be reduced to 

Now, mu- N45) by aS I and ~ ( s a )  by S. ad s u b  to W 

B'<s,2 - a:) + 

i + Sip'+ S# + (Spp + SF$ + Srph'  = 0 (51) 
Now, s u m  H48) and eq(S0) into q(51) and simplifying leads to 

FIllally then. instead of integrating tbe set, ~(20). the set 

a8=2( t ' -3 ' )  

e'=2(Pe-J')f-(V. f ) P ' - ( P - f  'f 

could be mtegrated, with, of course, eqs(30) used to compute r , 7'. P ', r , r'. 

As was mentioned earlier. qs(30a) are probably a better set to w a, comptt 
r . t. f ', r, r', since combinations of intcpted variables are not usad togctha when multi- 
plying a single Stumpff function. If this is done. and y must be in-d directly. Since 
thae is no need to mtegrMe both t ' and '. t might as well be moved from eqs(53). 
This can be done easily by drsl examining only t a m s  involving P and t m # '. 

s : P - s ~ ( ~ - S ) = ( S :  - a ~ j ~ + s f 8  

But, 6ran Appendix I, S: - = 2S2, hence P ' becomes 

Tming now to the coefficients of # and e in v 8  leads to 



( s  + SoSIl# - (SlS2 - s*@ - 3) = (S + SoSl  - a S I S 2  + as* + ( S , s 2  - S& 

Using qs(28) to replace s and So, Itads easily to 

Since 3 E a$ - t, it3 derivative is simply 

Comkkmble numerical w e e  seem to indicate that. con- to what one might 
expect, amputing y makes no W b l e  contribution to accuracy, consequently it will not 
be ain.siM fratber. 

In summary then. m lieu of integrating eqs(53). one could integrate eqs(S3a) Wow 

a ' = 2 ( t ' - p )  

# * =  - s lT - s f '+  ( 2 5 $ + ( s l s 2 + s J f + s : ~ $  

The integration of eqs(53a) where t' is computed but not integrami. allows the use of 
eq(3Oa) for computation of ihe state w i t h a  fonnmg 8 from other integrated terms. Also. 
it is pmbaMy equally accurate to integrate either form of 8 *. since they differ only by iden- 
tities at the same level of knowledge. 

The Optimal Use of Fictitious Time 

The interesting point to note m all this is that, whichever set of parameters is used, 
P, 7' ', r ,  , r' and t are all computed from the solution set P. 8. p, 8, a, and F (or ?$ and 7, 
using the current value of s. 

Most peopie seeing these mp2ex equations for the first time tend to b: overwhelmed by 
the derivation and don't really see lhrough all the algebra just what is happening physically. 
However. the equations devcbped above can be mmpreted schematically so that an intui- 
tive feel for wha: variation of parameters 6 up to can be obtiiined. 

A real undemanding of variation of parameters may be obtained by assuming that a "true", 
i.e. penurbed, trajectory path is g e d  by integrating eqs(20) forward from 1,. Note that 
this "true" paIh incll~des all pemnbations and is a function of s. At evay point along this 
"true" path, P and I" are known, and may be used to define a two-body conic, i.e. the 
osculating conic. Now, assume that at each point a h g  the "true" path the osculating conic 
is used to coast bochmdr a distance -s, an3 that ilaving arrived at -s, the osculating 
paramten, called "d", are re-computed such that now a forward coasr of +s brings us beck 
to the "me" P and I' '. One could imagine then the unfolding of "d" as s i; increased from 
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Figure I .  Schcmafic Intapr#ation of Variation of Farametas 

'Ihac i b  arc deputd in Figure 1. in which the "me" trajectory unfolds to tbe right, 
whik thc variation of paiamerus inttgxation occm in the "d" spact. Tbt paMem with 
keeping the initial point fixed can m w  be seen rather easily. If the p e m r b i o ~  art 
periodic, thae will MI bt much gross motion in the 'd" space since the basic orbit is not 
bdng changed uctssivdy. However. when pasistant paturbations war. such as bng 
tam drag or low thrust, that will be cmtinual motion in the "d" space. If thc "auc" 
changes drat a wild!y diffauu conic is naeded to  mas^ to that point from the iniriol- 
poinr, mgid csxhion in the "d" space ti possibie, and b-eak :dwn of the mahod can 
occur. In two specG: casts, low thrust to escape and rc-cnq to the gnxmd, bmkdown of 
Ihe onginal K-S, BG14. and BG146 mahods o a d .  Now, consider what happens if the 
'd" space is not hooked to Lhe initial point. but rather moves with h e  aajectw. Now the 



only nulion that o c m  in "d" sprrce occurs during a single sup. and there is no ammula- 
tmo of cflca t&t must be cmstai out with aa accumulated indcpardent variable. T ~ I S  b 
also sfrcnwn in Figurc 1. Constqumtly. by slidmg tht origin, Lhe escalauoll can be redud 
caasiduab!y. ae eliminated alqahm. Anotha advantage of not having s inucase mom- 
tonically, is that ptviously, aside fmm cht initial point. nothing d d  be done to improve 
the right hand side of the variaticnal equations. This point has not been addressed ye& 
ahhougb it was alluded to eariia wirh tk intrixlucticm of A and V. ?he idea is this. If the 
variational equations change slowly then larger &@on step. may be tala. By choosing 
A and V cardull; it is possibk ro drive the forcing ems on tk 'lqht k n d  side of eqs(53) 
to tao. at ltaU at 1,. Howcva, if s is sa to tao at tbc beginning of cacti inrcgrabm sup. 
1andS'may bcchoscnqaia adagain. solbat theright hndsidccancavtantly be sa 
b a A m  zau. Alsq i f s = O . a u  t k S i  ~ z a Q e X ~ S o = l .  ThiSmeans that 
r. #. 8. p. f3 can be rset to w d y  t .  P, F". r.  and r'. with absolutely m error i r u m b d  

Note XL. &is is not ihe same as a rc-initiahzabon, s i w  a and t are not altrd (other drar. 
changing b and V ). Re-initiatitat;m would rcsulk in a loss of accuracy whicr' can be 
o b s x d  quite redly. In faa, lk differam ii, the enag). and radius as Intcgam, com- 
pared w thost compirul fnwn t and t ' is ustd as a measure of inutptiorl a m c y .  Con- 
stquartly, advancing rhc uigin. is . .  6 ' 1 g  s = G ,  xmplishes s e v d  objectives. 1; 
malccs the progsa!a f a .  It ranoves sasibvih to a d i w t  initid point I! moves the 
necd to warry about sauhr tams. since the indwrd~nr  .aria&- 1s always near z m .  It 
allows tht free parameters A and '2 to be chosen a? stq~ ir order to improb= x c n - g  
and inac;rrc stcg site. Since the dependent variakic. s, is going to be c C '  tc :-TO at the 
beginning of each Step. $ is intntsting to lodr at L k  Lifihcntia: equalions for the karidtion 
in the paramerus, and soc if a choke can k ma& ICK i ad V h t  will make the right 
hand sidc zero. The hopc is hat this wili cause fhr. parm,~:crs to change more slowly, 2nd 
consequently allow Larga inteption steps. Aihwgt; crily n u m e r i d  experience will lndi- 
cart wha: strakgy, if any, is beneficial, what f~!!:i.s zssumzs that minimizing Ihe dghl 
hand side of ~ $ 5 3 )  is the best E m i n i ~ p  eqs(53 1 shows that p' wi l l  bc zua tf 

i - is m. Ch-g i to cause hs to t 4 p  ieads tr, !:recall that i -; 7:r I 

I = ? -  f CS! 

Since @ is continuous even 'If A chanp, frm eqi;l?r. :: foliows h a t  

Again examining eqs(53j shows ' will bc z r o  31 s = 0 if 7 is zero. Consquendy, 
choose 

3 + v =  &t- r-; (581 

Also, since Ihc perigec vector. 3, is continuotl~ :.:m if r chm.ges, from eqs(l2:. i t  follows 
thal 

M=dcu -Vou =rM - v- (59) 

If $, and 7 are used, and p md p axe u p d z d .  it is worse, sincc must hr' jurnpcd U! keep FI 
constant. and y must be jumped to keep 11 cms'mt. If thereafter. j. i i  changed. .hey will  
both be jumped again k a u s e  rr bill cha7g:. If :urlhcr, V is than.@. 3 must be ~umped 
an equivalenr amount. FILS process a n  Iw &cxgh~ of ai jumping from s u t f x c  to wfxc it? 
multi-dimensional space in ordcr a kmp l i ~ c  ~ a m c t c r s  changing as slowry a< pos<tb!c. 



Kotc rhat and V- rrc beld constant for the durPlion of an i ~ t t g d o n  step, and uc. 
only changed at the beginning of tht next iatcgrstiaa stcp (when rbey beamt 'dd'). Nae 
also that neither ~ r w r V m u s t b e c h P a g a d i t i s j u s t p o ~  tocbimgetbanifnuaaicrl 
cx@mcntsindicatctbptthacissombeaedtinQingra 

Relati011 to Band and GoQLitb's Forotbtn Utmcru Medrod - BG13 
l k  objective of this paper has been to prtsau a simpb daimicm of a variatian of ppram- 
e t a s ~ U E i ~ ~ ~ ~ ~ m d ~ t i m e , a n d t o p o i r ? t o u t t b n t t b e ~  
rlstof-timtis@Wittoaao.tdrtsrrutofachialegntio~~stcp. Inorhawords. 
odvaaot tbc aigin. Admaages include f.slx nmnioq time md grtrta +ccrarcy. h 
tmm ut not impoma Pad rhat is m build up of sensitivity to 8 dimat sating poiat 
Also. it pmxshie to cbocst masants to drive tbe right hand sick of the varhtimnl e q b c  
t o ~ - o a t L t r e b e g i a d i a g o f c r c h i ~ o n s . .  

I b e i n n o d u a i o o o f r b t V ~ ~ i t b f i s a k o w b I L ~ ~  'Ibeusofrhc 
~ c n a - g y c o r r s g a S ~ , i n t h i s p l p a c ~ s m o t i ~ m m b y s i m p l i d t y o f ~  
tion than aay Oesin to use the "best' aragy mastant An obsavation ofeqs(53j a 
aqs(53a) shows tlu a' is a majm axmiinitm ro tht right hand side of dwrst tqwioas. 
Cons=quauly itsecnsrt;lsonabkto~tous~foraaanstantofdremOti~ntha'~infPrX 
remaim coastant for the grcxm range of perturbing accelaatiaas Tocal eacrgy 
would3eabetuchaiadranKeplaianu#g)..sincetotalcnagykanstantintheprts- 
u ~ ; e  of a p a l d i n g  accclaatjon k t  is due to a time invaricnt potartid. The Keglaiaa 
energ). was used in [31. and tbe tn?al energy was used in [9]. Howcvu, the J- 
integral d [41 is besi of all, sina it Fanaim msrant in the presawx d a p m b i q  
aEceldaartsultmgf%cxnatirccvaryingpotcntial.~on. i n l i a r d d & n i n g ~  as in 
q'5), Mine the Jscobion integd 

whuc i? = t x ? is tbt angular momcnhnn, and Cd is a consfant vector which characmks 
the time rate of change of the potential. Ngw, detining a r Gf . ?, solve for the Keplaian 
Ulttp)'as 

and substitute into q!8) to get 
C \ 

f " =  r2T- @+ la, - &%-(F'.f) -CS)j7 

as i)lf.xc. add and scbtmt 2P and V to get 

t"=a,?+r27-2f\'(ts)-up - @ + W - W + V - V  (@I 
Now define 

With these definitions, qs(53) and qs(53a). given previously, are suli valid with the 
exception Lhat now, from eq(61). a' becomes 

, \ 



wheze srrperscripts an V denole pmd daivatives by f and time. R d  from tq(5) that 
i = t . fir.  Also. &4] &rives h e  fact th;u L" = - d . P x I"$. Using these, il is easy to 
show that eqi66) rtdrrces to 

Note that now a' dtpads anly an $ aod not 7. AlsoAlso, beuurse a was introduced into the 
pmbkm. u is inttgrated from it's initial point rather than being calculated. This is done 
because it is more acarratt to do so. The differential equation far a is 

The only aha diffaum is that now dre optimal k is 

and V is 

Tbe majar advantage in changing eaagy anSants in th derivation is that gnarn acawcy 
can be auained by using an aragy i n t q d  dut is conss t  for a grcaur variety of pemirb- 
ing Pcce lexat i~(~~.  The cosr fur this is the inooduction of the differential equation for a. 
However. the advantage that - from the use oh the Jacohian integral is m m  than 
worth the extra diffauuial equation. 

Numerical Results 

73e formube developed abobz have ban coded in the Ada Simulation Dcuel~pment Sg- 
ttlF (ASDS) (131. and W on a number of problems. One p'&m run the 288 day 
J2 plus moon poMun given on page 121 of [lo:. This problem was run with and witbout 
V and advaxing fie origin 'Ihe answer in (101 was obtained in both cases, when 50 sttps 
pa mv were used in conjunaim uith Rungc Kuua-Fehlberg-78 fixed stcp. When 30 steps 
per rev was used, advancang the aigin a n d ~ ~ n g  V resulted in a slightly smaller root 
mean square urn. Al-h this proMem contains a ptrturbing face  outs^& the potential 
tam. it is rial a particularly severe test of the alparithm. Two severe test cases wue run. 
The first was ruminally a imp LO the ground. It was acurally set up as a fixed final time 
problem, with the final time king chosen to bring the spacecraft essentially to the ground 
Esseruiallg is used btcaw the final time was uuncated to eight digits, 29.4^377 days. 
The reenny problem: The reentry problem starts a t = (6677833.0 -62810.0 -27301.OHmj. 
? = (79.0 6821.0 3627.0)(m/si. The ballislic number was 78.0ikg.h**2). The gravity 
model was GEM 10. 2 x 2. The aunosphae routine was Jacchia '70, witt, the density held 
constant below 9&m. The results of this problem are given in Table I. Al! runs were made 
with Runge Kuua Fchlberg 7.B fixed step, and ic and '2 were held constant except in those 
runs where )c or ve&pear. The second severe test was a low thrust spiral fnwn a circular to 
a hyperbolic orbir The low thrust problem: Steve Sponaugle [ I l l  first auanpted to solve 
Uus problem using the I(-S method [2j. He nored thal the program could not start in a cir- 
cular orbit and inlegrate all the way to hyperbolic. However, hc also noted that if he re- 
initialized about two-thirds d the way out the program would integrate on through the p- 
bolic region, albc~t poorly. It was this one clue coupled with the desire a inilialize pog 
erly, tlut ied to the sliding orign concept The low-brust problem s w  a r' = 
(678314.0, 0.0, O.Oj(m), ? = (0.0, 6736.774, 3657.770)jmh). The thrust and flow rate are 
122.366570 and 2.4955%2e-O3Ckg,/s) respectively. The inilia1 mass is 375000.0&g). 
M t  is along the velocity vector. The gravity model was GEM-9. J2 only. Scvcral runs 
of 24.0 days were made. The first two were made with  he sildlng origin mcthd of this 
repon uqmg 80 srepshev. Final F' = ( -63475778G.495,8989324M.577, 20257150.2835jim). 
This is shown in Table 11. The olher runs in the table compare h e  BGIG and B G l k  slid- 
ing origin (0) merhods to each other as well as to the BG146 method in [ 121. Kolc that 
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again the simple runoval d saarlar terms faikd to cure the instability. The sddicion of tk 
sliding origin u, drc BG1G of [I21 results in a mtrhod whose ctranaaistlcs arc ikukal 
~tbostaftheBG146ofthisrepon. Funher,theeffcuofrsrtdnp11odrangeuescbsrtp 
is sbown to have a Qamacic &ax in the low thrust @Ian. but vay LiPlt f r  the reentry 
problem. ~ c h a n g i n g V a & s t c p s w e l l s X 4 1 . h l a l l y W t h u r g S t o g e t ~ y  
worst. Nott Lhat in evay cast the e form is more occraate t h  the S form. .Itbargh not 
by mueh. 

AnaamirutiondTaMesIsdliindicartsthatsimplyremovingsearlalcnnsdotsnot 
cams Uu habibty  in the original BG14. Howtva, w t m  tk Wmg sigh uzs ddeC to 
Bods BG146 mahad (BGlW in the tables). that farmulaam and tbe E E l W  fomda- 
tion batin give esartially idtnticll results. llc W14& metbod gave e s s a d i y  ideatt- 
d ~ f a ~ l o w t h n s t p D M a n . ~ ~ u , w h Y ~ c x p e c l e Q g a v e s l i ~  
supaiarltsrlafabothtbenenaypoblanaadtbcbarduustpbkm. Also,choosingi 
a t e o c h s l e g ~ v c d t h e b w t h n r s t p o b l t m , b l u b a d l i a k & ~ a n d r t ~ p o b l a n .  
P r e v i o u s s t u d i t s h a d i n d i u u t d d r a t t b e ~ f o r m d E E 1 4 w 4 s s l i g h t l y ~ r o t b t e O  
farm. The rcsulrs bae do not sbow that However. previous swdies used 4th arda 
R u n g e K u t t a ~ t h a a t h t m m ~ 8 t h o r d a u r t d h a c i n . T h t c o a c l u d o n o n t  
should-draw is that the metboQ are essentially h e  same and pabps otha aittria srb as 
simplicity and sped lbouid en~tr into the decision for a choice of formulation. Since the 
mahods differ b) only a few tams. ont muld codc than both or arbitrarily choose m. It 
is suggested that studies be canicd out with specific types of po3lems to see if 1 a V 
should be changed at each step, and u.hetha the &2 or the EQ form gives barn rcsuh It 
is obvicus fmn  [12] that eitha the change of variablts or the removal of scarbr terms 

improves rbt m g i d  BG14 [4] if tht aigin raMins fixed Howtw. sins that mabod 
failed to sdve titha brt bw-thnrsi pobicm a rtcntry to the ground. one must c a d &  
that the d culprit is the fixed origin and not sash trims pa st. Whcn tht sliding aigin 
was~ddcdto~oad's~muhod,tkinaabilit~vanisbcdandusdvcdtbtpobkmgating 
the same answer as obtained by the formulation rrgrtsaued by cqs(53a). Tbe f<znnuhcion 
represtnted by qs(53a) is essJtially the same as in[12]. with the exception that y does not 
appear on the right hand sicie of tbe diffauuial equations and no particular effm was made 
to remove secular ~trms. Since eqs(53a) md the formulation in [12] (with sliding origin 
added) give essuuially identical rtsults, one must d u d e  that it is not tlte form of the 
right hand side of thz differential equations that d i y  mam, it is ratkr the choice of 
dependent variable that acnrally makes the difference. Finally then. the optimal use of fuzi- 
Lious time, i-e., moving the origin rendas secular terms innocuous. since they can never 
p o w .  and also overcomes the sensitivity to the initial point that r e d s  from long turn pa- 
sistant forces. Any ekment methad using fictitious time can be stabilized by w i n g  fiai- 
tious time badr to rao as indicated in his nu&. The addition of this concept to any of the 
Jacobian inrtgnl methods, i s . ,  BG 14 in any of i a  forms i[41,[121, or as developed henin), 
makes them highly acauate, long tam ppga1MS. 
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Useful identities, which are either given in 171 or which can be derived frc-n them are 

s,2-aS:=1 

s',=1+aS2 

s i = s + a S 3  

s: - S,S2 = S 2  

5:  =2Sz+as; 

2s:=sS, 



If olrt dcfks tk varbbk z r as2, and fams tbe following wnsccadeatnl fmuiolls 

It is radrtr easy to show that the c's and S's are related by 

The c's are known as Stumpff functions and are used in [4] except that a in [4] is the nega- 
tive of a in this report The S form of the Stumpff functions is used by Goodyear [71, and 
terd to make the equations seem less cluaaed. 

APPENDIX 11 Multiple Vehicles and Constant Time Steps 

Since the independent variable is fiaitiw time, and since fictitious time is Mncd by 
--  ' - r ,  it is obvious that sincejn pd, the rad~us of one vehicle will not be identical to 
ds 
the radius of another vehicle, time will unfold differently along the two ~ajectories. This is 
inconvenient when looking at relative motion hween two vehicles, since almm all 
relemt measurements require time simultaneity. It is possible c gain time simultaneity 
the following way. First of all, one of the vehicles must be chosen to be the master vehi- 
cle. This vehicle will have fictitious time, s, truly independent Assume this is vehicle one. 
We would lilre time on the seumd vehiclc tn unfold at the same rate it does on the first 
vehicle. That is to say, we would like 



'1 
'rka'd- if qs(S3) fa the s e d  vehick arc multiplied by -, the ~ndcpadcnt variath- 

f 2 

is shifted to st. 1n addition however, wbareva s2 is needed in order to compute r ,  r', uc.. 
it must be compued as tk integral of q@-2), iz., as 

Now that this is understood. it is easy to see that vehicle one is not even medd if a am- 
stam time step is dtsired. In this case pretend drat vehicle one exists, and that this ima- 
ginary whkle is in a pafeclly circular orbil. and that it is be~ng integrated with a SICP size, 
ds. that is chascn to be 

what dt is the dcskd time step, and ri is just a reasonable d u e  for the radius of the ima- 

ginary orbi~ T)UI. ~ 9 ~ 5 3 )  a n  be modified by multiplying by -. and r, is compued 
rl 

from 

In this way a single vehicle or many vehicles can be integmed at a constant time step size. 
with no itaation what-so+wer and with great accuracy. Note that the equation for t is no 
longer needed sine time is known absolutely. If z is integmd time can be computed and 
ustd as a measure of integrarion accuracy. 

A test case for a near orbit pawbed by a 4x4 gravity model was integrared for 30 
days using both the standard BG14 and this constant time step approach. The step size was 
varied fnwn 25 steps per lev to 8 steps per rev. In every case. the rss e m  away from a 
high precision nm was slightly Less with the constant time step method An interpreration 
of this result is that the aror made in integmting for s resul~s in less e m  than that rault- 
ing from the computation of time using r. The method above is convenient and seems to 
be quite accurate. at kast for near circular orbits. However. since the computation of fiai- 
tious time involves the integral of Itr, this approach may not be as accurate fa ellipuc 
orbits as the standard method that computes time analytically. A variable step size 
approach would be squid as a minimum. In addition, in the absence of penrrrbations. an 
emr would be inaoduced by the inlegration of lir, thac would not be present with the stan- 
dard method. A variation of this first approach would be to integrate r, and solve for s 
from the time equation at every function call rather than integrate Ih. This would add 
iterations f a  s. but not in terms of function calls. The advantage of this approach is that 
no enw would be introduced by the integration of I/r. Information from the next section 
can be used to speed convergence. 

A SECOND APPROACH TO CONSTANT TIME STEP 
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A second agpfoxh to stopping on a spccific time (with s as u u k p d a :  variable) can be 
dcvebpd by assuming that s is a function of t. and fonning the Taybr e1.3 

The duivatives of s drat are needed come fiom the fact that s is defind by 

hcnct 

and 

whac 

also 

Now, 

Sina the &icy vector, V = ?. and remembering h e  definition of i ,  i' becomes 

Now, from eq(1) 

cohsequenrly, 

Af Defining 6 r -. Lhcre results 
r 

Whenever, 6 is a reasonable number, eq(I1-17) can be used to estimate As to land on a 
specific time. Since a third order Taylor series is being used, the estimate of hr should be 
very accurate, and the time should be hit with ve.ry few iterations, pobably only one. 
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i TABLE I - Comparison of BG BG 146R and BG 146 Methods i 
i Final Value of Position Vector - Reentry to the Ground (''I' = 29.422577Days) .ys) 
4 I 

I i Bond '12 4 BG~& - 1- Failed Failed ! j Failed 
I 

I 

= Oan) 

N/A ! j 
I 

I Method -- 
Gonlieb 

YCnn) x Oon) z ,h) 



I TABLE I1 - Comparison of BG14d2, BG146R and BG146 Methods I 
I Final Value of Position Vector - Low Thnrst Spiral to Escape (T = 240.ODays: I 

I B C i l 4 6 - 3 O ~ ~ r  1 Failed Failed 1 Failed 
I 
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