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NASA REFERENCE PUBLICATION

DEVELOPMENT OF THE BURST AND TRANSIENT SOURCE EXPERIMENT

I. INTRODUCTION

A. Overview

The Gamma Ray Observatory (GRO) is the second in NASA's series of "Great

Observatories" designed to explore the universe over many wavelengths with unprecedented

sensitivity from low Earth orbit. Scheduled for launch in April of 1991 aboard the space shuttle

Atlantis, GRO will operate at an altitude of 450 km with an orbital inclination of 28.5 °.

COMPTEL Detector
Assembly

COMPTEL Remote
Electronics

OSSE Instrument

_- EGRET Instrument

_ BsAsTSmEID_8epl°rces'

t_,_,.,,,,,.,.,,_BATSE Remote Electronics

Figure 1.1. Gamma Ray Observatory and BATSE Detector Module.

The GRO weighs 17 tons, and contains four scientific instruments:

• Oriented Scintillation Spectrometer Experiment (OSSE)

• Compton Telescope (COMPTEL)

• Energetic Gamma Ray Experiment Telescope (EGRET)

• Burst and Transient Source Experiment (BATSE)



The BATSE flight hardware consists of eight identical detector modules, mounted on the comers

of the spacecraft (see Figure 1.1), and associated electronics. Each of the detector modules

consist of a large area detector (LAD), a spectroscopy detector (SD), a charged particle detector

(CPD), and associated electronics. The modules are numbered according to their positions on the

GRO. This numbering scheme is given in Table 1.1. BATSE provides monitoring of the entire

sky, continuously on-watch for gamma ray bursts and other transient phenomena. When a

gamma ray burst is detected by BATSE, a signal is sent to the other three instruments, notifying

them of the event. BATSE will detect and analyze hundreds of gamma ray bursts per year, with

unprecedented combinations of temporal and spectral sensitivity. This improved sensitivity will

allow the BATSE instrument to observe gamma ray bursts 10 times fainter than any detected
before.

Table 1.1. BATSE Detector Module Numbering

Detector GRO (X, Y, Z) Coordinates

B0 +, +, +

B1 +,+,-

B2 +, -, +

B3 +, -, -

B4 -, +, +

B5 -, +, -

B6 -, -, +

B7 -,-,-

In August of 1977, an Announcement of Opportunity for the GRO was made by NASA.

In the following 13 years, many milestones were reached in transforming BATSE from a

proposa! _into a fli_ght experiment. The major milestones reached during this time period are
outlined in Table 1.2.

Table 1.2. Milestones of the BATSE-GRO Project - 1977-1991
Event/Milestone Date

Announcement of Opportunity for GRO

Proposal Submitted - "A Transient Event Monitor for the GRO,"

G. Fishman, PI; C. Meegan, T. Parnell, Co-I's

(Proposed 12 detectors, with 2-6 detector arrays)

ProposaiAccepted--by NASA Headquarters ......

(6 detectors, 1-6 detector array)

Name changed to Burst and Transient Source Experiment (BATSE)

with 8 detectors in separate modules proposed and accepted

_2oncept Design Review .......

TRW selected as GRO Mission Contractor

GRO receives new-start from Congress

2

August 1977

February 1978

August 1978

1979

November1980

1981

1980



Table 1.2. Milestonesof the BATSE-GRO Project - 1977-1991 (Cont.)
Event/Milestone Date

GRSE Experiment removed from GRO

BATSE Program Requirements Review

R. Wilson becomes BATSE Co-I

BATSE developmental balloon flight

BATSE design and performance specification

Spectroscopy detector modification to BATSE proposed

ATSE Preliminary Design Review

Spectroscopy modification to BATSE accepted;

J. Matteson, B. Teegarden, and T. Cline become BATSE Co-I's

Spectroscopy detector PDR

Critical Design Review

W. Paciesas becomes BATSE Co-I

GRO designated a Great Observatory, extended mission

and comprehensive guest investigator program planned

Fabrication of flight components

MSFC assembly and test program

Detector module assembly and testing

Pre-Environmental Review

BATSE system thermal-vacuum testing

Calibration Review I

Pre-Ship Review

BATSE shipped to TRW

GRO instrument integration and testing

Redondo Beach, California

GRO thermal vacuum testing

GRO shipped to KSC

GRO test program at KSC

BATSE Calibration Review II

Phase I guest investigators selected

Launch of GRO aboard space shuttle Atlantis, mission STS-37

1981

1981

1982

May 1982

April 1984

January 1983

March 1983

1983

October 1983

June 1984

1985

1986

1985- 1987

1986-1988

1986-1988

March 1987

August- September 1988

July 1988

September1988

October1988

November 1988 -November 1989

July- August1989

February1990

February1990-March 1991

July 1990

August1990

April1991



The milestones shown in Table 1.2 could not have been met without the hard work and

dedication of countless personnel during the development, fabrication, and test phases of the

BATSE program. The persons listed in Table 1.3 contributed significantly to the design,

development, and testing of BATSE. A much larger list of personnel participated in the

development of the experiment; however, in the interest of conciseness, this list is necessarily

limited to those persons who were major contributors to the program. Table 1.4 lists the primary

component fabricators and contractors for BATSE.

Byron Schrick
Dennis Ellsworth

Table 1.3. BATSE Development Personnel

BATSE Program Manager

BATSE Chief Engineer

Laboratory Lead Engineers:

Robert Austin

Frayne Smith
David McGaha

Joe Smith

Space Science Laboratory

EB Laboratory (electronics)

Test Laboratory

EP Laboratory (structures)

Principal BATSE Designers:

Robert Austin

Richard Rehage

Charles Meegan

Bob Wilson

Richard Acker

Mark Chapman (UCSD)

Ed Stephan (UCSD)

Joe Smith

Ken Anthony
Dave Clark

David Christian

Henry Lee

Robert Rowe

A1 English

Analog electronics design

Digital electronics design

Flight softw_are __

Flight software test design

Power supply design

Detector and PMT housing design

Detector and P_ housing design

Mechanical design

Thermal protection system design

Thermal analysis

Dynamics analysis

Stress analysis

GSE software

GSE hardware
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Table 1.4. PrimaryComponentFabricatorsandContractorsfor BATSE
Bicron Corporation Detector crystals, detector

Thorn EMI Limited

Omni Technology, Inc.

University of California, San Diego

Whitesburg Electronics

Beowulf Corporation

Twin-Tech, Inc.

Ver-Val, Inc.

encapsulation, plastic scintillators

Photomultiplier tubes

Electronics parts screening

Detector housings, PMT assemblies

Electronics fabrication

Electronics fabrication

Electronics fabrication

Mechanical fabrication

B. Purpose and Scope

The purpose of this manual is to provide the reader with a detailed view of BATSE's

history, with an emphasis placed on hardware development, calibration, and testing. The manual

provides detailed descriptions of BATSE flight hardware, complete with drawings. BATSE's

extensive test and calibration program is presented; however, the reader is referred to the BATSE

Calibration and Performance Summary for a detailed look into the BATSE science calibrations.

In this manual, emphasis is placed on qualification, performance, and environmental test results.

Several appendices are included for further reference. This document provides a means by which
the BATSE user can become more familiar with the details of the BATSE instrument, not only

the data which it produces.

As discussed previously, the history of BATSE dates from the late 1970's; however, the

information presented here begins with the development of the BATSE flight hardware. It

concludes with the final tests and calibrations performed prior to launch of the satellite. Major

components of the BATSE instrument are presented, followed by a presentation of component,

subsystem, and finally experiment-level test results. A complete list of drawings and released

documents is provided as one of an extensive list of appendices.
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1. BATSE HARDWARE DESCRIPTION

A. BATSE Large Area Detector

The large area detector bAD) is the principal gamma ray detector on the BATSE

module. Consisting of a NaI(TI) crystal 50.8 cm in diameter and 1.27 cm in thickness, the LAD

is uncollimated and views the entire forward hemisphere. The NaI crystal is hermetically sealed

inside its housing and mated to a light collection cone. The scintillation photons from the LAD

are collected by three 12.7-cm PMTs at the back of the cone.

The LAD assembly is mounted on the upper half of the detector module (see Figure 2.1).

The orientation is such that the normal to the LAD and the normal to the front baseplate of the

detector module lie in the local vertical plane. When the detector module is upright, the LAD

normal makes a 54.736 ° (arctan-_) angle with the local vertical. This angle is required so that

when the modules are placed into the flight configuration on the GRO, the planes of the LADs

intersect to form the faces of a regular-right octahedron. This is done so that gamma ray bursts

will be seen by four detectors simultaneously. The location of a detected burst can be determined

by comparison of counting rates on the LADs, which depend to first order on the differences in

projected areas of the illuminated detectors.

Figure 2.1. BATSE Detector Module and LAD Assembly.

Bicron Corporation of Newbury, Ohio was the principal contractor for the fabrication of

the LAD assembly, and the detectors were manufactured according to MSFC-PROC-1495. The

NaI crystals were grown in a large boule and machined to their proper size. Fabrication of the

LAD housing was performed at UCSD. Figure 2.2 shows a cross-sectional view of the LAD and

its housing.
J
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AI Entrance Window -- 0.081 cm

Aluminized Kapton Window Shim -- 0.0076 cm

Backed Silicone Rubber Cushion -- 0.178 cm

Two Layers of White Reflective Paper -- 0.023 cm
Teflon -- 0.01 cm

LAD Nal Crystal -- 1.27 cm /- Optical Silicone Coupler --.064 crr
/

Fused Quartz Window -- 1.91 cm

1
Teflon Cord 0.025 cm

Bolt Hole

Eccobond 45 Bead -- 0.81 cm Invar Housing

Cryolab LAD Evacuation Valve -- 0.635 cm

Reflective

Paper -- 0.01 cm

Figure 2.2. BATSE Large Area Detector Assembly (Cross-Section).

Detected gamma rays enter the LAD through an 0.081-cm aluminum entrance window.

This window allows for the entrance of high energy photons, while attenuating lower energy

x-rays which pass through the charged particle detector in front of the LAD. Directly behind the

entrance window is an aluminized kapton window shim and a silicone rubber cushion backed

with aluminized kapton. This layer is approximately 0.18 cm thick; however, it varies slightly

from detector to detector. Two layers of white reflective paper are located at the next layer of the

LAD. These layers, 0.023 cm thick, reflect scintillation photons back toward the exit window of

the LAD. The NaI crystal is the next layer. Optical photons generated in the interaction between

the gamma ray and the NaI then pass through the fused quartz optical window and its optical

coupling into the light collection cone. The window has a thickness of 1.9 cm, and the optical

coupling is approximately 0.03 of this value.



This assembly is hermetically sealed inside a circular Invar housing. The housing serves as the

mechanical mount for the LAD assembly and the point at which the assembly fastens to the light

collection cone. A ring of teflon, and white reflective paper, each 0.01 cm thick, line the inner

perimeter of the Invar ring next to the NaI. A teflon cord and an 0.81-cm bead of Eccobond 45

are seated at the boundary of the NaI crystal, the quartz window, and the Invar flange. This

entire region is kept evacuated to a pressure of 30 milliTorr or less. This prevents hydration of

the NaI crystal, and deformation of the assembly in the vacuum of space. The procedure of

evacuation and pressure checking is discussed in section II.A. 1 of this manual. Table 2.1 details

the LAD assembly specifications.

The LAD assembly mounts to the light collection cone with a series of bolts fastened

through the Invar flange. The assembly is mounted so that the fused quartz window is interior to

the collection cone. The interior walls of the cone are painted with a highly reflective BaSO4

white paint to prevent absorption of the light generated in the NaI detector. In addition, the cone

provides passive shielding of the LAD in the rear hemisphere by means of lead and tin layers.

The lead layer, exterior to the tin, is 0.08 cm thick. The tin layer absorbs approximately 90% of

the k-shell x-rays generated in the lead and has a thickness of 0.05 cm. This shielding

arrangement is very effective for absorbing gamma rays entering the back of the detector up to an

energy of 300-400 keV.

Table 2.1. BATSE Large Area Detector Specifications

LAD Component Thickness (cm)
Aluminum window

AI-Kapton shim

Silicone rubber pad

White reflective paper

Minimum total attenuation length

in front of NaI crystal

NaI (TI) LAD crystal

Silicone optical coupler

Fused siifcbnqum-/Z _windOw ......

0.081

0.0076

0.178

0.023

0.2896

1.27

0.064

1.91

Light done passive shield

Lead

_ Tin.......



B. BATSE Spectroscopy Detector

The second gamma ray detector on the BATSE module is the spectroscopy detector (SD).

Although smaller in area than the LAD, and thus less sensitive to temporal fluctuations, the SD

provides superior energy resolution to the LAD, in addition to coverage in energy regions both

higher and lower than that of the LAD. These detector units were fabricated at UCSD and
delivered to MSFC. The SD is mounted on the detector module below the LAD, and is also

uncollimated. The SD consists of a cylindrical crystal of NaI(T1) 12.7 cm in diameter and 7.6 cm

in thickness. This NaI crystal is mounted to a 12.7-cm PMT through direct optical coupling.

The NaI crystal is encased in an aluminum can, approximately 0.2 cm thick. The aluminum

housing provides shielding against low energy x-rays. Gamma rays enter the SD through an

0.068 cm thick, 8.3 cm diameter beryllium window. This thin window covers 53.52 cm 2 and

allows for effective observations to energies of 15 keV with the SD. Figure 2.3 details the SD

construction.

- Aluminum Housing

Nal (Ti)

12.7 cm

I_ 7.62 cm

.,,--- ~ 0.2 cm

1

•.-- 0.068 cm l

/
8.3 cm

Beryllium Window

Figure 2.3. BATSE Spectroscopy Detector Assembly.

The SD is installed on the BATSE detector module below the large area detector. The

axes of symmetry of the two detectors form the local vertical plane when the detector module is

upright. However, the SD axis is offset approximately 18.5 ° in pitch below that of the large area

detector due to constraints on the mechanical envelope. Both the cylinder-wall portion and the

Be-window end of the SD are exposed to incoming radiation when the detector is installed onto

the module. The PMT used to collect the scintillation light is identical to the ones used on the

LAD light collection cone. Figure 2.4 illustrates the SD installation on the BATSE detector

module.

9
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Figure 2.4. BATSE SD and Detector Module.

C. BATSE Charged Particle Detector

The charged particle detector (CPD) provides the BATSE LAD with active shielding

from incident charged particles. Events which are registered in both the CPD and the LAD are

rejected......... through electronic anti-coincidence c'n_cuitry in_e det_tor's elec_onics. The_ __CPD_and

LADcan also be operated in acoincidence mode. Man_fac-ttired in Buildifig _05-atMSFC, the

CPD is an octagonal piece of plastic scintillator, 55.9 cm in diameter. The plastic scintillator is

mapped in a layer of aluminum foil and then sandwiched between two layers of aluminum

honeycomb. The honeycomb provides protection of the CPD from damage, while minimizing

the mass attenuation in front Of the detector. The entire assembly is then covered with a face

sheet of aluminum. The assembly is vented on ascent during launch through two square pieces

of sintered bronze, 2.54 cm on a side. The addition of these pieces came after damage was done

to the CPD during thermal vacuum testing, which demonstrated that the original CPD design was
not sufficiently vented. Figure 2.5 shows the assembly of the charge particle detector.

10



2" PMT (One of Two)

0.25" Plastic

Scintillator

- I__ I.I - p'//////,,'/.,'/////////,,:, "/'///X _/f/////////////////,I
Ii

"///////XI_//////l._/////////_"Z_'///////////////_J////////////////////._

0.25" Lucite

DC93-500 Optical
Coupling 0.01" Aluminum

0.25" AlL Face-Sheet 0.0065" Aluminum Foil
Honeycomb

Figure 2.5. BATSE Charged Particle Detector.

Two triangular pieces of lucite are mounted on comers of the CPD. These pieces are

optically coupled to the plastic scintillator. Light generated inside the plastic scintillator through

interactions with charged particles is collected on these comers by two 5.08 cm diameter PMTs.

These phototubes are optically coupled to the lucite using Dow-Coming DC-93-500 optical

coupling material. The signals from the two PMTs are joined at the detector electronics unit into

one signal. High voltage for the two PMTs is provided by a common commandable supply.

Energy information is not available from the CPDs, as they are not connected to pulse-height

analysis circuitry. They simply identify when a charged-particle event has occurred through use

of a single discriminator.

The CPD is installed onto the detector module directly in front of the large area detector.

Figure 2.6 shows the location of the CPD on the module. The perpendicular distance from the
front of the CPD to the front of the LAD is 3.81 cm.

Figure 2.6. BATSE CPD on the Detector Module.
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D. BATSE Photomultiplier Tubes

The BATSE photomultiplier tubes were procured from EMI Ltd. of Great Britain. All

flight PMTs were constructed with Bi-alkali photocathodes and beryllium-copper dynodes.

Initial specifications called for the installation of cesium-antimony dynodes; however, fabrication

with these dynodes could not be done without contamination from electrically conductive

particles inside the tube. The first shipment of flight PMTs arrived at NASA Marshall Space

Flight Center in November of 1984. After arrival, each of the candidate PMTs were processed

through a detailed testing and inspection procedure, under the direction of Bob Wilson.

A visual inspection was performed on each of the PMTs. This inspection determined the

number and size of any loose particles which might have been present in the PMT, identified any

scratches or defects in the PMT optical window, and examined the photocathode for any

immediately observable flaws or non-uniformities. Following the visual inspection, a series of

tests were executed to determine the performance of these PMTs. Because the tubes were

environmentally tested before arrival at MSFC, these tests were not repeated. The tests done at

MSFC included a gain scan, a measurement of the PMT linearity, determination of the noise

spectrum at several gain settings, transient/fatigue measurements, SAA exposure gain recovery

measurements, magnetic field sensitivity determinations, and measurements of the stability of the

gain. Each of these tests and their results are discussed in detail in a later section of this
document.

The PMTs used for the BATSE large area detectors and the spectroscopy detectors are all

12.7 cm (5 inch) diameter tubes, EMI model D302NA. These phototubes have a minimum

quantum efficiency of 26% at 410 nM, and an energy resolution of better than 8% at 662 keV.

Each of these nine-stage tubes contain their own potted hard-pin base, which is spot-welded to a

PC board containing the voltage-divider string. Figure 2.7 shows the configuration of the base

electronics for each of the 12.7-cm PMTs on the instrument.

12



E19

2

Tube J

Pin No.

.82M 2.74M I

Signal

IR13 _R_1__4

PMT EMI 9791 _ C5 _ 0.01 3KV

9 in I_D1 l

RI._V_MR9 D6J,D51'-'VVVY'-_'_>_'iE10 _ E13
_IM E21ME31ME41M_ 1M 1M <_.z #

E6 E7 EE _, _, | _ ,
Terminal _ _ I _ C._
Board No. CT C1 ] C2 C3 I C4 o

I1 I1---__1-- "--_1
0.001 0.01 0.01 0.01 0.01
3KV 1KV 1KV 1KV 1KV

E14 Rll R12

J1 .,-(';)+HV _- C6 0.01
-- = 3KV

E19 E19

Figure 2.7. BATSE Nine-Stage, 12.7-cm PMT Potted Tube-Base Assembly.

13



Each of the BATSE charged particle detectors employs two 5.08 cm diameter PMTs.

These are ten-stage photomultiplier tubes, EMI model number 9956. The CPD tubes have a

minimum quantum efficiency of 24% at 440 nM and an energy resolution of 10.5% at 122 keV.

As with the larger robes, these PMTs each have their own potted base assembly. Figure 2.8

details the potted assembly for the 5.08-cm PMTs on the instrument.
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E. BATSEDetectorElectronicsUnit andHVPU

Eachof the BATSE detector modules contains its own detector electronics unit (DEU),

which is located under the LAD light collection cone. The electronics contained in the DEU

perform several functions which are detailed in the following table.

Table 2.2. Detector Electronics Unit Functions

• Power isolation and regulation for HVPU and DEU

• Command decoding and execution for HVPU and DEU

• Digitization of detector science signals

• Detector discriminator control

• Generation of LED drive signals

• Buffering of all digital input and output signals

• Routing of analog HKG signals to CEU

The functions shown in the table above are implemented on five printed circuit boards

each 17.2 cm x 10.6 cm. These boards are housed in the DEU aluminum enclosure which

measures 17.6 cm x 15.2 cm x 15.2 cm. The housing is divided internally into two sections. The

f'wst and smaller compartment contains the power supply board. Bypassing feed-throughs route

output power from the power supply board into the second compartment that contains the four

remaining boards. Each of the boards in the DEU are discussed in the following sections.

1. Power Supply Board

The power supply board receives regulated +15 Vdc from the BATSE power module

(BPM) and converts it into +15, -15, +6, -6, -3, and +5 volts. Active regulation is provided for

the latter four voltage outputs. The DEU uses each of these voltage outputs in a variety of

functions. In addition, the high voltage power unit (HVPU) uses the +5 and + 15 volt outputs to

generate and control the high voltage for the PMTs.

2. Housekeeping and Command Board

The housekeeping and command board receives the serial command signals from the CEU

and subsequently decodes and executes or forwards these commands as appropriate. The

following commands are executed within the DEU:

• LAD and SD discriminator settings

• Housekeeping multiplexer channel values

° LAD coincidence/anti-coincidence mode settings

• LED amplitude settings

Commands for the setting of PMT high voltages are forwarded to the HVPU for execution. The

housekeeping and command board also contains the differential receivers for serial commands.
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3. Interface and LED Driver Board

All digital signals that pass between the DEU and the CEU are handled with differential

drivers and receivers. These drivers and receivers (with the exception of the serial command

receivers) are located on this board. The interface and LED driver board also contains the

digital-to-analog converter for the SD discriminator threshold, the analog-to-digital converter and

driver for the LED amplitude, and the level converters for the telemetered negative supply

voltages.

4. Spectroscopy MQT Board

The SD MQT board receives the signal from the spectroscopy 12.7-cm PMT and passes it

through a charge-sensitive amplifier/baseline restorer (CSA/BLR). From the output of this

CSA/BLR, the signal branches to a four-channel fast discriminator section and to the high

resolution charge-to-time (MQT) converter. The fast discriminator section of the circuit

generates the SFAST data, while the MQT generates SHER data from the PMT signals. The

output of both of these sections is in digital form and is passed to the CEU with the use of

differential drivers. The energy thresholds of the discriminators and resolution of the SHER data

are covered elsewhere in this document. The output of the four SFAST discriminators is

integral.

5. Large Area Detector MQT Board

This board receives the summed signal from the three LAD 12.7-cm PMTs and passes it

through a CSA/BLR similar to what exists on the SD MQT board. From this CSA/BLR, the

signal branches to a four-channel fast discriminator section, and to the high resolution

charge-to-time converter (MQT). The fast discriminator section produces the FAST

discriminator data, while the MQT generates the LAD high energy resolution (HER) data type.

These outputs are sent to the CEU through the use of differential driver circuits. Other data types

are also generated downstream from these signals in the CEU and are discussed fully in section

II.F.3. The output of the f'trst three FAST discriminators is differential, and the fourth is integral
above its threshold.

The LAD MQT board also receives the signals from the charged particle detector PMTs

and compares the amplitude of the voltage pulse to a level expected from a charged-particle

event. For those signals which exceed this threshold, a count in the PLASTIC data is generated.

The capability exists to require that these events be either absent or present simultaneously with a

LAD-generated signal to produce a gamma ray count in the HER data. This coincidence/

anti-coincidence feature serves to reduce the background level an d to Calibrate the LAD with

Charged particles. The mode of operation is selected individually for each module with serial

commands.
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6. BATSE High VoltagePowerUnit

The secondelectronicsbox locatedon the BATSE detector module is the high voltage

power unit (HVPU). The HVPU contains five separate commandable high voltage power

supplies. These supplies accept the +15 and +5 volt outputs from the DEU and produce high

voltage in the range of 1000 to 2000 volts. The output voltage for each of the five supplies is

programmable in steps of approximately 4 volts across this range. Each supply can be

programmed off and is current-limited at 200 I.tA. The supplies also produce analog voltages for

telemetry corresponding to the value of voltage and current which it is supplying. The three

LAD 12.7-cm PMTs and the SD 12.7-cm PMT have their own individual +HV supply. The two

5.08-cm PMTs on the charged particle detector share a single supply. The HVPU is housed in an

aluminum enclosure measuring 15.2 cm x 12.7 cm x 22.3 cm. The enclosure is installed on the

detector module underneath the LAD light collection cone, opposite the detector electronics unit.

F. BATSE Central Electronics Unit

The BATSE central electronics unit (CEU) is the digital processing system for the

experiment. The CEU was designed and built at MSFC. No single point failure in the CEU will

cause the loss of BATSE, or more than half of the science data. As the interface between the

GRO and BATSE, the CEU receives serial commands, the telemetry master frame reset signal,

and clock data. The CEU transmits packetized serial telemetry data and hard-wired engineering

data back to the spacecraft. It also provides the other three experiments with the burst trigger

signal and notifies COMPTEL of a solar flare through the GRO's onboard computer. As the

internal interface between BATSE components, the CEU accepts pre-processed detector data

from the detector modules and controls the acquisition of engineering data from the experiment.

Furthermore, the CEU controls the settings of the high voltage power supplies and the calibration

LED. A complete listing of CEU boards and functions is provided in Appendix C.

Internal to the CEU are several discrete functions. Each function is somewhat

independent of the others; however, significant interfacing among functions is accomplished.

These functions are discussed individually in the following paragraphs.

1. CEU Control Function

The CEU control function (CCF) is a programmable, microprocessor-based function that

interfaces to the GRO and the other CEU functions. It provides all of the hardware controls

necessary to initialize, monitor, and acquire data from the science data function (SDF), the power

control function (PCF), the BATSE status function (BSF), and the analog data function (ADF).

The CCF can also command the detector modules via DEUs.

The CCF function is controlled by two redundant CCF boards present in the CEU.

During normal operations, both CCF boards are powered, but only one is in control. Either CCF

is capable of controlling all CEU functions. Each board contains its own Texas Instruments

SBP-9900A microprocessor chip and supporting logic elements. Among these support elements,
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a CPU clock generator develops the 1.365 MHz non-symmetrical clock required by the

microprocessor. A 500 mA current source is present to power the SBP-9900A. CPU interrupts

are detected and priority encoded by an interrupt encoder. An input/output device selector

decodes the CPU control lines and address bus to control the CEU input/output devices. A

discrete command decoder generates pulse commands to control various CEU devices. A status

input multiplexer inputs discrete status signals for the software program test and status words for

housekeeping data. Finally, a watch-dog timer, if enabled, will time out and reload the flight

software within 2.048 seconds if not reset by the flight software in operation.

Cross-strapping from the CCF function to the remote interface unit (RIU) is employed.

Isolation is maintained between the CCF functions by using separate RIU serial commands,

timing, and data channels. GRO discrete commands to the power control function are used to

select which of the CCF boards will control operations. The CCF's tasks are outlined in Table

2.3. The major elements of the CCF are shown in Table 2.4.

Table 2.3. BATSE CCF Function Tasks

• Process serial commands from the GRO

• Format and output serial packetized telemetry to the GRO

• Initialize and acquire data from the SDF and ADF functional elements

• Alert the other GRO instruments of a gamma ray burst

• Alert COMPTEL of a solar flare via the GRO onboard computer
• Command and calibrate the detector modules via the DEUs

Table 2.4. BATSE CCF Elements

• GRO interface

• CPU (described above)

• CPU memory

• Serial input/output controller

• HER burst memory for the LAD

The GRO interface is interconnected to both RIUs and time transfer units ('FrUs). These

elements are mounted onto the BATSE electronics panel next to the CEU and BPM. There are

three serial digital command channels into the CEU, one for BATSE serial commands using

CCF-A, another for CCF-B, and the third for the universal time code updates. The BATSE serial

command channel is selected by the setting of a bit in the serial command. Eight discrete

command channels provide control of CCF-A, CCF-B, and the watch-dog timers. A serial

telemetry channel exists for the output of BATSE packetized data.The master frame reset timing

signal starts a BATSE data packet transfer every 2.048 seconds. A 1.024 kHz clock channel

provides mostof Me CEU internal ti_ng, and a 1 Hz clock from the TIXJ synchronizes the CEU

time counters and the UTC updates.
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The CPU memory consists of 4K words of read only memory (ROM), 4K words of

random access memory (RAM), and 8K words of RAM along with a program ROM to RAM

loader. The flight software is executed from RAM, and must be down loaded from ROM prior to

execution. This occurs automatically when power is applied to the CEU. The load controller can

be commanded from the ground via the GRO interface, or automatically in response to a

watch-dog time out due to a malfunction. The additional RAM is provided for software tables,

program work space, and storage of temporary data.

The serial input/output controller (SIO) enables the CCF to transfer commands and data.

The serial interfaces are implemented with differential drivers and receivers which provide good

noise rejection and isolation from functions which are powered off. The CPU controls the SIO

from its parallel control and data bus. The system speed is maintained by performing serial

transfers between CPU parallel transfers.

The HER burst memory is loaded with the LAD HER data during a gamma ray burst.

The CCF acquires the HER data from the SDF and stores it until the memory is full. After the

burst, the data are transmitted in the BATSE packet.

2. Power Control Function (PCF)

The PCF allows power for CEU functional elements to be individually switched using RIU

discrete commands. A schematic of the PCF is given in Figure 2.9.

The PCF is implemented using magnetically latched relays that can be set or reset by RIU

discrete commands. To satisfy the CEU single point failure criteria, two relays are used to power

each CEU function. To enable a single RIU discrete command to control a magnetic latching

relay (two control coils), the PCF directs the corresponding 28 Vdc pulse to the desired set or

reset relay coil. To provide the required redundancy, separate relay control buses are used for the

primary and redundant relays.

The relay set/reset control circuit develops the following 28 Vdc relay control buses:

• Primary relay control bus-I and backup relay control bus-I for control using RIU

discrete command channels 2-62 (even only).

• Primary relay control bus-II and backup relay control bus-II for control using RIU

discrete command channels 1-47 (odd only).

The relay control buses are also used to control the detector module power control relays and to

switch the output of the redundant power supplies in the BPM.
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Therelay set/resetcontrolcircuit is composedof relay circuits X and Y. The function of

circuit X is to direct the RIU 28 Vdc command pulse from either RIU to the primary or backup

relays. The function of relay control circuit Y is to further direct the command pulse to the

relay's set or reset coil. The circuits operate in the following manner:

• Relay circuit X in the set state enables RIU-A to control the primary relays and RIU-B

to control the backup relays. This arrangement allows relay circuit X to fail in either state

without losing control of the PCF relay circuits. This circuit also maintains the required RIU

isolation without the use of diodes.

• Relay circuit Y in the set state enables either RIU, by switching X, to set any primary

relay and reset any backup relay. This arrangement allows relay circuit Y to fail in either state

and still any CEU function can be powered off by either RIU if X functions, or by the use of both

RIUs if both X and Y fail.

3. Science Data Function

The science data function (SDF) acquires, accumulates, and pre-processes BATSE science

data from the eight detector modules. The DEUs pre-processes and conditions the data signals

produced by the LADs, SDs, and CPDs, providing a compatible interface to the SDF.
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Table2.5.
Energy

Name Detectors Channels

BATSE Science Data Types

Time Resolution Uses

Continuous Separate 16

(CONT)

HER and Separate 128
HERB**

Pulsar (PSR-A) Combined 16

and (PSR-B)

Discriminator Separate 4

(DISC)

NaI Separate 1

Plastic Separate 1

Time to spill Combined 4

('ITS)

Medium energy Combined 16

resolution (MER)

Time tagged Separate 4

event (TIE)

SD HER Separate 256

(SHER) and
SHERB**

Spectroscopy Separate 4
discriminators

(SDISC)

Spectroscopy Separate 256

time tagged

event (STYE)

2 see

> 0.128 sec

(programmable)

4 - 16 secs per readout

64 phase bins

(programmable)

0.064 sec-burst

1 sec-continuous

1 sec

1 sec

~1 psec,

rate dependent

0.016 - 0.064 sec

(programmable)

2 I.tsec

> 0.128 sex

(programmable)

0.064 sec-burst

2 sec-continuous

128 gsec

Transient detection, strong source

monitor, weak burst detection,

long-period pulsars

Detector energy calibration, burst

spectral lines, burst locations

Profiles of known pulsars, low

duty cycle-high time resolution data

Onboard burst detection,

burst precursors

Total LAD NaI Ct. rate

CPD count rate

Burst temporal structures

Burst spectral evolution

Burst risetime,

burst temporal structures,

periodicities and locations
of short bursts

Burst spectroscopy,

background and calibration data

Dead time corrections,

state of health,

high energy counts

Spectral fine time resolution

**The HERB and SHERB data are generated only from a triggered gamma ray burst and have

programmable time resolutions greater than 0.128 Seconds. The HER and SHER data are

standard data types and are programmable in intervals larger than 49 seconds. Nominally these

data types have a time resolution of 300 seconds.
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In theSDFareseveralmajorelements,eachcontributingto thedevelopmentof the
sciencedatatypesshownabove.Eachof theseelementswill bediscussedin thefollowing
paragraphs.Theseelementsare:

• Discriminator, continuous, and high energy resolution (DCH)

• Medium energy resolution/pulsar (MER/PSR)

• Time to spill ('VI'S)

• Time tagged event ('Iq'E)

• Spectroscopy discriminator and high energy resolution (SDH)

• Spectroscopy time tagged event (S'I'I'E)

• Spectroscopy high energy resolution burst (SHERB)

The DCH provides the interface for the eight science data signals generated from the

LAD in the DEU of each detector module. The eight DCH boards in the CEU are independently

connected to the DEUs such that no single failure will affect the operation of the others. The

DCH also provides the interface for the active CCF to send serial commands and LED calibration

control pulses to the modules' calibration assemblies. This board processes seven of the eight

detector science data signals into five separate data types: discriminator (DISC), continuous

(CONT), high energy resolution (HER), burst discriminator (DISCB), and burst HER (HERB).

The eighth signal, a sum of FAST1 - FAST4, is not processed into telemetry (FASTn =

discriminator channel #n, n = 1-4). DCH also generates discrete signals to be used by the

MER/PSR function.

The DISC data type is produced by counting for each detector module the number of

FAST1, FAST2, FAST3, FAST4, NaI, and PLASTIC data signal pulses that occur during a fixed

period of time. These pulses represent threshold energy levels and event rates on the CPD and

LAD. The four FAST signals and a FASTID signal are provided to the "ITS and 'I'TE functions

for use when a burst occurs.

The CONT and HER data types are produced from the LAD MQT signal, which is

developed by a charge-to-time converter in the DEU (see section II.E). The width of this signal

is a measure of the detected energy loss in the NaI crystal. The MQT pulse width from the DEU

is digitized by the SDH board into 384 linear channels. These are subsequently compressed into
128 channels as follows. For the first 65 bins, there is a one-to-one correspondence between

channel width from the DEU and bin width in the data. After channel 65, the following 32 bins

are two DEU channels wide. Thus the gain of the detector has been compressed by a factor of 2

in this region. Starting at channel 96, the compression changes to eight DEU channels per

energy bin. This quasi-logarithmic compression of the data saves telemetry space with limited

loss of information, because at high energies (where the compression takes place), the resolution

of the detector is larger than one DEU energy channel. During nominal LAD operations, the

gain of the PMTs is set so that one DEU channel corresponds to 5 keV of energy. HER data are

developed by counting the number of times each of the possible 128 energy bins is detected over

a fixed time period. For each MQT signal, one of the energy bin counters is incremented. The

CONT data type is developed by using a programmable look-up table to map the digitized MQT
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signal into one of 16 energy channels, and then accumulating the number of events for each

channel that occur over a fixed time period. The look-up table can be changed by commands

from the ground.

The DISCSC and HERB data types are developed only during a burst in the same manner

that DISC and HER are developed during non-burst periods.

The MER/PSR function is provided with discrete signals from the DCH (or SDH in the

case of SD data) which are discrete pulses representing one of the 16 energy channels discussed

above. MER data are obtained only during a burst by counting the number of logically summed

pulses from software-selected LADs occurring in each of these 16 energy channels during a

specified time period. PSR tasks operate when the MER task is not active (no burst), and counts

the same pulses in a different manner. A specified time period is divided into equal sub-time

periods called phase bins. A scan number is specified to be used during the PSR task as well. A

profile is developed for the specified number of scans through these phase bins. Each of the 16

energy channels has its own separate profile. The user has complete control over which

detector(s), including LAD or SD, to select for the PSR task. However, only the SDs selected for

the pulsar task will appear in STYE pre-burst data if and when a burst is detected.

The 'ITS functional element measures the time required for a specified number of FAST

discriminator pulses to occur, and only acquires data during a burst. As in the MER/PSR

function, only signals from selected detectors are used for measurements. All of the like signals

(FASTn) from selected detectors are logically summed to provide four signals from which the
measurements are made.

The TYE function records the time of a detected gamma ray event. The four FAST

signals and the FASTID signal from each LAD are used to produce this data type. Along with

the time, the event ID (which FAST signal), and the detector ID (which of the LADs) are

recorded. The "ITE operates prior to a burst in a pre-burst mode. In this mode, all LADs

contribute to the tagged events, and the memory rotates to keep only "fresh" data in the memory.

At the time of burst detection, the TYE is commanded to burst mode. In this mode, only selected

detectors are enabled to contribute to the data type, and continues until three-fourths of the

memory is filled. In this way, the remaining one-fourth of the memory contains data prior to the

burst. Figure 2.10 details the generation of LAD data types.

The spectroscopy discriminator and high energy resolution (SDH) function provides the

interface for the five data signals generated by the SD MQT board in the DEU of each DM. Like

the DCH function, the eight SDH boards are independently connected to the DEUs such that a

failure in one will not affect the operation of the other seven. The primary function of the SDH

is to process the five science data signals into two separate data types, SDISC and SHER.

SDISC data are produced by counting the number of SFAST1, SFAST2, SFAST3, and SFAST4

data pulses received over a fixed time period. This is identical to what was described for the

DCH function. The pulses represent threshold levels of energy incident on the SD NaI detector.

S_R data are produced by processing the SD MQT signal. This signal is equivalent to the
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LAD MQT signal,but here is digitized into one of 256 increments (energy channels),

compressed from 2752 linear channels. The gain-compression scheme is similar for the SD;

however, each compression region is 64 channels wide. The f'trst region of 64 channels has no

compression of the SD MQT pulse. The second region is compressed by a factor of 2, with the

next two regions being compressed by factors of 8 and 32, respectively. The SHER data type is

developed directly from the digitized signal using the same process as the HER data type. This

digitized signal is also used to develop the SITE data type and, indirectly, to develop the

spectroscopy pulsar (PSR) data type. A look-up table is used to map the 256 energy channels

into 16 energy channels used for the SD PSR data type and to define a low-level discriminator

setting which controls the S'I'rE data type. This look-up table is programmable by ground

commands.

STI'E events are derived from flight-software-selected SDs during a burst. The data are

developed from the digitized SD MQT signal. The SDH function of each detector module

generates a signal when that module is selected and the data value exceeds the low-level

discriminator setting. The discriminator event signals are then processed by the STYE on a

fast-come, fh-st-served basis. Other detectors are ignored until that particular signal is finished.

The STrE tags the event data with the identity of the detector and the time of the event. Only

SDs on modules whose LADs exceed burst threshold will be used by the software.

The SHERB functional element accumulates a large amount of the SHER data during a

burst. The data accumulated come from the four SDs on modules whose LADs show the highest

rates above background, and consists of the 256 energy channels from each selected detector.

Figure 2.11 details the generation of spectroscopy data types. Storage of the SHERB spectra is

under flight-software control.

4. Analog Data Function

The analog data function (ADF) performs analog-to-digital conversion of the BATSE

housekeeping measurements and controls the LED calibration assembly. When a burst occurs,

circuitry on the ADF board generates the burst trigger signal for the other three instruments on

the GRO. Two independent ADF boards (ADF-A and ADF-B) reside in the CEU. Either ADF

can be operated in conjunction with either CCF. During normal operations, only one of the ADF

boards is powered. The ADF can be divided into three sub-functions: analog data conversion

(ADC), detector calibration control (DCC), and the burst trigger signal (BTS).

The ADC functional element performs the task of converting the analog housekeeping

measurements from each detector module, the CEU, and BPM into 12-bit digital words. It is

composed of a 16-channel multiplexer that gates the analog input to be converted; a 12-bit

analog-to-digital converter; and a controller that selects the analog input, starts the conversion,

and alerts the CCF when complete. Each conversion is commanded by the CCF. The analog

input selection is sequential and is automatically stepped after a conversion is completed by the
controller.
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The DCC provides the timed digital component of the signal required to calibrate the

LADs. The magnitude component of the calibration signal is provided by the DEU in each

detector module. The DCC signal establishes the calibration signal time period and the DEUs

with the magnitude prior to starting detector calibration. The flight software controls the

calibration with start and stop commands to the DCC. The DCC signal is routed to the DELls via

the DCH functional element.

The BTS is digital (on/off) and controlled by the CCF. It provides separate interface

signal drivers for each of the other three instruments under flight-software control when a burst

OCCurS.

5. BATSE Status Function (BSF)

The BSF conditions BPM and detector module signals prior to transmission to the RIU. To

satisfy the single point failure requirement, the circuits on the board are redundant and

independent. When the flight software determines that a solar flare has been detected, the BSF

generates a bi-level telemetry signal for the GRO onboard computer. The OBC then recognizes

this signal and notifies the COMPTEL instrument according to a predetermined sequence of

commands stored in memory. Also in the event of a solar flare, the BATSE burst trigger signal

(BTS) is given a longer duration. OSSE decodes the length of the BATSE BTS to determine if

there is a solar flare event. The duration of the BTS is programmable in units of 64 milliseconds

through a parameter in the flight software. Coordination between the BATSE and OSSE

experiments determines all relevant solar flare parameters, including the duration of the BTS.

G. BATSE Power Module

The BATSE power module (BPM) is lOCated with the CEU on the BATSE electronics

panel. The BPM has several functions. It interfaces with the GRO to receive instrument and

heater power. Instrument power is then converted and conditioned for use by the detector

modules and the CEU. The BPM monitors the detector module temperatures and provides on/off

control of thermal control and make-up heaters. STS heater power is distributed to the detector

modules through the BPM. An interface connector is provided at the BPM for the testing and

control of the STS heaters while the instrument is on the ground. The BPM accepts control

commands from the CEU to switch power supply outputs and on/off control of power for each of

the detector modules. Status data for relays, temperatures, heaters, and currents are provided to

the CEU by the BPM.

Redundant power supplies (SLCCs) are provided in the BPM. These interface to the

GRO and receive redundant +28 Vdc instrument input power. To maintain isolation between the

GRO input power sources, no cross-strapping is utilized. Therefore, primary input power

interfaces to SLCC-A, and backup input power interfaces to SLCC-B. The failure of a SLCC or

its input power source will require switching to the other SLCC and input power source.
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Eachof theSLCCs contains a module to convert the input power to +15 Vdc, required for

the detector modules, and a module to convert the input power to +5 Vdc, which is required by

the CEU. Cross-strapping is not provided on the SLCC outputs. Redundant power switching

relays are utilized to effect transfer of output power to the appropriate SLCC. The transfer is

accomplished using ground commands which are implemented through the CEU.

The +5 Vdc output of the SLCC is current-limited to prevent damage to internal

components in the event of a failure. A feedback loop is also utilized for the +5 Vdc output

power to assure that the voltage is maintained at the interface to the CEU. Over-voltage cut-off

circuitry is provided to prevent voltage transients from damaging the SLCC. The current from

the +15 Vdc and +5 Vdc outputs is monitored as part of the housekeeping data to aid in the
detection of anomalies.

Redundant relays are provided in the BPM for on/off control of the + 15 Vdc power for

the detector modules. Power can be controlled on an individual basis using ground commands

implemented through the CEU to the BPM. Heater power to operate the STS heaters is provided

by the GRO. The BPM accepts this simplex power input and distributes it to the modules.

Circuitry in the BPM provides STS heater thermostat status to the CEU for transmission to the

RIU. A tri-state output is provided to indicate three possible states of power: STS power off,

STS power on with thermostat open, and STS power on with thermostat closed. STS heater

status is only readable through RIU-A.

Two types of detector module heater control power are provided to the BPM by the GRO.

Each type has a primary and redundant input. The first is called thermal control (T/C) heater

power. The BPM uses this power and a temperature sensor on the module to open or close an

electronic thermostat to control the heaters on the module. The status of the thermostat is

provided to the CEU for transmission to the RIU. The second type is called make-up (M/U)

heater power. The circuitry for this type is identical to that of the T/C heater system; however,

the set-point value of the thermostat is lower than that of the T/C system. This prevents both

heaters from turning on at the same time for normal operations. Cross-strapping of heater power

is not used, so that a failure of a primary T/C heater circuit will require the GRO to switch to the

redundant T/C heater power. Detector module heater power is not individually controllable. All

modules are either enabled or disabled. In addition, primary heater status can only be read

through RIU-A, while backup heater status is only readable through RIU-B.

H. BATSE Cables

Because of the locations of the eight detector modules on the spacecraft, extensive

cabling is required to connect them into the CEU and the BPM, located on the BATSE

electronics panel. Each of the detector modules has two connections, one which interfaces to the

CEU and the other to the BPM. All data, telemetry, power and other communication is carded

over these cables. Figure 2.12 details the BATSE interconnections on the GRO. Each

interconnect cable is shown with a drawing number next to it. The Interface Control Document

J-numbers are also provided.
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Figure 2.12. BATSE Cable Interconnect Schematic.
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Connections from the detector module to the BPM and the CEU are done with two

cables. The first set of cables runs from the module itself to one of two brackets mounted on the

BATSE electronics panel. These are the 146 and 148 brackets. From the brackets, the

connections are made to the proper receptacles on the BPM or the CEU. Because the BATSE

electronics panel is hinged, it can be opened like a door. The placement of the 146 and 148

brackets allowed BATSE to test the instrument on the ground with the panel open through the

employment of 16 extender cables. Without the extender cables, the flight cables are too short to

be mated with the door open.

I. BATSE Thermal Control System

The thermal control of the BATSE electronics panel is the responsibility of the GRO.

The GRO controls the mounting surface interface temperature and the radiant environment of the

panel on which the boxes are mounted. Primary heat transfer is accomplished through

conduction to the baseplates of the CEU and BPM. In addition, each are coated with a

high-emissivity paint to aid in radiative heat transfer.

The detector module thermal control is accomplished through the use of heaters, passive

radiators, and a multi-layer insulation (MLI) blanket. The goal of the thermal control system is

to keep the rate of change in temperature of the NaI detectors (both SD and LAD) to less than 5

°C per hour. In addition, the temperature is to remain in the range of 0-30 °C.

Prior to deployment of the GRO, the thermal control of the detector modules is

maintained by the STS heaters. Detectors mounted on the +Z side of the spacecraft have 15-watt

heaters attached to the baseplate of the module. Detectors on the -Z side have 10-watt heaters.

These heaters are under thermostat control and turn on at approximately °0 C. The turn-off

temperature is approximately 8 °C, with a backup thermostat set near 14 °C. For exact turn-on

and turn-off temperatures, consult the test and calibration section of this manual.

After deployment, the detector module relies on four separate heater circuits and the

exposed mirrored radiator for control. Two of the heater circuits are primary, and two are

redundant. The primary T/C heater circuit consists of two heaters, an 8-watt heater on the rear of

the light collection cone and a 7-watt heater on the front of the LAD cone. A control sensor is

mounted on the front of the cone, near the LAD's NaI crystal, and transmits an output to the

control circuitry in the BPM. A thermostat there will allow these heaters to operate in the region

of 4-5 °C. Over-temperature protection thermostats, identical to those used in the STS, are

employed here. The primary M/U heater circuits are identical to the T/C circuits, with the

exception that the operating range is lower, 0-1 °C.

During flight, both heater circuits are powered on; however, the difference in operating

range prevents the M/U heaters from coming on unless there is a failure in the primary heater

circuit. For each of these heater circuits, there is a redundant circuit.
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TheBATSE detectormoduleis entirely enclosed inside an MLI blanket. Consisting of a

tray (underneath the module) and an upper section, the blanket is coated with a highly reflective

zinc-oxide based S 13GLO white paint, except for the region directly in front of the BATSE LAD

and SD. This region is covered with aluminized Teflon, 0.013 cm thick. Each of the aluminized

teflon sections is applied to the blanket with adhesive and secured with lacing. The MLI blanket

is grounded to the detector module structure in eight locations through the use of grounding

straps bolted into the module housing. The MLI blanket has a cut-out for exposure of the

minored radiator.

Each BATSE detector module was fabricated with two identical mirrored radiators, one

on each side of the module, attached at the baseplate. However, at installation of the blanket,

only the radiator facing nearest the -X direction (away from the Sun) was left exposed. The

exposed radiator consists of 77.4 cm 2 of second-surface mirrors.
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HI. BATSETESTAND CALIBRATION PROGRAM

A. ComponentLevel Testing

1. BATSELargeAreaDetector

After assembly at the Bicron Corporation in Ohio, the BATSE LAD crystals were shipped

to MSFC by overnight air-freight. Upon arrival, the detector was submitted to a thorough quality

inspection in Building 4705. The fin'st LAD used for installation onto a flight-qualified module

(LAD #6 onto B1) arrived at MSFC on September 28, 1987. After passing the quality

inspection, each detector began its trip through the testing and calibration program. These tests

included a performance test, vacuum check, vibration testing, performance re-test, thermal

balance/cycle tests, a vacuum retest, a third performance test, and a helium leak-test. If the unit

successfully completed this program, it was sent for installation onto a detector module. Figure

3.1 depicts the flow of the test program.

Arrival at MSFC [ t__[ Vacuum Check _
I and I--,,-I Perf°rmance Test and Pumpdown

[Quality Inspection/I TPS-26 TPS-46

1
Therma,Ba,aocel_.IVacuumCheckI--I& Thermal Cycle and Pumpdown

TPS-38 TPS-46

Performance
Retest

TPS-26

}--_1 Performance
Vibration Test Retest

TPS-37 TPS-26

Figure 3.1. BATSE LAD Test Flow Diagram.

On average, the LAD was routed through the test program in 4 to 6 weeks. This flow is the

nominal path for the LAD; however, with many LADs going through the same system,

deviations from the sequence were experienced. To conserve manpower, several of the LADs

had the performance test between the vibration and thermal tests omitted. LADs which did not

meet performance specifications required re-testing or other special tests. This constituted a

deviation from the flow described above. At any given time, six or eight LADs could be at some

stage of the test flow, each in a different building requiring different tests to be performed.

In the following pages, each of these tests will be discussed in detail. Test procedures,

spectra, and detailed log books are on file in the BATSE library and are available for inspection.

They will not be reproduced here. Results of the testing, however, will be presented. Detectors

which experienced anomalies and retests will also be discussed.
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a. LAD Performance Test--TPS-26

BATSE-ES-62-TPS-26 is the LAD performance test. This procedure was used as the

initial acceptance test and as a test of the detector performance. The primary goal of this test was

to measure the photopeak resolution of the detector over a wide range of incident energies. The

measured value was then compared against a set of criteria values to determine if the detector

passed or not.

For the test, the LAD was placed inside a dark box with the entrance window face-down

onto a foam rubber pad. A light collection cone was then lowered onto the LAD and mated with

three pins to the Invar flange. The same cone was used for all of the LADs, and the seating of

the cone with pins ensured the same fit every time. Three, 12.7 cm diameter PMTs were

installed on the top of the cone. Each of the PMTs had its own +HV supply, which could be

regulated to fix the proper gain on each tube. The signal from each tube was joined and fed to a

Tennelec TC 203 linear amplifier. The amplifier output was then routed to an ND-580 ADC

which interfaced to the ND-76 pulse height analyzer. Spectra were accumulated and analyzed on

the ND-76. After analysis, the spectra were stored onto RX-50 compatible floppy-disks. Figure

3.2 shows this test setup.

Light Gone

I LAD - Test Article ]

'.'.---- Dark Box
I

Linear

Amplifier

ND-580
ADC

ND-76 RX-50
PHA Disk Drive

Figure 3.2. TPS-26 Setup Diagram.

After the completion of the configuration, the three PMTs were balanced according to the

procedure using a Cd 109 source. The gain was continually monitored throughout the test so that

drift of the PMTs would not contribute to a degradation in measured resolution. Cd 109, Am

241, Na 22, Cs 137, and Mn 54 sources were used during this test and allowed measurements in

the range from 23 keV to 835 keV. Each isotope was placed on the LAD axis of symmetry at a

distance of 50.8 cm below the LAD. This location was outside the clark box. Background

35



spectra were taken at several points during the test and monitored for any changes. Each of the

isotopes was used to collect a 300-second integration. After the appropriate background spectra

was measured, the FWHM resolution of the photopeaks was calculated. The LAD was required

to have a resolution not in excess of 29.5% at 88 keV. If this value was exceeded, the LAD

failed. Results from the initial performance test of all nine LADs installed on flight modules are

presented below:

Table 3.1. TPS-26 Initial Test Results (All Nine Module LADs)

FWHM Resolution % (energy in keV)

LAD# B# 23 32 60 88 511 662 835 Test Date

8 P-F 39.8 39.5 28.6 23.9 19.7 17.6 16.0 11-6-87

13 B0 37.9 36.3 28.8 22.6 18.0 16.5 15.7 2-3-88

6 B1 41.6 40.9 30.0 25.5 21.8 21.8 19.3 9-29-87

7 B2 38.3 37.0 29.8 24.6 17.7 16.2 15.0 12-14-87

10 B3 44.4 41.4 30.6 23.5 18.9 16.6 14.6 12-11-87

11 B4 55.4 39.1 34.2 25.6 17.2 15.8 11.2 1-27-88

12 B5 52.2 44.5 35.4 24.4 19.3 16.6 11.4 1-27-88

5 B6 41.8 41.9 33.8 25.5 23.0 21.1 19.8 3-7-88

14 B7 40.4 39.4 31.4 23.3 20.6 19.6 16.7 3-7-88

All LADs used for flight-qualified modules performed acceptably upon delivery to

MSFC. Following the initial performance test, the LADs continued the test program. Results

from additional runs of TPS-26 will be discussed later in this section. Figure 3.3 shows the

above results in a graph format.

b. LAD Pressure Check and Pumpdown -- TPS-46

The LAD pressure check and pumpdown (TPS-46) was executed for the purpose of

determining the pressure internal to the LAD volume, and also to evacuate the LAD to a pressure

of 30 milliTorr or less. Several repetitions of the procedure over an extended period of time

yield data from which any leaks in the hermetic seal may be detected. High (several hundred

Torr) internal pressure inside the LAD can lead to a hydration of the NaI crystal, which severely

degrades performance, or a deformation of the LAD assembly from exposure to the vacuum of

space (or a vacuum chamber). Initially, volatiles outgas from materials internal to the LAD, so

this test was repeatedly performed to remove these substances.
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Figure 3.3. TPS-26 Initial FWHM Resolution Measurements.
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Figure 3.4. TPS-46 Arrangement.

TPS-46 was performed by placing the LAD onto a flat, padded surface with a rotary

pump, a vacuum manifold, a vacuum gauge, and the BATSE LAD-plug valve operator. The

manifold was connected to the pump, a Leybold-Hereaus Trivac D 1.6B model, and also was

connected to the LAD venting port with the plug valve operator. The manifold could be sealed

off from the pump with an adjustable pump valve. The vacuum gauge read the pressure inside

the manifold. With the LAD valve closed, the pump was started to evacuate the manifold. The

manifold was evacuated to a pressure of less than 5 milliTorr. When that pressure was reached,

the valve was closed, isolating the manifold from the pump. The pressure was allowed to

stabilize, then the LAD valve was opened. The resultant pressure was recorded. Knowing the

initial pressure in the manifold, the volume of the manifold, the volume of the LAD, and the

resultant pressure allows one to calculate the initial pressure inside the LAD. The pump valve

was then opened to allow the pump to evacuate the interior of the LAD. The entire procedure

lasted approximately 90 minutes.

Over a long period of time, it is desirable that the internal pressure of the LAD continue

to decline. This result indicates that the pumping is removing volatiles which outgas from

internal materials. It was not unusual, however, to experience higher internal pressures than

normal following thermal balance tests (or thermal vacuum tests in the case of the entire detector

module). The thermal cycling encourages the material inside the LAD to outgas faster, and thus

produce a higher internal pressure. A complete history of the evacuation test results is provided

in Appendix B.

This procedure was executed in MSFC Building 4481 until the LADs were installed onto
the detector module.
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c. LAD VibrationTest

Thevibrationtestof theBATSELargeAreaDetectorwasperformedby theTest
LaboratoryatMSFC in thevibrationfacility, Building 4619. EachLAD wasvibratedin three
axes.TheX andY axeslie in theplaneof theLAD, andtheZ-axis is normalto thedetector
plane. TheLAD wasboltedto thevibrationfixture with theopticalwindow face-down.All of
theperimeterbolt holeswereusedto fastentheLAD into place. Thevibrationwasrandomfor a
durationof 60 secondswith thefollowing specifications:

Table3.2. BATSELAD Vibration Specifications
X-Axis Y-Axis Z-Axis

20 Hz at0.0001g2/Hz
60-80Hz at0.15g2/Hz
100-200Hz at0.04g2/Hz
300-1400Hz at 0.004gZ/Hz
2000Hz at 0.002g2/Hz

Composite4.17g-rms

20Hz at 0.0001gZ/Hz
60Hz at 0.01gZ/Hz
100-125Hz at 1.0gZ/Hz
200-900Hz at 0.005gZ/Hz
2000Hz at0.0001g2/Hz

Composite7.2g-rms

20Hz at 0.00005g2/Hz
225-260Hz at0.4gZ/Hz
700-1300Hz at0.0005g//Hz
2000Hz at0.00005g2/Hz

Composite7.2 g-rms

Following thevibrationin threeaxes,theLAD wasthoroughlyinspectedfor anycracks
in theNaI, separationsfrom thehousing,or debondsin theopticalcouplingbetweentheNaI and
thequartzwindow. SeveralLADs weredamagedduringvibration, includingonewhich hadthe
quartzwindow smashedto piecesafteranerror in theZ-axisvibrationlevels. No LAD which
wasdamagedduringvibrationwasplacedontoadetectormodule. Thetablebelowsummarizes
theLAD vibration testswhich tookplaceat MSFC.
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Table3.3. BATSE LAD Vibration Test Dates and Results

LAD # B# Test Date Result

8 P-F 11-10-87 and 11-24-87 Pass

13 B0 2-8-88 and 3-24-88 Pass

6 B 1 10-15-87 Pass

7 B2 12-15-87 Pass

10 B3 12-15-87 Pass

11 B4 2-1-88 Pass

12 B5 2-1-88 Pass

15 B6 4-1-88 Pass

14 B7 2-8-88 and 3-24-88 Pass

Detectors which show two vibration tests were re-tested following a failure in the thermal

stress test (see next section). These LADs, after passing the vibration test, were sent to the

thermal test and cracked during the test. Further vibration testing was done to determine if

additional cracking or debonding would appear because of the vibration. For the LADs shown in

the table above, no additional problems were found. The second vibration test was done exactly

in the same manner as the Fast.

d. LAD Thermal Stress Test

The second environmental test for the large area detector was the thermal stress test

(TPS-38). The test was performed in MSFC Building 4476 by Test Laboratory personnel. Three

complete thermal cycles were initially performed between the temperatures of- 10 and 40 °C.

After experiencing several LAD cracks during the test, the end-points were changed to -5 and 35

°C. LAD #6, installed on B1, is the only LAD on the GRO which was tested between -10 and 40

°C. It did not crack. In addition, a 6-hour soak was performed at the hot and cold temperatures.

The LAD was mated to a test-cone, in identical fashion to the flight configuration. The

cone-LAD assembly was then placed on a rack inside the thermal chamber. The assembly was

laid on its side so that the orientation of the LAD was such that the plane of the detector was

nearly vertical. Temperature sensors were located at several positions on the LAD. Exact

locations for each LAD are sketched in the notebook of the respective detector. The figure below

details the thermocouple locations for the LAD #6 test on October 19, 1987. This is

representative of all LAD thermal stress tests.
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• - Thermocouple Located on Quartz Window
• - Thermocouple Located on AI Entrance Window
A - Thermocouple Located on Invar Ring

Figure 3.5. TPS-37 Thermocouple Locations (LAD #6 - 10/19/87).
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Figure 3.6. BATSE TPS-37 Temperature Prof'de.

The cone to which the LADs were mated for this test had a hole in the location where the

three PMTs are mounted on the flight cone. The hole allowed for the viewing of the LAD's NaI

crystal throughout the entire test. A video recorder was used on later tests to document the entire

test and capture any cracking events which might occur. The entire cone-LAD assembly was

padded with foam rubber, and the cone was capped with transparent plastic. This prevented any

convection currents inside the chamber from creating hot or cold spots on the crystal, and also

helped keep the temperature slope within the desired 5 °C per hour region. The entire three

cycles and soak periods took approximately 96 continuous hours. The table below lists the times

of first-run thermal tests for the nine LADs installed onto flight modules.
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Table3.4. Resultsof TPS-37Initial TestsonLADs
LAD # B# Initial TestDate Result

8 P-F 11-13-87 Cracked
13 B0 2-17-88 Cracked
6 B1 10-19-87 Pass
7 B2 12-15-87 Pass

10 B3 12-15-87 Pass
11 B4 2-4-88 Pass
12 B5 2-8-88 Pass
15 B6 4-4-88 Pass
14 B7 3-11-88 Cracked

Problemswith theLADs appearedearlyin thetestprogram,asmanyLADs cracked
during thermalcycling. Manyeffortsweremadewith thedesignteam,scientists,and
manufacturerstodeterminewhatwascausingthefailure. No factorwaseverpositively
identified in determiningwhy someLADs crackedandothersdid not. Fortunately,acrack in a
LAD turnedout not to beassevereaproblemaswasoriginally thought;noeffecton thedetector
performancewasobserved.

After thecrackin LAD #8appeared,adetailedexaminationof theNaI crystal was made.

All visible features of the NaI were noted and sketched, including cracks, debonds, and

non-uniformities. The LAD was taken from the thermal chamber to the vibration facility where

the vibration test was performed again. After vibration in three axes, no further cracking or

debonding could be identified. A second thermal stress test was then performed. The LAD was

cycled six times (twice normal) between the temperatures of -5 and 35 °C. Six-hour soak periods

were executed at all hot and cold temperatures during the cycling. This test took place on

December 4, 1987. After 7 days of thermal cycling, no further cracking or debonding was

apparent in the NaI crystal. It became evident that once the initial stress in the NaI was released

through the cracking of the detector, no further degradation in the structure of the LAD occurred.

All of the cracked LADs were re-vibrated with no additional cracks, debonds, or changes in the

visible structure. The dates of these second vibration tests were given in Table 3.3.

e. Second Performance Test of all LADs (TPS-26)

Following completion of the environmental test portion of the LAD program, an

additional TPS-26 was performed on each of the LADs. This test determined if the vibration and

thermal stress tests caused any degradation of the detector's performance. The conditions of this

test were identical to that of the first test. The results presented here represent data from the final

TPS-26 in the test program. Some detectors had more than two performance tests executed. The

results of these intermediate tests will be given in the final section of the LAD test sequence

which deals with deviations from the standard sequence.
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Table 3.5. BATSE TPS-26 Post-Environmental Test Results

FWHM Resolution % (energy in keV)

LAD # B# 23 32 60 88 511 662 835 TestDate

8 P-F* 51.6 39.3 30.8 23.7 19.3 17.7 16.7 12-14-87

13 B0* 40.5 38.1 30.0 22.3 17.4 17.2 12.1 3-25-88

6 B1 43.7 41.6 31.4 24.2 19.5 18.5 17.8 10-27-87

7 B2 38.4 38.2 28.6 22.8 19.2 16.0 12.5 12-23-87

10 B3 43.2 37.7 30.0 23.5 19.0 18.2 16.7 12-21-87

11 B4 40.9 39.4 30.2 23.0 21.3 19.1 12.5 2-8-88

12 B5 42.1 41.8 35.0 25.6 23.4 21.5 20.8 3-2-88

15 B6 44.6 46.0 36.0 28.4 23.3 23.5 19.6 4-11-88

14 B7* 41.5 40.1 31.8 23.9 21.3 19.8 17.6 3-25-88

*Cracked LAD.

Table 3.6. Change

LAD # B#

in FWHM Resolution Percentages from Initial to Final Tests

Change in FWHM Resolution % (energy in keV)

23 32 60 88 511 662 835

8 P-F* 11.8 -0.2 2.2 -0.2 -0.4 0.1 0.7

13 B0* 2.6 1.8 1.2 -0.3 -0.6 0.7 -3.6

6 B1 2.1 0.7 1.4 -1.3 -2.3 -3.3 -1.5

7 B2 0.1 1.2 -1.2 -1.8 1.5 -0.2 -2.5

10 B3 -1.2 -3.7 -0.6 0.0 0.1 1.6 2.1

11 B4 -14.5 0.3 -4.0 -2.6 4.1 3.3 1.3

12 B5 -10.0 -2.7 -0.4 1.2 4.1 4.9 9.4

15 B6 2.8 4.1 2.2 2.9 0.3 2.4 -0.2

14 B7* 1.1 0.7 0.4 0.6 0.7 0.2 0.9

*Cracked LAD.

The results from the final iteration of TPS-26, when compared with the initial iteration,

yield the differences summarized in the table above. Inspection of the data shows that the

environmental test program did not have a significant effect on the resolution of the LAD

crystals. For LADs #8, #13, and #14, one cannot make the argument that a crack in the NaI

degrades the resolution significantly, with the possible exception at lower energies ( < 23 keV).

Of the cracked LADs, only #8 showed extreme degradation in the measured resolution, and that

degradation came only at one energy, 23 keV. Another cracked detector, LAD #13, shows the

best measured resolution at 88 and 511 keV. In light of the data shown above, it was decided

that a cracked LAD could be installed onto a detector module and used for flight. Of the three

cracked units, one is on the protoflight module, which is not installed on the spacecraft.
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Amongthedetectorswith no environmental test problems, the measured resolution at 88

keV is consistently below the 29.5% required. Large fluctuations in the resolutions measured for

LAD #11 and #12 are strongly believed by the editor to be a measurement error in the initial test.

All other measurements show good agreement with previous data, and all of the LADs appear to

have the same behavioral trends and patterns. For these reasons, the LADs were declared to have

successfully completed the environmental testing program with no significant degradation in

their performances. Successful completion of the f'mal pumpdown and a helium leak check
would validate the LADs for use on a BATSE detector module.

L Final Pumpdown and Helium Leak Check

After completion of the final TPS-26, each of the LADs was given another pressure

Check and pumpdown. This procedure is described in section IILA. 1.b. Long-term results of

these tests are presented as Appendix B. Internal pressures from each of the detectors were

measured, and the LADs were evacuated. The LADs were then helium leak tested. After

evacuation, the LADs were backfilled with gaseous helium and sealed. The LAD was then

"sniffed" around its entire perimeter for any residual helium in the neighborhood of the LAD.

This test was performed by Mr. J. O. Jolley of the Infrared and Cryogenic Physics Branch at
NASA-MSFC. No LAD was found to exhibit a detectable leak. The helium was then removed

from the LAD, and the interior was evacuated to a pressure of < 30 milliTorr. At this time, each

LAD was transported to MSFC Building 4705 for installation onto a BATSE detector module.

g. BATSE LAD Anomalies and Test Flow Deviations

The flow described above was the nominal path from delivery to installation for the

BATSE LADs. However, there were some significant deviations from the path described above,

with each LAD tracing a somewhat different path through the system. In the following

paragraphs, these differences will be presented on an individual basis, one LAD at a time.

LAD #8 -- BATSE Protoflight Module. The problems with LAD #8 were discussed a great deal

in the previous sections. As the first LAD installed onto a detector module, this detector was the

"test-case" to a certain extent. The problems of LAD #8 cracking during thermal stress testing,

re-vibration, and subsequent additional thermal tests were all outlined above. These will not be

repeated here.

LAD #8 received an additional TPS-26 (performance test) between the vibrational tests

and the thermal test in which it cracked. This test was performed on November 10, 1987, and the
results are tabulated below.
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Table3.7. LAD #8Post-Vibration/Pre-ThermalPerformanceResults
FWHM Resolution% (energyin keV)

LAD # B# 23 32 60 88 511 662 835 Test Date

8 P-F* 44.6 48.9 34.2 24.4 21.4 16.6 14.1 11-10-87

*Cracked LAD.

LAD #8 received an additional vacuum check between the completion of the vibration

tests and the beginning of the thermal stress test in which the LAD cracked. This vacuum check

was performed on November 12, 1987, and yielded good results.

LAD #13 -- BATSE B0 Module. This LAD, like LAD #8, cracked in the thermal stress test.

The additional vibration test of LAD #13 was discussed in the preceding pages. Immediately

after the LAD cracked in the thermal chamber, and the test was completed, TPS-26 was

performed to check the resolution prior to vibration. This test was performed on March 14,

1988, and its results are summarized below.

Table 3.8. LAD #13 Post-Thermal Resolution Prior to Re-Vibration (Cracked)

FWHM Resolution % (energy in keV)

LAD # B# 23 32 60 88 511 662 835 Test Date

13 B0* 39.7 39.3 30.1 22.3 17.5 17.1 14.2 3-14-88

*Cracked LAD.

The results from LAD #13's re-testing are better than most LADs without cracks.

LAD #6 -- BATSE B 1 Module. No Anomalies.

LAD #7 -- BATSE B2 Module. LAD #7 arrived at MSFC with some minor abrasions on the

quartz window. These abrasions were noted and sketched into the flight data pack, which

remains on file with the instrument until launch. After launch, the data pack will return to MSFC

and will be available for inspection. The quartz window problem showed no apparent effect on

the detector performance. No further anomalies or deviations occurred with this LAD.
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LAD #10 -- BATSE B3 Module. Because LAD #10 was put into the thermal chamber at the

same time as LAD #7, and there was only one standard test-cone for all LADs, LAD #10 was

mated to a different cone for this test. The cone used for the test was taken from the ES62

supernova balloon flight instrument, detector #1. The LAD-to-cone interface on this cone is

mechanically identical to a BATSE flight detector module light collection cone in every way.

LAD #11 -- BATSE B4 Module. An additional TPS-26 was performed on LAD #11 between the

vibration test and the thermal stress test. This TPS-26 run was executed on February 2, 1988.

Results from this test are presented below.

Table 3.9. LAD #11 Post-Thermal Resolution Prior to Vibration

FWHM Resolution % (energy in keV)
LAD # B# 23 32 60 88 511 662 835 Test Date

11 B4 40.2 39.7 30.0 23.5 20.9 18.0 16.3 2-2-88

LAD #12 -- BATSE B5 Module. As was done with LAD #11, LAD #12 also received an

additional TPS-26 test between vibration testing and thermal stress testing. The results of the

test, completed on February 3, 1988 are given below.

Table 3.10. LAD #12 Post-Thermal Resolution Prior to Vibration

FWHM Resolution % (energy in keV)

LAD # B# 23 32 60 88 511 662 835 Test Date

12 B5 40.8 41.7 31.4 24.6 23.2 21.1 19.3 2-3-88

LAD #15 -- BATSE B6 Module. LAD #15 was delivered to MSFC and started through the test

program normally. However, upon arrival at the vibration test facility, the LAD could not be

mated to the shaker-plate because of an error in the bolt hole locations. The Invar flange of LAD

#15 had to be re-drilled to put the bolt holes in the proper location. After the drilling was

performed, a second performance test was executed prior to vibration and thermal stress testing.

The results from this test are shown below. LAD #15 has the poorest resolution of all LADs at

88 keV.
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Table 3.11. LAD #15 Resolution after Hole Drilling on Invar Flange

FWHM Resolution % (energy in keV)

LAD # B# 23 32 60 88 511 662 835 Test Date

15 B6 43.3 45.0 36.4 27.3 24.5 22.4 20.9 3-31-88

LAD #14 -- BATSE B7 Module. LAD #14 cracked during the thermal stress test, was

re-vibrated (as described above), and had a final performance test executed on the LAD. The

results of all LAD #14 testing have been presented previously.

2. BATSE Spectroscopy Detector Assembly

The BATSE spectroscopy detector assembly (SD) was approved for inclusion in the

experiment in 1983, after the preliminary design for the main BATSE experiment was

completed. The detectors were designed at the University of California-San Diego (UCSD) and

the housings were fabricated there. The NaI crystals were encapsulated at Bicron Corporation.

The completed assemblies were sent to UCSD for further test and calibration. Following this

testing, the units were shipped to MSFC for installation onto the BATSE detector modules.

After assembly, a spectroscopy detector performance test (TPS-16) was executed. This same test

was used as an acceptance test at MSFC. The test was used to characterize the detector gain by

measuring the +HV required to obtain a standard output for the Cs 137 662 keV line. In

addition, the test was used to obtain resolution measurements and check for any detector

degradation which might occur. One particularly important mode of degradation is the formation

of a dead-layer on the NaI crystal near the beryllium window. This development would reduce

the detector efficiency at low energies.

Isotope

BATSE SD

Figure 3.7.

]
t SD Style ]Pre-Amp

1
Signal tAmplifier

ADC

J

BATSE TPS-16 Equipment Configuration.

PHA
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The SD to be tested was connected to a spectroscopy-style pre-amp and an +HV power

supply. The pre-amp is the front-end of the MQT board, IC's #1 and #2, and is used to measure

the nominal operating +HV. The signal from the pre-amp was fed to an amplifier which passed

the amplified signal to ADC. A 2048 channel PHA was used to analyze the OUtl?Utof the ADC

and build a spectrum. A standard oscilloscope was used to monitor the signal out of the SD.

The test equipment was configured as shown in Figure 3.7, and a Cs 137 source (a few

_tCi in activity) was placed 12.0 cm from the detector window, on-axis. The +HV0was powered

and then adjusted so that the 662-keV line produced an output of 0.66 V + 0.01 V. The output

was checked and adjusted to produce the same output over time. After the SD displayed stability

at this value for 1 hour, the test continued. The applied +I-IV required to produce the 0.66 V

output was recorded as the "nominal operating +HV."

Resolution measurements were taken using the same Cs 137 source at a 12.0-cm distance.

The FWHM resolution of the 662-keV line was measured and recorded. The Cs isotope was

removed, and a CA 109 source was installed at a distance of 20.0 cm. Resolution measurements

were taken at 23 keV. The final source used was Fe 55, placed 7.6 cm from the detector

window. Measurements of the 5.9-keV peak were taken.

Data collected at MSFC were stored onto a Tracor-Northem Pulse-Height Analysis

System which has been difficult to maintain in a reliable operating condition at times. The

spectra taken are no longer available for inspection. However, each of the individual test

procedures provided ample locations for the recording of data, calculations, and comments.

These test procedures are on file as portions of the detector module notebooks. The table below

contains the results from testing of the BATSE SD flight units.
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TPS-16Resultsfor Flight SpectroscopyDetectors
FWHM Res.%

SD Serial No. B# 5.9 23 662 Nom.+HV Date Location

Table 3.12.

112184-11 P-F 43 25 6.8 1273 12-16-84 UCSD

... 25 xx 6.5 1236 2-24-87 MSFC

112298-03 B0 32 27 6.9 1376 4-2-86 UCSD

... xx 28 7.1 1346 6-13-86 MSFC

... 27 27 7.1 1346 7-23-86 MSFC

112280-12 B 1 46 27 7.2 1392 11-26-86 UCSD

... 37 27 6.9 1392 12-16-86 MSFC

112407-08 B2 45 28 7.3 1373 7-31-86 UCSD

... 45 28 7.5 1365 10-16-86 MSFC

112276-07 B3 42 27 7.3 1270 8-1-86 UCSD

... 49 28 7.5 1259 10-27-86 MSFC

112406-10 B4 45 27 7.4 1335 1-5-87 UCSD

... 24 19 6.8 1311 2-17-87 MSFC

112399-09 B5 xx 26 7.2 1221 12-11-86 MSFC

112175-01 B6 47 27 7.1 1312 3-25-86 UCSD

... xx 30 7.3 1320 6-11-86 MSFC

... 44 26 7.3 1320 7-31-86 MSFC

112173-02 B7 xx 28 7.6 1419 7-14-86 MSFC

... 44 28 7.7 1419 7-25-86 MSFC

The data obtained from TPS-16 are incomplete to a large extent. Certain portions of

spectral resolutions were not computed, because of the difficulty in obtaining measurements at

5.9 keV, for example (marked by xx in the table). For two of the SDs, the results from initial

tests performed at UCSD are not available. Large discrepancies exist in the measured resolutions

between UCSD and MSFC, especially at low energies. Because the test was done over a period

of nearly 2 1/2 years, variations in equipment, personnel, and other factors may have influenced

the test results.
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Theinteresteduserisencouragedto consultdetectormoduleor experiment-level testing

when searching for the best quality SD calibration data. TPS-16 does, however, provide a

benchmark resolution at 662 keV against which future performances can be judged. The 662-

keV solution numbers presented above are reliable as one indicator of the detectors performance.

These numbers closely resemble resolutions measured for SDs when installed on the spacecraft.

Future SD calibrations included resolution measurements at a large number of incident energies,

photopeak separations from isotopes with neighboring lines, and measurements taken at no fewer

than four different gain settings. There exists no record of additional tests performed on the SD

units until they were installed as one component of a detector module.

3. BATSE Charged Particle Detector

a. TPS-15 -- CPD Acceptance Test

After the charged particle detector (CPD) was fully assembled, the unit was given a

thorough acceptance test (I'PS- 15). This test ensured that the CPD was light-tight, that both

PMTs were contributing equally to the generation of signals, that the CPD had no "dark" regions,

and that a threshold of 0.6 x muon-deposition energy could be reached with less than 1860 V

applied to the PMTs. Figure 3.8 describes the equipment configuration for TPS-15.

I +HV

,I Bg E ,j

Signal

Cerenkov
CPD +HV +HV

Supply Supply
Cerenkov 1Deteclor

Delay and Gate ___ Linear
Generator Amplifier

l----_Gaie I

__ I
__ BATSEJ2 I Fluke1910 I

I -- --1 I TestBox I I IBMPC-AT
I Prototype BATSE I I _ I with Disk Drive

I DEU II _ Timer I
' coagrdler !

Figure 3.8. TPS- 15 Equipment Configuration.
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TheCPD was connected to one +HV supply which regulated both PMTs simultaneously.

The signal from the PMTs was summed and sent to both a linear amplifier and to a DEU

prototype box. The amplifier sent an input signal to an ADCAM interface module which

allowed the acquisition of spectra onto an IBM PC-AT computer with ADCAM software. The

DEU produced an output signal which was counted by a Fluke timer/counter. A Cerenkov

detector, with its own +HV supply, served as the input to a delay and gate generator which gated

the ADCAM module. All signals were visible on an oscilloscope.

Following configuration of the hardware, the CPD was powered up, and a high-intensity

flashlight was used to illuminate the entire CPD, checking for a light leak. If no leak was found,

the face of the CPD was "mapped" using a small Co 60 source. The isotope was placed at 11

different locations over the surface, and a 60-second integration was obtained at each location.

These spectra were stored onto disk.

With the isotope removed, the Cerenkov detector was then placed in the center of the

CPD, and a 3600-second spectra was taken with the CPD gated by the output of the Cerenkov

detector. In this way, a spectrum was generated which contained only "verified" muon events.

This spectrum was also stored onto disk. The output of the CPD was then sent to the DEU,

whose PLASTIC rate was determined through the Fluke multimeter. The DEU only provides an

integral rate, with no energy information. Once the rate from the DEU was determined, the

coincidence spectrum could be examined and a channel found where the integral rate above that

channel matched the rate from the DEU. This channel was then the location in energy of the

DEU threshold. By comparison with the muon peak, the energy of the threshold relative to a

muon-deposition energy was calculated. If necessary, the +HV was adjusted on the CPD to raise

or lower the gain such that the DEU threshold would lie at 0.6 x the muon deposition energy. In

this way, one could ensure that most of the muon events would be detected by the CPD and

anti-coincidenced in the electronics. After the f'trst voltage was established, other thresholds

were attained through a similar matching of the count rate from the spectrum with that on the

Fluke. The voltages required to attain these thresholds were recorded. The following table

summarizes the results from all of the CPDs used on flight-qualified detector modules.

51



Table3.13. TPS-15CPDAcceptanceProcedureResults
+HV Required to Obtain n x Muon Energy

CPD # B# 0.4 0.6 0.8 0.9 1.0 1.15 1.3 1.5 Date

06 P-F 1525 1405 1350 1329 1305 1275 1250 1214 10-6-87

03 B0 1520 1430 1365 1335 1310 1280 1250 1226 11-24-87

02 B1 1440 1335 1275 1255 1235 1215 1180 1155 10-20-87

01 B2 1330 1245 1190 1162 1148 1124 1100 1065 11-24-87

04 B3 Missing TestResults
05 B4 1325 1240 1190 1170 1149 1132 1110 1087 11-30-87

09 B5 1285 1221 1155 1143 1125 1096 1073 1050 11-25-87

07 B6 1385 1302 1235 1215 1200 1167 1153 1120 11-27-87

08 B7 1289 1208 1163 1132 1115 1096 1073 1050 11-25-87

CPD 04, which was installed onto detector module B3, was tested on 11-25-87 (F_xtitor's

notebook); however, the test procedure is missing, and the various voltages are unobtainable. All

spectra generated during these tests, including those for CPD 04, are stored on 5.25" floppy disks

in the BATSE library and are available for inspection. Unlike most spectra, the CPD spectra are

in ADCAM format and require a PC with suitable software.

In practice, the +HV setting for the CPDs is obtained through the use of data obtained

during the BATSE science tests, not from the results of TPS-15. On orbit, the eventual setting

will most likely be driven primarily by the charged particle rate. Despite these, TPS-15 offered a

well-defined standard against which to measure the performance of each CPD, allowed the

BATSE team to establish that the CPD was operating properly, and exhibited behavior similar to

the CPDs fabricated prior to the one under test.

b. CPD Triple Coincidence Tests

Following the successful completion of TPS-15, the BATSE team designed a test to

obtain a low background measurement of the energy resolution of the CPD. CPDs 01, 05, and

07 were used in this test, which was not an original part of the CPD calibration program. The

three CPDs were "stacked" vertically with a 1-meter separation between them. The orientation

of the detectors was such that their planes were perpendicular to the local vertical. CPD 05 was

the top detector, with 07 on the bottom, and 01 in the middle. The center CPD was connected to

the ADCAM module and coincidence-gated with both of the other CPDs. To register an event in

the center CPD, an event also had to be registered by the other two CPDs. The coincidence

gating, along with the vertical stacking of the detectors, allowed almost exclusive counting of

muon events and rejection of other events. Spectra were accumulated from the center detector,

each with a live time of 65,250 seconds. The voltages on the two gafing-CPDs were set to

52



producea threshold at 1.0 x muon deposition for the fu'st accumulation and 0.8 x muon

deposition for the second accumulation. Resolutions of 42% and 43% FWHM were obtained

from the two accumulations. This number is representative of the FWHM resolution of all

BATSE CPDs.

c. CPD Rapid Pumpdown Test (TPS-67)

The BATSE system thermal vacuum test (see section III.C) revealed that sufficient

venting of the interior of the CPD was not provided. During the slow pumpdown and return to

atmosphere, the aluminum faceplate of the CPD on module B6 (DM #0/8 at the time) buckled

and separated from the honeycomb interior. If the only method by which the CPD could vent its

interior during a slow pumpdown was through structural deformation, the result during the rapid

ascent of launch could be easily forecast. In addition, after pumpdown in the thermal vacuum

test, the CPD rate would drop to zero (or a very low number) for a period of time, and then

gradually return to the proper value. This behavior was attributed to the internal pressure in the

CPD forcing the PMT upward, compressing the wave-washer in the back, and separating the tube

face from the DC-93-500 optical coupling. As the internal pressure was bled-off, the

wave-washer would relax, forcing the tube face back against the optical coupling.

Each of the CPDs were fitted with the two sintered bronze vents shown in the CPD

diagram in section II.C. A test was then devised to determine if the CPD was properly vented

and could withstand the shuttle ascent pumpdown rate. TPS-67 was performed on CPD 02 on

September 15 and 16, 1988. The CPD, along with a DEU and an HVPU, were placed into a

small vacuum chamber. The small chamber was connected through a manually adjustable

manifold to a large vacuum chamber. The CPD was equipped with sensors on the top of both

PMTs and in the center of the CPD body on both sides. These sensors measured the displace-

ment of the various portions of the CPD and were visible at all times during the test.

Furthermore, a complete set of electrical GSE was located outside the chamber to monitor the

rates, voltages, and currents in the CPD assembly as the chamber was being evacuated. The

rapid drop in pressure was accomplished by evacuating the large vacuum chamber, and then

opening the valve on the smaller chamber to expose its interior to vacuum. The rate of pressure

drop was controlled by an operator manipulating the valve.

Three separate pumpdowns were executed. The In'st two evacuations were at a rate

slower than that of the shuttle ascent, and were done to verify the structural integrity of the CPD.

The third pumpdown was executed at a rate representing the shuttle ascent rate. The rate used

was derived from the BATSE-GRO ICD. During each of the pumpdowns, the count rate and

deflection sensors were monitored. The CPD rate was required not to drop below a statistically

significant amount during depressurization. The PMT displacement limit was set at 0.051 cm,

and the face-sheet displacement limit was set at 0.102 cm.

The shuttle rate pumpdown sustained depressurization at an average rate of 0.22 psi/see,

traversing from 14 psi to 1 psi in a little more than 60 seconds. During this time, the pumpdown
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rate reached a maximum value of nearly 0.3 psi/sec, falling from 14 psi to 11 psi in only 10

seconds. The maximum deflection of the PMTs was recorded to be 0.0013 cm. The face-sheet

was displaced a distance of 0.01 cm, while the count rate was unaffected by the depressurization.

Complete results of this test are on file in the BATSE library.

4. BATSE Photomultiplier Tube Screening Tests

The photomultiplier tubes used on BATSE, procured and tested during 1984-1987, were

purchased from Thom-EMI-Gencom, Inc. The specifications that are a part of the procurement

document require that certain tests be successfully completed prior to acceptance of the PMTs for

flight. Certificates of conformity were provided with each PMT, along with supporting data.

Additional tests were performed at MSFC, either to confirm the data provided by the

manufacturer, or to perform tests that would have been too costly if performed by them.

As a result of the testing performed at MSFC, approximately 33% of the 12.7-cm (5")

PMTs and 24% of the 5.08-cm (2") PMTs were returned to the manufacturer for replacement.

Table 3.14 lists these returns by cause.

Table 3.14. Breakdown of BATSE PMTs Returned to EMI by Failure Mode
Number of PMTs Returned

12.7 cm 5.08 cm

Foreign particles exceeding maximum size
Construction defects

Unstable gain

Unsatisfactory energy resolution

Gain unacceptable (too low)

9 0

5 2

5 2

5 0

1 3

Table 3.15. EMI Testinlj Specifications and Acceptable Ranges of Values

Parameter Acceptable Range
HV for 50 A/Lumen

Dark current

Resolution (FWHM) at 662 KeV

(with MSFC-supplied NaI crystal)

Quantum efficiency at 410 nM

1300-1800 V

< 10 nA

8.0 %

0. 24%
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Thetableabovelists theparametersmeasuredat the manufacturer for each of the 12.7-cm

PMTs fabricated for use in the BATSE Instrument. These tests were performed twice at the

manufacturer, once after construction of the PMTs, and once after a random vibration test,

consisting of 1-minute exposures for each of three orthogonal axes. The exposure, detailed in the

following table, produces a composite 5.2-gm level.

Table 3.16.

20 - 80 Hz

80 - 200 Hz

200 - 400 Hz

400 - 600 Hz

600 - 2000 Hz

EMI Vibration Specifications of PMT Tests at the Manufacturer
+ 15 dB/octave

0.08 g2/Hz (constant)

-6 dB/octave

0.02 g2/Hz (constant)

- 10 dB/octave

These tests were performed a third time, following an aging process which consisted of

thermal soaks of 20 hours at temperatures of 23, 45, and 23 °C. At each step, values for the dark

current, resolution, and gain were measured. PMTs which passed these screening measures were

shipped to MSFC.

Upon arrival at MSFC, a second series of tests were perfomed to verify that the hardware

complied with the required specifications. This sequence began with a visual inspection under

10X magnification. This inspection was performed a minumum of two times on each PMT, once

at the beginning and again at the end of the screening process. Confirmation of the proper PMT

size was made by passing the tube through metal plates of the maximum sizes, for both the

dynode and cathode diameters. Proper length and concentricity were verified using another

machined plate. Five of the 12.7-cm PMTs and two of the 5.08-cm PMTs were rejected on the

basis of internal contamination exceeding the specified limits.

Subsequent to the initial visual inspection, PMTs were placed into a light-tight

diffuse-reflecting box. Up to ten PMTs were tested simultaneously, each with a PMT base

similar to that used for BATSE, but without Zener diodes in the last two stages. A commercial

magnetic shield was used around each PMT. Two of the PMTs were retained throughout all

batches, to serve as reference tubes. The temperature was digitized and stored with the spectral

data.
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A green LED was mounted in the same plane as the tubes and was pulsed at a frequency

of 1 kHz. Events synchronous with the LED drive pulse were digitized and summed using a

CAMAC data system. Spectra obtained could be viewed using a remote-controlled digital-input
PHA.

Stability of the PMTs was determined by integrating data for 2 minutes and storing the

spectra to disk for a continuous duration of approximately 24 hours. A minumum of two runs

were obtained for each batch of PMTs. Tubes which showed anomalous behavior relative to the

reference PMT or the temperature measurement were not retained as flight candidates.

By varying the rate of the green LED, a sequence of anode currents could be generated in

each PMT to obtain a measurement of the fatigue experience by the PMT. Table 3.17 lists the
currents and time durations.

Table 3.17. Anode Current Exposure Times Used Durin 8 MSFC PMT Screening

Time Interval Oar) Current (I.tA)
5 0.01

4 0.1

4 0.01

8 2.0

24 0.01

Gain response to this fatigue exposure ideintified two classes of tubes, with ap-

proximately one-third of the tubes being reduced in gain during the 2 I.tA exposure, and two-

thirds showing an increase. Recovery times for both classes were comparable, typically 3-6

hours. An example of each type is shown in Figure 3.9. The gain variations for the flight PMTs

is shown in Figure 3.10.
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Tubes undergoing test were also exposed to light levels (while powered off) that would

have produced anode currents of more than 15 }.tA if the +HV were on. This exposure was

conducted in intervals of 20 minutes, followed by 70-minute "recovery" intervals, thereby

simulating passage in and out of the South Atlantic Anomaly. These cycles were repeated for

two additional intervals. The +HV on/off cycle was repeated for 8 more hours, but with no LED

light exposure. Typical PMTs showed gain changes of a fraction of 1%, with recovery to the

initial gain in 30-60 minutes. Similar data accumulations were performed for +HV on/off cycles

where no light exposure occurred. Similar gain variaitons of a fraction of 1% were also observed

during this test.

The final test performed during acceptance testing was a measurement of the resolution.

The best of the 12.7-cm PMTs were selected for use on the BATSE spectroscopy detectors.

Each tube was subject to a measurement of the b-WHM energy resolution using a 5" x 5" NaI

Detector and a Cs i37 isotope. The following figure shows the distribution of the results

obtained during the resolution testing.
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5. BATSE DEU Board-Level Testing

a. CEU/DEU Interface and LED Driver Board -- TPS-32

TPS-32, the CEU/DEU interface and LED driver board test, was performed by

personnel from Space Science Laboratory at NASA-MSFC. A full prototype DEU was

assembled and configured for the test as shown in Figure 3.12. All portions of the assembly

were non-flight, except the board which was under test at the time. The interested reader may

wish to consult BATSE drawing numbers 42A30491 and 42A30493 for a detailed look at the

layout of this board.
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Following the establishment of the testing configuration, power was applied to the test

set. The signal generator was set to a frequency of 1.5-1.6 MHz and a duty cycle of

approximately 30%. This simulated the MQT and FMQT signals from the LAD and SD boards.

The correct reproduction of the input signal was verified at the outputs of the line drivers on the

card for all associated signals, ensuring that the appropriate output was being generated for input

to the CEU.

Subsequent testing verified the proper operation of the LED digital-to-analog converter.

The LED amplitude was commanded to level zero, and RP3 was adjusted to produce 0 V + 5

mV. With the LED commanded to each of the remaining 15 levels, the proper analog voltage

was verified according to the table below. After verification of the proper voltage levels, the

LED pulse shape was examined and verified while at command level #8.
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Table 3.18. Acceptable Analog Voltage Levels forLED

Digital-to-AnalogConverter - TPS-32

Command Level Acceptable Range (volts)

1 0.612-0.637

2 1.225-1.275

3 1.837-1.912

4 2.450-2.550

5 3.062-3.187

6 3.675-3.825

7 4.287-4.462

8 4.900-5.100

9 5.512-5.737

10 3.125-6.375

11 6.737-7.012

12 7.350-7.650

13 7.962-8.287

14 8.575-8.925

15 9.187 -9.562

The next portion of the test adjusted potentiometers RP4, RP5, and RP6 to establish the

proper output reference voltage for the module's 15-, 3-, and 6-V HKG measurements.

Following completion of this portion, the SD LLD was adjusted. With the LLD commanded to

value zero, RP1 was adjusted to produce an output of 0 V, + 5mV. The LLD was then

commanded to full-scale (255 decimal), and RP2 was adjusted to -6.0 V, + 5mV. Each of the

LLD command bits were then tested and verified to produce the proper voltage output according
to the table below.

Table 3.19. Acceptable Voltage Levels for SD LLD Command Values

TPS-32 - CEU/DEU Interface and LED Driver Board Test

Command Level Acceptable Range
1 -23 mV + 5 mV

2 -47 mV + 10 mV

4 -94 mV + 10 mV

8 -188 mV + 10 mV

16 375 mV :1:10 mV

32 -750 mV + 10 mV

64 -1.5 V + 10 mV

128 -3.0 V + 10 mV
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The final portion of the test examined and verified the proper output of the various FAST

discriminators and MQT signals generated from a given input. The pulser was used to simulate

the input from the LAD and SD MQT boards and the PLASTIC signal. The associated output

signals passed to the CEU by the interface board were then examined at the output of the J2-box

for proper amplitude and duration. This completed TPS-32.

b. DEU HKG and Command Logic Board -- TPS-33

TPS-33 utilized the same GSE configuration as TPS-32, with the exception that the only

flight hardware in the DEU was the HKG and command logic board under test. All other

hardware was prototype. Drawing numbers 42A30488 and 42A30490 detail the layout of the

HKG and command logic board. Using a Commodore 64 computer, each of the strobe (serial

command) lines were verified to appear active only at the desired point when utilized, that each

of the strobe lines were isolated, and that the proper destination of the strobe line was reached.

For strobe 0 (command 0), a continuous sweep through the data bits was executed to verify that

the output exhibited binary counter operation at the time of the strobe.

Following the verification of the serial command strobe and data lines, the LAD LLD

digital-to-analog converter was adjusted and checked in an identical manner to the SD LLD

adjustment described in the previous section. Each of the command bits for the LAD LLD were

exercised, and the proper output voltages were verified. These output voltages are identical to

the SD LLD values. The test concluded with a check of all multiplexed HKG parameters. Each

of the 32 values were polled, and a proper HKG return was verified. This completed the testing

of TPS-33.

c. SD MQT Board Test -- TPS-33

TPS-34 also used the same GSE configuration as the previous two board-level tests and

replaced the prototype SD MQT board with a flight unit. Unlike the previous two tests, a PMT

and NaI assembly were used as the input to the DEU at the J1 connector. The PMT was a 12.7

cm diameter, nine-stage tube with a BATSE flight-like base. Optically coupled underneath the

PMT was a 12-cm NaI crystal. A voltage of 1000 V was used for the phototube. In this manner,

actual Nal-generated pulses could be used to establish the proper shaping of the

baseline-restoration circuit which serves as the input to the MQT integrated circuit. The

baseline-restoration circuit was adjusted for critical damping of the input NaI signal by adjusting

RPI on the board. The interested reader may wish to consult BATSE drawing numbers

42A30494 and 42A30968 for a more extensive look at the SD MQT board. The PMT-NaI

arrangement was disconnected at this point and replaced with a pulser and shaping box for the

remainder of the test.
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Following theadjustmentof RP1,eachof theflash-encodingdiscriminators(SFASTn)
wereexaminedfor properreferencevoltages. SFAST3andSFAST4wereverified to turn-on
nearthedesiredvoltagesof 1.5and3.0V, respectively.SMQTpedestalandfull-scale
adjustmentsweresubsequentlymadein identicalfashionto thosedescribedin sectionIII.B. 1.h.
Finally, theSFMQTsignalwasexaminedto verify thatit properlypreventedtheprocessingof
SMQTsignalswhenactive.

d. LAD MQT BoardTest-- TPS-35

TheGSEconfiguration for TPS-35 mirrored that of the previous tests, again with the

only flight component being the board under test. BATSE drawing numbers 42A30905 and

42A30970 will provide the interested reader with a more detailed look at the LAD MQT board.

The same PMT-NaI hardware used in TPS-34 provided input to the LAD MQT board during

TPS-35. Following configuration of the GSE, the LAD baseline-restoration circuit shaping was

executed as described in the previous section. Potentiometer RP1 was adjusted to provide the

proper shaping.

After removal of the PMT-NaI assembly, and substitution of a pulser and shaping box,

the next section of the test examined the LAD flash-encoding discriminators (FASTn). Each of

the discriminators was checked for the proper fh'ing voltages. FAST2, FAST3, and FAST4 were

verified to fire near 56, 112, and 337 mV, respectively. The FAST1 threshold is determined by

the LLD setting. Reference voltages for each of the LLD command bits were also measured for

proper performance. The final discriminator test verified the differential nature of the four
FASTn discriminators.

The LAD MQT was subsequently adjusted to provide a pedestal of 400 ns and a

full-scale duration of 24 _ts. These adjustments were accomplished by manipulation of RP3 and

RP2 on the LAD MQT board, in identical fashion to the description of TPS-60 in section
III.B.l.h.

Following MQT adjustments, the CPD signals were simulated by a pulser, and the proper

PLASTIC signal amplitude and duration was verified. The proper anti-coincidence operation of

PLASTIC with the MQT signal was also examined. Finally, the FMQT signal was checked to

verify that it properly inhibited the processing of MQT signals during the duration in which it
was active. This concluded TPS-35.
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B. BATSE Subsystem Test Program

1. BATSE Detector Module Testing

The detector module test and calibration program was an extensive and complex series of

events. In addition to the many tests which needed to be done on each detector module, the

situation was further complicated by the fact that nine modules were at some stage of the

program at any given time. The results of this program for each module will be presented. The

results here include only data which were obtained during tests in which the detector module was

considered a stand-alone piece of hardware. Any tests during which a module was connected to

another piece of flight hardware (e.g., the CEU) will be presented elsewhere. The presentation

contained here will progress somewhat chronologically, with deviations, exceptions, and special

tests noted where appropriate.

a. Overview of Detector Module Test Flow

The BATSE detector modules were fabricated in MSFC Building 4705 under a contract

to Ver-Val Enterprises, Inc. Science-related hardware, including PMTs, LADs, and SDs was

assigned to a module by personnel from the BATSE Science Team. The first module

(protoflight) completed fabrication and was ready for testing on January 21, 1988. Module B6

was the final module, starting the test flow on May 26, 1988. The flow for each detector module

is described by Figure 3.13.

Fabrication F[
Wt. & CG. H Alignment _.lPerformancel__ Vibration H(TPS-28) Jl TPS-24 I I X-Axis

1
I Vibration H TPS-58 H Vibrati°n I--*'lPe'°rmancel--'-I A'ignmentIY-Axis Z-Axis I I TPS-24 I I (TPS-28)

'l
* Protoflight Only
I

T J/ All Other DMs . _

Thermal t ... t t l Angular F/ Magnetic
Vacuum TPS-24 --_ Response tSusceptibility

(P-F Only) (TPS-19) [ (TPS-25)

Figure 3.13. BATSE Detector Module Test Flow.
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Following assembly, each detector module was weighed and had center-of-gravity

measurements performed. Alignment of the LAD and SD with respect to an optical alignment
fiducial was then measured in TPS-28. The module was then powered-up for its initial

performance test. This test, TPS-24, included a check of every module function. The detector
module was then sent to the vibration facility for vibration tests in all three axes. Between the

vibration tests, an abbreviated version of TPS-24 was performed. A second alignment measure-
ment and a full-scale TPS-24 were then performed following successful completion of the

vibration tests. The protoflight module was taken to the thermal balance and thermal vacuum
tests at this point. All other modules proceeded to the next portion of the test flow. The module
was taken to the angular response test facility for angular response (TPS-19) and magnetic

susceptibility (TPS-25) tests. After completion of the test program, the module was integrated to

the CEU for system-level testing.

b. BATSE Detector Module Weight and Center of Gravity Measurements

The first stop for a detector module following assembly was to the north end of Building

4705 for initial weight measurements and center of gravity determination. These properties of
the detector module are of obvious importance in determination of the properties of the overall
spacecraft. This test is the only time that the modules were weighed, and the only addition to the
detector module after this point was the sintered bronze vents added to the CPD assemblies. The

coordinate system used for the center of gravity measurements (U,V,W) is a fight-handed
system, with the U-V plane containing the detector module base. The U-axis points directly out
the front of the module; the W-axis is the normal to the baseplate. The figure below details the

orientation of the coordinate system.
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Figure 3.14. BATSE U,V,W Detector Module Coordinate System.

The results from the weight and center of gravity measurements of the nine flight-qualified
detector modules are summarized in Table 3.20.

Table 3.20. Detector Module Weights and Center of Gravity Locations

Center of Gravity (cm)

Detector Module Weight (lb) U V W

Protoflight 194.75 23.114 -0.287 28.560

B0 196.10 22.984 -0.246 25.580

B1 196.13 23.061 -0.175 28.565

B2 195.63 23.094 -0.287 28.626

B3 193.90 23.127 -0.269 28.593

B4 196.93 23.005 -0.183 28.504

B5 195.11 23.017 -0.119 28.438

B6 196.15 23.012 -0.262 28.468

B7 195.20 23.068 -0.188 28.514

Flight cables 173.00

Detector insulation 58.00
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c. DetectorModuleAlignmentMeasurements-- TPS-28

The next phase of the test and calibration program for the detector modules was TPS-28.

The purpose of this test was to determine the orientation of the BATSE large area detector and

spectroscopy detector to a detachable, non-flight alignment fixture. This fixture consisted of a

corner-cube reflector and a fiat mirror. Each of the fixtures are serialized and assigned to a

particular module throughout the entire lifetime of the detector. This test was repeated at several

locations during the test and calibration program to determine the effects, if any, of the

environmental tests on the alignment of the BATSE detectors. The data from this series of tests

were then used in conjunction with spacecraft measurements to determine the pointing aspect of
each LAD in the GRO coordinate frame.

Determination of the BATSE LAD internal pointing aspect was made on a granite slab

using a Nikon-model autocollimator and an optical bench. The serialized alignment fixture is

tilted to the top of the detector module and aligned to it by precision locating pins. The

attachment is made to the LAD cone flange, which is also the support point for the LAD crystal

housing. The alignment fixture is installed in this location so that there is minimum flexure

between the alignment assembly and the crystal. The repeatability of the accurate installation of

the fixture has been verified. The entire detector module is then installed into its holding fixture.

Figure 3.15 illustrates this entire arrangement.

The light-emitting diode (LED) calibration assembly is removed from the back of the

LAD cone so that the rear face of the optical window of the LAD assembly can be viewed

directly. The parallelism of this surface with the front surface of the LAD crystal was deter-

mined during the LAD assembly process at the Bicron Corporation facility. The detector module

is then placed on its side, and the optical bench and collimator are arranged as shown in Figure
3.16.
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Thecoordinatesystemin which theseinitial measurements are taken, labeled (L,M,N), is

right-handed and is fixed onto the alignment fixture (see Figure 3.16). The L-axis is the normal

to the surface of the mirrored flat behind the optical corner-cube. The M-axis is parallel to the

precision-machined edge against which the corner-cube is seated for installation. These two axes

are orthogonal to within the tolerances of the precision milling machine on which the fixtures are

constructed. The N-axis is perpendicular to these two axes.

The quantifies measured in this test are the offset in pitch-angle and yaw angle of the

normal to the LAD with respect to the normal to the mirrored fiat (L-axis). Pitch angle is

measured as an offset from the L-axis in the LN plane, and is defined such that a positive angle is

an offset from the L-axis toward the N-axis. Similarly, the yaw offset is measured in the LM

plane, and is defined as positive when the offset is in the direction of the M-axis. From these two

angles, the three components of the LAD pointing vector can be constructed in the LMN system.

The measurement is obtained by fn'st aligning the autocollimator so the line of sight is along the

L-axis. When this is accomplished, the returned image from the optical flat will fall directly on

the center of the autocollimator viewfinder. The autocollimator is then translated along the axis

on the optical bench until the returned image from the LAD is present in the viewfinder. The

pitch and yaw angles are recorded. The measurement is repeated to insure accuracy.

When taking initial measurements, the true orientation of the detector module is

somewhat difficult to establish in all three axes. The L-axis is obviously the easiest, because it

can be read directly off the autocollimator through the reflection from the optical flat. The M-

and N-axes are more difficult and may vary slightly from the local vertical and local horizontal

because of play in the system. It is estimated that this error is on the order of a few arc minutes,

and does not contribute to a significant degradation of the measurement.

Internal alignment measurements were performed three times; the first after the module

was constructed, the second after the vibration test, and the final measurement following the

shipment of BATSE to TRW prior to the detector modules' installation onto the spacecraft. All

three of these measurements were consistent. For the final calculations to determine the pointing
of the LADs in GRO coordinates, the data from the last internal measurement at TRW were used.

The offset angles in pitch and yaw are summarized in Table 3.21.
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Table3.21. BATSE LAD PitchandYaw Offsets Measured in LMN Coordinates

(Data from Final TPS-28, November 1988, California)
Detector Module # Pitch Offset Yaw Offset

(degrees) (degrees)
B0 -0.26027 0.01527

B1 -0.12638 0.03805

B2 -0.00388 -0.01777

B3 0.12861 0.02844

B4 -0.08333 -0.04972

B5 0.14861 0.02250

B6 0.16888 -0.04111

B7 0.09111 0.07166

From the values in the table above, one can construct the LAD pointing vector in LMN

coordinates using the following equation:

Lt_INT = (cos(Tp) cos(Ty)) L + (cos(Tp) sin(Ty)) M + (sin(Tp)) N, (3.1)

where LPOINT is the LAD pointing vector, Tp is the measured pitch angle offset, Ty is the

measured yaw angle offset, and L_ M, and _N are unit vectors parallel to each of the three defining

axes. Substitution of the values from the table above into the equation above yields the

components of the LPOINT vector. These components are summarized in Table 3.22.

Table 3.22. BATSE LAD Unit-Length Pointing Vector Coordinates in LMN Space

(Data from Final TPS-28, November 1988, California)
Detector Module # L M N

B0 0.999989 0.000266 -0.004543

B 1 0.999997 0.000664 -0.002206

B2 0.999999 -0.000310 -0.000068

B3 0.999997 0.000513 0.002245

B4 0.999998 -0.000867 -0.001454

B5 0.999996 0.000392 0.002594

B6 0.999995 -0.000717 0.002948

B7 0.999998 0.001250 0.001591
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Having determined the LAD pointing vectors in the LMN coordinate system, these

vectors can be transformed into any other coordinate system through a series of coordinate

transformations. The next step in the alignment measurements is to transform these pointing

vectors into an alignment cube-based coordinate system. This calculation, and others required to

obtain the LAD pointing vectors in GRO coordinates, will be discussed in the section concerned

with spacecraft alignments. As mentioned, the data presented in this section are concerned only

with measurements taken on detector modules as stand-alone units. The detailed alignment

calculations with respect to the GRO spacecraft are described in another document.

d. Detector Module Performance Test -- TPS-24

TPS-24 was designed to be a thorough test of all detector module hardware and

functions. This test procedure served as the standard for detector module testing throughout the

program. The test consisted of several sections: initializations, spectroscopy detector tests, large

area detector tests, charged-particle detector tests, and housekeeping checks. Each of these
sections will be discussed in detail.

The detectormodule required a large amount of ground support equipment for this test.

The equipment provided power to the module and allowed for the examination of individual

signals from the detectors. Figure 3.17 shows the test configuration.
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Figure 3.17. TPS-24 Test Configuration.
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TheJ2 box is a part of the GSE which serves primarily as a breakout of all signals which

the module generates and transmits through its J2 connector. These include all LAD signals

(FAST1-4, LAD-MQT, FASTID), CPD signals (PLASTIC), SD signals (SMQT, SFAST1-4),

housekeeping voltages, and heater status resistances. J2 also allows for the input of an external

frequency to drive the LED calibration assembly. The J2-II box serves as the interface between

the MQT signals and the pulse-height analyzer. This box also allows for the viewing of the other

event-generated signals. The J5-6 box is the power interface for the detector module.

Commands are sent to the detector module through a Commodore computer containing software

which generates serial commands to the module either individually, or from predetermined

command f'des stored on floppy disks.

Radioactive isotopes are used during TPS-24 to generate gamma ray events in the

detectors. These sources are always located at a distance of 50.8 cm from the center of the

detector under test and on the axis of the detector. This location is obtained through the use of a

source-holding fixture constructed specially for this test. The fixture consists of aluminum

tubing, and is seated against the detector module baseplate in one of two pinned positions

(depending on whether the LAD or SD is being tested). The isotopes are mounted onto 5.1 x 5.1

cm cards which slide into a slot on the holding fixture. This arrangement provides a repeatable

isotope test location which is uniform from module to module.

(1) Initializations

The test begins with the power-up of the detector module. The module is

monitored immediately upon power-up to verify the proper current is being drawn ( < 500 mA).

This initial turn-on current is different each time the module is powered because of the uncertain

state of the five +HV supplies. After the safe operating current of the module is verified, all

+HV supplies are powered off, and the PMTs are then balanced. The balancing of the LAD is

accomplished using a small Cs 137 source placed into the holder at the standard 50.8-cm

distance. The isotope's 662-keV line is used as the reference. Each PMT's +HV supply is

individually commanded so that the three PMTs contribute equally to a summed gain which has a

dispersion of 5 keV/channel. The CPD voltage is set at the value needed to obtain 0.6 x muon

deposition energy, and is determined in TPS-15 (see section IH.A.3.a). For the SD, three

different gains are obtained. High voltages required for dispersions of 1 keV/channel, 4

keV/channel, and 10 keV/channel are determined. The 4 keV/channel gain is considered

nominal, with the other two providing gains of 4X and 0.4X nominal. After the voltages are

determined, the +HV supplies are set at nominal values, command f'des are generated, and the

PMTs are allowed 30 minutes to stabilize. Table 3.23 displays the initial +HV values for all

supplies and all gains.
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Table3.23. TPS-24Initial High Voltage Values
Detector Module Number

HV Suppl_. P-F B0 B1 B2 B3 B4 B5 B6 B7
PMT-A 1538 1402 1504 1441 1480 1496 1539 1373 1551

PMT-B 1526 1409 1488 1413 1508 1539 1520 1280 1535

PMT-C 1524 1409 1504 1469 1484 1535 1559 1308 1575

CPD 1405 1429 1335 1245 1276 1240 1221 1304 1209

SD-1X 1160 1272 1303 1248 1161 1232 1130 1225 1311

SD-4X 1269 1559 1610 1535 1421 1500 1386 1511 1626

SD-0.4X 1003 1134 1146 1098 1024 1017 1012 1095 1150

Comparison of the CPD voltages with those from Table 3.13 shows variations of 1-2 V

from the values obtained in TPS-15. The command resolution of the HVPU is 4 V; therefore, the

CPD could not be commanded exactly to the value desired in all cases. For TPS-24, the closest

value possible was used regardless of whether it was greater or less than the value desired. The

initialization section of TPS-24 is complete following the 30-minute warm-up period.

(2) Spectroscopy Detector Tests

Section two of TPS-24 involves testing of the SD and its associated electronics. A

verification of the stabilized PMT is executed by the collection of two Cs 137 spectra 15 minutes

apart. A change in 662-keV photopeak location which is less than or equal to 1.25% is

considered stable. After stability is established, SFAST1-4 are examined. The bi-polar nature of

all four discriminator signals is verified, and each of the signals' amplitudes and durations are

measured on an oscilloscope. Typical amplitudes and durations for the SFAST signals are 0.42

V and 0.44 Ixs, respectively. The SMQT signal is then examined. The bi-polar nature of this

signal is verified, and the minimum duration of the SMQT signal is measured. This minium

duration is a direct measurement of the SMQT pedestal.
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Figure 3.18. Schematic of the SMQT Signal.

For very short-time-duration MQT signals, the digitization of the signal is non-linear. To

avoid these complications, the BATSE team decided that the minimum-duration MQT signal

should be 2.0 O,s, plus some margin. The final minimum duration arrived at was 2.5 O,s. Each O,s

of duration in the MQT signal correlates to 16 linear SD channels. Thus a "zero-energy" event in

the SD will produce an MQT signal of approximately 2.5 O,s in duration, and increment channel

40 by one count. Upon connection of the schedule to the CEU, the science data function

subtracts the first 32 channels, and the offset becomes approximately 8 channels in the resulting

data. The offset is fine-tuned to the proper value through the use of a potentiometer on the

SMQT board in the DEU of each detector module. Results of the procedure to fine-tune the

pedestal are presented in a subsequent section of this document.

The SD +HV was next commanded to the 4X gain value, and a Th 228 source was placed

into the holder. After a check of the proper voltage value, a 120-second integration was obtained

and stored to disk on the ND-76 system. Following the 4X spectrum, the Th 228 source was

replaced with a Na 22 source, the SD was commanded to the 0.4X value, and another 120-second

integration was obtained.

TPS-24 continued with a mapping of the SD programmable lower-level discriminator

(LLD). The LLD is commandable to 255 different values, each with a specific cut-off energy.

Each bit (eight total) of the LLD was tested. Additional measurements to provide higher

resolution near the expected operating value were also executed. Fifteen different command

values were used at the 1X gain setting, with seven values used at the 4X and 0.4X gains. At

each of the LLD settings, the threshold channel was recorded, the SFAST1 rate was recorded,

and a 120-second spectrum was accumulated and stored to disk. A Na 22 isotope was used to

raise the count rate to obtain good statistics over a shorter period of time. LLD values below 12

decimal usually were in the system noise and produced ringing of the discriminator. Table 3.24

shows results from detector module B1 testing on February 24, 1988, for the SD at 1X gain.

These values are typical for all nine flight-qualified modules.
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Table3.24. DetectorModuleB1SDLLD Channel Measurements

(IX Gain, TPS-24, 2-24-.88)
Discriminator SMQT Threshold

Value (HEX) SFAST1 Rate (cps) Channel (linear)

2 ....... Ringing

4 ....... Ringing

8 17000 Ringing

C 2800 45

10 2700 46.5

12 1700 47.5

14 1600 48.5

15 1500 48.5

16 1500 49

18 1500 49.5

1C 1400 51

20 1400 52.5

40 1400 64.5

80 1200 92

FF 1000 154

Following the mapping of the SLLD at the three gain settings, the detector was thor-

oughly checked for any light-leak which may be present. While viewing SFAST2 on the

oscilloscope and timer-counter, a high-intensity light was used to illuminate the SD over its

entire surface area. As the light was moved around, the rate meter and oscilloscope were

examined for any sign of the light being detected by the PMT. No SD was found to have a

light-leak.

The final section of the SD portion of TPS-24 was the measurement of photopeak

resolutions with various isotopes. This measurement marked the first time the photopeak

resolution was measured while the SD and its flight DEU were operated together. In addition,

these were the first measurements taken of the SDs since the TPS-16 results presented in Table

3.12. For some detectors, this was a time span of nearly 16 months between measurements.

Resolution measurements started by commanding the SD to the nominal (IX) gain setting

and removing all sources so that a 300-second background accumulation could be obtained. This

background was stored to disk and used in the subtraction from source spectra. Isotopes of Cd

109, Cs 137, Na 22, Co 60, and Th 228 were used in the measurements. In addition to the

FWHM resolutions of the various photopeaks, a "peak-to-valley" ratio measurement was

obtained by division of the number of counts in the 1.173-MeV peak from Co 60 by the number

of counts in the minimum channel between the 1.173- and 1.332-MeV peaks. This number

offers a good handle on how well the two peaks are separated, and thus the resolution of the

detector. For each of the nine flight-qualified modules, the results of this section from their

initial TPS-24 are presented in Table 3.25.

76



Table3.25. Initial TPS-24FWHM Resolution% Measurementsfor SDsat IX Gain
FWHM Resolution % (Energy in keV) Peak-to-Valley

Detector Module 88 511 662 1275 1173 1332 2614 Ratio

P-F 11.4 7.9 6.7 5.2 5.5 5.2 4.1 16.4

B0 17.9 8.5 7.1 5.2 6.4 5.5 2.6 14.5

B1 14.7 8.3 7.0 5.7 6.4 5.5 4.5 8.8

B2 15.6 8.1 7.4 6.2 6.2 6.0 4.8 8.2

B3 12.9 8.2 7.1 5.7 6.2 5.6 4.3 8.8

B4 27.3 8.2 7.5 5.5 6.2 6.0 3.1 9.0

B5 16.7 8.2 7.3 6.1 6.0 5.8 3.6 7.7

B6 18.7 8.1 7.5 5.7 6.4 5.6 4.4 11.8

B7 25.0 8.2 7.0 5.7 6.2 5.8 4.4 8.3

The editor cautions those using the 88 keV numbers shown in Table 3.25. The gain of

the SD was established using the 662-keV line from the Cs 137 isotope. For the measurement of

the 88-keV line, the local dispersion was calculated using the location of the line and the

measured "zero-energy" channel from the oscilloscope. The 23-keV line usually was below the

cut-off of the LLD. The measurement of this zero-channel from the scope is highly dependent on

the person doing the measuring. Examination of the test procedures indicates dispersions from

3.5 to over 5.0 keV/channel were used in the calculation, when the gain was set to almost exactly

4.0 keV/channel, verifiable from two-peak measurements taken at the same time. Since the

response of the SD is nearly linear, the dispersion does not change by a large amount over an

energy range of 500 keV. This linearity and the validity of the two-peak dispersion

measurements call into question the validity of the dispersion measurements made using only the

88-keV line and the oscilloscope-measured pedestal channel.

For measurements at energies of 511 keV and higher, the dispersion is measured from

two photopeaks of known energy, providing a much more reliable number with which to

calculate the resolution. Comparison of the 662-keV FWHM resolution measurements above

with those from Table 3.12 indicates that the SDs perform in a manner consistent with previous

measurements at this energy. The resolution measurements marked the completion of the SD

testing in TPS-24.

(3) Large Area Detector Tests

The testing of the large area detector was performed in the second section of

TPS-24, and began with a check of the electronic signals, similar to what was done with the SD.

The bi-polar nature of the four LAD FASTn signals was verified through observation on an

oscilloscope. The duration of each of these pulses was measured and verified to exceed 50 ns. A
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typical duration for a FASTn pulse is approximately 165 ns. The differential nature of these four

signals was verified by examining the FASTn signals one at a time. While examining one

particular FASTn signal, the oscilloscope was triggered with the other FASTn signals sequen-

tially. While stepping through the FAST signals with scope-triggers from the other three signals,

the test conductor verified that only one FAST signal was present at any given time, and that the

discriminators were in fact differential. The energy boundaries of each of the signals were
measured in a later test.

The LAD MQT signal was examined next. Functionally identical to the SMQT signal,

the bi-polar nature of the pulse was verified, and the minimum duration was measured. Unlike

the SMQT signal, with its 40-channel offset, the LAD MQT has approximately a six-channel

offset. The non-linear digitization effect which is present at the low-end of the MQT signal

occurs in the LAD as well as in the SD. However, incorporation of a large offset (longer MQT

pulse) introduces a larger dead-time per event. Longer pulses require a longer period of time for

the electronics to process the signal. With the SD, this is not a large problem, because the

intrinsic rate is lower due to the smaller collection area. For the LAD, however, the count rate is

sufficiently high that inclusion of a large offset would introduce unacceptably high dead-times.

Because the high dead-time would outweigh the benefit of linear digitization, it was decided to

place the LAD pedestal at 400 ns. This corresponds to a linear "zero-energy" channel of 6.4.

(Subsequent system-level tests on the GRO spacecraft showed that the "zero-energy" channels

ranged between 5.4 and 7.3 for different LADs.) The MQT was measured to verify the

minimum duration at 400 ns + 100 ns. A light-leak check was then performed on the LAD in the

same way as was done on the SD. No LADs were found to have a light-leak problem.

Measurements of the LAD electronics continued with a mapping of the programmable

LAD-LLD. This measurement was done in a fashion similar to that of the SD. Each bit of the

LLD was checked for operation, and a mapping of the discriminator setting vs. linear channel

was made. The dynamic range of the LAD-LLD is much less than that of the SD-LLD.

Full-scale setting of the LAD LLD corresponds to approximately channel 25, while a full-scale

setting of the SD-LLD placed it near channel 150. The mapping for the protoflight module's

LLD taken from a test on February 19, 1988, is shown in Table 3.26.

Table 3.26.

LAD LLD Settin_ (HEX)

Sample LAD-LLD Command Setting to Linear Channel Relation

(Data from TPS-24 of 2-19-88, Protoflight Module)
Linear Channel of LLD

0-10 6

20 8

40 10

80 15

FF 24
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Mappingof theLAD-LLD was followed by photopeak resolution measurements of the

LAD. Unlike TPS-26, these measurements involve all flight components of the LAD system, not

just the LAD crystal assembly. The LAD +HV supplies were commanded to the nominal (5

keV/channel) gain settings and verified. A 300-second background accumulation was collected

and stored to disk. This background accumulation was used for subtraction from isotope spectra

prior to calculation of the resolution. Isotopes of Cd 109 and Na 22 were used for these
measurements. The data were collected in the same fashion as was done with the SD. The

source was placed into the LAD source holder, a 300-second accumulation was obtained,

background was subtracted, and the spectrum was stored onto disk. Results from the initial

TPS-24 of all nine flight-qualified modules are presented in Table 3.27.

Table 3.27. Initial TPS-24 LAD FWHM Photopeak Resolution Percentages
FWHM Resolution %

Detector Module 88 keV 511 keV 1275 keV

P-F 34.8 16.9 16.5

B0 26.3 17.2 17.0

B1 32.2 17.6 18.4

B2 23.2 16.7 15.9

B3 29.4 19.2 19.9

B4 28.4 20.4 16.8

B5 38.0 21.9 21.8

B6 31.6 24.0 22.5

B7 34.5 20.0 19.7

The reader is cautioned about the validity of the measurements taken at 88 keV. The

dispersion was again calculated using the location of the 88-keV photopeak and the measured

"zero-channel" from the oscilloscope. The subjectivity of the oscilloscope measurement leads to

possible errors in the dispersion. Because the gain of the LAD is 20% lower than the SD at IX,

errors in the measurement of the "zero" channel play a less significant role in the calculation, as

the baseline is effectively larger. This is reflected in the smaller "spread" in measured resolutions

from the LAD compared to the SD. However, the LAD range from 23.2% to 38.0% is still large,

and reflects some problems in the measurement. Comparison of the 511-keV data with TPS-26

LAD acceptance test data shows good agreement in the resolution measurements, with no

indication of degradation. The measurements taken at 1275 keV were computed using 1240 keV

as the energy of the incident gamma ray line. The incorporation of 1240 keV instead of the

correct value of 1275 keV into the computation of the resolution introduces a small error in the

result.

Resolution measurements from TPS-24 are less than ideal. Test conditions and

environments varied significantly from module to module, and as many as ten different

individuals conducted these tests. These factors lead to results which, although not wholly
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inaccurate, are not suitable for scientific calibrations or detailed determination of the instrument's

performance capabilities. TPS-24 was designed to verify that all parts of the detector module

were operating properly, and also to show that the module performed within certain a priori

criteria. It was not the purpose of the test to determine exactly where inside the boundaries the

modules performed. These measurements were executed during the BATSE science tests, which

will be discussed later in this document. Perhaps the best module-level resolution measurements

come from TPS-59, taken at TRW in California over a 1-week period with the same two test

conductors performing all tests. These results will be detailed at the end of the detector module
section.

The next section of TPS-24 involves testing of the LED calibration assembly. The LED

can be commanded to pulse at 15 different intensity levels through the use of four bits in a serial

command. Each bit was checked for proper operation, and the LED locations in the spectra were

mapped against each commandable level. Because of differences in the intrinsic light output of

the LEDs, and the use of different neutral density filters, each detector has a different LED

response for any given command. Table 3.28 details the LED response from detector module B5

during a TPS-24 test on April 28, 1988. This behavior is representative of all the detector

modules. LED positions in HER data as seen through the CEU are presented in the instrument

testing section of this document.

Table 3.28. LED Channel Locations for Commanded Values from TPS-24

(Detector Module B5, 4-28-88)

LED Command Value Uncompressed Peak Channel

15 (decimal) 532

14 506

13 460

12 413

11 364

10 316

9 267

8 217

7 167

6 119

5 73

4 32

3,2,1 OFF

For an approximate equivalent energy for the LED location, subtract 6 from the channel

number and multiply by 5 keV. After integration with the CEU, the PMTs are re-balanced, and

spectra in the HER data type are subjected to the quasi-logarithmic compression, which changes

the values of LED location for a given commanded value. Initial tests of the LED showed that
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thediode was intrinsically too bright for the detector to handle. Therefore, a change was made in

the hardware to install several layers of Kodak neutral-density optical filters in front of the LED

to lower the amplitude of the light output.

(4) Charged Particle Detector Tests

The CPD was the final section of detector testing executed in TPS-24. In this

section, the main focus was to determine that the CPD was operating properly, and that all (anti-)

coincidence circuitry was functioning normally. This portion of the procedure begart with the

collection of a 300-second LAD spectrum with the CPD on and in anti-coincidence mode. This

spectrum was stored to floppy disk. Next, the CPD was powered off, and another LAD spectrum

of 300 seconds was accumulated. This spectrum was also stored and subtracted from the

previous spectrum. The difference in counts between these two spectra is due to the lack of CPD

rejection in the second integration. From the difference, a charged-particle rejection rate was

determined.

The CPD was then commanded into the coincidence mode, and the +HV on the LAD

PMTs was lowered until the gain allowed the analysis of muon events in the LAD. A third

300-second LAD integration was accumulated and stored to disk. If the CPD and its associated

circuitry were operating properly, the count rate in the coincidenced spectrum above 0.6 x muon

peak energy (CPD threshold) should be approximately equal to the CPD rejection rate derived

from the first two spectra. The analysis had to be done in this fashion because of the

mono-channel nature of the CPD PLASTIC signal from which a spectrum is not obtainable. The

table below presents the CPD rejection rates and coincidence count rates from the initial TPS-24

performed on all flight-qualified detector modules.

Table 3.29. CPD Rejection and Coincidence Rates from Initial TPS-24 Runs

Detector Module CPD Rejection Rate (cps) Coincidence Rate (cps)
P-F 28.6 26.4

B0 25.9 23.4

B 1 28.3 25.4

B2 29.6 28.3

B3 29.6 28.4

B4 24.4 26.7

B5 25.5 27.5

B6 19.8 19.5

B7 27.0 24.4
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TheexpectedCPDratefrom muonsin theatmospherecanbeobtainedby multiplying the
rateof muonspersquarecentimeterpersteradianbythecosine-squareddistributionof muons
andintegratingover thesolidangle. Usingavalueof 0.01cm-2slsrl for all muons> 200MeV
in energy,oneobtainsarateof 0.021cm2sl. Theprojectedareaof theCPDto theverticalis
approximately1170cm2. Multiplicationof theprojectedareaby therateperunit areayieldsan
expectedrateof approximately24.6countspersecondfrom muons.Thisnumberis in good
agreementwith theresultsfrom TPS-24. Theratesobtainedfrom theCPDsareaffectedby other
factorsincluding therateof accidentalcoincidences,thegeomagneticlatitude,andtheamountof
massoverheadwhich absorbsincomingmuons.ThismeasurementcompletedtheCPDsection
of TPS-24.

(5) Housekeeping Measurements

The final section of this test procedure was to check all detector module housekeep-

ing functions. Module housekeeping is placed into one word in each packet of BATSE data, and

this word is multiplexed 32 deep. For each location on the multiplexer, the status of one particu-

lar element on the module is reported. The f'trst 10 of these are module +HV values and currents,

which depend on the commanded state of the +HV supplies. The final 17 are measurements of

temperatures, module low voltages, and ground offsets. Several spare locations are included.

The last 17 housekeeping measurements were checked f'trst and compared to expected

values. Following the check of these measurements, each +HV supply was individually tested

and mapped to housekeeping measurements. With all other +HV supplies off, the supply under

test was commanded to check each bit of the 8-bit setting command. While commanded at each

of the eight values, the two housekeeping measurements related to that supply were obtained.

This sequence was repeated for all five supplies on the detector module. Testing in this fashion

insured that all bits in the +HV commands were functional, that the housekeeping functions for

that supply were operating, and allowed for a mapping of commanded value to voltage and

rent. This mapping was then compared to the desired linear relationship of commands to voltage

between 1,000 and 2,000 V. Table 3.30 contains the relationship for PMT A on detector module

B3, obtained in a TPS-24 measurement taken on February 25, 1988.

82



Table3.30. VoltageandHKG Valuesfor Selected Commands

(Detector Module B3_ PMTA -- TPS-24, 2-25-88)

+HV Commanded Value Voltage Analog/Raw HKG Voltage

255 (decimal) 1993 4.982

128 1496 3.741

64 1246 3.116

32 1121 2.803

16 1056 2.640

8 1027 2.568

4 1012 2.529

2 1004 2.510

1 1000 2.500

0 OFF 0.000

(6) Pass/Fail Criteria and Data Storage

The detector module testing in TPS-24 was completed at the end of the

Housekeeping section described in the previous paragraphs. The module was then passed or

failed based on the following criteria:

(a) The resolution of the LAD at 88 keV shall not exceed 35.0% FWHM as specified in

MSFC-SPEC-697D.

(b) The resolution of the SD at 662 keV shall not exceed 8.0% P-WHM as specified in
MSFC-SPEC-697D.

(c) The CPD must function as tested, with coincidence and rejection rates agreeing to
within 10% of each other.

(d) The LED must function at all command levels, and all bits of the LED command

must operate.

(e) All analog HKG values must be read in the proper fashion and correspond to proper

states of detector module parameters.

(f) All commands sent to the module must be received and executed properly, with no

drop-outs or cross-talk on the command lines. Each bit of each command must function propedy

and initiate the proper response in the module's housekeeping and telemetry.

In all cases, failures of the module on requirements (a) or (b) were shown to be

measurement errors caused by the test conductor. Each module's FWHM resolutions meet or

exceed these requirements. All CPDs were shown to function normally in each of the TPS-24

executions. After the installation of the neutral density filters, all module LEDs operated
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nominally. Individual anomalies or discrepancies will be discussed at the end of the module
section.

Data from iterations of TPS-24 are located in two places. First, each test procedure

contained blanks where the test conductor was required to fill in information, calculations, or test

results. These completed procedures are stored in the detector module notebooks which are

located in the BATSE library. Second, all accumulated spectra were stored to RX-50 compatible

floppy disks which are readable on a ND-76 PHA with disk drive. These spectra are not located

with the detector module notebooks, but do reside in the BATSE library. Each disk is labeled

with the test, date, and module number. These data are available from the editor.

e. Detector Module Vibration Testing

The vibration test of the BATSE detector module was conducted in a similar fashion to

the vibration of the BATSE LAD crystal assembly. The testing occurred in MSFC Building

4619 and was executed under the direction of the Test Laboratory. The entire detector module

was bolted to the vibration table for the test. Each module was subjected to a sine-sweep and

random-mode vibration tests in all three axes. Unlike the LAD, the entire detector module was

subjected to the same levels of vibration for the X-, Y-, and Z-axes. The specifications for each

of the vibration tests are summarized in Table 3.31.

3.31. BATSE Detector Module Vibration Test Specifications
Sine Evaluation Random Mode

5 Hz to 2000 Hz at 0.25 g peak

2000 Hz to 5 Hz at 0.25 g peak

Sweep Rate = 1 octave/minute

20 Hz at 0.000047 g'/Hz

120 Hz to 600 Hz at 0.01 g2/Hz

2000 Hz at 0.00025 g2/I-lz

Composite = 2.8 gm

Test time = 60 seconds

Detector Module Aliveness Test Between Axes -- TPS-58. Between axes of the vibration test,

the detector module was functionally tested using BATSE-ES-62-TPS-58. This operation is an

aliveness test and is an abbreviated version of TPS-24 discussed in the previous section. TPS-58

uses the same GSE as TPS-24 and was executed twice per module while the module was bolted

to the shaker-table.

The test flow of TPS-58 was similar to that of the detector module functional test. After

powering the module, all SD electronic signals were checked in an identical fashion to the

previous test. Measurements of the four SFAST signals were made, and the SD-MQT signal was

examined for changes in minimum duration and/or amplitude. Spectra from the SD were ac-

cumulated at 0.4X and 4X gains. The SD programmable LLD was tested and mapped at com-

mand values of 8, 16, 32, and 64. A light-leak test was done on the SD.
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Largeareadetectortestsconsistedof afull checkoutof the LAD FAST signals and the

LAD-MQT pulse, as was done in TPS-24. A light-leak test and LLD mapping check were done

on the LAD as well. Operation of the LED was verified at command levels of 1, 8, and 12. The

CPD was tested in the same fashion as in TPS-24. Heater resistances and the final 17

housekeeping values were tested to complete the procedure. All results from TPS-58 were

compared to TPS-24 results for consistency.

Resolution measurements were not made during this test, and checking of each bit of each

command was not executed. Verification of the +HV housekeeping was done throughout the

procedure, as the supplies were checked for proper voltages and currents after power-up. The

purpose of this test was to verify that the detector module had completed the vibration in one axis

without major effects to the health and behavior of the hardware. After completion of TPS-58,

the module was disconnected from the GSE, and the next axis of vibration was excuted. All

completed procedures and spectra generated are stored in the BATSE library, in identical fashion

to those from TPS-24. No degradation in the detector module performance due to the vibration

tests was found in any execution of TPS-58.

f. Post-Vibration Alignment and Performance Tests -- TPS-28, TPS-24.

Upon completion of the vibration testing in MSFC Building 4619, the detector module

was moved back to Building 4705 for tests to determine the effect, if any, of the preceding

environmental testing. Both a detector module alignment (TPS-28) and performance (TPS-24)

test were executed on the module. Both tests were carbon-copies of the tests done previously on

the module.

The results from TPS-28 indicated that no major changes in LAD orientation were

detectable following vibration in three axes. All measurements were consistent with previous

data obtained subsequent to module fabrication. In addition, TPS-28 provided an opportunity to

directly observe the LAD crystal and assembly. The LAD was examined for any debonding or

cracking which may have occurred during vibration. Especially close attention was paid to those

LADs which were cracked during the LAD thermal stress test. No visible indication of cracking,

debonding, or structural deficiencies from the module vibration were found with respect to the

LAD crystal assembly. This result further re-enforced the idea that LAD crystals could maintain

their structural integrity after initially suffering cracks during thermal cycling.

The results from TPS-24 were equally important. The test executed on the module was

identical in every way to the test done before vibration. The same procedure, GSE, and person-

nel were used in the testing after vibration. Results from this second test were consistent with

those from the first run. No sign of degradation in module performance was apparent from the

vibration. Resolution measurements from the SD and LSD, as well as CPD coincidence and

rejection rates, are provided in Tables 3.32, 3.33, and 3.34.
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Table3.32. SDFWHM Resolution% from TPS-24After Vibration
FWHM Resolution% (energyin keV) Peak-to-Valley

DetectorModule 88 511 662 1275 1173 1332 2614 Ratio
P-F 12.1 8.0 6.7 5.2 5.5 5.2 4.3 17.4
B0 23.5 7.9 7.0 5.6 5.6 5.4 3.9 14.3
B1 --- 7.6 6.9 5.7 6.3 5.8 3.5 7.5
B2 25.7 8.3 7.3 5.9 6.3 5.8 5.1 7.7
B3 17.1 7.4 6.8 5.2 7.0 6.0 4.2 7.5
B4 .... 8.9 7.5 6.4 6.8 7.4 3.5 ---
B5 ---_ssing---
B6 25.4 7.9 7.3 5.9 6.4 5.7 4.0 10.0
B7 19.1 8.9 7.8 6.0 6.6 6.1 4.4 7.7

Table3.33. LAD FWHM Resolution% from TPS-24After Vibration
FWHM Resolution% (energyin keV)

DetectorModule 88 511 1275

P-F 31.8 17.1 17.1
B0 30.0 22.7 20.4
B1 .... 17.4 15.9
B2 27.4 16.7 14.5
B3 29.6 18.3 16.3
B4 29.4 19.2 17.1
B5 ---Missing---
B6 31.6 23.9 22.4
B7 29.4 20.1 19.5

Table3.34.
DetectorModule

P-F
B0
B1
B2
B3
B4
B5
B6
B7

CPDRejectionandCoincidenceRatesfrom TPS-24After Vibration
CPDRejectionRate(cps) CoincidenceRate(cps)

30.4 27.4
26.0 24.7
25.3 28.2
26.1 23.8
25.6 33.8
26.7 28.8

-- Missing--
29.1 24.8
27.5 23.4
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Severalitems regarding the data displayed above are worth mentioning. First, the test

procedure for detector module B5 is missing from the data archive. Therefore, no measurement

results are included here. The spectra, however, are available from the BATSE library if

required. Second, several items in the test procedures were not filled in by the test conductors.

These entries have also been left open in the tables above. Furthermore, the same caveat

concerning the lowest energy measurements which was mentioned regarding other TPS-24

results applies here as well. The reader is encouraged to use TPS-59 results because of the better
measurement conditions.

Despite the measurement problems at low energies, the results do indicate that the

performance of the detector module was not degraded by the vibration testing. SD and LAD

resolutions show no major changes from pre- to post-vibration. The CPD table shows good

agreement with the expected muon rate and compatible rejection and coincidence rates.

At this point, the test flow for the protoflight module deviates from that of the other

modules. Following the post-vibration tests, the Protoflight was moved to MSFC Building 4476

for thermal balance and thermal vacuum testing. All other modules, upon completion of the

post-vibration tests, were moved to the Angular Response Test Facility, or tested in integrated

fashion with the CEU prior to further module testing. The details of the protoflight thermal tests

will be discussed in the following section.

g. Protoflight Thermal Balance and Thermal Vacuum Testing

(1) Test Configuration and Overview

The thermal balance and thermal vacuum test on the protoflight module began on

March 2, 1988. The detector module was fitted with several test-only heaters and moved to

chamber #7 in MSFC Building 4476. A flight thermal insulation blanket was installed over the

detector module to simulate conditions on the spacecraft. A full set of electrical GSE was

connected through the chamber wall to the module using a new and longer set of cables than for

all previous tests. These longer cables proved to be important later on in the test. The detector

module heaters were activated and monitored through a heater break-out box and the J5/6 test

set. The data from the heaters were collected on the Test Laboratory's SCATS system. Finally,

an isotope holder and drive system was installed in the chamber, and controlled through a power

supply and switch mounted outside. Figure 3.19 details the configuration for the detector module
test.
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Figure 3.19. Detector Module Thermal Vacuum Chamber Configuration.

The use of radioactive sources was required for the test, and the chamber wall was too

thick to efficiently illuminate the detector module without the use of extremely active samples.

To overcome this problem, a special source holder was developed which was placed inside the

chamber. The holder consisted of a deep aluminum cup, with an outer diameter of 9.53 cm and a

height of 22.23 cm. The aluminum wall was 0.635 cm thick, which allows gamma rays of

moderate energy to escape easily. At one end of the housing, the aluminum cup was flanged

outward, where six holes allowed for the fastening of the cup to an aluminum base-plate. The

interface was sealed with a small O-ring.
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Interior to the holder, a small dc motor was connected to a rubber conveyor belt. This

belt was oriented in the vertical direction and wound around a small pulley at the top of the

holder. Three radioactive isotopes, Cs 137, Co 60, and Cd 109, were glued to the belt, each with

a 90 ° phase-separation between them. The fourth location was empty, allowing for all sources to

be shielded. This entire internal assembly was surrounded by a cylinder of lead and tin, except

for near the top pulley. The dc motor was controlled by a power supply outside the chamber. To

expose a source, the test conductor powered the motor until the desired isotope was at the top of

the upper pulley, unshielded by the lead and tin wrapping. Each location was identified by a

resistance-encoded shaft which indicated the position of the source through a unique resistance

measurement. In this fashion, the test conductor could fully control the exposure of isotopes to

the detector module without seeing or handling any radioactive material outside the chamber.

Unfortunately the mechanism did not operate as well as hoped. Problems occurred at cold

temperatures with the motor, and isotopes came unglued from the conveyer belt. The test was

interrupted on two occasions to fix the holder.

(2) Pumpdown and Thermal Balance Testing

The thermal balance portion of the test was executed first, commencing on March

2, 1988. After the module was placed inside the chamber, an iteration of TPS-58 was executed

to insure that the module was healthy following the transportation from Building 4705. With this

test completed, the detector module was left powered on, and the chamber was pumped down.

TPS-56 was then initiated to monitor the +HV and count rates as the pressure went through the

corona region. Leaving the +HV on during the pumpdown and through the "corona-region" was

done to verify the integrity of the BATSE +HV system, which consists of potted components,
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+HV cable, and Reynolds-sealed connectors. Rates were monitored by using a frequency

counter and an oscilloscope. These rates were continually checked throughout the evacuation of
the chamber.

Section III.A.3.c. of this document references the CPD rapid pumpdown test (TPS-67)

and the sintered bronze vent which was added to the CPD following evidence of insufficient

venting. The evidence cited there is two-fold, namely the damage to the CPD which occurred in

the system thermal vacuum test, and the loss of count rate due to the separation of the PMTs

from the DC-93-500 optical coupling. This behavior should have been apparent in the

protoflight module at the time of pumpdown, since the CPD on the module is no different than

those on other detector modules. Review of the test log from the protoflight test indicates that

this behavior possibly was present, but attributed to another cause. A short time after the

pumpdown began, a short-circuit and loss of a transformer occurred in the SCATS GSE rack.

However, the event that caused a large noise and a small amount of smoke from the GSE rack

was not serious. Prior to this time, the rates on the detector module were being monitored every

hour. Since the SCATSs ystem was connected to the detector module through the GSE boxes, all

+HV on the module was powered off after the incident as a precaution. When the +HV was

re-powered, the rates on the CPD were noticeably lower than before. The CPD was powered off.

It was thought that the incident with the SCATS system had somehow affected the +HV supply

or the PMTs on the CPD. Because the incident happened late in the evening, the CPD remained

off for approximately 14 hours until the BATSE lead engineer could view the problem. Other

rates were nominal; therefore, the +HV to the other supplies remained on. When the CPD was

powered again, all rates were nominal. The distinct possibility exists that the drop in rates was

unrelated to the SCATS problem, except the unfortunate coincidence of timing, and that instead

it was due to a separation of the PMTs from the optical coupling as was seen later in the full-

system, thermal vacuum test.

The thermal balance portion of the test was under the control of the BATS E thermal

engineer, Mr. Dave Clark (ED63). The purpose was to determine the thermal behavior of the

detector module and to verify the thermal design. Configuration of the detector module was

altered depending on the needs of the thermal engineers to correcdy assess the module's be-

havior. A minimum, maximum, and nominal power configuration were used. These power

states differed in the level to which the +HV was commanded. The total power dissipation of the

+HV is rather small, however. Nominal settings of the +HV only attain a dissipation of ap-

proximately 1 W in the module. Under normal operations, each module draws about 0.31 A at

+15 V for a power dissipation of about 4.5 W. Through the thermal balance test, it was shown

that the detector module has the capability to easily radiate this energy away through the mir-

rored radiator, and that the thermal blankets function well in maintaining a safe operating

temperature range for the detectors and a low temperature rate of change.

(3) Thermal Vacuum Testing of the Protoflight Module

The thermal vacuum portion of the test immediately followed the thermal balance

testing. The test consisted of six complete cycles in temperature, ranging from +40 °C to - 10 °C.
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At all times,therate of change of temperature was kept below 5 °C/hr to protect the NaI crystals

on the detector from further damage. The health of the detector module was assessed at many

points throughout the test with the use of TPS-57, the performance test in thermal vacuum. The

test is very similar to TPS-24, but procee_ in a slightly different order. The first measurements

after power-up were a full check of all housekeeping values and temperature measurements.

After proper temperature readings were verified, a check of each bit of the five +HV supplies

was executed, and their proper housekeeping values were checked. Count rates were computed

for FAST1, SFAST2, and PLASTIC, and a 30-minute stabilization period was begun. At the end

of ths stabilization period, rates were compared to those computed at the beginning for

consistency. If stable, a full check of the SD electronics (identical to that of TPS-24) was begun.

This included checks of the SMQT minimum duration, and each bit of the programmable LLD

was mapped at the three SD gains. Resolution measurements were taken (when the source

holder was functioning) in the same fashion as in TPS-24. Large area detector tests and charged

particle detector tests were identical to the tests done in TPS-24. This test concluded with

another check of the 32 housekeeping parameters and temperature measurements. The entire test

duration was approximately 4 hours. The temperature of the module was maintained at a

constant value throughout TPS-57.
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Figure 3.21. Temperature Profile of the BATSE Protoflight Thermal Vacuum Test.
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Themodule'sperformancein thermal vacuum was tested a total of 22 times while the

module was inside the chamber. Two of these tests were done at ambient temperature and

pressure to verify the module's health before and after depressurization of the chamber. Table

3.35 details the times, dates, and temperatures at which this test was performed.

Table 3.35. Iterations of TPS-57 During Protoflight Thermal Vacuum Testing.

Iteration Thermal Cycle Chamber Temp. Conditions Date
1 Pre-Test Ambient Ambient 3-2-88

2 1 40 °C Hot Case 3-8-88

3 1 -5 °C Cold Start 3-9-88

4 2 40 °C Hot Case 3-11-88

5 2 -10 °C Cold Case 3- 2-88

6 2 -5 °C Cold Case 3-12-88

7 3 40 °C Hot Case 3-13-88

8 3 -10 °C Cold Case 3-15-88

9 4 40 °C Hot Case 3-16-88

10 4 -5 °C Cold Case 3-17-88

11 4 5 °C Cold Case 3-17-88

12 4 15 °C Mid-Range 3-18-88

13 4 25 °C Mid-Range 3-18-88
14 5 40 °C Hot Case 3-19-88

15 5 -5 °C Cold Case 3-20-88

16 5 5 °C Cold Case 3-20-88

17 5 15 °C Mid-Range 3-21-88

18 5 25 °C Mid-Range 3-21-88

19 6 40 °C Hot Case 3-22-88

20 6 -10 °C Cold Case 3-24-88

21 6 -5 °C Cold Case 3-24-88

22 6 Ambient Ambient 3-28-88

During the test, the radioactive source holder and drive assembly did not operate as

planned. The chamber was repressurized and the test interrupted on March 10 and March 22,

1988, for repair of the source holder. Consequently, the data from TPS-57 are not consistent

from test to test in the number of isotopes used and spectra accumulated. At different times, one

or more of the three isotopes may not have been available to illuminate the detector. After the

detector module reached its final cold-case state, it was allowed to warm up without the impetus

of additional heaters or input energy. This was done at the request of the thermal engineers who

used this behavior in constructing the BATSE thermal model. The slow ramp rate to ambient is a

direct result of allowing the module to simply "drift" upward to the ambient temperature. The

final iteration of TPS-57 comes approximately 4 days after the previous test.
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(a) Resultsof Thermal Vacuum Testing

The protoflight thermal vacuum test was the first opportunity for the BATSE

team to examine the operation of the detector module over a wide range of temperatures and

under vacuum conditions. TPS-57 was used to monitor the health of the module, identify all

hard failures which may occur during the test, and obtain a broad characterization of the module

performance over the range of temperatures. This test was primarily an engineering test, and

consequently the results are of relatively little scientific interest. These results are important,

however, and are outlined in Table 3.36.

Table 3.36. BATSE Protoflight Thermal Vacuum Test Result Summary

• Detector module thermal control system design was verified

• Detector module thermal model was constructed

• +HV system basic design was verified in vacuum*

• Detector gains were stable to < 5% over the temperature range

• Detector resolutions vary by < 2% (size of error in measurement) over the temperature

range

• Temperature sensors operate properly over the temperature range

• Detector module heaters and thermostats operate properly

• Detector module electronics (MQT, FASTn, LLD) function normally over the temperature

range

• LED light output was stable over the temperature range

• Detector module hot and cold start capabilities were verified

• Subsequent minor design changes were made after the system thermal vacuum test.

The record copies of the 22 executions of TPS-57 are on file in the BATSE library with

other data from the protoflight module. These documents contain all housekeeping, resolution

and count rate measurements made during the test at the various temperatures. TPS-57 generated

a large amount of detector spectra, and these are also available for inspection in the BATSE

library. The spectra are contained on 5.25" floppy disks, in RX-50 format. They are. directly

readable onto an ND-76 PHA with the appropriate disk drive.

(b) BATSE Large Area Detector "Notch" Anomaly

The first paragraph of section III.B. 1.g(1) mentions the use of long cables to

connect the detector module to the GSE. Extensions were required for the data and power
connections to the module because of the isolation of the detector module inside the vacuum

chamber. The cables used were of approximately the same length as those cables used on the

GRO to connect the eight modules to the CEU. With the longer cables, the detector module was

in more of a flight-like configuration than with the shorter test cables used in all previous testing.

The use of these longer cables uncovered a serious anomaly in the LAD spectra which was not

detectable using the shorter connections.
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Figure 3.22. BATSE Large Area Detector Spectrum with "Notch" Feature.

Figure 3.22 shows a LAD background spectrum taken from the 12th execution of TPS-57

at a temperature of 15 °C. The spectrum shows a distinct "notch" feature at approximately

channel 37. This feature was not present in any detector module spectra prior to the introduction

of the long cables in the thermal vacuum test. Other detector modules, when connected with

long cables (for example in the angular response test), show identical features in the LAD

spectra. The feature is best described as a differential non-linearity that was limited to the

100-200 keV (uncompressed channel 25-45) region. Both the depth and the location of the

"notch" were dependent on temperature and the setting of the programmable LLD. As the

temperature was increased, the "notch" location moved higher in channel space, but became less

pronounced. At temperatures near 40 °C, the feature was not always present. After extensive

work by Mr. Robert W. Austin, BATSE lead engineer from the Space Science Laboratory of

MSFC, the problem was traced to coupling of the digital outputs of the FAST discriminators into

the analog circuit of the MQT, which digitizes the signals from the LAD PMTs. A small amount

of charge was coupled into the analog path for signals meeting the threshold of the FAST2

discriminator on the LAD. This produced a "depressed region" in the charge-to-time conversion

(spectrum) of the LAD because the additional charge coupled into the analog path caused these

events to be digitized into a higher channel number than was appropriate in this region (and
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above). This problem was never seen in the BATSE SD spectra, with or without the long cable

connections.
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The solution to the "notch" problem was to provide additional isolation between the

signal and ground paths associated with both of the circuits involved. This isolation was

accomplished by re-routing the analog signal grounds within the DEU box, increasing the signal

isolation resistor (R9) on the 42A30970 (LAD) board from 200 Ohms to 2.49 kOhms, and

removing the coupling caps (C14 - C17) at the FAST discriminators. Corresponding changes

were made to the 42A30968 (SPEC) board. The resistor changed on this board is referenced as

R9, and the associated SFAST coupling caps are designated C10 - C13. The reader is encour-

aged to examine the drawings of these boards if further information on the re-work is needed.

DEUs from each of the nine modules were modified in this manner to correct the problem.

Because the work involved changes to both the LAD and SD data circuits, extensive amounts of

re-testing were required. The details and results of these tests are outlined in a subsequent

section.
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h. DEU Analog Board Adjustments for LAD and SD--TPS-60

In order to effect the modifications described in the previous section, it was necessary to

remove the covers and boards from each of the nine DELls. Additionally, previous tests had

shown that not all module spectra exhibited the same pedestal channel, and that the four FAST

discriminators from the LAD and SD were not corresponding to the same energy channel in all

detector modules. It is important to have each of the FAST discriminators from the various

modules starting and ending on the same energy boundaries. If different detectors have different

FAST thresholds, the burst data, which are summed from different detectors in many cases, will

be convoluted with counts from different energies being added together in the same energy bin.

This condition would cause a large amount of difficulty in the analysis of data. The BATSE

team decided that while the DEUs were open, the opportunity to fine-tune all adjustments was

conveniently available. Furthermore, this test would provide a chance to measure the energy

thresholds of the SD's FAST3 and FAST4 discriminators, which lie above the energy range of

the SMQT. In light of these considerations, TPS-60, the BATSE DEU/DM SD, and LAD analog

board adjustment procedure was executed.

The GSE for the procedure is identical to that of TPS-24 (see Figure 3.17). The ND-76

PHA is gated with the output from the J2-II box, which is dependent on the module signal

selected. The LAD was adjusted first. Adjustments were made to potentiometers RP2 and RP3

on the 42A30970-1 (LAD MQT) board. RP2 is the potentiometer which sets the MQT pedestal.

RP3 adjusts the gain of the MQT. Gain adjustments of the MQT were required to set the upper

energy threshold of FAST3, because the threshold of the discriminator is not adjustable. Only

the lower level of FAST1 is programmable, while the trigger levels of the others are fixed.

FAST3 is the higher of the two burst channels, and is desired to have an upper threshold of 300

keV. At a dispersion of 5 keV/channel with a pedestal of 6 channels, this boundary lies at MQT

channel 66. Thus the adjustment was made to the MQT gain so that MQT channel 66

corresponded to the upper edge of the fixed FAST3 discriminator. Changing the MQT gain

invalidates the previous +HV values used to set the energy to channel relation. The adjustments

of RP2 and RP3 are not independent, so that adjusting one affects the settings of the other.

Consequently, these adjustments were iterated until both criteria were met. At the completion of

this section of TPS-60, the LAD MQT pedestal was located at channel 6, and the upper edge of

the FAST3 discriminator was located at MQT channel 66. Two 300-second integrations were

obtained with the ND-76 gated on FASTID and on FAST3 to document the location of these
thresholds.

Adjustments of the SD potentiometers proceeded in a different fashion. Because only

SFAST2 lies within the range of the SMQT, only potentiometer RP3 on the SMQT board was

adjusted. The setting of this potentiometer locates the pedestal of the SMQT, and was adjusted

to place the pedestal in channel 40. The rationale for the pedestal at this location was discussed

in section III.B. 1.d(2).

Following adjustment of the pedestal, SFAST3 and SFAST4 were each connected to a

timer/counter and a 1000-second integration was performed. An average rate for each of the two
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discriminatorswas computed. This rate was compared to a 57,600-second integration generated

with a flight-like SD in a different electrical configuration. The flight-like SD was powered

through an adjustable +HV supply, and its gain was set low enough to bring 100-MeV events

onto the scale of the PHA. An energy calibration and integral rate was computed for every

channel in the spectrum obtained through the flight-like SD. To determine the energy threshold

of the SFAST3 and SFAST4 discriminators, the rates obtained in the 1000-second integration

were compared to this reference spectrum The channel in the reference spectrum which

possessed the same integral rate as the SFAST integration was deemed to be the location of the

SFAST threshold. The energy of the SFAST threshold is then determined by the energy-channel

calibration of the reference spectrum. Obviously the answer obtained is dependent on the +HV

value to which the flight SD is commanded. All of the TPS-60 measurements were done with

the SDs commanded to the 1X gain settings obtained in TPS-24. The results of the SFAST

energy measurements for the eight flight detector modules are contained in Table 3.37.

Table 3.37. SFAST3 and SFAST4 Threshold Energies Measured at 1X Gain in TPS-60

Energy Threshold (MeV)

Detector Module SFAST3 SFAST4

B0 28.2 45.0

B 1 26.6 46.9

B2 29.4 45.9

B3 28.8 47.2

B4 26.3 42.5

B5 29.1 39.3

B6 29.1 48.5

B7 29.4 48.2

The data presented in the table above were taken after the pedestal adjustment was made

to RP3 on the SMQT board. Adjustment of the pedestal effectively changes the gain of the

detector slightly. The +HV must be adjusted to compensate for the MQT gain change if the

standard dispersion of 4.0 keV/channel is to be maintained. These measurements were

accumulated with the old +HV values, but a slightly changed MQT gain. In all cases, however,

the adjustment to align the pedestal into channel 40 was minimal. Consequently, the effect on

the measured threshold of the SFAST discriminator is small. Measurements of these thresholds

at other gain settings were taken at TRW prior to spacecraft integration, and after installation on

the GRO. These results will be presented in subsequent sections of this document.

i. Detector Module Performance Test After DEU Modification--TPS-59

After modifications were made to each DEU, a full-scale detector module performance

test was required. The BATSE team determined that the modifications made to the DEU did not

invalidate the vibration tests performed on each module; therefore, these were not repeated. The

performance test flows much in the same vain as TPS-24. The configuration of the GSE required
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for this test is identical to that of the previous performance test. Because of the long period of

time needed to characterize, isolate, identify, and fix the problem of the "notch" in the LAD

spectra, the iterations of TPS-59 were not complete until July 1988. Table 3.38 indicates the

time of execution of TPS-59 for each of the eight flight detector modules.

Table 3.38. Dates of TPS-59 Iterations Following DEU Modifications
Detector Module Date of First TPS-59

B0 July 1, 1988

B1 June 17, 1988

B2 June 27, 1988

B3 June 29, 1988

B4 June 29, 1988

B5 June 24, 1988

B6 July 6, 1988

B7 June 30, 1988

(1) Initializations

As with TPS-24, this test begins with a determination of all +HV values required to

meet particular pre-determined gain settings. Because the pedestal and (in the case of the LAD)

the gain of the MQT were adjusted, new voltage values were required to obtain the desired

dispersions in the detectors. Voltage values for the LAD were determined at a dispersion of 5

keV/channel, and for the SD at 1 keV/channel, 4 keV/channel, and 10 keV/channel. These gains

are the same as those used in TPS-24. Table 3.39 contains the revised voltage values for these

gain settings.

Table 3.39. Revised +HV Values for Standard Gains - TPS-59

Detector Module Number

HV Suppl]t P-F B0 B 1 B2 B3 B4 B5 B6 B7

PMT-A 1665 1480 1614 1508 1559 1610 1646 1453 1654

PMT-B 1650 1480 1591 1476 1587 1642 1602 1350 1626

PMT-C 1646 1559 1610 1535 1571 1665 1638 1390 1677

CPD 1406 1429 1335 1245 1276 1240 1221 1304 1209

SD-1X 1181 1256 1303 1248 1169 1220 1138 1232 1319

SD-4X 1449 1543 1606 1531 1429 1496 1386 1512 1622

SD-0.4X 1051 1106 1150 I106 1035 1083 1012 1094 1165
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Table3.40. Chan_esin +HV Valuesfrom TPS-24toTPS-59
DetectorModuleNumber

HV Supply P-F B0 B1 B2 B3 B4 B5 B6 B7
PMT-A 127 78 110 67 79 114 102 80 103

PMT-B 124 71 103 63 79 103 82 70 91

PMT-C 122 150 106 66 87 130 79 82 102

CPD These values were not adjusted for TPS-59

SD-1X 21 -16 0 0 8 -12 8 7 8

SD-4X 180 -16 -4 -4 8 -4 0 1 -4

SD-0.4X 48 -28 4 8 11 66 0 -1 15

Table 3.40 displays the changes in +HV values from TPS-24 to TPS-59. Inspection of

the table shows that the LAD +HV values were changed significantly more than the SD values.

The contributors to the need for +HV adjustment are the re-work to fix the notch problem,

adjustment of the LAD pedestal, and changing the MQT gain to align FAST3 and MQT channel

66. The change in the MQT gain was the largest perturbation to the previous gain setting. The

SD, which had no change of the MQT gain, required little +HV adjustment (with the exception

of the P-F module), indicating that the other two operations affect the gain much less severely.

The protoflight module was the most maladjusted of all the modules. The changes in LAD +HV

values for each module are all of the same "family." Selection of the PMTs for flight on each

module was heavily dependent on matching of PMT behavioral characteristics. The closeness of

the required adjustment for each PMT on a given module is an indication that the PMTs were

operating in the same manner, with no tube displaying divergent behavior from the others on that

particular module.

(2) Spectroscopy Detector Measurements

Spectroscopy detector measurements began with a check of the stabilization of the

SD PMT, similar to what was done in TPS-24. Amplitude and duration measurements of the

four SFAST discriminator signals were made, in addition to a check of the bi-polar nature of

these signals. Typical amplitudes and durations were measured to be 4.25 V, and 0.42 Its,

respectively. A measurement of the SMQT signal was also executed. Unlike TPS-24, however,

the measurement consisted simply of a check of the dual-polarity of the signal and examination

by inspection of the general form of the signal. Because this test was executed immediately after

TPS-60 (in some cases on the same day), which set the pedestal of the SMQT signal, the BATSE

team felt no need to measure the pedestal again.

After a check of the SD PMT stability, which was identical to that of TPS-24, the

LLD was tested at 1X and 4X gains. Three isotopes, Cd 109, Cs 137, and Co 57, were placed

into the source holder to provide energy references across the region of the SD spectrum.
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Spectraof 60-second duration were accumulated at nine different settings of the LLD with the

detector at IX, and then 4X gain. The 0.4X gain setting was not used in the check of the

programmable LLD.

(a) 4X Gain Resolution Measurements

Following the check of the programmable LLD, the SD was commanded into

the 4X gain mode to provide a dispersion of 1 keV/channel in the uncompressed SHER

spectrum. The desired voltage was verified, and a 300-second background accumulation was

obtained. This background spectrum was stored to floppy disk and used in subtraction from

subsequent source-spectra at this gain. Isotopes of Co 57 and Cs 137 were used in these

accumulations to provide measured resolutions at 14 keV, 32 keV, and 662 keV while the

detector was commanded to the 4X gain setting. These measurements were the first low-energy

determination of the photopeak resolution since the initial SD TPS-16 performance tests. Unlike

previous resolution measurements where the dispersion was calculated using an oscilloscope

measurement of the pedestal, calculations here used two photopeaks of known energies in

determining the number of keV per channel. This affords a more accurate determination of the

resolution by eliminating the subjective observation of the pedestal channel in an oscilloscope.

Determination of the SD resolution in the energy region exploited by the 4X gain is an important

part of predicting BATSE science capabilities, especially in light of the discovery of cyclotron

absorption lines in some gamma ray burst spectra near 20 and 40 keV. Results from the 4X gain

resolution measurements are provided in Table 3.41.

Table 3.41. Spectroscopy Detector FWHM Resolution % at 4X Gain -- TPS-59

Energy Resolution % (FWHM) (in keV)
Detector Module 14 32 662

B0 25.7 21.4 6.7

B1 25.8 23.3 7.1

B2 35.7 24.2 7.7

B3 49.8 21.9 7.2

B4 40.7 27.4 7.3

B5 40.2 25.5 7.3

B6 38.6 25.9 7.5

B7 35.8 26.6 7.3

The results presented in Table 3.41 compare favorably with the results obtained in
TPS-24 before and after the environmental tests. Measurements taken at 14 keV were difficult to

obtain in several cases because of the photopeak's proximity to the lower-level discriminator

cutoff. Nonlinearity in the digitization of PMT signals near the threshold of the LLD may distort

the normal Gaussian profile of the photopeak, leading to inaccuracies in the measured resolution
at 14 keV.
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(b) 0.4X GainResolutionMeasurements

Thespectroscopydetectorwascommandedto the0.4X gainsettingfollowing
thecompletionof thepreviousresolutionmeasurementsathigh dispersion.Thevoltageusedat
the0.4X gainsettingprovidesadispersionof 10keV/channelin theuncompressedregionof the
SHERspectrum.Isotopesof Na22andCs 137wereusedto obtainresolutionmeasurementsat
energiesof 511and662keV. Eachaccumulationlasted300 seconds,andabackground
spectrumwasalsoobtained.Thesespectrawerestoredonto floppy disk. Resultsfrom these
measurementsaresummarizedin Table3.42.

Table3.42. SpectroscopyDetectorFWHM Resolution% at 0.4XGain - TPS-59
Resolution% (FWHM) (energyin keV)

DetectorModule 511 662
B0 7.9 7.5
B1 8.7 7.9
B2 8.8 8.6
B3 8.5 8.1
B4 9.8 8.2
B5 8.3 7.3
B6 9.6 8.3
B7 9.5 7.3

Themeasurementaccuracyof theresultspresentedin Table3.42is notashigh asthe
accuracyobtainedat higherdispersion.Becauseof thecompressedgain,thephotopeaksare
containedalmostentirelywithin aregionof 5 or 6 channels.Insidethisregion,it is difficult to
determineexactlywherethehalf-maximumpoint of thephotopeakis located. An errorassmall
asone-halfof achannelin the locationof theFWHM creates a 20%-order error in the width used

to determine the resolution. The reader is encouraged to consult measurements made at nominal

or 4X gain for more accurate results.

(c) 1X Gain Resolution Measurements

The most comprehensive set of photopeak resolution measurements taken at

the module level on the spectroscopy detector were acquired during TPS-59. The IX gain

measurements were executed with isotopes of Cd 109, Na 22, Cs 137, and Co 60. These sources

provided photopeaks ranging from 88 keV to 1.332 MeV. All dispersions were calculated using

two photopeaks of known energy, adding to the reliability of the calculation. In addition to

resolution measurements, a photopeak separation measurement was done with the Co 60 isotope.

Each of the integrations taken were 300 seconds in duration, and the sources were placed at the

standard 50.8-cm distance from the detector. Background accumulations were taken, stored to

disk, and used in subtraction from isotope spectra. The results from the fast iteration of TPS-59
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following the detector electronics re-work are summarized in Table 3.43.

Table 3.43. Spectroscopy Detector 1X FWHM Resolution % from TPS-59

FWHM Resolution % at Energies Shown (keV)

Detector Module 88 511 662 1173 1275 1332

B0 11.8 8.0 7.2 5.8 5.3 5.5

B1 13.9 8.2 7.2 6.6 5.7 6.0

B2 12.7 8.3 7.5 6.7 5.7 5.9

B3 15.9 8.5 7.9 7.3 6.5 6.3

B4 15.5 8.4 7.3 6.4 5.8 5.8

B5 14.8 7.9 7.1 6.2 5.8 5.7

B6 17.0 8.3 6.4 6.2 5.5 5.5

B7 14.1 8.5 7.5 6.8 5.9 6.1

The results in Table 3.43 represent the most reliable measurements of SD photopeak

resolution taken to that point in the testing program. Each of the tests were executed with the

same GSE in a span of 15 days, and with the exception of B6, were done by the same three test

conductors. Comparison of these results to those of TPS- 16, the initial performance test, shows

no detectable degradation in the performance of the SD at 662 keV. The resolutions measured in

this iteration of TPS-59 served as the benchmark resolutions for the detector module test

program.

(3) Large Area Detector Measurements

(a) LAD Electronics Testing

As was done in TPS-24, the large area detector portion of the test followed the

spectroscopy detector measurements. The first portion of this section involved testing of the

LLD. Isotopes of Cs 137 and Cd 109 were placed in the source holder to provide energy

references to the various LLD settings. Eight settings were checked and a 120-second integration

obtained at each. These spectra were stored onto floppy disk. Following the check of the

discriminator, LAD signals were tested. The four FAST discriminators were checked for

bi-polarity, and the differential properties of the discriminators were verified. The FAST dis-

criminators were then mapped in MQT space through the use of the ND-76. The PHA was fed

the MQT signal, but gated with the four discriminators. A spectrum was thus produced only over

the energy region of the discriminator used to gate the PHA. The channel boundaries were

determined and recorded for each of the FAST signals. Table 3.44 summarizes the results of this
measurement.
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Table3.44. Mappingof FASTDiscriminatorBoundaries into MQT Channel from TPS-59
Detector Module FAST1 FAST2 FAST3 FAST4

B0 LLD - 15.5 15.5 - 26 25.5 - 66 66 and higher

B1 LLD - 16 16 - 25.5 26 - 64 65 and higher

B2 LLD - 16 16 - 25.75 25.5 - 66 66 and higher

B3 LLD - 16 16.5 - 26 26.5 - 66 67 and higher

B4 LLD - 16.25 16.5 - 25.75 27 - 66 67 and higher

B5 LLD - 16.5 16.5 - 26 26.5 - 67 67.5 and higher

B6 LLD - 15.5 16 - 25 26 - 66 67 and higher

B7 LLD - 17 17.5 - 26.5 28.5 - 66 70 and higher

Typical Energy 25-50 keV 50-100 keV 100-300 keV > 300 keV

The lower level of FAST1 is determined by the setting of the programmable LLD. The

channels listed in Table 3.44 are linear MQT channels and were determined by inspection from

the 120-second spectra obtained with the gated PHA. The boundary channel was deemed to be

at the location which contained half as many counts as the f'wst channel where the FAST

discriminator was fully present. Therefore, for those discriminators which appear in the above

table to have "gaps," there is still some continuation of the discriminator beyond the channel

shown.

FAST1 was designed to cut-off at linear MQT channel 16, corresponding to an energy of

50 keV. FAST2 and FAST3, the burst trigger channels, were intended to cover the region of 50 -

300 keV, or linear channel 16 - 66. FAST4 would then contain all counts above 300 keV. Table
3.44 indicates that the measured locations of the discriminators are well correlated to the desired

locations. Exceptions are detector module B7, where FAST1 was measured to start in channel

17.5 (107.5 keV) and detector module B1, where FAST3 ends in channel 64 (290 keV). These

measurements were repeated at TRW prior to spacecraft integration.

The LAD MQT signal was observed by the test conductor, who checked for bi-polarity

and verified the shape of the signal was nominal. Having recently completed TPS-60, the

BATSE team chose to eliminate measurements of the MQT pulse which were done in the

previous test in greater detail.
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(b) LAD ResolutionMeasurements

Measurementsof LAD FWHM photopeakresolutionswereexecutedin the
nextsectionof TPS-59. Isotopesof Cd 109,Na 22,andCs 137wereindividually placedat the
standard50.8-cmlocation,and300-secondintegrationswereobtained.A 300-second
backgroundspectrumwassubtractedfrom thesourceintegration,andtheresolutionswere
computed.All dispersionswerecalculatedusingknownphotopeakenergies,insteadof the
previousoscilloscopemeasurementof thepedestalchannel.Theresultsfrom theinitial iteration
of TPS-59arecontainedin Table3.45.

Table3.45. LAD F'WHMPhotopeakResolutionsfrom TPS-59
F'WHMResolution% (energyin keV)

DetectorModule 88 511 662 1275
B0 23.5 17.8 16.9 18.8
B 1 26.8 18.5 16.3 14.6
B2 22.5 15.6 15.1 14.9
B3 25.6 18.6 16.7 17.0
B4 30.5 19.8 18.8 20.1
B5 28.9 22.5 21.1 20.4
B6 29.8 22.8 21.5 21.7
B7 26.6 20.6 19.0 22.2

Following themeasurementsof photopeakresolutions,a 120-secondintegrationwas
obtainedfrom eachof thePMTson theLAD. With two PMTspoweredoff, theremainingtube
wascommandedto its nominal+HV value. A Cs137sourcewasplacedin theholder,the
spectrumwasaccumulated,andstoredonto floppy disk. Thisprocesswasrepeatedfor the
remainingPMTs. Thethreespectrawerecomparedfor balance,resolution,andPMT uniformity.
Thesespectra,like all from TPS-59,areavailablein theBATSE library for inspection.

(c) OtherLAD Measurements

The LAD section of TPS-59 concluded with a mapping of the LED at five different command

settings. The LED was driven with an external wave-form generator at a frequency of 1.0 kHz,

in an identical manner as was done in TPS-24. For each of the five amplitude settings, a 60-

second integration was accumulated and stored to floppy disk. The LEDs were found to perform

in a manner consistent with pre-modification results.

(4) Charged Particle Detector Measurements

TPS-59 contained a test of the charged particle detector which was the same as the

measurement of TPS-24. A 300-second spectrum was accumulated from the LAD with the CPD

on, and in anti-coincidence mode. A second integration of 300 seconds with the CPD off was
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subtracted from the first. The difference in the two spectra is a measure of the rate at which the

CPD electronics rejects events. A third spectrum of 300-second duration was taken with the

LAD gain lowered to bring muons onto the scale of the MQT, and the CPD in coincidence mode.
If the CPD and its associated circuitry are functioning properly, the integral rate in this spectrum

above 0.6 x the peak muon deposition energy will be approximately the same as the rejection rate

obtained from the fast two spectra. The magnitude of the rate is dependent on test conditions,

such as the amount of mass overhead. Results from this iteration of TPS-59 are presented in

Table 3.46.

Table 3.46.

Detector Module

CPD Coincidence and Rejection Rates from TPS-59

CPD Rejection Rate CPD Coincidence Rate
B0 19.9 19.3

B1 19.6 19.5

B2 20.1 20.1

B3 20.0 19.8

B4 20.0 19.7

B5 19.7 19.4

B6 19.8 19.5

B7 20.2 19.5

The data in Table 3.46 indicate that the CPDs operated in an excellent manner during the

test. The coincidence rate and rejection rates are in good agreement, and the magnitude of the

rate is approximately what one would calculate from muons incident on the detector at a 54.7 °

angle from the zenith. The CPD testing concluded TPS-59. An extensive measurement of all

command bits in the HVPU was not done. A systematic check of all other data from the module

was not included in this iteration of TPS-59. However, voltages, currents, and other

housekeeping values were verified throughout the test.

j. Detector Module Angular Response Calibration--TPS-19

The BATSE detector module angular response calibration (I'PS-19) was the first pure

calibration executed on the detector modules. To this point in the program, all testing was

primarily of a functional, or engineering nature, designed to verify proper operation or to verify

compliance with certain specifications. TPS-19 had no pass-fail criteria, but instead served to
collect data for use in the construction of the BATSE detector response matrices. The test was

performed on four of the detector modules during the Spring and Summer of 1988. For several

of the modules, this was prior to re-work done to remove the notch in the LAD spectrum.

Although the notch feature was present in the spectra, the BATSE team was primarily concerned

with the relative heights of photopeaks taken from isotopes at different incident angles. The

presence of the notch feature does not affect the number of counts in the photopeak of any given

isotope, as long as the photopeak is not in the same region of the spectrum as the notch feature.
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The test returned data concerning the response of the LAD and SD to different energy gamma

rays at a large number of incident angles. The radioactive isotopes used in this test are
summarized in Table 3.47.

Table 3.47. Isotopes used in BATSE Angular Response Calibration -- TPS-19

Isotope Activity (mCi) Photon Energy(ies) (keV)
Barium 133 10 80, 356

Selenium 75 10 265, 136, 280

Cobalt 57 10 122, 136

Cobalt 60 10 1173, 1332

Cadmium 109 10 23, 88

Cesium 137 2 32, 662

Americium 241 20 60

The calibration was performed in MSFC Building 4705, a large open high-bay. The bay

was set up with two scaffolds, separated by a distance of 12.2 meters (40 feet). One scaffold was

used to hold the radioactive source, and the other was used to support the detector module and

some associated equipment. Each scaffold was elevated to a height over 4.6 meters. This was

done to help eliminate the scattering of gamma rays off of the floor into the BATSE detectors.

Figure 3.24 illustrates the organization of the high-bay during the test.

BATSE Detector Module

I I

23 °

\

Isotope Holder

1 1
•, 12.2 Meters ,,

4.6 Meters

Figure 3.24. BATSE Angular Response Calibration Facility.

The scaffold on the east end of the high-bay was used to hold the radioactive isotope

fixture. The fixture is a thick lead annulus, 14.6 cm in length, and 9.5 cm in diameter, with an
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inner diameter of 2.54 cm. Both the inner and outer surfaces of the holder were lined with 0.16

cm of tin to absorb any k-shell x-rays from the lead. The source itself is a stainless steel button
mounted on the head of a screw. This screw was affixed to a 4.4-cm plug which slides into the

lead annulus. The f'wst 1.9 cm of the plug near the source is brass, with the remainder of the plug

fabricated from lead. With the source inside the holder, the opening angle of the radiation beam

is 23 °. The entire annulus is mounted onto a Celestron telescope mount for accurate pointing.

The alignment of the radiation beam to the detector module was accomplished by transmission of

a laser beam from the source holder onto the optical alignment fixture. When the holder and

module were aligned, the beam was reflected back onto itself. After this pointing was

established, the source holder was not moved throughout the entire test of the module. Figure

3.25 illustrates the source holder's construction.

9.5 cm

Radioactive Isotope

\
23°

/

Figure 3.25. BATSE Angular Response Isotope Holding Fixture.

The detector module was bolted to an adjustable inclined wedge so that the large area

detector was oriented in the local vertical plane, perpendicular to the incident radiation.

Following the completion of the LAD testing, the module inclination was changed so that the
face of the SD was vertical. The SD was then tested. The entire module-fixture assembly was

mounted onto a rotating table, driven by a precision stepper-motor. This motor was

computer-controlled, so that any desired angle could be obtained to the nearest 0.1 °. The

orientation of the detector with respect to the radiation beam was controlled by this computer

from a remote location in the high-bay. A television camera mounted on the detector scaffold

platform allowed the test conductor to determine the detector position without having to climb

the scaffold, or enter the radiation beam.

The radiation environment near the detector module was monitored through the use of

three 7.6 cm x 7.6 cm Harshaw NaI detectors. One detector was placed over the top of the

detector module, with the other two placed on either side. These detectors were operated
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simultaneouslyto theLAD andSDto insurethat the radiation beam illuminated the module

evenly. For each LAD or SD spectrum taken during this test, there is a corresponding spectrum

from each of the three peripheral detectors.

Data from the LAD were accumulated at 40 different angles for each of the seven

isotopes and for background. Spectroscopy detector spectra were taken at only 12 angles. The

response of the LAD as a function of angle is critical for burst location; therefore, a detailed

collection of data was warranted. The SD, on the other hand, is not used for burst location, and

has a more uniform angular response because of its geometry. Figure 3.26 details the angles at

which LAD and SD spectra were accumulated using background and isotopes.
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Figure 3.26. Incident Beam Angles for LAD and SD Spectra Taken During

BATSE Angular Response Calibration (TPS-19).

Test angles for the LAD were concentrated near 90 ° and 270 ° . The response of the

detector is highly dependent on angle in this region. For a large number of gamma ray bursts,

one or more detectors will view the burst nearly edge-on. Because the response of the LAD is

most sensitive at these angles, the edge-on detectors can provide important information in the

localization of gamma ray Bursts on the sky.

Each of the 300-second integrations from the LAD and SD were stored onto floppy disk

and onto the Space Science Laboratory VAX computer for analysis. The primary data reduction

was done by Dr. Geoff Pendleton of the University of Alabama, Huntsville, and by Dr. Patrick

Lestrade of Mississippi State University. Figure 3.27 shows the response of the LAD as a

function of incident angle for two different input energies.
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Figure 3.27. LAD Response Profiles from TPS-19 at 100 and 500 keV Incident Energies.
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The dominant contribution to the response of the detector is the projected area. The

near-cosine response curve at small incident angles is indicative of this effect. However, the

response does not drop off as fast as a cosine function. Higher energy photons (662 keV for

example) produce a fairly flat response in the detector over the range of 0 ° - 50 °. In this region,

the projected area is getting smaller with increasing angle; however, the effective thickness of the

detector is increasing. This tends to offset the decreasing amplitude of the photopeak produced

by a smaller projected area. The LAD has a finite thickness (1.27 cm); therefore, the photopeak

does not vanish when the incident radiation is orthogonal to the detector face. Shielding from the

CPD, a non-uniform radial response across the face of the LAD, and other factors introduce

perturbations to the response at various angles. The spectra taken with the LAD facing away

from the isotope (angles between 90 and 270) show the effectiveness of the lead-tin lining of the

LAD light collection cone. The passive shielding is very effective up to energies approaching

300 keV. At 280 keV, the height of the photopeak is reduced from the face-on spectrum by a

factor of nearly 4. Near 662 keV, the photopeak height is only reduced by a factor of 2, and a

large number of photons are seen to Compton-scatter in the cone, but still deposit energy in the

detector. The local minimum in the photopeak height centered at 180 ° is caused by the shielding

of the three photomultiplier tube assemblies at the back of the cone.

Figure 3.28 shows the response of the spectroscopy detector over the range of angles used

in the calibration. The SD is offset from the front of the detector module and is exposed from the

side. Also, the presence of the beryllium window complicates the response at low energies

where the window is more transparent than the aluminum housing.

The response of these detectors was parametrized in a functional form which yields the

intensity in count-space at a given energy as a function of incident energy and angle. This

parametrization is given below.

Large Area Detector:

I(E-out) = A +

+

+

B*{COS(02 + 0.2618 radians)}

C* {COS (02 + 0.2618 radians) } 2

D*{COS(02 + 0.2618 radians)} 3

Spectroscopy Detector:

I(E-out) = A +

+

+

B*{COS(0 + 0.2618 radians)}

C*{COS(0 + 0.2618 radians) } 2

D* {COS(0 + 0.2618 radians) }2
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Figure 3.28. Protoflight SD Response Profile vs. Incident Angle for TPS-19.
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ThequantityI(E-out) is the intensity in count-space which the detector reports at energy

E-out for a 1.0 photon/cm z incident plane-wave of monochromatic gamma rays at a given input

energy (E-in). The coefficients A, B, C, and D are a set of four parameters unique to the desired

incident energy and output energy. Despite the detector similarities, each one has a completely

unique set of parameters A, B, C, and D for every given combination of input and output energy.

The user of the parametrization defines the incident energy (E-in) at the detector and the

energy of interest in the detector (E-ou0. These two energies uniquely define a set of A., B, C,

and D from which the detector response I(E-ou0 can be determined as a function of angle using

the parametrization on the previous page. This scheme has been implemented into BATSE

mission operations and data analysis software packages.

k. Detector Module Magnetic Susceptibility Calibration--TPS-25

The magnetic susceptibility calibration (TPS-25) was the final planned test in the

Detector Module test and calibration sequence. This procedure provided data used to determine

the effect of changing magnetic fields on the gain of the PMTs in the BATSE detectors. As the

GRO orbits the Earth, the orientation and intensity of the Earth's magnetic field changes,

producing changes of gain in the PMTs. From the data derived in this test, the gain change in the

detector could be determined as a function of the surrounding magnetic field's direction and

intensity.

This calibration was performed in the same facility as the angular response testing. The

detector module was located on the floor, away from any large metallic objects. A large wood

cubic frame was installed over the detector module so that the PMTs from the LAD were

approximately in the center of the cube. The cube measured 2.5 m on each side, and all six of the

cube faces were wound with wire coils which produced a magnetic field perpendicular to the

cube face when current was passed through them. Each of the six coils were controlled by

individual power supplies so that the magnetic field inside the cube could be manipulated in three

dimensions. Figure 3.29 outlines the configuration of the TPS-25 calibration.
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Figure 3.29. Detector Module Magnetic Susceptibility Calibration (TPS-25)

Equipment Configuration.
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Thetestbeganwith datacollectionin theambientmagneticfield of theEarth. The
modulewaspoweredup,anda 300-secondLAD spectrumwasaccumulated.A Cs 137source
wasthenplacedatthe standard50.8-cmtestlocation,andanotherintegrationcompleted.After
backgroundsubtraction,thespectrum'sparameterswererecordedandusedasthebaseline.This
measurementwasrepeatedfor theSD.

After datacollectionin theambientmagneticfield of theEarth,thecoils werepowered
upandadjustedto exactlycountertheEarth'sfield. Thiseffectivelyremovedanymagneticfield
from thecenterof thecubewherethePMTswerelocated. Backgroundandsourcespectrawere
accumulatedin thesamemannerasbefore.This measurementsequencewasexecutedfor the
LAD andSD in all of thefollowing magneticfield configurations:

Table3.48. MagneticFieldOrientationsfor TPS-25
• AmbientEarthMagneticField
• ZeroMagneticField
• 0.5GaussEastDirection
• 0.5GaussWestDirection
• 0.5GaussNorthDirection
• 0.5GaussSouthDirection
• 0.5GaussDirectly Upward
• 0.5GaussDirectly Downward
• 1.0GaussEastDirection
• 1.0GaussWestDirection
• 1.0GaussNorthDirection
• 1.0GaussSouthDirection
• 1.0GaussDirectly Upward
• 1.0GaussDirectly,Downward

Thechangingmagneticfield producedlessof aneffecton thedetectormodulethanwas
thoughtprior to thetest. TheLAD wasmoreprofoundlyaffectedthantheSD, asexpected
becauseof the lackof magneticshieldingbeyondthefront faceof thePMT, andshowed
approximatelya3%variationin thelocationof the662-keVpeakover therangeof magnetic
field configurations.Changesto themagneticfield in theverticalandforwarddirectionappear
to havealargereffecton themodulethanside-to-sidechangesin theorientationof themagnetic
field. Thefigurebelowcontains662-keVphotopeaklocationsfor theLAD onDetectorModule
B2 in severalmagneticfield configurations.
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Figure 3.30. Detector Module B2 LAD 662-keV Photopeak Locations ................
in Various Magnetic Field Configurations from TPS-25.

After examination of the results from the first few detector modules, the BATSE team

decided that this calibration was not needed for all of the modules. There were several reasons

for this decision. First, the results from module to module were consistent in the scale of the

effect (approximately 3% in the LAD) produced by the magnetic field, but not terribly predict-

able in terms of the direction of the effect. One LAD could show an increase in gain for one

magnetic field configuration, and the next module would show a decrease for the same config-

uration. The amount of change, however, would be similar in scope. Second, the effect of a

temperature change on the module was thought to be perhaps as large as 1% per °C. In thermal

vacuum tests, this was found not to be the case; however, at the time, a maximum 3% change

from the magnetic field seemed like a small portion of the total gain change which BATSE was

to experience on orbit. BATSE is equipped with automatic gain control (AGC) which is enabled

to hold the gain of the LAD steady. A 3% change over half of an orbit (45 minutes) is easily

controlled with the use of the AGC. Furthermore, the presence of the massive spacecraft struc-

ture will affect the magnetic susceptibility, decreasing the usefulness of these calibrations. Last,

a monitoring of magnetic susceptibility can be performed in orbit on all detectors through the use

of the background 511-keV line. For these reasons, the test was not performed on the final five

modules. Data from the tests performed are available for inspection in the BATSE library.
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1. DetectorModuleTestingatTRW

Following transportof theBATSE flight hardware by truck from Marshall Space Flight

Center to TRW in Redondo Beach, California, a series of detector module tests were performed

prior to spacecraft integration. These tests were done to verify that the modules encountered no

problems or damage during the trip from Huntsville, Alabama. The experiment arrived at TRW

on October 26, 1988, and was unpacked in the high-bay of Building R7A. Eight of the nine

modules constructed were shipped, while the protoflight module remained in Alabama for further

tesdng and use as a science model. Table 3.49 lists the tests performed on each of the eight

modules prior to experiment integration.

Table 3.49. BATSE Detector Module Tests Performed at TRW

• TPS-28 -- BATSE Detector Module Optical Alignment Procedure

• TPS-46 -- BATSE Detector Module LAD Vacuum Level Measurement and Pumpdown
Procedure

• TPS-59 -- Procedure for Performance Testing of the BATSE Detector Module at TRW

(1) Detector Module Optical Alignment--TPS-26

The first test performed on the detector module after arrival in California was the

optical alignment procedure, TPS-26. The test proceeded in the same manner as the alignment

measurements made in Alabama. The module was placed on a level granite slab in the R7A

high-bay for these measurements. When the LED calibration assembly was removed from the

back of the LAD light collection cone, a thorough inspection was made of the LAD NaI crystal.

The BATSE team performing the test examined the LAD for any sign of cracking or debonding

which may have occurred during transportation. No large area detector was seen to exhibit major

signs of degradation or damage as a result of the transportation of the experiment. The alignment

procedure produced data which were in agreement with measurements taken on the detector

modules in Huntsville. Results from these iterations of TPS-59 in California are presented in

Tables 3.21 and 3.22, where the mechanics of this test are described. These results were used in

conjunction with GRO spacecraft measurements of module positions to calculate the LAD

pointing vectors in GRO coordinates after the detector modules were installed onto the

spacecraft.

(2) LAD Pressure Check and Pumpdown--TPS-46

Following optical alignment measurements and LAD visual inspections, the eight

large area detectors were subjected to a pressure check and an evacuation. The test is identical to

the pressure check and pumpdown test described in section IR.A.I.b, requiring the same GSE,

and configuration. The LADs were examined for excess internal pressure which might indicate a

failure in the hermetic seal. The measured residual pressure was also compared to previous
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measurementsto verify that the residual outgassing rate was decreasing over time. Finally, the

LAD was evacuated to a minimum residual pressure. The entire pumpdown history of the LADs

is presented in Appendix B in graphic form for easy use. Measured residual pressures and final

pumpdown pressures are given in Table 3.50 for this iteration only.

Table 3.50. BATSE LAD Pressure Check Data from TPS-46 at TRW - November 1988

Detector Module Residual Pressure (mTorr) Final Pressure (mTorr_
B0 1400 17

B1 900 19

B2 525 16

B3 900 23

B4 3500 13

B5 800 19

B6 400 18

B7 400 13

The data derived from TPS-46 indicate that all LAD seals were in good condition

following delivery to California. All eight of the measured average outgassing rates declined,

indicating that the amount of volatile material inside the LAD was decreasing with each

evacuation. This was the final evacuation procedure performed on the detector modules prior to

the installation of the detectors onto the spacecraft.

(3) Detector Module Performance Test--TPS-59

The final performance test of the detector module as a stand-alone unit was

performed with TPS-59 at TRW. This iteration of TPS-59 utilized the same GSE configuration

as the previous iterations, with a few procedural changes and additions. This test was the most

comprehensive test of the detector modules, designed to detect any flaws in the hardware per-

formance and to provide some final calibration measurements prior to installation on the

spacecraft. In the following sections, a detailed presentation of the results from these tests is

provided. All results from these tests are available for inspection in the BATSE library.

(a) Initializations

In the same manner as previous iterations of TPS-59, the test begins with the

establishment of +HV values to obtain desired dispersions in the detectors. All PMTs were

rebalanced to nominal gains with the use of a Cs 137 source at the standard 50.8-cm test location.

The 662-keV line from this isotope was used as the reference marker. The new +HV values

from this iteration of TPS-59 are contained in Table 3.51.
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Table3.51. Revised+HV Valuesfor StandardGains- TPS-59
DetectorModuleNumber

HV Supply B0 B1 B2 B3 B4 B5 B6 B7
PMT-A 1494 1629 1511 1576 1613 1657 1462 1652
PMT-B 1493 1610 1487 1591 1647 1630 1366 1626
PMT-C 1565 1610 1540 1571 1674 1660 1396 1680

CPD 1514 1474 1329 1306 1325 1260 1416 1258

SD-1X 1260 1291 1257 1179 1224 1145 1227 1322
SD-4X 1545 1595 1530 1441 1506 1396 1501 1620
SD-0.4X 1115 1142 1128 1045 1084 1016 1083 1166

Most of the PMTs required slightly higher voltages to obtain the desired dispersion than

were needed in earlier iterations of TPS-59. Voltages for the CPD were obtained through

calibrations done during the BATSE Science Testing Program at MSFC. These new voltages

were arrived at through the use of radioactive sources, instead of determining the 0.6 x muon

deposition energy. Isotopes provided a better knowledge of where the CPD threshold was

located in energy. Tile procedure for determining these values is described in the system-level

testing portion of this manual. None of the PMTs on the detector modules showed a major

change in the voltage required for nominal gain settings. In addition, each PMT on a given

module shows approximately the same voltage adjustment. These two observations indicate that

the PMTs were operating nominally, with no divergent behavior from others on the same

module.

(b) Spectroscopy Detector Measurements

The spectroscopy detector measurements began with a measurement of the

electronic signals, similar to the previous module tests. The four SFAST signals were measured

for proper amplitude and duration. Both polarities of the four SFAST discriminators were

checked and verified by the BATSE test conductor. The SMQT signal was also examined for

both polarities. In addition, the SMQT signal's minimum duration was verified to be longer than

2.5 Its. This ensured that the pedestal of the SMQT would fall in channel 40 or higher. An MQT

duration of I its corresponds to a linear channel number of 16. The stability of the spectroscopy

detector PMT was verified prior to the measurement of photopeak resolutions.

-1- 4X Gain Resolution Measurements

The photopeak resolution measurements began with the spectroscopy

detector at the 4X gain setting. This gain provides a dispersion of 1 keV/channel in the

uncompressed SHER spectrum. After verification of the proper gain setting, a 300-second
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background accumulation was obtained and stored to disk. Curiously, the radioactive

background in California was found to be substantially higher than in Alabama. The background

accumulated here was subtracted from all source spectra prior to calculation of the resolution.

Isotopes of Co 57 and Cs 137 were used at this dispersion to provide measurements at energies

of 14, 32, and 662 keV. This portion of the procedure was executed in identical fashion to that of

section NI.B. 1. The results from the measurements at 4X gain are summarized in Table 3.52.

Table 3.52. Spectroscopy Detector FWHM Resolution % at 4X Gain -- TPS-59

(Data Obtained at TRW in November 1988)

Energy Resolution % (FWHM)
Detector Module 14 keV 32 keV 662 keV

B0 32.1 24.4 6.9

B1 37.8 27.1 7.1

B2 38.3 24.9 7.4

B3 32.8 21.9 7.5

B4 37.1 26.8 7.3

B5 54.3 23.8 7.0

B6 37.0 26.5 7.1

B7 34.5 24.0 7.4

These values of measured FWHM resolution are comparable to those of the previous

TPS-59 displayed in Table 3.41. The resolution of the detectors at 14 keV shows an increase

across the board from previous values. This increase is due to a higher LLD setting for the

second measurements than was used for the fast. Near the energy of the LLD, the digitization of

the MQT is nonlinear, and counts in that region are distorted. This leads to a broadening of the

resolution at these energies. One may notice that detector module B5 shows an SD resolution

considerably higher at 14 keV than the other detectors, which are in quite good agreement. The

development of a dead layer on the surface of the NaI would cause a significant degradation of

the resolution at lower energies. However, the resolution measured at 32 keV for this detector

shows no indication of degradation, and the poor resolution measurement is attributed to the

effect of the LLD. Results from this iteration of TPS-59 at 32 and 662 keV are in excellent

agreement with previous measurements and well within the specifications required. Table 3.53

summarizes the change in measured resolution between the TPS-59 conducted at MSFC and the

TPS-59 executed in California after delivery of the BATSE hardware.
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Table3.53. Changein FWHM Resolution % at 4X Gain from TPS-59 in Huntsville
to TPS-59 in California

Change in Energy Resolution % (FWHM)
Detector Module 14 keV 32 keV 662 keV

B0 6.4 3.0 0.2

B1 12.0 3.8 0.0

B2 2.6 0.7 -0.3

B3 17.0 0.0 0.3

B4 3.6 -0.6 0.0

B5 14.1 -1.7 -0.3

B6 -1.6 0.6 -0.4

B7 -2.9 -2.6 0.1

- 2- 0.4X Gain Resolution Measurements

Following the measurements taken at 1 keV/channel (uncompressed),

the SD voltage was commanded to the value required for a 10 keV/channel dispersion in the

uncompressed SHER spectrum. A 300-second background accumulation was obtained first at

this new setting and stored to disk. Cesium 137 and Na 22 isotopes were placed at the 50.8-cm

test location, and individual integrations of 300 seconds were obtained with each source. From

the background-subtracted spectra, the results of Table 3.54 were calculated.

Table 3.54. Spectroscopy Detector FWHM Resolution % at 0.4X Gain - TPS-59

Resolution % (FWHM)
Detector Module 511 keV 662 keV

B0 9.5 8.2

B1 9.1 7.9

B2 9.3 8.1

B3 8.9 7.8

B4 9.7 8.5

B5 8.7 7.6

B6 8.9 7.9

B7 9.3 8.2

Because of the compressed gain, the photopeaks are condensed into five or six channels,

making an exact determination of the half-maximum location more imprecise than at other

dispersions where the photopeak occupies more channels. This measurement uncertainty was

discussed in section III.B.l.i(2)(b) and applies here, as well. Despite the problem of

measurement, the results in Table 3.54 agree well with those from the previous iteration of

TPS-59 at the Marshall Space Flight Center.
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- 3 - lX Gain Resolution Measurements

At the 1X gain portion of the spectroscopy detector measurements, this

iteration of TPS-59 deviated from previous tests. In prior operations, the programmable LLD

was tested prior to any resolution measurements. In this iteration, the LLD was mapped after the

resolution measurements at 4X and 0.4X gains. Each bit of the programmable discriminator was

tested for operation, and 14 values of the LLD were tested. At each value, a 120-second integra-

tion was obtained with Cs 137, Co 57, and Cd 109 isotopes all located at the 50.8-cm test posi-

tion. These spectra were stored onto floppy disk, as were all integrations from this test. Seven

command-values of the LLD were mapped at 0.4X and 4X gains.

The SD was nexi commanded back into the 1X gain mode, and a light leak test was done.

It was conceivable that during the transit of the detector modules and other flight hardware,

damage could have occurred which, although small, may have caused a light leak in the detector.

For this reason, eachy of the detectors were checked with a high intensity light at TRW for any

sign of a leak. The results for all of the SDs were negative.

The final portion of the SD testing was reserved for photopeak resolution measurements

at 1X gain. These measurements used isotopes of Cd 109, Na 22, Cs 137, and Co 60. As with

previous measurements, all integrations were 300seconds in duration, and the isotopes were

placed at the standard 50.8-cm test location. Dispersions were calculated using photopeak

locations with known energies. The results from this iteration of TPS-59 are contained in Table

3.55.

Table 3.55. Spectroscopy Detector 1X FWHM Resolution % from TPS-59 at

Redondo Beach, California - November 1988

FWHM Resolution % at Energies Shown (keV)
Detector Module 88 511 662 1173 1275 1332

B0 14.3 7.8 6.9 5.8 5.4 5.4

B1 15.3 8.5 7.3 6.7 5.7 6.0

B2 11.3 8.2 7.4 6.4 6.1 5.9

B3 12.7 8.1 7.1 6.2 5.8 5.8

B4 16.9 8.5 7.4 6.3 5.9 5.9

B5 12.1 8.1 7.2 6.1 5.8 5.9

B6 11.0 8.3 7.0 6.4 5.7 5.9

B7 12.0 8.4 7.5 6.7 6.2 6.2

These results are nearly identical to those from the earlier iteration of TPS-59. The B6

measurement from the previous TPS-59 indicated a resolution of 6.4% at 662 keV. This was

most likely an error on the part of the test conductor. The value of 7.0%, obtained in the latest
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test,is morereasonable.TheB6 measurements at other energies are in good agreement. A

similar case can be made for the B3 measurements from the furst TPS-59. At all energies, the

previous resolutions appear poorer than the other detectors. The latter TPS-59 measurements

show that the resolution for B3 is similar to other detectors, and are in good agreement with

measurements made at other gains. Table 3.56 details the change in measured resolution
between the TPS-59 test done at MSFC and the test done in California.

Table 3.56. Change in FWHM Resolution % for SDs at 1X Gain from TPS-59
at MSFC to TPS-59 in California

Change in FWHM Resolution % at Energies Shown (keV)

Detector Module 88 511 662 1173 1275 1332

B0 2.5 -0.2 -0.3 0.0 0.1 -0.1

B1 1.4 0.3 0.1 0.1 0.0 0.0

B2 -1.4 -0.1 -0.1 _.3 0.4 0.0

B3 -3.2 -0.4 -0.8 -1.1 _.7 -0.5

B4 1.4 0.1 0.1 -0.1 0.1 0.1

B5 -2.7 0.2 0.1 -0.1 0.0 0.2

B6 -6.0 0.0 0.6 0.2 0.2 0.4

B7 -2.1 -0.1 0.0 -0.1 0.3 0.1

These data represent the final measured resolutions of the spectroscopy detectors prior to

detector module installation on the GRO. These data are believed to represent the best set of SD

photopeak resolution measurements taken throughout the entire test program of the BATSE

experiment. All modules were tested within a period of 48 hours by the same test conductors in

a test environment that was highly controllable and uniform from module to module. These

same conditions were not present to this extent anywhere else during the course of the test flow.

Mechanical constraints may have prevented the precise location of an isotope, different test

conductors may have executed tests on different modules, or a long period of time may have

elapsed between module tests. The presence of any of these factors would contribute to lower

the quality of the measurements as a set.

(c) Large Area Detector Measurements

The LAD measurements began with a full check of the electronics and signals

associated with the detector. Each of the FAST discriminators were examined to verify bi-

polarity and to measure the duration of the signal. Typical FAST discriminator durations were

measured to be 150 ns. The differential nature of the four FAST signals was also verified. A

mapping of FAST discriminators to MQT channel was then executed using the gated

pulse-height analyzer. This portion of the test was configured in the same fashion as before, and

is described in section III.B. 1.i(3)(a). The MQT channels' correspondence to the four FAST
discriminators is shown in Table 3.57.
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Table 3.57. Mapping of FAST Discriminator Boundaries into MQT Channel
from TPS-59 in California - November 1988

Detector Module FAST1 FAST2 FAST3 FAST4

B0 LLD - 13.5 13.5 - 23.5 24.5 - 65.5 64 and higher

B1 LLD - 15 15 - 24.5 25 - 64 63.5 and higher

B2 LLD - 14 14 - 24 24.5 - 66 65.5 and higher

B3 LLD - 15.75 15.75 - 25.75 26 - 66.5 66 and higher

B4 LLD - 15 15.5 - 25 25.5 - 65 64.5 and higher

B5 LLD - 15 15.5 - 24.5 25 - 65.5 65.5 and higher

B6 LLD - 15.5 16 - 25.5 25.5 - 66 66 and higher

B7 LLD - 16 17 - 25.75 26.5 - 66.5 66.5 and higher

The measurements inTable 3.57 agree with earlier results to within a channel (5 keV) in

most cases. Notable exceptions are the FAST1 discriminator in detectors B0 and B3. These

were measured to each start two linear channels earlier than before. Detector B7's FAST4

discriminator was measured to start in channel 66.5 compared to channel 70 in the previous

TPS-59 measurement. To determine the approximate energy correlation of these channel num-

bers, subtract 6 from the channel in question, and multiply by 5 keV.

LAD testing continued with a check of the MQT signal similar to the previous tests and a

light leak check of the entire LAD assembly. All of the LAD assemblies were verified to be

light-tight following shipment from Alabama.

Each bit of the programmable LLD was then exercised, and the location of the LLD was

mapped into MQT channel space for 15 different settings. With a Cs 137 and a Cd 109 isotope

at the standard 50.8-cm test location, a 60-second integration was obtained for each of the 15

settings. The channel number corresponding to the LLD cut-off was recorded and the spectrum

stored onto floppy disk. Each of the LLDs were verified to be fully functional.

Photopeak resolution measurements constituted the next section of TPS-59. Isotopes of

Cd 109, Na 22, and Cs 137 were used to produce photopeaks at 88, 511,662, and 1275 keV. A

300-second background accumulation was also acquired and used in the subtraction from source

spectra. The results of these measurements are contained in Table 3.58.
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Table3.58. Changein LAD FWHM PhotopeakResolution%from TPS-59Iterations

Detector Module
Change in FWHM Resolution % (Energy in keV)

88 511 662 1275

B0 2.0 0.9 0.4 -1.0

B1 1.5 0.4 1.2 -12.3

B2 0.8 1.0 0.2 0.9

B3 -0.2 1.0 1.0 2.4

B4 -1.6 -0.3 -0.8 0.6

B5 2.8 1.2 0.4 0.5

B6 -0.3 0.6 0.1 0.4

B7 0.4 -0.1 0.2 -3.4

Changes in the measured resolution from one iteration of TPS-59 to the next are small,

less than 1% or 2% in most cases. The exceptions are at the highest energy measurements,

where the measured resolution is degraded severely by the radial response of the detector.

Photons which deposit their energy in the center of the LAD do not produce the same response in

the detector as photons which interact near the edge. The effect is a severely broadened

photopeak that resembles two overlapping Gaussian profiles. The locations of the half-maximum

points are dependent On how severe the broadening is, and what channel one chooses as the

photopeak maximum channel (which may have neighboring channels on both sides with more

counts). An extensive test was included in the BATSE science testing for calibration of this

effect. Despite the fluctuations at 1275 keV, the overall performance of the LADs was not

detectably degraded by transport of the hardware from Alabama to California.

Large area detector testing continued with a mapping of the LED into MQT channel

space. Six levels of the 4-bit commandable LED were exercised, and each bit of the command

was verified to be operational. As in previous tests, the LED was driven with a 1 kHz pulse of

1 _ts width, and a 60-second integration was obtained. All eight LEDs were verified to be fully

operational in this test.

(d) Charged Particle Detector Measurements

The CPD tests for this iteration of TPS-59 were identical to those of previous

module performance tests. A 300-second spectrum was obtained from the LAD with the CPD in

anticoincidence mode, followed by another 300-second accumulation with the CPD off. The

difference in counts between these spectrum was due to the rejection of the CPD. The LAD was

then placed in coincidence mode and the gain adjusted to bring muons onto the scale of the

MQT. A third 300-second spectrum was accumulated. The count rate in this spectrum was then

compared to the previously derived rate for agreement. The results are contained in Table 3.59.
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Table3.59. CPDRejectionandCoincidenceRatesfrom TPS-59in California
DetectorModule CPDRejectionRate CPDCoincidenceRate

B0 20.6 21.0
B 1 19.4 20.4
B2 21.4 20.2
B3 21.2 20.6
B4 20.8 20.6
B5 20.9 20.7
B6 21.5 20.4
B7 20.8 20.4

Therejectionandcoincidenceratesshownin Table3.59arein closeagreement,indicat-
ing thatthechargedparticlerejectionsystemisworkingwell. Furthermore,therateof rejection
is comparableto therateexpectedfor theinclinedCPD(seesectionIII.B.l.d(4)). Thenew CPD
voltagesanddifferent testlocationmakeit difficult to compare'thesenumbersto thosefrom
previoustesting,however.Themodule-to-modulecorrelationin coincidencerate is anindication
thatall of theCPDthresholdsarecloseto oneanotherin energy.In additionto thisstandard
check,theCPDwasexaminedfor a light leakin amanneranalogousto theLAD andSD. No
light leakswerefound.

(e) TPS-59Conclusions

TPS-59concludedwith ameasurementof all housekeepingparameters.The
final sectionbeganwith acheckof thepassiveanalogthermistors.Thesetemperaturesensors
providemeasurementsto thespacecraftRIU andareincludedin GROengineeringtelemetry.
However,theyarenotroutedthroughtheDEU andarenot visibleanywherein BATSEdata.
Theresistanceof thethermistorsandassociatedcircuitry wasmeasuredto verify proper
operationof theseelements.
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Table3.60. PassiveAnalogThermistorMeasuredResistances- TPS-59
ResistanceMeasured(Ohms)

Detector Module PAT RIU-A PAT RIU-B

B0 2647 2643

B 1 2601 2598

B2 2635 2637

B3 2596 2594

B4 2697 2697

B5 2580 2580

B6 2657 2657

B7 2663 2653

The second portion of the housekeeping check was a read of HKG values 15-31. These

multiplexed values contain the housekeeping for the module's low voltages and temperatures.

All measured HKG parameters were compared to expected values.

Finally, each bit of all five +HV supplies was checked for proper operation. A simul-

taneous verification of the expected current and voltage measurements in housekeeping was

done. At the full-scale +HV setting (command data = 255 decimal), the HVPS +5V current was

measured to verify that the HVPS was not in an over-current condition. Typical current values

for the HVPS with one supply at full scale were 0.08-0.1 A. The conclusion of the test marked

the final time that any of the eight flight modules was powered on as a stand-alone unit. All

subsequent powering of the modules was accomplished through use of the BATSE power

module, or through the BPM simulator. Following the completion of TPS-59, each detector

module was integrated to the CEU and BPM.

m. Detector Module Auxiliary Tests

At several times in the detector module test program, the BATSE team performed

auxiliary tests on the detectors. These were one-time-only types of tests which were performed

on only one module and were not part of the pre-planned test flow. The protoflight module was

the subject for most of this testing because of its easy accessibility during the time it was located

in the Space Science Laboratory. A brief summary of the important tests is provided in the

following sections.

(1) Protoflight Out-of-Balance Testing

In May 1988, a day of testing was given to the protoflight module to determine the

single PMT performance for balancing using a simulated 511-keV line and to determine the

effect of an out-of-balance condition on the detector resolution. The original plan for on-orbit

balancing of the PMTs called for the use of a small Am 241 light pulser installed onto the face of
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theLAD in view of the PMTs. However, the light pulsers were very unreliable. The behavior of

the light pulsers was unpredictable, environmental changes distorted their performance by a large

amount, and they degraded rapidly over time. For these reasons, they were omitted from the

final configuration of the detector modules, and the BATSE team decided to use the on-orbit

511-keV line for PMT balancing.

The module was placed on the top of the shipping container and connected to the same

GSE configuration which was used for TPS-24 and TPS-59. A Co 60 source of 3 gCi activity,

and a Na 22 source of 1 I.tCi activity were placed at the rear comer of the detector module to

simulate the anticipated on-orbit spectrum and 511-keV line. With the LLD set to 32 (hex), a

total count rate of approximately 3800 counts per second was registered in the LAD. The

intensity of the 511-keV line compared to the level of background was less than the level

registered by BATSE-like detectors flown on the third MSFC Supernova 1987A Balloon Flight

from Alice Springs, Australia.

After the isotopes were put into place, the PMTs were balanced at the proper 5 keV/

channel gain. The PMTs were easily balanced by the test conductor using the 511-keV line.

Digital voltage commands of 162, 157, and 155 were required for PMTs A, B, and C,

respectively. This result confirmed that on-orbit PMT balancing using the 511-keV line could be

accomplished with little difficulty.

Following the balancing of the PMTs, single-tube spectra were accumulated from PMT-A

to determine the +HV values necessary for gain adjustments of -10%, -20%, and -40%. These

spectra were stored to disk, and a similar sequence was executed for PMT-B at values of +10%,

+20%, and +40% gain change. The voltage command values required to adjust the individual

PMT gains to the prescribed values are summarized in Table 3.61.

Table 3.61. Voltage Command Values Required for Gain Adjustments

on the BATSE Protoflight LAD
PMT-A Command PMT-B Command

Gain Change Value Value

Zero (nominal gain) 162 157
-10% 157 ....

-20% 151 ....

-40% 136 ....

+10% .... 160

+20% .... 165

+40% .... 179

The spectra accumulated from PMT-A and PMT-B were taken with the source configura-

tion simulating the anticipated on-orbit spectrum. After accumulating these individual PMT
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spectra, all three PMTs were powered on for the collection of spectra in four different gain

configurations. PMTs A and B were adjusted to one of the off-nominal gain states, while

PMT-C remained at the nominal voltage setting. In this manner, spectra of the simulated

on-orbit spectrum were taken with known out-of-balance conditions. The PMT gain

configurations used in this portion of the test are summarized in Table 3.62.

Table 3.62. Out-of-Balance PMT Gain Combinations Used in Spectra With

Anticipated On-Orbit Background Source Configuration
PMT-A Gain PMT-B Gain PMT-C Gain

Nominal Nominal Nominal

- 10% + 10% Nominal

-20% +20% Nominal

-40% +40% Nominal

After the completion of these spectral integrations, a 1 I.tCi Na 22 isotope was placed at

the center of the CPD on the protoflight module, and the "on-orbit" source configuration was

removed. The gain combinations detailed in Table 3.62 were repeated, and spectra were

accumulated. In addition, individual PMT spectra were obtained with the tube commanded to

nominal-gain voltage values. Next, a final set of spectra were accumulated using a 10 gCi Cs

137 source at the standard 50.8-cm test location. The PMT voltage configurations used in the Na

22 accumulations were repeated with the Cs 137 source.

The results of the test were two-fold. First, the BATSE team demonstrated that the PMTs

on the LAD could be balanced through the use of the on-orbit 511-keV line. No problems were

encountered using a line intensity less than that seen in flight data from the BATSE-Iike LADs

flown on high-altitude balloons. This allowed for the removal of the Am 241 light pulsers while

maintaining confidence that the PMTs could be easily balanced on-orbit. Second, the effect of an

out-of-balance PMT on the overall detector resolution was shown to be small. Degradations in

the resolution of the detector were not noticeable in any of the gain-combination spectra (Table

3.62) until the 40% out-of-balance condition was imposed. Even with this large disparity in

PMT gain settings, the resolution was only degraded a few percent This was a surprising result.

All data and spectra from this test are available for inspection in the BATSE data library.

(2) Protoflight SD Low Energy Resolution Measurements

On May 11, 1988, the BATSE protoflight module was tested to measure the

FWHM photopeak resolution at low energies. In TPS-24 and TPS-59, these low energy peaks

were often below the threshold of the programmable LLD, or difficult to measure because of

other test considerations. The GSE required for this testing was identical to that of TPS-24 and

was configured in the same manner. The SD was commanded to the 4X gain setting (1 keV/

channel uncompressed), and a 300-second background acquisition was obtained. Subsequent
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300-secondintegrationswere made with a Cd 109 and a Co 57 isotope located at the standard

50.8-cm test location. The background spectrum was subtracted from the two source spectra,
and the FWHM resolution was calculated. The resolution at 14 keY was determined to be

44.6%, with the resolution at 23 keV measured to be 26.2%.

(3) Plastic Fraction Calibration

The plastic fraction calibration was performed on the BATSE protoflight module in

May 1988. The test was executed in order to determine the ratio of the number of gamma rays

detected in the CPD to the number of gamma rays detected in the LAD as a function of gamma

ray energy and angle of incidence. The data collected in this test are to be used to help determine

the setting of the parameter PFRAC on-orbit. PFRAC is a parameter in the BATSE CEU which

is used to prevent burst triggering if the CPD rate indicates a charged particle event.

The protoflight module was connected to the standard test GSE in the TPS-24 configura-

tion. In addition, the FAST2 and FAST3 discriminators were connected to a timer/counter. The

PLASTIC rate was also input to a timer/counter. Power was applied to the module, and nominal

+HV values were established. Background rates for the CPD and burst trigger channels (FAST2

+ FAST3) were determined from a 100-second integration of their counts. Next, Co 60 and Co

57 isotopes were individually placed at angles of 0 °, 45 °, and 70 ° from the detector normal, and

at a distance of 90 cm. The rate determination was repeated for each of these six configurations.

Table 3.63 contains the rates from the test.

Table 3.63. Data from Plastic Fraction Calibration on the Protoflight Module

Source An_le (o) Plastic Rate Burst Chan. Rate PFRAC
None 63.0 1318.7

Co 60 0 207.9 2292.8 0.15

Co 60 45 262.6 2489.4 0.17

Co 60 70 186.3 1913.2 0.21

Co 57 0 62.5 4709.2 0.00

Co 57 45 61.8 4576.9 0.00

The value PFRAC is calculated by first subtracting the background rates from the source

rates. This yields the rate at which the gamma rays from the source interact in both the CPD and

LAD burst trigger channels. Dividing the plastic source rate by the LAD source rate yields the
fraction of events which are seen in both the LAD burst channels and the CPD. Because the

threshold of the CPD was set well above the energies of the Co 57 isotope emission (14, 122, and

136 keV), no gamma rays which interact in the CPD from this isotope cause a source count to

appear in the PLASTIC rate. PFRAC is therefore equal to zero, and the last planned location for
this source was omitted.
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n. DetectorModuleUniqueAttributions and Anomalies

The flow of each of the detector modules through the planned test program was unique.

Throughout the course of this flow, the modules experienced anomalies and non-conformities not

present on the other detector modules. In this section, each of the modules' quirks, failures,

non-conformities, and unique features are discussed.

(1) Protoflight Detector Module

The protoflight module was the first module fabricated and tested in the series.

Released for testing on January 21, 1988, this module received the most extensive testing

throughout the program at MSFC. The protoflight module contains LAD #8, which was cracked

in thermal stress testing. In the initial testing of the module, a cross-wiring of LAD and CPD

signals was noticed in the connection to the DEU. An EO was written to rectify the mix-up, and

the problem was corrected the next day. Because of the long protoflight thermal vacuum test,

this module contains the largest amount of spectra characterizing the LAD "notch" phenomenon

discussed earlier. Throughout the test program at MSFC, the module was referred to as DM #0.

The original plan in the numbering system was to call the protoflight module "DM #0," and all

subsequent modules DM 1-8. These numbers would then correspond to their eventual location

on the spacecraft; however, that plan changed later in the program.

(2) Detector Module B0

This detector module was named DM #6 throughout the testing program. A

decision was made by the BATSE team upon arrival at TRW to switch the location of DM #6

and DM #8 on the spacecraft. The primary impetus for this decision was the desire to place the

superior module DM #6 at the +X,+Y,+Z location (B0) for more frequent coordinated

observations with the OSSE Instrument. DM #8 was then placed in the B6 location on the GRO.

B0 contains LAD #13, which was cracked during initial thermal stress testing at MSFC. No

performance anomalies were present in B0 throughout the test flow.

(3) Detector Module B 1

Released approximately 2 weeks after the protoflight, detector module B 1 had a

hardware error after manufacturing. When TPS-24 was executed, the LAD was found to be

inoperative. The CPD and SD were functioning normally; however, the LAD was connected to a

blank port on the DEU. The signals from the LAD PMTs were not reaching the electronics;

therefore, the detector was not functional. This problem was repaired in 2 days. B 1 was the

module used in the DM-CEU-BPM electromagnetic compatibility and interference tests prior to

the full BATSE instrument test. This test is discussed in a subsequent section of this document,

and produced evidence of module susceptibility to radiation in the 50-60 MHz and 150-170 MHz

bands. B 1 contains LAD #6, which showed a tremendous increase in the average outgassing rate

following GRO thermal vacuum testing. The rate of outgassing pressurization went from ap-

proximately 0.3 Torr/month to 1.8 Torr/month. Although each of the LADs average outgassing
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rate increased because of the thermal cycling and vacuum conditions, none were as dramatic as

B 1. Subsequent measurements indicated no problems with the B 1 LAD hermetic seal or leakage.

(4) Detector Module B2

During the initial TPS-24, the LAD PMTs were inadvertently operated with the

LED calibration assembly removed from the back of the cone. No apparent short-term or

long-term effects were noticed from the 45 seconds of operation in this condition. B2 had one of

the shortest duration test flows. Testing started on February 23, 1989, and was completed by

March 7. No testing anomalies were attributed to B2 during the module test program. The

resolution of the LAD on detector module B2 is the best of the flight modules.

(5) Detector Module B3

Detector module B3 was among the few modules with no anomalies or unusual

operations during the test flow prior to integration with the CEU and BPM. Test data in the

BATSE library for this module are labeled DM #3. Module B3 is 2 pounds lighter than any of

the other detector modules. The reason for the discrepancy in Weight is not known.

(6) Detector Module B4

Like detector module B3, B4 also exhibited no anomalies during its pre-integration

testing. All performance, engineering, and environmental test results were acceptable.

(7) Detector Module B5

Detector module B5 completed manufacturing with a defective +HV power unit.

With a supply commanded to full scale (command data = 255), the HVPS would enter into an

oscillation and draw an unacceptably large amount of current. When the module was initially

powered up for the test, the test conductor recorded an initial module +15 V current of 500 mA,

which is very high. At the point in the test where each bit of the supplies and the HKG are

tested, the erroneous current was noted on both the SD and CPD +HV supplies. The problem

was fixed by replacing the entire HVPU with serial number 006. HVPU #8, which was

originally on B5, was repaired and installed onto B6. The repair process was completed in 9

days. This replacement supply functioned normally throughout the remainder of the module

testing program. The LAD on B5 is the detector with the poorest resolution on the spacecraft. In

April 1990, PMT C on this module failed at KSC. It was replaced with a tube from the

protoflight module. The details of this failure and replacement are contained in a later portion of

this manual
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(8) DetectorModule B6

Detector module B6 spent most of its early life under the name DM #8. As the

eighth flight module, it was scheduled to be installed into the +X,+Y,+Z location on the GRO.

However, after arrival at TRW, it was decided to install this module in the B6 location, and place

DM #6 in the B0 spot, switching the detector modules (see section III.B. 1.n(2)). B6 contains

LAD #15, which arrived at MSFC with a problem in the spacing of the mounting holes on the

Invar ring. These holes were re-drilled to match the LAD cone interface.

(9) Detector Module B7

Detector module B7 contains LAD #14, which cracked during the thermal stress

testing at MSFC. It is the only other module (with B0) containing a cracked LAD. All results

from the testing program were acceptable for B7, and no hardware problems were found.

o. BATSE Detector Module Parts Listing

Table 3.64 details the contents of each of the nine BATSE detector modules fabricated

at MSFC. Serial numbers for all major components are provided.
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2. BATSE Power Module Testing

a. Introduction

The BATSE power module was subject to a test program entirely different from that of

the BATSE detector modules. The BPM testing which was performed focused on a listing of

requirements which the power module had to meet or exceed. Data obtained from the testing are

of a pass-fail, binary nature. An example of this type of data is whether a certain command to the

BPM opens a relay or not. In this test environment, either the relay opens, or it doesn't. No data

obtained from the BPM tests contain calibration information or other information beyond the

compliance with a pre-determined requirement. The detector module data, on the other hand, not

only determine whether the module performs according to specifications, but also tell how well
and in what manner the module behaves.

For this reason, section III.B.2 is brief compared to the section on detector module

testing. In the following paragraphs, the BPM acceptance test will be discussed, along with the

requirements which the BPM performed against in the test.

b. BATSE Power Module Acceptance Test

The BPM acceptance test was written and performed under the direction of the Test

Laboratory at MSFC. The test procedure was released October 21, 1988, with the document

number MTCP-FC-BTSE-305D. Other BATSE flight hardware such as the detector modules,

the CEU, and heater interfaces were simulated by load panels connected to the BPM. The power

module was connected to the SCATS data acquisition system through the BPM test set, a fuse

panel, a power distribution panel, and patch distributors. Power to the BPM was supplied by a

simulated GRO power supply, 0-40 Vdc, and 15 A. A similar power supply provided power for
the heater circuits.

The test started with the application of GRO- 1 power (primary power simulation). Proper

voltages and currents were verified for the CEU simulator load panel. The CEU and BPM

temperature readings were verified through the SCATS as well. Detector module power relays

were then cycled through, and full functionality of these relays with both GRO- 1 and GRO-2

power was verified.

Section two of the procedure checked the STS heater circuits and thermostats. Control of

the heater circuits was accomplished by a GSE cable to J16, where the IFJ is installed for flight.

Combinations of circuit states were tested for all eight detector module heater circuits.

Following the checkout, the cable was removed and the IFJ installed to verify the proper voltage
state with all thermostats open. Detector module thermostats were then simulated to close with

input through the module ports, and the proper voltage readings were verified.
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The third section of the test involved the verification of detector module primary heater

circuits and thermostat closure simulations. Status voltages and power voltages were monitored

and verified in all configurations of thermostat closure and open states. A similar check was

done for the backup thermal control heater circuits and both sets of make-up heater circuits.

Completion of the heater circuits marked the conclusion of the acceptance test. The

procedure run prior to any connection of the flight hardware components into the BATSE unit.

Examples of this occurrence were prior to thermal vacuum testing, science testing, and

integration at TRW. Copies of the as-run procedure are available in the BATSE data library.

3. Central Electronics Unit Testing

The central electronics unit (CEU) is the most complex portion of the BATSE flight

hardware. As such, the CEU received a large number of specialized tests to check and verify

proper operation of each of its components and functions. The assembly and testing of the CEU
was exercised under the direction of the Information and Electronic Systems Laboratory (EB) at

MSFC. Mr. Jon R. Rehage, designer of the CEU, served as the primary test engineer throughout

the program.

CEU data obtained in these tests are similar to BPM test data, because they are primarily

of a binary nature. As discussed before, in these types of tests, data generated simply indicates a

pass/fail status. In the following paragraphs, each of the CEU tests performed during the

program will be discussed. These include the CEU environmental tests which were performed

prior to experiment integration.

Each test presented in this section was executed under the same configuration with minor

changes for the individual tests as required. The CEU was placed on a table and connected to

several pieces of ground support equipment. Two test-program function boxes were connected

to J46 and J47. The microprocessor development unit and CEU test set were also connected in

this area. Ports J30-J32 were connected to the BPM simulator. Detector modul_s were

simulated by a piece of GSE designed to emulate the DEU in each module. This simulator was

connected to ports J10-J17. The spacecraft interface, at J34-J39 and J40-J45, was made between
the CEU and the GRO simulator. This simulator contained two remote interface units (RIU) and

transmitted data and commands to the BATSE IGSE computer system. Figure 3.31 is a

schematic of this test configuration.
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Figure 3.31. CEU Stand-Alone Testing Configuration.

a. CEU Assembly Procedure

The CEU assembly procedure was released under the number MSFC-PROC-1348. The

CEU was assembled in a piece-wise fashion by installing one function at a time and executing a

short test to verify the basic operation of the function and the CEU as it existed at the time. Each

flight board was tested and verified inside the CEU breadboard, so that these tests were

essentially a verification of the flight box and its wiring. To protect the flight boards from any

damage caused by wiring errors in the flight box, CEU breadboard functions were tested f'trst

wherever possible.

This test was performed using several pieces of GSE, namely the BPM simulator, a GRO

simulator, and a DEU simulator which emulated the eight detector modules. The BPM simulator

provided power to the CEU for the test. An extensive CEU test set was also employed for this
and most other CEU tests.

The CEU chassis backplane wiring was checked Fast, using a point-to-point continuity

measurement using drawing #42A30412, the BATSE wire list for the CEU backplane. Both
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BPM connectors 030 and J31) were checked, along with the power routing to each of the board

locations. Cable signal returns, cable shields to CEU chassis wiring, differential signal wiring,

and all system logic signal wiring was tested.

After successful checking of proper CELl box wiring, the functions were installed,

starting with the power control function (PCF). The BPM and GRO simulators were connected

to J30 - J32, and J34 - J35, respectively. Table 3.65 details the boards installed and their

locations for this portion of the test.

Table 3.65. Number and Location of Boards Installed During PCF Installation

Board Type Board Number CEU Location
PCF 1 42A30467-1 A 1

PCF 2 42A30469-1 B 1

PCF 2 42A30469-1 C 1

PCF 2 42A30469-1 C2

BSF 42A30966-1 C3

After installation, the BPM simulator was powered up, and the proper voltage to the CEU

was verified. At the GSE console, a program "CEUSTAT" was run. This program sent discrete

commands to all of the CEU functions, to help verify that the function could be turned on and off

with the proper discrete command. The power control was monitored by the test conductor who

measured the voltage between pins A61 and B61 for each of the functions' board locations.

The BPM simulator was powered off after the PCF installation, and the CEU control

function A was then installed. Table 3.66 details which CEU boards were installed here and

which locations they went into.

Table 3.66.

Board Type
GROI 42A30964-1 A2

CCF 1 42A30952-1 A3

CCFM 42A30962-1 A4

CCF2 42A30954-1 A5

CCF3 42A30956-1 A6

CCF4 42A30958-1 A7

CCF5 42A30938-1 A8

FIFO 42A30930-1 A9

Number and Location of Boards Installed During CCF-A Installation
Board Number CEU Location
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After all boards were installed, a short test of the CCF-A function was executed. The

CCF memory and watchdog timer were tested using the CEU test set. The interface between

CCF-A and the GRO was verified, as was the HER burst memory.

CCF-B was installed following the completion of CCF-A. The hardware installed into

the CCF-B function is identical to that of CCF-A, and the testing done to verify the function was

exactly the same. Table 3.67 details the locations of the boards installed for the CCF-B function.

Table 3.67. Number and Location of Boards Installed During CCF-B Installation

Board Type Board Number CEU Location
GROI 42A30964-1 B2

CCFI 42A30952-1 B3

CCFM 42A30962-1 B4

CCF2 42A30954-1 B5

CCF3 42A30956-1 B6

CCF4 42A30958-1 B7

CCF5 42A30938-1 B8

FIFO 42A30930-1 B9
f

Following successful installation and checkout of the CCF-B function, the ADF was

installed into the CEU flight box. Both ADF boards were installed at the same time with power

off, and the eight DEU simulator cables were connected to J10 - J17 during installation. Table

3.65 lists the boards that were placed in the CEU during ADF installation.

Table 3.68. Number and Location of Boards Installed During ADF Installation

Board Type Board Number CEU Location

ADF 42A30940-1 A 10

ADF 42A30940-1 B 10

When these two boards were installed, a program was run with the CEU test set to verify

the operation of the ADF. The results of the test were compared to satisfactory results included

in the test procedure.

The DCH function was installed next in the CEU. Table 3.69 lists the 16 boards that

were placed in the CEU flight box, and subsequently tested using an automated test program
from the CEU test set.
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Table 3.69. Number and Location of Boards Installed During DCH Installation

Board Type Board Number CEU Location
DCH1 42A30948-1 A21

DCH2 42A30950-1 A22

DCH1 42A30948-1 A23

DCH2 42A30950-1 A24

DCH1 42A30948-1 A25

DCH2 42A30950-1 A26

DCH1 42A30948-1 A27

DCH2 42A30950-1 A28

DCH1 42A30948-1 B21

DCH2 42A30950-1 B22

DCH1 42A30948-1 B23

DCH2 42A30950-1 B24

DCH1 42A30948-1 B25

DCH2 42A30950-1 B26

DCH1 42A30948-1 B27

DCH2 42A30950-1 B28

The sixth function installed into the CEU flight box was the MER/pulsar function. After

installation, an automated test program was run from the CEU test set to verify that these func-

tions were operating properly. Output from this test program was compared to the expected

values which are listed in the test procedure. Table 3.70 lists boards that were installed in the
CEU box for this function.
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Table 3.70.

Board Type

Number and Location of Boards Installed During MER/Pulsar Installation
Board Number CEU Location

MPC 42A30944-1 A16

MPM 42A30934-1 A 17

MPM 42A30934-1 A 18

MPM 42A30934-1 A 19

MPM 42A30934-1 A20

MPC 42A30944-1 B 16

MPM 42A30934-1 B 17

MPM 42A30934-1 B 18

MPM 42A30934-1 B 19

MPM 42A30934-1 B20

PSRB 42A30932-1 C17

PSRB 42A30932-1 C18

PSRB 42A30932-1 C19

The remaining functions, the "ITS, the HER memory, TIE, and STTE, were installed

following MER/pulsar. In a similar fashion, each of these four functions were tested individually

before the next function was installed into the CEU box. Successful completion of the remaining

four function installations marked the conclusion of the CEU assembly procedure.

Table 3.71. Number and Location of Boards Installed During 'ITS Installation

Board Type Board Number CEU Location
TI'SC 42A30960-1 A13

FIFO 42A30930-1 A 14

FIFO 42A30930-1 A 15

TTSC 42A30960- I B 13

FIFO 42A30930-1 B 14

FIFO 42A 30930-1 B 15
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Table 3.72. Number and Location of Boards Installed During HER Memory

and TIE Installation

Board Type Board Number CEU Location
FIFO 42A30930-1 (25

FIFO 42A30930-1 (26

FIFO 42A30930-1 C7

TrEC 42A30946-1 C8

FIFO 42A30930-3 C9

FIFO 42A30930-3 C10

Table 3.73. Number and Location of Boards Installed During STrE Installation

Board Type Board Number CEU Location

STrEC 42A30936-1 C 11

FIFO 42A30930-1 C 12

FIFO 42A30930-1 C13

STrEC 42A30936-1 C14

FIFO 42A30930-1 C 15

FIFO 42A30930-1 C16

b. CEU Functional Test Procedures

Each of the CEU functions were verified after installation through the use of a test

procedure designed to test the operation of one specific function. Thus each function had its own

test procedure to run. These procedures were operated under the same general configuration as

the CEU assembly procedure. The CEU was connected to the BPM simulator, its own test set, a

GRO simulator, and simulators for the detector modules.

These procedures consisted primarily of automatic programs and computer sequences

which autonomously tested the functionality of the CEU element under examination. Data were

printed by the program and compared to acceptable results listed in the test procedures. These

data are not of a form which is easily presented in a table, and most are of a binary pass/fail

nature. For this reason, an extensive discussion of these test results will not be presented here.

All other CEU tests involve additional pieces of flight hardware and will be presented in the

instrument-level portion of this document. The procedures summarized in Table 3.74 are avail-

able for inspection in the BATSE data library.
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Table3.74. BATSE CEU-Element Functional Test Procedures

Procedure Number

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

PCF Functional Test Procedure

GRO Interface Functional Test Procedure

CCF Functional Test Procedure

ADF Functional Test Procedure

DCH Functional Test Procedure

SDH Functional Test Procedure

MP Functional Test Procedure

TTS Functional Test Procedure

HER/SHER Burst Memory Functional Test Procedure

TIE Functional Test Procedure

STIE Functional Test Procedure

MSFC-PROC- 1352

MSFC-PROC-1353

MSFC-PROC- 1354

MSFC-PROC- 1355

MSFC-PROC- 1356

MSFC-PROC- 1357

MSFC-PROC- 1358

MSFC-PROC-1359

MSFC-PROC- 1360

MSFC-PROC- 1361

MSFC-PROC- 1362

C. BATSE Instrument Sub-Level Testing

Throughout the course of the BATSE test program, several procedures were executed

involving portions of the complete BATSE instrument flight hardware. Most of these procedures

involved the BPM, the CEU, and one or more detector modules. These tests were done to verify

interfaces, check certain performance features on a small scale, or to obtain characteristics of

behavior prior to the full-scale instrument test. In this section, each of these tests will be

discussed, and results will be presented where applicable.

1. CEU-BPM Interface and Functional Test

This test, MSFC-PROC-1551, was designed to show that the CEU/BPM power control

function could properly control the power of each BATSE detector module and BPM power

supplies. In addition, the bi-level status provided to the GRO (simulator) and each BATSE

data-packet was verified to be present for all CEU/BPM power control functions. The test

further insured that the CEU and BPM could be controlled through either of the two RIUs, and

that the CEU could measure the following housekeeping items:

• CEU +5 V voltage
• CEU +5 V current

• DEU + 15 V current (sum of all detectors powered on)

• BPM power supply temperature

The CEU and associated GSE were configured as shown in Figure 3.31; however, the

BPM simulator was replaced with the flight power module. With the BPM and GSE powered

up, an automatic test program was started, and the results of this program were compared to the

satisfactory results in the test procedure. Because the results of this testing are contained in a

computer printout in the BATSE data library, they will not be discussed here.
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2. Detector Module Interface Test

Following the completion of the detector module test program, an interface test was per-

formed for each of the modules to verify compatibility and proper operation with the CEU and

BPM. The test was a modified version of BATSE-ES-62-TP-100, the BATSE system engineer-

ing tesL The detector module was connected to its proper ports on the CEU and on the BPM.

The CEU and BPM were powered through the GRO simulator.

The BATSE system test software was started, and commands were sent to power up the

module which was undergoing test. At power-up, the +15 V current was verified to lie within

the region 200 mA :1:50 mA. If the current exceeded 250 mA, the power would be removed from

the module. No instances of overcurrent were present at the initial power-on of the detector

module using the BPM and CEU.

Following power-up, each bit of each +HV supply was exercised through serial com-

manding. During the operation, the voltage and current readings in housekeeping were recorded.

In this manner, the operation of serial commands, the operation of the +HV supplies, and any

cross-talk on the command lines could be tested. Each of the modules performed flawlessly

during this portion of the interface testing. Table 3.75 shows the recorded voltage and current

housekeeping measurements for each bit of the +HV supplies on detector module BO.

Table 3.75.

Mnemonic

Housekeeping Values for Detector Module BO Interface Test +HV

Supply/Cross-Talk Check

High Voltage Command Setting (Hex)
01 02 04 08 10 20 40 80

HV1VLT 1000 1005 1012 1028 1059 1122 1247 1497

HV2VLT 999 1003 1011 1027 1058 1121 1246 1497

HV3VLT 1000 1004 1012 1027 1058 1121 1247 1497

HV4VLT 999 1003 1011 1027 1056 1120 1246 1497

HV5VLT 1001 1005 1013 1028 1059 1122 1247 1498

HV1CUR 61.3 61.9 62.6 64.0 66.7 72.1 83.0 104.8

HV2CUR 61.3 61.6 62.3 63.7 66.4 71.9 82.8 104.6

HV3CUR 61.3 61.6 62.3 63.7 66.4 71.8 82.7 104.6

HV4CUR 58.3 58.5 59.0 59.9 60.1 65.4 72.8 87.3

HV5CUR 61.4 61.8 62.5 63.8 66.6 72.0 82.8 104.7

(PMTA)

(PMTB)

(PMTC)

(CPD)

(SD)

Note: HVnVLT reading is in volts, HVnCUR reading is in I.tA.

After the proper operation of the +HV supplies was verified, an eight-set integration was

obtained at nominal +HV through the CEU to determine the properties of spectra taken through

the CEU. The nominal +HV values were taken from the TPS-59 procedure performed prior to
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integration. This testmarkedtheinitial collectionandprintoutof HERandSHERspectrafrom

the flight module through the central electronics. Spectra were examined for consistency,

accuracy, count rate, and other parameters. Two of the detector modules were integrated to the

CEU prior to the repair of the "notch" anomaly described in section III.B. 1.g(3)(b). This feature

was present in the spectra taken through the CEU for these modules. The spectra obtained here

were printed and are currently stored with the test procedure in the BATSE data library.

The next section of the integration test operated the programmable lower-level
discriminators on the LAD and SD. Values of 08, 09, 0A, 0C, 10, 20, 40, and 80 Hex were used

in the test. This checked each bit of the programmable LLD and also allowed for the test

conductor to verify that no cross-talk was present on the command lines. At each discriminator

setting, a one-set integration was obtained from the LAD and SD. Rates from the NaI and FAST

discriminators were printed. After completion of the spectral accumulation, the data were printed

out, and the next command value was tested.

A test of the LED followed the LLD check. The LED was commanded to a rate of 1

kHz, and spectral accumulations of one-set duration were obtained for LED amplitudes of 4, 5, 6,

8, A, C, E, F, and 0. As in previous tests, this verified the operation of the LED amplitude

command bits and allowed for a calibration of LED to HER channel for the Detector Module

under test. After this was completed, the LED rate was doubled to 2 kHz, and another

integration obtained at amplitude 8. The rates were compared to verify that the number of counts

in the LED peak was approximately double the fast and that the peak channel was the same for

both integrations. This test verified the proper operation of the LED frequency circuitry in the

CEU and its coordinated operation with the flight detector module.

The final portion of the test placed the detector module into coincidence mode. A

spectrum was accumulated for one set of HER data, and examined to verify that each channel
had a low number of counts, and that all were less than the overflow channel 127. Inspection of

the spectrum allowed the test conductor to determine if the coincidence circuitry was working

properly. Temperature measurements and other HKG parameters were accumulated during this

spectral integration. These parameters were compared to expected values and to the detector

module environment to verify proper operation.

3. Detector Module EMC/EMI Tests

The detector module EMC./EMI testing involved the CEU, BPM, and detector module B 1.

This test was performed in the R/F test facility at NASA/MSFC in Building 4705. Testing was

performed on April 1-2, 1988. The test consisted of four major parts: conducted emissions,

conducted susceptibility, radiated emissions, and radiated susceptibility tests. These tests were

performed to determine the effect of these operations at the module level and to give an

indication of effects on the overall system performance prior to the full-scale system EMC/EMI

tests. Testing was performed under the direction of the Test Laboratory, with BATSE personnel

from Space Science Laboratory monitoring the effect of the testing on the hardware.
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Conducted emissions and susceptibility tests were performed first. These tests involved

sending positive and negative pulses on each lead of the power supply to determine any effect on

the hardware performance. No anomalies were found in any of the conducted emissions or

conducted susceptibility portions of the test.

A measure of the radiated emissions of the hardware was found to be 2I dB above

specifications in the region near 1 MHz. This emission most likely stems from a clock in the

CEU. After the exceedence was found, the detector module was powered off, and the test

repeated with the CEU and the BPM. The out-of-limits condition was found to still be present

with the detector module powered off. This excess of emissions near 1 MHz is not considered

serious, and has not been found to affect the operation of any other piece of flight hardware on

the instrument or the spacecraft.

The radiated susceptibility test proved to be the most difficult conditions for the hardware

to properly operate. The CEU and BPM were not affected by the incident radiation; however,

the detector module exhibited pronounced abnormalities in two particular frequency bands. The

LAD and SD count rates and several HKG measurements were affected by the test. When the

anomalies occurred, several deviations were made to the planned sequence of events to

determine the extent of the R/F interference.

The first frequency range which exhibited problems was the band from 55 MHz to 65

MHz. The initial sweep of through this region at 2 V/meter produced excessive count rate

indications in SFAST1, erroneous temperature measurements, and also produced a count rate

deficiency reading in the LAD discriminator channels. Following the initial sweep, several

iterations of the frequency range at different field strengths were done to isolate these problems.

Nine additional sweeps were performed, each with a different purpose.

A second sweep in this frequency range was performed to see if the problem of excess

counts appearing in the SFAST1 data could be repeated. This sweep reproduced the problem.

The rate indication increased approximately 25% in the SFAST1 data when the problem existed.

The third iteration was done to determine the effect of this anomaly on the SHER data. A

spectrum of SHER data was generated during the frequency sweep, and showed no visible

anomalies. This is not a totally surprising result, for two reasons. First, the discriminator

channel which shows the excess count rate indication lies below the threshold of the MQT

generating the SHER spectrum. Second, the high rates only occur over a few packets. This time

span is not long enough to have a large influence on the spectrum, because the integration time is

much longer (typically 49 seconds).

A fourth sweep was done while logging data from the second SFAST channel in addition
to the first. The first LAD FAST discriminator channel was also monitored. The LAD

discriminator rate apparently dropped to zero near 56 MHz, while the SFAST1 rate apparently

fell 50%. Near 62 MHz, the SFASTI channel displayed an increase in count rate of nearly 25%.

The SFAST2 channel also showed an apparent increase at this frequency.
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The fifth iteration was done to determine the repeatability of the LAD rate drop near 56

MHz. Both LAD and SD anomalies were present in the fifth sweep. A sixth sweep investigated

the effect on the HER data. Although the LAD and SD rate anomalies were repeated, the HER

data spectrum was not noticeably affected in this frequency band.

Temperature values were examined in the seventh sweep of the frequency band. At 56

MHz, the housekeeping returned a value of 233 °C for the right radiator temperature, and -274

°C for the MQT temperature. Because of the multiplexed nature of the temperature telementry, it

was difficut to obtain readings for all temperature measurements. Affected temperature values

would only show an anomalous reading if the MUX were reading that particular sensor at the

time of anomaly.

The eighth sweep in the range was done at a reduced intensity of 1 V/meter. No

anomalous LAD or temperature data were found; however, the SFAST1 rate indicator showed an

increase for one packet near 62 MHz. The ninth sweep increased the field strnegth to 1.5 V/

meter, and the SFAST1 rate anomaly increased in severity. No LAD or temperature anomalies

were recorded at this field strength.

The final sweep was a repeat of the eighth sweep at 1 V/meter. Two packets of data
showed anomalous SFAST1 rate indications near 62 MHz.

The second band of R/F which affected the operation of the module was in the region of

130 MHz to 155 MHz. The problems encountered in this region were similar to that of the

previous frequency band. LAD and SD rates were affected, along with temperature

measurements. The SD rates were more severely affected in this band than the previous one.

After the initial anomaly identification, this region was re-swept in the manner described in the

following paragraphs.

The second sweep was done to examine the effect of the anomaly on the SHER data.

This was done in the same manner as before. At 146 MHz and 156 MHz, SFAST1 displayed a

large apparent increase in the count rate. The increases were more intense and occurred over a

wider frequency range than in the 55 - 65 MHz band. SHER data were not noticeably affected

by the anomaly in the SFAST data. Temperature values were examined on the third sweep, and
an anomalous event was received at 146 MHz.

The fourth sweep was executed at a reduced field strength of 1 V/meter. The SD was still

profoundly affected near 154 MHz.

The frequency band tested here ended near 155 MHz. Because the anomalies were seen

near the edge of the planned test region, a new band of 150-170 MHz was implemented. This

allowed the BATSE test team to determine the upper frequency of the disturbance which became

apparent near 154 MHz. A sweep in this region at 2 V/meter determined that the region in which

the data were affected extended up to nearly 161 MHz. This region, from 154-161 MHz, was the

most profoundly disturbing region of the entire EMC/EMI test. Two subsequent sweeps at 1
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V/meterand0.5 V/meter were done to determine the lower threshold field strength which would

produce a problem. Both field strengths caused anomalies in the data. The final run, executed at

0.3 V/meter, did not generate any problems in the BATSE data.

These frequency bands were the only ones in which the BATSE hardware experienced

any operational difficulties. During the full instrument EMC/EMI test, these bands again caused

anomalous behavior from the BATSE flight hardware. A summary of the instrument EMC/EMI

test is presented in a later section of the document.

4. BATSE Burst Trigger Verification Test

A test of the BATSE burst trigger was made in the clean room of MSFC Building 4705

during the f'u'st week of June 1988. Four detector modules, along with the CEU and BPM, were

used for this test. To this point in the BATSE test program, all activations of the burst trigger

were done through commands to the central electronics, or by signals from the LEDs contained

in the detector modules. This test was done to verify that counting rates from a gamma ray

source would produce the proper burst triggering response in the CEU. This test marked the first

time that a radioactive isotope was used in the production of burst data. Chip Meegan and John

Horack were the test conductors for this operation.

The four detector modules were placed on tables and arranged to each face in a different

direction from each other. This arrangement replicated one hemisphere of the LAD octahedron

configuration present on the GRO. A Cesium 137 isotope was placed at a height of

approximately 300 cm directly above the center of the module arrangement. This isotope was

housed in a metal box and could be exposed rapidly to provide the count rate change necessary

for burst triggering. With the isotope in place, the four detector modules were powered on, and

the background computations were made by the CEU. Subsequently, the source was rapidly

exposed to the four detectors. The CEU successfully recognized the exposure of the source and

properly triggered the "burst." Data were accumulated from the burst readout for the next 1.5
hours.

This short test was not the only test in which a burst was triggered through the use of a

radioactive isotope. Other tests at the instrument and spacecraft level provided more

comprehensive examination of the burst data generated and the contents therein. These tests are

discussed in subsequent sections of this document.

D. Experiment Testing

The majority of the testing done on BATSE hardware took place under the full instrument

configuration. These tests are also referred to as "system-lever' tests. Eight flight detector

modules, the BPM, and the CEU were used in these tests which occurred both on and off the

spacecraft. The electrical configuration of the Instrument is the same as shown in Figure 2.13.

Numerous "canned" procedures were used to test and calibrate the various facets of instrument

performance. In this section of the document, these procedures will be discussed In'st, followed
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by a summary of experiment testing off the spacecraft. The initial discussion of the procedures

used will eliminate the need to describe them every time their results are presented. Procedures

which were one-time-only tests, or which were related to a particular test (e.g., thermal vacuum)

will be covered in the applicable section. System thermal vacuum testing will follow, with

science testing, TRW testing, and KSC testing concluding this section. The overall presentation

of material in this section is principally in chronological order.

1. Primary Instrument-Level Test Procedures

a. TP- 100 Engineering Test

The BATSE engineering test (TP- 100) was executed after each connection between the

Detector Module and the CEU was established. The procedure was run with any number of
modules connected to the CEU and also served as the detector module interface verification test

(see section III.C.2). This procedure provided the most comprehensive examination of the

BATSE interfaces and hardware operations and was used to test the flight cables prior to their

shipment to Redondo Beach, California.

Testing commences after all electrical connections have been made. The interface

between the CEU and the BPM has already been verified. The CEU is powered on, either

through the GRO simulator, or by the spacecraft, depending on the configuration. After packet

output and proper currents are verified, the testing begins.

The ftrst section of TP-100 is iterated for each detector module in the configuration.

With all other modules off, the Ftrst detector module is powered through the appropriate discrete

command sequence, and all +HV is off. After completion of the power-on sequence, the +15V

current is checked for the proper value. When all of the modules in the configuration have been

checked out, they are powered up, and the total +15V current is verified for the number of

modules under test. With all eight detector modules and +HV off, this current is approximately
1.5 A.

While all of the detector modules are on, every +HV supply in the configuration is tested.

Starting with +HV supply A on the flu'st module, serial commands are used to test each bit of the

supply. For each of the commanded levels, the proper HKG return is verified. The entire

instrument is monitored to ensure that the commanding of one +HV supply causes no interfer-

ence or cross-talk or results in any other portion of the flight hardware. When all eight bits of the

+HV supply have been tested and the HKG verified, the supply is left at command value 80 Hex,

and the next supply is tested in the same way. Upon completion of all five supplies on the

detector module, they are powered off, and the next module is tested. This rather long and

tedious sequence ensures that each supply can be commanded to any of its 255 states and that

commanding of a supply through serial commands causes no other unwanted effects in the
instrument.

148



In the second section of the procedure, a comprehensive check of all LLDs is executed.

All of the +HV supplies are commanded to their nominal values, and spectra are taken at LLD

settings of 20, 21, 22, 24, 28, 30, 40, and 80 Hex. Each of these spectra are approximately 48

seconds in duration. As the LLD values are incremented, the spectra are examined to _¢erify that

counts are progressively being removed from the lower channels, as the LLD cuts off data from

higher and higher energies in both the LAD and the SD. All detector modules are tested simul-

taneously.

The third section of TP-100 is an accumulation of a background spectrum. All +HV

supplies and LLDs are commanded to their nominal values. The integration of HER and SHER

data consists of eight sets of data, each approximately 48 seconds in duration for a total of

slightly more than 6 minutes. Each of the accumulated spectra from the SDs and LADs are

examined, printed, and stored to disk for later reference.

Part four of TP- 100 consists of a test of the LEDs on each of the detector modules. The

LEDs are commanded to a rate of 1 kHz by means of serial commands. Each bit of the LED

amplitude command is then tested. At each level, a spectrum is accumulated from all LADs, and

the peak channel is recorded from the spectra. In this manner, a mapping of LED command to

HER channel is obtained. After exercising each bit and nine total command levels, the LED rate

is commanded to 2 kHz. Another spectrum is obtained at amplitude 8. This new spectrum is

compared to the previous amplitude-8 spectrum to verify that there are approximately twice as

many counts in the LED peak at the 2 kHz rate than in the 1 kHz rate spectrum. This verifies

that all bits of the LED command are operational, that the LED control circuitry is operating

properly, and that the LED pulses are accounted for in the data.

Section five is the final portion of TP-100. The modules are commanded into

coincidence mode, and a spectrum is accumulated from each. These spectra are examined to

verify that the counts reflect data obtained in the coincidence mode. The test concludes with a

collection of the two passive analog temperature measurements from each of the detector

modules. These data are compared with the environment to verify correctness.

b. TP-105 - Detector Module Test

The detector module test, TP-105, is a test designed to check all detector module

functions. Some of the operations performed here are also done in TP-100, but those here are not

as extensive. Like TP-100, this test begins with a verification of+HV control. However, unlike

TP-100, the supplies are all tested together. Each bit of each +HV supply command is tested,

with all supplies operating simultaneously. Proper HKG return from the supplies is verified.

The LLD check in TP-105 is identical to that of TP-100, with values of 20, 21, 22, 24, 28,

30, 40, and 80 Hex being tested for all modules in the configuration. Following this portion of

the test, the LLDs are returned to their nominal values.
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As with TP- 100, the LEDs are tested next; however, this portion of the test is not as

extensive as the engineering test. LED amplitudes of 4, 5, 6, 8, and 0 are used in this test, and

peak channels are recorded for each setting and module. The LED is operated at 1 kHz

throughout the accumulation of all spectra, and no comparison of spectra with different LED

pulse rates is done.

TP-105 concludes with a coincidence test and temperature check which is identical to that

of TP-100. The primary motivation for TP-105 was to exercise all functions tested in TP-100,

and verify their operation in a shorter time frame. TP-100 lasts nearly 10 hours, while TP-105
can be executed in about 2 hours.

c. TP-110 - Power-Up and Aliveness Test

As the name suggests, this procedure is used every time that power is applied to the

BATSE instrument. The purpose of this operation is to bring BATSE to a nominal operating

configuration from the power-off state and to perform a brief check of the instrument's major

functions. The procedure contains three major sections, which must be performed in the order

presented. Section one applies power to the BATSE instrument, and configures the GSE for

reception of data from the flight hardware. Section two powers the detector modules and sets

parameters to nominal values. The third section is a brief check of major functions.

After the GSE is properly configured, the system test software (STS) is started. At this

point, the test conductor chooses the remote interface unit (RIU) through which the instrument is

to operate. All CEU relays are then configured, after which the CCF, ADF, and 'ITU are

selected. Primary or backup power is then applied to the instrument according to the

configuration of the power relays. After power is applied either by a switch on the GRO

simulator, Or by the GRO test conductor, the +5 V current is monitored for any out-of-limit

conditions. Heater power may also be applied in the first section at the discretion of the BATSE
test conductor.

In the second section, the detector modules are powered on through discrete commands

sent from the STS console. Following power, the LLDs and +HV supplies are commanded to

their desired settings by the test conductor. All limit checking is subsequently enabled in the

STS, and the test conductor verifies that there are no out-of-limit conditions.

The final section of the procedure is the aliveness test. All analog housekeeping values

are examined for acceptable readings. These values include detector module +HV voltages and

currents, module low voltages, temperature readings, and instrument currents. A printout of all

values is produced. LAD and SD discriminator (FAST and SFAST) rates are examined for

proper operation. PLASTIC and NAI rates are examined in the same manner. Science data are

examined for the proper content of an HER or SHER spectrum, and the auxiliary data are

checked to verify that the correct start and end times are present. Continuous data are also

examined for proper content. If no error conditions exist, the LED is commanded to an

amplitude of 4, and a rate of 1 kHz. A 48-second spectrum is accumulated from each of the
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LADs andSDs. This spectrum is printed out, and the peak channels of the LED are recorded

from the LAD spectra. At the conclusion of the test, the LED is powered off.

Through the use of TP-110, the BATSE instrument can be taken from a state of complete

power-off to a nominal operating condition in approximately 20 minutes.

d. TP-120 - Coincidence Test

The purpose of TP-120 is to verify that count rates exceeding the burst trigger threshold

occur at the expected rate for statistical fluctuations. This insures that the burst trigger thresholds

are being computed correctly, and that the large area detectors do not exhibit spurious high

counting rates. The test begins by setting the burst trigger levels to one of several options,

depending on the length of time available for the test. With the instrument powered up and

running, the STS is set to accumulate counts of the parameter EXFLAGS, which is the count of

individual detectors above burst threshold. The STS also is set to accumulate COINC, which is

the count of instances when two or more detectors exceed burst threshold simultaneously. These

values are collected for the entire duration of the test.

After accumulation of the data, the average background rate from each LAD is

determined for each of the three triggering time scales (64 ms, 256 ms, and 1.024 s). These rates

are compared to the computed thresholds. The number of standard deviations for each threshold

is computed. The values obtained are slightly lower than the prescribed values because of

round-off in the calculations. The average number of detector sigmas is entered into the table.

The mean time between accidental triggers for one detector and coincidence triggers in

two or more detectors is computed from an assumed Poisson-like background distribution for

each time scale. The expected number of accidental triggers is then found by multiplication of

the expected rate by the time duration in which EXFLAGS were accumulated. The number of

observed single detector and coincidence triggers are verified to lie within 3a of the number

expected.

This test can last anywhere from 1 to 8 hours, depending on the time available.

e. TP-125 - Background Run

TP-125 is a brief and simple procedure which instructs the test conductor to accumulate

a background spectrum, print it out, and store it onto disk. This test was often run

simultaneously with TP-120 when time permitted. The duration of the integration is lei't to the

discretion of the BATSE test conductor.
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L TP-140 - Long Calibration

The long calibration (TP-140) is designed to provide a complete energy calibration of all

large area and spectroscopy detectors. This test serves as the primary calibration procedure

outside those science tests performed at MSFC and TRW with express calibration purposes.

With all detector modules powered in nominal configuration, the test starts with the

accumulation of a 40-set background spectrum. The duration of this integration is approximately

32 minutes. After background acquisition, the spectrum from each of the detectors (LAD and

SD) is stored onto disk for future reference. A small, 1 I.tCi sample of Ba 133 is then placed in

front of each of the detectors. The location is approximately 50.8 cm from the LAD, and on axis.

In several instances, the precise location of the isotope with respect to the detector was difficult

to discern because of the presence of the multi-layer insulation blanket. A similar 40-set

integration is obtained during the time the Ba 133 sources are in place. All eight modules are

tested simultaneously. The spectra are stored to disk, and the process was repeated for Cd 109,

Co 60, and Cs 137 isotopes.

After the completion of the Cs 137 40-set spectrum, single-PMT spectra are obtained for

each of the 12.7-cm PMTs on all eight LADs at nominal +HV settings. The Cesium isotope

remains in place for these spectra, which are approximately 16 minutes in duration. When this

spectrum is completed, high voltages are raised by 100 V across the board, and another Cs 137

spectrum is accumulated. From these spectra, the PMT exponent (% gain change divided by %

high voltage change) for each LAD tube is calculated.

The CPD calibration section is performed next in the test sequence. With the Cs 137

isotope still in place, CPD rates are obtained from each of the detectors at eight dif'ferent voltage

settings. In this manner, a plot of rate vs. +HV is constructed for each of the CPDs. The location

of the Cs 137 peak in the rate plot allows the test conductor to locate the threshold of the CPD in

energy and adjust the +HV if necessary.

After calibration of the CPD, another 40-set background spectrum is obtained with all

PMTs commanded to nominal +HV values. The final section of TP-140 is the LED calibration.

In this segment, the LED rate is commanded to 1 kHz, and each of the 16 amplitudes are utilized.

At each amplitude, a spectrum is accumulated and the peak channel recorded into a data table. In

this manner, a determination of LED location in HER channel space is determined for each of the

possible LED amplitude settings.

TP-140 normally takes 6-8 hours to execute.

g. TP-150 - Short Calibration

As the name indicates, this test provides a short calibration of the LAD and SD for each

detector module. The spectra accumulated in the first section of TP-140 are repeated in this test;

however, the duration of the integrations is only 16 minutes instead of the 32-minute runs from
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thepreviously described test. The LED, CPD, and PMT calibrations are not exercised during

TP- 150. Usually, this test was not run during the same period of test time in which TP- 140 was

executed. TP-150 lasts approximately 2 hours.

h. TP-170 - CPD Calibration

TP-170 consists of a collection of eight, 5-minute spectra from the LADs while operated

in the coincidence mode with the CPDs. For each of these eight spectra, the CPDs are

commanded to a different +HV value. During the time of spectral accumulation, a count rate vs.

+HV plot can be constructed. This method is identical to the CPD calibration detailed for

TP-140. From the rate plot, the BATSE test conductor can determine the location of the CPD

threshold, and determine if the +HV requires adjustment. Table 3.76 shows the +HV values used

in the eight spectral accumulations and rate determinations.

Table 3.76. CPD +HV Values for Rates Obtained in TP-170

CPD Run +HV Value for CPDs

CPDHV1 Nominal +96 V

CPDHV2 Nominal +32 V

CPDHV3 Nominal +16 V

CPDHV4 Nominal

CPDHV5 Nominal - 16 V

CPDHV6 Nominal -32 V

CPDHV7 Nominal -64 V

CPDHV8 Nominal -96 V

i. TP-171 - CPD/LAD Coincidence Run

TP-171 is executed in order to verify proper operation of the coincidence and

anti-coincidence mode circuitry on each of the eight detector modules. The test proceeds very

much like the CPD test done in TPS-59 at the detector module level. The +HV on all modules is

commanded into nominal states, and LADs are in anti-coincidence mode to start the test. An

8-set integration is accumulated and stored to disk for later reference. Next, the CPDs are all

powered off, and the integration sequence is repeated. The ftrst spectrum is subtracted from the

second, with the difference in counts in the upper channels coming from the lack of CPD rejec-

tion. From the number of counts in these upper channels, and the duration of the integration, an

average CPD rejection rate is computed. The final spectrum is accumulated with the LAD and

CPD in coincidence mode. The +HV on the LAD is sufficiently low so that muons are brought

onto the scale of the MQT. From this coincidence spectrum, the counting rate in the LAD above

an energy near 0.6 x muon deposition energy can be computed. This counting rate is compared

to the CPD rejection rate for each of the eight modules. At the conclusion of the test, all

parameters are returned to their nominal values. The duration of TP-171 is approximately 30
minutes.
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j. TP-180- BurstData Test

The burst data test serves the purpose of verifying the proper operation of the BATSE

burst data types. The data types checked in this test are DISCSC, PREB, MER, Trs, TIE,

STYE, HERB, and SHERB. There are three options for this test.

Option 1 creates a burst in detectors B0 and B1 and keeps burst storage parameters at

their default values. Option 2 produces a burst in detectors B2 and B3 and optimizes the

parameters for weak bursts. The final option creates a burst in detectors B4 and B5, while

optimizing the parameters for a strong burst.

After selecting the option desired, the BATSE test conductor turns on the LEDs to verify

their presence in the burst trigger channels (FAST2 and FAST3). Revisions to the LED

amplitudes can be made if necessary. The LED is then turned off.

The burst is triggered by a command file which enables the burst trigger, turns on the

LEDs in the proper detectors, decreases the LED frequency by 1000 counts per second every 10

seconds, and finally turns off the LED after 100 seconds. The burst readout is then accumulated

to archive tape for post-processing analysis. In this analysis, the test conductor examines the
burst readout for sevei'al features.

The first packet of the burst readout (DISCSC) is examined to verify that the burst trigger

time (rise in rate) is contained and visible in the packet. The location of the LEDs in the

continuous (CONT) data is recorded. The pre-burst (PREB) data are compared to LAD

discriminator rates previous to the burst trigger for all eight detector modules to verify that the

PREB count rate is approximately 1/16 of the LAD discriminator rates. The PREB data type

contains four-channel data rates per 0.064 second for all modules. All 16 MER channels are

examined to verify that only those channels which contain LED counts in CONT data also

contain counts from the LED in MER data. Furthermore, the MER data are examined to verify

the proper number of LED counts both before and after the change in integration time. TI'S data

are examined by the BATSE test conductor to verify that the LED is appearing in the proper

discriminator channels and that the time to spill in these channels is much shorter than in chan-

nels without the LED. HERB and SHERB data are examined for proper detector output and time

scale parameters. The TYE data are examined to verify that the fhst quarter of the memory

contains data from all detectors prior to the burst, and also to verify that the final three quarters

contain data only from those burst-selected detectors. Lastly, the STI'E data are examined for

proper data content.

Each iteration of TP- 180 requires approximately 1.5 hours to accumulate and 30 minutes

for data analysis. Customarily, all three options were executed during a set of functional testing.
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k. TP-188- Coordinated BTS/SF Signal Test

TP-188 is the only BATSE standard test which requires the cooperation of the other

experiments on the GRO. The test is executed primarily to verify the function of the GRO burst

trigger signal and solar flare trigger signal. Solar flare parameters in the BATSE CEU are set to

"don't care" values for this test. With other instruments on-line, a burst is triggered using the

LED in the sun-facing detectors. The burst trigger signal and the solar flare trigger signal are

thereby activated. Start times and load times of the triggered burst are provided to the other

experimenters by the BATSE test conductor. Redundancy in these signals is tested by switching

BATSE over to ADF-B and repeating the test when the other instruments are ready. The entire

duration of each signal test is approximately 10 minutes, with 30-35 minutes between the A and

B side tests due to the other instruments' re,configurations. This procedure is done for every

spacecraft functional test.

1. TP-190- Pulsar Data Test

As the name suggests, the pulsar data test is designed to verify proper generation and

output of pulsar data. Pulsar data are accumulated into both memories at the LED rate and then

read out in the output schedule. The BATSE test conductor then examines these data in the

post-processing mode to verify the proper data parameters. This test has two options, each of

which exercises the A and B pulsar memories, but alternates the source of the data (i.e., LAD or

SD). Option A patches data from LAD B0 and B 1 to the A memory, while patching SD B6 and

B7 to the B memory. All LEDs are on, with B0 and B 1 set at amplitudes of 4 and 5, respec-

tively. All other LEDs are at amplitude F. In this manner, incorrect patching of LAD data into

the memory would easily be identifiable in the upper pulsar data channels. Option B is similar;

however, LAD B4 and B5 are patched to the B memory, and SD B2 and B3 are patched to the A

side. The eight LEDs are again on, with the unused LEDs at amplitude F. B4 and B5 LEDs are

commanded to amplitudes of 6 and 7, respectively.

After collection of the data, the BATSE test conductor determines the CONT data

channels in which the LED appears for all eight LADs. The pulsar data are then examined to

verify that LED counts appear only in the pulsar data channels which correspond to the CONT

data for the selected detectors. All other pulsar data channels are verified to be void of LED

pulses. Furthermore, the pulsar data are counted to verify the proper number of LED pulses in

the correct channels given the pulsar parameters in place during the accumulation.

The entire pulsar data test lasts approximately 20 minutes per option, including data

reduction time. Customarily, both options are executed during BATSE functional testing.

m. TP-192 - Pulsar Clock Frequency Calibration

TP-192 is a test devised to determine the difference in frequency between the GRO

spacecraft clock and BATSE's internal pulsar clock. The test procedure was developed in May

1989 for initial use in the GRO thermal vacuum test later that summer. That opportunity allowed
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theBATSE team to determine the behavior of the two clocks as a function of temperature. Since

that time, this procedure is executed as a standard portion of the BATSE functional test sequence.

The test begins with the sending of a command file to create the proper test environment.

Pulsar data are accumulated at a period of 1 second with 1000 scans. After accumulation, the

data is read out in the full-A data type. At the completion of the data accumulation and readout,

the pulsar auxiliary data are examined. The auxiliary data contain both the start and end time for

the pulsar accumulation, according to the spacecraft clock. According to the BATSE clock, the

time of accumulation is exactly 1000 seconds. The GRO clock, however, is slightly different.

The elapsed time on the spacecraft clock is computed simply by subtraction of the auxiliary time

words. The ratio of these two clock values yields the frequency percent difference.

Results from this test are presented throughout the remaining portions of this document,

with the most interesting results obtained in GRO thermal vacuum testing. Because BATSE has

two independent clocks in CCF-A and CCF-B, the test is usually done on each side during

functional testing. The duration of this test is approximately 20 minutes.

n. TP-195 -Data Consistency Tests

TP- 195, the data consistency test, is the procedure through which the BATSE test

conductor can verify that summations of BATSE data packets over identical energy and time

intervals yield consistent detector counting rates, within the precision permitted by the data

collection time. Because BATSE has a large number of different data types, each with varying

temporal and energy ranges, it is important to verify that each data type is consistent with the true

incident counting rate at the detector and that each data type is consistent with all of the others.

BATSE is placed into a normal operating mode, at nominal +HV and LLD settings.

Large area detector rates are compared to NaI and PLASTIC rates to verify that the

anti-coincidence circuitry is operating properly. A commanded burst is then executed to generate

all of the burst data types for later analysis. Following a complete burst readout (1.5 hours),

pulsar data are generated, along with several dumps of the instrument memory.

After the data are collected, the test conductor unfolds each of the data types off-line and

examines them for consistency with the incident counting rate in the desired energy region and

for consistency with all other data types.

o. _- 199 : End 0fShift Procedure

This test procedure allows the BATSE test conductor to power down the instrument,

save all data to tape or disk, and power off the IGSE in an orderly fashion. The test leaves the

BATSE flight hardware in a power-off configuration which is suitable for the initiation of

operations again through TP-110. Usually, the BATSE test conductor can perform an orderly

shut-down of the instrument in approximately 5 minutes. Because this test does not produce any

unique data or results, most executions of this procedure are not on file in the BATSE library.
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p. TP-200 - Power Control Functional Test

TP-200 is the test by which each of the power control function (PCF) relay switching

circuits and status verification circuits are exercised and validated. Each of the PCF relays in the

CEU are configured into the primary and redundant on/off states through commands sent from

the GSE. After each command fifle is executed, the status response in the BATSE packet data,

and in the GRO spacecraft engineering telemetry, is verified. At the conclusion of this test, all

relays are left in the nominal configuration.

The procedure begins with BATSE powered on and operating through RIU-A. A

command file to set all relays to nominal positions is executed, and the telemetry response is

verified correct. In this configuration, all CEU boards are powered on, with the exception of the

alternate ADF. Detector modules are off. After a nominal starting configuration has been

established, the ADF functional element is tested. ADF-B and ADF-A are both powered

individually into their primary and redundant configurations. A similar mode of testing is used

for the detector modules, followed by DCH/SDH functions, MER/PSR memory functions,

PSR-B memory functions, SqTE/HER functions, SHER and MPC functions, the "lq'E function,

CCF-A and CCF-B, steering and control relays, and finally primary and backup power.

After completion of the test, the instrument is switched to utilize RIU-B, and the entire

procedure is repeated. TP-200 lasts approximately 1.5 hours and exercises each of the relays in

the CEU to all primary and redundant power configurations.

2. Engineering and Qualification Tests

The primary engineering and qualification tests performed on the BATSE hardware were

done for detector module integration verification and flight cable testing and to allow the BATSE

team to become familiar with the operations of the hardware and associated procedures. These

operations were executed during the time period of May-June 1988 and were performed in

MSFC Building 4705. Preparations for the upcoming system-level EMC/EMI and thermal

vacuum tests were being made, and no other types of testing were planned for this period. The

integration of detector modules into the system was discussed in section III.C.2 and will not be

repeated here.

Fabrication constraints on the GRO spacecraft required that the BATSE flight cable

harnesses be delivered to TRW in California and installed onto the GRO a significant period of

time before the remainder of the instrument. On May 20 and 21, 1988, the BATSE team

performed a full test of the flight cable harnesses which connect the BPM and CEU to all eight

detector modules. The TP-100 procedure was used for this test. Through this test, the BATSE

team verified pin-to-pin continuity and isolation for each of the harness sets, and also verified

that no cross-talk existed in any of the cables. The flight cables had previously been thermal

cycled and vacuum tested. They received thermal vacuum testing in conjunction with the rest of

the GRO spacecraft and BATSE instrument during the GRO thermal vacuum test in July and

157



August1989. Thisexecutionof TP-100 marked the final use of the flight cables during the

BATSE test program until installation of the flight hardware onto the GRO spacecraft.

The BATSE team used the remainder of this time period to become familiar with the

operations and procedures surrounding the BATSE flight hardware test environment. The IGSE

system had to be learned, and significant bugs needed to be worked out. Development of the

procedures detailed in section M.D. 1 was done at this time. Execution of the procedures showed

the BATSE team where changes needed to be made for future iterations of a particular test.

All test results and data from this period are on file in the BATSE data library. No results

are presented here because of the exploratory and deterministic nature of the operations

performed during this test time.

3. System-Level EMC/EMI Testing

The BATSE system-level EMC/EMI test was performed in July 1988 in the MSFC R/F test

facility located in Building 4705. The flight hardware was moved from the clean room facility in

which the engineering and qualification testing had been done, and all interfaces were re-mated.

After reintegration of the hardware, a complete TP-100 was executed to verify that the connec-

tions had been made properly, that no damage to the hardware had been done during the

transport, and to insure that the instrument was ready to proceed with the environmental test at

hand.

The EMC/EMI test proceeded much like that of the module-level testing described in

section III.C.3 of this document. This operation determined the effect of conducted emissions,

conducted susceptibility, radiated emissions, and radiated susceptibility tests on the entire

BATSE instrument, operating as one unit. As with the previous EMC/EMI tests, the operations

were directed by personnel from NASA/MSFC Test Laboratory, with Space Science Laboratory

personnel monitoring the instrument for any anomalous effects.

Conducted emissions and susceptibility tests were executed first, producing the same

results as the module-level test. Signals were injected onto the positive and negative leads of

BATSE power lines with frequencies ranging from 30 Hz to 50 MHz with no noticeable effect

on the instrument performance or operation.

Radiated susceptibility tests again caused anomalies in the instrument performance at

several frequencies. This portion of the testing was conducted with the entire BATSE instrument

bathed in R/F _ation at a strength of 2 Wrn. The ftrst two frequency bands, 14-150 kHz and

150 kHz- 15 MHz, produced no anomalous effect on the operation and performance of the

hardware. This result was consistent with the previous sub-system EMC/EMI test results. The

third frequency band ranged from 15 to 220 MHz. In this region, numerous anomalies in rates

and temperature readings were found, like those in the module-level test. Erroneous temperature

readings began near 42 MHz, and were present through 220 MHz. The field strength of the

incident radiation was lowered to 0.5 V/m, and the test was repeated. At this lower intensity, no
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anomalousratesor temperature readings were observed. The system-level results in this region
differed from those of the module-level test in the sense that the anomalies occurred over a

slightly larger frequency band (42-220 MHz). In the detector module test, the susceptible

regions were confined to 55-65 MHz and 130-155 MHz. Presumably each of the detector

modules are susceptible near these frequencies. However, each of the detector modules have

slightly different properties, such as the length of the temperature sensors, exact configuration of

cabling, R/F environments, etc. These differences most likely lead to variations in the particular

frequencies at which each module is susceptible. When all of the modules are combined into a

system, one expects a band of frequencies over which the entire Instrument shows susceptibility.

Radiated susceptibility tests continued up to frequencies of 15 GHz with no further

anomalies, and the region from 42 to 220 MHz was the only one in which difficulties occurred.

Because this behavior had been seen before, and was an acceptable condition, no further

attention was directed toward investigating the details of the behavior. Results from the

system-level EMC/EMI test are available for inspection in the BATSE library.

4. BATSE System-Level Thermal Vacuum Test

a. Test Overview

The BATSE system-level thermal vacuum test was conducted in the Sunspot Space

Simulation Chamber located in MSFC Building 4619. The chamber was closed on August 1,

1988, and the test was scheduled to last 8 1/2 days. Problems with the flight hardware, repair,

and retesting caused extensive delays. BATSE successfully completed thermal vacuum testing

on September 27, 1988. During the test, the detector modules were exposed to six temperature

cycles between 0-35 °C, while the CEU and BPM were cycled twice between -10 °C and 50 °C.

Temperature rates of change were kept below 5 °C per hour, and temperature soaks were

executed at each extreme for a minimum duration of 4 hours after stabilization. The protoflight

module did not participate in this test. During most of the hot-to-cold transitions, BATSE power

was removed to expedite the test. Figure 3.32 displays the temperature profile of the BATSE

thermal vacuum test.
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Three separate tasks were to be accomplished during this testing. The f'a'st was to verify

the proper operation of all BATSE hardware throughout the desired temperature range, and under

vacuum conditions. Second, the BATSE team obtained calibrations on temperature-dependent

portions of the instrument behavior. Temperature soaks and plateaus were added to the timeline

to aid in the acquisition of calibration data. Third, and somewhat less important, the TN test

offered the opportunity to execute additional testing which the science team desired, but were not

necessarily temperature or vacuum related.

The mechanical configuration of the chamber system, the flight hardware, and associated

GSE took nearly 2 weeks to complete. Each detector module was fitted with its flight thermal

blanket, numerous test-only heaters, and temperature sensors. Because of limited space in the

chamber, the detector modules were placed in specially fabricated support racks which supported

two modules each, one above the other. In this configuration, the centers of the two module

LADs were separated by a vertical distance of 118.25 cm (46.55"). Once the detector modules

were installed, the rack was lifted with a crane and placed into the chamber. Figure 3.33 details

the configuration of BATSE hardware inside the sunspot chamber.

The CEU and BPM were mounted to a cold plate which was separate from any detector

module support MGSE, and placed onto the floor of the chamber. The modules were arranged to
face the center of the chamber where a small calibration source was located. This source was

contained in the same canister which was used for the protoflight thermal vacuum test. However,

no motor drive or movable apparatus was included. The isotope used was 1.105 _tCi of Na 22,

shielded with 0.686 cm (0.270") of lead. Combined with a location in the center of the chamber

approximately 70 ° off-axis from the upper detector modules, at a distance of approximately

122.5 cm, the source simulated the anticipated on-orbit strength of the 511-keV line, while

providing each of the eight large area detectors with approximately the same flux. In this

fashion, the BATSE team could obtain a feel for the difficulty of balancing the LAD PMTs using

the on-orbit 511-keV line.
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Figure 3.33.
BATSE System Thermal Vacuum Test Chamber

Configuration.
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b. Test Flow and Description

(1) Pre-Test Checkouts

Mechanical and electrical configuration of the BATSE flight hardware and associ-

ated GSE was completed on July 29, 1988. At this time, a functional test of the BATSE instru-

ment was done prior to the start of the test to validate all electrical interfaces, and to again verify

the instrument readiness to begin the thermal vacuum test. CEU and BPM stand-alone functional

tests were executed with no anomalies. BATSE personnel from Space Science Laboratory then

proceeded with a full eningeering test (TP-100), checking all detector module interfaces and

performance. Results from these tests are on file in the BATSE library. The flight hardware was

declared ready for chamber closure at 7 p.m. on August 1, 1988.

(2) Thermal Cycle #1

The thermal vacuum chamber evacuation began shortly after readiness was de-

clared on August 1, 1988. BATSE power and high voltage remained on throughout the entire

pumpdown phase of the test. This was done to validate the potted +HV system, which was

designed to be able to operate in the corona region. No anomalies associated with the +HV were

evident during the initial pumpdown phase. At 3- hour intervals during the f'trst cycle, and

throughout the remainder of the test, BATSE personnel executed BATSE-ES-62-TPS-63, the

BATSE thermal vacuum monitoring procedure. The test allowed for the collection of

temperature-dependent calibration data and to verify that the instrument state-of-health was

acceptable during the test. TPS-63 begins with power already applied to the hardware and the

instrument in normal operating conditions. The LEDs are commanded to predetermined

amplitudes, and a 16-set integration is obtained. Rates, voltages, and other pertinent data are

printed for archival purposes.

Six iterations of TPS-63 were executed prior to arrival at 35 °C. The hot-case

temperature was reached at 11:15 a.m. on August 3, 1988. After a 1-hour soak at this

temperature, BATSE personnel executed a short functional test sequence which included TP-110

and TP-105 (see sections III.D.l.b and III.D.l.c for a description). In addition, two other tests

were performed. TPS-65, the BATSE thermal vacuum source resolution procedure test, was

executed by placing a Ba 133 source and a Cs 137 source on the top of the chamber, and

obtaining 8-set integrations of each. These sources were 10 mCi and 2 mCi in strength, respec-

tively, and were the same isotopes used in the BATSE angular response calibration (TPS-19). A

background spectrum was also obtained, subtracted from the two source spectra, and all were

stored to disk. The second additional test procedure was TP-156, a PMT gain and gain-exponent

measurement. This operation is identical to the PMT measurements made in TP-140; however,

here, the small Na 22 source in the center of the chamber was used. All spectra collected in this

test were also stored to disk for future reference. These two procedures were executed at all

temperature plateaus throughout the test. During this thermal cycle, RIU simulator A was used,

as was the primary GRO power input.
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Date
Table3.77. BATSESystemT/V TestCycle#1 ImportantEvents

Time Event
8-1-88 19:00
8-2-88 17:00
8-2-88 ........
8-3-88 11:15
8-3-88 12:15
8-3-88 15:45

8-4-88 11:45
8-4-88 12:45
8-4-88 16:45
8-4-88 20:00
8-5-88 01:00
8-5-88 04:00

Beginpumpdown of thermal vacuum chamber
TPS-63 first iteration

CPD rates on several modules low (near zero)

Arrive at 35 °C, begin 1-hour soak

Begin short BATSE functional

Complete short functional, begin transition to cold

Power off during cold transition --

Arrive at cold-case temperature (0 °C)

Begin short BATSE functional

Complete short functional, begin transition to hot

PMT C on DM 0 (B6) enters overcurrent, powered off

CPD rates begin to normalize, apparent improvement

Complete Cycle #1

Two major anomalies were uncovered during the first cycle of the test. The CPD rates on

nearly every module were extremely low, in many cases at or near zero in any one second

interval. This anomaly was found later to be caused by insufficient venting of the CPD. Gases

trapped inside the CPD placed pressure on the PMT and wave washer, causing a separation of

the PMT face and the optical coupling. This anomaly, the CPD vent repair, and re-qualification

are discussed thoroughly in section III.A.3.c.

The second major anomaly in this thermal cycle was the manifestation of a high voltage

problem in vacuum conditions. At 20:00 on August 4, the BATSE test conductor on duty

noticed an overcurrent condition in PMT C on detector module DM #0 (later B6). This anomaly

was caused by a +HV breakdown somewhere in the PMT supply cable system. The +HV supply

was powered off immediately. For the remainder of the test, PMT C on DM #0 would operate in
an intermittent fashion.

(3) Thermal Cycle #2

Cycle #2 began at approximate 04:00 on August 5, with the transition through 25

°C. By 11:00 on the same day, the final hot-case temperature of 35 °C had been reached, and

BATSE was powered off for a 2-hour soak. At 13:00, BATSE was powered to configure power

relays for GRO secondary (backup) power. After reconfiguration, the instrument was turned off

for a second 2-hour soak period. At 15:00, the second hot-case functional test was performed.
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Date
Table3.78. BATSESystemT/V TestCycle#2 Important Events

Time Event

8-5-88 04:00

8-5-88 11:00

8-5-88 13:00

8-5-88 15:00

8-5-88 16:15

8-5-88 19:00

8-6-88 11:15

8-6-88 16:15

8-6-88 18:15

8-6-88 20:30

8-7-88 03:45

8-7-88 05:45

8-7-88 07:45

8-7-88 15:40

8-7-88 21:00

8-8-88 00:30

Begin Cycle #2 at 25 °C

Power off -- arrival at hot plateau

Power on to reconfigure for backup power, power off

Power on, begin short BATSE functional

CPD DM #7 037) high voltage anomaly

Complete short functional, begin transition to cold

-- Power off during cold transition --

Arrive at cold-case temperature (-5 °C)

Power on, configure for primary power, power off

Begin short BATSE functional

Complete short functional, begin rise to 0 °C

Arrive at 0 °C, power off for soak

Power on, configure for backup power, power off

Begin long BATSE functional

Finish long functional, switch to

RIU-B, CCF-B, ADF-B, TrU-B, begin rise
Enable automatic fain control

Complete Cycle #2

At the hot-case plateau, a short BATSE functional test was performed, following a 2-hour

soak period at 35 °C. The subsequent cold transition terminated at -5 °C, 5 ° lower than the

previous cold temperature. This lower temperature was a planned phase of the thermal vacuum

testing. A short BATSE functional was executed at this temperature, after which the temperature

was raised to 0 °C. Following a 4-hour soak at 0 °C, an extensive functional test of the BATSE

instrument was performed. Functional testing here included iterations of TP-110, TP-105,

TP-170, TP-171, and TP-120. The results from these tests are on file in the BATSE library.

When the long functional was complete, all BATSE subsystems were switched to the B-side, and

the temperature transition to hot-case was started.

One major anomaly was present during the second thermal cycle. The CPD on detector

module DM #7 037) suffered high voltage breakdown. The anomaly was the second high

voltage problem encountered under vacuum conditions during the test. This failure manifested

itself through a current-limiting condition in the +HV circuit and a tremendous jump in the

registered counting rate from the CPD. Behavior similar to this was seen during the previous

+HV breakdown anomaly on detector module 0 036) PMT C. The CPD on DM #7 037)

remained intermittent in its behavior throughout the rest of the thermal vacuum test.
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(4) ThermalCycle#3

Thethirdcycle of the test mirrored the In'st cycle in profile. This cycle began at

approximately 00:30 on August 8, with a transition through 25 °C. Iterations of TPS-63

continued at the standard 3-hour intervals. The BATSE automatic gain control function was

utilized throughout all power-on activities in this thermal cycle. Hot-case functional testing at 35

°C began at 07:45 on August 8, following a 2-hour soak at this temperature. By 12:45 of the

same day, the transition to the cold-case was started. A check of the failed +HV supplies on

detector module #0 (B6) and #7 showed that the +HV system still exhibited the anomalous

conditions described previously. They were immediately powered off. Table 3.79 highlights the

major events in the third thermal cycle.

Date
Table 3.79. BATSE System T/V Test Cycle #3 Important Events

Time Event

8-8-88 00:30

8-8-88 05:45

8-8-88 07:45

8-8-88 12:45

8-8-88 13:00

8-9-88 05:00

8-9-88 07i30

8-9-88 13:50

8-9-88 14:00

8-9-88 14:50

8-9-88 23:00

Begin Cycle #3 at 25 °C

Arrival at hot plateau

Begin short BATSE functional test

Begin cold transition, power on

Examination of DM #0 PMT C and DM #7 CPD +HVs

Arrival at cold-case temperature (0 °C)

Begin long BATSE functional test

Complete long BATSE functional, begin rise to hot-case
Execute HVPS/PMT stress test

DM #1 SD +HV anomaly

Complete Cycle #3

At the cold plateau, a long functional test was executed, including procedures TP- 180 and

TP- 190, the burst and pulsar data tests. Because of the problems seen with the +HV supplies on

detector module #0 and #7, it was decided that a stress test of the +HV system was warranted.

This test placed all +HV supplies at their maximum attainable value of 2000 V for a period of

approximately 90 minutes. A third +HV failure was induced during this test on the SD of DM #1

(B1). When commanded to full scale, the supply returned a value of 1041 V, indicating that

some of the eight command bits had failed. The third thermal cycle ended on August 9, with a
transition through 25 °C.

(5) Thermal Cycle #4

The fourth thermal cycle differed from the first three with the introduction of two

intermediate plateau temperatures at which calibration data were obtained. These plateaus

occurred at temperatures of 25 °C and 15 °C during the transition to cold-case. The hot-case

plateau was reached at 05:00 on August 10, with a short functional test commencing 2 hours

afterward. Transition to the first plateau began at 15:45 of the same day. During this cycle,

BATSE was powered off for all cold transitions to aid in a more rapid change of temperature.
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The25 °C plateau was reached at 20:45 on August 10, following which, a short functional was

executed. An identical test was completed at the 15 °C plateau at 00:30 of the following day. A

temperature of 0 °C was reached at 09:00 on August 11, and was followed 90 minutes later by a

long functional test similar to those performed before. This cycle was completed at 03:00 on

August 12.

Date
Table 3.80. BATSE System T/V Test Cycle #4 Important Events

Time Event

8-9-88 23:00

8-10-88 05:00

8-10-88 07:00

8-10-88 15:45

8-10-88 20:30

8-11-88 00:30

8-11-88 00:45

8-11-88 09:00

8-11-88 10:30

8-11-88 16:00

8-12-88 03:00

Begin Cycle #4 at 25 °C

Arrival at hot plateau

Begin short BATSE functional test

Begin cold transition

-- Power off during cold transitions --

Arrival at 25 °C plateau, short functional

Arrival at 15 °C plateau, short functional

SFAST discriminator 3 on B7 intermittent failure

Arrival at 0 °C cold-case

Begin long BATSE functional

Complete long BATSE functional, begin rise to hot-case

Complete Cycle #4

One major anomaly occurred during this cycle. Spectroscopy discriminator channel 3 on

detector module #7 (B7) experienced a partial failure. As described in the initial portion of this

mocument, the four SFAST discriminators are integral and contain all counts above a particular

threshold, even those which are also contained in discriminators which begin at higher energies.

Consequently, SFAST3 should always report an equal or greater number of counts than SFAST4.

At the 15 °C plateau, and throughout remaining portions of thetest, this integral nature of

SFAST3 was lost. Counts would sometimes appear in channel 3; however, there would be fewer

counts than in channel 4, indicating that the discriminator was not functional for the entire

duration of the readout or that its operation was intermittent. At this point in the test, the exact

location of the failure (i.e., in the detector module or in the CEU receiving circuitry) could not be

determined.

(6) Thermal Cycle #5

The fifth thermal cycle was identical to cycle four, with the exception that BATSE

was operated on primary power instead of the redundant supply. Of the six cycles in the f'trst

T/V test, this was the most trouble-free. The cycle began at 03:00 on August 12 at the transition

through 25 °C. The hot-case plateau (35 °C) was reached shortly after 5:30 the same day. Two

hours later, a long BATSE functional was executed, which included burst and pulsar data tests.

This testing was completed by 15:30 that afternoon, and the transition to the f'trst plateau (25 °C)

was begun. At both the 25 °C and 15 °C plateaus, a short functional test of TP-110, TP-105, and
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TPS-65wasexecuted.Theseproceededin identical fashion to the previous thermal cycle. The

cold-case plateau of 0 °C was reached at 09:30 on August 13. After a 1-hour soak period, the

BATSE test conductor executed yet another short functional test. This series of tests was

completed by 13:45, at which time the rise to hot case was started. Cycle #5 was completed

with no additional anomalies at 03:00 on August 14, 1988.

Date
Table 3.81. BATSE System T/V Test Cycle #5 Impotent Events

Time Event

8-12-88 03:00

8-12-88 05:30

8-12-88 07:30

8-12-88 15:30

8-12-88 20:00

8-13-88 00:15

8-13-88 09:00

8-13-88 11:30

8-13-88 14:00

8-14-88 03:00

Begin Cycle #5 at 25 °C

Arrival at hot plateau

Begin short BATSE functional test

Begin cold transition

Arrival at 25 °C plateau, short functional

Arrival at 15 °C plateau, short functional
Arrival at 0 °C cold-case

Begin short BATSE functional

Complete short BATSE functional, begin rise to hot-case

Complete Cycle #5

(7) Thermal Cycle #6

The final thermal vacuum cycle of the initial test was started on August 14, 1988,

with the transition through 25 °C. Unlike the previous two cycles, this period had no

intermediate plateaus. Instead, a transition to -5 °C followed the hot-case soak and functional

testing. Hot-case functional testing began at 08:15 on August 14, following a switch to primary

power and a 4-hour soak at 35 °C. This testing was completed by 11:30 that day, and the instru-

ment was released for the transition to -5 °C. BATSE was powered off at 04:00 on August 15
when a temperature of 5 °C was reached. The hardware was then left to settle into the final

temperature of -5 °C with power off.

168



Date

Table 3.82. BATSE System T/V Test Cycle #6 Important Events
Time Event

8-14-88 03:00

8-14-88 04:30

8-14-88 08:20

8-14-88 11:30

8-15-88 08:30

8-15-88 10:30

8-15-88 12:30

8-15-88 16:00

8-15-88 19:00

8-15-88 21:00

8-15-88 23:00

8-16-88 02:00

8-16-88 13:15

8-16-88 16:00

Begin cycle #6 at 25 °C

Arrival at hot plateau

Begin short BATSE functional test

Begin cold transition
Arrival at -5 °C cold-case

Switch power relays to redundant supply

Begin short functional

Complete short functional, begin rise to 0 °C

Arrive at 0 °C, power off BATSE

Switch power relays to primary supply

Begin 0 °C short BATSE functional

Complete short BATSE functional

Arrive at ambient temperature, begin ambient short functional

Complete ambient functional, be_in chamber repressurization

Following 2 hours at the -5 °C plateau, BATSE was briefly powered to switch to the

redundant power configuration. Another 2-hour soak followed, after which a short functional

was executed. When the temperature of the instrument reached 0 °C, an identical sequence of

steps was executed, with the power relays being switched back into the primary position. At

13:15 on August 16, ambient temperature was reached, and the final short functional was

executed. Upon completion of this testing, the thermal vacuum chamber was pressurized to 1

atmosphere and opened. Thermal cycle #6 was completed with no additional anomalies.

c. First Thermal Vacuum Retest Operation

(1) Overview and Motivation

The first BATSE system thermal vacuum test had produced several anomalies.

The SFAST discriminator of detector module #7 was not operating properly. High voltage

system failures occurred on PMT C of detector module #0 and on the CPD of detector module

#7. Because of the isolation of the hardware inside the vacuum chamber, troubleshooting was

limited to operations which could be done in the current instrument configuration. At the times

of these anomalies, the BATSE team was unable to discern whether, for example, the failure of

the SFAST discriminator was located inside the detector module or inside the CEU receiving

circuitry. Likewise, a breakdown in the +HV system could be located inside the PMT, inside a

cable, or at any of the +HV junctions and connectors. To facilitate the localization of these

anomalies, the BATSE instrument was re-configured into the mode detailed in Figure 3.34.
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Figure 3.34. BATSE Thermal Vacuum Troubleshooting Test #1

Instrument Configuration.

On detector module #0, the +HV supplies from PMT B and PMT C were effectively

swapped by interchanging the connectors at the HVPS box. If the anomaly followed the switch,

and appeared on the supply formerly used for PMT B, the difficulty would be localized outside

the HVPS box, nearer' the phototube. To localize the SFAST discriminator problem, detector

modules #4 and #7 were interchanged at the CEU. If _e problem with the SFAST discriminator

was inside the detector module, it would manifest itself now through CEU port #4; Lastly, the
configuration of the CPD +HV system on detector module #7 was changed to power each of the

CPD phototubes individually, using supplies A and B. PMT A and B on module #7 were

powered through the CPD supply, +HVD. If the anomaly occurred in this configuration, it

would be immediately associated with an individual component of the detector module.

This fhst troubleshooting test in thermal vacuum was intended to last for one thermal

cycle in order to isolate all failures found during the previous six cycles. The test began on

August 18, following a period of 24 hours in which the BATSE hardware was reconfigured.
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(2) TestFlow and Description

BATSE was powered on August 18, 1988, at 10:30 for the start of the

troubleshooting test under vacuum conditions. A complete power-up and aliveness test (TP-110)

was executed, along with a detector module test (TP- 105) to check each bit of all +HV supplies.

Immediately upon powering of the instrument, several anomalies were present. The rates of four

CPDs were exceptionally low, and the CPD on detector module #6 (B0) entered an overcurrent

condition, indicating a breakdown of the +HV system. This particular +HV supply and PMT set

exhibited no problems during the first six cycles.

At 17:24 on August 18, approximately 7 hours after the beginning of the test, +HV

supply B on detector module #0 indicated an overcurrent condition. Because PMT C was

connected to that supply and PMT C had demonstrated this behavior before, the anomaly was

located to the PMT/cable system. Twenty minutes later, PMT C on detector module #5 was

noticed to have the wrong voltage for the command entered. Investigation into the anomaly

showed that the upper and lower bits of the higher-order byte in the command setting had failed.

Another +HV failure occurred at 22:30 on the same day. Detector module #7's CPD

suffered +HV breakdown and failure. This failure isolated the anomaly to PMT #2 on the CPD,

determined because each PMT was individually powered according to the scheme above.

The SFAST3 discriminator problem re-appeared at 00:05 the next morning. Because the

anomaly was apparent on detector module port #7, this failure was isolated to the receiving

circuitry in the CEU or the cable, not the detector module. The characteristics of the SFAST3

anomaly were identical to those from the previous test.

An already busy evening became even more so when the SD +HV supply on detector

module #1 began reporting an erroneous voltage in the housekeeping at 02:05 on August 19.

This supply showed no anomalies during the previous testing, and troubleshooting indicated that

two bits of the higher-order byte in the command had failed. The two bits which failed were on

detector module #5.

The final +HV anomaly occurred at 11:15 on the morning of August 19, approximately

24 hours after the test began. The CPD on detector module #5 tripped into an overcurrent

condition because of a breakdown in the +HV system. The test was concluded at 14:25 the same

day. In a period of shortly more than 24 hours, each of the anomalies from the first test had been

repeated and identfied, and three new +HV were generated.
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d. SecondThermalVacuumTroubleshootingTest

(1) OverviewandMotivation

In an effort to further isolate both the problems which became apparent in the first

test and the new problems, a second troubleshooting test was executed following repressurization

of the chamber. In this test, significant changes were made to the configuration of BATSE.

Detector Module #7 was reconnected to CEU port #7; however, module #4's cable was used.

Module #4 received DM #7's cable. This was done to further isolate the SFAST3 problem. At

that point, the possibility existed that the SFAST3 anomaly was due to a cable problem. Evi-

dence of a problem on SFAST3 of detector module #7 would now positively indict thye CEU as
the source of the anomaly.
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Figure 3.35. Second Thermal Vacuum Troubleshooting Test Instrument Configuration.
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PMT#2 on theCPDof detectormodule#7 receivedanew+HV cable. Furtherevidence
of aproblemwith this +HV systemwould indicatethatthePMT wasthesourceof theanomaly.
Detectormodule#5 wasinternallyreconfiguredto matchthefirst retestconfigurationof detector
module#7. Thefinal configurationchangewasmadeto PMT A, B andC ondetectormodule
#0. PMT A receivedthe+HV cablefrom PMT C andwasconnectedto theB +HV supply.
PMT B retainedits cable,butwasconnectedto HV supplyC. PMT Creceivedacablefrom
PMT A andwasconnectedto PMT A's +HV supply. In thismanner,if PMT C displayedan
overcurrentcondition, theproblemwouldbepositivelyisolatedto thephototubeitself.

(2) TestFlow andDescription

ThesecondtroubleshootingtestbeganonAugust23, 1988.After reconfiguration
of theBATSEhardwareasshownin Figure3.35, theinstrumentwaspoweredupatambient
pressure.TheCPDonmodule#6displayedthe+HV breakdownproblemseenpreviouslyat
vacuum.ThePMT C +HV supplyonmodule#5exhibitedabit failureproblem,asdid theSD
andCPDsuppliesonmodule#1. At normalpressureandtemperature,SFAST3wasfully
operational.

Evacuationof thechamberbeganat 13:30onAugust23. By 19:30,thechamberpressure
hadreached30Torr, andtwomore+HV supplieshadfailed. BothHVPSA onmodule#7 and
HVPSB onmodule#0 exhibitedcommandbit failures. During thepumpdown,thecountrateon
eachof theCPDsexhibitedthesharpdeclineseenduring theprevioustwo transitionsto vacuum
conditions. Beforetheendof theday, four more+HV supplieseithersufferedbreakdownor
werefoundto havenon-functionalcommandbits in thesupply.

BATSEremainedundervacuumuntil theafternoonof August24,at which timethetest
wasterminated.During theprevious3weeksof testing,the instrumenthadsufferedsevere
anomalieson nearlyone-thirdof the+HV supplysystemsonboard. It becameapparentthatthere
wasaninherentproblemwith the+HV system,which,if left unattended,would leadto the
eventualfailure of all BATSE+HV afterashortperiodof timeat vacuumconditions.

e. Recoveryand+HV SystemRepair

TheBATSEflight hardwarewasremovedfrom thethermalvacuumchamberon the
afternoonof August25, 1988.Damageto theCPDonmodule#0wasevidentimmediatelyupon
removalof thethermalblanket. A lackof adequateventingcausedtheouterfaceof theCPDto
separatefrom thehoneycombstructurewhichsupportsit. Thedeformedfaceplatewascon-
clusiveevidencethattheCPDwaspoorlyvented,andmostlikely thecauseof thepaucityof
countsduring theinitial stagesof thepumpdown.Althoughasmallredesigneffort was
necessary,thefirst problemencounteredduringthetestappearedto beundercontrol. The
applicationof a sinteredbronzeventto eachof theCPDsandthequalificationtestingwhich
followed isdetailedin sectionIII.A.3.c andwill not bedescribedhere.
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Theeffectof theanomalyseen in the SFAST3 discriminator was minor. The behavior of

the discriminator was intermittent and not of great impact to science operations. Because of the

integral nature of the discriminators, much of the information given in SFAST3 could be

reconstructed by examination of the difference between SFAST2 and SFAST4. For these

reasons, no effort was made to repair the SFAST3 receiving circuitry in the CEU. The BATSE

team felt that the reward for fixing the anomaly did not justify the time, effort, and risk to flight

hardware that would be undertaken in the event of a repair. This anomaly was seen again in the

GRO thermal vacuum test at cold-case.

Efforts to solve the +HV problems were not quickly rewarded. Mr. Robert Austin and

Mr. Richard Acker of MSFC led the investigation into the +HV problems. Each of the PMT HV

cable systems which suffered an anomaly in the thermal vacuum test were dissected and

examined. In addition, several of the failed 4050-IC chips, which control the +HV command

bits, were removed and analyzed. Inspection of the cables and connectors in the +HV system

yielded some surprising results. Many of the interfaces were blackened with a carbon-like

deposition, indicating some form of electrical breakdown or arcing across the +HV interface. In

many instances, dirt, contamination, or missing O-rings were found to be the cause of this

breakdown. When the command bit ICs under inspection were placed into a scanning electron

microscope, many of the inputs showed catastrophic failure due to the passing of a large spike or

transient which destroyed the IC. After extensive effort, the picture became clearer after Bob

Austin identified a one-to-one correlation between evidence of +HV breakdown and damage to

IC chips on the HVPS board.

During events of +HV breakdown, caused by dirty connectors, missing O-rings, or

contamination, large transients were placed on the +HV line. These transients propagated

through the +HV circuit from the point of breakdown via the +HV return line. The layout of the

HVPS card allowed these transient pulses to not only make their way through to the return, but

also to the inputs of the command bit ICs. These transients damaged or crippled the ability of a

particular input to function, causing one bit of the command to be lost. Rework of the HVPS

card was necessary. The reader is encouraged to consult BATSE drawing numbers 42A30879

and 42A30861 for detailed information on the layout of the HVPS card. All 40 of the BATSE

flight HVPS units experienced rework to better route the +HV return from pin E6 to E3 by

means of a patched wire. In addition, all 4050 IC chips were replaced with new integrated circuit
units.

Testing of the repair involved powering up a non-flight supply which had been given the

above hit_i_/tti_fiS. Tlie +HVoutpt/t-Was placed isht0-i-w0 wires which could be manually

shorted together and caused to arc. After hundreds of iterations where the test conductor simply

"bounced" the wires together, repeatedly causing breakdown and arcing, damage could not be

induced to any of the eight command bit inputs on either of the 4050 ICs on the board.

Concurrent to the repair of the HVPS cards, Bob Austin removed, cleaned, inspected, and

repaired all interface connections for the 40 +HV supplies on the flight hardware. In many

instances substantial cleaning and replacement of isolation O-rings was required. Following the
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rework,eachof the detector modules was given an individual retest of all +HV functions. The

entire process of removal, identification, repair, and retest lasted approximately 4 weeks.

f. BATSE High Voltage Vacuum Qualification Retest

All repairs and preliminary retesting of the BATSE detector modules was completed by

September 20, 1988. Following the retest, BATSE was placed back into the thermal vacuum

chamber in an identical configuration to the initial test in August. TP-100 was conducted on

September 21 to verify the proper connection and health of all BATSE interfaces. All +HV

supplies operated normally, without incidents of breakdown or non-functional command bits.

Evacuation of the chamber commenced on September 22, 1988, with BATSE power off. After a

48-hour period during which the pressure in the chamber was 5 x 10 .5 Torr or less, BATSE was

powered up at 07:30 on September 24. All +HV supplies were commanded to 1500 V (middle

of dynamic range), and tight limits were placed on all housekeeping parameters. The test plan
called for a minimum of 96 hours at vacuum with thermal cycling to verify that the +HV repair

was effective. During each day, a high voltage stress test was performed, where all 40 supplies

were commanded to 2000 V for a period of 20 minutes. Furthermore, a check of each bit

position of all supplies was executed every 8 hours.

This thermal vacuum test proceeded without high voltage anomalies and was successfully

concluded at 20:00 on September 26, 1988.

E. BATSE Science Testing at MSFC

1. Overview

Despite the extensive amount of testing which had been conducted on the BATSE instru-

ment to this point in the program, there existed the need to obtain data for use in the scientific
calibration of the hardware. This class of data was not available during any other portion of the

test flow. Therefore, an extensive series of science tests was developed and executed during

October 1988, prior to the shipment of BATSE flight hardware to California. These operations

were performed under the direction of Dr. Gerald Fishman, BATSE Principal Investigator, and

are listed in Table 3.83. The duration of BATSE science testing was nearly 18 days.

Table 3.83. BATSE Science Tests and Calibrations

* Data consistency test--TP-195

• Absolute efficiency calibration--TP- 118

• Radial response calibration--TP- 119

* Simulated gamma ray burst test--TP-187

• CPD science calibration
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All sciencetestingwasperformedin thecleanroomenvironmentof MSFCBuilding
4705. Unlike thethermalvacuumtest,theprotoflightdetectormodulewasincludedfor all
sciencetests.Becauseof theconstraintof eightportson theCEU,onemodulewasdisconnected
at all times. Thedataconsistencytestwasperformedwithout theprotoflight module. Because
this testis fully describedin sectionIII.D. 1.n,it will not bediscussedhere. Theflight CEUand
BPM wereusedfor all sciencetesting.

BATSEflight hardwarewasmovedfrom thethermalvacuumchamberfollowing the
HVPSqualification testat vacuumconditions(seeSectionl'l].D.4.f) andconfiguredin Building
4705by September28, 1988. After all interfacesweremated,TP-100wasexecutedon
September29 to verify properconnectionsandto determinethereadinessof thehardwareto
begintesting. Theresultsof this testareon file in theBATSEdatalibrary.

2. AbsoluteEfficiency Calibration- TP-118

Thefirst of thescienceteststo beperformedwasTP-118,theabsoluteefficiencycalibra-
tion. This testwasexecutedonall nineof theflight qualifiedBATSEdetectormodules.For this
test,all ninemoduleswereplacedside-by-sideonalongtablein thecleanroom. Thepositions
of themoduleswereadjustedsothatall ninefacedthesamedirectionto within 0.30arcmin. Of
theninemodules,themodulein themiddlehadtheisotopeplacedon-axis. However,datawere
alsorecordedsimultaneouslyfrom sevenotheroff-axis modules.Following thecompletionof
thecentermodule,thedetectorswerere-positionedsothatanothermodulecouldbetested.
Figure3.36detailstheconfigurationof thedetectorsduring thetest.

Table

Position:

Detector

Modules:

2 3 4 5 6 7 8 9

Module

at this

location

not
connected

81.28 cm

Module

under

test

279.40 cm

"Thermal Blanket Installed
Isotope Location _;)

Figure 3.36. Detector Module Arrangement for TP-118 Absolute Efficiency Calibration.

The geometric arrangement of the modules during the test ensured that the scattering

environment was the same for each module during its test and also allowed for coincident

measurement of the off-axis radiation environment from neighboring detector modules. Detector
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modulesin positions#5 and #6 were fitted with a flight thermal blanket so that any absorption of

incident photons by the cover would be accounted for in the calibration.

Each detector module required nearly a full day to complete. The movement and

alignment of the modules was done f'trst thing in the morning, and testing continued until

completion in the afternoon. Table 3.84 describes the sequence of detector module flow for each

of the 9-days required to complete the testing.

Table 3.84. Detector Module Flow Through TP-118 Absolute Efficiency Calibrations
Table Position

2 3 4 5 6 7 8 9

Day #1 P/F 1 2 3 4 5 6 7 0/8

Day #2 1 2 3 4 5 6 7 0/8 P/F

Day #3 2 3 4 5 6 7 0/8 P/F 1

Day #4 3 4 5 6 7 0/8 P/F 1 2

Day #5 4 5 6 7 0/8 P/F 1 2 3

Day #6 5 6 7 0/8 P/F 1 2 3 4

Day #7 6 7 0/8 P/F 1 2 3 4 5

Day #8 7 0/8 P/F 1 2 3 4 5 6

Day #9 0/8 P/F 1 2 3 4 5 6 7

The numbers in Table 3.84 are detector module numbers (DM #) and correspond to the

location on the GRO spacecraft in all cases except DM #0/8, which is B6, and DM #6, which is

B0. The protoflight module is indicated by "P/F." All flight modules were connected to their

respective CEU port. The protoflight module was connected to the port vacated by the detector

module occupying table position #3.

The radioactive sources were placed into the standard BATSE test holder at a distance of

3.000 + 0.003 meters from the center of the LAD under test and on the perpendicular bisector.

Given this orientation, the LAD in the center intercepts approximately 0.0018 of the photons

emitted at the source, 3 meters away.

The isotopes used were calibrated and traceable to the National Bureau of Standards, with

their activities were known to :L5% or better. Two of the isotopes, Cs-137 and Co 60, were

obtained from the NBS, and were calibrated to +3%. A complete list of source-related data is

given in Table 3.85.
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Table3.85. BATSEAbsoluteEfficiency IsotopeInformation
Isotope Energies(keY) Activity (].tCi) Date
Cd 109 88 114.6 8-1-88
Am 241 60 109.61 8-1-88
Co57 14.4,122,136 114.3 8-1-88
Ba 133 81,302, 356,384 85.7 7-1-88
Na 22 511, 1274 114.0 9-1-88
Cs 137 32,662 81.6 9-6-88
Y 88 898,1836 109.9 8-5-8

Thecalibrationstartedwith abackgroundcollection,andtheneachof the isotopeswere
utilized for LAD datacollection. Following theisotopecollections,asecondbackground
spectrumwastaken. A similarsequencewasthenfollowed for thespectroscopydetectorat 1X
gain(4 keV/channeluncompressed).After thesemeasurements,theSDgainwaschangedto 4X
(1keV/channeluncompressed),andthesequencewasrepeated.TheNa22 andBa 133isotopes
werenotusedduring theSDmeasurements.Eachof theintegrationswere8-setspectra,
approximately393secondsin duration. All dataobtainedduringthesetestsareon file in the
BATSE library.

Dr. GeoffPendletonandDr. PatrickLestradearetheprincipalBATSEteammembers
involvedin determinationof theabsolutephotopeakefficiency of thedetectormodules.Their
workon thedatasetgeneratedthroughTP-118hasyieldedthefollowing functionalform for the
modulebehavior.

3. BATSERadialResponseCalibration- TP-119

Early in the calibration of the BATSE large area detector (LAD) it became apparent the

response of the detector was not uniform over its entire surface. Further testing demonstrated

that this behavior was radially dependent. Because of variations in the scintillation light output

of the NaI crystal and light collection inside the LAD cone, a gamma ray which deposits its

energy in the center of the detector does not produce the same response as a photon of the same

energy which interacts near the edge. This behavior ismore prevalent at high energies (> 500

keV) and is manifested by a flat-topping of photopeaks in the calibration spectra.

To calibrate this effect, the BATSE team designed and performed the BATSE radial

response test, TP-119. In this test, 100 i.tCi of rig 203 was placed in a specially designed holder
which was mounted to a fixture across the face of the detector module. This holder was then

placed at 15 different locations on the LAD diameter, and spectra were accumulated. Each

spectra was integrated for a period of approximately 90 seconds. Only one diameter was tested,

because of the LAD's rotational symmetry about the normal to the detector.
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Figure 3.37. BATSE Radial Response Source Holder.

The source holder was a small lead cup, 1.9 cm in thickness, lined with 0.25 cm of brass

on the outside. The radio isotope, a 2.5 cm x 0.6 cm disk, is placed into the top of the holder.

Directly beneath the source is a 0.32-cm hole, which collimates the escaping photons into a beam

9.77 ° in aperture. This assembly rides across the face on the charged particle detector (CPD) on

two aluminum guide rods. These rods are affixed to the detector module at the lifting sling

points. This insures that the rods fit the same way each time they are put onto the module, and

the module-to-module variation in placement is minimized.

The fifteen locations on the LAD diameter were located with seven on either side and one

location in the center of the detector. The test locations were spaced closer together near the

edge of the LAD to get a better calibration on the behavior near the edges, where the effect

becomes more dependent on radius. Radii of 0.0, 10.0, 15.0, 20.0, 22.0, 23.0, 24.0, and 25.0 cm

were used for all nine of the BATSE detector modules, including the protoflight unit. Figure

3.38 is a schematic of the test locations at the various radii.
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!5.0 cm

Figure 3.38. Test Locations on the Face of the BATSE LAD for TP-119.

Because of variations in the properties of the LADs, each detector module exhibits a

slightly different radial response. This behavior is evident when comparing the fiat-topping of

higher energy (>500 keV) photopeaks generated by different modules. Some LADs exhibit a

pronounced flattening, while others exhibit somewhat less of an effect. Data from this test were

used to fit a parametrization to the radial response of each of the detector modules. The response

of the LAD is nearly uniform from the center of the detector out to a radius CENT, which differs

for each module. From this point to the edge of the LAD, the response decreases linearly to a

fraction of the response in the center. The response at the edge of the detector is given by the

equation,

% response at edge = (1 - EDGE)*100%, (3.2)

where the parameter EDGE differs for each LAD and is the percent drop in response from the

center to the edge of the crystal. The parametrization is therefore a two-part linear fit; a constant

response from the center of the detector to a radius CENT, and a linear decrease in response from

the radius CENT to the edge, where the fractional response at the edge is given by equation (3.2).

The parameters CENT and EDGE are given for each module in Table 3.86.
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Table 3.86. RadialResponseParametersfor EachDetectorModule
DetectorModule CENT (cm) EDGE

B0 13.3 0.122
B1 15.5 0.128
B2 14.5 0.107
B3 13.0 0.126
B4 12.0 0.135
B5 11.7 0.161
B6 12.6 0.103
B7 12.2 0.143

4. BATSEScienceCPDCalibration

During the test program of the BATSE flight hardware, TP-170 had been executed many

times to determine the calibration of the CPDs. However, this procedure relied upon background

rates and the muon spectrum as seen through the LAD to determine the location of the threshold

in energy. During the science tests, each of the nine BATSE CPDs were calibrated through the

use of a Co 60 and a Cs 137 isotope. These calibrations were executed on October 12 and 15,
1988.

The location of the CPD threshold must be determined indirectly because of the lack of a

pulse height analyzer at the output of the CPD signal. The desired location of the threshold is

approximately 700-800 keV. At this threshold, over 95% of normally-incident minimum

ionizing charged particles will be detected and rejected by the anti-coincidence circuitry.

Figure 3.39 depicts the relationship between rate and high voltage for the BATSE CPD

on detector module B4. Each isotope was placed at a distance of 5.08 cm from the face of the

CPD in the center of the detector. Other CPDs have similar behavior; however, the location on

the X-axis (voltage) differs for all CPDs. The "knee" in the two curves for Co 60 and Cs 137

arise because of the onset of detection of photons from the Compton-edged of the photopeaks of

these isotopes. For Co 60, the emission is near 1.2 MeV, and for Cs 137, the line is located at

662 keV. Using these two curves, one can easily localize the threshold of the CPD near 700 keV

simply by setting the voltage at a point where the Co 60 is mostly detected by the CPD and the

Cs 137 is not. This is precisely what was done for all nine CPDs.
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After generation of the data in Figure 3.39, each CPD was individually tested. A 100 I.tCi

isotope of Co 60 was placed in front of the CPD center at a distance of 5.08 cm. The +HV was

then adjusted to produce the desired count rate. The Co 60 source was replaced with a 100 txCi

Cs 137 source, and the rate compared to the expected value. Fine-tuning of the voltage was

necessary in all instances because of slightly different responses from each CPD. However, in

this manner, the CPD threshold was easily placed in the desired location, with considerable

uniformity from module to module.

Table 3.87 lists the final +HV command settings and voltages required to place the CPD

threshold between the "knee" in the Co 60 and Cs 137 rate curves.

Table 3.87. CPD Voltage Values Obtained During BATSE Science Tests

Detector Module CPD Command Value CPD Voltage (Volts)

B0 103 1402

B1 96 1377

B2 61 1239

B3 53 1209

B4 60 1237

B5 45 1176

B6 79 1311

B7 42 1165

P/F 91 1357

5. BATSE Rotating Wheel Burst Simulation Test - TP-187

October 18, 1988, was the final day of BATSE testing at Marshall Space Flight Center.

TP-187, the rotating wheel burst simulation test, was the final test executed. To this point in the

test program, all burst data generated came either through a commanded burst or through an
activation of the LED. No burst data existed with small-scale time structure, produced by

photons. This test allowed the BATSE team to generate such data. Each of the detector modules

were in the configuration from TP-118, the absolute efficiency test. Figure 3.36 details this

arrangement. Detector module B7 was located in table position #9. A 10 mCi isotope of Ba 133

was located off the comer of table position #9. From this point, all LADs were visible to the

source. The isotope was placed behind a slotted lead wheel which acted as a shutter in front of

the isotope when the wheel was rotated. Figure 3.40 shows the construction of the slotted wheel.
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Figure 3.40. BATSE Rotating Lead Wheel Used in TP-187.

The axis of the wheel was connected to a small stepper motor which was driven by a

frequency generator. By adjusting the frequency of the driving pulses, the rate at which the

wheel rotated could be controlled. The wheel was symmetrically cut to expose and shield the

source for various lengths of time. The smallest interval of exposure or closure on the wheel is

5 ° degrees, with the largest being 40 ° . The nominal rotation rate of the wheel was approximately

25 rpm. At this rate, the smallest interval of 5 ° lasted approximately 0.033 seconds, near the

period of the Crab Nebula pulsar.

BATSE was powered into a nominal operating condition and allowed 1 hour for the

stabilization of the PMT gains. Short background spectra were accumulated with the source

exposed through the wheel, and with the source occulted by the wheel. Following the spectral

accumulations, the wheel was rotated to a position which occulted the source, and the back-

ground was allowed to be recomputed by the CEU.
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After backgroundrecomputation,bursttriggeringwasenabledthroughserialcommand
4420,andthewheelwassetin motionatthedefaultrotationrate. Thebursttriggerednominally.
After 30seconds,therotationrateof thewheelwasdecreasedby afactorof 10throughachange
in thepulsegenerator'sdrive frequency.Theburstreadoutwasallowedto complete,andall data
typesweremonitoredduring thereadout.ThisoperationconcludedBATSEtestingactivitiesat
MSFC.

6. BATSETotal MSFCTestingTime

BATSE heldaformalpre-shipmentreviewat theMarshallSpaceFlight Centerto assessthe
readinessof the instrumentto beshippedto California. For thisreview,thetotaloperationtime
of theinstrumentwasdetermined.Thenumberof hoursin Table3.88arecomputedfrom thetest
log,which indicatesthetestsrun andtheduration.Thesenumbersareaccurateto _+_5%.

Table3.88. Summaryof BATSEOperationTimeat MSFC
BATSEPower-OnTime (Hours)

Non-thermalvacuum:

Thermal vacuum:

Total operation time:

416

620

1,036

F. BATSE Operations at TRW - Redondo Beach, California

Following the final science test in October 1988, preparations began to ship the BATSE

flight hardware and GSE to the GRO mission contractor, TRW, in Redondo Beach, California.

The hardware was packaged and shipped in an environmentally controlled air-ride van by 3-Way

Van Lines. Mr. Byron Schrick and Mr. Scott Storey accompanied the flight hardware to
California. The BATSE caravan left NASA/MSFC in Huntsville, Alabama at noon on October

25, and arrived in the Los Angeles area 42 hours later, on the morning of October 27. The flight

hardware was subsequently unloaded from the air-ride van into the high-bay of TRW Building

#R7A. BATSE remained in California until February of 1990, when it was shipped to the

Kennedy Space Center as a fully-integrated part of the Gamma Ray Observatory. During this

time period, BATSE was represented in California by Mr. John Horack.

In the following pages, all BATSE operations at the system level are detailed. Testing

which was performed at the detector module level during November 1988 is contained in section

III.B.I.I. Results from environmental, engineering, and scientific tests are presented here, along

with a narrative description of major events and anomalies.
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1. BATSE SystemIntegrationBenchTesting

Uponarrival atTRW, the BATSE flight hardware was off-loaded and tested to verify that

the journey from Alabama caused no damage or anomalies to the instrument. Subsequent to the

module-level tests presented in section III.B. 1.1, the BATSE hardware components were

re-integrated to the system level. This configuration was identical to that of the system-level

tests conducted at MSFC. The test procedures which were used in operation of the experiment

are described in section III.D. 1. Table 3.89 details the tests performed on the floor at TRW.

Table 3.89. BATSE System-Level Bench Tests Executed at TRW

• TP-100 -- Engineering test
• TP-105 -- Detector module test

• TP-110 -- Power-up/aliveness test
• TP- 120 -- Coincidence test

• TP- 125 -- Background test

• TP140 -- Long calibration
• TP-170 -- CPD calibration

• TP171 -- CPD/LAD coincidence run

• TP180 -- Burst data test (three options)

• TP188 -- Burst trigger/solar flare trigger signal test
• TP-190-- Pulsar data test

• TP195 -- Data consistency test
• TP200 -- Power control functional test

• BATSE thermal control s_cstem test

Testing began on Thursday, November 10. A total of five test days were required to fully

complete the functional testing and was completed on November 16. One iteration of TP-110

was executed for each of the days during which testing was performed. TP- 100, the BATSE

engineering test was performed first to verify that all interfaces were mated properly. This test

was the first in which the detector module switch involving DM #0/8 (B6) and DM #6 (B0) was

present. From this test forward, the detector modules maintained the flight configuration with

respect to the CEU port at which they were connected.

TP-100 and TP-105 verified the proper operation of all 40 +HV supplies and all com-

mand bits contained therein. Each of the BATSE +HV supplies and associated PMTs operated

flawlessly, with no indication of damage arising from the transportation of the hardware across

the country.

Mr. Emmett Nash and Mr. John Lowery, under contract to MSFC Test Laboratory,

performed a full test of all BATSE heaters and components of the thermal control subsystem.
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All heater circuits were verified to be operational. Thermostats could not be cycled because of

the room temperature environment.

The long calibration, TP-140, was performed on November 14, 1988. During this test,

each of the modules were lined up similar to the configuration of TP-118 at MSFC, however,

there were no exacting requirements on the pointing or alignment of the modules. To support the

radioactive sources required for this test, a long beam was supported horizontally in front of the

row of modules. Figure 3.41 illustrates the configuration as seen from the side.

._ _ Source

6"

u
u
u.- 27 1/2" "
i

Figure 3.41. BATSE TP-140 Long Calibration Isotope Location During

Bench Testing at TRW.

In this configuration, the support beam was located approximately 70 cm in front of the

row of detector modules, at an elevation of 66 cm off the floor. The small isotopes were then

affixed to the beam in front of each detector. At this location, each isotope was approximately 86

cm from the center of the LAD and 84 cm from the top of the SD. These measurements are

accurate to within a centimeter.

TP-170, the CPD calibration, was performed on November 11 and yielded a somewhat

surprising result. The counting rates for the various +HV command settings are shown in Table

3.90. These rates are about 30% higher than those seen in tests at MSFC for a given voltage

setting. This behavior is exhibited in all eight of the flight CPDs. The result was due to the

substantially increased level of the background radiation in California when compared to the

environment at MSFC in Huntsville. Prominent background lines produced by naturally occur-

ring K 40 and Th 228 are present in all spectra taken while at TRW. These, combined with other
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high-energybackgroundcomponents,causedtheCPD to exhibit higher rates than in previous

testing.

Table 3.90. TP-170 CPD Rates at CPDHVn Voltage Settings

BATSE System-Level Bench Testing at TRW

CPD Count Rate at Various + HV Command File Settings

Detector Module

BO B1 B2 B3 B4 B5 B6 B7

CPDHV1 89.8 111.3 109.4 110.4 107.4 106.4 100.6 101.6

CPDHV2 79.1 95.7 90.8 92.8 90.8 90.8 86.9 85.9

CPDHV3 75.2 91.8 86.9 87.9 85.0 85.0 84.0 81.1

CPDHV4 72.3 88.9 81.1 83.0 80.1 81.1 80.1 77.1

CPDHV5 69.3 83.0 78.1 79.1 76.2 76.2 76.2 73.2

CPDHV6 66.4 79.1 73.2 73.2 73.2 73.2 71.3 69.3

CPDHV7 59.6 72.3 66.4 66.4 66.4 63.5 64.4 60.5

CPDHV8 53.7 63.5 57.6 57.6 56.6 56.6 57.6 53.7

All three options of the burst data test (TP- 180) were executed, followed by both options

of the pulsar data test (TP-190). Each of these tests proceeded without anomaly. TP-200, the

power control functional test, was the final exercise of the system-level bench test. All power

control functions were completely checked out and verified to operate in the desired manner.

Following the successful completion of these tests, BATSE was declared ready for installation

and integration into the Gamma Ray Observatory (GRO).

2. BATSE Flight Hardware Installation

As previously mentioned, the BATSE flight cable harnesses were shipped to TRW early in

the Summer of 1988. When the remainder of the flight hardware arrived in California, the

harnesses had already been placed aboard the Observatory. OSSE was installed on November

18, spawning some jocular debate as to who actually had their hardware on the Observatory first.

Nevertheless, the detector modules were the next part of the BATSE instrument to be installed.

Module installation began on the afternoon of Monday, November 28, 1988. Installation of the

modules located on the +Z half (top) of the spacecraft was rather simple, as the module was

simply lifted from one position and placed onto its location on the GRO. Each module is affixed

to the spacecraft with four titanium bolts and four annular Teflon isolators. Consultation of the

BATSE/GRO Interface Control Document will provide the reader with a more detailed look at

the mechanical interface between the BATSE detector module and the GRO platform. The MLI

bottom "pan" was placed first, followed by the Teflon isolators. As the module was placed over

the proper location, the titanium bolts were inserted. Because of the relaxation of the Teflon

isolators, several torqueing procedures were required over a period of several days.
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The lower detector modules (-Z locations) were not as simple to install, primarily because

they had to be inverted prior to installation. Figure 3.42 schematically shows the equipment

required to invert and install the detector modules into the -Z positions. The lower modules were

lifted from their position by means of the standard lifting sling and placed into the inverting

fixture. This apparatus resembled a swing-set and could be rotated 360 ° about a horizontal axis.

The "seat" of the fixture contained the bolt-pattern required to affix the BATSE detector module

securely. The module was bolted into the inverting fixture, and the lifting sling was removed.

The fixture was then inverted manually and secured in the upside-down position with two

locking pins. In an attempt to minimize the amount of torque which the inverter had to over-

come, the rotation axis was designed to pass close to the center of gravity of the combined

module-fixture mass. After locking the detector module into place, the second lifting fixture was

attached to the crane and moved into position. This piece of equipment resembled a see-saw,

with the crane interface at the fulcrum, the inverted detector module at one end, and counter-

weights at the other.

To Overhead Crane

Counter-Weights

_///////////_/,

Module Support

_///////////_////_/_

I

I
Direction of Rotation

m

\

X
i,

m

I

I
!

!
._1

Affixed to Floor

Figure 3.42. BATSE/GRO -Z Detector Module Installation Support Equipment.

The detector module end of the lifting fixture was fitted with apparatus which allowed the

module to be attached at the same points as the BATSE lifting sling. With the module inverted

and locked into place, the lifting apparatus was carefully positioned underneath the module and

fastened to it. Counterweights were continually used to prevent any mechanical loads from being
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input into themodulestructureandto keepthecenterof gravity of the module-fixture mass near

the center point at which the crane was attached. After installing the lifting fixture, the module

was carefully unfastened from the inverting apparatus and transported slowly to the desired

position on the spacecraft. Once at the desired location, the detector module was removed from

the lifting fixture in a similar process to the one described above, only in reverse.

The first modules to be installed on the spacecraft were B5 and B7. This operation was

completed on November 28. B0, B4, and B6 were installed on November 29. On November 30,

the remaining three detector modules (B 1, B2, and B3) were placed onto the GRO.

Installation of the BATSE remote electronics (CEU and BPM) proceeded much more

slowly than the detector modules. Because these boxes are located on a panel, substantial work

had to be done on the panel prior to installation on the spacecraft to ease the difficulty of some

tasks. Configuration of the panel, including the mounting of heaters, installation of harnesses,

alignment of the panel, and fit checks of components, lasted longer than anticipated, forcing the

CEU and BPM installation to be delayed a few days.

The CEU and BPM were checked for the proper mechanical interface to the panel on

December 1. At the time, the BATSE panel was not on the spacecraft. All fit checks went well,

and several minor modifications had to be made. Several heaters near the BPM had to be

trimmed away, and a small amount of thermal paint re-work had to be done. The BPM was also

verified to have four bolt holes where no blanks existed in the panel. However, these interface

points were not used in compliance with the BATSE/GRO Interface Control Document.

The BATSE panel was placed onto the spacecraft on December 2, with the CEU and

BPM following in the early morning hours of December 6. Detector module interface

connections to the 146 and 148 brackets and all CEU-BPM connections were completed by

December 7. At that point, however, BATSE could not power-up because of the lack of

electrical connections to the spacecraft and the inability to connect the detector modules with the

panel in the open position. Finally on December 15, 1988, the BATSE panel was closed, and all

remaining interfaces were mated. Despite numerous problems with ground system software and

hardware, BATSE was powered at 11:00 a.m., and TP-200 was successfully executed through

the spacecraft data and command system.

3. BATSE Integration Verification Tests

Testing to verify the successful integration of BATSE flight hardware to the GRO began on

January 12, 1989. In total, six testing procedures were executed, four of which were new tests to

verify interfaces to the spacecraft remote interface units (RIU). BATSE test conductors were

John Horack and Chip Meegan of Space Science Laboratory. Table 3.91 summarizes the testing

done during this period of time.
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Table3.91. BATSE Inte_afion Verification Test Procedures

• TP 100 -- BATSE engineering test
• TP200 -- Power control functional test

• TP204 -- BATSE command and telemetry test

• TP208 -- TI'U test

• TP212 -- BATSE discrete command test

• TP216 -- Passive analog test

• BATSE heater functional checkout

All testing was under the control of TRW Document XR-21S-51, the GRO Instrument to

Observatory Interface Verification Procedure. This document referenced each of the BATSE

TP-series tests. Under normal circumstances, nearly all testing at TRW was handled in a similar

manner. TP-200 was the fin'st test executed on the morning of January 12. This test had been

executed prior to the new year without difficulty, but was repeated as part of the "official"

interface verification test for completeness. During this iteration of TP-200, the power

cross-strapping interface and the GRO engineering telemetry measurements were of primary

interest. In engineering telemetry, the GRO reports the positions of all BATSE power control

function relays, several temperatures, and currents. To this point, each iteration of TP-200 was

executed without the concurrent GRO measurements because BATSE was not on the spacecraft.

The simultaneous agreement of BATSE telemetry with independent GRO measurements was an

important positive result of the test.

The second test procedure performed was TP-204, the RIU command and telemetry test.

This entire test was performed on primary power and then repeated on backup power. In one

sense, the remaining TP-200 series tests were a formality. For example, in order to successfully

complete TP-200, one requires the ability to reliably send commands to the instrument and

receive proper telemetry. A second command and telemetry test is somewhat superfluous. At

the start of the test, BATSE is operating through RIU-A with CCF-A, and command file

RLYNOM is sent to configure all BATSE power control function relays to the nominal position.

This f'de contains approximately 100 discrete commands. After the file is executed, the telemetry

is examined to verify the proper relay states, indicating a normal commanding sequence

execution. Several serial commands are sent to BATSE, exercising the CCF-A command

channel (channel 1). When these commands have been verified, the test conductor switches

BATSE over to CCF-B by using discrete commands and repeats the serial command exercise,

utilizing the channel for CCF-B (channel 2). BATSE is then configured to operate through

RIU-B, and the entire, test is repeated. In this fashion, both serial command channels are

executed through each RIU, and approximately 100 discrete commands are sent through both

RIUs. In addition, the proper GRO engineering telemetry indications of relay positions through

both RIUs indicate that each is functioning properly.
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The third test procedure executed was TP-208, the 'ITU test. This test verified the proper receipt

of the serially transferred time code and a 1 Hz timing signal from the spacecraft. Because only

one GRO TFU can be active, this test required coordination with the other instruments when a

switch to "I'I'U-B was required. With the GRO utilizing T17.I-A, the BATSE test conductor sent

command 7184 to configure BATSE to receive data from "I'I'U-A. From this point, the proper

spacecraft time and presence of the 1 Hz signal could be verified by examination of the three

time words in BATSE data. Each combination of TTU, RIU, CCF, and instrument power is

exercised to verify full cross-strapping capability.

TP-212 is the discrete command test procedure and was executed fourth in the succession

of BATSE integration tests. Beginning on RIU-A and CCF-A, the RLYNOM command f'de of

100 discrete commands is executed and proper telemetry verified. Subsequently, four discrete

commands are sent to execute the following; start the flight software on CCF-A, load and start

the flight software on CCF-A, enable the CCF-A watchdog timer, and then disable the CCF-A

watchdog timer. After these commands are properly executed, BATSE is switched to CCF-B,

where an identical sequence of commands are processed. As with all of the TP-200 series tests,

this cycle is executed once through RIU-A and again through RIU-B.

The final test in the TP-200 series was TP-216, the RIU passive analog measurement test.

This procedure also allowed for a cursory check of the BATSE flight heater functionality, as one

of the telemetry measurements tested in TP-216 is the return of voltage dividers indicating the

status of BATSE heater circuitry. Operating initially through RIU-A on CCF-A, the GRO

engineering telemetry measurements for BPM +5 V and +15 V current are verified in several

states of BATSE instrument configuration. Parameters 1BPMTMP (temperature of the BPM)

and 1CEUOTMP (CEU temperature CCF-A) are verified to have the correct HKG values.

BATSE is then switched to CCF-B for a check of 1CEU1TMP. The final temperatures examined

are the detector module temperatures reported through GRO telemetry. All temperature meas-

urements from the GRO telemetry are compared to BATSE telemetry for agreement. With

heater power enabled, the proper voltage return is verified for the BATSE primary thermal

control, makeup, and STS heater circuits. At the completion of these steps, BATSE is switched

to operate through RIU-B, and the process is repeated. The second time through the procedure is

slightly different because only the redundant thermal control and make-up heaters are visible

through RIU-B. BATSE flight heater telemetry is not cross-strapped to either RIU, and the STS

heater status is only routed through RIU-A.

Following this test, each of the five sets of BATSE flight heaters were verified. Table

3.92 details the cross-strapping configurations allowed for each heater and the RIU required by

BATSE to verify the telemetry status.
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Table 3.92.

BATSE HeaterCircuit (# of Htrs)

Primary T/C heaters (8)

Primary M/U heaters (8)

Backup T/C heaters (8)

Backup MAI heaters (8)

BATSE STS (shuttle) heaters (8)

BATSE Flight Heater Circuits, Test Command Sequences, and RIU

Required for Telemetry Verification

MPS-1 MPS-2 RIU required for TLM
BATSPHTR BATSPHTRA RIU-A

BATSPMU BATSPMUHA RIU-A

BATSRHTR BATSRHTRA RIU-B

BATSRMUH BATSRMUI-IA RIU-B

RIU-A

When any of the heater circuits listed in Table 3.92 are powered off, the status voltage

reads approximately 0.0 V. When power is applied to the heater circuit but the thermostat is

open (heater is not on), the proper telemetry indication is between 2.0 and 2.5 V. The third

heater state, when power is applied and the thermostat is closed, returns a voltage of

approximately 5.0 V. During this checkout, none of the thermostats were closed because of the

ambient temperature in the high bay. Each of the heater circuits returned a status voltage near

2.0 V when powered.

The final test performed as part of the BATSE integration verification sequence was

TP-100, the BATSE engineering test. This operation was identical to the numerous iterations of

TP- 100 which were performed previously. The test, despite its familiarity to the test conductors,

was extremely important for several reasons. First, the cables installed on the spacecraft had not

been used in 7 months and had been subject to a large amount of handling and manipulation.

The existence of a broken wire or an error in the routing of the cables would have been a major

problem. Second, four of the detector modules were inverted and transported in the upside-down

position with the GSE described previously. The possibility for damage to a module under those

circumstances was not negligible. TP-100 proved that the modules had been able to withstand

some rather unorthodox handling. Third, a total of 64 connections were required to fully in-

tegrate the detector modules to the CEU and BPM. Many of these were made in cramped

locations without the full visibility and accessibility one would desire. Interchanging two

connections or damage to the connectors would also have been a large problem. TP-100 verified

that the modules in the various locations around the spacecraft were connected to the proper CEU

and BPM ports, with no damage.

4. Detector Module Mirrored Radiator Damage

On the evening of January 17, 1989, BATSE detector module B 1 sustained major damage to

the side radiator panel located next to the HVPS. This damage was incurred during the

installation of test-only thermal vacuum heaters which are mounted directly onto the surface of

the mirrored radiator. These heaters were affixed to the mirrored radiator panel exposed by the

MLI blanket to regulate the energy flow from the mirror to the cold wall, thus allowing more

control of the detector module thermal environment. The heater was installed initially on the
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wrongsideof thedetectormodule. Whentheerror was recognized, the heater was removed, and

the damage occurred. Despite damaging the module, heater tape was further installed onto six of

the eight flight detectors. B0 and B2 remained without the heaters.

Damage to the radiator was evident on 6 of the 24 mirror segments not covered by the

detector module MLI flap. On three segments, the mirrored surface was fractured and

completely removed from the radiator. Remaining damage consisted of cracks and or shattering
of the mirror.

TRW Test-Only --_
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Figure 3.43. BATSE Thermal Radiator Panel with Test-Only Heater Installed.

The heater used was a standard Claibome heater tape, which is a Kapton-like tape with an

acrylic adhesive containing wires. Standard TRW procedure was to remove these heaters by

pulling carefully and then cleaning the surface with alcohol to remove any residue.

Although the damage occurred to the non-flight side mirror, because the problem oc-

curred during the removal, it became the concern of the BATSE team that other flight-side

mirrors would be damaged later in the program. BATSE was further constrained by the lack of

spare minors. The mirror panels could not be moved from one side of the detector module to the

other because each has a particular handedness. Leaving these heaters on through thermal
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vacuumtestwould possibly make the adhesive more difficult to remove, causing more damage

than necessary.

The BATSE structural test article mirrored radiator panel was shipped to TRW to allow

the thermal technicians a test-bed for removal of heater tape. After several practice runs on the

STA, the heaters were removed from all flight moduIes. Four minor segments were damaged

during the removal, two on B3, and one each on B4 and B6, bringing the total number of

damaged segments to 10. After a few weeks of consideration and planning of the repair, these

segments were cleaned, any mirror fragments were removed, and the holes patched with

aluminized Kapton tape. Mr. Bruce Monteith, principal thermal engineer of the GRO spacecraft,

provided a calculation which showed that the a/e ratio of the mirrored surface was not substan-

tially affected by the presence of the Kapton tape in place of a mirror.

5. Instrument Data Run #1

On January 20, BATSE test conductors began the ftrst full-scale calibration of the

Instrument since installation onto the GRO spacecraft. Each of the BATSE TP-series tests were

performed, providing baseline values for all aspects of instrument performance. Furthermore,

this sequence of events offered the f'wst opportunity to verify the burst trigger and solar flare

trigger signals with the other three GRO instruments on-line.

During the f'trst day of testing, TP-110, TP-105, TP-188, and TP-200 were all completed.

No anomalies were present during the tests. Having thoroughly exercised the instrument 3 days

prior to these tests during the integration verification tests, no anomalies were expected. Chip

Meegan and John Horack were the test conductors. On the second day of testing, January 21,

BATSE test conductors completed another iteration of TP- 110, TP- 170, TP-171, and TP-120.

The CPD tests provided some interesting results. Table 3.92 contains the count rates from each

of the eight CPDs at various +HV command file settings. The +HV values used here were

identical to those from the instrument system-level bench testing in November.

Table 3.93. TP-170 CPD Rates at CPDHVn Voltage Settings

BATSE Instrument Data Run #1 -- January 1989
CPD Count Rate at Various +HV Command File

Detector Module
Settings

B0 B1 B2 B3 B4 B5 B6 B7

CPDHV1 84.1 89.9 113.7 106.3 86.6 100.3 88.8 108.9

CPDHV2 70.7 74.5 92.5 87.1 74.1 83.8 78.3 89.4

CPDHV3 68.1 72.8 87.7 81.7 71.3 78.9 73.8 85.4

CPDHV4 66.9 68.1 84.2 75.9 68.1 75.6 70.9 80.1

CPDHV5 63.3 65.8 78.9 71.2 65.3 69.9 68.3 75.2

CPDHV6 60.5 62.3 74.3 66.6 61.8 66.3 64.6 69.9

CPDHV7 56.3 55.4 66.0 58.2 57.4 60.0 59.3 62.3

CPDHV8 51.5 49.3 57.3 50.2 51.0 50.0 54.2 53.6

195



Comparison of the data in Table 3.93 with that of the previous test indicates a substantial

drop in counting rate for some of the odd-numbered detectors at a given voltage. The results of

TP-171 further substantiate this observation. The coincidence count rates determined in TP-171

(see Table 3.94) show a deficiency of nearly 2 counts/second in the odd-numbered detectors

when compared with the even-numbered detectors. This deficiency is caused by the spacecraft

absorption of incident muons and high energy cosmic ray secondaries, emanating from a

distribution which is peaked at the local zenith. Those detector modules on the bottom of the

spacecraft (odd numbers) are shielded from the incident flux by the spacecraft mass overhead,

and consequently display a lower counting rate.

Table 3.94. Coincidence Counting Rates for BATSE Detector Modules
TP-171 -- Instrument Data Run #1

Detector Module Coincidence Rate

B0 20.8

B1 18.2

B2 22.9

B3 18.4

B4 21.1

B5 17.9

B6 21.3

B7 18.3

January 23 was the third day of the instrument data run, and BATSE test conductors

performed the long calibration, TP-140. As with previous iterations of this test procedure, small

B a 133, Co, Cs 137, and Cd 109 isotopes were used in front of each of the detector modules.

Isotope placement was not as easy with each of the modules now on the spacecraft. Four long

vertical poles were placed at the corners of the GRO. Attached to each of the poles was an

adjustable clamp assembly, similar to the clamps seen in high school chemistry laboratories. The

isotopes were placed into the clamp end of the assembly and adjusted for the optimum source

location. The intent was to replicate the standard 50.8-cm on-axis location as closely as possible.

After the placement of the sources, a measurement was made to determine the actual location

with respect to the centers of the LAD and SD. Additionally, an offset angle and distance from

the LAD axis were recorded. An offset angle of 0 ° corresponded to a location directly above the
LAD axis. Table 3.95 summarizes the source locations for instrument data run #1.
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Table3.95. IsotopeLocationsfor Instrument Data Run #1

LAD Distance (cm) SD Distance (cm) Offset Angle (o) Distance to LAD Axis (cm)
B0 50.8 64.1 200 2.54

B1 50.8 58.4 45 10.2

B2 50.8 67.3 240 2.54

B3 50.8 63.5 300 8.89

B4 50.8 71.1 45 2.54

B5 50.8 66.0 0 1.27

B6 50.8 68.6 120 5. I

B7 50.8 64.8 30 2.54

With the isotopes placed in the locations described by Table 3.95, numerous spectra were

obtained each with a duration of approximately 32 minutes. Single PMT spectra were obtained

from the LADs with the Cs 137 source in place. These one-tube spectra were obtained at

nominal + HV and nominal +100 V. Knowledge of the photopeak location and the voltage used

for each of these spectra allowed for the calculation of the PMT gain exponents for all LAD

phototubes. The gain varies with +HV as voltage to the Nth power. Consequently, the exponent

N can be found from the following relation:

log (El/E2) = N log(HV1/HV2) (3.3)
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Thegainexponentvaluesshownbelowarein goodagreementwith thoseobtainedas
early astheindividual PMT screeningtestsdescribedin sectionIII.A.4.

GainExponentfor PMT
A B C

BO 7.1 6.9 5.6
B1 7.0 6.7 5.9
B2 7.1 6.4 6.9
B3 6.4 5.9 7.2
B4 6.3 5.5 6.6
B5 5.9 5.8 6.1
B6 7.2 7.3 7.2
B7 6.3 6.5 5.6

TP-140alsoprovidedacalibrationof LED locationin HERchannelspacefor eachof the
allowedcommandamplitudes.During thisportionof thetest,theLEDs werepoweredonand
commandedto aparticularvalue. Spectrawereobtained,andthelocationof theLED peakwas
recorded.This processwasrepeatedfor all 16possibleLED amplitudes.Table3.96contains
theresultsof thisoperation.
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Table 3.96. HER Channel Location of LED Peak for Associated Amplitudes

from TP-140 - Long Calibration, Instrument Data Run #1
HER Channel Location of LED for Module

LED Hex Amplitude B0 B 1 B2 B3 B4 B5 B6 B7
3 Off Off Off Off Off Off Off Off

4 13 27 15 22 21 30 24 23

5 30 62 35 52 47 68 55 50

6 49 83 57 75 70 90 77 72

7 66 97 72 72 85 100 96 87

8 76 102 84 99 97 106 100 97

9 86 107 96 103 101 112 105 101

A 96 112 98 107 105 118 109 105

B 98 117 101 111 109 124 114 109

C 100 122 104 115 112 127 118 112

D 102 127 107 119 116 127 122 115

E 104 127 110 123 120 127 126 118

F 106 127 112 123 123 127 127 122

The instrument data run continued through January 28, 1989. During the remaining time,

BATSE test conductors executed TP- 180 (three options), TP- 190 (two options), TP- 188, TP-200,

and a check of all BATSE heaters. The other three Instruments successfully received burst and

solar flare trigger signals on both primary and redundant lines. All facets of the burst data test

and pulsar data tests were successful. The f'mal test of instrument data run #1 was completed at

14:30 on January 28.

6. BATSE Re-Integration Verification Tests

In February 1989, an alert was put forth on a Teledyne T05 relay part number M39016/30/
060P with lot-date code #84-29. Instances of internal corrosion had caused failure of T05 relays

on several projects, including the CLAES experiment on the UARS satellite. Each of the RIUs

on the GRO contained several of these relays. BATSE has a total of 142 similar relays installed

on the flight hardware, but with different lot-date codes, and slightly different part numbers. The

BPM has 18, with the CEU containing the remaining 124 relays. To date, BATSE has not seen

any anomaly related to the failure of a T05 relay internal to the BATSE hardware. Because of

the anomaly with these relays, each of the RIUs on GRO were removed and shipped to Fairchild

Corporation of Germantown, Maryland, where replacement relays were installed.

Removal of the BATSE RIUs required that all BATSE detector module interfaces to the

CEU and BPM be broken so that the panel could be opened. The panel remained opened without

RIUs for over 2 weeks and was finally closed on March 6. During this time, BATSE was unable
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to testthe instrumentin anymanner.In the meantime, MSFC engineers performed analysis on

nine spare relays, and found no verifiable evidence of a problem in these relays. This parts

analysis was performed under the direction of Mr. Dennis Ellsworth (EJ-21), BATSE Chief

Engineer.

After removal of the flight RIUs, temporary units were installed, the BATSE panel was

closed, and all detector module interfaces were re-mated. At that point, another iteration of

TP- 100 was required to verify that all connections had been made properly and that no damage

had occurred during the removal and replacement of the RIUs. TP- 100 was begun on March 7,

1989, and concluded the next day. The results of this test, which served as the only functional

test prior to the radioactive source survey, are on file in the BATSE library. No anomalies were

discovered during the test, and BATSE was declared fully functional again on the evening of
March 8.

7. GRO Radioactive Source Survey Test

a. Overview

The first operation performed at the spacecraft level directly related to science was the

radioactive source survey test. Five days were required for completion of the test, with each day

having a different test configuration and objective. The first 4 days of testing were directed by

the BATSE test conductors, with the final day being directed by COMPTEL.

The test was designed to provide data on how the spacecraft mass scatters radiation into

the BATSE detector modules. During on-orbit operations, part of the detected flux from a

gamma ray burst will be directly incident radiation, and another part will be scattered radiation,

primarily from the spacecraft and the atmosphere. Proper de.convolution of the count spectrum

into a photon spectrum requires knowledge of the behavior of the detector in that scattering

environment. The data from the radioactive source survey, along with Monte Carlo simulations,

were used to determine the spacecraft-scattering component of the detector response matrices so

that a correct photon spectrum could be generated.

Isotopes of Co 60, Ba 133, and Cs 137 were used during this test. These sources were the

same as those used in the BATSE angular response calibration. To limit the region which was

illuminated by the source, the isotope was installed into a lead cone. This cone provided

collimation to a region 50 ° in cross-sectional aperture. The lead portion of the cone was wrapped

in tin to provide absorption of K-shell x-rays generated in the lead. Figure 3.44 details the
construction of the lead cone.
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8.89 cm
50°

Figure 3.44. GRO Radioactive Source Survey Isotope Collimator and Holder.

Because the test was primarily concerned with gamma rays which scatter into the

detectors after hitting the spacecraft, a shield was developed for the BATSE large area detectors

to obstruct direct flux from entering the LAD. This cover was fabricated from octagonal pieces

of lead, wood, tin, and copper. The shield mounted to the detector module lifting brackets and is

schematically shown in Figure 3.45.

The 4 days of BATSE-controlled testing consisted of numerous spectral accumulations

from all three isotopes placed at 21 different locations around the GRO. These locations were

distributed at points thrCughout the R7A high-bay on three sides of the spacecraft. The +X, -X,

and -Y sides of the GRO were illuminated from many different heights. The +Y side of the GRO

was not illuminated because of space constraints, and because of its geometric similarity to the

-Y side. In the following sections, each day's events will be detailed, along with precise source

locations and testing configurations. Each of the following paragraphs have nearly identical

structure so that comparison of related information from different days is easily facilitated.
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This Side to Detector Face

Wood 1.27 cm

Lead 0.23 cm

Tin 0.10 cm

Copper 0.05 cm

Figure 3.45. BATSE Radioactive Source Survey LAD Shields (one of four).

b. Day #1 Operations

The f'trst day of the source survey was March 9, 1989. The BATSE occulting shields

were installed onto B0, B 1, B2, and B3. Isotope locations were confined to seven places in the

+X hemisphere of the GRO coordinate system. These locations are shown in Figure 3.46.
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Figure 3.46. Radioactive Source Survey Day #1 Isotope Locations.

Using the GRO star-tracker optical reference fixture, the actual location of these positions

could be determined precisely in the GRO coordinate frame. Table 3.97 shows the measured

values (in inches) for each of the seven isotope locations on the first day of the source survey.

Table 3.97. Isotope Placement Data in GRO Coordinates, Radioactive Source Survey - Day #1
GRO Coordinates Distance to GRO Center (0,0,0)

Location X Y Z from isotope location

01 +479.4259 +0.2731 -0.0606 479.4260

02 +268.3351 -38.4979 -121.7375 297.1629

03 +274.4610 -40.2353 +286.3014 398.6430

04 +444.9044 - 182.0965 -0.0449 480.7277

05 +216.3704 -163.5496 -121.7376 297.2956

06 +220.6061 -168.9993 +278.1844 393.2104

07 +337.8181 -339.3447 -0.0047 478.8277

With the source location at the apex of the cone known to such exact values, the BATSE

team could define the approximate extent of the illuminated region by simply finding two other

points on the cone. With these three points, the illumination region is uniquely defined. To

accomplish this task, the isotope and the cone were placed into the desired position, and the

measurements in Table 3.97 were determined. Then, using binoculars and a tape measure, two

locations were found where the source region was cut-off by the edge of the cone. Although this

method provided a rather crude measurement, it was entirely suitable for the purpose of defining
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theapproximate region of illumination. These locations were referenced to the GRO's 40,000

pound, orange support structure, and the X-Y coordinates were recorded. The Z coordinate

(unless otherwise noted) is the height of Dr. Gerald Fishman's eyes, approximately 178 cm.

Because these measurements are rather crude, a full set of photographs was taken from the aspect

of the source holder. These photos, available in the BATSE library, will provide the interested

reader with a detailed look at the test environment. Figure 3.47 details the measurements from

the f'n'st day of the radioactive source survey.

Locations #3 and #6 were executed first, as all three sources were cycled through these

two places. This was done so that the MGSE which supported these positions could be removed

from obstructing the field of view from locations #1, #4, and #7. Following these first two

locations, data were taken from the Co 60 source at all remaining locations, followed by the Cs

137 isotope, and finally the Ba 133 isotope. This was done to minimize the required handling

and exchange of radioactive material during the procedure.

At each location, an integration of approximately 15 minutes duration was obtained.

Background spectra were taken throughout the day, and each spectrum obtained was stored to

floppy disk for later analysis. Each of these disks, along with the archive tape, are available for

inspection in the BATSE data library.

204



Location #1 _t+y
I

|

I

I

I

I

GRoSuppo_J: t
Structure ' 9' 0"

+X

+y
Location #2

A4'O"

t .........
Location #3 _+y

I

|
I

I

I +X
!

I

I

12' 10" I 10' 2"

1 .

Location #4
I

i+Y
I

i,,, ij, 6:_e

-_...... [--+x
, _
' 6'4"
, _

Location #5
i+y

A 4' 0"

-t1-

I

I

;_-.,,-14' 6'_,.-

+X

,+y
Location #6

5'6"

Location #7
i+y
I

I

I

+X

I

i

............. q" +X

• _22' 10" , .

7' O"

Figure 3.47. Two Points of the Illumination Cone for Each Isotope Location

Radioactive Source Survey - Day #1.
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c. Day#2Operations

Theseconddayof thesourcesurveywasMarch 10,1989. TheBATSEocculting
shieldswereinstalledontoB6, B1, B7, andB3. Isotopelocationswereconfinedto sevenplaces
in the479.4259hemisphereof theGROcoordinatesystem.Theselocationsareshownin Figure
3.48.

F"--

i
J

Roll Up Door

Figure 3.48. Radioactive Source Survey Day #2 Isotope Locations.
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Using the GRO star-tracker optical reference fixture, the actual location of these positions

could be determined precisely in the GRO coordinate frame. Table 3.98 shows the measured

values (in inches) for each of the seven isotope locations on the second day of the source survey.

Table 3.98. Isotope Placement Data in GRO Coordinates, Radioactive Source Survey - Day #2
GRO Coordinates Distance to GRO Center (0,0,0)

Location X Y Z from isotope location
08 +184.5463 -443.6147 -0.2079 480.4700

09 +67.7651 -262.7327 -120.7083 297.2755

10 +71.6892 -270.3140 +277.1849 393.7518

11 -0.2288 -463.3988 -0.0594 463.3998

12 -67.6711 -262.2672 -120.3841 296.7102

13 -66.5457 -266.9500 +281.0001 393.2578

14 -184.4763 -435.5344 +0.6759 472.9928

With the source location at the apex of the cone known to such exact values, the BATSE

team could define the approximate extent of the illuminated region by simply finding two other

points on the cone. With these three points, the illumination region is uniquely defined. To

accomplish this task, the isotope and the cone were placed into the desired position, and the

measurements in Table 3.98 were determined. Then, using binoculars and a tape measure, two

locations were found where the source region was cut-off by the edge of the cone. Although this

method provided a rather crude measurement, it was entirely suitable for the purpose of defining

the approximate region of illumination. These locations were referenced to the GRO's 40,000

pound, orange support structure, and the X-Y coordinates were recorded. The Z coordinate

(unless otherwise noted) is the height of Dr. Gerald Fishman's eyes, approximately 178 cm.

Because these measurements are rather crude, a full set of photographs was taken from the aspect

of the source holder. These photos, available in the BATSE library, will provide the interested

reader with a detailed look at the test environment. Figure 3.49 details the measurements from

the second day of the radioactive source survey.

207



Location #8
+y

!
-) ...... _- +X

r_I

I

I 3'2"
I

Location #10

O-,_=--- 9'4" )

+y
I

I

,I!
-O ...... _" - - - +X

/I

I

I

I

I

Location #11 j +y
I

I

....... I ......

I

I

O"--- 6' 0"
i

I

Location #13
+y

_--_i ...... I
I

I

O-_- 4' 9 I

O"_ 9'2"

Location #14
+y

I

!

!

I

+X

-,,-O
2'11"

t +X

--,,-O
4'11"

*NOTE: The two floor locations, #9 and #12 are not available.

Figure 3.49. Two Points of the Illumination Cone for Each Isotope Location

Radioactive Source Survey - Day #2.

Locations #10 and #13 were executed fh'st, as all three sources were cycled through these

two places. This was done so that the MGSE which supported these positions could be removed

from obstructing the field of view from locations #8, #11, and #14. Following these first two

locations, data were taken from the Co 60 source at all remaining locations, followed by the Cs

137 isotope, and finally the Ba 133 isotope. This was done to minimize the required handling

and exchange of radioactive material during the procedure.
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At eachlocation, an integration of approximately 15 minutes duration was obtained.

Background spectra were taken throughout the day, and each spectrum obtained was stored to

floppy disk for later analysis. Each of these disks, along with the archive tape, are available for

inspection in the BATSE data library.

d. Day #3 Operations

The third day of the source survey, March 11, 1989, mirrored that of day #1; however,

operations were conducted in the -X hemisphere of the GRO coordinate system. The BATSE

occulting shields were installed onto B4, B5, B6, and B7. As with the previous 2 days, seven

isotope locations were again used for the third day. These locations are shown in Figure 3.50.

Figure 3.50. Radioactive Source Survey Day #3 Isotope locations.

Using the GRO star-tracker optical reference fixture, the actual location of these positions

could be determined precisely in the GRO coordinate frame. Table 3.99 shows the measured

values (in inches) for each of the seven isotope locations on the third day of the source survey.
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Table 3.99. Isotope Placement Data in GRO Coordinates, Radioactive Source Survey - Day #3
GRO Coordinates

Location X Y Z
Distance to GRO Center (0,0,0)

from isotope location
15 479.3481

16 296.7361

17 -211.4691 -162.9682 +272.2252 381.2930

18 -443.8810 -184.3631 +1.9109 480.6493

19 -268.4260 -37.2374 -119.4775 296.4689

20 -263.9705 -3&9679 +272.2419 281.0023

21 -480.4127 +0.3699 -0.0626 480.4128

With the source location at the apex of the cone known to such exact values, the BATSE

team could define the approximate extent of the illuminated region by simply finding two other

points on the cone. With these three points, the illumination region is uniquely defined. To

accomplish this task, the isotope and the cone were placed into the desired position, and the

measurements in Table 3.99 were determined. Then, using binoculars and a tape measure, two

locations were found where the source region was cut-off by the edge of the cone. Although this

method provided a rather crude measurement, it was entirely suitable for the purpose of defining

the approximate region of illumination. These locations were referenced to the GRO's 40,000

pound, orange support structure, and the X-Y coordinates were recorded. The Z coordinate

(unless otherwise noted) is the height of Dr. Gerald Fishman's eyes, approximately 178 cm.

Because these measurements are rather crude, a full set of photographs was taken from the aspect

of the source holder. These photos, available in the BATSE library, will provide the interested

reader with a detailed look at the test environment. Figure 3.51 details the measurements from

the third day of the radioactive source survey.

Locations #17 and #20 were executed first, as all three sources were cycled through these

two places. This was done so that the MGSE which supported these positions could be removed

from obstructing the field of view from locations #15, #18, and #21. Following these first two

locations, data were taken from the Co 60 source at all remaining locations, followed by the Cs

137 isotope, and finally the Ba 133 isotope. This was done to minimize the required handling

and exchange of radioactive material during the procedure.

At each location, an integration of approximately 15 minutes duration was obtained.

Background spectra were taken throughout the day, and each spectrum obtained was stored to

floppy disk for later analysis. Each of these disks, along with the archive tape, are available for

inspection in the BATSE data library.
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Radioactive Source Survey - Day #3.
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e. Day #4 Operations

Day #4 of the radioactive source survey took place on March 13, 1989. The operations

performed on this day differed somewhat from those of the previous 3 days. The BATSE

occulting shields were removed from the spacecraft so that all detector modules were afforded an

unobstructed view of the incident flux. Integrations were obtained from sources at five of the

previous locations, #13, #16, #21, #11, and #1. Figure 3.52 shows these locations with respect to

the spacecraft.

Figure 3.52. Radioactive Source Survey Day #4 Isotope Locations.

In an identical manner, the location of the isotope positions in GRO coordinate space was

determined using theodolite stands and the spacecraft's star-tracker optical reference fixture.

These five locations were re-measured for this day, in the event that any of the locations had

moved a slight amount. Table 3.100 details the results of the source location measurements.
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Table 3.100.

Location

Isotope Placement Data in GRO Coordinates

Radioactive Source Survey - Day #4
GRO Coordinates

X Y Z

01 +479.4259 +0.2731 -0.6894

11 +0.7734 -463.9275 -0.5598

13 +274.4610 -40.2353 +286.3014

16 -216.7162 -162.8679 -119.9168

21 -480.4127 +0.3699 -0.0626

With the source location of the apex of the cone known to such exact values, the BATSE

team could define the approximate extent of the illuminated region by simply finding two other

points on the cone. With these three points, the illumination region is uniquely defined. To

accomplish this task, the isotope and the cone were placed into the desired position, and the

measurements in Table 3.100 were determined. Then, using binoculars and a tape measure, two

locations were found where the source region was cut-off by the edge of the cone. Although this

method provided a rather crude measurement, it was entirely suitable for the purpose of defining

the approximate region of illumination. These locations were referenced to the GRO's 40,000

pound, orange support structure, and the X-Y coordinates were recorded. The Z coordinate

(unless otherwise noted) is the height of Dr. Gerald Fishman's eyes, approximately 178 cm.

Because these measurements are rather crude, a full set of photographs was taken from the aspect

of the source holder. These photos, available in the BATSE library, will provide the interested

reader with a detailed look at the test environment. Figure 3.53 details the measurements from

the fourth day of the radioactive source survey.

Location #13 was utilized first during day #4. The Co 60, Ba 133, and Cs 137 sources

were cycled through this location, and spectra were obtained from all eight detector modules.

Following the three isotope integrations, the Cs 137 source was utilized to trigger a "burst" by

suddenly exposing the source to the spacecraft after burst triggering had been enabled. The

intensity of the source was modulated by repeatedly opening and then obstructing the aperture

with a lead brick. The burst readout was allowed to complete, and the source was left in the

exposed configuration for nearly 1 hour. Unfortunately, these data were archived onto an

unreadable tape and cannot be recovered.

When the burst readout and exposure were complete, the GSE used to support location

#13 was removed to prevent obstruction of the field of view from location #11. The Co 60

source was cycled through the remaining locations, followed by the Cs 137 source and the Ba

133 isotope. Day #4 concluded the BATSE portion of the radioactive source survey.
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Radioactive Source Survey - Day #4.
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f. Day #5 Operations

The final day of the source survey was under the direction of personnel from the

COMPTEL Instrument. To obtain an adequate data set, COMPTEL required additional data

from different isotope locations than the ones used in the previous 4 days of testing. Several new

isotopes were used, including Mn 54 (2 mCi), Na 22 (2 mCi), and Na 24 (1.7 mCi at 11:00 on

March 14), which has a half-life of only 15 hours. The diminishing intensity of this isotope was

clearly noticeable during the acquisition of data on this day.

The locations of the isotope positions were handled in a different manner than those of

the previous 4 days. One location, #13, was repeated using the COMPTEL source holder

(described later in this section). In addition, seven new locations were used. Table 3.101 de-

scribes these new locations with respect to the GRO coordinate system.

Table 3.101. Radioactive Source Survey Day #5 Isotope Locations

Location # Azimuth C°) Elevation 4°) Distance (cm)
22 0.0 10 762

23 0.0 45 762

24 120 10 762

25 120 45 762

26 240 10 762

27 240 45 762

28 0.0 90 762

These measurements are made in a different manner to those from the BATSE locations.

Azimuth is measured in the GRO X-Y plane. 0 degrees corresponds to the X-axis, with the angle

increasing towards the -Y axis. The elevation is the measured angle out of the X-Y plane, with a

positive angle corresponding to a positive Z coordinate. Figure 3.54 shows a view of these

locations from a point located on the GRO Z-axis.
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Figure 3.54. Radioactive Source Survey Day #5 Isotope Locations.

COMPTEL's source holder differed from the one which BATSE used on the f'mst four

days of the test. Because the BATSE source holder completely enclosed the isotope in lead, a

concern arose that a significant amount of back-scattered radiation from the holder would be

present in the detector spectra. Consequently, the COMPTEL team developed their own holder.

Figure 3.55 schematically shows the construction of this holder.

The holder also serves to collimate the radiation to the standard 50 ° opening angle used

during the previous days of testing. The isotope is mounted in a Teflon plug which slides into an

opening at the rear of the fixture. Although the holder was helpful in reducing the amount of

back-scattered radiation, it had the drawback of creating a significant amount of 511-keV radia-

tion because of electron-positron pair production from gamma rays interacting in the lead. This

511-keV radiation is prominent in most spectra taken with this holder.

Location #28, directly over the center of the spacecraft, was exercised first, with spectra

obtained using Na 24, Na 22, Mn 54, and finally Ba 133. Each isotope remained in place for

approximately 20 minutes. The same sequence of isotopes was then cycled through locations

#27 and #23, followed by #25 and #22, and #24 and #26. The testing concluded with spectral

accumulations of the Cs 137 and Na 22 isotopes at location #13, followed by a background

collection. All data obtained on day #5 by the BATSE instrument are available for inspection in

the BATSE library. The reader interested in a more detailed account of the proceedings on day
#5 should contact COMPTEL team members Roland Deihl at MPI or John Macri at UNH.

216



1/8 -" AJuminum Bracket

i_,_
4/7/8_ I"-'-1 3/4"_1 _-Lead

__:: fAiuminum Housing

/ t.........:-_-:_ _-,,_,,
, . \ ---: .;>,

...... T3/4. "-,

f '""; T

~_3/4"

Figure 3.55. Radioactive Source Survey Isotope Holder - Day #5,

217



8. BATSE MechanicalPreparationsfor GROAcousticsTest

a. Installationof Flight RIUs

Uponcompletionof theradioactivesourcesurveytest,theBATSEdetectormodule
interfaceswereonceagainbrokento facilitatetheopeningof theBATSEelectronicspanel. This
disconnectiontookplaceonMarch 16,1989,to allow thenewly-repairedflight RIUs to be

installed. BATSE received RIU serial numbers 26 and 27 to be used for flight. After a safe-to-

mate bench test, the RIUs were declared ready for installation. Reconnection of the BATSE

panel was completed on March 27, 1989. Despite BATSE concerns, the standard TP-100

interface verification test was not performed prior to the GRO acoustics test because of schedule

constraints. The BATSE instrument entered the test without the verification that all interfaces

were properly connected, and without the knowledge that the removal/reinstallation of the two

RIUs had no effect on the operation of the hardware.

b. BATSE Mirrored Radiator Repair

On March 22, 1989, the 10 damaged mirror segments on the BATSE detector modules

were repaired with small patches of A1-Teflon tape. Wherever possible, only the damaged

portions of the segment were removed and the remaining fraction of the mirror saved. For

segments which exhibited damage in excess of half the area, the entire segment was removed. In

either instance, the interface layer was thoroughly cleaned, and the patch of tape was applied.

This operation was done by TRW technician Mel Shier, along with BATSE representatives Scott

Storey (ES62) and Bill Horn (CQ12). The test-only heaters which were mounted on the front

face of the radiator panels were relocated to the back (inside) portion of each panel.

c. BATSE Thermal Blanket Installation

As described in section III.F.2, the bottom portion of the detector module thermal

insulation blanket was placed onto the spacecraft as each module was installed. The upper

portion of the thermal blanket remained in storage during all subsequent testing to this point.

BATSE representatives Scott Storey (ES62), Bill Horn (CQ12), and Joe Wynn (EL62)

performed the blanket installation. The process of blanket installation required 2 full days. All
-Z detectors received blankets on March 21, 1989. The +Z MLI blankets were installed the next

day.
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Table 3.102. BATSE Detector Module to Thermal Blanket Correspondence

Detector Module Blanket Serial Number

B0 007

B1 012

B2 002

B3 004

B4 008

B5 011

B6 003

B7 006

Two minor anomalies were present during this procedure. The blanket on detector

module B2 suffered a small (approximately 1 cm in length) tear near the harness hole in the rear

of the blanket. This small tear was patched with a piece of reflective Kapton tape. Second, four

of the blankets did not fully cover the velcro attach points on the mirrored radiator panels,

leaving a narrow strip of velcro exposed. A modification was implemented to alleviate concern

that the velcro would degrade over time because of the space environment and exposure to the

Sun. In the four locations where velcro was not covered, a strip of mating (hook or loop) velcro

was cut to the same dimensions as the exposed portion. Aluminized Teflon was sewn to the back

of this strip, and the unit was fastened to the velcro which was exposed.

Each of the blankets is designed for a particular location on the spacecraft and are not

interchangeable. Detector insulation on the -Z portion of the GRO contains white-painted

Kapton only to the interface of the GRO -Z tent. Upper (+Z) modules have blankets which are

fully painted. Each of these two types of MLI blankets contain two left-handed and two

right-handed blankets to expose the proper mirrored radiator panel. The MLI blankets are cut to

expose the panel which most nearly faces the -X (away from the Sun) direction on the spacecraft.

The upper portion of the BATSE MLI blanket contains an access port so that the LAD evacua-

tion procedure (TPS-46) can be performed when the blanket is installed. During flight, this

access port is covered with a patch, approximately 20 cm x 10 cm. These patches were not put

into place until the spacecraft was at the Kennedy Space Center.

9. GRO Acoustics Test

The first environmental test performed at the spacecraft level was the GRO acoustics test.

This operation was designed to verify the spacecraft's capacity to withstand the noise environ-

ment of a launch aboard the space shuttle. On April 6, 1989, the GRO was rotated for the fast

time into the launch orientation. To accomplish the reconfiguration, the spacecraft is lifted at the

-X trunnions and rotated into a vertical position above the +X trunnions. GRO is then lifted off

the horizontal support structure and is transported to a vertical support stand.

219



The spacecraft was moved from TRW Building R7A to the acoustic chamber, where the

test was performed on April 7. During the test, the GRO was entirely passive, with no power to

the spacecraft or instruments. Acoustic testing only required 1 day to complete and the

spacecraft returned to building R7A on April 8. After a few minor reconfiguration tasks were

funished, the GRO was moved to the horizontal position on April 10.

10. GRO Confidence Test

Following the last episode of BATSE testing with power to the instrument, many things had

happened to the spacecraft. All detector module interfaces had been disconnected, and the

BATSE electronics panel had been opened. After the opening of the panel, the temporary RIUs

were removed, and the flight RIUs were installed. Upon closing the panel again, all BATSE

detector module interfaces were re-mated. The spacecraft was then rotated 90 °, transported a

kilometer to the acoustics chamber, exposed to the noise environment of launch, and returned to

the horizontal position in the R7A high-bay. In light of the high activity level, a "confidence

test" was performed prior to the Observatory functional to verify that no problems had occurred

during the previous month of operations. During this test, which commenced on April 12, the

BATSE test conductor performed the set of test procedures outlined in Table 3.103.

Table 3.103. BATSE Tests Executed During GRO Confidence Testing
• TP-100 -- BATSE interface verification test

• TP-200 -- BATSE power control function test

• TP-204 -- RIU command and telemetry test
• TP-212 -- CEU discrete command test

• TP-216 -- RIU passive analog test

Each of these procedures had been performed previously; however, under the

circumstances of the confidence test, each of them contained particular objectives. TP-100

verified the proper connection of all detector module interfaces to the CEU and BPM. To this

point, the panel has not been re-opened. Usually, TP-200 is executed primarily to verify the

functionality of the BATSE power control system. In this instance, the test had the additional

emphasis of verifying the proper relay status telemetries because all of these values are routed

through the two new RIUs. RIU-A and B were subjected to a full check of discrete and serial

command capabilities. All passive analog measurements and time-transfer unit functionality
were also verified.

The GRO confidence test concluded on April 15, 1989, with a test of the BATSE burst-

overwrite capability and with no major anomalies. Test data and results from the GRO confi-

dence test are available for inspection in the BATSE library.
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11. GROObservatoryFunctional Test #1

a. Overview

As the name might suggest, the Observatory functional test (OFT) was the first

instance in the A&T program where the spacecraft was functionally tested as a unit. Prior to this

time, spacecraft and instrument testing carded an emphasis on the functionality of one subsys-

tem, or a single aspect of a subsystem. Placed between the acoustics test and the thermal vacuum

test, successful completion of the OFT verified the GRO's ability to endure the acoustic

environment of launch and indicated the spacecraft's readiness to proceed with the thermal

vacuum test.

During the OFT, most operations were run in parallel. BATSE testing coincided with

tests of the spacecraft's command and data handler (CADH), attitude control and determination

system (ACAD), electrical power distribution system (EPDS), compatibility test-van / POCC

testing through the TDRSS satellite, and other instrument activities. Exceptions to the parallel

activities were determinations of the spacecraft power-profile and internal electromagnetic

compatibility tests.

BATSE testing began on April 21, 1989. The sequence of test procedures executed

during the OFT was similar to that of the system-level bench test and integration-verification

proceedings. An additional procedure (TP-192) was added to calibrate the BATSE pulsar clock

frequency against the spacecraft clock frequency. The BATSE data consistency test (TP-195),

and the long calibration (TP-140) were not executed. Table 3.104 lists the procedures performed

during the OFT.
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Table3.104.BATSE-OFF#1 Test Procedures

• TP- 100--

• TP-105 --

• TP-110--

• TP- 120--

• TP-125 --

• TP-170--

• TP-171-

• TP- 180

• TP-188

• TP- 190

• TP-192

Engineering test
Detector module test

Power-up/aliveness test
Coincidence test

Background test
CPD calibration

CPD/LAD coincidence run

-- Burst data test (three options)

-- Burst trigger/solar flare trigger signal test
-- Pulsar data test

-- Pulsar clock frequency calibration

TP-200 -- Power control functional test

BATSE thermal control system test

b. New BATSE Tests and Results

TP-192 was added to this sequence to provide a baseline relationship between the

frequency of the spacecraft clock and the frequency of the BATSE pulsar clock. The GRO

spacecraft clock is driven by a highly stable oscillator in the CADH module, kept inside an

"oven" at a stable temperature. The BATSE pulsar clocks (CCF-A and CCF-B) are not as

accurate. To properly obtain and analyze pulsar time profiles, an accurate knowledge of the

BATSE clock's behavior with respect to "true" time is required. Not surprisingly, the frequency

difference in the BATSE clock compared to the spacecraft clock is a function of the temperature.

This temperature dependence will be discussed during the thermal vacuum portion of this
document.

To perform the test, the BATSE test conductor establishes parameters for a 1-second

pulsar accumulation with 1000 scans. During each pulsar data packet which the CEU generates,

the spacecraft time of the start and finish of the pulsar accumulation is included. In this

particular instance, it is known that the BATSE clock ticked-off precisely 1000 seconds. The

ratio of the two elapsed times yields the frequency percent difference.

Because of difficulty with the initial version of the procedure, this operation was

performed only on CCF-A, at a temperature of 24 °C. The test showed a frequency percent

difference of 6.375 x 10 6, the positive value indicating that the BATSE clock runs faster than the

spacecraft clock. The elapsed time of the accumulation was therefore slightly less than 1000

seconds according to the GRO clock.
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c. Data Comparison to Previous Testing

The OFT provided an opportunity for the comparison of data between the instrument

data run and the present test. TP-170 and TP-171 provided insight into the behavior of the CPDs
over time. Table 3.105 contains the difference in count rate between the OFT and instrument

data run for all eight CPDs at the various CPDHVn voltages.

Table 3.105. TP-170 (OFT - Data Run) Rates at CPDHVn Voltage Settings
CPD Count Rate Difference at Various +HV Command File Settings

Detector Module

B0 B1 B2 B3 B4 B5 B6 B7

CPDHV1 -9.7 -16.3 -27.1 -12.7 -1.9 7.4 -4.6 -1.0

CPDHV2 -6.3 -9.9 -19.8 -11.1 -1.8 4.9 -3.9 -0.4

CPDHV3 -6.6 -11.0 -18.5 -9.0 -2.5 4.7 -4.3 -1.9

CPDHV4 -7.0 - 10.3 - 17.0 -7.5 -2.7 4.5 -3.1 -0.7

CPDHV5 -5.3 -9.3 - 14.1 -5.6 -2.2 5.7 -3.7 -0.9

CPDHV6 -6.2 -4.7 -13.3 -5.6 -2.5 4.0 -2.2 0.6

CPDHV7 -5.6 -5.9 - 11.2 -5.6 xxx 1.4 -3.1 -0.7

CPDHV8 -4.1 -5.1 -8.1 -3.3 -2.4 2.9 -3.5 -0.3

The data in Table 3.105 indicate slightly lower counting rates during the OFT than in the

instrument data run. The exception is detector module B5, which shows an increase of a few

counts per second. The magnitude of the changes are small enough to be explained by changes

in the spacecraft environment and do not indicate any detectable degradation in CPD

performance. Detector B7 shows virtually no change in the CPD over the 3-month span.

Detector module B2 displayed the largest decrease in the counting rate. However, inspection of

the data from the instrument data run shows that this module had the highest rate at that time.

The decrease in the rate on this detector brings it into closer agreement with detectors which see

a similar environment (e.g., B0). The rate difference in detector B4 at level #7 is not available

because of a lost command on the spacecraft, causing the voltage not to be decremented from the

previous value.

The data from TP-171 reveal a slight increase in the rejection rate when compared with

the rates from the instrument data run. Again, however, these changes are of the order of 3%,

and do not indicate any problem with the operation of the detector or the anti-coincidence

circuitry. The top-to-bottom anisotropy in the rejection rate is still present, as one would expect.

A comparison of the rejection rates from the OFT and the instrument data run is presented in

Table 3.106.
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Table 3.106. Comparisonof CPDRejectionRatesfrom OFF andInstrumentDataRun
DetectorModule DataRunRate OFF Rate

B0 20.8 21.7
B1 18.2 19.7
B2 22.9 21.7
B3 18.4 18.5
B4 21.1 22.1
B5 17.9 18.6
B6 21.3 23.2
B7 18.3 19.4

Thebackgroundcollectiontest,TP-125,offeredtheability to comparetheLAD andSD
performanceswith previouscalibrationsandtests.Spectratakenduring theOFTindicatedno
detectabledegradationin detectoror PMTperformance.Although isotopeswerenotused,
examinationof the line emissionfrom naturallyoccurringradioactivityprovidedtheBATSE
teamwith aqualitativecomparisonof thedetectorresolutions.All otherBATSEtestprocedures
wereexecutedwithout anomalyandshowednodetectabledegradationin theperformanceof the
flight hardwarewhencomparedto previoustestresults.

d. GROPowerProfile Test

Thepowerprofile testwasanObservatory-levelcheckof theEPDSsystemanda
determinationof how muchpowereachsubsystemwasconsuming.Thedataobtainedfrom this
testverifiedthatthepowerproductionsystem(i.e., solararraysandbatteries)couldgenerate
enoughpowerto operateall spacecraftelectronics,with someroomto spare.BATSE
participatedin thetestby fh-stpoweringup theCEUonly. This requiresapproximately5.0A at
5 V for apowerdissipationof approximately25W. Subsequently,thedetectormoduleswere
poweredonone-at-a-time,andameasurementof the+15VdcBPM currentwasmadewith +HV
off andthenwith +HV on. ThecurrentmonitorusedwastheGROengineeringtelemetry
parameter1BPMOCM.Thismeasurementis internalto BATSE anddoesnot takeinto account
anypowerdissipatedthroughthestep-downtransformer.This transformerconverts+28Vdc
powerfrom theGROpower-businto +15Vdc for thedetectormodules.Table3.107lists the

+15 Vdc current at each of the described configurations. To determine the total power

dissipation, multiply the +15 Vdc current entry by 15 and add 25 W for the CEU. Computations

made with BATSE HKG telemetry yield the same power dissipation at each of the various levels.

"All Nominal" indicates that for each of the detector modules powered on, their respective +HV

is at nominal levels. Modules which are powered off, of course, have no +HV on. Each module

when powered up without +HV requires approximately 0.2 A at +15 Vdc. The apparent

inconsistency in the B0 power requirement is an artifact of an offset in the current monitor and

not an actual difference in power requirements.
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Table 3.107. BATSE Power Dissipation Profile Data Table

Status +HV Configuration 1BPMOCM (+ 15 Vdc Current) (Amps)

BO - B7 on All Nominal 2.46

B0 - B7 on B7 +HV = 00 2.34

B0 - B6 on All Nominal 2.15

B0 - B6 on B6 +HV = 00 2.02

B0 - B5 on All Nominal 1.79

B0 - B5 on B5 +HV - 00 1.70

B0 - B4 on All Nominal 1.51

B0 - B4 on B4 +HV = 00 1.39

B0 - B3 on All Nominal 1.19

B0 - B3 on B3 +HV -- 00 1.07

B0 - B2 on All Nominal 0.84

B0 - B2 on B2 +HV = 00 0.75

B0 - B 1 on All Nominal 0.56

B0 - B 1 on B 1 +HV = 00 0.44

B0 only on All Nominal 0.24

B0 only on B0 +HV = 00 0.12

e. GRO Electromagnetic Self-Compatibility Test

A formal EMC./EMI test such as the one performed on BATSE at the system level (see

section III.D.3) was not performed on the entire spacecraft. Instead, a self-compatibility test was

done. One objective of the test was to measure any conducted transients on the MPS-1 and 2

busses which might be present due to significant load or voltage changes created by instrument

operations. A second goal was to define and create the worst-case steady state EMI source for

each Instrument. EGRET, for example, fully powered their instrument and initiated their spark

chamber to provide a worst-case EMI source. Finally, the test set out to define and create the

most sensitive (EMI susceptible) operating condition for each instrument. Once in these modes,

the instrument and Observatory test conductors would monitor data for any sign of an EMI effect

on the performance of their particular subsystem or instrument.

At the outset of the test, the GRO was operating in the most quiet EMI conditions for the

normal pointing mode. Reaction wheels, magnetic torquers, and antenna drivers were all

powered off. Each of the four instruments were then powered into the most EMI-sensitive mode.

For BATSE, this principally entailed a lowering of the LLDs. Following the establishment of the

sensitive configuration, each subsystem of the spacecraft (e.g., RF-antenna transmission, solar

array operations, reaction wheel changes, etc.) was individually transitioned into a noisy con-

figuration. The instrument test conductors monitored their data throughout to determine if any ill

effects were present. No anomalous effects were found during any of the spacecraft quiet-to-

noisy transitions.
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Thefinal portionof thetestrequiredeachinstrumentto individually transitionthrough
themostsignificantloadchangepossible,while theotherinstrumentersexaminedtheir datafor
anomalies.Themostsignificanttransitionfor BATSE is to arriveat thefull-up configuration
from thepower-offstate.During theBATSEtransition,noanomalouseffectswerereported.
Likewise,nootherinstrumentWansition was seen to affect the quality of BATSE data. When in
the most noisy configuration, the GRO test team made measurements of conducted emissions on

the MPS-1 and MPS-2 power bus in the frequency domain of 30 Hz to 50 MHz. The test con-
cluded with no EMI-related anomalies.

12. GRO Thermal Vacuum Test

a. Overview

The GRO thermal vacuum test was the most complex and compreshensive activity

performed during the time BATSE was in California. Preparations for this test required nearly
1 year to complete. The GRO was placed into the launch orientation, as it was for the acoustics

test, and installed onto the in-plant transporter structure, which had been specially fitted with

insulation and cold plates. The spacecraft was then moved to the thermal vacuum facility in
TRW building M4, and placed in the chamber. The site of instrument control remained in

building R7A, even though the spacecraft had been transferred to a different facility. The test ran

exceptionally well throughout the 4-week duration, especially when one considers the size and

complexity of the operation.

The test consisted of four complete thermal cycles between the temperatures of 0 °C and

30 °C. The first three cycles were executed without a planned plateau. Once the final tempera-
ture measurement reached the target temperature, the next transition was started. The fourth and

final cycle included extended plateaus at the hot and cold cases. At these plateaus, a

full-functional test of the instrument was performed, and thermal balancing of the spacecraft was

executed. BATSE +HV was not powered until 48 hours after a chamber pressure of 5 x 10 -5 Torr

was reached on July 7, 1989.
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b. BATSE Mechanical Preparations and Configuration

Several mechanical operations were required for the BATSE instrument in order to

configure it fully for the thermal vacuum test. Test-only heaters had been installed onto the

interior portion of the radiator panels prior to the thermal blanket installation. Each detector

module received a test-only patch to cover the LAD access port on the thermal blanket. These

patches consist of multi-layer insulation, covered with white-painted Kapton on one side. The

assembly is attached to the thermal blanket with reflective Kapton tape. Unlike the flight

hardware, these test-only patches are not electrically grounded to the detector module structure.

MLI closeouts were completed on May 24, 1989.

An additional major change to the configuration of BATSE was the removal of the STS

heater in-flight jumper. The BATSE internal STS heater circuit is accessible at connector on the

146 bracket. During flight, a jumper is installed which routes the heater power through the

thermostats, thus powering the heaters only when the thermostats are closed. While in the

thermal vacuum configuration, however, this jumper was replaced with an STS heater cable

which routed the STS heater circuit out of the spacecraft, through the chamber wall, and into a

breakout box. The box allowed the thermal test conductor to power these heaters directly,

disable them, or to place the heaters under thermostat control. Direct powering of the heaters

outside of the range of thermostat closure enabled the spacecraft to more quickly transition from

the cold- to hot-case temperature.

c. BATSE/GRO "On-Lid" Functional Test

After the transport of the GRO to the M4 facility, the spacecraft was placed onto the

thermal vacuum chamber lid, and all necessary interfaces were mated. Prior to the closing of the

chamber, a functional test of the spacecraft was performed to ensure the hardware was ready to

begin the testing. BATSE participated fully in this test and was able to execute more testing than

was actually planned. This testing marked the first time in which BATSE powered on while the

spacecraft was in the vertical orientation.

Table 3.108 lists the testing procedures which were performed as part of the on-lid

functional. These procedures were identical to those performed during previous BATSE testing.

One additional test was added for the on-lid functional. As part of the GRO thermal vacuum test,

a pressure monitor was constantly measuring the pressure internal to the thermal vacuum

chamber. In the event of a partial pressure loss, the instruments required an immediate disabling

of their +HV. Operation of the +HV in the corona region could cause severe damage to flight

hardware. The pressure sensor was integrated to the GRO base-band equipment and would

trigger +HV-off commands in the event of a loss of vacuum. The emergency high voltage off

system was verified on July 3, 1989. The on-lid functional test was completely successfully with

no anomalies. BATSE was declared ready to begin participation in the GRO thermal vacuum

test on July 5, 1989.
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Table 108. BATSETestProceduresfor GROOn-Lid Functional
• TP-110

• TP-105

• TP- 125

• TP- 170

• TP-171

• TP-180

• TP-188

• TP-190

• TP-192

-- Power-up and aliveness test

-- Detector module test

-- Background collection procedure

-- CPD calibration

-- CPD/LAD coincidence test

-- Burst data test

-- Coordinated BTS/SF signal test
-- Pulsar data test

-- Pulsar clock calibration

TP-200 -- Power control functional test

BATSE heater power and cross-strap test

Emergency + HV off test

d. Thermal Cycle #1

Evacuation of the chamber began early in the morning hours of Jul_ys 7, 1989. At
approximately 9:30 a.m., the chamber pressure had reached a value of 5 x 10- Torr. Pressures

lower than this value are considered safe for the operation of high voltage. Under previously

determined rules of the test, BATSE was allowed to turn on high voltage 48 hours after this value

was reached, to allow sufficient time for the outgassing and establishment of vacuum in isolated

regions of the BATSE +HV system. Figure 3.57 schematically shows the rise to the first

hot-case temperature for thermal cycle #1.
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Figure 3.57. GRO T/V Timeline - Rise to Hot-Case Temperature for Thermal Cycle #1.

BATSE was powered up at 20:32 on July 7 to begin the transition to the hot-case tem-

perature for thermal cycle #1. TP-110 was executed, with the change to the procedure to leave

the high voltage powered off. The instrument was operated in the primary mode, with RIU-A,

CCF-A, and primary power throughout this thermal cycle. As the temperature increased, the In'st

pulsar clock frequency calibration was performed. The eight detector modules reached the

hot-case temperature of 30 °C at 12:40 on July 8. Approximately 2 hours later, the remainder of

the spacecraft reached the target temperature, and BATSE was powered off for the transition to
the cold case.
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Duringeachof thecold transitionswhereBATSEwasoff, asmall "stateof health"test
(TP-106)wasperformedonceevery8 hours.This testallowedBATSEpersonnelto verify the
operationof theinstrumentandto collectthemultiplexedhousekeepingtemperaturemeasure-
mentsfrom thedetectormodules.Theprocedureis very similar to TP-110,thepower-upand
alivenesstest,but notascomprehensive.Primarythermalcontrolandmake-upheaterpowerwas
enabledduring thecold transition. BecasueBATSE wasutilizing RIU-A, thestatusof the
redundantheatersystemscouldnotbedeterminedat this time. Thermostatclosurewas
monitoredby theBATSE teamthroughtheGROengineeringtelemetry.Table3.109lists the
timesandtemperaturesof thermostatclosurefor bothprimaryheatersets.

Table3.109. BATSEPrimaryT/CandM/U HeaterThermostatOpeningTimesand
Temperatures,GROThermalVacuumTest- ThermalCycle#1

HeaterandDetectorModule 1DMnTEMP(°C) Time Date
B0 PrimaryT/C 1.9 18:15 7-9-89
B1PrimaryT/C 2.6 17:05 7-9-89
B2 PrimaryT/C 0.6 19:57 7-9-89
B3 PrimaryT/C 5.3 15:12 7-9-89
B4 PrimaryT/C 0.9 18:15 7-9-89
B5 PrimaryT/C 2.9 15:43 7-9-89
B6 PrimaryT/C 0.6 17:51 7-9-89

B7 Primary T/C 1.9 18:05 7-9-89

B0 Primary M/U -0.8 11:39 7-10-89

B1 Primary M/U -0.8 23:29 7-9-89

B2 Primary M/U -1.5 00:44 7-10-89

B3 Primary M/U -0.5 23:11 7-9-89

B4 Primary M/U - 1.1 00:08 7-10-89

B5 Primary M/U -0.8 22:52 7-9-89

B6 Primary M/U -1.5 22:39 7-9-89

B7 Primary M/U -0.8 00:10 7-10-89

All BATSE detector module primary heater thermostats were verified to be operational.

The BATSE CEU and BPM reached the cold case faster than the eight detector modules, arriving

at the target temperature on July 9 at 20:40. Once at the cold case, the CEU and BPM were

powered, and their temperatures were stabilized until the remainder of the spacecraft was ready

for the next phase of the test. The final detector module arrived at the cold case at 04:00 on July

10. At this time, each of the detector modules were powered on; however, the high voltage

remained off. Because the BATSE hardware transitioned from hot to cold much faster than the

remainder of the GRO, a significant amount of time was av_lable at the cold case during which

BATSE tests could be performed while waiting for the rest of the spacecraft to "catch-up" at the

cold temperature.
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Approximately 48 hours after the appropriate chamber pressure was reached, all 40 of the

BATSE +HV circuits were powered for the first time in the test. Each of the +HV supplies

operated as expected, with no anomalies or evidence of +HV breakdown. Thirty minutes later, a

long-duration background spectrum was accumulated from all LADs and SDs. These spectra,

which are on file in the BATSE library, show no indication of anomalies or poor performance.

After the spectral accumulations were completed, another iteration of TP-192 was

performed on CCF-A. The second hot transition began at 22:20 on July 10, approximately 24

hours after the BATSE hardware arrived at the cold case. For the sake of organization of the test,

the flu'st thermal cycle was declared "complete" with the arrival at the cold-case temperature,

despite the fact that an entire transition back to the initial temperature had not been reached. In

the following pages, the organization will comply with that of the original test. Thermal cycle #1

was completed without any anomalies.
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e. Thermal Cycle #2

BATSE remained powered during the transition to the hot-case temperature. Heater

power was enabled, and heaters remained on because of the closed state of the thermostats.

During the temperature rise, three iterations of the pulsar clock calibration were performed.

While executing the second of these tests, BATSE experienced the fast anomaly of the test. At

07:15 on the morning of July 11, during the execution of TP-192, detector module B1 CPD

exhibited a current-limit condition at 202 _tA, indicative of a breakdown in the high voltage

system. The CPD rate on this detector was seen to increase over 100-fold in coincidence with

the anomalous current reading. Symptoms of this anomaly were identical to the +HV anomaly

seen during the BATSE system-level thermal vacuum test. This event occurred after nearly 24

hours of normal +HV operation. The CPD was powered off immediately and remained off for

the next 6 days.

As the temperature increased, the BATSE flight heater thermostats were monitored and

verified to properly open, removing power from the heater circuits. Table 3.110 contains the

time and temperature of thermostat openings.

Table 3.110. BATSE Primary T/C and M/U Heater Thermostat Opening Times and

Temperatures, GRO Thermal Vacuum Test - Thermal Cycle #2
Heater and Detector Module 1DMnTEMP (°C) Time Date

B0 Primary T/C 5.3 01:48 7-11-89

B1 Primary T/C 2.3 01:20 7-11-89

B2 Primary T/C 7.4 01:52 7-11-89

B3 Primary T/C 2.6 01:19 7-11-89

B4 Primary T/C 5.7 01:33 7-11-89

B5 Primary T/C 5.3 01:26 7-11-89

B6 Primary T/C 5.7 01:29 7-11-89

B7 Primary T/C 4.7 01:21 7-11-89

B0 Primary M/U 1.3 23:54 7-10-89

B 1 Primary M/U 0.6 00:05 7-11-89

B2 Primary M/U 1.9 00:04 7-11-89

B3 Primary M/U 0.9 00:04 7-11-89

B4 Primary M/U 1.9 00:13 7-11-89

B5 Primary M/U 1.6 00:07 7-11-89

B6 Primar_ M/U 1.9 00:05 7-11-89
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During this transit,OSSEdeployeda Cs137isotopeoutside the thermal vacuum

chamber. The source was located to radiate in the -Z direction of the GRO, and direcdy onto the

OSSE detectors. BATSE obtained coincident spectral accumulations, which are on f'de in the

BATSE library. The isotope was exposed for approximately 4 hours, beginning at 15:42 on July

11. Following the removal of the source, a long-duration background exposure was obtained.

BATSE detector modules reached the hot-case temperature at 11:40 on the morning of

July 12. Subsequently, the instrument was powered off to allow a more rapid transition to the

cold temperature region. Figure 3.59 details the transition to the upper temperature and notes

some of the major events during this time period.
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Figure 3.59. GRO T/V Timeline - Transition to Hot Case for Thermal Cycle #2.

The flight hardware was reconfigured for the cold transition of thermal cycle #2. The

RIU, CCF, and ADF were all switched to the redundant units, and all BATSE relays were placed

into the backup-on configuration. BATSE power remained on the primary side, from the
nominal MPS. The switch in the RIU allowed BATSE to monitor the redundant set of thermal

control and make-up heater circuits so that thermostat closure could be verified.
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Four state-of-health tests were performed during this cold transit, each of which were

approximately 8 hours apart. The f'trst of these tests was executed at 18:00 on July 12. All data

from these tests indicated that BATSE was operating normally, with the exception of the CPD on

B 1, which was not tested at these times.

Near the end of the cold transition, the BATSE flight heater thermostats began to close.

Each pair of thermostats on the BATSE detector modules were verified functional. Table 3. :1_11

shows the times and temperatures of thermostat closure.

Table 3. 111. BATSE Redundant T/C and M/U Heater Thermostat Closure

Times and Temperatures

Heater and Detector Module 1DMnTEMP (°C)

B0 Redundant T/C 1.2 15:10

B1 Redundant T/C 3.6 11:19

B2 Redundant T/C 0.6 15:10

B3 Redundant T/C 5.0 10:35

B4 Redundant T/C 0.9 15:10

B5 Redundant T/C 4.0 10:28

B6 Redundant T/C 1.3 12:44

B7 Redundant T/C 1.9 12:13

B0 Redundant M/U -0.1 18:15

B1 Redundant M/U -0.8 18:40

B2 Redundant M/U -0.8 18:40

B3 Redundant M/U -0.8 18:44

B4 Redundant M/U -0.5 18:49

B5 Redundant M/U -1.1 18:15

B6 Redundant M/U -0.8 18:43

B7 Redundant M/U -0.8 18:43

Time Date

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89

7-13-89
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Figure 3.60. GRO T/V Timeline - Transition to Cold Case for Thermal Cycle #2.

Arriving at the cold case faster than the remainder of the spacecraft allowed the BATSE

test conductors to perform numerous procedures at temperatures near 0 °C. A BATSE cold-start

was performed at 19:30, using TP-110, the power-up and aliveness test procedure. The first two

pulsar clock frequency calibrations on CCF-B were also performed during the wait. At 10:00 on

the norming of July 14, BATSE was powered down, marking the ened of the second thermal

cycle.
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f. Thermal Cycle #3

The third thermal cycle began with a cold-start exercise, following approximately 30

minutes of power off while at 0 °C. BATSE remained in the B-side configuration, and switched

from primary power to backup power. Each of the redundant thermal control and make-up

heater thermostats were verified to open properly and disable their respective heaters. The

transition to the hot case was rather unremarkablc, with five iterations of the pulsar clock fre-

quency calibration taking place. During this transition, the spacecraft had been switched over to
'VI'U-B. The BATSE test team did not realize this switch until after four iterations of TP-192. In

these four tests, the data appeared to show an error in clock frequency 10 times the expected

error. Afterward, it was realized that BATSE was looking for time updates from "FI'U-A, not

TTU-B, causing the results of TP-192 to be meaningless. Switching BATSE over to qW13-B

corrected the problem. Figure 3.61 shows this transition to the hot case.
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BATSEarrivedatthehot-casetargettemperatureof 30 °C by 00:00of July 16. Oneand
one-halfhourslater,the instrumentwaspoweredoff for thetransitionto thecold case.During
this transition,BATSE wasswitchedbackoverto RIU-A. During thetest,theGROtestteam
greatlydesiredto keepall instrumentsandsubsystemsin roughly thesameconfigurationto avoid
confusion,andto allow for easyverificationthatall cross-strappingconfigurationswereexer-
cised. In theprevioustransitions,severalspacecraftprimaryheatercircuits,only visible to
RIU-A on theirparticularsubsystem,werenotverified. Consequently,eachsubsystemwas
askedto return to theA-sideRIU. BATSEremainedonCCF-BandADF-B internally.
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Figure 3.62. GRO T/V Timeline - Transition to Cold Case for Thermal Cycle #3.

238



During thecold transition,BATSEwaspoweredtwice to performthestate-of-healthtest
andto obtainmultiplexedhousekeepingtemperaturevaluesfrom thedetectormodules.These
testsproceededwithout anomaly.Shortlyaftermidnight,earlyin themorningof July 17,the
BATSEprimarythermalcontrolheaterthermostatsbeganto close. Thetemperaturereadingsof
theclosuresarewithin 1°C of theprevioustemperatures.All thermalcontrol heatershadbeen
poweredby 05:30. Subsequently,theprimarymake-upheaterthermostatsbeganto closeasthe
temperaturedroppedfurther. All eightof themake-upheatercircuitswerepoweredby
thermostatclosurebetween08:41and 10:58on themorningof July 17. Figure3.62detailsthe
transitionfrom hot to cold duringthethird thermalcycle.

After all detectormoduleshadarrivedatthecoldcase,theywerepoweredon to help
stabilizethetemperature.TheCEUandBPM hadbeenpoweredonseveralhoursearlierafter
theytransitionedto theirdesiredtemperatures.A successfulpoweronwasexecutedusing
TP-110,thepower-upandalivenesstest,at 11:20a.m. At noon,BATSE wasagainpoweredoff
in preparationfor acold-starttest,markingtheendof thermalcycle#3.

g. ThermalCycle#4

Thermalcycle#4beganat 13:30onJuly 17,asBATSEperformedacold-starttest.
BATSE wasoperatedonprimarypower,RIU-A, andADF-A. CCF-Bwasutilized,creatingthe
first RIU to CCFcross-strapconfiguration. A cold-starttestwasrepeatedat 20:30prior to the
initiation of thehot transition. Fouriterationsof thepulsarclock frequencycalibrationwere
performed,eachyielding nominalresults.

DetectormoduleB1 CPDwasrepoweredat08:40onJuly 18for thefirst timein 6 days.
No signof +HV breakdownwasapparentimmediatelyafterpowerup,andtheCPDoperated
normallythroughouttheremainderof thetest.
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The hot transition of thermal cycle #4 was completed at 07:00 on the morning of July 19,

when BATSE detector modules arrived at the target temperature of 30 °C. BATSE was declared

ready for the start of hot-case functional testing at 09:00 that morning.

Functional testing at 30 °C mirrored the tests performed during the BATSE portions of

the Observatory functional test. An additional cross-strapping test was added to provide a record

of operations in a wide variety of configurations. This test was orchestrated in coordination with

the other instruments and spacecraft subsystems. Table 3.112 lists all tests that were performed

during the hot-plateau period.
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Table 3.112. BATSE Hot-Case Functional Test Sequence - GRO Thermal Vacuum Test

TP-110 -- Power-up and aliveness test

GRO cross-strap testing

TP-125 -- Background collections (with and without OSSE source)
TP-192 -- Pulsar clock calibration

TP-200 -- Power control function test

TP-188 -- Coordinated BTS/SF trigger signal test
TP-105 -- Detector module test

TP- 170 -- CPD calibration

TP-171 --

TP-192 --

TP- 190 --

TP-180 --

TP- 125 --

TP- 190 --

TP- 120 --

CPD/LAD coincidence run

Pulsar clock calibration

Pulsar data test (options 1 and 2)

Burst data test (options 1, 2, and 3)

Background collection (at various LLD settings)

Pulsar data test (option 2 re-run)

Coincidence/EXFLAGS test

The cross-strapping test was the only new procedure placed into the sequence of tests and

was executed at the outset of the functional testing. BATSE switched over to CCF-A for this

operation and executed one iteration of TP-106, the state-of-health test, for each of the spacecraft

configurations contained in Table 3.113. Those configurations not shown in the table were

exercised somewhere else throughout the course of the GRO thermal vacuum test.

Table 3.113. BATSE Cross-Strapping Test Configurations at Hot Case
BATSE RIU Time Power Bus MPS CADH Unit

A 10:47 Primary 1 A-Side

B 11:50 Primary 1 A-Side

B 12:13 Primary 2 A-Side

B 12:37 Primary 2 B-Side
B 13:10 Redundant 2 B-Side

A 13:28 Redundant 2 B-Side

A 13:47 Redundant 2 A-Side

A 14:10 Primary 1 A-Side

241



I I

O_

C_

c_
Cx,I

m
:]

O_
O0
0'_

0,1

CO
0_,

O_
O0

:::]

rj

,.c:

!

r_

[.-,

o

0

n_

i

0

242



The first nominal BATSE test procedure was started at 15:00 on July 19. Through a

previous agreement among the four instruments, the first portion of the OSSE was provided with

a 3-hour period in which to deploy their Th 228 source outside the T/V chamber and illuminate

their detectors inside. This time period was placed as close as possible to the beginning of the

functional test time to give each instrument team the maximum amount of uninterrupted testing

time. During the OSSE source exposure, numerous spectra were accumulated and are on file in

the BATSE library.

When planning the sequence of events for this test, the resident instrument representatives

blocked out the next 2 hours for base-level functional testing for each instrument. For BATSE,

this meant an execution of TP-200, the power control function test. At the same time, each of the

other instruments were executing similar tests of power switching, redundancy, mode changes,

and other fundamental operations tests.

The final coordinated test slot was allocated to the burst trigger and solar flare trigger

signal test. Under the direction of the BATSE test conductor, burst trigger signals were sent to

the other three instruments from ADF-A and ADF-B. The solar flare trigger signal to OSSE was

tested, as was the solar flare trigger signal route to COMPTEL via the OBC. All of these tests

were successful, and each of the instruments continued individual testing following the comple-

tion of coordinated exercises.

BATSE test conductors proceeded with the normal sequence of functional testing,

starting with TP-105, the detector module test. During this test, each bit of the 40 +HV supplies

were tested. Detector module B 1 CPD, which had exhibited a failure of the +HV system, was

verified to have eight operational command bits. All subsequent tests were concluded with no

major anomalies or hardware problems. The results obtained from each of the procedures are on

file in the BATSE data library. Hot-case functional testing concluded at 04:25 on July 21, 1989.

The next major section of the plateau was devoted to functional testing of the spacecraft.

Each of the subsystems (e.g., CADH, EPDS, propulsion, ACAD) was fully exercised and

verified operational. During this time, the instruments were unable to accomplish successful

tests because of telemetry interruptions, power switching, and spacecraft reconfiguring. No

BATSE tests were planned during this time because of the interference of spacecraft operations.

The BATSE test conductors monitored the performance of the instrument, archived data, and

obtained spectral accumulations over a wide range of LLD settings. BATSE thermal engineers

used this time to obtain characteristics of the thermal properties of the hardware to help stabilize

the temperature, in preparation for the subsequent thermal balance exercise.

Thermal balance testing of the GRO was performed between 00:00 and 08:00 on July 24.

Because most of the subsystems had stabilized during the spacecraft testing, this operation

proceeded more smoothly than anticipated. Four hours after the completion of the thermal

balance, the transition to the cold-case temperature commenced.
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The BATSE hardware was reconfigured for the transition to the cold case. The instru-

ment was operated through RIU-B, utilizing CCF-A and ADF-A. This configuration exercised

the remaining RIU to CCF cross-strap configuration. Power remained off during the transition,

except for the normal iterations of TP-106, the state-of-health test, which was performed every 8

hours. At 11:00 on July 25, the CEU and BPM arrived at the cold-case temperatures and were

powered on using the redundant power bus. At the time of power-up, the BATSE test conductor

changed the instrument configuration again, this time utilizing CCF-B and ADF-B. TP-192, the

pulsar clock frequency calibration, was performed shortly thereafter.
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Detector modules reached their target temperatures by 23:00 on July 25. Again, BATSE

hardware arrived at the cold case more rapidly than the remainder of the spacecraft, affording the

test conductors some time to perform testing. Shortly after midnight, TP-125 was performed,

collecting spectra at a variety of LLD settings. These spectra were taken for comparison with the

hot-case spectra at a variety of LLD settings. Background acquisitions lasted nearly 6 hours,

after which a pulsar clock frequency calibration was performed. This testing period ended at

09:30 on July 26, when the hardware was powered off in preparation for the cold-start
demonstration.

The structure of the cold-plateau test time was identical to that of the previous hot-case

plateau. The initial portion of the testing was reserved for GRO cross-strapping tests involving

the instruments. For each of the configurations desired, one iteration of TP-106 was performed.

Table 3.114 details the cross-strapping configurations utilized during the cold-plateau testing. At

the completion of the cross-strapping tests, the BATSE hardware remained on RIU-B, CCF-B,

ADF-B, and redundant power. The BATSE relays were configured to their backup-on positions.

Table 3.114. BATSE Cross-Strapping Test Configurations at Cold Case

BATSE RIU Time Power Bus MPS CADH Unit

A 12:50 Primary 1 A-Side

B 13:00 Primary 1 A-Side

B 13:20 Primary 2 A-Side

B 13:50 Primary 2 B-Side

B 14:06 Redundant 2 B-Side

A 14:20 Redundant 2 B-Side

A 14:55 Redundant 2 A-Side

B 15:15 Redundant 1 A-Side

Following the cross-strapping exercise, OSSE again deployed their Th 228 isotope. As

with the previous plateau, BATSE obtained spectral accumulations through the TP-125

procedure. The Th 228 isotope was present for a period of approximately 4 hours, starting at
17:15 on July 26.

The final coordinated test period was allocated for the performance of the burst trigger

and solar flare trigger signal tests. TP-188 was performed under the direction of the BATSE test

conductor, and successfully exercised the burst trigger signals to each of the other three instru-

ments. In addition, the solar flare signal to OSSE and the solar flare signal to COMPTEL

through the OBC were also successfully exercised.
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Independent instrument testing began at 01:30 on the morning of July 27. BATSE test

conductors performed TP-200, TP-110, and TP- 105. During the detector module test, all com-

mand bits of each +HV supply were verified to be fully operational, including the eight bits of

the B 1 CPD. Although the +HV system on this detector suffered an earlier anomaly, the system

was verified to be fully operational at the hot and cold temperature regions.

Iterations of TP-170, TP-171, TP-180, TP- 190, TP- 120, and TP-125 completed the

BATSE functional test at the cold-plateau. The results of these tests were in close agreement

with the results from the previous functional testing sequence. Each of these tests and all associ-

ated data reside in the BATSE library for inspection. Instrument functional testing was com-

pelted at 04:30 on the morning of July 28.

During the next 60 hours, spacecraft functional testing and thermal balance testing were

performed. BATSE remained in a monitoring mode throughout the time period, with the excep-

tion of an iteration of the pulsar clock calibration test on the morning of July 29. After comple-

tion of the thermal balance portion of the testing, the spacecraft remained in the cold case while

several low temperature thermostats and STS heater thermostats were verified to be operational.

In many cases, this required the transition of a particular box or subsystem to a temperature

below that of the original cold-case target. The STS heaters were powered externally throughout

the test and were used as an energy source to drive the temperature of the detector modules. A

verification of the operation of the STS heater thermostats is discussed in the next section. All

verifiable GRO thermostas (approximately 600 in number) were shown to be operational by the

time, this portion of the test was completed. The rise to ambient temperature began at 09:00 on

August 1, 1989.

Two anomalies were noticed during the cold-plateau following functional testing. Early

in the morning of July 30, several of the +HV supplies for the CPDs exhibited an oscillatory

current measurement through the BATSE housekeeping data. The oscillation magnitude was

approximately 6 I.tA about the nominal value. The current oscillation was not accompanied by a

fluctuation in either the counting rate voltage. This behavior went away during the rise to

ambient temperature. Because the high voltage power supplies are constructed to regulate the

load of the 12.7 cm PMTs, the regulation of the smaller 5.08-cm PMTs becomes more difficult,

especially at the cold case. If this behavior replicates itself on-orbit, there is no impact to

operations or to the quality of science data. An instrument anomaly report was generated and
closed with the action to use "as-is."
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Thesecondanomalywas a repeat of a problem seen in the BATSE system-level thermal

vacuum test at MSFC. The SFAST3 discriminator on detector module B7 displayed a

non-integral behavior. This was first noticed at 14:00 on July 31. To this point, the

discriminator had functioned flawlessly throughout the four thermal cycles. The characteristics
of the SFAST3 behavior were identical to those described in section III.D.4 of this document.

The BATSE team was aware that this problem resided in the CEU, and presented this anomaly in

a pre-test meeting as something to watch for during the test. The response to this problem was

identical to the response given during the MSFC test. Because there is little impact to mission

operations, or to the quality of science data, the BATSE team decided to live with the problem if

it appears during on-orbit operations.

h. Rise to Ambient Temperature

The final temperature transition began at 12:30 on August 1, 1989. As mentioned in

the previous paragraph, the STS heaters had been used to this point as an energy source to drive

the temperature of the detector modules. In this configuration, the heaters are powered directly

from the outside, and operation of the thermostats cannot be examined. At the final transition,

the STS heaters were reconfigured to apply power through the thermostats. Because the

Instrument was at the cold case, all thermostats were closed. Consequently, the exact turn-on

temperature of these heaters could not be determined; however, it was obvious that all

thermostats had closed. During the temperature rise, the turn-off points were monitored. After

all of the thermostats had opened, the STS heaters were again configured for external power

directly to the heater elements. Table 3.115 contains information relevant to the opening of the

eight flight STS heater thermostats.

Table 3.115. BATSE STS Heater Thermostat Opening Times and Temperatures
GRO Thermal Vacuum Test

Heater and Detector Module 1DMnTEMP (°C) Time Date
B0 STS Heater 4.7 13:42

B 1 STS Heater 6.4 15:24

B2 STS Heater 6.7 13:22

B3 STS Heater 6.4 15:20

B4 STS Heater 4.7 13:37

B5 STS Heater 6.4 15:38

B6 STS Heater 5.7 13:35

B7 STS Heater 6.7 15:22

8-1-89

8-1-89

8-1-89

8-1-89

8-1-89

8-1-89

8-1-89

8-1-89
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Figure 3.68. GRO T/V Timeline - Rise to Ambient, Thermal Cycle #4.

During the temperature transition, two iterations of the pulsar clock frequency calibration

were performed. These were the final tests prior to arrival at ambient temperature (23 °C). The

transition lasted approximately 30 hours, concluding on August 2 at 18:30. Once the target

temperature had been reached, nearly 5 hours were allowed to stabilize the temperature and bring
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thespacecraftintoequilibrium. During this time, the BATSE test conductors performed the

+HV command bit check from TP- 105. This was a critical test in assessing the validity of the

repairs performed on the BATSE +HV supplies after the initial system-level thermal vacuum

testing. The test verified that each command bit of the 40 high voltage supplies operated suc-

cessfully throughout the duration of the test. This includes the command bits on CPD B 1, where

an early instance of high voltage breakdown had occurred.

The final tests performed under vacuum conditions were iterations of TP-192, TP-170,

and TP-125. These procedures were executed successfully, and their results are on file in the

BATSE data library.

i. Summaries

(1) Cross-Strapping and Run Times

During the thermal vacuum test, considerable attention was paid to the

configuration of the instrument and to testing in as many different modes as possible. The four

items of primary concern to BATSE were the RIU, the CCF, the ADF, and instrument power.

Exercising the cross-strapping capabilities and distributing the run-time evenly for these

functions were two principal motivations during the test. Table 3.116 indicates the approximate

run time on each of these components.

Table 3.116. Approximate Run Time of BATSE Components in GRO Thermal
Vacuum Test

• Instrument Power

(CEU and modules)

21 days 14 hours 24 minutes

Primary Power 11 days

Redundant Power 9 days

22 hours 53 minutes

15 hours 31 minutes

• Instrument High Voltage

031 CPD is less because of power-off time)

15 days 13 hours 33 minutes

• RIU-A 12 days 8 hours 50 minutes*

• RIU-B 9 days 5 hours 34 minutes*

• CCF-A 10 days 10 hours 18 minutes

• CCF-B 11 days 4 hours 6 minutes

• ADF-A 11 days 20 hours 21 minutes

• ADF-B 9 days 17 hours 53 minutes

*This time reflects only the duration in which the instrument was powered through the

particular RIU. The RIU remains active (i.e., powered on) even when BATSE is powered off.
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Thedatain Table3.116wereconstructedfrom theBATSEthermalvacuumtestinstrument
notebook.Eachof thenumbersin thetableis accurateto within 5%of thetruepower-ontime.
Distribution of power-ontimebetweenredundantcomponentsis nearly50% for eachunit. TheRIU
remains"active,"or poweredondespitethefact thattheBATSEhardwaremaybeonor off. The
timeslistedfor theRIUsrepresentonly thetimeswhenBATSE waspoweredon. For eachof the
RIUs,their actualpower-ontime was substantially longer. At any given time during the entire T/V

test, one of the two units was active. Table 3.117 displays the as-run configuration of the BATSE

instrument for each portion of the thermal vacuum test.
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Table3.117. BATSE As-RunInstrumentConfiguration-GROThermalVacuumTest
T-V Phase Power RIU CCF ADF Relays Fit. Htrs. STSHtrs.
TC #1 - Rise A A A A Primary Prmy- EN External

Red - OFF

TC #1 - Sink A A A A Primary Prmy - EN External
Red - OFF

TC #2 - Rise A A A A Primary Prmy - EN External
Red - OFF

TC #2 - Sink A B B B Backup Prmy - OFF External
Red - EN

TC #3 - Rise B B B B Backup Pn_y - OFF External
Red - EN

TC #3 - Sink B A B B Backup Prmy - EN External

Red - OFF

TC #4 - Rise A A B A Primary Prmy - OFF External
Red - OFF

Hot Fctl. A/B A/B A A Primary Prmy - OFF External
Red - OFF

TC #4 - Sink B B A A Primary Prmy - OFF External
Red - OFF

Cold Fcfl. A/B A/B B B Backup Prmy - OFF External
Red - OFF

Heater Check B A/B A B Primary Prmy - OFF External
Red - OFF

STS Htr. Check A A B A Primary Prmy - OFF AESE
Red - EN

Rise to Amb. A A B A Primary Prmy - EN External
Red - OFF

Ambient Test A A A A Primary Prmy - OFF External
Red - OFF

+HV

OFF

OFF

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON
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(2) Pulsar Clock Frequency Calibration

The GRO thermal vacuum test provided an opportunity to quantitatively determine the

behavior of the BATSE pulsar clocks with respect to the spacecraft clock as a function of tempera-

ture. Measurements of the frequency fractional difference between the clocks were obtained at

numerous temperatures between -5 °C and 45 °C.
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Figure 3.69. BATSE CCF-A Pulsar Clock Calibration

Frequency Fractional Difference vs. Temperature.
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Figure 3.70. BATSE CCF-B Pulsar Clock Calibration

Frequency Fractional Difference vs. Temperature.

The two figures in this section display the correlation in a visual manner. The fractional difference in

clock rates is nearly a linear function of the temperature. The slope of this linear relation is virtually

the same for both of the CCF board clocks, with an offset of approximately 7 °C between them. At a

given temperature, the CCF-A clock runs slightly slower than the CCF-B clock. CCF-A operates at

the same rate as the spacecraft clock near a temperature of 37 °C. For CCF-B, this condition occurs

at a slightly higher temperature, near 45 °C.
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(3) Anomalies

(a) Detector Module B4 Odd-Even Effect

During the fourth thermal cycle, the HER spectrum obtained from detector

module B4 displayed an anomaly in the uppermost portion of the spectrum. The anomaly is

characterized by the appearance of an alternating excess and depletion of counts in successive

compressed-gain channels of the uppermost quadrant. The number of counts in a given channel thus

appears to depend on whether the channel is an odd- or even-numbered channel. An "average"

background, drawn through these odd-even data points, results in a smooth, continuous, normal

background level in this quadrant. Because this appears only in the uppermost quadrant of the HER

spectrum, the source of the anomaly is known to reside inside the CEU and is most likely a differen-

tial non-linearity in the sorting of MQT pulses from the detector. All spectral gain compression is

done after the signals leave the detector module. Figure 3.71 shows a spectrum from the thermal

vacuum test displaying the odd-even effect.
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Figure 3.71. BATSE B4 HER Spectrum Displaying Odd-Even Effect.
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This behaviorwasnoticedprior to the GRO thermal vacuum test and was identified at the

pre-test review as a possible occurrence. The BATSE team has done a large amount of investigation

into the problem and determined several constraints. First, no counts are being lost from the HER

integration. A comparison of background spectra closely spaced in time indicates that the counting

rate is the same with and without the odd-even effect. At most, counts are being shifted one channel

to the left or to the right. Second, no other BATSE detector (LAD or SD) has displayed this problem.

Even on detector module B4, this anomaly cannot be initiated on command. Third, the amount by

which these counts are displaced (one or two channels) is less than the intrinsic resolution of the

detector. During normal operations and data analysis, adjacent channels in this region will most

likely be summed together, effectively eliminating the anomaly and causing minimal impact to

science operations. The BATSE team has decided that this anomaly is of no impact or constraint to

flight.

(b) Detector B 1 CPD Overcun'ent Anomaly

In light of the difficulties seen during the BATSE system-level thermal vacuum

test, the BATSE team waited for 72 hours at vacuum prior to powering the +HV supplies on the flight

hardware. As mentioned previously in this section, all 40 +HV supplies were powered without

incident. After nearly 24 hours of continuous operations under vacuum conditions, the CPD on

detector module B 1 tripped into overcurrent protection as a result of +HV breakdown. This occurred

at 07:30 of July 11. Under direction from Dr. G. J. Fishman, BATSE Principal Investigator, the CPD

was immediately powered off, and remained that way until 09:30 on July 18. After re-establishing

power, the CPD continued to operate normally throughout the remainder of the test. A total time

exceeding 8 days of operation in vacuum conditions was logged without incident. The apparent

source of the anomaly was an outgassing problem at a connector or remote +HV circuit location. To

previent a similar occurrence on-orbit, the BATSE team will wait for a period exceeding 5 days at

vacuum prior to powering this +HV supply.

(c) Detector Module B7 SFAST3 Anomaly

The problem seen previously with the SFAST3 discriminator on B7 appeared

again during the cold soak of the GRO thermal vacuum test. The discriminator returned to normal

operations during the warming transition, near a temperature of 4 °C. As discussed in section III.D.4

this problem was isolated to the receiving circuitry at the CEU, on port #7, where module B7 is

connected. This anomaly is characterized by a loss of the integral nature of the SFAST3

discriminator. Counts can appear in this discriminator; however, they are less than those of the

SFAST4 channel above. The non-integral nature can be explained by a partial failure of the

discriminator over the 2.048-second integration time in which it counts. The amount of information

lost because of this failure is small because of the integral discriminators above and below in energy

(SFAST4 and SFAST2). In 1988, the BATSE team decided that this anomaly was of minimal impact

to science operations. The re-appearance of the SFAST3 problem in this test did not change the

BATSE team's position.
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(d) CPD +HV Current Oscillation

During the cold-case soak, the +HV currents on several of the BATSE CPDs displayed a slow

oscillatory behavior. The oscillation was approximately 6 I.tA in magnitude about the nominal value.

This problem went away during the temperature rise to ambient conditions. During the time when the

anomaly is present, the voltages associated with the changing currents are well regulated. The

counting rate on the associated CPDs are also remarkably steady. The regulation circuits on the

HVPS cards are designed for the load of the 12.7-cm PMTs of the LAD and SD. Under these

circumstances, the regulation of a 5.08-cm PMT is more difficult because of the different load

presented by the smaller tube. The steady counting rate shows that the oscillation has no impact on

the science operations of BATSE. The voltage is also well regulated during these times.

Consequently, the BATSE team has taken the position that this condition is not one which impacts

operations of BATSE, and it will not be remedied.

(e) Separation of B6 Thermal Blanket

During the GRO thermal vacuum test, the thermal blanket on detector module B6

suffered a partial separation of the aluminized Teflon front face from the Kapton surface underneath.

This was caused by the pressure from trapped air under the aluminized Teflon surface exerting an

outward force on the blanket. This blanket was present during the thermal vacuum test at MSFC;

however, no sign of delamination was present then. The B6 blanket was repaired by removing the

delaminated portion of the aluminized Teflon. This represented approximately two-thirds of the total

area and was limited to the upper portion of the blanket. Following the removal, residual bonding

material was cleansed from the Kapton with successive applications of tolulene and isopropyl

alcohol. Next, a grounding strap was fashioned, threaded through the blanket, and applied to the

inner VDA side of a new aluminized Teflon patch. Approximately 19 cm 2 of 0.005" aluminum tape

and 2 oz of eccobond conductive epoxy were used to fasten this grounding strap. A measure of the

resistance between the VDA and the end of the ground strap yielded a measurement less than 5

Ohms. Following the ground-strap application, successive rows of 2.54 cm width transfer tape were

applied directly on to the Kapton portion of the blanket from which the delamination occurred. The

aluminized Teflon patch was fastened to the blanket with this transfer tape, and approximately 15

small stitches were applied to the perimeter of the blanket to hold this layer in place.

Photographs of this repair operation were taken and are on file in the BATSE data library.

The operation was performed with the thermal blanket removed from the spacecraft. Upon

installation, the new ground strap was fastened to the detector module structure. The repair was

performed by John Horack and Mr. Steve Holcombe, TRW's prime thermal technician on the GRO.

When the GRO arrived at the Kennedy Space Center, the other seven detector module blankets

received some re-work to prevent debonding of the aluminized Teflon once the GRO was on-orbit.

This operation is descn_bed in section III.G.2.
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13. GRO Propulsion System Pressurization Test

Following removal of the GRO from the thermal vacuum chamber, the spacecraft was taken to

the acoustics test facility for a flight-pressurization test of the propulsion system. BATSE did not

require any special preparations or configurations for this test. However, following the completion of

the test on August 28, 1989, the propulsion system was loaded with a radioactive tracer gas

containing 40 mCi of the isotope Krypton 85. The tracer gas would aid in the determination of any

leaks which might be present in the propulsion system following the thermal vacuum test. Krypton

85 is a gamma ray emitting isotope, with a line emission at 514 keV and a 10.74 year half-life.

Bremsstrahlung radiation produced in the interaction between beta particles and the fuel tanks added

significantly to the amount of detected radiation. Consequently, all BATSE spectra taken between

August 28 and September 6 display varying amounts of Kr 85 emission in the background. The

propulsion system was repeatedly flushed and back-filled to remove the tracer gas. The removal of

the gas required many iterations of this process. Any reader interested in utilizing BATSE data taken

from these times should be cautioned of the contamination in the background spectra from the

propulsion system. Data obtained after September 6 contain virtually no trace of the Kr 85 emission.

14. BATSE SFAST3 and SFAST4 Energy Threshold Calibration

The two SD discriminators SFAST3 and SFAST4 are located above the energy range of the SD

MQT, and consequently cannot be subjected to a direct measurement of their energy threshold.

section II.F of this document describes the various discriminators and their relationships to the

BATSE data types. The energy threshold of these discriminators is an important piece of information

for the understanding of BATSE data. Consequently, a measurement of these thresholds was made

during the period following the GRO thermal vacuum test.

BATSE Flight-Spare SD

I +HVSupply

Linear

Amplifier

Nuclear
Data
ADC

ND-76 PHA
With Disk Drive

Figure 3.72. BATSE SFAST3 and SFAST4 Threshold Measurement - Test Configuration.
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A BATSE SD flight spare was connected to a controllable +HV supply and a linear amplifier

as shown in Figure 3.72. The output of the linear amplifier was sent to an analog-to-digital converter,

which served as the input to a Nuclear Data pulse height analyzer. The channel-to-energy correlation

was determined using a Co 60 isotope and a Th 228 isotope with known emission lines. After this

relation was known, the linear amplifier multiplication factor was reduced to extend the spectrum to

approximately 50 MeV in energy. The channel-to-energy correlation of the new spectrum was found

by multiplication of the old value by the amount of reduction in gain at the linear amplifier. A

60,000-second background integration was obtained with the flight spare in the same orientation as

the SDs on the GRO. One spectrum was obtained for the upper detectors and one for the lower
detectors.

With the flight detectors set at 4X gain, a measurement of the SFAST3 and SFAST4 rates

were obtained. These rates were subsequently multipled by 60,000 to determine the number of

counts in each discriminator over this time period. After these numbers were obtained, the flight

spare spectrum was examined. The threshold of the SFAST discriminators is found by determining

the channel where the total number of counts above that energy matches the calculated numbers from

the flight detectors. Once that channel is found in the spectrum, the channel-to-energy conversion

yields the energy. The results for each of the eight flight SDs are presented in Table 3.118.

Table 3.118. BATSE SFAST3 and SFAST4 Measured Energy Thresholds in MeV

Detector Module SFAST3 Energy (MeV) SFAST4 Energy (MeV)
B0 8.02 12.35

B 1 8.29 13.34

B2 7.79 11.70

B3 8.16 12.94

B4 7.79 11.98

B5 8.74 14.11

B6 7.97 12.91

B7 8.79 14.11

Examination of Table 3.118 reveals a disparity between the upper (+Z, even numbers) and

lower detectors (-Z, odd numbers). Each of the upper detectors show a lower energy threshold than

the lower SDs. This is a direct result of the difference in counting rate above and below the

spacecraft. Those detectors on the top see a larger incident rate than those on the bottom. Although

two separate flight spare spectra were obtained, it is extremely difficult to replicate the shielding

environment produced by the GRO, and seen by the flight SDs on the bottom of the spacecraft. The

rates of the -Z SDs are low compared to that of the flight spare spectrum taken in the same

orientation. This low rate produces a higher channel number in the calibration spectrum, and

consequently a higher computed energy for the SFAST threshold.
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15. InstrumentData Run #2

The first testing of BATSE flight hardware to follow the GRO thermal vacuum test was accom-

plished during the second instrument data run. Strictly speaking, this operation was both a verifica-

tion of functionality following the T/V test, and an opportunity to obtain calibration data from the

Instrument. Beginning on September 12, 1989, BATSE was fully exercised, through the standard

series of tests provided in Table 3.119. The instrument data run was executed in two portions, with a

center time interval devoted to POCC testing, CTV/TDRSS testing, and CADH exercises. The

second portion of the instrument data run was used for tests requiring radioactive isotopes. By the

time of part two, the amount of Kr 85 in the propulsion system had been reduced to a level below the

instruments' detectability. For the first portion of the testing, the test conductors were John Horack

and Pat Lestrade.

Table 3.119.

• TP-200

• TP-1 I0

° TP-105

• TP-170

• TP-171

• TP- 192

BATSE Testing Sequence for Instrument Data Run #2
-- Power control functional

-- Power-up and aliveness test
-- Detector module test

-- CPD calibration

-- CPD/LAD coincidence run

-- Pulsar clock frequency calibration

• TP-190 -- Pulsar data test (two options)

• TP-180 -- Burst data test (three options)

• BATSE special pulsar data type collections

• TP- 125 -- Background collection procedure

• BATSE LAD and SD PMT balance and gain setting procedure

• TP-140 -- Long calibration

• TP-140A -- BATSE high counting rate measurement test

In addition to the previously performed operations, two new tests were added, and a PMT

balance operation was exercised. Several spacecraft activities were performed in parallel with these

tests, including POCC end-to-end test #2, during which BATSE remained powered through the

night.

TP-200 was performed first to verify that all BATSE interfaces were healthy following the

GRO thermal vacuum test. All BATSE interfaces and power controls were verified to be fully

functional. Following a power-up and aliveness test, TP-105 was performed on the BATSE

hardware. This test was important for several reasons. TP-105 offered the first comprehensive check

of the detector modules following the environmental test program. The test also included a thorough
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check of all+HV supplycommand bits.Through thistest,each of the40 +HV supplieson the

instrumentwere verifiedto be fullyoperationaland capable of normal functioningwhile subjectedto

vacuum conditions.

TP-170 was the next test performed during the data run. In the customary manner for this test,

measurements of the CPD rates were obtained at a number of voltage settings. These results are

presented in Table 3.120. Comparison of the odd-numbered (-Z detectors) CPD rates at the higher

voltage settings with data obtained previously shows a marked disparity. As the voltage is decreased

(CPDHVn increases), the computed rates fall into agreement with previous results. This indicates

that most of the excess rate is at low energy. The increase in the counting rate for instrument data run

#2 is a direct result of the Kr 85 gas contained in the propulsion system, located on the bottom of the

spacecraft. The computed rates in the CPD on B0, B2, B4, and B6 are all in reasonable agreement

with previous results. CPDHV8 rates are not available because of a problem with the IGSE at the

time of testing. Data obtained in this exercise are on file in the BATSE library.

Table 3.120. TP-170 CPD Rates at CPDHVn Voltage Settings

Instrument Data Run #2 -- September 1989

CPD Count Rate at Various +HV Command File Settings

Detector Module

B0 B1 B2 B3 B4 B5 B6 B7

CPDHV1 79.5 121.7 97.3 169.3 84.5 113.0 92.5 107.5

CPDHV2 66.5 76.4 76.3 90.3 70.6 85.8 75.0 84.2

CPDHV3 62.9 69.8 72.1 78.9 66.0 81.7 71.9 79.1

CPDHV4 60.5 64.7 67.3 70.1 64.5 75.3 68.3 73.2

CPDHV5 58.1 58.7 64.3 63.8 61.1 71.1 65.5 70.1

CPDHV6 55.2 55.1 60.5 60.2 59.0 66.9 62.0 65.1

CPDHV7 50.5 48.8 54.0 52.9 53.1 58.4 55.9 56.7

CPDHV8 --Not Available--

The coincidence counting rate, obtained in TP-171, is in close agreement with previous values

obtained during the first data run and the OFT. Table 3.121 displays the coincident rate computed for

each of the eight detector modules. The modules again display the familiar top-to-bottom anisotropy

in the rejection rate, indicative of the incident rate difference on the top of the spacecraft compared to

the bottom for higher energies.
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Table3.121.DetectorModuleCoincidenceCountingRatefrom TP-171
BATSEInstrumentDataRun#2 -- September1989

DetectorModule Coincidence Rate

B0 20.52

B1 17.01

B2 20.66

B3 17.55

B4 20.89

B5 17.80

B6 21.06

B7 17.62

The next procedure the BATSE team performed was TP- 192, the pulsar clock frequency

calibration. This test was performed only on CCF-A, and yielded a frequency fractional difference of

5.75 x 10 -6. This result is entirely consistent with the values obtained from the GRO thermal vacuum

test for a temperature near 25 °C. CCF-B was not tested during this operation.

Following the pulsar clock frequency calibration, TP-180 and TP-190 were performed.

TP- 180, the burst data test, was executed in all three possible configurations with no anomalies.

Likewise, the pulsar data test was performed without difficulties in both of its possible configura-

tions. Pulsar data testing continued with the production of each of the BATSE pulsar data types.

TP-190 has the disadvantage that it only produces one form of pulsar data from each board, namely,

PSRFULA and PSRFULB. For the test of mission operations and data analysis software, the BATSE

team required a thorough set of each pulsar data type. During this test, each of the pulsar data types

were generated using both A and B boards. The LED was utilized for these operations at a frequency

of I00 Hz and various amplitudes. Consequently, the energy channel into which the LED fell was

variable. Furthermore, each of the data types exercised a different detector module configuration and

location in the pulsar parameter table. Table 3.122 contains the various configurations in which these
data were obtained.
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Table 3.122. BATSE Configurations for Pulsar Data Accumulations

Instrument Data Run #2

Data Type Detector Modules PSR No. NSCANS EBASE LED Rate (Hz)
PSRFULA B3, B5

PSRFULB B0

PSRSELA B7

PSRSELB B2

PSRSUMA B 1, B6

PSRSUMB B4

PSR16A B0, B4, B7

PSR16B B2, B4, B5, B6

1 1000 0 100

2 500 0 100

3 500 12 100

4 500 10 100

5 500 0 100

6 500 0 100

7 500 0 100

1 500 0 100

These data were archived onto tape and are available for inspection in the BATSE data

library. For the testing of mission operations and data analysis software, these data were made into a

daily data set for analysis in the MOPS environment.

The first portion of the instrument data run concluded on September 19, 1989, with long-

duration background integrations utilizing TP-125. For this test, the burst trigger thresholds (T1, T2,

and T3) were lowered to 4.25, 3.75, and 3.5 o, respectively, so that EXFLAGS could be obtained at a

later date. Integrations of 65-minute duration were obtained with the SDs at 4X and 1X gain. These

spectra are on file in the BATSE library. From these data, BATSE was able to verify that the level of

Kr 85 in the propulsion system had diminished substantially and that it no longer constituted a

significant portion of the detected background radiation.

Instrument data run testing resumed on October 6, 1989. In the preceding time period,

BATSE participated in the second GRO-POCC end-to-end test. The instrument was powered to

provide flight-like data (including gamma ray burst and solar flare event simulations) for the POCC

to process. BATSE operations in Huntsville were tested through the receipt and manipulation of the

data from PACOR. No BATSE flight hardware tests or calibrations were performed.

The second portion of the data run commenced with a comprehensive PMT balance and gain

adjust. A 5 t.tCi isotope of Cs 137 was placed at a distance of 76.2 cm in front of the LAD on-axis,

and each of the PMTs were adjusted according to the desired location of the 662-keV photopeak.

The LADs were balanced to provide a dispersion of 5 keV/linear channel. The SD voltages were

established at three different dispersions: 1 keV/linear channel (4X gain), 4 keV/linear channel (1X

gain), and 10 keV/linear channel (0.4X gain). Table 3.123 contains the final PMT settings for each of

the desired gains.
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Table3.123. BATSE +HV Values Following PMT Balance - October 1989
Instrument Data Run #2

High Voltage Setting for Desired Gain
Detector Module PMT-A PMT-B PMT-C SD 4X SD 1X SD 0.4X

B0 1506 1506 1580 1559 1260 1110

B1 1655 1640 1648 1612 1295 1138

B2 1551 1527 1581 1543 1260 1122

B3 1609 1609 1593 1455 1181 1051

B4 1618 1649 1684 1511 1228 1079

B5 1672 1641 1674 1410 1150 1012

B6 1481 1387 1414 1512 1233 1083

B7 1684 1653 1711 1630 1323 1157

Following the completion of the PMT balance and gain setting operation, 5-minute integra-

tions were performed, accumulating spectra from all detectors. These spectra are on file in the

BATSE library and are available for inspection.

The next operation requiring the use of radioactive isotopes was TP-140, the long calibration.

Bob Wilson and Geoff Pendleton replaced Pat Lestrade for these tests, which required three test

conductors. The geometrical arrangement of the isotopes used in this operation is identical to that of

the fLrSt instrument data run and is fully described in section III.F.5. With each isotope in place, a

32-minute integration is obtained and stored to disk. Single PMT spectra were again obtained with

Cs 137 isotopes deployed in front of each detector module. Integrations were obtained in this con-

figuration while the +HV was set to values of nominal, and nominal +100 V. The gain exponents

were then calculated according to equation (3.3). Table 3.124 contains the results from that
calculation.

Table 3.124. BATSE LAD PMT Gain Exponents Determined from

TP-140 Long Calibration - Instrument Data Run #2

Gain Exponent for PMT
Detector Module A B C

B0 6.7 6.2 5.6

B1 5.7 6.1 6.1

B2 6.4 7.0 6.0

B3 5.8 7.1 6.8

B4 4.6 5.9 5.8

B5 5.2 5.8 5.5

B6 6.9 6.8 6.8

B7 5.3 6.0 5.4
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Comparison of these values with those in section III.F.5 from the fast instrument data run

shows a difference in gain exponents for some PMTs that is larger than one might expect. The

voltage changes required to establish new gains were not especially large, or unpredictable, indicating

that the PMT behavior over time is rather stable. All other indications of PMT behavior, especially

the derived spectra, show well-behaved PMTs. The reason for the discrepancy in the two measure-

ments is not well understood; however, the difference in the measured gain exponent is not indicative

of a problem with the PMTs. For the initial version of mission operations and data analysis software,

the averages of the two measurements are used.

TP- 140 again provided a mapping of the LED peak location in HER channel space for each of

the 16 possible command values. The locations of the LED were expected to change slightly

following the rebalancing operation; and, in fact, several LEDs displayed a shift of one or two

channels. Table 3.125 contains the results of this mapping.

Table 3.125. HER Channel Location of LED Peak for Associated Amplitudes

from TP-140 -- Long Calibration, Instrument Data Run #2
HER Channel Location of LED for Module

LED Hex Amplitude B0 B 1 B2 B3 B4 B5 B6 B7

3 Off Off Off Off Off Off Off Off

4 13 27 15 22 20 29.5 24 23

5 30 63 34 51 45 67 55 49

6 49 83 56.5 74 68.5 89 77 71

7 66 97 72 91 83 100 94 86

8 75.5 102 84 98 96 105 100 96

9 85 108 95 103 100 111.5 104 100

A 95.5 112.5 98 107 103 118 109 104

B 98 117.5 101 111 107 123 113 107

C 100 122 104 115 110.5 127 117.5 111

D 102 125 107 119 114 127 122 114

E 104 126 109 123 118 127 125 117

F 106 126 112 123 121 127 126 121

A new test procedure was performed during the second instrument data run. TP-140A was

performed to obtain measurements of the hardware performance during conditions of a high incident
counting rate. The test results allowed the BATSE team to better ascertain the dead time in various

branches of BATSE data, and to determine behavior such as the amount of gain shift caused by a high

counting rate. The results of the data analysis from these and other similar operations are presented in

the BATSE calibration summary document.
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TheGRO spacecraft was moved to the center of the R7A high-bay, allowing for a minimum

of 3.7 meters of floor space in front of each module. For each of the detector modules, three locations

were identified on the floor of the high-bay. These locations were established so that the placement

of an isotope above these floor spots would yield a horizontal distance of 0.9, 1.8, and 3.7 meters to

the center of the LAD. Each module location was unique, and the detector modules were tested

individually.

During this test, the CEU was commanded to an alternate data output schedule, involving

HER, SHER, and PSRFULA. The PSRFULA packets contained pulsar data with a folding period of

I0 ms and included only the detector module under test. The LED was powered on at a rate of 1 kHz,

with an amplitude sufficiently high that the peak equivalent energy exceeded 662 keV. The

corresponding MER/PSR energy channels were recorded, and rates from the four FASTn

discriminators were obtained. After turning off the LED, these measurements were repeated.

A small (1 i.tCi) isotope of Co 60 was then fastened to the support stand in front of the module

under test at the standard TP-140 distance. The LED on-off operation described in the preceding

paragraph was then repeated. Subsequent repetitions of this process were executed with a 5 mCi Cs

137 isotope placed at the 3.7, 1.8, and 0.9 meter distances marked on the floor. The final operation

on the detector module was to obtain CPD counting rates as a function of +HV values, similar to what

is done in TP-170. In this case, however, the Co 60 isotope is in place, and the Cs 137 isotope is
located at the 0.9-meter distance.

This process was repeated for each of the detector modules, and the various dead times were

calculated. Data acquisition for TP-140A took place on October 9-10, 1989, with Bob Wilson, Geoff

Pendleton, and John Horack performing the procedure.

16. Final Optical Alignment Measurements and Results

Section III.B. 1.c describes the internal portion of the BATSE optical alignment procedure,

TPS-28. The data derived from this test are the pointing vectors of the LADs in a coordinate system

referenced onto the optical cube. The measurements taken at TRW built upon these data, eventually

allowing one to calculate the pointing vectors in the coordinate space of the GRO. After each of the

modules were installed onto the spacecraft, measurements of the position of the optical alignment

cubes were made several times. These measurements determined the location of the cube-face

normal vectors in the GRO coordinate frame. For a perfectly constructed cube, these vectors are

simply the basis vectors of the system in which the TPS-28 data are described. However, each of the

optical fixtures' front-to-back relationship was not identical. Consequently, measurements of the

cube orientation with respect to the rear fiat were required. After this relationship was found, the

LAD pointing vectors could be fully described in the GRO coordinate space. Table 3.126 contains

the final calculated results of the eight LAD pointing vectors in the GRO coordinate (X,Y,Z) space.

These vectors contain compensation factors for the relaxation of the spacecraft outside of the 1-g

environment in which the measurements were made.
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Table 3.126. Final Normalized LAD Pointing Vectors in GRO Coordinates
Detector Module X Y Z

B0 0.57852 0.57475 0.57878

B 1 0.57683 0.57690 -0.57831

B2 0.57686 -0.57803 0.57715

B3 0.57726 -0.57603 -0.57875

B4 -0.57775 0.57524 0.57906

B5 -0.57669 0.57947 -0.57589

B6 -0.57597 -0.57645 0.5796

B7 -0.57701 -0.57772 -0.57732

For all eight Detector Modules, the "ideal" vector components would have absolute values

equal to 1/'_, or 0.57735. The dot-product of the measured pointing vector with the "ideal" pointing

vector is a scalar measure of the pointing error. The angle which one obtains is the half-angle of a

cone generated by rotating the true pointing vector about the ideal pointing vector. The results of this

operation are given in Table 3.127.

Table 3.127. BATSE Pointing Vector Offset Angles from "Ideal" Direction

Detector Module Angular Offset (arc min)
B0 11.0

B1 4.1

B2 3.0

B3 6.6

B4 9.4

B5 9.1

B6 9.6

B7 1.7

BATSE has an absolute pointing error requirement of 1° with a pointing knowledge require-
ment of 0.1 °. For this last set of November 1989 measurements, all BATSE detector modules meet

these requirements. TRW has stated their measurement accuracy to be 20 arc seconds relative to the

GRO star-trackers. The data in the tables above, however, have a larger uncertainty, estimated to be

approximately 1.5 arc minutes. The larger uncertainty is primarily attributable to the method of

determining the internal pointing vector, described in section III.B. 1.c.
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17. ObservatoryFunctional Test #2

The final Observatory functional test at TRW began on October 30, 1989. No configuration

changes had been made to the BATSE flight hardware between the previous instrument data run and

this functional test. This was the final full-scale test of the BATSE hardware prior to shipment of the

spacecraft to KSC. The results of these tests remained with the flight hardware unu3 launch, at which

time they were filed into the BATSE data library. Because these tests produced nominal results,

nearly identical to those of previous tests, only a brief mention of each test will be included here.

Those readers interested in a more in-depth look at this data are encouraged to look at the results

contained in the BATSE data library.

TP-105, the detector module test, was performed after a normal power-on sequence during the

morning of October 30. Each of the detector module functions were checked and verified, including

the functionality of each of the +HV command bits for all 40 supplies. Each module was declared

fully functional following the completion of TP-105.

All options of TP- 180, the burst data test, and TP- 190, the pulsar data test, were executed

without anomaly. All cross-strapping configurations of the burst trigger and solar flare trigger signals

were exercised in coordination with the other three instruments. TP-170 and TP-171 were performed,

and each yielded results consistent with previous tests. TP-200, the power control functional test,

was performed without anomaly, and each of the BATSE flight heater circuits were verified.

Cross-strapping of heater and instrument power was also exercised. TP-192, the pulsar clock fre-

quency calibration, was performed on CCF-A, yielding a frequency fractional difference of 6.35 x

10 -6. All internal cross-strapping capabilities were performed, including ADF, CCF, and relay

cross-strapping. The BATSE portion of the Observatory functional test concluded on November 2,

1989, with the accumulation of a 100-minute background integrations using TP-125. The results of

all testing were successful.

18. GRO Pre-Shipment Abbreviated Functional

The final testing performed on the BATSE instrument in California was done during the pre-

shipment abbreviated functional. These tests began on December 6, 1989, and lasted only 2 days.

During this shortened period of testing, the BATSE team established simple functionality of the

instrument without testing in great detail. Table 3.128 lists the tests performed during this operation.
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Table3.128. BATSETestsPerformedDuringGROPre-Shipment
AbbreviatedFunctional

• BATSE flight heater power and cross-strapping tests
• TP-200 -- Power control functional test

• TP- 110 -- Power-up and aliveness test
• TP-180 -- Burst data test

• TP-190 -- Pulsar data test

° TP- 125 -- Background collection

• BATSE instrument power cross-strapping tests

The pre-shipment testing took place in two phases. The first portion of the test was done to

verify fundamental operations of the instrument, including relay functionality, heater functionality,

and cross-strapping configurations. A comprehensive heater power and cross-snapping test, in

addition to TP-200, verified these fundamental functions. The second portion of the testing involved

verification of the second-level operations of BATSE, including module +HV, CEU data operations,

and collection of spectra. To accomplish these objectives, TP-110, TP-180, and TP-190 were per-

formed. The final testing performed in California concluded on the afternoon of December 7, with a

collection of background spectra using TP-125. Following these tests, all of the instrument ground

support equipment was packed, and BATSE was ready for shipment to the Kennedy Space Center.

Table 3.129 contains the power-on time for all activities at TRW.

Table 3.129. BATSE Powered Operations Total Time at TRW
BATSE Power On Time

Non Thermal Vacuum

Thermal Vacuum

Total at TRW

Total to date

600 hours

518 hours

1,118 hours

2,154 hours

19. Observatory Shipment to KSC

Preparations for shipping the Gamma Ray Observatory were made throughout the entire month

of January 1990. The GRO was placed into a specially-made shipping container for the journey to

the launch site. The shipping container possessed a complete environmental control system to

regulate the temperature and humidity of the spacecraft environment during transit. On the evening

of February 7, 1989, the GRO was transported in the shipping container a few miles north of the

TRW facility to the Los Angeles International Airport. At the airport, the spacecraft was loaded onto

an Air Force C5 military transport plane. The trailer on which the spacecraft was taken to the airport
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wasalsoplacedon the plane, along with numerous crates of spacecraft GSE. On the evening of

February 8, 1990, the spacecraft left Los Angeles on the C5 for an overnight flight to the Kennedy

Space Center. The C5 aircraft landed at KSC's Shuttle Landing Facility in the early morning hours of

February 9.

G. BATSE Testing at the Kennedy Space Center

1. KSC Observatory Functional #1

Nearly 1 month was required to prepare the GRO for testing in the Payload Hazardous Servicing

Facility (PHSF) at the Kennedy Space Center. GRO was the first spacecraft to utilize this facility.

Following transport from the Shuttle Landing Facility, the spacecraft was removed from the shipping

container, placed onto the support structure, and mechanical reconfiguring began. The Observatory

was finally ready for full-scale testing on March 2, 1990, when the first OFT at KSC commenced.

BATSE testing was quite extensive during this period. Table 3.130 lists those tests performed

during the first OFT at KSC.

Table 3.130. BATSE Testing Sequence for First KSC Observatory Functional Test

• TP-100- Engineering and interface verification test
• TP-200 -- Power control functional test

• TP-I10 -- Power-up and aliveness test

• TP- 125 --Background collection procedure

• TP- 188 --Coordinated burst and solar flare trigger signal test

• TP-190-- Pulsar data test (options A and B)

• BATSE flight heater power and cross-swapping verification

• OBC South Atlantic anomaly sequence verification

• TP-105 -- Detector module test

• Power cross-swapping tests
• TP-170 -- CPD calibration

• TP-171 -- CPD/LAD coincidence tests

• TP-180 -- Burst data test (option A)

• TP-192 -- Pulsar clock frequency calibration (both CCFs)

• TP-180 -- Burst data test (options B and C)

• TP-125 -- Background collection procedure with filament sources

• GRO power profile testing
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This sequenceof testingrequiredfour extendedshiftsto complete,endingon March 9, 1990.

TP- 100 was performed ftrst to verify that no damage had occurred to the BATSE hardware during

transit. This procedure would have found any broken wire, separated interfaces, cross-talk on com-

mand lines, or anomalous detector module operations if these were present. No anomalies were

discovered furing TP-100. All command bits of the 40 +HV supplies were functional, and all func-

tions of the BATSE hardware were verified at the engineering level.

TP-200 was performed immediately after the engineering test to verify full control of all

power relays and related functions. In addition, relay status indications of GRO engineering

telemetry were checked through both RIUs. This test uncovered a previously unseen anomaly in the

GRO engineering telemetry. During TP-200, the BATSE test conductor cycles power to each of the

CEU boards, and also powers them through both relay configurations. Engineering telemetry from

BATSE and the spacecraft is verified for all four possible relay configurations. During the check of

STFF./SHER memory boards (42A30936), the GRO telemetry failed to report the proper state of the

board when it was in the primary-off configuration. BATSE telemetry simultaneously verified the

proper state of the board. The BATSE telemetry measures the current flowing through the power

relay to determine the status, while the GRO engineering telemetry has a separate relay circuit in the

CEU to perform a measurement of the board status. Three attempts were made to put the GRO

measurement into the proper status, and all failed. All other GRO telemetry indicators functioned

normally, including those for the other Sq'q'F_SHER board. The GRO indicator failed only when the

STTE/SHER board was in the primary-off state. The other three states are correctly reported by the

spacecraft sensor circuit. The behavior of this status indication is identical through both of the RIUs,

indicating that the problem is in the sensor itself, and not in the telemetry or transmission of the

sensor information. The cause of the anomaly is an open-failure, or a poor contact in the GRO

primary status indication relay. This relay is not the one which supplies power to the board and in no

way affects the performance of the hardware. To prevent any further possible damage to the relay

circuit or to BATSE hardware, the power relays to this board were not cycled during any further

testing prior to launch.

The formal verification of the OBC South Atlantic Anomaly (SAA) sequence was a new

addition to the Observatory functional test. In previous end-to-end tests, the spacecraft was operated

with a simulated ephemeris, and these commands were executed by the OBC as part of a normal

"orbit." During the times of passage through the SAA, BATSE requires that the +HV on the instru-

ment be turned off to prevent damage from the high level of charged particles in this portion of the

orbit. The cycling of the +HV is handled by an automatic sequence stored in the OBC and is

activated at the predicted times of entry and exit from the SAA. Upon entry to the SAA, the OBC

powers off the +HV and disables burst triggering. This operation requires two serial commands;

however, the sequence contains four commands to account for either CCF being operational. When

the SAA is exited, the +HV is repowered, and burst triggering is again enabled. This test was

performed without anomaly.

All of the BATSE flight heaters were powered in each of the possible configurations without

anomaly, and the full complement of instrument cross-strapping configurations were successfully
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exercised.Each of the subsequent BATSE procedures were executed without anomaly. Results from

these tests remained at the Kennedy Space Center until the launch of the GRO. After this time, all

test results were placed into the BATSE data library for reference.

2. BATSE Detector Module Thermal Blanket Retaining Stitch Application

The separation of the aluminized Teflon layer from the B6 thermal blanket during the GRO

thermal vacuum test was described in section IH.F. 12.i(3)(e). This separation occurred because of

residual trapped air behind this layer exerted an outward force on the Teflon when the blanket was

placed in vacuum conditions. To prevent this type of failure on the other detector module blankets,

an application of retaining stitches was made to the other seven thermal blankets. These blankets

were modified in situ on the spacecraft.

Each of the detector modules received five stitches. One stitch was placed at each of the

bottom comers of the Teflon layer, one at the upper comer, and the remaining two along the curved

upper portion of the Teflon. Each stitch was located approximately 2 cm from the perimeter of the

aluminized Teflon layer. The knot which secured each of these stitches received a bead of epoxy to

prevent it from working loose. After the epoxy had dried, any remaining thread was trimmed away

from the stitch area. This work was performed during the f'trst week of March 1990, by TRW thermal

technician Steve Holcombe and BATSE representative John Horack. It required 2 days to complete.

A full set of photographs were taken of each module before and after the modifications were effected.

3. Instrument Special Checks

The next sequence of powered activity at KSC was performed on March 12, 1990. This test, the

instrument special checks test, allowed the four experimenters to use radioactive isotopes in testing

the flight hardware. Because the normal GRO functional test did not provide for the use of isotopes,

a special test had to be constructed. OSSE was the primary user of isotopes during this time. The

OSSE team made use of Th 228, Co 60, and Cs 137 isotopes of 200 _tCi activity during this period.

BATSE was placed into a passive, data-collecting mode, and TP-125 was performed during these

times. The primary BATSE operation during the instrument special checks involved the creation of

an artificial gamma ray burst using OSSE's Cs 137 isotope.

OSSE's source was located 366 cm in front of the GRO on the spacecraft's X-axis. The

isotope was mounted in a collimator with a 45 ° opening angle and effectively illuminated BATSE

detector modules B0-B3. The isotope was occulted, and the instrument was allowed to recompute the

new background level. After the background had been recalculated, burst triggering was enabled.

The isotope was then rapidly exposed to the spacecraft and its intensity modulated by placing a lead

plate in the path of the radiation at various frequencies. BATSE triggered a gamma ray burst event,

as expected, and data were archived. This data set was used in the test of data analysis and mission

operations software at MSFC. Data from this test are available for inspection in the BATSE data

library.
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4. End-to-End Test #3

The first major end-to-end test with the spacecraft at KSC began on March 26, 1990. Test

conductors at KSC primarily served as test monitors and as backup in the event of an anomaly.

Instrument operations were controlled from Marshall Space Flight Center and by BATSE personnel

at Goddard Space Flight Center. Instrument power was applied using commands supplied by the

flight operations team at GSFC.

ETE #3 lasted approximately 36 hours and provided the BATSE teams at MSFC and GSFC

the opportunity to test the instrument with the POCC in the link, in a similar fashion to the BATSE

on-orbit activation sequence. A normal power-up procedure was executed during the first three

TDRSS passes. During the fourth pass, spectra were obtained from the detectors and from each

individual phototube. Pass #5 allowed for a small calibration of the LLD. A triggered burst event

was planned for pass #6, and burst triggering threshold tests were performed during the seventh

TDRSS contact. The remaining contacts were used for pulsar operations and for updating the output

schedule onboard the instrument. During these times, the test crew at KSC continually monitored the

instrument operations and archived all data to tape through the BATSE IGSE. Additional

non-instrument tests were performed, such as the updating of limits files at the POCC. All data

acquired during these operations are available for inspection in the BATSE data library.

A major anomaly was conf'u'med by the BATSE team at KSC. During the instrument special

checks, a possible problem with a PMT on B5 was noted but was not confirmed because of the

operational sequence of events. During this end-to-end test, extremely high rates were seen from the

LAD on B5 shortly after the +HV was turned on. A sequential removal of power from PMT-A, -B,

and finally -C failed to remove the rates until the final PMT was turned off, indicating a possible

connection with PMT-C. Each PMT was then powered up in sequence again without further

anomaly. Cycling of the +HV appeared to "fix" the anomaly. These tubes operated normally for the

remaining 36 hours of the test.

5. B5 Troubleshooting Test #1

After confirmation of the anomaly described above, a troubleshooting test was carefully

designed to further characterize and understand the improper behavior seen on detector module B5.

The fast of these tests was performed on April 20, 1990. To begin the test, all eight detector modules

were powered on with all +HV off. Previous testing had indicated a possible connection between the

anomalous behavior and PMT-C on B5. Consequently, this PMT alone was powered into its nominal

configuration in an attempt to isolate the anomaly. After nearly 2 minutes of normal operations, the

anomaly was verified. The current on the PMT immediately jumped to 203 p.A, then returned to a

near normal value of 120.6 LtA. Rates in the fin'st three FAST discriminators from the LAD were each

in excess of 4,000 counts per second, During the time of the anomaly, rates and HKG parameters

were stored to disk and printed out.
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Approximately15 minutes after the appearance of the high rate, the PMT returned to a normal

operating condition. This result was completely unexpected. After 45 minutes of nominal

operations, the BATSE test conductor performed several steps to attempt a recreation of the

difficulty. It was thought that raising the +HV would place the PMT into a more susceptible mode,

especially if the anomaly was related to the charging of foreign material inside the PMT. Three

increments of 100 V were applied to PMT-C. At each level, the PMT was allowed to operate for 15

minutes, a sufficient time to allow the anomaly to appear. At each of the three levels, the PMT

operated normally. Following the increments of +HV, six, 100oV decrements were applied, starting

at the nominal voltage value. Again, the PMT was allowed to operate for several minutes at each
level. No anomalies were discovered.

With attempts to recreate the problem proving unsuccessful, the PMT was powered off for 40

minutes. It was believed that powering off the PMT for a period of time might allow for the

anomalous condition to re-establish itself when the PMT was powered again. PMT-C was repowered

at the end of the 40-minute period with no anomalies. After 20 minutes of normal operation, the tube

was turned off, and remained off for 1 hour. A 1-hour power-off time was also insufficient to cause

the high rates to appear when the PMT was turned back on.

Several operations were performed after the 1-hour time period failed to recreate the anomaly.

With PMT-C powered off, several operations were performed on PMT-A and -B to determine their

combined performance in the event that PMT-C was lost. The gains of the tubes were adjusted to

provide a total dispersion of 5 keV/channel in the LAD. This required voltages of 1,825 and 1,794 V

for PMT-A and -B, respectively. Resolution measurements obtained from two PMT spectra indicate

a FWHM resolution of approximately 30%-35% at 80 keV, somewhat higher than the average 28%

seen on the other LADs. This procedure required 4 hours to complete, during which time PMT-C

remained off.

The final portion of the test was a repowering of PMT-C after this extended power-off time.

Despite a 4-hour rest, the anomaly was not found to be present after 30 minutes of operation when the

PMT was repowered.

This fast troubleshooting test verified a connection between the anomaly and PMT-C.

Furthermore, the data from this test indicated that the anomaly with PMT-C could be removed by

either cycling the +HV or by allowing it to "bum itself out." Last, the minimum time required for the

PMT to be off before the anomaly would re-appear was found to be between 4 and 14 hours.

Therefore, entry and exit from the SAA would not be long enough to incite the problem.
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6. B5 TroubleshootingTest#2

Theresultsfrom thef_rsttroubleshootingexerciseprovidedsome answers to questions regarding

the anomaly but also raised more questions which required answers. This second test was performed

on March 11, 1990, in conjunction with the GRO modified functional test. To begin the test, the

CEU and detector modules were powered, and +HV remained off. This configuration duplicated that

of the previous test. PMT-C on B5 was subsequently powered to its nominal operating voltage,

where it performed normally for 4.25 minutes. At this time, the previously seen anomaly manifested

itself through a tremendous jump in the counting rate and a full-scale reading of the current

measurement. Aside from the somewhat longer period of nominal operation, this behavior was in

keeping with previous occurrences of the anomaly.

After the anomalous behavior was present, the test procedure called for several operations to

be performed. The f'trst was to place the HKG multiplexer onto the PMT-C voltage and to dwell on

this reading. As expected, the voltage was well regulated during the time of the anomaly, indicating

that the HVPS was performing normally. Second, the +HV was lowered in decrements of 200 V

until the anomaly went away or the minimum voltage was reached. The first drop of 200 V removed

the anomalous condition. After operating at nominal 200 V for 2 minutes, the voltage was again

lowered with no evidence of the anomaly. This sequence was repeated until the minimum voltage

was obtained. No indication of a problem was present at any of these levels.

When the PMT had operated at the minimum voltage for 10 minutes without incident, the

nominal voltage setting was re-established. Immediately, the anomaly was present again in the PMT.

This result was in direct contrast to previous testing, which had demonstrated that once the anomaly

was removed, it could not be re-established unless the PMT was powered off for a period of time

exceeding 10 hours.

Also during previous tests, the anomaly was seen to clear itself up after approximately 10

minutes of operation. Because of this behavior, it was decided to let the anomaly ride itself out again.

However, after nearly 40 minutes of operation, the anomaly was still present. This result was a

second major difference from previous testing. Following a caucus with parties at MSFC, the high

voltage was raised 100 V. Three minutes of operation at this higher voltage cleared up the anomaly.

Subsequent increments of 100 V were applied to the PMT, each producing normal operations.

PMT-C operated at the final value of 2,000 V for approximately 20 minutes without incident. After

incrementing the +HV, the tube was commanded back to its nominal value where it performed

without incident for the remainder of the day.

In light of these results, the BATSE team began preparation for a removal and changeout of

PMT-C on detector module B5. Several additional tests were performed during this period, including

TP-188, TP-125, a check of heater power and cross-strapping, instrument power cross-strapping, and

the BATSE portion of the GRO power profile test.
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7. BATSE PMT ChangeoutandRetest

PMT-C on detector module B5 (#112402-17) was removed from the spacecraft on June 4, 1990,

and replaced with a flight spare using BATSE-ES-62-TP-305. Mechanical test conductor Joe Ozbolt

of MSFC performed the operation with the assistance of Bob Austin, Jerry Fishman, Fred Berry, and

John Horack. Quality assurance from MSFC was represented by Bill Horn. Extensive preparation

was required before this delicate operation could be performed. Testing of the BATSE protoflight

module was done to determine the best-qualified replacement PMT. PMT-A from this module

(#112306-13) was eventually selected because of its superior performance characteristics. The

phototube had been operated under vacuum conditions on two previous occasions during protoflight

thermal vacuum tests at MSFC. A day-run of the PMT removal procedure was performed on the

protoflight module at MSFC to evaluate possible hazards or difficulties which were not foreseen

during the writing of the test procedure.

The procedure required one, 8-hour shift to completge. After the replacement PMT was

installed, an electrical verification test was performed on the PMT, using TP-105. This included

identification of the proper +HV and signal connections, in addition to PMT balancing and perform-

ance measurements. Performance of the replacement PMT was completely normal. The thermal

blanket for detector module B5 was re-installed on June 5, 1990. The results of this test are in the

BATSE library and are available for inspection.

8. End-to-End Test #4

The changeout of PMT-C on B5 was fortunate to precede the fourth end-to-end test. ETE #4

provided 84 continuous hours of BATSE operation, during which any problems with the new PMT

would be easily identified. During the test, BATSE personnel at KSC were primarily assigned the

task of monitoring the instrument, while personnel at GSFC and MSFC initiated testing actions.

During the first day, an automatic PMT balance operation was performed using commands stored in

the OBC. The second day was devoted to the creation of solar flares for use by the COMPTEL

instrument, so that their OBC processors could be verified. The first sequence of commands sent

from the FOT to BATSE contained an improper LED value, causing the solar flare test to fail. The

BATSE test conductor reconfigured the instrument at KSC; however, he inadvertently placed detector

module B0 into coincidence mode. This operational error was not noticed until the same test

conductor arrived back at work the next day. On the third day, source occultation simulations were

performed. The LEDs in several detectors were cycled on and off in half-orbit periods to simulate the
emersion and immersion of a source from behind the limb of the Earth. These data were

subsequently used to test BATSE mission operations software at MSFC.

The end-to-end test was completed at 11:00 p.m. on the evening of June 9. During the entire

84 hours of operation, the replacement PMT operated flawlessly. No instrument anomalies were

identified during the test.
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9. End-to-End Test #5 / Observatory Functional Test

During July 1990, two operations were performed involving the BATSE flight hardware, ETE

#5 and a brief Observatory functional test. The end-to-end test began on July 20 with BATSE being

powered up by command from the POCC at the Goddard Space Flight Center. The role of the KSC

test conductors was to again serve as monitors of the proceedings and to command the instrument in

the event of an emergency. However, shortly into the test, the BATSE IGSE suffered a catastrophic

failure of a device-driver card in the ground computer. This had no effect on the BATSE flight

hardware; however, the KSC test team no longer had visibility into the configuration of the

spacecraft. BATSE was powered off until repairs to the IGSE could be completed. The system was

repaired by Scott Storey of ES62 in time for the final 8-hour segment of the brief end-to-end test.

During this final segment, however, difficulties in the ground system at the POCC and MSFC made

the test less than completely successful. The spacecraft performed flawlessly during this test;

however, most of the equipment around it did not perform as well. ETE #5 ended on the afternoon of

July 21, 1990.

A brief Observatory functional test was performed after ETE #5. During this test, BATSE test

conductors focused in on obtaining spectroscopy detector data from a variety of gain settings. Using

TP-125, long-duration spectra were obtained from each of the SDs at gain settings of 2X (2.0 keV/

channel uncompressed), 1X (4 keV/channel uncompressed), 0.4X (10 keV/channel uncompressed),

and at the lowest possible gain settings for each of the SDs, 1,000 V. These data were all background

spectra and were used in the determination of the functional form of the channel-to-energy relation

for the spectroscopy detectors. No other BATSE testing was performed as a part of the functional
test.

10. End-to-End Test #6

The sixth end-to-end test was considerably more successful than ETE #5. Beginning on August

15, 1990, the test spanned a 36-hour period in which additional POCC, CMS, and BATSE-MSFC

functions were tested using the spacecraft. BATSE was powered on by the crew at KSC, who

performed routine monitoring of the instrument throughout the entire 36-hour period. The BATSE

team at MSFC successfully loaded pulsar parameters, output schedules, and other instrument data to

the spacecraft through the TDRSS network. South Atlantic Anomaly operations were verified

functional, and the burst trigger signal was tested in the end-to-end environment.
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11. GRO Modified Functional Test

As with previous functional test opportunities, the BATSE team utilized this power-on session to

acquire data which was needed back at MSFC for particular test or calibration operations. During

this modified functional test, which started on September 6, 1990, the BATSE team obtained long-

duration spectra from the LADs and SDs to further help the determination of the functional form of

the channel-to-energy calibration. Spectra were obtained +HV values of nominal, nominal +2 steps,

and nominal -2 steps for each of the eight large area detectors. Similar settings were used for the SD

at 2X (2.0 keV/channel uncompressed) gain. Each of these spectra were 2.6 hours in duration and are

on file in the BATSE library for inspection.

12. Second GRO Modified Functional Test

Another modified functional test was performed in October 1990. The BATSE team again

generated "custom" data from the instrument to supplement mission operations, data analysis, and

calibration efforts underway at MSFC. The first of these tests occurred on October 22, 1990.

BATSE utilized the OSSE Cs 137 isotope in generating a simulated gamma ray burst event. In an

analogous fashion to the one described in section III.G.3 the isotope was shielded from the spacecraft,

while the instrument computed the background level and had its burst trigger enabled. Following

completion of these items, the source was rapidly exposed and modulated, causing the instrument to

trigger a burst. Unlike the previous test, where the isotope was located on the +X end of the GRO,

the Cs 137 isotope was now located in the GRO X-Z plane, 305 cm from the rear of the spacecraft

and 46 cm off of the floor. Consequently, detectors B5 and B7 were the most brightly illuminated

during the exposure of the isotope.

Additional nominal, nominal +2 steps, and nominal -2 steps spectra were obtained from each

of the LADs and SDs (at 2X gain). Unlike the previous spectral accumulations, these spectra were

obtained with four Coleman lantern filaments in front of each of the detector modules. These

filaments contain nitrates of thorium, and consequently are slightly radioactive. Emission lines are

easily visible from these filaments at 80 keV and 2.614 MeV, among others. These spectra provided

enhanced knowledge of energies in channel space for the calibration of the functional form of the

energy-to-channel relation. Two full days of testing were required to obtain all the data with lantern

filaments and several background spectra.

13. End-to-End Test #7

The seventh and final planned end-to-end test involving the GRO instruments began on October

30, 1990. BATSE was powered by the crew at KSC, who subsequently monitored various facets of

instrument performance. One particular aspect of BATSE performance was the presence of several

packets in which a data byte appeared to have been dropped out, and all remaining data bytes were

shifted to the left by one location. This behavior was noticed at MSFC in the inspection of ETE #6

data and was subsequently traced back as far as the GRO thermal vacuum test. These events are

nearly impossible to detect in real time using the BATSE IGSE system because of the infrequent
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natureof theeventsand the lack of suitable "trapping" software in the IGSE system. Consequently,

several parameters were placed into the BATSE instrument memory that would appear in the data

stream during one of these events, making it easily identifiable to the MOPS software user at MSFC.

The byte-drop anomaly is discussed in detail in the next section of this document.

End-to-end #7, like previous tests, demonstrated the ability of the Flight Operations Team at

GSFC to control the spacecraft, and allowed personnel at MSFC to run the BATSE hardware,

uploading parameters, data, and output schedules through the GRO-TDRSS network. Burst and solar

flare events were manufactured during this test, and all spacecraft OBC functions such as SAA entry

and exit were verified. ETE #7 was the most successful end-to-end test to date. This operation was

concluded at midnight on the morning of November 3.

14. BATSE/RIU Byte-Drop Anomaly

a. Overview

The byte-drop anomaly experienced by BATSE during testing at TRW and KSC is

characterized by a data packet which has been corrupted so that one byte (8 bits) of data is missing

from the telemetry stream and the remaining data have shifted one location upward in the packet.

Each time the event occurs, it is the lower byte of a 16-bit word which is lost. This is a constraint to

possible failure scemirios inside the hardware. Additionally, no events have been present in which

more or less than eight bits are lost. The final byte of the packet is populated with the contents of the

BATSE memory from outside the region in which the packet is constructed. These 16 bits are always

written into the BATSE shift register, but under normal circumstances, are overwritten by the start of

the next packet and never make it into the telemetry stream. The anomaly was fast noticed during

inspection of ETE #6 data. At that time, previous data were examined, and the anomaly was found in

BATSE data as early as the GRO thermal vacuum test in July 1989.

After the discovery of these events, special attention was paid to their presence in ETE #7.

The data from ETE #7 provided a rather alarming result. Prior to that test, the rate of occurrence for

these anomalies was approximately one per 24-hour period. During ETE #7, 17 events were found in

a 72-hour period, a substantial increase. Consequently, the BATSE team became involved in a

thorough investigation and troubleshooting effort to characterize and explain the anomaly.

b. Troubleshooting Investigations

The fa'st investigative test was performed on November 9, 1990. An examination of the

events to this point had uncovered an association of event occurrences with operation on RIU-A. One

event from ETE #7 occurred within 3 seconds of a switch to RIU-B; however, it is believed to be

from a time when BATSE was utilizing RIU-A. Of nearly 300,000 packets of data from the GRO

thermal vacuum test, ETE #4, and ETE #6, each of the byte-drop anomaly events occurred on RIU-A.
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Both BATSE CCF units were found to be operating during the time of at least one event. For this

lust test, BATSE was operated through RIU-B to investigate the existence of the anomaly in this

configuration. Over 11,600 packets were generated on November 9, with no RIU-B events.

A second investigative test was performed on November 12, in the same manner as the

preceding operation. BATSE was operated on CCF-B this time, and RIU-B was still utilized. A total

of 10,571 packets were generated during the second test, with no byte-drop occurrences.

The first two investigative tests failed to produce an event on RIU-B. One possible

explanation for this was that the BATSE instrument required an extended period of operational time

prior to the onset of these difficulties. To this point, no byte-drop event had been seen in BATSE

data unless the instrument had been powered for 24 hours previous to the f'wst event. Consequently, a

32-hour test was performed, starting on November 19, 1990. This test had three main purposes.

First, the test was to determine the rate at which these events occur. Second, ETE #7 had

demonstrated a substantial increase in the rate of events. This test was performed to determine if that

rate was continuing to increase. Third, a correlation between event rate and spacecraft activity was

sought. BATSE operated through RIU-A to provide a known configuration in which these events had

occurred. Software patches were placed into the GROCC computer to trap these anomalous packets

in real time. However, after generating 52,319 packets, no events were found, and the test was

concluded.

A second long-duration test was performed starting on November 27, 1990. During this

operation, the spacecraft was configured as closely as possible to the ETE #7 configuration in an

attempt to reproduce the byte-drop anomaly. A total of 51,696 packets were generated during this

long-duration test without a replication of the byte-drop anomaly.

With no additional events in-hand, a f'mal sequence of tests were planned in coordination with

the final Observatory Functional Test (see section III.G. 15). Starting on December 4, BATSE would

be powered each day in the course of functional testing, and would monitor the data for byte-drop

events. During the final three days of testing, December 12-14, BATSE would remain in a power-on

configuration to obtain a long-duration test. During this time, the POCC also came on-line, along

with the other instruments, and ETE #7A was performed. This test therefore replicated the conditions

of ETE #7 in which the problem was seen. Finally, during this extended testing time, four byte-drop

events were produced. This brought the total number of events seen to 32. Table 3.131 lists these

events.
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Table3.131.
Date

BATSE Byte-DropAnomalyEventsin GroundTesting
TJD RIU CCF

7-11-89 7718
7-11-89 7718
7-12-89 7719
7-19-89 7726
7-21-89 7728
7-23-89 7730
7-23-89 7730
7-24-89 7731
6-8-90 8050

8-16-90 8119
8-17-90 8120

10-31-90 8195
10-31-90 8195
10-31-90 8195
10-31-90 8195
10-31-90 8195
11-1-90 8196
11-1-90 8196
11-1-90 8196
11-1-90 8196
11-1-90 8196
11-2-90 8197
11-2-90 8197
11-2-90 8197
11-2-90 8197
11-2-90 8197
11-2-90 8197
11-2-90 8197

12-11-90 8236
12-13-90 8238
12-14-90 8239
12-15-90 8240

SpacecraftTime
6,404.65

28,944.93
29,218.34
35,663.13
16,629.58
48,036.83
80,012.21
6,049.71
7,707.xx

68,041.xx
80,617.xx
34,039.94
45,144.19
53,642.96
55,330.94
83,597.44
27,083.90
27,774.08
29176.96
30049.41
74005.63
16.029.82
17.023.10
25.292.93
25.804.93
29,550.93
78,112.90
84,258.94
75,600.14
84,152.06
43,537.15
71,321.74

A A

A A

A A

A B

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A* A

A A

A A

A A

A A

*Event occurred within 3 seconds of a switch to RIU-B. The timing of events

in the sequence is not well understood at this time, but is believed to be RIU-A.
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c. Background and Possible Causes

It is cmcenfly presumed that the problem lies in the request for telemetry to BATSE. For

each spacecraft packet which is generated, the GRO central unit computer issues 910 requests to

BATSE for eight bits of data. The BATSE data are read from a 16-bit shift register, so two requests

are required to clean the register of data. The BATSE microprocessor (SBP 9900) is served by a dual

J-K flip-flop with an interrupt 01) for every other telemetry request so that the 16-bit register can be

provided with new data. The circuitry used in the GRO interface is schematically shown in Figure
3.73.
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Figure 3.73. BATSE/GRO Interface Circuitry Schematic (One of Two).

The first 16 bits of the packet are written into the shift register after an interrupt by the GRO

major frame synchronization pulse (17). The next 455 interrupts cause the BATSE computer to write

each subsequent 16-bit word into the register. Consequently, a total of 456 16-bit words are written

to the shift register, of which 455 are placed into the data stream by the spacecraft. The final 16-bit
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word is from outsidetheregionin which theBATSEpacketis constructed,andundernormalcir-
cumstancesis overwrittenatthemajorframesynchronizationwhenBATSEreceivesthe17interrupt.
Thelossof eight bits in theBATSEpacket,coupledwith ashifting of theremainingdataupwardin
thepacket,causeshalf of thesefinal 16bits to entertheBATSEdatastreamat thefinal locationin the
BATSEpacket. WhentheBATSEmemoryis filled with aknownvalueat this location,the
byte-dropanomalyis easilyidentifiedby thepresenceof thisdatavaluein thefinal locationof the
BATSEpacket.

TheBATSE teampursuedanextensiveinvestigationinto possible causes of the anomaly

which would fit all the observed data. The simplest cause of the byte-drop anomaly is an additional

spurious data request from the RIU-A to the BATSE instrument. This additional request would trick

the BATSE electronics into thinking that eight bits of data had been read from the register, and would

cause I1 to be serviced prior to a complete read from the 16-bit register, overwriting half the data

contained therein. This additional request is most likely not noise related, because of the appropriate

noise rejection designed into the circuit. A "jitter" on the RIU active signal (see Figure 3.73) would

also cause an additional input at the J-K flip-flop, yielding an overwrite of eight bits in the 16-bit
register.

Most of the BATSE team's effort centered on possible causes internal to the BATSE instru-

ment which would yield the byte-drop anomaly. The only scenario which the team was able to devise

to fit all of the observed boundary conditions was a reset of the second flip-flop, without resetting the

fh'st. The flight software is handling all interrupts to the microprocessor properly, and the interrupt is

being cleared normally by resetting the J-K flip-flop. This can be determined through examination of

data during the anomalous condition. However, if only the second flip-flop is reset by the software,

the next request for telemetry will cause another interrupt at the output of the two J-Ks. In this

scenario, the software services the proper number of interrupts, a lower byte is always lost, and all

other constraints are realized. However, this sequence of events is extremely unlikely. Both of the

J-K resets are tied together, making it extremely difficult to reset one without the other. Second, this

problem would have to be present in both BATSE CCF interface circuits, and happen only during the
time BATSE is using RIU-A.

d. Conclusions

At this point, the precise cause of the byte-drop anomaly has not been determined. With the

data available, the BATSE team believes that RIU-A is serving BATSE with an additional spurious

data request, causing the flight software in the instrument to write data into the 16-bit register early,

overwriting the lower eight bits, which never get into the telemetry stream. A hardware/software

interface problem inside the BATSE CEU is unlikely, for the reasons mentioned in section III.G. 14.c

but cannot be definitively ruled out. Noise on the RIU active signal is also a possible cause of the
anomaly.

Despite the belief that the problem is located inside RIU-A, no scenario exists which might

explain the observations. The BATSE team made several requests for a detailed look at the
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operations of the RIU as early as October 1990; however, no detailed investigation similar to the one

done on the internal BATSE hardware was performed on the RIU. BATSE personnel were not

knowledgeable enough about the RIU to perform such an exercise.

Operationally, this is an extremely minor problem. Testing demonstrated that the rate of

occurrence was not worsening, and at the present rate, only one packet in a 24-hour period would

exhibit the anomaly. In most instances, the entire packet can be reconstructed, with the exception of

the data byte which was lost. The impact to science operations is nearly zero. Although the cause of

the anomaly is not understood, the BATSE team decided to accept the performance "as-is," and fly in

the current configuration. In the event of a severe degradation, RIU-B has demonstrated freedom

from these events and can serve as a backup.

15. Final BATSE/GRO Functional Test

The final full-scale functional test of the BATSE hardware prior to launch began on December 4,

1990. All facets of the instrument's performance and behavior were tested. Dr. G. J. Fishman, John

Horack, and Michelle Flickinger of the BATSE team performed these operations. The results of

these tests provided the "baseline" performance prior to launch Of the Gamma Ray Observatory. Full

cross-strapping capability was verified, as was the proper functioning of all BATSE flight heaters.

Table 3.132 details all procedures performed during this test in chronological order.

Table 3.132. BATSE Tests Performed During Final Instrument Functional Test at KSC

• TP-110 -- Power-up/aliveness test
• TP- 105

• TP- 170

• TP-171

• TP-125

• TP-180

• TP- 125

• TP- 190

• TP-125

• TP-192

• TP-192

• TP-180

• BATSE

• BATSE

• BATSE

• BATSE

• BATSE

-- Detector module testm

-- CPD calibration

-- CPD/LAD coincidence run

-- Background collection

-- Burst data test (options 1 and 2)

-- Background collection with OSSE Th 228 isotope deployed

-- Pulsar data test (options 1 and 2)

-- Background collection with OSSE Cs 137 isotope deployed

-- Pulsar clock calibration (CCF-B)

-- Pulsar clock calibration (CCF-A)

-- Burst data test (option 3)

flight heater power and cross-strapping tests

special radioactive source data collection test #1 (energy-channel data)

PMT balance and gain adjustments

special radioactive source data collection test #2 (LLD data)

LED to HER channel mapping
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Mostof thefunctionaltestingperformedduringthis timeperiodwasdonewith BATSE
operatingthroughRIU-B. This configuration was used to obtain the maximum amount of time on the

instrument using RIU-B to gain confidence that this RIU was free of the byte-drop anomaly. No

byte-drop events were found during B-side testing.

After a normal power-up on the morning of December 4, testing began with an execution of

TP- 105, the detector module test. During this test, each of the command bits of all 40 +I-IV supplies

were tested and verified to be fully functional. All detector module functions, including the LEDs,

LLDs, and housekeeping measurements, were also examined. No anomalies were present during the
detector module test.

TP-170, the CPD calibration, was the next test performed in the sequence. During this test,

each of the CPDs are operated at eight different voltages. While at each of the voltages, the counting

rate is determined so that a plot of rate vs. +HV can be constructed. Because the CPD has no pulse

height analyzer, this method is used to determine the approximate location of the CPD threshold in

energy space. The results of this test are presented in Table 3.133.

Table 3.133. TP-170 CPD Rates at CPDHVn Voltage Settings

KSC Final Functional Test -- December 1990

CPD Count

B0 B1

Rate at Various +HV Command File Settings
Detector Module

B2 B3 B4 B5 B6 B7

CPDHV 1 48.4 49.8 51.6 54.9 56.3 61.0 57.9 64.0

CPDHV2 44.3 44.0 45.6 46.8 50.4 50.9 52.0 53.5

CPDHV3 42.8 42.3 45.1 45.0 48.5 49.3 50.1 51.4

CPDHV4 43.8 40.5 43.8 43.4 46.9 47.4 48.3 48.7

CPDHV5 42.2 39.3 42.5 41.1 45.2 45.6 46.1 46.2

CPDHV6 40.1 38.3 40.4 41.2 43.7 43.6 45.3 44.9

CPDHV7 39.1 36.4 39.2 37.5 41.6 38.7 41.8 40.5

CPDHV8 36.5 33.0 36.1 34.1 38.8 35.2 39.4 36.1

m_

TP-170 determined that all CPDs were functioning normally and were operating at or near the

desired energy range. A determination of the location of the CPD threshold will be made again

during the on-orbit activation phase of the GRO mission.

TP-171 was performed immediately following the CPD calibration to detemfine the rate at

which the PDs were rejecting events from the LAD. Three spectra were obtained from each of the

large area detectors, one with the CPD on and in coincidence mode, and the other two in the

anti-coincidence mode with the CPD on and off. The appropriate regions of the two anti-coincidence

spectra were siii_-tracied and compared With the same energy region of the spectrum taken in the
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coincidencemode. If theCPDrejectioncircuitry isoperatingnormally,thenumberof countsin the
coincidencespectrumshouldapproximatelyequalthedifferencein countsfrom thetwo spectrain the
anti-coincidencemode. Theresultsof this testarepresentedin Table3.134.

Table3.134. CPDRejectionandCoincidenceCountingRates- TP-171
KSCFinalFunctionalTest-- December1990

DetectorModule CoincidenceRate RejectionRate
B0 21.4 22.0
B1 18.2 19.3
B2 20.6 20.8
B3 18.5 18.6
B4 21.0 22.3
B5 18.1 18.8
B6 21.8 22.6
B7 18.2 18.4

Thedatain Table3.134showexcellentagreementwith previoustestingresults. Thecoin-
cidencerateandtherejectionratefrom all detectorsareapproximatelyequal,asexpected.In
addition,thetop-to-bottomanisotropyin therejectionrateseenin all previoustestsis againeasily
visible. TP-171verified thatall coincidence/anti-coincidencecircuitry wasfully operationalandthat
eachof theeight CPDswereproperlyrejectingeventsasexpected.

During severalportionsof the final functional test, the OSSE team required the use of a

radioactive isotope to aid in the testing of their instrument. Three different isotopes were used, Th

228, Co 60, and Cs 137. The location of these isotopes was confined to the +X region of the GRO,

near the OSSE instrument, and therefore were only viewed to a significant extent by detector modules

B0-B3. Despite the limited viewing, the BATSE team performed iterations of TP-125, the back-

ground collection procedure, during these times. All spectra were stored to disk and also printed to

hard-copy. These data reside in the BATSE library and are available for inspection.

TP-190 and TP-180 were also performed during the times in which OSSE was deploying

isotopes for calibration. The pulsar data test, TP-190, verified the proper execution of both PSR-A

and PSR-B memory boards. No anomalies were found during the pulsar data test. The burst data test

successfully exercised all BATSE burst data types. During the third option of TP-180, which

immediately followed a switch from CCF-B to CCF-A, the burst readout schedule was severely out

of order and contained data types which were not expected. A memory dump indicated that the

locations of the burst output schedule were corrupted. The CEU executed these corrupted

instructions properly and produced the anomalous output. After identification of the anomaly, the

burst readout was aborted, and serial command 712E was sent to re-initialize all parameters. A

second dump of the memory was done to verify the correction, and a normal burst and data readout
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were executed. Two additional burst readouts have been performed since this functional test, as a

part of the BATSE VPF/LC-39 1-hour test rehearsals. Neither of them have shown any anomalous
behavior.

The pulsar clock frequency calibration (TP-192) was performed on both CCF-A and CCF-B

to determine final values for the relationship between the BATSE pulsar clock and the GRO

spacecraft clock. The results of these tests are summarized in Table 3.135.

Table 3.135. BATSE Pulsar Clock Frequency Calibration Results -- TP-192

KSC Final Functional Test -- December 1990

BATSE CCF Temp. (°C)
A 23

B 23

Frequency Fractional Difference
6.51 x lif °

8.42 x 10 -6

A complete examination and verification of the BATSE flight heaters was performed. Both

sets of thermal control and make-up heaters were verified to be operational using either MPS as the

power source. All telemetry indications through the GRO engineering data were verified. Both of

the BATSE RIUs properly returned the status of their respective heater circuits in both power-on and

power-off states. The thermostats for these heaters obviously were not tested because of the inability
to lower the temperature of the spacecraft environment.

The f'trst special radioactive source test was performed to obtain a final data set for the deter-

mination of the energy to channel functional form. Dr. Patrick Lestrade requested a similar data set

to those previously generated, however this time utilizing radioactive isotopes instead of Coleman

Lantern filaments or background. Small (~1 }.tCi) isotope sets of Cs 137, Ba 133, and Co 60 were

cycled in front of each of the eight LADs, with the exception of B4, which was-inaccessible. These

isotopes were placed as closely as possible to the standard 75-cm distance used during TP-140, the

long calibration. With one isotope in place before seven of the modules, 13-minute integrations were

obtained with the SD at 2X gain, and the LADs at nominal, nominal +2 steps, and nominal -2 steps.

Thus a total of three spectral accumulations were made for each module with each isotope. These

spectral accumulations were repeated with no source present in front of the detector module. This

data collection exercise went very smoothly, with no instrument anomalies. The data obtained from

this operation are on file in the BATSE library and are available for inspection.

After completion of the spectral accumulations, the BATSE team performed a final balance

and gain determination for all PMTs on the instrument. With Cs 137 isotopes deployed in front of

each of the modules, the 662-keV emission line was used to balance the gains from the three LAD

PMTs and to establish voltage settings for the various SD gains. The results of this operation are
contained in Table 3.136.
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Table3.136. Final Flight Voltages for PMTs on BATSE at Various Gain Settings
KSC Final Functional -- December 1990

Detector Module

B0 B1 B2 B3 B4 B5 B6 B7

PMT-A 1530 1691 1606 1656 1660 1727 1520 1747

PMT-B 1534 1680 1585 1655 1669 1677 1434 1708

PMT-C 1612 1700 1640 1644 1723 1835 1450 1769

SD-0.4X 1126 1150 1134 1063 1098 1031 1094 1173

SD-1X 1276 1313 1269 1201 1245 1171 1245 1337

SD-2X 1405 1445 1394 1315 1366 1283 1370 1469

SD-4X 1570 1617 1547 1468 1535 1430 1528 1642

The voltages displayed in Table 3.136 will be the initial values used on-orbit for the LAD and

the SD. The CPD voltages were not adjusted during this time because of the satisfactory performance

of these components during TP-170, CPD calibration. During the initial phase of on-orbit operations,

the CPDs will be commanded to their nominal values and adjusted as necessary.

The second radioactive source test was performed to determine the behavior of the spectros-

copy detector spectrum in the region of the LLD, especially at low levels. A large amount of

scientific information is contained near the low-end of the SD spectrum, a noteworthy example being

that of cyclotron absorption lines in the spectra of some gamma ray bursts. To glean the largest

amount of scientific results obtainable from the data, it is desirable to know in precise detail the effect

of the LLD on counts in the neighboring region of the spectrum. This procedure was therefore

developed to obtain a mapping of the LLD over the spectrum so that its behavior could be precisely

determined.

Spectra were obtained at the 1X and 4X gain settings. While at IX, a Ba 133 isotope was

placed in front of each of the detector modules. The LLD was then set to amplitudes of 10, 12, 14,

16, 18, 1A, and 1C. At each of these levels, 6.5-minute integrations were obtained and stored to disk.

These configurations were repeated with no isotopes present so that background spectra could be

obtained. At the 4X level, a similar set of Ba 133 spectra were obtained; however, the LLD was set

to levels of 10, 20, 40, 48, 50, 58, 60, 68, 70, and 80. No background spectra were acquired at the 4X

gain setting. These data are on file in the BATSE library and are available for inspection.

The final test performed as part of the last functional test was a mapping of the LED into HER

channel space for all possible LED settings. Each LED was commanded to a particular value, and a

short HER spectrum was accumulated. From that spectrum, the channel number of the LED peak

was determined and recorded. The spectra were printed and stored to disk for future reference. A

summary of each LED peak location is provided in Table 3.137. Comparison of these data with those

from Table 3.125 shows that the performance of the LED has not degraded in any of the detector
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modules.Thechangein peak location is due to the fact that the PMTs were rebalanced, and nominal

gain settings were re-established, slightly adjusting the peak location in energy space.

Table 3.137. HER Channel Location of LED Peak for Associated Amplitudes
KSC Final Functional Test -- December 1990

LED Hex Amplitude HER Channel Location of LED for Module
B0 B 1 B2 B3 B4 B5 B6 B7

1 Off Off Off Off Off Off Off Off

2 Off Off Off Off Off Off Off Off

3 Off Off Off Off Off Off Off Off

4 14 29 15 23 21.5 29.5 25 24

5 31.5 65 35 53 47.5 67 58 52

6 52 86 58 75.5 71 89 79 73.5

7 68.5 98.5 73 93 86.5 100 96 89

8 78.5 104 84.5 99.5 97 106 101 97.5

9 89 109 96 104 101 112 106 101.5

A 96 114.5 99 108 105 118 110.5 105

B 99 120 101.5 112 109 124 115 109

C 101 124.5 104.5 116.5 113 127 119.5 112.5

D 103.5 125 107 120.5 117 127 124 116

E 105.5 126 110 123 120.5 127 126 119.5

F 108 126 112.5 123 124.5 127 126 123

Functional testing of the BATSE instrument was completed on December 14, 1990, at the end

of the long-duration ETE #7A. This test was not the final power-on opportunity for the instrument.

Subsequent BATSE testing after this functional test prior to launch of the GRO consists of two,

1-hour tests. The f'wst of these tests is performed in the Vertical Processing Facility, and the second is

performed while BATSE is inside the orbiter payload bay on launch pad 39B. Both tests are identical

and consist of TP-110, followed by TP-190, and concluding with TP-180. During these tests, all

A-side flight heaters are tested and verified. The burst readout from TP-180 is aborted after 1 hour.

The burst trigger signal to the other three instruments is exercised as a part of TP-180. These tests are

not designed to extensively test BATSE in great detail, rather to verify fundamental functionality

during the pre-launch phase of the program.
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H. BATSETotalTestandCalibrationTime

During the entire test phase of BATSE, a detailed testing log was kept with the hardware

which included times of power-on, power-off, critical tests, anomalies, etc. From this log, the total

number of hours BATSE has operated prior to launch was calculated. The results of these tabulations

are presented below.

o BATSE Testing at MSFC

Non Thermal Vacuum

Thermal Vacuum

Total MSFC Test Time:

o BATSE Testing at TRW

Non Thermal Vacuum

Thermal Vacuum

Total TRW Test Time:

o BATSE Testing at KSC

Before PMT Change in PHSF

After PMT Change in PHSF

VPF Instrument Test

LC-39 Instrument Test

Total KSC Test Time:

o Total BATSE Test Time

416 hours

620 hours

1,036 hours

600 hours

518 hours

1,118 hours

92 hours

490 hours

I hour

1 hour

584 hours

2,738 hours

The times presented here are accurate to within _'k5%. All BATSE configurations are included

in these times, of which detector module operation and +HV operation is a subset. From examination

of the testing log, one can estimate that the modules are operated a minimum of 90% of the time

when the CEU is powered, and the +HV is operated nearly 80% of that time. This estimation yields a

minimum figure of 1,970 hours of +HV operation, and 2,640 hours of module operation. The cross-

strapping configurations have only been calculated for thermal vacuum testing; however, as a rule-

of-thumb, most testing was approximately two-thirds on primary components, and one-third on

backup systems.
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APPENDIX A - LIST OF ACRONYMS

ADC

ADF

BATSE

BTS

CCF

CEU

CO_L

CONT

CPD

DPU

CSA/BLR

DC

DCH

DEU

DISC

DM

EGRET

EMC

EMI

FIFO

FWHM

GRO

GRSE

GSE

HER

HERB

HKG

HV

HVPU

Hz

ICD

IFJ

keV

KSC

LAD

LED

LLD

MER

MHz

MLI

Analog to Digital Converter

Analog Data Function

Burst and Transient Source Experiment

Burst Trigger Signal

CEU Control Function

Central Electronics Unit

Compton Telescope

Continuous Data

Charged Particle Detector
Central Processor Unit

Charge Sensitive Amplifier/Baseline Restorer

Direct Current

Discriminator, Continuous, and High Energy Resolution

Detector Electronics Unit

Discriminator Data

Detector Module

Energetic Gamma Ray Experiment Telescope

Electromagnetic Compatibility

Electromagnetic Interference

First In First Out

Full-Width- at-Half-Maximum

Gamma Ray Observatory

Gamma Ray Spectrometer Experiment

Ground Support Equipment

High Energy Resolution

High Energy Resolution - Burst

Housekeeping

High Voltage

High Voltage Power Unit

Cycles per Second (Hertz)
Interface Control Document

In-Flight Jimper

Thousand Electron Volts

Kennedy Space Center

Large Area Detector

Light Emitting Diode
Lower Level Discriminator

Medium Energy Resolution

Million Cycleds per Second

Multi-layer Insulation
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MQT

MSFC

M/U

NaI

NASA

OSSE

PCF

PDR

PHA

PMT

PSR

RAM

ROM

RIU

SAA

SD

SDF

SHER

SHERB

SLCC

STS

SqTE

T/C

TP

TPS

TRW

TTE

TI'S

ITU

UCSD

VDC

Charge-to-Time Converter

Marshall Space Flight Center

Make-Up (Heaters)
Sodium-Iodide

National Aeronautics and Space Administration

Oriented Scintillation Spectrometer Experiment
Power Control Function

Preliminary Design Review

Pulse Height Analyzer

Photomultiplier Tube

Pulsar Data

Random Access Memory

Read-Only Memory

Remote Interface Unit

South Atlantic Anomaly

Spectroscopy Detector

Science Data Function

Spectroscopy High Energy Resolution

Spectroscopy High Energy Resolution - Burst

Standard Load Center Converter

'Space Transportation System (Shuttle)

Spectroscopy Time-Tagged Event Data

Thermal Control (Heaters)

Test Procedure

Test Preparation Sheet
GRO Prime Contractor

Time-Tagged Event Data

Time-to-Spill Data
Time Transfer Unit

University of California - San Diego
Volts Direct Current

294



APPENDIX B - VACUUM HISTORIES
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