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PREFACE

This research was conducted in cooperation with the NASA Langley Research
Center (Fluid Mechanics Division - Theoretical Flow Physics Branch) and the Institute
for Computational and Applied Mechanics (ICAM) of Old Dominion University during
the period 1984 through 1990. The work on basic formulations and computational
procedures was completed by the end of 1985 and was published as a progress
report “Radiative Interactions in Transient Energy Transfer in Gaseous Systems,”
NASA CR-176644, December 1985.

The formulations and procedures developed in this study were applied to solve
several realistic problems during 1985-1990. This resulted in various publications in
forms of technical reports, technical papers (presented at national and international
conferences), and journal articles. Selected articles are included in the appendices of
this report to demonstrate the applications of the developed techniques in various
fields involving radiative interactions in molecular gases. The procedures developed
are being used at present to investigate radiative interactions in other challenging
problems.
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ABSTRACT

Analyses and numerical procedures are presented to investigate the radiative
interactions in various energy transfer processes in gaseous systems. Both gray and
nongray radiative formulations for absorption and emission by molecular gases are
presented. The gray gas formulations are based on the Planck mean absorption
coefficient and the nongray formulations are based on the wide-band model
correlations for molecular absorption. Various relations for the radiative flux and
divergence of radiative flux are developed. These are useful for different flow
conditions and physical problems. Specific plans for obtaining extensive results for
different cases are presented. The procedure developed has been applied to several
realistic problems. Results of selected studies are presented in the appendices of this
report.
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1. INTRODUCTION

In the past two decades, a tremendous progress has been made in the
field of radiative enérgy transfer in nonhomogeneous nongray gaseous systems.
As a result, several useful books [1-18] and review articles [19-26] have
become available for engineering, meteorological, and astrophysical
applications. In the sixties and early seventies, radiative transfer analyses
were limited to one-dimensional cases. Mul tidimensional analyses and
sophisticated numerical procedures emerged in the mid-to-late seventies.
Today, the field of radiative energy transfer in gaseous systems is getting an
ever increasing attention because of its applications in the areas of the
earth's radiation budget studies and climate modeling, fire and combustion
research, entry and reentry phenomena, hypersonic propulsion and defense-

oriented research.

In most studies involving combined mass, momentum, and energy transfer,
the radiative transfer formulation has been coupled only with the steady
processes. The goal of this research is to include the nongray radiative
formulation in the general unsteady governing equations and provide the step-
by-step analysis and solution procedure for several realistic problems. The
specific objective of the present study is to investigate the one-dimensional
transient radiative transfer in a nongray gaseous system. In the future work,
the present analysis will be extended (in a systematic manner) to the problems

of combined transfer processes in chemically reacting flows.

For the present study, the information on band absorption and correlation
is summarized in section 2 and fundamental radiative flux equations are
presented in section 3. The basic formulation for the transient radiation is

given in section 4, and this is applied to a special case in section 5. The



solution procedures are described in section 6, and plans for obtaining

specific results are presented in section 7.

2. BAND ABSORPTION AND CORRELATIONS

The study of radiative transmission in nonhomgeneous gaseous systems
requires a detailed knowledge of the absorption, emissfon, and scattering
characteristics of the specific species under investigation. In absorbing and
emitting mediums, an accurate model for the spectral absorption coefficient is
of vital {mportance i{in the correct formulation of the radiative flux
equations. A systematic representation of the absorption by a gas, in the
infrared, requires the 1{indentification of the major 1infrared bands and
evaluation of the 1line parameters (1ine intgnsity: 1ine half-width, and
spacing between the lines) of these bands. The line parameters depend upon
the temperature, pressure and concentration of the absorbing molecules and, in
general, these quantities vary continuously along a nonhomogeneous path in the
medium. In recent years, considerable efforts have been expended in obtaining
the 1ine parameters and absorption coefficents of important atomic and

molecular species [27-30].

For an accurate evaluation of the transmittance (or absorptance) of a
molecular band, a convenient line model 1is used to represent the variation of
the spectral absorption coefficient. The 1line models usually employed are
Lorentz, Ooppler, and Voigt 1line profiles. A complete formulation (and
comparison) of the transmittance and absorptance by these 1line profiles is
given 1in [22-26]. In a particular band consisting of many lines, the
absorption coefficient varies very rapidly with the frequency. Thus, 1t
becomes very difficult and time-consuming task to evaluate the total band

absorptance over the actual band contour by employing an appropriate line



profile model. Consequently, several approximate band models (narrow as well
as wide) have been proposed which represent absorption from an actual band
" with reasonable accuracy [22-26, 31-40]. Several continuous correlations for
the total band absorption are availablq in literature [22-26, 36-40]. These
have been employed in many nongray radfative transfer analyses with varying
degree of success [22-26, 41]. A brief discussion is presented here on the

total band absorption, band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration rotation
band can quite accurately be represented by the so-called "narrow band
models." For a homogeneous path, the total absorptance of a narrow band is
given by
Ay = [ (1-exp(k X)] dw (2.1)

bw "
where kw is the volumetric absorption coefficient, w 1is the wave number,
and X = py {is the pressure path length. The 1imits of integration in Eq.

(2.1) are over the narrow band pass considered. The total band absorptance of

the so-called "wide band models” is given by

A= [1-exp(-k X)] d(w-wo) (2.2)

-0

where the 1imits of integration are over the entire band pass and w, is the
wave number at the center of the wide band. In actual radiative transfer
analyses, the quantity of frequent interest is the derivative of Egqs. (2.1)

and (2.2).

Four commonly used narrow band models are Elsasser, Statistical, Random
Elsasser, and Quasi-Random. The application of a model to a partfcular case
depends upon the nature of the absorbing emitting molecule. Complete

discussion on narrow bands models, and expressfons for transmittance and



integrated absorptance are available 1in the 1iterature [22-26, 31-33].
Detafled discussions on the wide band models are given in [22-26, 34-40]. The
relations for total band absorptance of a wide band are obtained from the
absorptance formulations of narrow band models by employing the relations for

the varfation of 1ine intensity as [22-26, 37-40]

S./d = (S/A Jexp{[-b_|w-u |1/A)} (2.3)

J

where Sj is the intensity of the jth spectral line, d is the line spacing, S
is the integrated intensity of a wide band, A, is the band width parameter,
and b, = 2 for a symmetrical band and b, = 1 for bands with upper and lower
wave number heads at Wy The total absorptance of an exponential wide band,
in turn, may be expressed by

R(u,B) = A(u,B)/A = 1= [ 100 [A(u,8) d(u-w) (2.4)
° band

where u = SX/A, is the nondimensional path length, B8 = ZnyL/d is the line
structure parameter, \ is the Lorentz line half-width, and EN(u.B) repre-

sents the mean absorptance of a narrow band.

By employing the Elsasser narrow band absorptance relation and Eq. (2.3)
the expression for the exponential wide band absorptance 1is obtained as
[25,16]

T
A(u,B) = v + (1/n) fo [tn ¢+ E; (¢)] d2 (2.5)
where ¢ = u sinh B/(cosh B~ cos z), v = 0.5772156 1{s the Euler's constant,
and E1(¢) is the exponential integral of the first order. Analytic solution
of Eq. (2.5) can be obtained in a serifes form as [25, 26]

A(u,p) = zl {~(A)"[SUM(mn) 3/Tn(B+1) "t (n-1)1 ]} (2.6)
ns



where

SM (mn) = £ [(nem-1)1(2m-1)1c™/(2"m1) %)
m=0

A = -y tanhg, B = 1/coshB,
C = 2/(l+coshp) = 2B/(B+l).

The series in Eq. (2.6) converges rapidly. When the weak line approximation

for the Elsasser model is valid (i.e. B is large), then Eq. (2.5) reduces to
A(u) =y + In(u) + E (u). (2.7)

In the linear 1imit, Eqs. (2.5) and (2.6) reduce to A =u, and in the
logarithmic 1imit they reduce to A=y + In(u). It can be shown that Eq.
(2.5) reduces to the correct limiting form in the square-root Timit. Results
of Egs. (2.5) and (2.6) are found to be identical for all pressures and
pathlengths. For p > 1 atm, results of Egs. (2.5)-(2.7) are in good agreement

for all path lengths.

By employing the uniform statistical, general statistical, and random
Elsasser narrow band models absorptance relations and Eq. (2.3), three
additional expessions for the exponential wide band absorptance were obtained
in [25, 26]. The absorptance results of the four wide band models are
discussed in detail in [26]. The expression obtained by employing the uniform

statistical model also reduces to the relatfon (2.7) for large 8.

Several continuous correlations for the total absorptance of a wide band,
which are valid over different values of path length and line structure
parameter, are avaflable in the 1l{terature. These are discussed, in detail,
in [22-26, 37-40] and are presented here in the sequence that they became

available in the literature. Most of these correlations are developed to



satisfy at least some of the 1imiting conditions (nonoverlapping line, lienar,
weak 1ine, and strong line approximations, and square-root, large pressure,
and large path length 1imits) for the total band absorptance [23-26]. Some of

the correlations even have experimental justificatfons [22,35].

The first correlation for the exponential wide band absorptance (a three
piece correlation) was proposed by Edwards et al. [34, 35]. The first

continuous correlation was proposed by Tifen and Lowder [22], and this is of

the form

R(u,B) = In(uf(t){u+2)/[u+2f(t)]}+1) (2.8)

where
f(t) = 2.94[1-exp(-2.60t)]), t = B/2.

This correlation does not reduce to the correct 1imiting form in the square-
root limit [23,26], and its use should be made for B > 0.1. Another
continuous correlation was proposed by Goody and Belton [39], and in terms of

the present nomenclature, this is given by
K(u,8) = 2 In{1+u/[4+(nu/at)1/2), 8 = 2t. (2.9)

Use of this corelation s restricted to relatively small B values [23-26].
Tien and Ling [40] have proposed a simple two parameter correlation for

A(u,B) as
K(u) = sinh™ ! (u) (2.10)

which {s valid only for the 1imit of large 8. A relatively simple
continuous correlatfon was fntroduced by Cess and Tiwari [23], and this is of

the form



A(u,B) = 2 In(L+u/ (2+[u(1+1/B)11/2}) (2.11)
where B = 4t/n = 28/, By slightly modifying Eq. (2.11), another form of

the wide band absorptance is obtained as [25, 26]

Au,B) = 2 In(1+u/ (2+[ulc+n/28)11/2)] (2.12)

where

Equations (2.11) and (2.12) reduce to all the 1imiting forms [23]. Based on
the formulations of slab band absorptance, Edwards and Balakrishnan [37] have

proposed the correlation
- _ 1-
A(u) = In(u) + El(u) tyts E3(u) (2.13)

which is valid for tlarge B. For present application, this correlation
should be modified by using the technique discussed in [25, 26]. Based upon
the formulatfon of the total band absorptance from the general statistical
model, Felske and Tien [38] have proposed a continuous correlation for

A(u,B) as
A{u,B) = 2€,(tp,) + E;(p,/2) - El[(pu/2)(1+2t)]
+ Inlto )2/ (14207 + 2y (2.14)

where
p, = (/w1 + (t/w)]y 1/2



The absorptance relation given by Eq. (2.7) is another simple correlation
which 1s valid for all path lengths and for t = (B/2) > 1. The relation of
Eq. (2.6) can be treated as another correlation applicable to gases whose
spectral behavior can be described by the Elsasser model. In [26] Tiwari has
shown that the Elsasser as well as random band model formulations for the

total band absorptance reduce to Eq. (2.7) for t > 1,

Band absorptance results of various correlations are compared and
discussed in some detail in [25, 26, 41]. It was found that results of these
correlations could be in error by as much as 40% when compared with the exact
solutions based on different band models. Felske and Tien's correlation was
found to give the least error when compared with the exact solution based on
the general statistical model while Tien and Lowder's correlation gave the
least error when compared with the exact solution based on the Elsasser model.
The results of Cess and Tiwari's correlations followed the trend of general
statistical model. Tiwari and Batk1's correlation [Eq. 2.6 or 2.7] was found
to provide a uniformly better approximation for the total band absorptance at
relatively high pressures. The -sole motivation in presenting the various
correlations here is to see §f their use in actual radiative processes made

any sfgnificant difference in the final results.

In reference 41, use of several continuous correlations for total band
absorptance was made to two problems to investigate their influence on the
final results of actual radiative processes. For the case of radiative
transfer in a gas with internal heat source, it was found that actual center-
11ine temperature results obtained by using the different correlations follow
the same general trend as the results of total band absorptance by these
correlations. From these results, it may be concluded that use of the Tien

and Lowder's correlation should be avoided at lower pressures, but its use is



justified (at moderate and high pressures) to gases whose spectral behavior
can be described by the regular Elasasser band model. For all pressures and
path length conditions, use of the Cess and Tiwari's correlations could be
made to gases with bands of highly overlapping lines. In a more realistic
problem involving flow of an absorbing emitting gas, results of different
correlations (except the Tien and Lowder's correlation) differ from each other
by less than 6% for all pressures and path lengths. Use of Tien and Lowder's
correlations is justified for gases like CO at moderate and high pressures.
For gases like C0y, use of any other correlation is recommended. While Felske
and Tien's correlation is useful for all pressures and path lengths to gases
having random band structure. Tiwari and Batki's simple correlation could be

employed to gases with regular or random band structure but for P > 1.0 atm.

3. RADIATIVE FLUX EQUATIONS

For many engineering and astrophysical applications, the radiative
transfer equations are formulated for one-dimensional planar systems (Fig.
3.1). For diffuse boundaries and in the abscence of scattering, expressions

for the radiative flux and its derivative are given as (8]

apal™a) = 2 By, Eglty) - 2 By, Ejlvy, - 7y)

T T
v 20f e, (1) Eylny - 1t - [ O e (DE,(t - 7,)dt] (3.1)

0 T

A

and
dapy
Tan o T 2B Bt 2By Bplgy m )
]Tox

+2 fo ey (tIE (], - t])dt - (3.2)
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Figure 3.1 Plane radiating layer between parallel boundaries.
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where
y L
T, = [k dy Ton T J k, dy (3.3a)
o 0
1
E(t) = [ "2 Mg (3.3b)
0

In the preceding equations, E,(t) are the exponential integral functions, and

T, and Tor }epresent the optical coordinate and optical path, respectively.
The quantitites le and 82k represent the spectral surface radiosities and
for nonreflecting surfaces, Blk = ey T 1\ ey etc. Thus, for non-
reflecting boundaries, Eqs. (3.1) and (3.2) are expressed in terms of the wave

number as (see Appendix A)

Rl * 1w ~ 224

+2 [f:” Flolt) Ey (t -t)dt - IZZ“ Folt) E, (t-7 )dt] (3.4)
and
T T
+2 [fow Flo(t) By (z,-t)dt + [r:“ Foult) E (-7 )dt] (3.5)
where

Flw(t) = em(t) - ey sz(t) = e (t) - L

Equations (3.4) and (3.5) are the general equations for one-dimensional
absorbing-emitting medium with diffuse non-reflecting boundaries. For nongray

analyses, it 1s often convenient to replace the exponential integrals by
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appropriate exponential functions [6, 8]. Upon employing the exponential

kernal approximation [8]
Ez(t) = % exp (- % t); El(x) = % exp (- % t)

Eqs. (3.4) and (3.5) are expressed in physical coordinatates as

Flm (z) k, exp (- % Ky (y-2)] dz

/

L3y
0
L

Nw Nw

/ Fow (2) k, exp [- % kw(z-y)] dz
y

dqu
ay— = -2 [Flw(y) + sz(y)J

y
-+ % fo Flw (z) ki exp(- % K, (y-z)1dz

. ,
+ % fy Fow!2) kf, expl- % k, (z-y)ldz

where 2z is a dummy variable for y. However, by differentiating Eq.

directly, there is obtained

dqu 3
- T gk, [P, y) 4 Fpn)]

y
+ % / Flo (z) kf, exp[- ;} kw(y-z)]dz

o

+3 IL F, (z) k2 expl- 3 k (2-y)1d
T y 2w (2] K, EXPLT g K (27y)ldz

(3.6)

(3.7)

(3.6)

(3.8)
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The slight difference in Eqs. (3.7) and (3.8) should be noted. This is a
consequence of using the exponential kernal approximation. If one has to make

a2 decfsion as which equation to use, it is recommended to use Eq. (3.8}.

The total band absorptance, as given by Eq. (2.2), can be expressed in a

slightly different form as

1

Aly) = [ [1 - exp(- k, Y1 dw ~ cm (3.9a)

0

where both k and w have units of em™l. Differentiation of Eq. (3.9a) gives

A'y) = [ k, exp(- k_y) do~cn? (3.9b)
o
and
[} ® 2 ‘3
A''(y) = [ - k, exp(- k_y) dw~cm (3.9¢)

0
Equations (3.9) are employed to express Eqs. (3.6) and (3.8) in terms of the

band absorptance.

The total radiative flux is given by
Rly) = [ ap,ly) dw (3.10)
)

such that

odq o
RW g = 4 (3.11)
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Upon substftuting Eq. (3.6) into Eq. (3.10) and Eq. (3.8) into Eq. (3.11)

there is obtained for a multiband gaseous system
Aply) = &) - e

d35 0 R ok - 3% (y-2)1d
z expl- y-2)1dz
z 1=1 ael o lwi wi 7 "wi
L 3
- Iy szi(z) Kooi exp[- > kmi(z'y)]dZ}d“i (3.12)
A B A N 1}
T~ 72t y) + y)ldw
Yy Z =1 Awi wlt lwl 2wl i
9 " y 2 3
+3 % {J F, (2) K&, expl- 5 k_(y-z)1dz
L =1 Awf o lwi wi 7 twi
+ILF (2) k2, expl- 2 k ,(z-y)1dz}d (3.13)
yzm’ wi EXPLT 7 K 4127yl dzidu, .

It should be pointed out that the following relations have been used in

obtaining Eqs. (3.12) and (3.13)

[ e, dw=e;; [ e, do=e
o lw 1 o 2w 2

y 3
| U Fi,(2) Kk, expl- 3k (y-2)1dz}dw
o o

y 3
1 f {f Flwf(2) K,y exel- 3 k,i(y-2) dz}du,

1 Awi o

He3

where n represents the number of bands in a multiband system,
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By utlizing the definitions of the band absorptance and its derivatives
as given by Eqs. (3.9) and evaluating the value of the Planck function at the

center of each band, Eqs. (3.12) and (3.13) are expressed as

A -

LRy, (2) A g (yo2) )z

- [ F,, (2) A} (3 (z-y)1dz) (3.14)
0

k , dw,}

=5 £ ([F, (y)+F, ()]
&y 2 4 luy 2051 pot Ot

9 y v p3
gt U Pl (2) A [ (y-2)Jaz

L

3
+ [ F,  (2) A% [5 (z-y)ldz} (3.15)
y 2”01 i *2

where Wi represents the center of the ith band.

Equations (3.14) and (3.15) are in proper form for obtaining the nongray
solutions of molecular species. However, in order to be able to use the band
model correlations, these equations must be transformed in terms of the
correlation quantities defined in Eq. (2.4). The following quantities,
therefore, are needed for the transformation

u = (S/Ao) pYy; u, = (S/Ao) PL; PS = wa k, dv (3.16)

Now, by using the definition A = A/A . Eq. (3.9b) is written as
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B(y) = & (And = = B - ariyy/ag ~ en”!
0
Thus,
A(y) = Ay S0 1) Gy - sy R (W) (3.172)
Similarly
AT (y) = (P S(T)I? (1/A ) B (w) (3.17b)

The dimensfons of both sides 1in Eqs. (3.17a) and (3.17b) agree with the
dimensions given in Eqs. (3.9b) and (3.9c). By employing the definitions of

Eqs. (3.16) and (3.17), Eqs. (3.14) and (3.15) are expressed as

+3 % A {fu'r (') B3 (v, - u)] du
7, of PR L A I L
uOi ' ) 3 ' )
- fu1 FZm1 (ui) Aj [’z (uy - ui)] duj) (3.18)
dqR(u) 3 N
— =3 151 Ay [Flwi(u) + Fyq(u)]

+ 3 g A {fui Foo(u') K'Y 03 (uy - u)] du!
3L At U P i Lz luy - ug)lduy

+ fuoi Foo(u') R (3 (u) - u,)]duy) (3.19)
2w i7" 1 i :
uy i
where u' {is the dummy varfable for u and A'(u) = dA/du. It should be noted

that F, and F, in Egs. (3.18) and (3.19) represent the values of
i i
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Flw and F, at the center of the ith band, and dqR/dy = (dqR/du)(du/dy) =
(e S(T)/AOJ (dap/du).

By defining the new independent variables as
g = uluy = y/L; g' = u'/uo = 2/L (3.20)
Eqs. (3.18) and (3.19) can be expressed as

3 n E t 0 3 1 t
= 0 |
1 el 3
- !5 Fou (81 Ay g ugy (87-2)1de") (3.21)
—r— t 7 E (R, (8) ¢ P (811 (A uy )

n 2 E [} A 3 ' '
g5 Aot Ut U Fry (1) B g ugy(ee e

1
ty Mt 3 ' '
+ IE Foot (') A} [5u ,(E'-E)1dE") (3.22)

where agafn &' (u) dentoes the derivative of A(u) with respect to u, and

dqR/du = (dqR/dE) (d&/du) = (l/uo) (dqR/dE).

Equations (3.18) through (3.22) allow us to make use of the band model
correlations for the wide-band absorptance because these correlations are
expressed in terms of u and B. However, 1t {is often desirable and
convenient to express the relations for qp and div qq which only involve

A(u) and A'(u) but not A''(u). This is accomplished by {integrating the
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fntegrals in the expressions for qp and div qq by parts. This results fin
simpler integrals. Upon performing the integration by parts on the integrals

in Eqs. (3.21) and (3.22), the equations can be expressed in alternate forms

as (see Appendix B)

aple) =e) - e,

n £
' [ I 3 ' [
- Asi {fo [demi(i )/dE'T Ay [ u  (E-E") dE
. 03
+ [dewi(E')/dE'] Ay [ uyy (E'-E)1dE) (3.23)
£
dqR(E) 3 N

£
] ] ) 3 1 '
-7 I ot U {fo [dewi(i )/dE'] ¥ [? u01(£-§ ) 1dz

1
- f e, (£0)/a8') Ry [y u (8" -8)1dE')  (3.24)
£

It should be noted that Eq. (3.24) can be obtained directly by differentiating

Eq. (3.23) with respect to E wusing the Lefbnitz formula. This is shown in
Appendix B.

Equatfons(3.21), (3.23), and (3.24) are the most convenient equations to

use when employing the band-model correlations in radiative transfer analyses,
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4, BASIC FORMULATION FOR TRANSIENT PROCESSES

The interaction of radiation in transient transfer processes has received
very 1ittle attention in the literature. Yet, the transient approach appears
to be the logical way of formulating a problem in general sense for elegant
numerical and computational solutions. The steady-state solutions can be

obtained as 1imiting solutions for large times.

A few studies available on radiative ineractions reveal that the
transfent behavior of a physical system can be influenced significantly in the
presence of radifation [42-45]. Lick investigated the transient energy
transfer by radfation and conduction through a semi-finite medium [42]. A
kernal substitution technique was used to obtain analytic solutions and
display the main features and parameters of the poblem. Doornink and Hering
studied the transfent radiative transfer in a stationary plane layer of a
nonconducting medium bounded by black walls [43]. A rectangular Milne-
Eddington type relation was used to describe the frequency dependence of the
absorption coefficient. It was found that the cooling of the layer initially
at a uniform temperature {s strongly dependent on the absorption coefficient
model employed. Larson and Viskanta investigated the problem of transient
combined laminar free convection and radiation in a rectangular enclosure
[44]). It was demonstrated that the radiation dominates the heat transfer in
the enclosure and alters the convective flow patterns significantly. The
transient heat exchange between a radiatié?;p1ate and a high-temperature gas
flow was investigated by Melnikov and Sukhovich [45]. Only the radiative
fnteraction from the plate was considered; the gas was treated as a non-
participating medfum. It was proved that the surface temperature 1is a

function of time and of longitudinal coordinate.
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The objective of this study is to investigate the interaction of nongray
radiation in transient transfer processes in a general sense. Attention,
however, will be directed first to a simple problem of the transient radiative
exchange between two parallel plates. In subsequent studies, the present
analysis and numerical techniques will be extended to include the flow of
homogeneous, nonhomogeneous, and chemically reacting species in one- and

multi-dimensional systems.

The physical model considered for the present study is the transient
energy transfer by radiation in absorbing-emitting gases bounded by two
parallel gray plates (Fig. 4.1). In general, T) and T, can be a function of
time and position and there may exist an initial temperature distribution in
the gas. It is assumed that the radiative energy transfer in the axial

direction is negligible in comparison to that in the normal direction.

For radiation participating medium, the equations expressing conservation

of mass and momentum remain unaltered, while the conservation of energy, in

general, is expressed as [8]
pcpg%=div (k grad T) + BT 3% + 4 ¢ - div q (4.1)

where 8 1is the coefficient of thermal expansion of the fluid and ¢ is the
Rayleigh dissipation function, For a semi-infinite medium capable of

transferring energy only by radiation and conduction, Eq. (4.1) reduces to

aT _ _ @
pcpﬁ- f;' (4.2)

where q is the sum of the conductive heat flux Q. = - k (dT/3y) and the

radiative flux gp. For the physical model where radiation is the only mode of

energy transfer, the energy equation can be written as



b
_A.h*thwmj; i
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Physical model and coordinate system.
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aq
3T _ _ "R
P cpﬁ- - (4.3)
Use of this simplified equation is made to investigate the transient behavior
of a radiation participating medium.

As pointed out in the previous section (Sec. 3), Eqs. (3.21) and (3.23)
are convenient equations for the radiative flux, Equations (3.22) and (3.24)
are two expresssions for the div qply), but Eq. (3.24) is preferred because it

only involves the first derivative of A and avoids singularities in the

large path length limit.

Upon defining nondimensional radiative heat flux by
Q (g, t) = qR(E.t)/[el(t) - e, (t)] (4.4)

Eq. (3.21) can be written as

n g
3 ' o3 _p '
0 (5,t) =145 T A, u, {f Cyy (&0t AL [3u o (£-8')]dE
i=1 )
1 - .3
- Ia Ty (E50) AL [Su . (£1-E)1dE’)  (4.5)
Nate :
where Dimms{o»“/( = A, G 13 rondimersind Fo, ~ €,7)~ Wetts . cr
/// “ !

Ty (E.t) = F o (5,t)/[e,(t) - e,(t)] Aoi o e”

e‘ P C'L " Watts_ Cm
Equation (4.5) provides the general expression for the radiative flux in the
nondimensional form. A simflar nondimensional form can be obtained also from

Eq. (3.23).

By defining ¢ (£,t) = T(g,t)/To with T° representing some constant
reference temperature, Eqs. (4.3) and (3.24) can be combined to yield the

energy equation in nondimensional form as
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9

g -
o0 (E,0)/0t =3 £ {4 (8,0 K [yu, (6-8')de’

1 0

M3

i

] an K] ' [}
(g',t) A} [5u . ('-8)1dg") (4.6)

wi

1
-/ ¢
g
where
4’wi (gst) = {PSi(T)[a emi(E.t)/ail/(P CP To/tm)} & m"d"l"(ﬂS'—'HJ

The time t in Eq. (4.6) is defined as t* = t/t, with t, representing some
characteristic time scale of the physical problem; however, for the sake of
convenience, the asterisk is left out here as well as in further developments.
From the definitions of ¢(&,t) and ¢w1(5.t). it should be noted that Egq.
(4.6) is a nonlinear equation in T(E,t). Equation (4.6), therefore,
represents a general case of the transient energyftg‘;"sr'};giation be tween two
semi-infinite paralle) plates. A similar expression can be obtained also by

combining Eqs. (4.3) and (3.22).

5. A SPECIAL CASE OF TRANSIENT INTERACTION

As a special case, it is assumed that the entire system initially is at
the fixed (reference) temperature T,. For all time, the temperature of the
upper plate is maintained at the constant temperature equal to the reference
temperature, i.e., T2 = To. The temperature of the lower plate is suddenly
decreased to a lower but constant temperture, i.e., T; < T,. The problem,
therefore, is to investigate the transient cooling rate of the gas for a step
change in temperature of the lower plate.

Since small temperature differences have been assumed and the absorption
coefficient has been taken as independent of temperature one may 335573§f3

additionally the linearization, . 2'"/’@26
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euilT) = ey (T,) = (d e y/aNy (T-T) (5.1)

where again the subscript i refers to the {th band such that w; fs the wave
number location of the band and T, represents the temperature of the reference
wall which could be efther T; or To. For the speciai case considered, since
we are interested fn investigating the transient behavior of the gas because

of a step change in temperature of the lower plate, T, 1s taken to be equal to

Tl' Thus.
ewi(E.t) nd ew'(O’t) = (d ewi/dT)Tl (T‘Tl) (5.23)
ewi(l’t) = ewi(o't) = (d ew,l/dT)Tl (TZ‘TI) (S-Zb)
ewi(a.t) -eq(Lt) = (d emi/dT)fL(T'TZ) (5.2¢)

Note that Eq. (5.2c) is obtained by subtracting Eq. (5.2b) from Eq. (5.2a).

Also, for linearized radiation,

aatdr-ad (5.3)
1 1
4 _ o4 3. .4
Thus, e, =T ,e,=20T,=c (4T 7,-3T)) such  that

ey - ey = 40T (T Ty,

It should be pointed out that for a single-band gas, the linearization is
not required because the temperature distribution can be obtained either by
combining Eqs. (3.22) and (4.3) or from Eq. (4.6) and the radiative heat flux
can be calculated from Egs. (3.21), (3.23), or (4.5). However, for the case
of multiband gases and for systems 1involving mixtures of gases, it fs

convenient to employ the 1linearization procedure in order to use the

information on band model correlations. The following definition are useful



in expressing the governing equations in 1inearized forms:

N1 = (P tm/p cp) K1

My = (e /L e cp) Hig » Hyg = Agq (T) (doe/dT)

Ml = (tm/L p cp) H1
Mg Yo1 = Nig o ¥ o

where Hy, K;, Ny and M; represent the
temperature T;.

the properties of the gaseous medium.

By employing the definitions of

radfative flux, as given by Eqs. (3.21) and (3.23), are expressed as

3 n
Q(E,t) = 1- (3/8 o T}) 151 Uy
+
4
and
3 n
QE,t) =1 - (/40 T)) L H“(I

i=1

4t 13

:K1=

i=1

n
, H, =
Ly
H11 = PL K
values

Eqgs.

& a8(8',t)
(o]

(5.2)

Ky

1

11

g
[ 2 3 ] '

Ryl3 ug, (E-€") 1de"

23

(5.4a)

(5.4b)

(5.4¢)

(5.4d)

(5.4e)

(5.4fF)

of H, X, N and M evaluated at the

As exhlafned in Refs. 8 and 23, these quantities represent

- (5.4), relations for the

7 Nete:
é”,z/(vf,z)

- , R
1S rorndimensioned

1
[ [1-9(2,1)] B3 u (8'-E)1dE') & Wondimensmad  (5.5a)
1*Z Yol

& Mondimencion /
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1 '
39(5 :t) = 3 [ ]
- Ig —r Ai[? uOf(E £)]dg'} (5.5b)

Thus, the expressions for the heat flux at the lower wall are given by

n 1 _

0(0,t) =1 - (3/8 6 T}) E gy Hy f [1-0(', t)JA (5 u_, E')dE'  (5.6a)
{= o]

and & Note; Hi /(0'7,‘3)

n 1 is nondimengionad
3 30(E',t) 7 3 g
Q(0,t) =1+ (1/4 0 T)) £ H, [ =L A (5 u_, E')dE (5.6b)

Uz, e A7 Yo

It should be pointed out that Eqs. (5.5a) and (5.6a) are convenient forms for
the optfcally thin and general solutfons while Eqs. (5.5b) and (5.6b) are
useful for solutions in the large path length 1imit. Once the solutions for
8(E,t) are known from the energy equation, the appropriate relations for the

heat flux can be obtained from Eqs. (5.5) and (5.6).

By employing the definitions of Eqs. (5.2) - (5.4), a combination of
Eqs. (3.22) and (4.3) provides one form of the energy equation and Eq. (4.6)

is transformed to obtain another form; these are expressed as

P

26(£,t) 3, Note:
T + 3 Nl Q(E.t) '2' Nl = N' I’S nond';nm.rfpn-/

M“: 7s nendimrnsienar

-3 M 2 {IE o(g',t) AL'[S u , (£-8')]dE"
7 11 Yot o &Ry Ltz Yot

-t
M3
—

1
+ I [9(5'-” - 1] K';[g Uoi(i"E)]dE') & Nonc/;mmslﬁ"v/ (5.7a)
g

and

n E ( ) Uote .
3 ae E.Dt e 3 ! t - A I K
3 5 Ny {Io g Al gy (ER e <—sz fo mondimensin

f=1

_d8(E,t) |
ot



25

1
00 ') I ' s y

g

The initial and boundary conditions for Eq. (5.7) are specified as
8(,0) =1 ; 6(0,t) =0 ; 6(1,t) =1 (5.8)

The parameters in Eq. (5.7) are Nj and u,. For a given gas, the parameters
are the gas pressure and the temperature of the lower wall. Equation (5.7b)

is the convenient form for solutions in the large path length limit.

6. METHOD OF SOLUTIONS

For the general case, the temperature distribution is obtained from the
solution of the energy equation, Egs. (5.7). Once ©6(g§,t) 1is known, the
radiative heat flux is calculated by using the appropriate form of Eq. (5.6).
Before discussing the solution procedure for the general case, however, it is
desirable to obtain the limiting forms of Eqs. (5.5) and (5.7) in the
optically thin and large path length limits and investigate the solutions of

resulting equations.
6.1 Optically Thin Limit
lT
In the optically thin 1imit [8, 23], K(u)/ =y, A'(u) =1, and

A'*(u) = 0., In this }imit, therefore, Eq. (5.7a) reduces to

20(E, t) 23 =
SRt 3N (gt -5 N =0 (6.1a)

From an examination of Eq. (6.la) along with the definitions given in Eq.
(5.4), 1t is evidient that in the optically thin limit the temperature distri-
bution in the medium 1is 1independent of the §&- coordinate. This is a

charateristic of the optically thin radiation [8, 23]. Thus, Eq. (6.la) can
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be written as

de(t) + 3 Nl(t) a(t) -;'Nl(t) = 0; 8(£,0) =1 (6.1b)

Since gas properties are evaluated at known reference conditions, N; fis

essentially constant, and solution of Eq. (6.1b) 1s found to be
1 _ ,
8(t) 12[1 + exp(- 3 Nlt)] (6.2)

In the optically thin limit, Eq. (5.7b) reduces to

£,

; (x N 59‘2 ot) e
3

i=1 o E

A differentiation of Eq. (6.3a) with respect to £ (by using the Leibnitz's

_28(E,t) _

i fl 20(E',t) .
ot

3 dg'} (6.3a)

™3

rule) results in

3 [20(Z,1) i

3 [-—3f__— +3 Nl 8(g,t)] =0 (6.3b)
or

368L%:t) 4 34 a(E,t) = C(t) (6.3¢)

The constant of integration C(t) is evaluated through the combination of Egs.
(5.8) and (6.3a) and fs found to be C(t) =5 N,. A substitution of this in
Eq. (6.3c) gives Eq. (6.1a) for which the solution is given by Eq. (6.2).
Thus, as would be expected, both general forms of the energy equation reduce

to the same equation in the optically thin limit.

In the optically thin limit Eqs. (5.5a) and (5.5b) respectively reduce to

g 1
Q(g,t) = 1 - [3/(80T3)] (PLK)) (f (€', t)de’ + [ [1-8(£',t)]de')  (6.4a)
0 g

and
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3 E69 169
Q(E,t) = 1 - [3/80T))] (PLK)) (f v (8-E')dE" + [ = (E'-E)dE'}  (6.4b)
0 g€ £ dE

Through integration by parts, {t can be shown that Eq. (6.4b) reproduces Eq.

(6.4a). By noting that, in the optically thin limit, 6(g,t) = e(t), Eqs._ __ __
(6.4) can be expressed as @t: (PLK, /Vza ) s

pondimersson 4// /

QE,t) = 1 - [3/(80T3)] (PLK)) [(1-8) + (28-1) 8(8)] o > —{6:5) /

It should be pointed out that Eq. (6.5) can be obtained directly from Eq.
(6.4b) without performing the inegration by parts. The heat transfer from the

lower surface in the optically thin limit, therefore, is given by
Q(0,t) = 1 - [3/(8aTH] (PLK L1 - 8(t)] (6.6)

The result of Eq. (6.6) can be obtained directly by letting £ =0 in efther
of Eqs. (6.4). The relation for 6(t) 1in Eq. (6.6) is obtained from Eq.
(6.2). Thus, evaluation of the temperature distrfbution and radiative heat

flux in the optically thin Yimit does not require numerical solutions.

6.2 lLarge Path Length Limit

In the large path length 1imit (i.e., for Ugj >> 1 for each band), one
has A(u) = tn(u), A'(u) = 1/u, and A''(u) = - 1/u? (8, 23]. Thus, in the
large path length 1imit, Eq. (5.7a) reduces to

Note. M, and N, erc

36(E,t) -3
=t + 3 Nl e(E.t) 7 Nl ""’éfdJ see Ej.(54f

-7
3 . .
] dE [} da
=M, {f o(g',t) + [ [e(e',t) - 1] } (6.7a)
1 (e-£')2 g (£'-¢)°

It should be noted that for any fixed value Ty and a given gas, N; and M; are
/

M= [PL3 (S A0 )Jm = [Suor ] M,
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constants; but, O(E,t) does depend on E. For a given gas and with known
values of T, and t,, the solution of Eq. (6.7a) can be obtained by specifying
Ty. Equation (6.7a) involves singular integrals with Cauchy type kernals and,
therefore, a closed form solution doeg not appear to be possible; numerical
solutions, however, can be obtained by the variation of parameter technique.
Because of the singular nature of {integrals, Eq. (6.7a) is not a convenient

equation for the large path length limit solutions.

In the large path length 1imit, Eq. (5.7b) reduces to

1 ' t
20(E,t) _ _ 20(E',t)  df
—F= M / —3r— T (6.7b)

Equation (6.7b) 1s a convenient form for solution in the large path length
limit. An analytical solution of Eq. (6.7b) may be possible, but numerical

solution can be obtained quite easily.

In the 1large path 1length 1imit, Eqs. (5.5a) and (5.5b) reduce

respectively to Mote: H /(07/.3)
/s rord r'mrn.r/bm/
1
Q(E,t) =1 - (1/4T ) H [f 8(g',t) ‘(E"T‘ f (—5—.—] (6.8a) <
¢
p
and N(ﬂ!c_: MI 6?“’/ /J, Gre
Inted ryje
3, " 5 20(e", 1) B
1=1 &

1 )
o, 2908t t) anld uy (e'-£)1de')  (6.8b)

The expressions for dimensionless radiative heat flux from or to the wall

are obtafned by setting & = 0 1in Eqs. (6.8) as



29

5 1 de"
Q(0,t) = 1 - (H/40T)) [ [1-0(g', )] g2 (6.9a)
0
and Note : Hi /0—7,‘3
' 's  nondimensten
3 20(8',t) , 3 Dyde !
Q(0,t) = 1 (1/40T}) z Hig f —p— nlz ugy E)dE (6.9b)

i=1
Thus, once the temperature distribution is known from solutuions of Eq. (6.7),

the wall heat flux can be calculated by using the corresponding form of Egs.

(6.9).

6.3 Numerical Solutions of Governing Equations

General solutions of Eqs. (5.7a) and (5.7b) are obtained numerically by
employing the method of variation of parameters. For this, a polynomial form

for O(E,t) 1s assumed in powers of E with time dependent coefficients as

3

8(g,t) = £ c (t) " (6.10)
m=0 )

By considering only the quadratic solutfon in &, and satisfying the boundary
conditions of Eq. (5.8), one finds
2 2
8(E,t) = E° + g(t) (E-E") (6.11)

where g(t) represents the time dependent coefficient. At t = 0, a combination

of Eqs. (5.8) and (6.11) yields the result
9(0) = (1-£2)/(£-£2) (6.12)

Also, from Eq. (6.11) there is obtained

dg(t)

26(%, t)

2,
3t = (E-£ ) g'(¢t) (6.13)

= (&- E )
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36(Z,t)

S 28 4 glt) (1-28) (6.14)

Equations (6.11) - (6.14) are employed to obtain specific solutions of Egs.
(5.5) and (5.7).

By substituting Eqs. (6.11) and (6.13) in Eq. (5.7a), there is obtained

g'(t) + 6,(8) g(t) = G,(E)

(6.15)
where the integral functions GI(E) and GZ(E) are defined in Appendfx C. The
solution of Eq. (6.15) is given by

g(t) = ¢ expl- GI(E)t] + GZ(E)/GI(E) (6.16a)

Since at t = 0, g(t) = g(0), then ¢ = g(0) - GZ(E)/Gl(E).

Thus, Eq. (6.16a)
becomes

g(t) = [g(0) - G,(E)/6,(E)] expl- G (E)t] + G,(£)/G,(¢) (6.16b)

where g(0) is given by Eq. (6.12).

The integrals in functions Gl(z) and
6,(2)

can be evaluated easily by numerical means, after substituting the
relation for A''(u).

A substitution of Eqs. (6.11), (6.13) and (6.14) into Eq. (5.7b) results
in

g' (1) + G4(E) g(t) = G,(E) (6.17)

where the integral functfons G3(§) and 64(5) are defined in Appendix C.
solution of Eq. (6.17) 1s found to be

The

g(t) = [g(0) - G, (£)/G4(E)] expl- G4(E)t] + G,(E)/G4(E) (6.18)



31

where again ¢(0) is given by Eq. (6.12).

The solutions of Eqs. (5.7a) and (5.7b) can be expressed in a convenient

form as

2 g,(t), 2
B(E,t) = £° + [92“’ ] (g-g%) (6.19)

In Eq. (6.19), gy(t) 1s given by Eq. (6.16b) and is used for the solution of
Eq. (5.7a) and gp(t) 1s given by Eq. (6.18) and {is used in obtaining the

solution of Eq. (5.7b). The both approach should result in the same final

solution.

For the steady state case, the solution again is given by Eq. (6.19), but

functions gy(t) and g,(t) are no longer a function of time and are given by
gl = GZ(E)/GI(E); 92 = G4(E)/Gs(§) (6.20)
The solutions for the steady case are avaflable in the literature and are
useful in comparing the results of this study in the limit of t » =,
The expressions for the nondimensfonal radfative flux are obtained from a
combination of Eqs. (5.5), (6.11) and (6.14) such that
Q(g,t) = 1 - GS(E) gl(t) - GG(E) (6.21a)

and

Q(E.t) = 1 - G7(§) gz(t) - 68(5) (6.21b)
| P

where GS(E) through GB(E) are defined in Appendix C, and qy(t) and,q%(t)
are given respectively by Egs. (6.16b) and 6.18). Consequently, the

expressions for the radiative heat flux at the lower wall are obtained as
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0(0,t) = 1 + Gy q,(t) - 6 (6.22a)

and
Q(0,t) =1+ G11 gz(t) + G12 (6.22b)

where 69 through Gy, are defined in Appendix C and afe not function of E,
It should be noted that the solutions presented in Eqs. (6.21) and (6.22)

require the solution of the energy equation as given by Egs. (6.19)

6.4 Numerical Solutions of Large Path Length Equations

As mentioned earlier, Eqs. (6.7b), (6.8b) and (6.9b) are the most appro-
priate equations to use in the large path length limit. However, numerical
procedure s presented for both forms of the energy and radiative flux
equations. Once again Eqs. (6.11) through (6.14) providt the basis for
numerfical solutions also in the large path length limit. For this limit, the

solution given by Eq. (6.19) is expressed as

o(g,t) = €2 + [ ] (£,€2) (6.23)

where g3(t) is used for the solution of Eq. (6.7a) and g4(t) for Eq. (6.7b).

A substitution of Eq. (6.23) into Eq. (6.7a) results tn

-

where {integral functions 613(5) and 614‘5’ are defined in Appendix C. The
solution of Eq. (6.24) 1s found to be

g3(t) = [9(0) - G14(£)/G,3(8)] expl- G 3(E)t] + G 4(E)/Gy(E)  (6.25)
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where q(0) is defined again by Eq. (6.12). Equation (6.23) along with Eq.

(6.25) provides the solution of the energy equation, Eq. (6.7a).

A combination of Eqs. (6.23) and (6.7b) results in
gy (t) + Gc(8) gylt) = Gy(E) (6.26)

The {integral functins -615(5) and 016(5) appearing in Eq. (6.26) are defined

in Appendix C. These, however, can be evaluated easily with the results
6,c(8) = [M/(E-£2)102 + (25-1) nl(2-1)/2)) (6.27a)
6,6(8) = 2 [M,/(-62) 101 + & n((E-1)/ED) (6.270)
The solution of Eq. (6.26) is found to be
g4(t) = [g(0) - G, (E)/G,(E)] expl- G 5(E)t] + Gy (8)/6,(E) (6.28)

where again g(0) is defined by Eq. (6.12). A combination of Egqs. (6.23),
(6.27) and (6.28) provides the solution of the energy equation, Eg. (6.7b).

The only parameter appearing in the solution of Eq. (6.7b) is M;.

The expessions for the nondimensional heat flux in this case is obtained

from a combination of Eqs. (6.8) and (6.23) as
Q(g,t) = 1 - G17(§) 93(t) - 618(5) (6.29a)
and Q(g,t) =1 - Glg(a) 94(t) - GZO(E) (6.29b)

where 617(5) through 620(5) are deffned in Appendix C and can be evaluated
in closed forms. The corresponding expressions for the radiative heat flux at

the lower wall are found from Eqs. (6.9) and (6.23) as
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where again Gy; through Gy, are defined in Appendix C and are not functions of
E.
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7. RADIATIVE INTERACTION IN LAMINAR FLOWS

The physical system considered is the energy transfer in laminar, in-
_compressible, constant properties, fully-developed flow of absorbing-emit-
ting gases between parallel plates (Fig. 7.1). The condition of uniform
surface heat flux for each plate is assumed such that the temperature of the
plates varies in the axial direction. Fully developed heat transfer is
considered, and axial conduction and radiation is assumed to be negligible
as compared with the normal components. Consistent with the constant prop-
erties flow, the absorption coefficient is taken to be independent of temp-
erature and radiation can be linearized. Extensive treatment of this prob-
lem is available in the literature [23, 41]. The primary motivation of
studying the problem here is to investigate the extent of radiative inter-

action for high temperature flow conditions.

7.1 Basic Formulation
For the physical problem considered, the energy equation, Eg. (4.1),

can be expressed as [8]

pCp (EI.+ udl sy 313 =k 2T gy 9 u(iﬂjz-diqu (7.1)
at ax 3y 3y? dx dy

where u and v denote x and y components of velocity, respectively. In de-
riving Eq. (7.1) it has been assumed that the net conduction heat transfer
in the x direction is negligible compared with the net conduction in the y
direction. This represents the physical condition of a large value of the
Peclet number. By an analogous reasoning, the radiative heat transfer in
the x direction can be neglected in comparison to that transferred in the y

direction. If, in addition, it is assumed that the Eckert number of the
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flow is small, then Eq. (7.1) reduces to [8]

2 3q
£+u£+v.a_[=aar 1 R (7.2)

at ax ay ay? pCp 3y

where a = (k/pcp) represents the thermal diffusivity of the fluid.
For a steady fully-developed flow, v = 0, and u is given by the well-

known parabolic profile as
u=6u (£-82);6 =yl (7.3)

where Up represents the mean fluid velocity. Also, for the flow of a per-

fect gas with uniform wall heat flux, aT/ax is constant and is given by
3T/ax = (Zaqw)/(umL/k) (7.4)

Now, by combining Eqs. (7.2) - (7.4), the energy equation is expressed in

nondimensional form as

+

- 2
3_3(?) 12(5 - 52) = ?_.l - 1_____ (7.5)
3t 3t2  q  3E

where

Tt =at/L2 ;8 = (T - Tl)/(qu/k)

The expression for aqR/aa in Eq. (7.5) is obtained from either Eq. (3.22) or
Eq. (3.24).
By assuming that the initial temperature distribution in the gas is
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some uniform value T, = T,, the initial and boundary conditions for this

problem can be expressed as

e(e, 0) =0 (7.6a)
8(0, 1) =06 (1, 1) =0 (7.6b)
eE(s =1/2) =0 ; eE(e =0) = - eg(e = 1) (7.6c)

It should be noted that all the boundary conditions given in Egs. (7.6) are
not independent and any two convenient conditions can be used to obtain
solutions. Also, the initial temperature distribution can be any specified
or calculated value of 8(¢, 0) = f(&).

For flow problems, the quantity of primary interest is the bulk temper-

ature of the gas, which may be expressed as [41]
1
op = (Tp-T1)/(q,L/k) = 6 o(k, ) (5 - &%) d (7.7)

The heat transfer qy is given by the expression, 9, = hc (Tl-Tb), where hc
is the convective heat transfer coefficient (W/cm2-K). In general, the heat
transfer results are expressed in terms of the Nusselt number Nu = hc Dh/k.

Here, D, represents the hydraulic diameter, and for the parallel plate geom-

h
etry it equals twice the plate separation, i.e., Dh = 2L. Upon eliminating
the convective heat transfer coefficient hC from the expressions for a, and
Nu, a relation between the Nusselt number and the bulk temperature is

obtained as

Nu = 2 qu/k(Tl-Tb) = -2/8b (7.8)



38

The heat transfer results, therefore, can be expressed either in terms of Nu

or eb.

7.1.1 Steady Laminar Flow

For steady-state conditions, 38/3t = 0 and €q. (7.5) becomes
8" - 12 (e-£%) = (1/q ) dq,/de (7.9)

By integrating Eq. (7.9) once and using the conditions that at ¢ = 1/2,
qR(e) and (de/de) are equal to zero, one obtains

8' - 2(382 - 3) +1 = ax(€)/a,, (7.10)

The expression for qR(E) in Eq. (7.10) is obtained from either Eq. (3.21) or
Eq. (3.23).

For the present physical problem, e, = e, and Flwi = FZmi' Thus, for
the case of linearized radiation, a combination of Eqs. (3.21), (5.2a), and
(7.10) results in

8' - 2 (352 - 263) + 1

n
=3
i=

Hyouo (08 ager) B3 u, (£-£1)] d
. 11%i Y it; o1

1

- fl o(c') K [3-u01 (£'-)] de'} (7.11a)
£ 2

A combination of Eqs. (3.23), (5.2a), and (7.10) gives an alternate form of

the energy equation for the steady case as
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6" - 2(32 - 23) + 1
n
um gl S5 (do/der) B2 g (5-61)] ae
= 2
v f (de/de) A, [S'UOf(E"E)] de '} (7.11b)
£

Note that this equation can be obtained directly by integrating the left-
hand side of Eq. (7.11a) by parts, Equations (7.11) provide two forms of
the energy equation for the steady-state conditions.
For the case of negligible radiation, Egs. (7.11) reduce to
8' =2 (382 - 2e3) .1 (7.12)
The solution of Eqs. (7.12) is found to be

0(€) = £ (282-¢3.1) (7.13)

Thus, a combination of Egs. (7.7) and (7.13) gives the result for the bulk

temperature for the steady case with no radiation as

- 8y, = 17/70 (7.14)

This result is useful in determining the extent of radiative contributions.

7.1.2 Transient Radiative Interactions

For the transient case, a combination of Egs. (3.22), (5.2a), and (7.5)

gives the energy equation for the 1inearized radiation as
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o, ., - - 3Ne - 12 (g-£2)

113

6

T
3 (k) 2 Hysudo 5 a(e*, v) A Ei un:(g-¢')] de'
s (TRLE Mgl F1elet 1) AY [ ugg

-+

e, ) Ay E% ug; (£'-€)] de*} (7.15a)
13
where

N = (PL2/K) K, = (PL2/K)

-t
™3
—

Si(T) (demi/dT)Tl

Note that this definition of N is slightly different than the definition of
N, in Eq. (5.4c). The dimensionless gas property N characterizes the rela-
tive importance of radiation versus conduction’within the gas under opti-

cally thin conditions [23, 41]. Also, by combining Eqs. (3.24), (5.2a), and

(7.5) another form of the transient energy equation is obtained as

@
]

. p2
ge -9, - 12 (£-£2)

30K 1 Hu {r%a8/0e") & (2w, (£-6')] de*
” Ey Mivos 11 i 5 Yo

f (30/26") Ry 53 ugy (£'-6)1 de) (7.15b)

Note again that Eq. (7.15b) can be obtained directly by integrating the
left-hand side of Eq. (7.15a) by parts. Quite often, Eq. (7.15b) is the
convenient form to use in radiative transfer analyses.

For the case of negligible radiation, N = 0 and both forms of Eq.
(7.15) reduce to



4]
- = _£2
Bep - O, 12 (£-£?) (7.16)

By employing the product solution procedure, the solution of Eq. (7.16) can
be obtained and the result can be expressed in terms of the bulk temperature
through use of Eq. (7.7).

The solution of Eq. (7.16) is assumed to be of the form
o(g,t) = g(g) + h(g,7) (7.17)
From Eqs. (7.16) and (7.17), there is obtained two separate equations as
9" = 12(£-£2) (7.18)
h _-h_ =0 (7.19)
The solution of Eq. (7.18) is obtained by direct integration as
g(g) = £(282-¢3-1) (7.20)
This is the same result as given by Eq. (7.13) for the steady case if g(&)

is replaced by 6(£). The solution of Eg. (7.19) is found to be (see Sec.
7.2)

h(g,r) = 21 Ch sin (nng) exp[-(nn)2r] (7.21a)
n=

where
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1
Cn =-2f g(g) sin(ng) dg, n = 1,2,... (7.21b)
0
Thus, the complete solution of Eq. (7.16) is given by
0(E, v) = ¢ (26243 -1)
n
+ I C_sin (a) exp(-a2t) ; a = py (7.22)
n=p N
The expression for Cn s obtained from Egs. (7.20) and (7.21b) as
Cn = (4/8%) [12 - 1242 + a*) cos(a) - 28] , n = 1,2,.... (7.23)

where a is defined in Eq. (7.22). By combining Eqs.

(7.7) and (7.22), the
éxpression for the bulk temperature is obtained as

8y = -17/70 + ¢ El Cn ((1/a) + (4/23)] exp (-a2¢) (7.24)
n‘.'

where Cq s given by Eq. (7.23),

7.2 Optically Thin Limit
In the optically thin Timit, the steady-

state energy equations, Eqs,
(7.11a) and (7.11b), reduce to

8' - 2(32-263) 4+ =§ N[fj 8(t') de* - [: 8(£') de') (7.25a)

8' -2 (32-23)4 1 . 3

UF (6-6') (do/de" )ae
2 0
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+ Il (e'-€) (de/dg')de’ (7.25b)
£

The differentiation of Eqs. (7.25a) and (7.25b) yields the same energy

equation for the optically thin limit as
8" - 3Ne = 12 (£-£2) (7.26)

The solution of Eq. (7.26) satisfying the boundary conditions 8(0,t) = 0 and
8(l,t) = 0 is found to be

6(£) = (16/3@) [sinh(-¥ 3N/2)/sinh (Y 3N)] cosh[y 3N (-1/2)]
+ (4/N)(g2-¢ + 2/3N) (7.27a)

Alternately, the solution of Eq. (7.26) is written as

6(t) = €, exp (Ymg) + C exp (-ym £)
+ (1/m2) (24-12 me + 12 mE2) ; m = 3N

The constants C, and G, are obtained by using the boundary conditions 9(0) =
0 and 8'(1/2) = 0, and the solution for 6(g) is found to be

o) = (1/m2) [-20/(1+eN™] (e VP V™ & 4+ e VT E)

+24 - 12m¢g + 12 m g2} (7.27b)

Equations (7.27a) and (7.27b) should produce identical results. The

expression for the bulk temperature, in this case, is obtained by combining



44

Eqs. (7.7) and (7.27b) as

o = 220 [(1-eV™/(1eeN ™)) - 288,28 12 (7.28a)
m?/2 m?3 m2  5m
or
-1/2
eb = [1/(3N)3] {576(3N) (NEXP) - 21.6N2 + 72N - 288} (7.28b)
where

NEXP = [1-exp [-(3N)l/2]}/{1 + exp(‘(3N)l/2]}

In the optically thin 1imit, the transient energy equations, Eqs.
(7.15a) and (7.15b), reduce to

8,_.-0_ - 3N0 = 12 (£-£2) (7.29a)
£EE 1

e, -0 - - g2
ge -0, - 125 - €2)

= g.n [[: (30 /3¢ )de ' - fl(ae/as') dg'] (7.29b)
£

Note that Eq. (7.29b) is identical to Eq. (7.29a).
The solution of Eq. (7.29) s assumed to be of the form

0(E,t) = g(g) + h (g,1) (7.30)
Thus, Eq. (7.29) can be written as

- - = - - E2
hEE h - 3N %e * 3Ng + 12(¢ - £2) (7.31)

Consequently,
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g" - 3Ng = 12(¢ - £2) (7.32)
and

hee = hy - 3N =0 (7.33)

The conditions for Egqs. (7.32) and (7.33) are obtained from Eq. (7.6) as

8(0,t) = h(0,) + g(0) = 0; h(0,r) = 0, g(0) = 0 (7.34a)
8(1,r) = h(1,x) + g(1) = 0; h(1,t) = 0, g(1) = 0 (7.34b)
8(£,0) = h(g,0) + g(¢) = 0; h(¢,0) = - g(¢) (7.34c)

The solution of Eq. (7.32) satisfying the boundary conditions given by
Eqs. (7.34a) and (7.34b) is identical to the solution of Eq. (7.26) as given
by Eq. (7.27) if 6(¢) is replaced by g(g), i.e.,

9(e) = (16/3%) [sinh (- Y3N/2)/ sinh(y 3N)] cosh [YIN (£-1/2)]
+ (4/N) (€2 - € + 2/3N) (7.35)

The solution of Eq. (7.33) is obtained by using the product solution

procedure and implying the conditions h(0,7) = h(1, ) = 0 and h(g,0) =
-g(€). For the product solution, it is assumed that

h(g,t) = F(g) 6(x) (7.36)

By using Eq. (7.36), Eq. (7.33) is separated into two ordinary differential

equations which are expressed along with appropriate conditions as

F*+22 F=0;F(0) =0, F(1) =0 (7.37)



46

6+ (3N +22) 6=0; h(£,0) = 6(0) = g(&)

(7.38)
The solution of Eq. (7.37) is given by
Fn(e) = sin (meg), n = 1,2,...
and the solution of Eq. (7.38) is found to be
Gn(r) = C, exp {- [3N + (nn)2] 1}
Thus, the complete solution of Eq. (7.33) is
h(g,t) =n£1 Cn sin (nng) exp {-[3N + (nn)2]<] (7.39)
where

C, = -2 f: g(£) sin (nwg) de, n = 1,2,... (7.40)

Now, the solution of Eq. (7.29), as expressed by Eq. (7.30), is written as

8(&,t)

+

(16/3%) [sinh (-4 3N/2)/ sinh(y 3N)] cosh [ N3N (£-1/2)]
(4/N) (52 - £ + 2/3N)

+ ;l Cn sin (nwg) exp{-[3N + (nv)2]7} (7.41)
n=

From Eqs. (7.35) and (7.40), it follows that
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C =0 » for n even (7.42a)

32[3N+(nw)2]/[3N2(nw )3 ] +2(nw)/{3N2[3N+(nw)2]}, for n odd (7.42b)

By combining Eqs. (7.7) and (7.41), the expression for the bulk

temperature is obtained as

8, = 6 { (16/38)[sinh(- Y 38/2) /sinh( 3N) IL(1/3N) cosh( Y 3n/2)

- (4 +\[3§3 (3n)-3/2 sinh(\[§§72)] + (4/N)[-1/30 + 1/(9N) ]
+ ; Ch [1/(nw) + 4/(nm)3] exp[-(3N + n2n2)r ]} (7.43)

n=1

where C. is given by Eq. (7.42).

7.3 Llarge Path Length Limit
In the large path length 1imit, the steady-state energy equations, Egs.
(7.11a) and (7.11b), reduce to
0' - 2(362 - 263) +1 =M fl 8(c') de'/(g - ¢€") (7.44a)
0' - 2(3t2 - 263) + 1 i

n
E t 3 ' ]
= (L/k) I Hyylf, (de/de’) ’"[E'"o1(5 - ') ]de

+ f;(de/dt') tn [g-uo,(s' - £)] dg! (7.44b)

where

n
M=HL/k = (L/k) fil Am(dem/dT)Tl (7.44c¢)

Through integration by parts, it can be shown that Eq. (7.44b) reduces to
Eq. (7.44a). The parameter M in Eq. (7.44c) is defined differently than M,
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in Eq. (5.4e). The nondimensional parameter M constitutes the radiation-
conduction interaction parameter for the large path length limit [23, 41].
Equation (7.44a) does not appear to possess a closed form solution; a
numerican solution, however, can be obtained easily.

In the large path length 1imit, the transient energy equations, Egs.

(7.15a) and (7.15b), reduce to

B - 0. - Mo - 12 (£ - £2)
= < (LK) [ Falene) dg'/( - €992 + [, alg's) de'/(e" - £)?] (7.450)

8gr - 0 - 12 (£ - £2) = (HL/K) f; (30/36 ' )de /(& - €)  (7.45b)

Since |(£-£')2|=|(£'-£)?|, Eq. (7.45a) can be written as

8 _ -6 - 3N - - g2
ce L 12(¢ - £?)

1
= - (HL/k) fo 0(E',T) dE'/(E - E)2 (7.45¢)
Through integration by parts, Eq. (7.45c) can be expressed as

8pp - 0. - N6 - 12 (¢ - £2) = (HL/k) f: (de/3¢') de'/(g - &') (7.45d)

EE
Equations (7.45a) - (7.45d) represent different forms of the governing equa-
tions in the large path length 1imit. With the exception of the term (-3Ne)
on the left-hand side, Eq. (7.45d) is identical to Eq. (7.45b). Since N
represents the radiation-conduction interaction parameter only in the

optically thin limit [23], it should not appear in the governing equation
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for the large path length 1imit. Thus, Eq. (7.45b) is the correct equation
to use for solution in the large path length limit; the solution of this

equation is obtained by numerical techniques.

7.4 Method of Solution

The solution procedures for both steady and unsteady cases are pre-
sented in this section. In principle, the same numerical procedure applies

to both the general and large path length 1imit cases.

7.4.1 Steady-State Solutions

The general solution of Eq. (7.11a) or Eq. (7.11b) is obtained numer-
ically by employing the method of variation of parameters. For this, a

polynomial form for (&) is assumed in powers of £ as

m
a £ (7.46)

&2

8(g) =
m=0

By considering a five term series solution (a quartic solution in £) and
satisfying the boundary conditions 6(0)=0'(1/2) = 0 and 8'(0) = -0'(1),

one obtains

0(g) = ay(E - 263 + %)+ ap(82 - 263 + £%) (7.47)

Thus,

8'(g) = aj(1 - 662 + 4g3) + a, (2 - 6g2 + 4g3) (7.48)

A substitution of Eq. (7.48) in Eq. (7.11a) results in

a1 (1 - 662 + 4g3) + ap (% - 652 + 4€%) - 2(36% - 26%) + 1
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3(/) : (15 o ) B2 u, ) 1d

= —(L/k) £ Hy,u o(e') A[=u, (6 - ") ]de’

> P U JLE it7 Yo

-J';e(e')l; [%um(s' -€)] de') (7.49)

where expressions for 8(t') are obtained from Eq. (7.47).

The two unknown constants a; and a, in Eq. (7.49) are evaluated by
satisfying the integral equation at two convenient locations (£=0 and ¢ =
1/4 in the present case). The entire procedure for obtaining ajand a, is

described in Appendix E from which it follows that

a; = (lla, - 16 a,)/DEN (7.50a)

3 = (16 a3 - lla;)/DEN (7.500)
where

DEN = 16 (aya, - ajaj) (7.50c)

and coefficients a; through a, are defined in Appendix E.
Now, with known values of a, and a,, Eq. (7.47) provides the general
solution for 6(¢). The expression for the bulk temperature is obtained by

combining Eqs. (7.7) and (7.47) as

eb = (1/70) (17&1 + 382) (751)

Note that for the case of no radiative interaction a3, a3, and ay, are equal

to zero anda; = 1. Thus, a, = 0 and a = -1, and Eq. (7.51) gives the
result of Eq. (7.14).

The governing equation for the large path length limit is Eq. (7.44a).
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For this equation also the solution is given by Eq. (7.47) but the values of
a's are completely different in this case. There are two approaches to
obtain solutions in the large path length limit. One approach is to make
use of £q. (7.44a) and go through the entire numerical procedure described
in Appendix E for the general solution. Another approach is to work with
the general solution but evaluate all Ri and Si integrals of Appendix E in
the large path limit., In the large path length 1imit, the integrals can be
evaluated in closed forms. Both procedures are described briefly in Appen-
dix E. In order to distinguish the large path length 1imit solution from
the general solution, constants a, and a, are replaced by b, and b,, and
coefficients q; through q, are replaced by g, through g,. The solution for

the large path length limit, therefore, is given by

olg) = by(g-263+c%) + by (E2-234%) (7.52a)
where
b, = (118, - 16g, )/BOTTOM (7.52b)
b, = (1683 - 118, )/BOTTOM (7.52c)
BOTTOM = 16(8,8, - B283) (7.52d)

and coefficients g, through 8, are defined in Appendix E. For this case,
the bulk temperature is given by

8, = (1/70) (17b; + 3b,) (7.53)

Note that in this case the value of coeffients g, through g, are obtained in

closed form.
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7.4.2 Transient Solutions

The governing energy equations for the transient case are Eqgs. (7.15a)
and (7,15b). As in Sec. 6.3, general solutions of these equations are
obtained numerically by employing the method of variation of parameters.

For the present problem, a polynomial form for 8(g,t) is assumed as

n
8(gst) =1 a () ¢" (7.54)
m=0

For a quadratic temperature distribution in £ (with time dependent coeffi-

cients), Eq. (7.58) is written as
8(E,7) = ag(t) + ay(r) € + ap(r) £2 (7.55a)
By using the boundary conditions 8(0,t) = 0 and e€(£=1/2) = 0, this reduces
to
8(g,1) = g(r) (£-£2) (7.55b)
where g(t) represents the time dependent coefficient. Consequently,
8. (€,7) = g(r) (1-2¢); 8eg(E47) = -29(v); 0_(£,1) = (¢-82)g'(x) (7.56)
Also, a combination of Eq. (7.6a) and (7.55b) yields the initial condition

8(£,0) = g(0) = 0 (7.57)

Note that essential boundary conditions are used already in obtaining the
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solution represented by Eq. (7.55b).
By employing Eqs. (7.55b) and (7.56), Eqs. (7.15a) and (7.15b) are

transformed in alternate forms which are expressed in a compact form as

JI(E)9
g'(r) + 3,(€) g(r) +12=0 (7.58)

where J1(g) and J,(g) are defined in Appendix F. The function J;(€) is used
for solution of Eq. (7.15a) and J,(¢) is used for solution of Eq. (7.15b).
The solution of Eq. (7.58) satisfying the initial conditions of Eq. (7.57)

is given by

glr) = 22 fexp [-d(£)e]-1} (7.59)
J(g)

The temperature distribution given by Eq. (7.56b) can be expressed now as

o(g,t) = -2 [exp [-(£)r]-1}(£-€2) (7.60)
J(E)

The expression for the bulk temperature is obtained through use of Eq. (7.7)

as
1 2
8, = 72 fo[(z-ez) /3(¢) N exp[-d(g)r]-1} (7.61)
Note that in Eqs. (7.59)-(7.61), J(¢) becomes J;(E) for solution of Eq.

(15a) and J,(g) for solution of Eq. (15b).
For a quartic solution in &, Eq. (7.54) gives the result identical to
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Eq. (7.47) which for the transient case is expressed as

6(g,t) = g(r)(g - 263 + £%) + h(t)(g2 - 283 + ") (7.62)

Thus,

8 (€,1) = (1 - 662 + 4g3)g(t) + 2(¢ - 3t2 + 2e3)h(1) (7.63a)
eEE(E,r) = 12( - € + £2) g(r) + 2(1 - 66 + 6E2) h(T) (7.63b)
8 (6,7) = (& - 267 + &%) g'(v) + (€2 - 263 + £%)h'(x)  (7.63c)

By substituting Eqs. (7.62) and (7.63) into Eq. (7.15a), one obtains

x g'(r) + J3(g) glr) + yh' + &(E) h(r) = - 2 (7.64)

where

x = (g - 23 +e"); y= (g2 - 263 +g4); 2z = 12(¢ - £2)

and functions J3(&) and & (&) are defined in Appendix F. Equation (7.64)
constitutes one equation in two unknowns, namely g(t) and h(t). However,
since the equation is 1inear in t, the principle of superposition can be

used to split the solution into two solutions as

-2/2 (7.65)
-2/2 (7.66)

x g'(t) + J3(&) g(r)
yh'(t) + J,(g) h(x)

The initial condition for this case can be written as

0(£,0) = g(0) (¢ - 26 +€3) + h(0)(£2 - 263 + %) =0 (7.67a)
Consequently,

g(0) = 0; h(0) =0 (7.67b)
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The solution of Eqs. (7.65) and (7.66) satisfying the appropriate
initial condition of Eq. (7.67b) is given respectively as

[z(g)/20;(g)] {exp[-ds (& )r/x(£)]-1} (7.68)
Cz(g)/23, ()] {exp[ -9, (g)1/y(£)]-1} (7.69)

g9(t)
h(t)

By substituting Eqs. (7.68) and (7.69) into Eq. (7.62), the expression for

the temperature distribution is obtained as

8(E,v) = [6(g-62)(£-263+6")/d3(g) ) exp[~Jy (£ )t /x(E)]-1}
+ [6(-€2)(g2-2634") /3, (£) Yexp[ -, (€)x/y(£) ]-1}  (7.70)

The bulk temperature in this case is given by

8y = 36 f: [le - €2)(g - 263 + ¢4)/3s(e) Y exp[-Js (8 )7/x(E)] -1} &

+ 36 f:[(e - £2)(g2 - 263 + %)/ (g) N expl-d& (E)r/y(E)]-1} dE (7.71)

where x and y are defined in Eq. (7.64).
By substituting Eqs. (7.62) and (7.63) into Eq. (7.15b), there is

obtained
xg' + Js(g) g(r) + yh' + Jg(€) h(T) = -z (7.72)

where again x,y,z are defined in Eq. (7.64) and functions Js(g) and Jg (%)

are defined in Appendix F. The solution procedure for this equation is
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identical to that for Eq. (7.64) and the results for temperature distri-
bution and bulk temperature are given respectively by Eqs. (7.70) and (7.71)
with J, replaced by J; and J, by Jg -

In the large path length 1imit, the two applicable governing equations
are Eqs. (7.45b) and (7.45d). The solutions of these equations can be
obtained from the general solutions by evaluating the integrals in J
function in the large path length limit.

Alternately, for a quadratic temperature distribution, Eqs. (7.45d) and

(7.45b) are transformed respectively to

g'(r) + j;%g” g(x) +12 =10 (7.73)

where J (&) and Jg(§) are defined in Appendix F. The solution of Eq.
(7.73) is given by Eq. (7.59) and expressions for 6(£,r) and 8, can be

obtained from Eqs. (7.60) and (7.61) respectively. Of course, proper care
should be taken to use the correct relation for J functions for different
equations. The large path length limit solutions for a quartic temperature

distribution can be obtained in a similar manner.
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8. PLANS FOR SPECIFIC RESULTS

Some specific results have been obtained and these are being analyzed.

The present plans are to obtain extensive results for the following cases with

varying physfcal and flow conditions:

A'

Physical Geometries

DB W N =

Parallel Plates: One-Dimensional Radiation

Parallel Plates: Two-Dimensonnal Radiation

Diffusing Channel Flow: One- and Two-Dimensional Radiation
Channel Flow: Top Plate Flat, Bottom Plate with a 5-15° ramp
Scramjet Inlet Configurations

Radiative Interaction Cases

1.
2.

3.

4.
5.
6

.

Transient Radiative Transfer in Homogeneous Gases

Transfent Energy Transfer By Radiation and Conduction in Homogeneous
Gaseous Systems

Transient Energy Transfer By Radiation, Conduction, and Convection in
Homogeneous Gaseous Systems

Applications to Flow of Homogeneous Gaseous Mixture

Applications to Flow of Chemically Reacting Gaseous Mixtures
Applications to the Scramjet Inlet Configurations.

Boundary Conditions

QU & W N =
.

Isothermal Black Boundaries
Isothermal Gray Boundaries
Nonisothermal Boundaries

Boundaries with Uniform Heat Flux
Actual Scramjet Inlet Configurations

Flow Conditions

GOV & WA -
* L]

Incompressible - Various Cases

Compressible - M_=0.5, 1, 2, 3, 4, and §
Temperature Range - 300, 500, 1000, 2000, and 5000 K
Pressure Range - 0.1, 1, 2, 5, and 10 atm.

Realistic Conditions for Scramjet Inlet Flows

Participating Medium

* e o »

DONOO U &WMN =

CO0 - One Fundamental Band
C0, - Three Important Bands
8 - Five Important Bands
Oﬁ - One Fundamental Band
€0y + H,0 (Different Concentrations)
OH + H 5 (Different Concentrations)
OH + H + 0p + Hy0 (Different Concentrations)
A Real?stic Combustion Model for the Hydrogen Air System
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F. Specific Results

Nongray Solutions Based on Band-Model Correlations
Optically Thin Solutions

Large Path Length Limit Solutions

Gray Solutions

Nongray Solutions for Scramjet Inlet Flows

UV & W N
* * L] . .

The procedure developed in this study has been applied to several realistic
problems, This has resulted in various publications in forms of technical reports,
technical papers (presented at national and international conferences) and journal
articles. Results of selected studies are presented in appendices G through J.
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9. CONCLUDING REMARKS

A brief review 1is presented on various band models and band model
correlations that are wuseful 1in nongray radiative transfer analyses.
Different formulations for one-dimensional radiative flux are provided. These
are used to develop the basic governing equations for transient energy
transfer in gaseous systems. Limiting forms of these equations are obtained
in the optically thin and large path length limits. Numerical procedures are
described to solve the governing equations for different physical and flow
conditions. The plans for obtaining extensive results for different cases are
provided. The formulation and numerical procedure presented in this study can
be extended easily to multi-dimensional analyses. In the near future, the
influence of radiative interactfons will be investigated for the realistic

flow of hydrogen-air mixture in the scramjet inlet configuration.
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14,

15.

16.

17.
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APPENDIX A

EXPONENTIAL INTEGRALS AND EXPRESSIONS FOR RADIATIVE FLUX

64

Some important relations for the eaponential integrals are given in

Appendix B of Ref. 8; and it is noted that
/ En(t) dt = - En +1 (t); En(O) = 1/(n-1)
Now, consider the first integral in Eq. (3.1) as
d

T
I(l) = foA E2 (Tx-tnq

By defining x = T - t, dt = - dx, and Eq. (A.2) becomes

(1) = fjx Ep(x)(~dx) = [} E,(x)dx
= - [E3(x)]," = Es(0) - E5 (1,)
Thus,
1 N
Eg(tx) = E3(0) - I(1) = E' - fo Ez(tx't)dt

The second integral in Eq. (3.2) is written as

T
1(2) = f,:‘ Ep(t-r,)dt

(A.1)

(A.2)

(A.3)

(A.4)
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By defining x =t - T Eq. (A.4) is expressed as

12 = 10 E(xax = [Es(0)] @
= - [Ea(TOA-tX) = Ea(o)]
or
T
Ey ey ry) = E3(0) - 1(2) =-% L Bl (A.5)

A substitution of Eqs. (A.3) and (A.5) into Eq. (3.1) results in (for

the case B3 = e;x and B, = e,)

dra = €1y - €2

T
22 {1, Teyy (1) - enn] Eaolr,-t) dt}
T
-2 UT:* [ep, (t) - enn]Ey(t-r,)dt} . (A.6)

This equation when expressed in terms of the wave number w 1is exactly the
same as Eq. (3.4). Following a similar procedure, Eq. (3.5) is obtained

from Eq. (3.2).
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APPENDIX B

ALTERNATE FORMS OF RADIATIVE FLUX EQUATIONS
In radiative formulatinns, it is desirable to express the relations for
q. and div g, fn terms of A and KJ, and avoid the use of R . This
fs accomplished by expressing the integrals containing KJ and K in
alternate forms through the procedure of integration by parts. This is

performed by using the relation
b - b b
fa mdn = (mn)a - /a n dm . (8.1)

Consider now the first integral in Eq. (3.21) and express as

BI(1) = [SF ) (¢) K'rzi ugs (E-€')] de' (8.2)

For integration by parts, let

rn=Fw;dn=K'[§uo(&fW]dg'.
Then,

dm = (dF,u/de') de' = (de/de’) de' .
In order to get n, let

3 ' Vo
us= E-uo (e-¢'), du/de = - 3 u°/2

and

dn

[dA(u)/du] de* = [dA(u)/de’ x dg'/du] de’

- (2/3uy) [d A(u)/de'] de* = (- 2/3u,)dA(u)
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Thus,
n = -(2/3u ) A(u) = -(2/3u,)A [.3 ug(E-€")]

Consequently Eq. (B.2) can be written as

2 2 3
BI(1l) = Fyw - £ _R(0)] - F,w(0) [- = A (=
(1) 1w (g)] e (0)] 1w (0) [ u, (2 uy €)]

* —2——ff, [de (£')/de*] A *32“0 (-¢')]de’ (8.3)

3uo
Note that by the definitions given in Egs. (2.2) and (2.8), A(0) = 0. In
the present case, only the definition given in Eq. (2.8) is acceptable for
KIO) = 0. Also by definition, F,w(0) = 0. Thus, Eq. (B.3) reduces to

BI(1) = (2/3u,) If, [de (£')/dg'] A [—:- ug(6-€')]de" (8.4)

The second integral in Eq. (3.21) is written as

B1(2) = (2/3u,) [ [de, (") T [ u, (&"-6)]ae" (8.5)

Let,

m = Fu; dn = W'f% u,(g'-g)]de’
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Then,
dm = (dF, /dg')dg’ = (de /dg')de’
Now, to get n, let

- 3 ' Voo
u .E uo(s -£), du/dg' = 3u0/2

and

dn = [dK(u)/du]dE' a [diku)/de' x dg'/dulde’

(2/3uy)[dA(u)/dg’ ] dg* = (2/3u,) dA(u)

Thus,

3
"

(2/3u,)A(u) =(2/3uo)‘A'[§ u (£ -£)]

Consequently, Eq. (B.5) is expressed as

B1(2) = Fpu(1) {(2/3u ) K f% uy(1-6)]}-{Fpu(g) [(2/3u)) A(0)]}

- (2/3u;) [, [de,(e")/ae') R [2u (6"-6)] de (8.6)
2

Since, by definition, Fzm(l) =0 and A(0) = 0, Eq. (B.6) reduces to
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B1(2) = - (2/3uy) [ [de (5')/de'] R 2, (67-6)] g (8.7)
11 .

By use of Eqs. (B.4) and (B.7), the integrals in Eq. (3.21) can be

expressed in alternate forms and this results in Eq. (3.23).

Consider now the integrals in Eq. (3.22); the first integral is written

as

BI(3) = [5 Fy(e") A L:. U, (e£)] de* . (8.8)

For integration by parts, let
“". - ll3 . ,
m = Fy (¢'); dn = K'[E'Uo (g-& )] de
Then
dm = (dFy,/de') dg'. = (dew/dg') de’

As before, to obtain n, let

3
us= E.uo(g-g'), du/dg' = - 3u,/2

and, therefore,
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dn = L [dR(u)/du] e
du

4 gg-'fdi(u)/du] de *
dg' du

d{ (-2/3 uo)raK(u)/au”

Thus,

e ]
[}

(-2/3u°) Kd(u) = (-2/3 u,) K'[g-uo (-€')]

and Eq. (B.8) can be written as

B13) = {Fro (213 u) B [0, (6601

- 3 (=213 u,) K'[-:— ugle-€')] }dFu(e')/de*] dg (B.9)
Since Flw(0) = 0 and KJ(O) =1, Eq.(B.9) reduces to
BI(3) = (2/3u,) {-Frule) + f5 [de (e')/ce"] A°[§-uo (6-€')]de'} (8.10)
Similarly, for the second integral in Eq. (3.22), one can find
! 1 T3 ) [l
BI(4) = [, Fou (g') A [E-u0 (€'-€)] de

= 23 (Fe) + [ [de, (600 ) B2 u (e-0)]dg'}  (s.11)
2
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A substitution of Eqs. (B.10) and (B.11) in Eq. (3.22) results in Eq.

(3.28). Also, a differentiation of Eq. (3.23) with respect to ¢,

the Leibnitz formula, gives

dg () n de . (&)
T Ay [~ " ®o0) -0
de i=1 de
3u g de .(£') ,
+ ol ol R 3 u, (g)] de
> Io{ prale [2 0i ]

de
+ 0 -_“il(_i)_ﬁi(O)
de

3u de (')
oi (1 “Cui "3
- f R[Zu_.(g']de'}
) & de ! i 2 of

Since A(0) = 0, Eq. (B.12) reduces to Eq. (3.24).

by using

(8.12)
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APPENDIX C

DEFINITION AND EVALUATION OF INTEGRAL FUNCTIONS
For the convenience and use in the computational procedure, the follow-

ing definitions are employed in expressing the relations for the integral

functions:
bi = 3u01/2
c; = 1/b1 = 2/3uoi
Clg) = 1/(g-2)
3
r = l/(UTl)

Various integrals are defined and simplified as follows:

Gy(g) = Clg) (3N (£-€2) +

n
9 2 E [N |2 " ! [
'Ton "t U (8" ) B [b; (5£)] a

+ f; (£'=£2) A" [by(£'-)] de'}) (C.la)

= C(g) (M (5-82) +

3 n b1£ "
+.E 151 My Yo {fo [E-ciu-£2+2£c1u-(c1u)2]'I (u)du

b1(1‘£) 2
+f [€+c1u-£2-25c1u-(c1u) JA" (u)du}) (C.1b)
0



G, () = Clg) (JNl(é" £2)

| ©

n 1]
v ok (M (15 & Ay Toylee)]ae

vy €51 By [by(e-)]de "))

= Clg) (3N, (1E -£2)

3 I by¢ !
T3, Mot Mo [E7-2 cqut (cqu)f] Ry (u)du
bi(l‘E) "
+ fo [e2 + 2 c; u+ (cqu)? -1] I} (u) du})

n I
C(e) (.;’. Dowg 15 2 B Iog(e2)]ae

Ga(€)

fo (1-2") &y [by (£'-6)]de"))

n biE
C(E) (1y 1 Mli {IO [1'25 + 2 C1U] I}(U)du

b,(1-¢) .
-1, [1-2 - cqu] & (u)du})

n [
G (6) = C(8) (-3 My, (5 € Ay [by(E£")]as®

- I3t R oy (6r-)]ee'))
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(C.2a)

C.2b)

(C.3a)

(C.3b)

(C.4a)



b

n E 1
=) (- 21 My (7," [ecul T (u) du

bj(l'E)

e [e + cyu] Aj(u)du})

n '
Gs (&) = (3r/8) 1Y1 Uos My {fg (ere’) Ay [by(g-£1)]de

- I; (6" 7ﬁ [by(£-€')]de"}

n biE 2,
= (r/8) 1§l Hy {fo [E'ciu -E2 + 2gcu-(c,u) ] Ai(u) du

0
6g(€) = (3 1/8)

+f;(1£'

!bf (1‘5)

[g+c1u-£2 - 2cyu -(ciu)z]'ﬂ;(u) du}

n

E 02 —0 ' 1
izl ugs Hyy g &' A} [by(e-£")]de

“) By b, (e1-€)] et}

b.k

n '
S0/ T onyfy (22 cu (2] K (o) do

bi(l-E)
+ Io

[1-£2-2¢ cyu - ciu)z] K;(u) du}
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(ca.b)

(C.sa)

(C.5b)

(C.6a)

(C.6b)



n
&(8) = (ru) E My {15 (1-2) &, Tby(e£")] ot

’IEI (1-*) Ii “%(E"E)] dt '}

= (r/6)
i

w e

bi(l'E)

-[0

b,g

| (H“,uoi) {[0i (1-2¢ + 2c1u) Ki(u) du

(1-2¢ -2c1u) 1'1 (u) du}

n
Ge(E) = (T/4) R {If) (26°) Ay [by(s£') o6

'f: (ZE')K] [b1(5"‘5)] dg '}

= (r/6)

n

E
i=

bi(l'E)

-IO

biE
I(Hli/uoi)”o (2¢ - 2c1u) Ai (u) du

(2 + 2c1u) 'A'i(u) du}

n

B = (3r/8) E ugy Hyy {f:, (6'-£'2) Ay (by&') d&'}

= (r/4)
{

n
£

b ‘
Hyy Uoi [ciu - (ciu)"’] I1 (u) du}
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(C.7a)

(C.7b)

(C.8a)

(C.8b)

(C.9a)

(C.9b)



76

n 1 -
Go = (3r/8) 1Z=1 ugy Hyy 1fy (1£7) A} (bye") d&'} (C.10a)
n b,‘ )
= (r/4) iz=l Hy ”o (1-cyu) K, (u) du} (C.10b)
n 1 -
Gy = (T/4) 1721 Hyj (g (1-Z') Ay (by&') d&'} (C.11a)
n t:o1
= (r/6) 111 (Hyy 11y (1-2 cju) & (u) du} (C.11b)
n 1 -
Gz = (1/4) ) (Hyy/ug0) {f, (') Ay (by &) &) (C.12a)
" b
= (r/6) T (Hyy/ugy) (1} (2 ¢y w) K (u) du} (C.12b)
E [} 12 dE'
G3 () = Cle) {3 (e-g2) - M [[ (6 -6 ) —
(- )2
L. 2 de’
+f (e -¢') ]} (improper) (C.13)
£ (§'-£)2
6ru (g) = Clg) {3 (1- 2) v [f, g2 %
e (€ £) {3 7 ¢ h Ly G )
l )
e (€2 - 1) de 1} (improper) (C.14)

(' - &)



dg’

1
G = C(€ 1-2¢"
15 (6) =t CE) [o (12 2

=M CE) {2+ (22-1) tn [(E-1)/E]}

de’
(eg')

1
Gg (g) = -2M Cle) [, &'

2 M CE) {1 +& en [(E-1)/8]}

dg'

1
(rH,/8) [+ (' '2)
P o T

G, (¢)

(T4, /8) {-§+ £ - (€ - £2) an [(e-1)/g])
dg’ 1 4

f ¢ ] (improper)
(') & (e-¢'")

Gyg (g) = (rH,/4) [f; £'?

Gg (8) = (F/4)

-t
weos3
—

Hy4 {is (1-2') tn [b (E£")]de"

+ f; (1-2*) ¢n [by (g'-€)] de'}

= (rH, /8) {-;u + (g2-¢) an [(1-g)/e])

n
Go (£) = (T/4) T Wy {15 26+ tn [by(e-£")] 4t
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(C.

(C

(C

(C

(C

(C.

(C

(C

15a)

.15b)

.16a)

.16b)

.17a)

17b)

.18)

.19a)

.19b)



+ j; 26’ tn [b1 (g'-€)] de'}

(r/4) (Hy{g2 ¢n [g/(1-g)] - € - %ﬂ

+

n
121 Hyy tn [bi(l'i)])

1
(TH1/8) [q (E'-E'2) de'/E' = (TH/8)

P

$

1
(rh /4) [, (1-€'2) dE'/E°
- (rH,/4) [%.+ en (0)) (improper)

n 1
(r/a) 121 Hip fo (1-261) tn (by &) dE

G23

- (I' Hl/B) = - Hl/(&!Tla)

n 1
Gy = (T/4) 121 Hyj [o 26 tn (by ') dE

n
= (r/8) [- (#/2) +121 Hyy 20 (by)]
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(C.20a)

(C.20b)

(C.21)

(C.22a)
(C.22b)

(c.23a)

(C.23b)

(C.24a)

(C.24b)
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APPENDIX D

INFORMATION FOR NUMERICAL PROCEDURE

1. Data:
T = 300, 500, 1000, 2000, 5000, etc. ~ K
p=0.1, 1, 2, 5, 10, etc. ~ atm
L =1, 2, 5 10, 20, etc. ~ Cm
£+ x =00+ 1.0; x = U(I)

2. Thermal conductivity of the gas:
Kf = Kf (T, P) (u.1)

3. The Planck function and its derivative:

G
e, (T) = PF (0.2)
b exp (Co/T) - 1

dey,, . C1 C2 exp (C2/T)

= PFD (D.3)
dT T2 [exp (Cp/T)-1]2

where
C, = (2whc2 w?
C2 = (hc/k) w
C; C; = (2w h2 c3/k)w*

and w = W, Tw, = wave number center of the ith band.
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By defining
TEXP = exp(C,/T)

Eq. (D.3) is expressed as
PFD = (C,Cy) (TEXP)/L(T2)(TEXP - 1)2] (D.4)

A1l values in Eqs. (D.2) - (D.4) should be evaluated for each band.

4. Information or relation for Ao for each band, A0 = f(T).

5. Information on C02 for each band, Co2 = f(T).

6. Information on Uy for each band, U, = Co2 PL (nondimensional).
7. Information on B2(T) for each band (nondimensional).

8. Equivalent or effective pressure relation for each band.

Pei = [(p/po) + (Pi/Po) (bi - 1)]n . (nondimensional) . (D.5)

In Eq. (D.5), Po = ] atm and, therefore, Pi and P must be in the units

of atm. Note that P, 1s the partial pressure of the ith species in a

1
gases mixture and P 1is the total pressure; b1 (the self broadening

coefficent) and n are different for different bands. For a single

component system, Eq. (D.5) is usually expressed as

Pe = (b p/po)n (nondimensional) (0.6)

9. Line structure parameter for each band:



B = B2 P, = BETA (D.7)

10. Correlation for each band (for Tien and Lowder's correlation):
f(B) = 2.94 [1 - exp(-2.608)] = F (D.8)

11. Band absorptance correlation for each band (Tien and Lowder's

correlation):

K (u,8) = an [uF (9412 ) 41] =AU (D.9)

u + 2F

12. The derivative of the band absorptance correlation for each band (Tien

and Lowder's correlation)
S |
A (u,8) =[F (u2 +4 uF +4F)]/DEN = AUD (D.10)

where

DEN = [F (u2 + 2u + 2) + u](u + 2F)

These basic relations are used in the governing equations of Section 6
to obtain numerical solutions for specific gaseous systems. The spectro-

scopic and correlation quantities needed for these calculations are available

in [22,24].
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APPENDIX E
EVALUATION OF CONSTANTS FOR STEADY LAMINAR FLOWS

To determine the constants in Eq. (7.47), Eq. (7.49) is evaluated at
g€ =0andk = 1/4. To avoid excessive writing, the following notations are

used (some of which are also used in Appendix C)

E' = n, dE' =dn
bi = 3u01/2; ¢y = 1/bi = 2/3u01

For € = 0, Eq. (7.49) reduces to

n 1
a + 1+ % (LK) 2 g (f Lo (n-2n%ent)

+ 2, (n2-203+%)] Aj(byn)dn} = 0 (E.1)

By defining u = bin, Eq. (E.1) 1s expressed in an alternate form as

b
a{1+(L/k) 1£1H11 foi[ciu—Z(ciu)3+(c1u)“]‘K;(u)du}

b
1, Legwz-2le was(e,u)] Bi(u) duj=-i (E.2)

n
+a,f(L/k) ¢ H
i=1

Now, by defining the following integral functions,



Eq. (E.2) is expressed as

where

al

[}

a2

(L/k)
§

1i

™13
Pt

= fo1 ui'K%

by
T
P
w- f, N
= fbi G
TR

3 ay + 3y aj

2
Hyy (c§Ryy - 2

For £ = 1/4, Eq. (7.49) reduces to

11 3 11
-_a, + _= +
6 ' 16 2 s
n
=3 (W) ot
2 i=1

- f:/q e(n) -A-i'

1/4
Hrivoi ()

[oy(n - 1)1 dn}
4

(ui) dui
(ui) du
(ui) dui

(ui) dui

= -1

n
3 4

3 + b4
i Ryi T ¢ Ryy)

o(n) B [by (= )] én
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(E.3a)

(E.3b)

(E.3c)

(E.3d)

(E.4a)

(E.4b)

{E.4c)

(E.5)



84

By defining u = by (}.- n) for the first integral and u = b (n - lJ for the
4 4

second integral, Eq. (E.5) is written as

1, 1 3 n by/4
—~+__a +_ 2 = (L/k) ¢ e(—-- c u) A (u) du
16 16 ' 16 2 &y Ml fo
B,/4
- (= + c‘u) Ii'(u) du (E.6)
0 4

By denoting d = C;u, the following relations are obtained from Eq. (7.47):

57 11 9

ﬂ(l'd)= (=——-——d-_24d2 +d3 + d4)
4 256 16 8
tal-Ba. Lo g (E.7a)
256 16 8
and
6(1-+ d) = al(él_ sy gr iqrs dv)
4 256 16 8
9 3 1
Py (—t—d-—d2-d3+ ) (E.7b)
2 256 16 8

A combination of Eqs. (E.6) and (E.7) results in

L " b1/4 . 3b1/4
(K I Hi; {256 [[o I} (u) du - fo ig(u) du]

11 by/4 3b,/4 _
-_c [f uAi(u) du + fo uA;(u) du]
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b, /4 b,/4
- _-8--c2 [] uZK‘(u) du - [0 uzA;(u) du]
i/ 3b1/4
+ c3 [ [ uTK'(u) du + [ u°l¥(u) du]
b1/4 3b1/4 11
+ [ u*X'(u) du - u*K'(u) dul}- —)
i~ 7o i 0 i 16
n b /4 3b1/4
+ a2 (_ 11{?5.6. [f 'A';(u) du - fo 'K;(u) du)
3 b /4 3bi/4
- c [ [ u Ki(u) du +f u X' (u) du]
16 i 0 i

1 b1/4 3bi/4
—c[f u2A}(u) du - | u?R! (u) du]
8 i 0 i 0 1

bf/4 3b,/4
ci L fo u3ﬁ}(u) du + fo u3I;(u) du]

+

b /4 3b1/4
c“ [ f u“lﬂ(u) du - f
0

+

u"l'i'(u) dul}- _3)
16

11/16 (€.8)

By noting that for any continuous function F(x)

3/u 1/4 3/4
[ F(x) dx =f F(x) dx + [ F(x) dx
0 0 174

and defining
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3b,/8 _
Syy = Al(u,) du (E.9a)
1i | i
b, /4
b1/4
521 2 fo u1 F}(u1) du1 (E.9b)
3bi/4
S31 2 [0 u, K}(ui) du1 (E.9c)
3b1/4
S41 = fb P uf l}(ui) du, (E.9d)
i
bi/4 3
Sgy = fo uy Ki(u,) duy (E.9e)
3b,./4
i’ 3
561 = fo u, 1(ui) du1 (E.9f)
b,/4
S, = [ u, K!(u,) du (E.9q)
71 b1/4 i i i
Eq. (E.8) can be written as
3 a3 *+ 3 ay = - 11/16 (E.10a)

where
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n
ag = (LK) E o Hyg [(57/256) Sij + (11/16) ¢y (Sp+S34)
- (9/8) €} S4y - €} (Sgy*Sgy) + €Y Sq4) + 11/16 (E.100)
n
a = (LK) F Hy((9/256) Syy + (3/16) ¢y (Spy+S34)

- 3
(1/8) ci Say - € (551+56i) + cgs71] + 3/16 (E.10c)

By solving Eqs. (E.4a) and (E.10a) simultaneously, there is obtained

the results for constants a, and 3, as

ay = (11 ap - 16 ay )/DEN (E.1la)

Qy = (16 ag - 11 ay ) /DEN (E.11b)
where

DEN = 16 (ala.‘ - 0233) (E.].].C)

The governing equation for the large path length limit is Eq. (7.44a)
for which the solution {s also given by Eq. (7.47). For the large path
length limit, €q. (7.47) is expressed in the form of Eq. (7.52) which is

represented here as

0(£) = by (£ - 263 +g) + by (E2 - 267 + &%) (E.12)
Thus,
0'(g) = b, (1 - 62 + 4g3) + b, (2¢ - 6g2 + 4g3) (E.13)
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A ‘substitution of Eqs. (E.12) and (E.13) in Eq. (7.44a) gives

by (1 - €2 + 4e3) + b, (2 - 662 + 4£3) - 2 (32 - 2g3) + 1

- M r:e(e') de ' /(E-€") (€.14)

For £ = 0, Eq. (E.14) reduces to

by +1=-M r: [e(e*)/e'] de (E.15)

Upon substituting for o(&') from Eq. (E.12) into Eq. (E.15), the integrals

can be evaluated in closed form and there is obtained

where
By =1+ (7/12) M; 8, = (1/12) M (E.16b)
For £ = 1/4, Eq. (E.14) reduces to
1
Wy v 3p, +Luw Poe)desit-en) (E.17)
16 16 16 0 4

By substituting for o(£') in this equation, another relation between b, and

b, can be obtained in terms of R, and g, . But, this appears to involve the

evaluation of a few improper integrals. Thus, this approach is abandoned in

" .
' * e ogw Lo .

2L
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favor of an alternate procedure discussed below.
The solution in the large path length 1imit can be obtained from the
general solution by evaluating the integrals R1 and Si in the limit of large

I/u, the integrals in Eqs. (E.3)

path length. Since in this Timit A'(u)

and (E.9) are evaluated to obtain

Rij = bys Ry = bﬁ/?; R31 = b%/3; Rai b?/4 (E.18a)

= . = . - . = 2 .
S tn (3); 521 b1/4, S31 3b‘/4, S41 bi/4 :

14

Sg; = b%/192; Sgi = 9b§/64; S,; = 5b?/64 (E.18b)

51 61 71

From Eqs. (E.4) and (E.18a), there is obtained for the large path length
limit

by 8y +by; 82 = -1 (E.19a)

By =1 + (7/12) M; 82 = (1/12) M (E.19b)

which is the same result as given by Eq. (E.16). From Eqs. (E.10) and
(E.18b), one obtains in the large path length 1imit

by By + by By = - 11/16 (E.20a)
where
By = 11/16 + M [(57/256) ¢n(3) + 65/192]
= 11/16 + 0.583 154 559 M (E.20b)
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By, = 3/16 + M [(9/256) on(3) + 17/192)]
= 3/16 + 0.127 164 755 M (€.20c)

The solution of Eqs. (£.19a) and (E.20a) yields

by = (1182 - 16 84 )/BOTTOM (E.21a)
b = (1683 - 11 81)/BOTTOM (E.21b)
where

With by and b, known, the solution for the temperature distribution is
obtained from Eq. (E.12).
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APPENDIX F
INTEGRAL FUNCTIONS FOR TRANSIENT LAMINAR FLOWS

For convenience and use in the computational procedure, the following
definitions are employed in expressing the relations for the integral

functions:

by = 3 uy/25 ¢y = by C(g) = 1/(g-£2)
X =F - 263 +g%; y=£2 263 +gY; 2 =12 (£-82)
a(g) = 1 - 682 + 4g3; b(g) = 25 - 682 + 4r?

Various integrals are defined as follows:

n 4
J(€) = 3 N+ C(g) (2 +% (L/k) 121 Hy g uf),.{fo (s'-e'z) Ay [by(g-€')] de’
1 2 :
+ f (gt ) Ry [by(g'-g) Jde'}) (F.1)
3
3 n g
Jp(e) = C(g) (2 '3 (L/K) I Hyjugelf (1-2¢') & [by(g-¢') Mg
: 0
1
- IE(I-ZE')I{ [b;(g'-£)Jde'}) (F.2)
9 n ¢
Ja(g) = z + 3Nx +; (L/k) I M2, s x(g') &y [b (g-¢')] de’
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1

+ [ x(g') Ay [by(g'-€) Jde ")

(F.3)
3
9 " : -
Jy(g) = (z2-2) + 3Ny +Z (L/k) 1}:= H”ugiffo y(g') Ay [by(g-g")Jde
1
+ IE y(€') Ay [by(s<")]de} (F.4)
3 n : =
J(g) = 2 3 (L/k) ba HiguoqlS, ale’) Ay [by(e-£")] de
l ——
- IE a(g') Aj [by(e'-£)]ds '} (F.5)
3 ) ¢ -
Jle) = (z - 2) to (LK E Hygugd]blet) Ay Dby(e-gt)] det
1
- fE b(g') A} [by(g'-£)1de "} (F.6)
1 .
J(E) = 3N+ C(E) [2+M fo(l-zs') de'/(E-€")]
=W Ce) {24 M2+ (26-1) e (B (F.7)
£
Jalg) = H(E) - N

(F.8)
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TRANSIENT RADIATIVE ENERGY TRANSFER IN NONGRAY GASES

S. N. Tiwari® and 0. J. Stngh*
01d Dominion University, Norfolk, VA 23508

and

A. Kumart*
NASA Langley Research Center, Hampton, YA 23665

Abstract

A general formulation 1s presented to
investigate the transient radfative {nteraction
in nongray absorbing-emitting species between two
parallel plates, Depending on the desired
sophistication and accuracy, any nongray absorp-
tion model from the line-by-line models to the
wide-band model correlations can be employed in
the formulation to 1investigate the radiative
interaction, Special attention is directed to
investigate the radiative interaction in a system
initfally at a unfiform reference temperature and
suddenly the temperature of the bottom plate is
reduced to a lower but constant temperature. The
interaction 1{s considered for the case of
radfative equilibrium as well as for combined
radiation and conduction, General as well as
limiting forms of the governing equations are
presented and solutions are obtained numerically
by employing the method of variation of
parameters, Specific results are obtained for
€0, €Oy, H50, and OH. The information on species
Ha0 and OH 1is of spectal interest for the
proposed scramjet engine application. The
results demonstrate the relative ability of
different species for radiative finteractions.

Nomenclature
A band absorptance = A(u,B), cm'l
A, band width parameter, eml
Co correlation parameter, atn™! - em!
Cp specific heat at constant pressure,
kd/kg-K = erg/gm-K
e, Planck's function, (W-cm™2)/cm™}
e, Planck's function evaluated at wave
o number w
€1.e emissive power of surfaces with
temperatures Ty and T, W-cm™2
HyqoMy ?:sigroperty for the large path length
m
k thermal conductivity, erg/cm-sec-X
ST ?:sigroperty for the optically thin
m
L distance between plates
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Fellow.

*Graduate Research Assistant, Department of
Mechanical Engineerng and Mechanics. AIAA
Student Member.

**senfor Research Sclentist, Computational
Methods Branch, High-Speed Aerodynamics
Division. AIAA Associate Fellow.

This paper o declared a work of the U.S. Government and s
not subject ‘o copyright protection in the United siates.

»w ™ oo

large path length parameter,

nondimensfional

Niy»Ny  optically thin parameter,
nondimensional

N optically thin radiation-conduction
parameter = N;/R, nondimensional

p pressure, atm

q conduction plus radiation heat flux =
Q. *+ qp, w/cm

ap tota] radiative heat flux, w/cm?

qc conduction heat flux, w/cm?

R spectral radiation heat flux,

-2 -1

(w-cm™<¢}/cm

nondimensfonal radfative heat flux

nondimensional conduction plus

radiation heat flux

nondimensional transient conduction

parameter

1nte?rated intensity of a wide band,

atm~l-em2 N

time, sec (also used as t )

characteristic time, sec

nondimensional time = t/t,
temperature, K

wall temperature, K; T; = Ty
nondimensional coordinate = SPy/A
nondimensional path length = SPL/RO
transverse coordinate, cm
nondimensional temperature

spectral absorption coefficfent, em”!
nondimensional coordfnate = y/L = u/uo
density, kg/m3

Stefan-Bol tzmann constant,

erg/( sec-cm2-x4)

w wave number, e}

w wave number at the band center, en!

MMy

r"g’r'

v A DK SO -
[ o b
-
P
~n

Qo

Introduction

The field of radiative energy transfer fin
gaseous systems {s getting an ever {increasing
attention recently because of {ts applications in
the areas of the earth's radtation budget studies
and climate modeling, fire and combustion
research, entry and reentry phenomena, hypersonic
propulsion and defense-oriented research. In
most studies {involving combined mass, momentum,
and energy transfer, however, the radiative
transfer formulation has been coupled mainly with
the steady p|r-oc:et.sesl'11 and the interaction of
radfation in transient processes has received
very 1ittle attention. Yet, the transient
approach appears to be the 1logical way of
formulating a problem {in a general sense for
elegant numerical and computational solutions.
The steady-state solutfons can be obtajned as
1imiting solutions for large times,

A few studies available on radiative
interactions reveal that the transient behavior of



a physical system can be influenced significantly

in the presence of radiationlz'”. Lick investi-
gated the transient energy transfer by radiation

and conduction through a semi-finite mediumle, A
kernal substitution technique was used to obtain
analytic solutions and display the main features
and parameters of the problem. Steady and
transient heat transfer in conducting and radia-
ting planar and cylindrical mediums were analyzed
in Refs. 13 and 14 according to the differential
formulation. The analyses based essentially on
the gray formulation provide some qualitative
Insight into the effect of absorption and emis-
sion on the transient temperature distribution in
the gas. Doornink and Her‘ingl studied the
transient radiative transfer in a stationary
plane layer of a nonconducting medfum bounded by
black walls. A rectangular Milne-Eddington type
relation was used to describe the frequency
dependence of the absorption coefficient. It was
found that the cooling of the layer initially at
a uniform temperature fs strongly dependent on
the absorptfon coefficient mode! employed.
Larson and Viskantal6 investigated the problem of
transient combined laminar free convection and
radiation 1n a rectangular enclosure. It was
demonstrated that the radiation dominates the
heat transfer 1in the enclosure and alters the
convective flow patterns significantly, The
transient heat exchange between a radiating plate
and a high-temperature gas flow was investigated
by Melnikov and Sukhovichl?, Only the radiative
interaction from the plate was considered; the
gas was treated as a non-participating medium.
It was proved that the surface temperature is a
function of time and of longitudinal coordinate.
Some other works on transient radfation and
related areas are available in Refs. 18-22.

The goal of this research is to include the
nongray radfative formulation 1n the general
unsteady governing equations and provide the
step-by-step analysis and solution procedure for
several realistic problems. The specific objec-
tive of the present study is to investigate the
Interaction of nongray radiation 1in transient
transfer processes in a general sense. Atten-
tion, however, will be directed first to a simple
problem of the transfent radiative exchange
between two parallel plates. In subsequent
studies, the present analysis and numerical
techniques will be extended to include the flow
of homogeneous, nonhomogeneous, and chemically
reacting specfes {in one- and multi-dimenstonal
systems.

Basic Theoretical Formulation

The physical model considered for the
present study 1s the transient energy transfer by
radiation in absorbing-emitting gases bounded by
two parallel gray plates (Fig. 1). In general,
Ty and T, can be a function of time and position
and there may exist an 1initial temperature
distribution in the gas. It is assumed that the
radiative energy transfer in the axfal direction
is negligible in comparison to that in the normal
direction.

For radiatfon participating medium, the
equations expressing conservation of mass and

momentum remain unaltered, while the conservatfon
of energy, in general, s expressed as

DT
pcpu-f-div (k grad T) +$Tg§+po-d1v QR
(1)

where u {s dynamic viscosity, B is the
coefficient of thermal expansion of the fluid and
¢ 1s the Rayleigh dissipation function. For a
semi-infinfte medfum capable of transferrin
energy only by radifatfon and conduction, Eq. (1
reduces to

ocp%;--g{} (2)

where q 1s the sum of the conductive heat flux
9. = -k (3T/3y) and the radiative flux aR-
For the physical model where radiation is the
only mode of energy transfer, the energy equation
can be written as

0q
pCp*g%"'FR (3)

Use of this simplified equation {is made to
investigate the transfent behavior of a radiation
participating medjum,

For many engineering and astrophysical
applications, the radfative transfer equations
are formulated for one-dimensional planar
systems, For diffuse nonreflecting boundaries
and 1n the absence of scattering, the expression
for the total radiative flux {s given, for a n-

band gaseous system, byl'e'

qR(y) e -e,

3 " y 3
ty L [ Flwi(Z) ‘w' expl- 3 ru‘(y-z)]dz

{=1 Mi 0
L 3
- Faw, (2) x, expl- 3« (2-y))dz}dw,
y 1 i i
(4)
where

Fro(2) =e (2) -e F, (2)=¢ (z2)-e
lmi wy lm,l 2@, wy 2“1

Equation (4) s in proper form for obtaining the
nongray solutions of molecular species. In fact,
this {s an {ideal equation for the Hne-by-1tne
and narrow-band mode]l formulations. However, in
order to be able to use the wide band models and
correlations, Eq. (4) is tnnsformdain terms of

the correlation quantities asls7-11,



QR () =el = ez

3 n ; [ 2 3 1 '
+y 151 Aot Yo {[o Flw'(; ) Ay [ ug (E-2")]dx
l [ 3 3 ] '
" Fau (5 K D3 ugy (e0-0)a) (5)
where

E= u/uo =y/L; E' = u'/uo = 2/L; A = A/Ao;
us (S/Ao) Py: u, = (S/AO) PL; PS = fm.) x, dw

It should be noted that Flw and sz in Eq.

(5) represent the values at thd center df the ith

band and A'(u) denotes the derivative of A(u)
with respect to u. Upon performing the fntegra-
tion by parts, Eq. (5) can be expressed in an

alternate form as

qR(E) = el = ez

n 4 =
"5 Aot U e, (£1)/€8'D By 0 uytee et
= [}

1
H, L, (VTR GGugy 01y (6)
|4

A direct differentiation of Eq. (6) provides the
expression for the dfvergence of radfative flux
as

dap(e) 4

n 4
—r— 7 151 Aot Uoq {fo [dew'(c )/dE'] x

1
Ay 03 u,,(e-g')lde’ - f, Ldey, te)/ae' x

A} 03 v (2'-8)1de") (7)

Equations (5) through (7) are the most convenient
equations to use when employing the band-model
correlations in radiative transfer analyses.

Upon defining nondimensional radiative heat
flux by

Q (g,¢) = qR(z.t)/[el(t) - e, (t)] (8)

€q. (5) can be written as
3 " ¢
Q(e,t) =1+ ¢ Ust ) C“ (2',t) x

¢ {=] [

1

] 3 ] L] - 1]
i [5 “oi“" )de Ig &y (', t) x

Ry 03 uyy (2'-5)1ag') (9)
where
Ci (E.t) = FN' (;.t)/[el(t) - ez(t)]AO’
Equation (9) provides the general expression for

the radfatfve flux in the nondimensional form.

Radiative Interaction

Specific consideration is given first to the
case where radiation fs the sole mode of energy
transfer,

By defining ¢ (&,t) = T(~!.t)/To with T,
representing some constant reference temperature,
Egs. (3) and (7) can be combined to yfeld the
energy equation in nondimensfonal form as

3 ° &
- 24 (2,t)/at -3 121 ) by (&'52) x
= [+]

- 1
Ay 03 ugy (E€92d’ - I, o (8120 x

Ry 13 uyy (2'-2))a’) (10)
where
34(2:t) = (PS (T)[D €, (E,6)/581/(p C, T/t ))

The time t fn Eq. (10) is defined as t' = t/t,
with t, representing some characterfstic time
scale of the physical problem; however, for the
sake of convenfence, the asterfsk is left out
here as well as in further developments. From the
definitions of ¢(Z,t) and by(8t), 1t should
be noted that Eq. (10) is a nonlinear equation in
T(g,t).  Equation (10), therefore, represents a
general case of the transfent energy transfer by
radtation between two semi-infinite parallel
plates.

As a special case, it {is assumed that the
entire system initially 4s at the fixed
{reference) temperature To- For all time, the
temperature of the upper plate 1s maintained at
the constant temperature equal to the reference



temperature, f.e., T, = T,. The temperature of
the lower plate {is suddenly decreased to a lower
but constant value, f.e., T) < T;. The problem,
therefore, 1{s to 1{nvestigate the transient

cooling rate of the gas for a step change in
temperature of the lower plate.

In many radfative transfer analyses, it is
often convenjent (although not essential) to
employ the relation for the linearfzed radiation
as

ew'(T) - ew‘(Tw) = (d ew'/dl’).rw (T-Tw) (11)

where again the subscript { refers to the ith
band such that w, {s the wave number location
of the band and T, represents the temperature of
the reference wall which could be efther T, or
T,. For the special case considered, since we
are 1iInterested 1in investigating the transient
behavior of the gas because of a step change in
temperature of the lower plate, Ty 1s taken to be
equal to T;. It should be pofnted out that for a
single-band gas, the linearization 1is not
required because the temperature distribution can
be obtatned from Eq. (10) and the radfative heat
flux can be calculated from E£qs. (5), (6), or
(9). However, for the case of multiband gases
and for systems involving mixtures of gases, it
is convenient to employ the 1linearization
procedure in order to use the informatfon on band
model correlatfons. The following definitions
are useful in expressing the governing equatfons
in 1inearized forms:

8 = (T-T))/(T,T)) - 2
Mg * (Pl 6p) Ky Ky = Sy(T) (A e/anly
(12b)

n
Ny = (P /e cp) Ky o Ky = lfl K14 (i2c)

(12d)

n
M - (t./L e cp) Hy o Hy = 1E1 Hyy (12¢)

H“ Ugy " N“ s U g H“ = PL K“ (12f)

where H;, K, Ny and M; represent the values of
H, K, N and M evaluated at the temperature T,.

As explained in Refs. 1 and 8, these quantities
represent the properties of the gaseous medium.

By employing the definitions of Eqs. (11)
and (12), Eq. (10) s transformed to obtain a

convenfent form of the energy equatifon as

4
_degt) 3" 38(¢', t)

stz My U YA

{=1 0

Ay (e-g)lag - Il 2,
17 Yot P X
i.[3 “_ +
103 ug g8 -8 1ag" ) (13)

The parameters in Eq. (13) are Ny and u,. For a

given gas, the parameters are the gas pressure
and the temperature of the lower wall.

The inftial and boundary conditions for the
physical problem considered are

8(£,0) = 1 ; 6(0,t) = 0 ; 8(1,t) = 1 (14)

It {s f{mportant to note that the boundary
conditions given in Eq. (14) are not applicable
to Eq. (13) because this equation does not
require a boundary condition. Thus, in this
case, the temperature of the medium adjacent to a
surface dfiffers from the surface temperature.
This {s because the temperature of the medium
adjacent to a surface is affected not only by the
surface but also by all other volume elements and
surfaces. The radfation slip method is a means
of accounting for such temperature Jumps and this
1s discussed in Ref, 1,

By loying the definitions of Eqs. (8),
(11), and (12}, relations for the radiative flux,
as given by Eqs. (5) and (6), are expressed as

3 n
Q(:nt) = ]- (3/8 g Tl) L

14
& Yot Hig (Io 6(g’,t) x

1
Ay 03 up (2-£')Jag" + J - ee, 0 x
R0y uy (€' -0)ae') (15a)
and

3, " ¢ a0(g',t)

Qfe,t) =1 -(2/4aT7) T H, {f =2 x
g 0_8!"'
1 .

713 -p? [ ae({',t)

§Z Yoy (E-8')1aE Ig g x

AL g (e'-e)lag’) (15b)



It should be pointed out that Eq. (15a) s a
convenfent form for the optically thin and
general solutfons while Eq. (15b) s useful for
solutions in the large path length limit. Once
the solutions for 6(%,t) are known from the
energy equation, the appropriate relations for
the heat flux can be obtained from Eqs. (15). It
should be noted that the quantity Hll(aTl) in
Eqs. (15) 1s nondimensional,

Radiation and Conduction

For this case where conduction heat transfer
takes place simu) taneously with radfative
transfer, the energy equation is given by Eq.
(2), Thus, a combination of Egs. (2), (11) and
(12) results in

2 n 4 '
38 378 _ 3 36(E',t)
3T R — - £ N, (S -——3!#- X
d Z {=1 H 0

1,
Rpw u (2210 - IE 2(et)

X} 03 ug,(e' - £)lde’) (16)
where 2
R-ktm/(pCpL)

The nondimensional parameter R in Eq. (16) f{s
analogous to the Fourier number. For R = 0, Eq.
{(16) reduces to Eq. (13). Since the presence of
conduction implies continuity of temperatures at
the boundarfes, the boundary conditions for Eq.
(16) are those given in Eq. (14), The qyantity
Nj/R can be expressed as N = Nj/R = (PLS/k)K,.
The nondimensfonal parameter N denotes the rela-
tive fmportance of radiation versus conduction in
the gas. For particular values of P and L, 1t is

actually the dimensional gas property Nll(RPLZ) =
Kj/k that represents the relative importance of
radiation versus conduction.

For the case of no radiation, Eq. (16)
becomes

2

[L:] [
= R (17,

B

The separation of variables results in a general
solutfon of Eq. (17) as

o = exp(-A2 Rt) (8, sin AL + B, cos A £) (18)

where 7\2 {s the separatfon parameter. The
particular solution of Eq. (18) can be obtatned
by satisfying the boundary cond{tions.
Alternately, by defining a similarity variable

n = E//ANE, Eq. (17) can be written as

2
‘e o _
d_nz:,znaﬁ 0 (19)

The solution of Eq. (19), with initial and
boundary conditions given by Eq. (14), is found
to be

o(E,t) = (2//n) erf n (20)

This solution is applicable for relatively large
separations between the plates.

In the case of simultaneous conduction and

radfation heat transfer, the nondimensiona)l heat
flux 1s defined as

8 = [a,(8,t) + qulE,t)V/le (t) - ep()]  (21)
Expressions simtlar to Eqs. (15a) and (15b) can

be obtained easily in this case also (Ref, 24),

Method of Solutions

The solutfon procedures for the radiative
equilibrium and radfation with conductfon cases
are available 1in Ref, 24, For the sake of
brevity, only the solution procedure for the
radiative equilibrium case {s given here.

For the general case of radiative
equitibrium, the temperature distribution 1s
obtained from the solution of the energy
equation, Eq. (13). Once o(f,t} 1s known, the
radfative heat flux ts calculated by using the
appropriate form of Eq. (15). Before discussing
the solution procedure for the general case,
however, it is desirable to obtain the 1imi ting
forms of Eqs. (13) and (15) in the optically thin
and large path length limits and investigate the
solutions of resulting equatfons.

Optically Thin Limit

_In the optically thin 1imit A(u) = u and
A'(u) = 1, and therefore, Eq. (13) reduces
to1:8,23

de(E,t) | 3 "l e(z,t) -%Nl =0 (22a)

From an examination of Eq. (22a) along with the
definitions given 1in Eq. (12), it 1s evidient
that in the optically thin 1imit the temperature
distribution in the medfum {s independent of the
g-coordinate for the case of pure radiative
exchange. This 1s a charateristic of the
optically thin radiation in the absence of other
modes of energy transfer. Thus, Eq. (22a) can be
written as

de(t)

N, = 0; 0(£,0) =
= 0; o(£,0) = 1

1

+3n1 o(t) -

ol w

(22b)

Since gas properties are evaluated at known
reference conditions, N; 1s essentially constant,

and solution of Eq. (22b) 1s found to be



8(t) = 5[1 + exp(- 3 N )] (23)

In the optically thin 1imit both forms of
£q. (15) yfeld the same final relation for the

radiative flux as?3
Q(E,t) = 1 - [3/(8aTH] (PLK)) [(1-8) +
+ (28 - 1) 8(t)] (24)

It should be pointed out that in Eq, (24) the
quantity (PLK /°T:1’) is nondimensional. The
relation for 6(t) 1in Eq. (24) is obtained from
Eq. (23). Thus, evaluation of the temperature
distribution and radiative heat flux fn the
optically thin limit does not require numerical
solutions,

Large Path Length Limft

In the large path length limit (i.e., for
Ugy >> 1 for each band), one has A(u) =
=n(u), R'(u) = Yu, and K''(u) = - 1/42.
Thus, in this limit, Eq. (13) reduces tol»8,23

1 ' '
28(g,t) _ _ 20(E',t) dt
=&~ LA jo —3r— T (25)

An analytical solution of Eq. (25) may be
possible, but numerical solution can be obtained
quite easily.

In the large path length limit, Eqs. (15a)
and {15b) reduce respectively to

1
3 ' az'
Q(E,t) =1 (1/7047)) HI[IO 8(g',t) T

-1 e st (26a)
T
and
n £ ,
QAet) = 1 - (1740T0) £ W, (5 LY,
Vg M7,

(3 u (22 )lae + !z L“éz"‘l X

1nl3 u_ (2'-2)1dg") (26b)

The expressions for dimensionless radiative heat
flux from or to the wall are obtained by setting
E=0 in Eqs. (26).

Numerical Solutions of Governing Equatfons

The general solutfons of Eqs. (13) and (25)
are obtained numerically by employing the method

of varfation of parameters. For this, a
polynomial form for o(Z,t) 1s assumed in powers
of £ with time dependent coefficients as

n
olg,t) = £ c (v) & (27)
m=0
By considering only the quadratic solutfon in

%, and satisfying the boundary conditfons of
Eq. (14), one finds

0(g,t) = 2 + g(t) (£-£2) (28)

where g(t) represents the time dependent
coefficlent. At t = 0, a combination of Eqgs.
(14) and (28) yields the result

g(0) = (1-82)/(e-£2) (29)

Equations (28) and (29) are used to obtain
specific solutions of Eqs. (13) and (25). Once

the temperature distributfon 1is known, the
" expressions for heat flux are obtained by
numerically integrating the corresponding
equations, The entire numerical procedure 1is

described in detail in Refs. 23 and 24, The
numerical procedure is similar for higher order
solutions in & of Eq. (27), but computational
resources required are considerably higher.

Phystcal Conditions and Data Source

For the physical problem considered (Fig. 1)
four specific absorbing-emitting species were
selected for an extensive study; these are CO,
C0,, OH and Hp0.  The specfes CO was selected
because it contains only one fundamenta)
vibration-rotation (VR) band and all spectral
information are easily available 1in the
literature. It is a very convenient gas to test
the numerical procedure without requiring
excessive computatfonal resources. Species OM
and Hy0 are the primary radfation particfpating
species for the pressure and temperature range
anticipated in the combustor of the scramjet
engine. ‘Spectes C0,, and combinations of €0, and
H20 are important absorbing-emitting species in
many other combustion processes.

In radiatfve transfer analyses, 1t is
essential to employ a suitable model to represent
the absorption-emission characteristics of
specific species under investigation. Several
Hne-by-1ine, narrow-band, and wide-band models
are available to model the absorption of a VR
band (Refs. 7-11). However, 1t 1{s often
desirable to use a simple correlation to
represent the total absorption of a wide band.
Several such correlations are available fn the
1iterature (Refs. 7-11). The relative merfits of
these correlations are discussed in Ref. 11. In
this s}udy. the correlation proposed by Tien and
Lowder’ is employed and this is given by

Alu) = 1n (uf(B) Grygpyd + 1} (30)



where
f(B) = 2.94[1 - exp(-~ 2.60 g)]

and B represents the line structure parameter.

The spectral information and correlation
quantities needed for CO, CO, and H,0 were
obtained from Refs. 7-9. The spectral ta for
04 were obtained from Ref. 25 and correlation
quantities were developed 1in Ref, 24, The
specific VR bands considered for each species
are: CO (4.7u  fundamental), OH (2.8p
fundamental), COp (154, 4.3p and 2.7n), and H,0
(201, 6.3n, 2.7, 1.873, and 1.38u).

For the specific problem considered, the
dependent variables are 9, Q, and Q, and
independent variables are * and t. The
parameters for general solutfons are T,, Tp/T,,
Uy, and t,. For the radiative equilibrium case,
3 and Q depend only on t and Ny in the
optically thin limit and on %, t, and y 1n the
large path length 1limit, For the case of
combined radiation and conduction, 6 and Q depend
on £, t, and Mj/R in the large path length limit.
The parameters for specific solutions for differ-
ent species are Ty, Tp/Ty, P, L, and .
Extensive results, tgerefore. can be obtained by

varying these parameters, For parametric
studies, however, only certain values of
pressure, temperature, and plate spacing were

selected and results were obtained for the
general as well as limiting cases. Unless stated
otherwise, specific results were obtained for T,
=2 Tl'

Results and Discussion

Results have been obtained for different
radiation participating species for both cases,
the radfative equilibrium and radiation with
conductfon, Selected results are presented here
and extensive results are provided in Ref., 24,
It should be realized at the outset that,
according to the physics of the problem, the gas
tnitially fs at a high temperature Ty = T, At t
= 0, the temperature T, {s lowered a constant
value, The energy exclhange then occurs and the
gas cools down in time until a steady-state
conditon {s reached. At this time, a certain
temperature proffle {is established and a fixed
amount of energy exchange occurs frrespective of
the time. The rate of cooling of the gas layer,
therefore, {s dependent on the nature of the
participating species and on the physical
parameters of the problem.

Some 1imiting solutions that are independent
of any participating species are presented first
in Fig. 2 for the radiative equilibrium case.
The temperature distributfon in the channel is
plotted as a function of the optically thin
parameter N; for different times. These results

show an exponential decay with time reaching the
steady-state value of 0=1/2 for tee, The
temperature dfstribution for the large path
length limit {is shown 1in Fig. 2 (with broken
1ines) as a functfon of the large path length
parameter M; and for different times. Although

the naumerical values are entirely different,
these results also show the exponential decay
with time and reach the 1limiting value of
0=1/2 for t o+ = It should be noted that
while the optically thin solutions are
independent of the Z-coordinate, the large path
length solutfons do depend on E and they have
been obtained for £ = 0.5, In the case of
simul taneous radfation and conduction, both
optically thin and large path length solutions
for temperature distribution depend on E. These
results, however, can be expressed in terms of

the radfation-conduction parameter N=N;/R {in the
optically thin 1imit and M = M;/R in the large
path length limit.

The radiative  equilibrium temperature
distribution for CO are shown in Fig. 3 for three
different characteristic times and for P = | atm,

L = 10 cm, and T, = 500 K. For small t,, t* =
t/t, becomes *large and, therefore, © varfes
slowly with t'; the reverse is true for large t,

values. This trend is evident clearly from the
simplest case of the optically thin solution
given by &Eq. (23). Simflar trends in results
were observed also for other species for
differeat values of P, T, and L. Thus, to

demonstrate typfcal transient trends, other
results presented in this study were obtafned for
an intermediate value of the characteristic time
t, = 0.00001 sec.

The centerline temperature varfations with
time are {llustrated in Fig. 4a for CO and in
Fig. 4b for OH. General and limiting solutfons
are shown for pure conduction, radfation, and
radiation with conduction for P = 1 atm, T, = 500
K, and L = 10 cm. It is noted that for both
gases the optically thin solutions approach the
steady-state conditions faster than the large
path length and general solutfons. For the
physical conditions considered, the energy 1s
transferred faster by conductifon than by
radfation, and the steady-state condftions are
reached earlier by the combined radiatfon and
conduction process. Although OH is a relatively
better heat conducting gas, CO is seen to be more
effective in the radfative transfer. For the
same physical conditions as 1in Figs. 4, the
radiation and radfation with conduction results
are compared for CO, OH, Hy0, and CO, in Fig. 5.
It is seen that Hx0 is most effective and OH is

least effective in transferring the radiative
energy. The ability of a gas to transfer
radiative energy depends on the molecular
structure of the gas, band intensities and
physical conditions of the problem. Thus, H,0
with ffve strong VR bands is a highly radfation
participating species and the steady-state
conditions are reached quickly for H,0 than for
other species. However, CO with one fundamental
band fs seen to be a better radiating gas than
CO, with three VR bands. This is because for the
given physical condftions, the optical thickness
of C0p is sufficfently large and in the large
path length 1limit CO, is vrelatively less
effective in transferring the radiative energy
(Ref. 8), Further results for CO and OH are
j1lustrated 1in Figs. 6 for different wall
temperatures, It is seen that while radfatfon {s



less effective than conduction at T, = 500 K, it
is highly effective at T, = 1,00 K. This,
however, would be expected because radiatfon
becomes considerably important at higher tempera-
tures. The steady-state condition is reached
quicker for Ty = 1,000 K than for T, = 500 K. In
fact for the characteristic time consfdered (ty =
0.00001 sec.), the steady-state condition is
reached quickly for all species for temperatures
higher than T, = 1,000 K. Results for the pure
radiation case are illustrated in Figs. 7 for CO
and OH for L = 1 cm and 10 cm. It s seen that
while the genera) and large path length solutions
depend on the plate spacing the optically thin
solutions are independent of the spacing. This
fact was pointed out earlier in the method of
solution. In the presence of other modes of
energy transfer, the optically thin solutions
also depend on the plate spacings. As would be
expected, for the same physical conditions, the
steady-state condition is reached quicker for the
lower plate spacing.

The temperature variations within the plates
are shown in Figs. 8-11 for different species and
for P = 1 atmand L = 5 cm. In the absence of
molecular conductfon, temperature jumps (radia-
tion siips) occur at the boundaries and, there-
fore, the general solutfons for the case of
radfative equilibrium are not presented.
However, general as well as limiting solutfons
are presented for the case of radiation with

conduction. It 1is noted, in general, that for
the case of radiatfon with conduction, the
steady-state conditions are reached for all

specfes at t > 0.1 and for T' > 500 K. For

the case of pure radiation, the steady-state
conditions are reached at relatively 1longer
times. The optically thin results are seen to be
independent of the E-coordinate for the case of
radiative equilibrium and are seen to vary slowly
in the central portion of the plates for the case
of radiation with conduction. This {s because,
in this limit, the gas interacts directly with
the boundaries and conduction is predominant near
the walls, Specific results for (O are
1Nustrated in Figs. 8 for T, = 1,000 K. For the
case of radiation with conauction. general and
1imiting solutions are compared in Fig. 8a; and
for both cases, the radfative equilfibrium and
radiation with conduction, limiting solutions are
compared in Fig. 8b, The steady-state results
for pure conductfon are also shown in Fig. 8b for
comparative purposes. The results demonstrate
the typical trends for 1limfting and general
solutions, 1{.e., a lower temperature gradient
implies a higher rate of energy transfer.
Spectific results for OH are jllustrated in Figs.
9 for T, = 500 K. General and limiting solutions
are shown In Fig. 9a; and limiting solutions are
compared in Figs. 9 and 9. For the case of
radiation with conduction, the 1limiting and
general solutions are seen to be 1in good
agreement for all times (Fig. 9a). This fis
because for the conditions of the 1{llustrated
results, conduction dominates the energy transfer
process in OH. The typical trends in results for
the optically thin and large path length limits
are shown in Figs. 9b and 9c, respectively.
Figure 9 clearly shows that for all times the
radiative equilibrium results are independent of
the Z-coordinate in the optically thin limit.

Figure 9 shows that at earlier times the rate of
energy transfer 1s higher in the presence of
conduction, Specific results for Hy0 are
f1lustrated in Figs. 10 for the case of radiation
with conductfon. It is seen clearly that the
rate of cooling ts signficantly higher fin the
large path length limit (Fig. 10a), and the
steady-state condftions are reached at relatively
longer times for lower T values (Fig. 10b). For
the case of combined ra&"iatlon and conductfon, a
compartison of results for different species is
shown in Fig. 11 for t = 0,01 and 0.1. The
results for t = 0.1 essentially correspond to the
steady-state conditfons. For t = 0.01, the
varfation in temperature is seen to be relatively
small between £=0.2 and 0.9. The centerline
temperature is found to be the lowest for H,0,

and this is followed by OH, CO, and C0,.

However, 1t fs noted that OH {s very effective in
transferring the net energy in comparison to the
other species. As discussed earlier, this is
mainly due to relatively higher conductive
ability of OH at T, = 500 K.

The centerline temperature distributions are
shown in Figs. 12-15 for different gases as a
function of the spacing between the plates, In
most figures, results are presented for both
cases, the radiative equilibrium and radfation
with conduction. In selected figures, results
for the case of pure conductfon are included also
for comparative purposes. For a particular gas,
specific results are presented for varfous times
to demonstrate the radiative nature of the gas
under different pressure and temperature
conditions,

The results for CO are presented in Figs. 12
for different cases. For P = 1 and T, = 500 K,
the results fllustrated in Fig. 12a show that the
time required to reach the steady-state condftion
increases with increasing plate spacings. For a
particular plate spacing, the centerline tempera-
ture is lower for the case of radfation with
conduction than for pure radiation for all times.
For P = 1 atm and Ty = 1,000 K, results presented
in Fig. 12b show that the large path length
solutions are closer to the general solutions for
L > 20 cm; and the results for pure radfation and
radfation with conduction are identical for
t 2 0.5. The centerline temperature variations
are shown in Fig. 12c for t = 0.5 T, = 500 K, and
different pressures. It is noted ghat while the
heat transfer by conduction fs insensitive to the
change in pressure, the radiative heat transfer
is strongly dependent on ft. The rate of
radiative fnteraction increases with increasing
pressure until the large path length limit f{s
reached for sufficiently large values of L. For
the case of pure radfatfon, the results for P =
0.1 atm differ considerably from other results.
This is due to use of the Tien and Lowder's
correlation which is suitable only at relatively
higher pressures (Ref. 11). The centerline
temperature variations are shown in Fig. 12d for
t = 0.5 P =1 atm, and different values of Ty-
As would be expected, both conductive and radia-
tive interactions 1increase with increasing
temperatures, although the increase in radiative
transfer {is comparatively higher. It should be
noted that for T, = 300 K, T, = 2 T, = 600 K, for
T, = 500 K, T, = 1,000 K, and so on. Thus, for a



higher value of T 1» the energy interactions
occur at a sufficrently large temperature differ-
ence between the upper and lower plates. At
these temperatures, {f the plate spacing fis
small, the energy {s transferred quickly and the
steady-state condftfon {s reached at relatively
shorter times. This fact was pointed out also in
the discussion of results of Figs. 7.

The centerline temperature variations for OH
are i1)lustrated in Figs. 13 for different condi-
tions. The results presented in Fig. 13a for P =
1 atm and T, = 500 K show the similar trend as CO
in Fig. 12a. although the extent of energy trans-
fer by simultaneous radiation and conduction fis
relatively higher. This 1s because at T, = 500
the energy transfer in OH {s dominated by the
conduction heat transfer. General and limiting
sotutions for radiative equilibrium are shown in
Fig. 13b and for radiation with conduction 1in
Fig. 13c. These results clearly demonstrate the
typical radiative interaction trends for
different times. The results show that the
optically thin solutions are independent of the
plate spacing in the case of pure radiation but
depend on the spacing when molecular conduction
is included. The large path length results are
seen to be valid only for large values of L for
the case of pure radiation (Fig. 13b), but they
appear to be valid in the entire range for the
case of radiation with conduction (Fig. 13c). The
results for pure conduction, pure radiation, and
conduction with radiation are illustrated in Fig.
13d for P = 1 atm and T, = 1,000 K. For this
temperature, the results for pure radiation and
radiation wih conduction are found to be
identical. This indicates that at higher temper-
atures, OH becomes a highly radiation participat-
ing gas. The results for varfation of the
centerline temperature for OH with pressure and
temperature are given in Ref, 24 and they show
the same general trend as the results for CO
shown in Figs. 12¢ and l2d.

Extensive resuits of o(g = 0.5) versus L
have been obtajned for H,0 and CO, for different
conditions and these are discussed in Ref. 24,
In general, these results show similar trends as
exhibited by the results for CO and OH but the
extent of radfative Interactions is entirely
different. For example, a comparison of results
presented in Fig. 14a for H,0 with the results of
Fig. 12a for CO and Fig. 13a for OH for identical
conditions reveals that H,0 1is a highly radiation
partlcipating gas even for shorter times. For

results presented in Fig. 14b demonstrate
tﬁat the large path length solutions are closer
to the general solutions for both cases, the
radiative equilibrium and radiation with
conduction.

The centerline temperature variations are
compared for different gases in Fig. 15 for P = 1
atm, = 500 K, and t = 0.05. For the case of
radiatrve equilibrium. it is noted that OH is the
least effective and Hy0 is the most effective gas
in transferring the radiative energy for plate
spacings greater than two centimeters. When
molecular conduction {s included, OH becomes more
effective because of 1ts relatively higher
conductive ability. These points were noted also
fn earlier discussions. The story, however, can
be entirely different for other physical

conditions because of the radiative/conductive
nature of participating species (Refs. 8 and
24). This fact 1s partially evident from the
steady-state results, for the case of combined
radiation and conduction, presented in Fig. 16
for two different temperatures, = 300 K and
500 K. For example, for Ty * 306' K and L = 10
cm, the temperature values for CO and CO, are
about the same, for Hy0 it {s lower, and for OH
it 1s the lowest; however, for plate spacing
greater than L = 20 cm, the trend is entirely
different. Also, 1t should be noted that the
steady-state (t = 0.5) results for T, = 500 K 1n
Fig. 16 show different trend than the results for
the same temperature in Fig. 15 for t = 0.05.
Thus, in order to predfct the relative ability of
a gas for radiative interactions, it f{s very
important to consider the exact physical
conditions for all species. These predictions
may not be applicable {f physical condftions of
the problem are changed.

Extensive results for the varfatfon in heat
transfer can be presented analogous to the
varfatfon of temperature for different condi-
tions, However, this should not be necessary

- because the heat transfer variation follows the

trend of the temperature variation in a reverse
manner, If the temperature dffferences are
higher, the rate of heat transfer will be higher
and the steady-state conditions will be reached
at earlier times. The results for heat transfer
varfations have been obtajned for selected
conditions and these are avaflable In Ref. 24.
Only a few results are presented here to show the
trend in cooling rates for different wall
temperatures and plate spacings.

For P = 1 atm, the results for Q and { are
11lustrated, as a function of t in Figs, 17 for
H,0 and in Fig. 18 for CO The results for t =
0.0 - 1.0 are shown gn Fig. 17a for H,0,
However, it is found that for the value
selected 1In this study, the stea y-state
conditions are reached in most cases at about t
= 0,2 Consequently, the results in Figs. 17b
17c, and 18 are presented only in the range of t
= 0.0 - 0.2 to demonstrate the rate of cooling at
different temperatures. As would be expected,
the results show that for a given plate spacing
the gas layer reaches the steady-state condition
faster at higher values of T, because of stronger
radfative interactions. It should be noted that
the rate of energy transfer {ncreases with time
for a gas layer claser to the upper wall
(£ = 0.75) and decreases with time for a gas
layer closer to the lower wall (& = 0.25) until
the steady-state conditions are reached. The
rate of cooling is entirely different if the
plate spacing is changed (Fig. 17¢}). From a
comparison of results of Figs., 17 and 18, it {is
noted that the trend and rate of energy transfer
are different for different species. This,
however, would be expected because of the rela-
tive ability of different species to participate
in the radiation-conduction Interaction process.

Conclusions

The problem of transient radiative interac-
tion in nongray absorbing-emitting species has
been formulated in a general sense such that
sophisticated absorption models can be used to



obtafn accurate results {f desired. Results have
been obtained for the special case of radiative
interactions in a plane gas layer bounded by two
parallel plates when the temperature of the
bottom plate {s suddenly reduced to a lower but
constant temperature. The energy transfer by
pure radiation, and by simultaneous radfation and
conduction were considered and specific results
have been obtained for CO, CO,, Hy0, and OH by
employing the Tien an Lowder's correlation for
band absorption., It {s noted that the extent of
radiatfve Interaction is dependent on the nature
of the participating species and parameters T,
To/Ty, P, L, and t,. The steady-state conditions
are reached at relatively longer times for radfa-
tive equilibrium than for radiation with conduc-
tion. For a particular value of P and T), the
time required to reach the steady-state condition
increases with increasing plate spacing. For a
fixed plate spacing, the energy i{s transferred
quickly for higher T, values because of large
temperature differences between the plates. The
rate of radiative interaction i{ncreases with
increasing pressure until the large path length
Timft {1s vreached. The radiative equilibrium
solutions are found to be i{ndependent of the
plate spacing in the optically thin limit. In
the case of simultaneous radiation and conduc-
tion, both optically thin and large path length
solutions depend on the y-locatfon between the
plates. At moderate temperatures, OH 1s a poor
radfating but better heat conducting gas. For
most conditions, H,0 1{s found to be highly
radfation participatzng species, and the steady-
state conditions are reached quickly for H,0 than
for other species. The information on radiative
{nteractions for OH and H,0 1{s useful in the
analysis of the flow field 1in the scramjet
engine.
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INTERACTION OF TRANSIENT RADIATION IN FULLY DEVELOPED LAMINAR FLOWS

S. N. Tiwaril and 0. J. Singn?
01d Dominion Universtty, Norfolk, Virginia 23508

Abstract

Analysis and numerical procedures are
presented to fnvestigate the transient radiative
interactions of nongray  absorbing-emitting
species in laminar fully-developed flows between
two parallel plates. The particular species
considered are OH, CO, COp, and Hy0 and different
mixtures of these species. Transgent and steady-
state results are obtained for the temperature
distribution and bulk temperature for different
plate spacings, wall temperatures, and pressures.
Results, in general, indicate that the rate of
radiative heating can be quite high during
earlier times. This information 1is useful in

designing thermal protection systems for
transient operatfons.
Nomencla ture

A band absorptance = A{u,B}, en]

A, band width parameter, eml

Co correlation parameter, atm™! - cml
Cp specific heat at constant pressure,

kd/kg-k = erg/gm-k
e, Planck's function, (hl-cm'z)/cm'l
e Planck's function evaluated at wave
Yo number w
o
ey,ep emissive power of surfaces wi;h

temperatures T, and Ty, W-cm

Hys.Hy gas property for the large path Tength

1imit

k thermal conductivity, erg/cm-sec-X

Ky gas property for the optically thin 1imit
distance between plates

M large path length parameter,
nondimensional

N optically thin parameter, nondimensional

P pressure, atm

ap total radiative heat flux, w/cm?
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Ry spectral radiation heat flux,
(w-cm™2)/cm™]
q, wall heat flux, w/cmz
S 1nt.egrated intensity of a wide band,
-cm
time, sec
T temperature, K
N wall temperature, K; T; = T,
Ty bulk temperature, K
u nondimensional coordinate = SPy/A,
o nondimensional path length = SPL/A,
y transverse coordinate, cm
B Jine structures parameter
0 nondimensional temperature
9b dimensionless bulk temperature
Ko spectral absorptin coefficient, em!
£ nondimensional coordinate = y/L = u/uo
o density, I:g/m3
T nondimensional time
w wave number, cm”]
wy wave number at the band cener, em 1
Introduction

The radiative energy transfer in participat-
ing medium has received specfal attention in
recent years because of {ts applicatfons in the
areas of the remote sensing, earth's radiation
budget studies and clfmate modeling, fire and
combustion research, entry and reentry phenomena,
hypersontc propulsion and defense-oriented
research, In most studies involving combined
mass, momentum, and energy transfer, however, the
radiative transfer formulation has been coupled
mainly with the steady processes [1-13] and the
interaction of radfation in transient processes
has received very l1ittle attention. However, the
transient approach appears to be the logical way
of formulating a problem {in general sense for
elegant numerical and computational solutions.
The steady-state solutfons can be obtafned as
1imiting solutfons for large times,

The limited number of studies available on
the transient radfative transfer 1n gaseous



systems [14-24] are reviewed critically in [25-
271. The literature survey reveals that the
transient behavior of a physical system can be
influenced significantly in the presence of
radiation.

The goal of this research is to include the
nongray radiative formulation 1in the general
governing equations and provide the step~by-step
analysis and solution procedure for several
realistic problems. The basic formulations are
presented 1in [25] and the specific case of
transient radiative exchange in nongray gases
between two parallel plates is investigated in
[26, 27]. The objective of this study is to
investigate the interactfon of transient radia-
tion in fully-developed laminar flows between two
parallel plates,. Thus, special attention is
directed to include the nonsteady phenomenon only
in the energy equation. Homogeneous as well as
nonhomogeneous mixtures of absorbing-emitting
species are considered. In subsequent studies,
the present analysis and numerical techniques
will be used to investigate the unsteady flow of
compressible and chemically reacting species in
one- and multi-dimensional systems.

Basic Formulation

The physical system considered is the energy
transfer 1in laminar, {incompressible, constant
properties, fully-developed flow of absorbing-
emitting gases between parallel plates (Fig. 1).
The condition of uniform surface heat flux for
each plate is assumed such that the temperature
of the plates varfies i{n the axial direction.
Extensive treatment of this problem is avaflable
in the literature under steady state conditions
(8, 111. The primary motivation of this study is
to investigate the extent of transient radiative
interaction for high temperature flow conditions.

For the physical problem considered, the
energy equation can be expressed as [1]

2
8T . 8T . 3Ty _ . 2°T d
SR ARE ARE 2w ALY

+ u(gg)z - divg, (1)

where u and v denote x and y components of
velocity, respectively., In deriving Eq. (1) it
has been assumed that the net conduction heat
transfer 1in the x direction 1is negligible
compared with the net conduction in the y direc-
tion. This represents the physical condition of
a large value of the Peclet number, By an
analogous reasoning, the radfative heat transfer
in the x direction can be neglected in comparison
to that transferred in the y direction. If, in
addition, 1t is assumed that the Eckert number of
the flow is small, then Eq. (1) reduces to

2 3q
oT , a7 . 3T 2T __1 °n
H*"ﬁ*'by a;;z EC;y (2)

where a = (k/pC } represents the thermal

diffusivity of theP fluid.
For a steady fully-developed flow, v = O,

and u 1{s given by the well-known
profile as

parabolic

uasum(a-zz);a-y/L (3)

where u, represents the mean fluid velocity.

Also, for the flow of a perfect gas with uniform
heat flux, 8T/dx fs constant and is gfven by

dT/dx = (2aq )/(u L/k) {(4)

Now, by combining Eqs. (2) - (4), the energy
equation is expressed in nondimensional form as

2 aq
20 sy L2381 %

where
smat/t? ; 0. (T - T/ QLK)

By assuming that the initfal temperature
distributfon in the gas 1s some uniform value To

= T;, the fnitfal and boundary conditions for
this problem can be expressed as

o(g, 0) = 0 (6a)
8{0, t) =@ (1, t}) = 0 (6b)
°£‘5 =1/2) =0 ; 95“ =0) = - 65(5 =1) (6c)

It should be noted that all the boundary
conditions given in Eqs. (6) are not independent
and any two convenient conditions can be used to
obtain solutions. Also, the initial temperature
distribution can be any specified or calculated
value of (%, 0) = f(E).

As discussed in Refs. 25-27, the radiative
transfer equations are formulated for one-
dimensional planar systems for many engineering
and astrophysical applications. For diffuse
nonreflecting boundaries and in the absence of
scattering, the expression for the total
radiative flux {s given, for an n-band gaseous
system, by [1, 8, 25)

qR(y) e e,

3t Jr (- 3« (y-2)1d
z2) x expl- % x (y-2))dz
L sy o Moy 7 %o

L
S Fau () ke L 3 g (V) 142)0y (1)



where

Flm (z) = ewi(z)

i - elwi; sz'(z) = e”i(Z) - ey,

i

Equation (7) is in proper form for obtaining the
nongray solutions of molecular species. In fact,
this s an ideal equation for the line-by-line
and narrow-band model formulations. However, in
order to be able to use the wide band models and
correlations, Eq. (7) 1s transformed in terms of
the correlation quantities as [1, 7-13, 25)

QR (E’ = el - ez

3 n E L] L 3 1
+3 151 A uO'{J'° Flmi(i ) 31 [ uyy (5-€')1dE

1
] A 3 ’ [
- IE sz'(E ) Ai [7 Uoi (¢'-g)1de'} (8)

where
£ = uluy = y/L; E' =u'fu = z/L; A - AA

u = (S/A) py; u, = (S/A)) PL; PS = IAw x, dw

in Eq. (8)
i
represent _the values at the center of the_ ith
band and A'(u) denotes the derivative of Alu)
with respect to u. Upon performing the integra-
tion by parts, Eq. (8) can be expressed in an
alternate form as [25]

It should be noted that Flmi and sz

qR(F’) = el - ez

n E .
LAy U Tde, (£)/de'] Ky [3 ugy(e-€") 1de’
i=1 0

1
+f [dewl (£')/de'] Ky [3 uyy (€-8)1de")  (9)
£

A direct differentiation of Eq. (9) provides the
expression for the divergence of radfatve flux as

= I u e X
dE Z jop of Tof 0 T wy
- 3 l
A; 3 uoi(F,-E')]da' - fa [dem{(c')/da'] x
Ry 3 ug(e'-2)dde") (10)

Equations (8) through (10) are the nmost
convenient equations to use when employing the
band-model correlations fn radiative transfer
analyses.

For the present physical problem, e; = e,

Flwi = FZwi‘ Thus, for the case of
1inearized radfation, a combination of Eqs. (5)
and (8) results in [8, 18]

and

- _ _ el
eEF. 6. - 3N - 12 (e-£%)

9 n 2 £
=3 (L/K) 1): Hyg Ugy (J o(E', o) x
* 0

1

1
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where

2 2 n
N o= (PLE/K) Ky = (PLE/K) £ S(T) (dewildT)T

{=1 1

n
H11 = Aoi(T) (dew‘/dT)Tl » Hy = L Hyy

i=1

The dimensionless gas property N characterizes
the relative importance of radiation versus
conduction within the gas under optically thin
conditions. Also, by combining Eqs. (5) and (10)
another form of the transient energy equation is
obtained as

gl
e(,’E o - 12 {e-£°)

3 n 4
=5 (L/k) 121 Hyg Yo {f (26/23g') x
= (]

1
Ry [3 ugy(e-g') g’ - J, (o0/2")

Ry 03 ug, (£'-8)1dE") (11b)

Note again that Eq. (11b) can be obtained
directly by integrating the right-hand side of Eq
(11a) by parts. Quite often, Eq. (11b) fs the
convenient form to use {in radiative transfer
analyses.

For flow problems, the quantity of primary
interest 1{s the bulk temperature of the gas,
which may be expressed as [11]



1
B = (T /L) =6 elraeta (2

The heat transfer q, is given by the expression,
qy * ho (T)-Tp), where h. is the convective heat

transfer coefficient (W/cme-K). In general, the
heat transfer results are expressed in terms of
the Nusselt onumber Nu = h. D,/k. Here, Dy
represents the hydraulic diameter, and for the

parallel plate geometry it equals twice the plate
separation, i.e., Dy = 2L. Upon eliminating the

convective heat transfer coefficient h. from the
expressions for q, and Nu, a relation between the

Nusselt number and the bulk temperature 1s
obtained as

Nu = 2 qu/k(Tl'Tb) = -2/eb (13)
The heat transfer results, therefore, can be

expressed either in terms of Nu or °b'

Limiting Cases and Solutions

Before discussing the method of solution for
the general case, it is advisable to explore the
varfous 1imiting cases. Quite often, closed form
solutions can be obtained for some of these
cases. Specifically four limiting cases are
considered here and these are the steady laminar
flows, the case of negligible radiation, the
optically thin limit, and the large path length
1imit,

Steady Laminar Flow

For steady-state conditions 26/dt =0 and
€qs. (11) provide two forms of the energy
equation for this case. Another convenient form
is obtained by letting 36/3t = 0 1in Eq. (5) such
that

0" - 12 (5€%) = (1/q,) dap/ag (14)

By integrating Eq. (14) once and using the
conditions that at £ = 1/2, qR(F,) and
(de/de) are equal to zero, one obtains

o - 2032 - &%) + 1= qleda,  19)
A combination of £qs. (8) and (15} results in

o' - 23¢% - 28%) + 1
3k T K o et
= L P u x
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1
i (3 ugy (6" )1ag" - IE olz') x

Ay [ uy,le'-e)lae') (16)

It should be pointed out that by combining Egs.
(9) and (15) another useful form of the energy
equation can be obtained for the steady case,

For the case of negligible radiation, Eq.
(16) reduces to a very simple form and utiljzing
the boundary condition 6(0) = 0, the solution
of the resulting equation is found to be

3

o) = g2 €% - €2 - 1) (172)

The result for the bulk temperature is found by
combining Eqs. (12) and (17a) as

-8 - 17/70 (17b)
The results provided by Eqs. (17) are useful in

determining the extent of radfatve contributions.
Negligible Radiation

For the case of negligible radiation, N = 0
and both forms of Eq. (11) reduce to

- = -2
Og = 8, = 12 (£-8°) (18)

By employing the product solution procedure, the
solution of Eq. (18) can be obtained and the
result can be expressed in terms of the bulk
tempera ture through use of  Eq. (12).
Alternately, the solution of Eq. (18) is assumed
to be of the form

8(g,7) = g(g) + h{g,1) (19)

From Eqs. (18) and (19), there is obtained two
separate equations as

g* = 12(5-;2) (20)

hCE - hT =0 (21)

Solutions of Eqs. (20) and (21) are found
separately from which the complete solution for
the temperature distribution is obtained as [25)

o(g,x) = E(282 - &2 - 1)
+ I Cn sin (a &) exp(-a2 t); a = nx
n=1 (22a)

where

c, = (4/2° )L(12 - 1222 + a) cosla)



-24),n=1, 2,...

Finally, the expression for the bulk temperature
is found by using Eq. (12) as

=-17/70+6 £ C [(1/a)
n=1

+ (8/2%)] expl-a?e) (22b)

%

Equations (22) are useful in determining the
extent of vradiative contributions for the
transient case.

Optically Thin Limit

In the optically thin limit, the expression
for the bulk temperature for the steady case is
found to be [11, 25]

o, = (1703031 (576031 "2 (nexp) - 21,607
+ 72N - 288) (23)
where
NEXP = (1-exp [-(3N/21)/(1 + expl-(30)1/2])

Both forms of the transient energy equation,
Eqs. (11a) and (11b), reduce to a simplified form
in the optically thin limit as [25)

- = _2
eEE 6_ - 3Ne 12(2-£°) (24)

Assuming a solution of the form given by Eq.
(19), Eq. (24) fs written as

2
hEE h. - 3Nh e * 3Ng + 12(8 - £7)  (25)
Consequently,

g" - INg = 12(¢ - 52) (26)

and h

ke " ht - 3Nh =0 (27)

From the solution of Eqs. (26) and (27), the
solution for Eq. (24) {s obtained as

o(e,t) = (16/3N%) [sinh (~/3RT2)/sinh(/IN)]
cosh [/IN (£-1/2)] + (4/K) (g2 - £ + 2/3N)

+ I Cn sin (a&) exp [-(3N + az) t]; a = nn
n=1 (28a)

, for n even (28b)

= 32 (3N + a2)/ (3N a3y

+ 2a/[3N2(3N + az)] , for n odd (28c)

By combining Eqs. (12) and (28), the expression
for the bulk temperature is obtained as

9 = 6 ((16/38% ) Cstnn(~/TR/2) /sinh(/TR) ] x
[(1/3N) cosh{/3R/2) - (4 + /3R) (3N) /2 4

sinh(VIR/2)1 + (4/N) [-1/30 + 1/(9N)]

+ I Cn(lla + 4/&3) exp[-(3N + 32)11} (29)
n=1

Large Path Length Limit

In this 1imit, the steady-state energy
equation, Eq. (16), reduces to [8, 11, 25]

. 2 .3 1
8' - 2(38° - 2e°) + 1 =M [ o(g') de'/(E -E')
0 (30)
where

n
M= Hl L/x = (L/k) 131 Aoi (dewi/dT)Tl

The nondimensional parameter M constitutes the
radiation-conduction 1interaction parameter for
the large path length 1imit., Equation (30) does
not appear to possess a closed form solution; a
numerical solution, however, can be obtafned
easily.

In the 1large path length 1limit, the
transient energy equations, Eqs. (1la) and (11b),
reduce to

A L . L2
eEE e 3Ne - 12(¢ - £7)
z 2
=-ML[f o(e,t) de'/(g - &)
0

1
+ f ez, vae' /(g -02) (31a)
£
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e55 o -12 (g -¢ )



1
= M [ (d8/08')de'/(g-¢") (31b)
0

since  [(g-6)%]=|(g'-0)%], Eq. (31a) can Dbe
written as

2
e&E 6. - 3N - 12(% £°)

1
= - M [ 8(g',%) de'/(E - g2 (31¢)
0

Through integration by parts, Eq. (31lc) can be
expressed as

2
GEE 8. 3Ne - 12(g - &7)

1
=M [ (20/3E')dE'/{E-E") (31d)
0

Equations (31a) - (31d) represent different forms
of the governing equations 1in the large path
length 1limit., With the exception of the term
(-3N8) on the left-hand side, Eq. (31d) 1is
identical to Eq. (31b). Since N represents the
radiation-conduction interaction parameter only
in the optically thin limit [8), it should not
appear in the governing equation for the large
path length 1limit. Thus, Eq. (31b) 1s the
correct equation to use for solution in the large
path length limit; the solution of this equation
is obtafned by numerical techniques,

Method of Solution

The solution procedures for both steady and
unsteady cases are presented in this section. In
principle, the same numerical procedure applies
to both the general and large path length limit
cases,

Steady-State Solutions

The general solution of Eq. (16) is obtained
numerically by employing the method of variation

of parameters. For this, a polynomial form for
8{g} 1s assumed in powers of £ as
n m
8(E) = £ a_¢ (32)

w0 M
By considering a five term series solution (a
quartic solutfon in E) and satisfying the

boundary conditions 6(0) = 0'(1/2) = 0 and
8'(0) = -6'(1), one obtains

o(e) = ay (e - 28 + %) +a,06% - 22% + Y (33)

0 (e) = a,(1 - 667 + &%) + a (2t - 6g? + 4’)
(34)

A substitutfon of Eq. (34) in Eq. (16) results in

‘1“ - 652 + 4&3) + a2(25 - 652 + 453)

n
232 -23) v 1= ; (L/k) £ H, u, x

p=1 M ot
E ] T 3 ] '
{Io og’) AL [3u (€ - g')lag
1 ] e 3 .
- ]»; o(e") Ay [3u (g - £)] ag') (35)

where expressions for 6(£') are obtained from

Eq. (33).

The two unknown constants 3; and a, in Eq.
{35) are evaluated by satisfying the integral
equation at two convenient locations (£=0 and
E=1/4 in the present case). The entire
procedure for obtaining 2; and a, is described in
[25]. With known values of 3; and a,, Eq. (33)
provides the general solution for o(g). The
expression for the bulk temperature is obtained
by combining Eqs. (12) and (33) as

eb = (1/70) (l7al + 3 (36)

2)

[t should be noted that for the case of no
radiative interaction a; = 0 and a; = -1, and Eq.

(36) gives the result of Eq. (17).

The governing equation for the large path
length timit is Eq. (30). For this equation also
the solution is given by Eqs. {(33) and (36) but
the values of a's are completely different in
this case [25].

Transient Solutions

The governing energy equations for the
transient case are £qs. (11a) and (11b), General
solutions of these equations are obtajned also
numerically by employing the method of varfatfon
of parameters. For the present problem, a
polynomial form for 6(f,t) is assumed as

n
8(g,%) = £ a (7) e (37)
m=0
For a quadratic temperature distribution in g

(with time dependent coefficients), Eq. (37) is
written as

8(2,7) = agle) +a,(x) £+ a,(x) & (38a)

By using the boundary conditions 9(0,%) = 0 and

95(5-1/2) = 0, this reduces to

8(E,1) = g(t) (£-£2) (38b)



represents the time
Consequently,

where g(t) dependent

coefficient.
eg(glt) = 9(‘5) (1'25); GEE(E'T)
- ~29(x); 6_(E,3) = (£¢0) ¢'(s)  (39)

Also, a combination of Eq. (6a) and (38b) yfelds
the initial condition

8(£,0) = g(0) =0 (40)

Note that essential boundary conditions are used
already in obtafning the solution represented by
Eq. (38b).

By employing Eqs. (38b) and (39), Egs. (1la)
and (11b) are transformed 1in alternate forms
which are expressed in a compact form as

JI(E).

glt) +12 =0 {41)
3,(8)

g'(t) +

where JI(E) and Jz(z) are defined in [25). The
function Jj(g) s used for solution of Eq. (11a)
and Jp(£) is used for solution of Eq. (11b). The

solution of Eq. (41) satisfying the initial
conditions of Eq. (40) is given by
12

g(t) = T {exp [-J(£)<]-1} (42)
The temperature distribution given by Eq. (38b)
can be expressed now as

_ 12 2

6‘5.1) = m (exp[—J(E)t]-l)(€°§ ) (43)

The expression for the bulk temperature {s
obtained through use of Eq. (12) as

1
6, = 72 | [(e-e212/3(e) Hexpl-02)e)-1)  (44)
0

Note that 1n Eqs. (42)-(44), J(£) becomes J,(E)
for solution of Eq. (11a) and JZ(E) for solution
of £q. (11b).

For a quartic solution in &, Eq. (37) gives
the result similar to Eq. (33} which for the
transient case is expressed as

ole,x) = glt) (£ - 265 + gh)

s hio) (g2 - 223 v gh (45)
(11a), one

By substituting Eq. (45) into Eq.

obtains

x g' (1) + J3(§) glt) + yh'(x) + J4(£) hiz) = - z
(46)
where

4

x = (£ - 253 + 54); y= (&2 - 253 +E);

z = 12(¢ - £%)
3,(8)

and functions and J4(£) are defined in

[25]. Equation {46) constitutes one equation in
two unknowns, namely g{t) and h(s). However,
since the equation is linear in <, the principle
of superposition can be wused to split the
solution into two equations as
x g' (1) + d4(8) gls) = -2/2 (47)
yh' (1) + J4(§) h(<) = -2/2 (48)

The 1{initfal condition for this case can be

written as
8(£,0) = g(0) (£ - 2¢ + &)
sno) (22 -2 v gh =0 (402)
Consequently,
g{0) = 0; h(0) =0 (49b)

The solution of Eqs. (47) and (48)
satisfying the appropriate 1initial condition of
Eq. (49b) 1s given respectively as

g(x) = [Z(E)/2J3(E)] {exp[-J3(E)t/x(£)]-l) (50)
h(z) = [2(8)/23,(£)] {exp(-J,(E)</y(E)]-1} (51)

By substituting Eqs. (50) and {51) into Eq. (45),
the expression for the temperature distribution
is obtained as

o(z,<) = (6(z-g2)(z-28%2%) 10,0001 x
(expl-0,(£)e/x(£)]-1} + [6(z-€7) x

2_,.3,.4
(£2-26242%)10, (811 texpl-0,(8)e/y(EI -1} (52)

The bulk temperature fn this case is given by



1
o, = 36 | [te-gX)te-2e 641050007 x
0

1
(expl-d3(6)e/a(6)1-10ag + 36 | [(e-€?)
(e2-26+2%) /0, (8) Hexpl -9, (£ )e/y(2)1-10dE.  (53)

where x and y are defined in Eq. (46).
By substituting Eq. (45) into Eq. (11lb),
there is obtained

xg' + Jglg) glx) + yh + JglE) h(z) = -z (54)

where again x,y,z are defined in Eq. (46) and
functions Jg(£) and JG(F.) are defined in
[25]. The solution procedure for this equation
is identical to that for Eq. (46) and the results
for temperature distribution and bulk temperature
are given respectively by Eqs. (52) and (53) with
Jq replaced by Jg and J4 by Jg.

In the large path length limit, the two
applicable governing equations are Eqs. (31b) and
(31d). The solutions of these equatfons can be
obtained from the general solutions by evaluating
the {integrals in J function in the large path
length limit [25].

Physical Conditions and Data Source

As discussed in (25-27], four specific
absorbing emitting species were selected for an
extensive study; these are CO, C0p, OH and H,0.
The species (O was selected because it contains
only one fundamental vibration-rotation (VR) band
and all spectral information are easily available
in the literature, [t is a very convenfent gas
to test the numerical procedure without requiring
excessive computatinal resources. Species OH and
H,0 are the primary radiation participating
species for the pressure and temperature range
anticipated in the combustor of the scramjet
engine. Species CO;, and combinations of CO, and
Hy0 are important absorbing-emitting species in
many other combustion processes. Different
mixtures of varfqus species (such as €0, + H,0,
04 + H,0, and CO€ + H,0 + OH) were selected %or
parametric studies. Thermophysical properties of
these species are given in [26] for different
tempera tures.

In radiative transfer analyses, it 1is
essential to employ a suitable model to represent
the absorption-emissfon characteristics of
specific species under investigation. Several
line-by-1ine (LBL), narrow-band, and wide-band
models are available to model the absorption of a
VYR band [7-12]. However, it is often desirable
to use a simple correlation to represent the
total absorption of a wide band. Several such
correlations are available in the literature [7-
12]. The relative merits of these correlations
are discussed in [12]. In this study, the
correlation proposed by Tien and Lowder [7] 1is

employed and this is given by
T u+ 2
A(u) = 1n {(uf(p) [i-:_z?TET] + 1} (85)

where
f(B) = 2.94[1 - exp(~ 2.60 B)]

and B represents the line structure parameter,

The spectral information and correlation
quantities needed for different species were
obtained from Refs. 7-9, 26 and 28. The specific
VR bands considered for each species are: (O
(4.74 fundamental), OH (2.8 fundamental), co,
(154, 4.3p and 2.74), and K0 (20p, 6.34,
2.7, 1.87y, and 1.38y).

In a mixture of several species, spectral

lines and bands overlap in certain spectral
regions. The total absorptance in such regions
cannot be calculated simply by adding the

contributions of different bands and corrections
should be made to account for the partial
overlapping. If line-by-line or narrow band
models are employed in the general formulatfon of
the physical problem, then there is no need for
such corrections [12, 29, 30]. The solutfon of
LBL formulation, however, requires considerably
large computational resources. Use of narrow
band models offers some computational relief but
certain spectral information needed are not
available for many species for temperatures
higher than about 600 K. A relatively easfer
procedure (called the block method) is suggested
by Edwards [13] and is useful in calculating the
total emissivity of a mixture of several species.
Another method suggested by Penner and Varanasi
(31] is probably the most convenient method to
use in the frame work of the radiative flux
formulatin expressed in terms of the wid-band
model absorptance and correlations.

For a homogeneous path, the total
absorptance of a band is given by

Aly) = [ [1 - exp(- x, ¥ dw (56)
o

where both kK, and w have units of enl. If in
a spectral range Aw,, there are contributions

from bands of different species, then for a
homogeneous path the transmittance is given by

N
= exp(- & y
J=1 K“HJ

where N represents the number of participating

)

T
Aa»i

species in the gaseous mixture. Consequently,
€Eq. (56) can be expressed as
N
| [1-exp(- ¢ x, ¥}]do (58)
B, =1 MJ

If two bands of different (or same) sﬁecies are



occupying approximately the same spectral range
Aw‘, then Eq. (58) reduces to

Ay =]

{1 ~exple. +x )yl dw  (59)
Busg 51 Y2

By employing the relations for the exponentials,
Eqs. (59) can be expressed as [31]

Ap=f (1 -exp(-x, y)]de

Awi il

+ [1 - exp(- %, 1] dw - AA (60a)

Aw' j2
or
A=A+ A, - BA {60b)
where
sA= [ {[1-exp(-«, y)]x
L 1
y)]} dw (60c)

[1 - exp(- x
“2

Use of Egs. (60) has been made by Felske and Tien
[32] to calculate absorptances of homogeneous and
nonhomogeneous mixtures of COy and Hy0 in the 2.7
u region for different pressure ans tempera ture
conditions. A similar procedure s used in this
study to account for the overlapping effects of
different species [28].

For the physfcal problem considered, the

dependent variables are © and © (or Nu) and
independent variables are =<t and %. The para-
meters, in general, are T, P, and L. The large
path length and opticaw’lly thin limits are

characterized respectively by parameters M and N.
Radiative and thermophysical properties of
participating specfes are evaluated at different
specified pressures and temperatures,

Results and Discussions

Extensive results have been obtained for
varfation of 6 and 6_ for different conditions.
Selected results are presented here to compare
solutions of quadratic and quartic formulations
and demonstrate the varifation of 6 with T and ¥
and of 6, with L for single component systems
and homogamous mixtures. Some other results are
available in [28]. For all results presented
here, a lower value of 0 (or 6.) in the figures
indicates a higher value of t%mperature in the
medium; this, in turn, implies a relatively
higher ability of the gas to transfer radiative
energy.

Results of quadratic and quartic formula-
tions are compared in Figs, 2-5 for different
species, The centerline temperature variations
with nondimensional time are compared in Fig. 2
for P = 1 atm, Tw=SOOK. and L = 5 cm. The

results show that the steady-state conditions are
reached at an eariler time for Hy0; and this is
followed respectively by COp, CO, and OH.
Signfficant differences are noted between the
quadratic and quartic solutions for larger
times. For the conditions of results presented
in the figure, the difference are found to be
greatest for OH and lowest for H,0. The results
for 6 versus I are compared gor P=1atm L
= 10 cm, and T, = 500 K in Fig. 3 and T, = 1,000
K in Fig, 4. The results demonstrate that
considerable differences in solutions can occur
at different locations in the channel and that
the differences are larger for the lower wall
temperature. Results for 6, versus L presented
in Fig. 5 show that the “differences in two
solutions are relatively larger at lower plate
spacings and that quartic solutions approach the
correct limiting solution for the case of no
radiative finteraction (6_ = -0.243). From the
results presented in Figs, 2-5 and in Refs, 26
and 27 1t is concluded that while quadratic and
quartic solutfons are identical for radiative
equilibrium and radiation with conduction cases,
they differ significantly for the case of
combined conduction, convection and radiation.
As such, all other results for this study were
obtained by using the quartic formulation.

The results for temperature varfations with
nondimensiona) time are presented in Figs. 6-9
for varjous species and for different physical
conditions. The centerline tempera ture
distribution for general and limiting cases are
fllustrated in Fig. 6 for T = 500 K, P = 1 atm,
and L = 5 cm. The results show that the steady-
state conditions are reached at about < = 0.5
for all species. As noted earlier, these results
also demonstrate that H,0 is a highly radiatfon
participating gas as compared to C0,, CO, and
OH. In comparison to other specfes considered,
OH takes relatively longer times to reach the
steady state and 1s least effective In
transferring the radiative energy. For the
specified physical conditions, the large path
length solutfons are closer to the general
solutions and optically thin solutions provide
higher rate of energy transfer, For all species,
optically thin solutions reach the steady state
faster than other solutions. Also, 1in the
optically thin 1imit, CO, is more effective 1n
the radiative transfer process than other
species. The reasons for such trends are given
in [8, 26, 27]. The results for T, = 500 K and
1,000 K are compared in Fig. 7, and they simply
indicate that the rate of energy transfer fis
higher at the higher temperature. The results
for £ = 0.25 and 0.5 are compared in Fig, 8 for
Ty = 1,000 K, P =1 atm, and L = 5 cm. It is
noted that the rate of energy transfer is higher
at earlier times and at locations closer to the
wall, The centerline temperature varifations for
L =5 cmand 10 cm are 1l1lustrated in Fig. 9 for
T, = 1,000 K and P = 1 atm. As would be
expected, the rate of energy transfer is seen to
increase with the increasing path length.

The results for temperature varfations
within the plates are presented in Figs., 10-14
for different conditions. Since the temperature
profiles are symmetric, most of these results are
fllustrated only for E=0 ¢to £ = 0.5, The
stady-state solutfons for varfous specles are



compared in Fig, 10 for P = 1 atm, L = 10 cm, and
different wall temperatures. Results again
demonstrate the relative importance of different
species for energy transfer. It is noted that
the results for CO, at T, = 500 K are exactly the
same as for OH at = 1.000 K, and the results
for CO and H,0 are a‘ﬂout the same at T, = 1,000 K
and 2,000 K. This obviously is a coincidence for
the physical case considered. The general and
limiting solutions for QOH, CO, CO,, and Hp0 are
presented, respectively, in Figs. 211 through 14a
for T, = 500 K, P =1 atm, and L = 10 cm, These
results also show that the steady-state condi-
tions reach earlier for Hy0 and €0, than for CO
and OH. In general, the differences between
limiting and general solutions are found to be
smll at earlier times; the maximum difference
occurs at the steady-state conditions. In each
case, the large path length solutions are closer
to the general solutions, but the optically thin
solutions are found to deviate considerably.
This is because for P = 1 atm and L = 10 cm, the
pressure path length is sufficiently high and the
optically thin limit is not the correct limit for
the physical case considered. It should be noted
that for (O, COp, and Ha0, the optically thin
solutions are identical for t » 0.05. Additional
results given in [28] reveal that the differences
between general and large path length solutions
are insignificant at higher temperatures for all
species. The general solutions for the
temperature varfation across the entire duct are
{1lustrated in Fig. 14b for Hy0 for the physical
conditions of Ty = 1,000 K, P =1 atm, and L = 5
cm, The parabolic nature of the transient
profiles is clearly evident and, in this case,
the steady-state is reached at t » 0.5.

The bulk temperature results as a function
of the distance between the plates are presented
in Figs. 15-19 for different times., General as
well as limiting solutions are {llustrated in
these figures. As mentioned earlier, the
limiting value of 6 _= - 0.243 corresponds to
negligible radiation, For all species, the
results presented in the Ffigures are for a
pressure of one atmosphere. However, for any
particular t, the large path length results
essentially represent the limiting solutions for
high pressures. The results, in general, demon-
strate that the rate of energy transfer is higher
at earifer times, the effect of radiation
increases with increasing plate spacing, and the
radiative transfer 1{s more pronounced at the
higher wall temperature.

General as well as limiting solutfons for
the bulk temperature are illustrated in Figs. 15-
18 for individual species. It is seen that for
all species the general solutions for < = 0.5
and 1.0 are essentfally the same for all plate
spacings, and the large path length results are
valid for spacings greater than L = 10 cm for all
times. The results for OH are presented in Figs.
15a and 15 for T, = 500 K and 1,000 K,
respectively, It is noted that optically thin
results provide the correct limiting solutions
for plate spacings upto L = 3 cm for all} times.
The results for T, = S00 K show only slight
difference between general and large path length
solutions for <t = 0.5, and no significant
difference was noted at earlier times (Fig. 15a).
This, however, is not the case for the results

presented in Fig. 15b at T, = 1,000 K. This
trend 1n results for OH was noted also in [26,
27]. The results for CO are illustrated in Fig.
16 for Tw = 500 K and P = 1 atm. In this case,
the optically thin solutions are seen to be valid
only upto L = 1.5 cm. For Tw = 1,000 K and P = }
atm, the results presented in Fig. 17 for CO, and

in Fig. 18 for Hy0 show the same general trend
but the extent of radiative interaction 1is
entirely different, For COZ, there is a

considerable difference in general and optically
thin solutions for all times. For H,0, however,
the optically thin results are closer to the
general solutions for spacings upto L = 2.5 cm.

The results presented in Figs, 15-18 clearly
reveal that for a fixed spacing between the
plates the rate of radiative heating will be

considerably higher at earlier times than at the
steady state. Thus, 1n a particular physical
system, the extent of radfative heating can be
very intense during the initial stages of opera-
tion. It is also important to note that both the
optically thin and large path length results
overestimate the 1influence of radiation. Since
these solutions can be obtained with Jless
numerical complications, they can be utilized to

assess whether or not, for a given gas, the
Interaction of radiation 1is going to be
important.

A comparison of the general band absorptance
results for the four gases 1s shown in Fig, 19
for a pressure of one atmosphere and a wall
temperature of 1,000 K. The results clearly
demonstrate the relative ability of the four
species for radiative transfer at different path
lengths. For a plate spacing of greater than L =
3.0 cm, the results show the same trend as noted
in Figs. 2-10, For lower plate spacings and
relatively higher temperatures, however, €o,
shows a significantly higher ability for radia-
tive transfer than other species, This is a
typical distinguishing feature of the €0y under
optically thin conditions (8, 26, 271.

For steady-state conditions, bulk tempera-

ture results were obtained for mixtures of
different absorbing-emitting species under
various conditions and some of these are

presented in Figs, 20-27. The relative amount of
each species in the mixture and the relative
ability of the species for radiative transfer in
a given physical condition determine the extent
of radiative interaction.

As mentioned before, 1in many combustion
processes involving fossil fuels, the predominant
products of combustion are carbon dioxide and
water vapor. Extensive studies have been
conducted in the literature to determine the
total emissivity of €0, and H,0 for homogeneous
and nonhomogeneous conditions. However, only
1imited studies are available involving mixtures
of C0, and H,0 for realistic and important
physical condiztions. The bulk temperature
results for three different mixtures of CO, + Hy0
are presented in Figs, 20-23 for different
temperatures and pressures, As would be
expected, the results, in general, show that the
extent of radiative 1interaction 1increases with
increasing  temperature, pressure, and path
length. It is seen that the radiative interac-
tion is stronger for higher amount of Hy0 in the



mixture. However, for the optically thin
conditions, the radjative contribution is seen to
increase with 1increasing amount of CO, at

relatively higher temperatures,

The bulk temperatures results for mixtures
of ‘OH and H)0 are i1}lustrated in Figs. 24-26 and
for mixtures of C0,, Hy0, and OM in Fig. 27 for
different pressures and temperatures. All these
results clearly demonstrate that the radiative
ability of a gaseous mixture essentfally depends
on the amount of highly radiation participating
species {in the mixture. For example, a
comparison of results presented in Figs. 24 and
27 for P = 1 atm {ndicates that the rate of
radiative transfer {is significantly higher with
the inclusfon of 20% CO, in the mixture of OH and
H,0. It is further noted that OH becomes a
hggMy radiation participating species at higher
tempera tures and pressures.

Concluding Remarks

Analytical formulations and numerical
procedures have been developed to investigate the
transient radiative {interaction of absorbing-
emftting species 1in laminar fully-developed
flows, Extensive results have been obtained for
OH, €0, COp and H,0 for different physical
conditions. INMustrative results for the
temperature distribution and bulk temperature are
presented for different pressures and wall
temperatures, In these results, a lower value of
temperature implies a relatively higher ability
of the gas to transfer radiative energy.

Comparative results of quadratic and quartic
formulations confirm the need to use the quartic
formulation in the numerfcal procedures for the
case of combined conduction, convection, and
radiation. The results, in general, demonstrate
that the steady-state conditions are reached at
about t = 0.5 for all specifes, Hy0 1s a highly
radiatfon participating species (as compared to
C0p, CO, and OH), the rate of energy transfer is
higher at earlier times and at locations closer
to the wall, differences between the limiting and
general solutions are small at earlier times, the
effect of radiation increases with increasing
plate spacing, and the radiative transfer is more
prounounced at higher wall temperature and
pressure. Similar conclusions can be drawn from
the results presented for varifous mixtures. The
results clearly show that for a given physical
condition the radiative ability of a gaseous
mixture depends essentially on the amount of
highly radtating species in the mixture. From
the results presented in this study, the extent
of total heating can be determined for different
times, This information is essential in design-
ing thermal protection systems for operations
during the initial stages of intense heating.
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Analyses and numerical procedures are presented to investigate the radiative interactions of
gray and nongray absorbing-emitting species between two parallel plates and in a circular tube.
Laminar fully developed incompressible as well as entrance region subsonic flows are considered.
The participating species considered are OH, CO, CO,, CH4, and H,0. Results obtained for
different flow conditions indicate that the radiative interactions can be quite significant in fully
developed incompressible flows. For subsonic flows, however, the flowfield is not changed

RADIATIVE INTERACTIONS IN LAMINAR

INCOMPRESSIBLE AND COMPRESSIBLE INTERNAL FLOWS

S. N. Tiwari!, D. J. Singh? and P. A. Trivedi’
Old Dominion University, Norfolk, Virginia 23529-0247

Abstract

significantly due to radiative interaction.
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Nomenclature

band absorptance = A(u,3), cm’!
band width parameter, cm!
correlation parameter, atm™! - cm
specific heat at constant pressure kJ/kg-K = erg/gm-K

Planck’s function, (W-cm2)/cm]

Planck’s function evaluated at wave number w,

emissive power of surfaces with temperature T; and Tz, W-cm™
thermal conductivity, erg/cm-sec-K

distance between the plates

pressure

partial pressure

stagnation pressure

Prandtl number

total radiative heat flux, J/m2-s

conduction heat flux, J/m2-s

spectral radiation heat flux, (w-cm2)/cm’!

physical coordinate for circular tube

radius of the tube
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S integrated intensity of a wide band, atm™!-cm™
T temperature, K

Ty, T, wall temperature, K; T; = Ty,

Ty bulk temperature, K

u nondimensional coordinate = SPy/A,

Uo nondimensional path length = SPL/A,

0 flow angle

K spectral absorption coefficient, cm'!

Kp Planck mean absorption coefficient, cm'!
& computational coordinate

p density, kg/m

g Stefan-Boltzmann constant, erg/(sec-cm-K‘)
w wave number, cm’!

Wo,wi wave number at the band center, cm!

1. Introduction

There is a renewed interest in investigating various aspects of radiative energy transfer in
participating mediums. Radiative interactions become important in many engineering problems
involving high temperature gases. Recent interest lies in the areas of design of high pressure
combustion chambers and high enthalpy nozzles, entry and reentry phenomena, hypersonic
propulsion, and defense oriented research.

Basic formulations on radiative energy transfer in participating mediums are available in
standard references [1-8]. The review articles presented in [9-15] are useful in understanding
the radiative properties of participating species and the nature of nongray radiation. The validity
of radiative transfer analyses depends upon the accuracy with which absorption-emission and
scattering characteristics of participating species are modeled. There are several models available
to represent the absorption-emission characteristics of molecular species and these are reviewed
in [12, 13].

The purpose of this study is to present analyses and solution procedures for infrared
radiative energy transfer in molecular gases when other modes of energy transfer simultaneously
occur. Attention is directed to investigate radiative interactions in laminar incompressible and
compressible internal flows between two parallel plates and in a circular tube. Radiative
interactions in incompressible duct flows have been investigated extensively in the literature
with certain inherent simplifying assumptions [16-35]. The main thrust of this research is to
develop procedures for investigating radiative interactions in subsonic compressible entrance
region flows and provide a parametric study for different participating species. However, basic
formulations, numerical procedures, and certain results of incompressible fully-developed duct
flows are also presented for comparative purposes.



II. Basic Formulation

Basic governing equations and boundary conditions are provided here for the two physical
problems considered in this study. These are fully developed laminar incompressible flow
between two parallel plates and within a circular tube, and developing laminar compressible
flow in ducts.

A. Fully-Developed Incompressible Flow

The physical problem considered is the energy transfer in laminar, incompressible, constant
properties, fully developed flow of absorbing-emitting gases between two parallel plates (Fig. 1a)
and within a circular tube (Fig. 1b). The condition of uniform surface heat flux is assumed such
that the surface temperature varies in the axial direction. Extensive treatment of this problem
for the parallel plate geometry is available in the literature. However, only limited attentions
have been directed in obtaining nongray solutions for the circular tube geometry [19, 20, 23,
26]. One of the objective of this study is to obtain extensive nongray solutions for the circular
tube geometry for different flow and physical conditions.

For the parallel plate geometry (Fig. 1a), the energy equation can be expressed as [1]

oT or o*T 1 Jdqr
U —+v—=« -

Ox dy o0y?  pC, Oy
where a = (k/p Cp), represents the thermal diffusivity of the fluid. In deriving Eq. (1), it has
been assumed that conduction as well as radiation heat transfer in the x direction are negligible
compared to that transferred in the y direction. In addition, it has been assumed that the Eckert
number of the flow is small. These assumptions are consistent with the formulations presented
in [4, 6, 8§, 10, 11].

The justification for a fully developed flow in the presence of radiative interaction is provided
in [4, 8] and in cited references. For a fully developed flow, v = 0,and u is given by the well-
known parabolic profile u = 6 uy (¢ — ¢2), where ¢ = y/L and uy, represents the mean fluid
velocity. Also, for the flow of a perfect gas with uniform heat flux, T /9x is constant and
is given by

(1)

0T/0x = (2aqw)/(u- . k) (2)
A combination of Egs. (1) and (2), therefore, results .a

d?%0 2y 1 dqgr
ae 128 = —5F )

where
0 = (T - T1)/(qwL/k); Tr=Tw

Equation (3) is the governing energy equation in nondimensional form for the parallel plate
geometry. The boundary conditions for this problem can be expressed as

0=(0)=0(1)=0;0({ =1/2) = 0; 0e(£ = 0) = —0c({ =1) - 4
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It should be noted that all boundary conditions given in Eq. (4) are not independent; any two
convenient conditions can be used to obtain specific solutions. By integrating Eq. (3) once and
using the conditions that at ¢ = 1/2, qr(¢) and (d6/df) are equal to zero, one obtains

df/d¢ - 2(3¢* - 26°) + 1 = qr(¢)/qw (5)
Either Eq. (3) or Eq. (5) can be used to investigate the effect of radiative interaction.

For the circular tube geometry (Fig. 1b), the energy equation, as given by Eq. (1), can
be expressed as

oT aa(aT) 110 )

“ox = 18r\"dr )~ Cyrar R
where u is given by the relation u = uy [1 — (r,)?]. For a uniform wall heat flux and fully
developed heat transfer, in this case, 3T /dx is given by

JdT/0x = (2aqw)/(um 1o/k) (7
Consequently, Eq. (6) may be expressed as
d /. dé 3 1 d
—\é55 ) —4(&E - = —— 8
3 (ﬁdé) (€-8) = —glbar) ®)

where
9= (T- TW)/(QWTO/k),f =1/1o
It is important to note the difference in the definitions of 6 given in Egs. (3) and (8). Upon
integrating Eq. (8) and noting that d6/d¢ = 0 and qg = 0 at ¢ = 0, there is obtained
d6/d¢ + € — 2¢ = qr/quw €
The boundary condition for this equation is given as 6(1) = 0.

For incompressible flow problems, the quantity of primary interest is the bulk temperature
of the gas. For a fully-developed flow between parallel plates, this is expressed as

1
= (To = To)/(anL /1) = 6 [ 0(6)(¢ - ) (10)

where g = h (T} — Ty), and h represents the equivalent (or effective) heat transfer coefficient
(W/cm? - K).

For the fully-developed flow in a circular tube, the expression for the bulk temperature is
given by

1
0u(Th — Tu)/(aro/k) = 4 / 0(6) (€ — %) de ()
where qu h (T, - T).

In general, the heat transfer results are expressed in terms of the Nusselt number N, = h
Dn/k. Here, Dy, represents the hydraulic diameter. For the parallel plate geometry, Dy, equals
twice the plate separation, i.e., Dp = 2L. For the circular tube geometry, Dy, represents the actual
diameter of the tube, i.e., Dy = 2r,. Upon eliminating the heat transfer coefficient h from the
expressions for qw and Nu, a relation between the Nusselt number and the bulk temperature
is obtained for both geometries as Nu = — 2/6,. The heat transfer results, therefore, can be
expressed either in terms of Nu or 6.



B. Laminar Compressible Flow

The physical problem considered for basic understanding of radiative interaction in com-
pressible flows is two-dimensional variable property laminar flow between two parallel plates.
For this model, two-dimensional Navier-Stokes equations in fully conservative form are used to
describe the flow field. These equations, in physical domain, can be written as (Fig. 1c)

U or, 96 _, (12)

where vectors U, F and G are expressed as

p P
U= pu F= pU2+P"Txx
o pV ! - pl]V - Txy ’

pH—-P (E4+Plu—urex — VTxy + dcx + qRx
p
pUv — Txy

G = 9 P _ ,P = pRT

pv- + Tyy

(E+P)v—uryy —vryy + qcy + qRy

The viscous stress terms appearing in the definitions of F and G are given in [36]. The relations
for conduction heat transfer in x and y directions are given by

qcx = —k%g; qcy = —kaa—j (13)
The terms qrx and qgry represent radiative fluxes in x and y directions, respectively; expressions
for these are provided in the next section. The total energy flux in a given direction is given by
the corresponding last term in the definition of F or G. Consequently, this formulation involves
all kinds of energy interaction including frictional (aerodynamic) heating. The coefficient
of viscosity is evaluated by using the Sutherland’s formula and the coefficient of thermal
conductivity is calculated by using a constant value of the Prandtl number.

Equation (12) can be used to obtain solutions for all kinds of compressible flows. However,
boundary conditions and numerical procedures for different flows are quite different. For
subsonic flows the treatment of the inflow conditions is guided by the theory of characteristic.
A locally one-dimensional flow has four characteristic equations with slopes u, u+c, u and u-c.
If the flow is subsonic at the inflow, then the u-c characteristic has a negative slope and it
propagates informations from the interior upstream to the inflow boundary. In this case, only
three quantities can be specified at the inflow and the fourth quantity must be allowed to vary
as the solution progresses.
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In this study, the stagnation pressure, stagnation temperature and flow angle are specified
at the inflow. These quantities are related to the state pressure and state temperature by the
following equations

_ 1 O

= (1 + 7—_I-MZ);E = Tan(f¢) (14)

I
P
T,
T 2

Equations (14) is a system of three equations in four unknowns, P, T, u and v. To complete
the system of equations, a zero order extrapolation is used for the pressure at the inflow. The
outflow boundary is also calculated based on the theory of characteristic. For subsonic flow
at the outflow, the u-c characteristic propagates information upstream from the boundary to the
interior, i.e., only one quantity can be specified at the outflow. The state pressure is specified
at the outflow while u, v and T are calculated using a zeroth-order extrapolation. Along the
surfaces, following boundary conditions were applied

u=0,v=008P/dy =0,T =T, (15)

The density is obtained from the equation of state using the computed surface pressure and
prescribed surface temperature.

III. Radiative Transfer Models

Evaluation of the energy equation presented in Egs. (3), (5), (8), (9) and (12) requires an
appropriate expression for the net radiative flux. A suitable radiative transport model is needed
to represent the true nature of participating species and transfer processes. In this section, a
brief discussion of various absorption models is given and essential equations for the radiative
flux are presented.

A. Absorption Models

Several models are available in the literature to represent the absorption-emission character-
istics of molecular species. The total band absorptance of a vibration-rotation band is given by

A= /;00 [1 — exp (=, X)d(w — w,)] (16)

where x,, is the volumetric absorption coefficient, w is the wave number, w, is the wave number
at the band center, X = Py is the pressure path length, and the limits of integration are over the
entire band pass. Various models are used to obtain the relation for A in Eq. (16).

The gray gas model is probably the simplest model to employ in radiative transfer analyses.
In this model, the absorption coefficients is assumed to be independent of frequency, i. e., ky)
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is not a function of w. A convenient model to represent the average absorption coefficient of a
gray gas is the Planck mean absorption coefficient x, which is defined as [1]

Kp = /°° Kw epw(T)dw/ep(T) (17a)

For a multiband gaseous system, this is expressed as

kp = [Pj/(oT%)] Z ew(T) Si(T) (17b)

where P; is the partial pressure of jth species in a gaseous mixture, e, (T) is the Planck function
evaluated at the ith band center, and S;(T) is the integrated band intensity of the ith band.

Several other models for the mean absorption coefficient are available in the literature [1, 37].
Since these models account for detailed spectral information of molecular bands, this approach of
radiative formulation is referred to as the “pseudo-gray formulation.” The gray gas formulation
for radiative transport is very useful in parametric studies.

There are several nongray models available in the literature to represent the absorption-
emission characteristics of vibration-rotation bands. These are classified generally in four classes,
(1) line-by-line (LBL) models, (2) narrow band models, (3) wide band models, and (4) band
model correlations. A complete discussion on usefulness and application of these models is
provided in [12, 13]. For many engineering applications, wide band model correlations provide
quite accurate results. The most commonly used wide band model correlations are due to
Edwards [11, 16] and Tien and Lowder [9]. The Tien and Lowder correlation for the total band
absorptance is a continuous correlation and is given by the relation

A(u,B) = A(u, B)/As = In {uf(t)[(u + 2)/(u + 26(t))] + 1} (18)

where
f(t) = 2.94[1 — exp (—2.60t)],t = B/2
and u = SX/A, is the nondimensional path length, 8 = 2r+/d is the line structure parameter, v

is the line half width, S is the integrated band intensity, and A, is the band width parameter.
Equation (18) provides accurate results for pressures higher than 0.5 atmosphere [12, 13].

Spectral properties and correlation quantities for various radiation participating species are
available in 5, 9, 11]. These are useful in gray as well as nongray radiative formulations.



B. Radiative Flux Equations

For many engineering and astrophysical applications, the radiative transfer equations are
formulated assuming one-dimensional planar systems. For diffuse nonreflecting boundaries and
in absence of scattering, the expression for the spectral radiative flux is given by [1, 38]

qu(Y) = €lw — €y
3 [Y 3
+§ Fi.(z)x, exp -—inw(z —y)|dz

3 (L 3
__/ Fou(z)k. exp [——Emw(z — y)] dz (19)
y

2
where
Fu(z) = eu(z) — e1u; F2u(z) = ew(z) — eg0
It should be pointed out that the exponential kernal approximation has been used in obtaining
Eq. (19). The total radiative flux in a given direction is expressed as

oo
qr = / qQRw dw (20
o

A combination of Egs. (19) and (20) provides a proper form of total radiative flux equation
for obtaining nongray solutions of molecular species. Any convenient absorption model can be
used to obtain nongray results.

For a gray medium, Eq. (20) reduces to a simpler form and upon differentiating the resulting
equation twice, the integrals are eliminated and there is obtained a nonhomogeneous ordinary
differential equation as [1, 39]

k? dy? g IR =1 dy

where & = k,. Equation (21) is a second order differential equation and, therefore, requires two
boundary conditions. For nonblack diffuse surfaces, these are given as

1 1 1 {dqgr _

(5_1 - 5) [ar(¥)]y=0 ~ I [Fy—] o 0 (22a)
1 1 1 [dqr _

(g - 5)[qR(Y)]y=L 3. [_dy ]y:L =0 (22b)

Equation (21) along with boundary conditions can be used to obtain the energy equation for gray
gas radiative interaction. In this formulation, there is no need to linearize the radiative interaction.
For linearized radiation, however, T — T‘} = 4Ti‘ (T —T)) and Eq. (21) can be written as

9
dqp/d¢? - ZTOZ qrR = M9 d0/d¢ (23)

where
1 =3r2/N; N=k rcp/(4aT?);ro = KkpL



For black walls and Ty = T,, the boundary conditions for Eq. (21) become
3 1
ar(1/2) = 0; 3ar(0) = —(dar/dé)e_g @)

Equation (23) is useful in obtaining closed form solutions of simplified problems such as fully-
developed flows. The parameters for this equation are N and 7,; N characterizes the relative
importance of radiation versus conduction for a gray gas.

For a black circular tube, the spectral radiative heat flux is given by the expression [23]

ano(r) = = / " { / CFu(¢)Rkeacxp [_ br (r_r')]dr'

siny cosy
To bk
/ w ! /
/r Fo(r')k,aexp [ o5 (r r)] dr
o ! wa [} . !
+ F. (r ) Kyaexp |— (r 41 — 2rsin 7) dr'| pdy (25)
rsiny cosy

where F,(r') = e, (') — e, (Tw), and constants a and b have values of unity and 5/4, respectively.
A combination of Eqs. (20) and (25) provides a convenient form of the total radiative flux for
nongray analyses.

For a gray medium, the expression for the total radiative flux can be obtained from differential
approximation as [1, 23]

— - _Z = —_ 26
dr rdr(rQR) 4n R = 3ok dr (26)

d [1 d ] 9 , dT*
For linearized radiation, dT%/dr = 4 T3 (dT/dr) and Eq. (26) is expressed as

d d dé
dE [%d—g(ﬁqrt)] - ;;9' 7lqr = 'YZQWE (27)

where
Y2=3 fz/N;N =k rcp/(4oT?v);f° = Kplo; £ =1/10
The difference in definition for 7, for parallel plate case and 7, for the circular tube case should
be noted. For a black tube, the boundary conditions for Eqs. (26) and (27) are found to be
3 1[1d
Can(l) = —— |- —

Equation (26) is used for general one-dimensional gray gas formulation and Eq. (27) for the
case of linearized radiation.

)] _ani0) =0 o8)

To
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IV. Transformed Equations and Limiting Forms

Depending upon the physical problem considered, a convenient form of the total radiative
flux should be used in the governing energy equations. For nongray formulations, in order to
be able to use the band model correlations, the equations for radiative flux must be expressed in
terms of the correlation quantities. These equations are provided in this section.

For a nongray gas consisting of n-molecular bands, a combination of Eqgs. (5), (19) and (20)
provides the governing equation for black parallel plate geometry as [17, 35, 40]

d/d¢ — 2(3¢2 - 3€6%) +1
3L\ a3 N
- Zniuoi{ [ o€ Guate - )]s
- [ o@)muste —s)]de'} @)
where _
§=u/u, =y/L;¢ =u'fu, = 2/L; A = A/A,;
u = (5/Ao)Py;u, = (S/A,)PL; PS = / K, dw;

Hi = Aoi(T)(des, /dT)p, -

and A'(u) denotes the derivative of A(u) with respect to u. Equation (29) is the most convenient
equation to use when employing the band model correlations in nongray radiative transfer
analyses. The limiting forms and their solutions, in the optically thin and large path length
limits, are provided in [35, 40].

A combination of Eqs. (9), (20) and (25) provides the nongray form of the energy equation
for the circular tube geometry as [23]

o 4
Gt %

4r, > */2 ¢ n 11| DU ’ '
= T2 > M | {/&mo(e)Ai[ws,y(e—e)]ds

i=1

- /s lﬂ(f')ziz[ Dt ¢ s)]df'

cos ¥
1 .
+ / 0(¢')A! [ DU (¢ 1 ¢ _ ¢ sin 7)]d£’}d7 (30)
€siny Cosy

where
£ =u/uo =r/ro;u = (S/A)Pr,uo = (S/Ao)Pr,

The limiting forms of Eq. (30) are available in [23]. The large path length limit (large ug; limit)
constitutes a very useful limit for analyzing the radiative transfer capability of gases like CO,
at room temperature and at one atmospheric pressure. For gases such as CO and Cy, the results
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obtained in this limit constitute an upper bound in radiative transfer capability. In the large path
length limit, Eq. (30) reduces to

dé

3
e -

4r, x/2 , df' d{’
arbkZ / {m”/ssm (“[e—c'%u'—zzsinv]}d"’ 6D

Equations (30) and (31) are useful in determining the extent of radiative interaction of partic-
ipating species in a circular tube.

For linearized gray gas radiation, a combination of Egs. (5) and (23) provides the equation
for the radiative flux for the parallel plate geometry as

d®qr/de? ~ (71 + gr )qx = 71qu (662 —4€° - 1) (32)

The solution of Eq. (32) is obtained first, then the solution for 8 is obtained from Eq. (5), and
finally the relation for the bulk temperature is obtained from Eq. (10) as [17]

0y = C1 [24 - 12My + M} + (M} — 12M, — 24)eM|

12 17 17
EC LTINS U T 4 o

5MET TOM2 T 70

where

oo 48 — 31,M? + 367,
'T M {37(1 — e M1) + 2M (1 + M)

3 1

Limiting forms (optically thin and optically thick) of Eqs. (33) are available in [17].

From a combination of Eqs. (9) and (27) the relation for linearized gray gas radiative flux
for the circular tube is obtained as

d? d
¢ d;lzR $qe qR — (1 +M3€*)ar = 12qw (26° - €°) (34)
where 9,
M3 = 170 24+ m

Equation (34) is solved first for qg, then the solution for ¢ is obtained from Eq. (9), and finally
the bulk temperature result is obtained from Eq. (11) as [23]

0y = C2[M2(8 — M3)I,(M2) — 16 I;(M,)]
11y 874 11

AMI3ME 2 33
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where

T2 37oM2 — 247, — 32 }
2

~ ME [ 2M1o(My) + 3713 (M3)
Limiting forms of Eq. (35) are available in the cited reference.

No attempt is made to simplify the radiative flux equation for use in Eq. (12). In this study,
however, the nonlinear form of Eq. (21) is used to obtain solutions for laminar compressible
flow between two parallel black plates.

V. Method of Solution

The solution procedure for the fully-developed incompressible flow is completely different
than the solution procedure for the laminar compressible flow. These procedures are discussed
here briefly.

A. Fully Developed Incompressible Flow

For both the parallel plate and circular tube geometries, the general nongray solutions are
obtained numerically by employing the method of variation of parameters. For both geometries,
it was essential to assume quartic formulations for 6(¢) to obtain converged solution. In principle,
the same numerical procedure applies to both the general and large path length limit cases. The
entire solution procedure for the parallel plate geometry is provided in [38, 40] and for the
circular tube in [41].

B. Laminar Compressible Flow

The governing equations, Eqs. (12) and (13), are transformed form the physical plane (x,
¥, 1) to computational domain (¢, 7, t) to facilitate the treatment of general geometry. Equation
(12) is expressed in the computational domain as

aU0 oF 8G
—6't—+-éz+5n—=0 (36)

where . X
U=UJ; G=Gx¢—Fyg
F= Fyg — Gxp; I =Xeyy — Yexq
Equation (36) is solved by a time-asymptotic two step, explicit MacCormack method [42]. This

method is second order accurate in space. If a solution to Eq. (36) is known at some time t =
nAt, then the solution at next time step t = (n+1) At can be calculated from

- .
0+ = L(any,

for each grid point (i, j). The operator L consists of predictor and corrector steps. For this study,
the code developed by Kumar [43] was modified to include the radiation model. The details of
the solution procedure are available in [44].
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The radiative flux equations, Eq. (21), is discretized using the central differencing scheme
as [39, 44)]

2 _ _[ 2 ( 1 +1>+gn2]q_
AyHL+ B ' T | Ay (1 + B \Bidy; * Ay;) T 4|
2 €j+1 —€j . € — €j-1
e qit1 = 1.5k;| + (37
AyH1+ )8 T " BAy; Ayj
where
] J -1 P ¥i - Yi-1

Equation (37) along with Eq. (22) forms a tridiagonal system of equation which can be solved
efficiently by the Thomas algorithm.

In the nongray gas formulation, the divergence of the radiative flux is evaluated using
a central differencing scheme and is treated as radiative source term in the energy equation.
Since the nongray formulation involves an integro-differential equation, the radiative flux term
is uncoupled and treated separately [39].

VI. Results and Discussion

Extensive results have been obtained fro fully developed incompressible laminar flows
between two parallel plates and within a circular tube for participating species OH, CO, CHy,
CO, and H;0. For the case of compressible flow between two parallel plates, however, results
have been obtained only for pure H,O as participating species and different mixtures of H,O
and air. Selected results for both cases are presented and discussed in this section.

A. Fully-Developed Laminar Flows

A complete discussion (and physical interpretations) of the various parameters entering into
the present problem is given in [1, 10, 17, 23]. Numerical solutions were obtained in terms
of nondimensional temperature and bulk temperature. Specific results were obtained for OH
(2.8 fundamental), 4.7 fundamental + st overtone bands), CO; (154, 4.3 and 2.7 bands),
H;0 (rotational, 6.3, 2.7y, 1.87 and 1.38y bands), and CHy (7.6¢ and 3.3u bands) for which
spectral information were obtained from [5, 9, 11, 16].

For CO, CO2, H20, and CHy, the results obtained by employing the Tien and Lowder’s
correlation for band absorptance are illustrated in Figs. 2—6 for the parallel plate geometry. The
limiting value of 8, = —-0.243 corresponds to negligible radiation, and the effect of radiation
increases with increasing plate spacing. As would be expected, radiative transfer is more
pronounced for higher pressures and wall temperatures. Also shown in Figs. 2-5 are the limiting
solutions for large u, (LLU). It is seen that, for a given wall temperature, the large u, limit can
be obtained either by going to large values of L or to high pressures. These results also indicate
that, for a particular wall temperature, the large u, limit for CO; is achieved at a relatively lower
pressure than for other gases. As a matter of fact, for most practical purposes involving CO;
at room temperature, the results for the four gases is shown in Fig. 6 for a pressure of one
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atmosphere and a wall temperature of 1,000 °K. As discussed in (1, 10, 17], the relative order
of the four curves, for small values L is characteristic of the interaction parameter for optically
thin radiation, and for large L is characteristic of the interaction parameter for the large u, limit.

For the circular tube geometry, preliminary results have been obtained for different gases
under varying conditions and selected results are presented in Figs. 7-12. The results for
temperature variations within the tube are presented in Figs. 7 and 8 for different conditions.
Since the temperature profiles are symmetric, the results are illustrated only foré =01to £ =0.5.
The general band absorptance and large u, solutions for OH are illustrated in Fig. 7 for T, =
500K and 1000K. It seems that the LLU limit is achieved for OH at Tw =500K and P =1 atm.
General results for differnt species are compared in Fig. 8 for T, = 300K, P = 1 atm, and r,
= 5 cm. These results demonstrate the relative importance of radiative interactions in a circular
tube. This is analogous to the case of parallel plate results presented in [40].

The bulk temperature results for the circular tube geometry are presented in Figs. 9-12
for different gases. The results are expressed in normalized form as 0u/6,(NR), where 6, (NR)
represents the case with no radiative interaction. The results, in general, exhibit the same
trend as presented in Figs. 2-6 for the parallel plate geometry. However, the extent of radiative
interactions is entirely different. This is because the circular geometry provides additional degrees
of freedom for radiative interactions [23]). This is the first effort where general nongray band
absorptance results have been obtained for the circular tube geometry.

B. Laminar Compressible Flow

A computer code was developed to solve the two-dimensional Navier-Stokes equations for
radiating subsonic laminar flows between two parallel black plates. The dimensions of the
duct were taken as 3cm x 15cm. The radiative interaction was considered only in the normal
direction. Extensive results have been obtained for pure H,O as participating species and different
mixtures of H,O and air flowing laminarly between the plates. These are available in [39, 44]
and selected results are presented in this section.

The results for subsonic flows were obtained for two specific Mach numbers, My, = 0.3
and Mo, = 0.8. Most results presented here are for My = 0.3; however, certain results for
Moo = 0.8 are also presented for comparative purposes. For My, = 0.3, the free stream (inflow)
conditions considered are, P, = 1.064 P, T, = 1.018 Too» Poo =1 atm, T, = 500 K, fu,0
= 0.5, and fyy = 0.5. The freestream conditions corresponding to M, = 0.8 are; P, = 1.524
Poo, Tt = 1.128 Ty, P = 1 atm, T, = 500K, fa,0 = 0.5, and fy;; = 0.5 For both flows,
the wall temperature was maintained at Ty, = 1,500K and the pressure at the channel exit was
taken to be one atmosphere.

The variation in axial velocity across the channel is shown in Fig. 13a for different x
locations. It is clearly evident that the fluid velocity in the inviscid core increases along the axial
length due to increase in the boundary layer. A fully-developed flow has not been achieved at
the channel exit. Figure 13b shows the variation of normal component of velocity across the
channel at various axial locations. The two-dimensional effects are clearly evident from the
results x = 0.015 m which is predominantly in the entrance region. The magnitude of v velocity
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decreases as x increases; it is positive in the lower half and negative in the upper half of the
channel due to the symmetry of the problem. For a fully-developed flow, the v component of
velocity should be zero.

The variation in temperature across the channel is shown in Fig. 14 for different x locations.
The temperature decreases from the walls to the center of the channel indicating the development
of the thermal boundary layer. The flow is not thermally developed at the exit of the channel.

The variations in conductive and radiative fluxes along the length of the plate are shown in
Fig. 15 for different y locations. The fluxes are zero along the centerline of the plate because
of physical symmetry. The conductive flux increases slowly with increasing x and becomes
essentially constant at the channel exit. The radiative interaction is strong in the first ten percent
of the length and then it slowly decreases and reaches about the same value as conductive flux
at the exit.

The variations in qcy, qry and qqy with y are shown in Figs. 16, 17 and 18, respectively. It
is noted that the variation in conductive flux across mainly with the first 20% distance from the
wall (Fig. 16). The situation, however, is not the same with respect to the radiative transfer (Fig.
17). The radiative interaction occurs in the entire width of the channel. The results presented
in Fig. 18 demonstrate that the rate of total energy transfer in the y direction is highest closer
to the entrance (x = 0.015 m) than any other x locations. This is a result of high enthalpy flow
and strong radiative interaction in this region.

Figure 19 shows the variation of radiative and conductive flux across the channel. The
radiative flux peaks at some distance away from the wall while conductive flux peaks at the
wall. This is because at the lower wall the effect of positive heat flux is partially cancelled by
the negative flux from the layers of hot gases next to the wall. At a small distance away from
the wall, however, the positive flux from both the wall and gas combine to give a maximum
heat flux. Farther into the gas, the flux from the wall and hot gas is attenuated bya the cooler
gas and is partially cancelled. At the center of the channel, the fluxes from both modes cancel
each other. This effect prevails throughout the length of the channel as is clearly evident from
the results of Figs. 19a and 19b and in Ref. 44.

The variation of the radiative, conductive and normal component of the total flux across the
channel is shown in Fig. 20 for x = 0.06 m and 0.15m. The total flux includes the convective
(flow), radiative and conductive fluxes. It is increasing to note that except very near the boundary,
the total flux is about an order of magnitude higher than the radiative flux and much higher than
the conductive flux. In othef words, according to the definition used in this study, the convective
(flow) energy is the predominate mode of energy transfer. This trend is result continues for
all axial stations [44].

The results for M, = 0.8, in general, show the same trend as the results for M, = 03.
Certain definite changes, however, are noted specific cases. For M., = 0.8, the magnitude of
velocity variations obviously are relatively higher but the velocity boundary layers are thinner
[44]. The temperature variations shown in Fig. 21 for My, = 0.3. This is because T, and Ty
are the same for both flows. The thermal boundary layer, however, is thicker for M, = 0.3.
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A comparison of Mo = 0.8 and 0.3 results for qcy, qry and qyy is shown in Fig. 22 for x
= 0.12 m. The results demonstrate that while conductive and total energy fluxes are influenced
considerably by changes in the Mach number, the radiative energy transfer is insensitive to such
changes. This is because radiation is influenced primarily by specified temperature and pressure
conditions and these conditions are the same for both cases.

VII. Concluding Remarks

Analytical formulations and numerical procedures have been developed to investigate the
radiative interaction of absorbing-emitting species in laminar fully-developed flows between
parallel plates and within a circular tube. The general nongray results for the circular tube
geometry have been obtained for the first time. The results demonstrate the relative ability of
various participating species for radiative interactions.

Two-dimensional compressible Navier-Stokes equations have been used to investigate the
influence of radiative energy transfer on the entrance region flow under subsonic flow conditions.
Computational procedures have been developed to incorporate gray as well as nongray formu-
lations for radiative flux in the general governing equations. Specific results have been obtained
for different amount of water-vapor in water vapor-air mixtures. Results demonstrate that the
radiative interaction increases with an increase in pressure, temperature and the amount of water
vapor. This can have a significant influence on the overall energy transfer in the system. Most
energy, however, is transferred by convection in the flow direction. As a result, the radiative
interaction does not alter the flow field significantly. Further parametric studies are needed to
make definite recommendations.
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INVESTIGATION OF RADIATIVE INTERACTIONS
IN HIGH-SPEED ENTRANCE REGION FLOWS

S. N. Tiwari and D. J. Singh

Abstract

The influence of radiative energy transfer on the entrance region flow is investigated under
supersonic flow conditions in a channel. Two-dimensional compressible Navier-Stokes equations
are solve numerically in conjunction with the radiative flux equations. The channel walls are
assumed to be black. Nongray as well as pseudo gray gas models are used to represent the
absorption-emission characteristic of the medium. The participating species considered are
different amounts of water vapor in water vapor-air mixtures. Results obtained for different
flow conditions indicate that the radiative interaction can moderately influence the overall energy
transfer, but the flowfield is not changed significantly.

1. INTRODUCTION

The analysis of combined modes of heat transfer involving conduction, convection and
radiation has been the subject of considerable research in the last several years. The problem of
combined modes of energy transfer is a very complicated phenomenon. While conduction and
convection processes can be described by differential equations, radiation is described by integral
equation. The integrations are with respect to frequency, solid angle, and spatial coordinates. At
present, there is no analytical solution available for governing equations describing the combined
modes of energy transfer, even for simple geometries. However, with the availability of fast
computers, it is possible to solve these complicated equations numerically.

In many engineering problems involving high temperature gases such as reentry, hypersonic
propulsion, design of combustion chambers for high pressure spacecraft engines, chemical
transfer vehicles, heavy lift launch vehicles, and furnaces, the radiative interaction becomes very
important. Under certain conditions, the radiation is the predominant mode of heat transfer.
Basic formulations on radiative transfer in participating mediums are available in standard
references [1-8]. The review articles presented in [9-15] are useful in understanding the radiative
properties of participating species and the nature of nongray radiation. In most of the studies
involving radiation, certain simplifying assumptions such as gray gas [16-18], fully developed
flow [19-22], constant thermophysical properties [23-25] and linearized radiation [10, 20-22,
26-30] are invoked. The validity of radiative transfer analysis depends upon the accuracy with
which absorption-emission characteristics of participating species are modeled. There are several
models available in literature; and these are reviewed critically in [12, 13].

In general, there has been a lack of studies on radiative interaction in the entrance region of
ducts. In this region, momentum and energy equations cannot be decoupled. Some simplified
studies on this problem are available in [5, 31-33] and the cited references. Most of these
studies are restricted to constant properties and incompressible flows. Im and Ahluwalia [34]
analyzed the combined conduction, convection and radiation in rectangular ducts by solving
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simultaneously the fluid dynamical and the radiation transport equations. The flow was assumed
as parabolic thereby excluding the possibility of flow recirculation. Soufiani and Taine [35)
studied the thermal and dynamical entrance region for a steady laminar flow between two parallel
plates. The walls were considered diffuse and fluid as homogeneous absorbing, emitting and
nonscattering medium. The viscous dissipation effects and axial diffusion were neglected in
the energy equation. The results showed a significant difference in temperature and velocity
profiles by inclusion of radiation. Mani et al. [36] studied the chemically reacting and radiating
supersonic flow between parallel plates in a channel with a ten degree ramp. They showed that
in the case of flow without chemical reaction, most of the energy is transferred by convection.
As a result, the flow field is not affected significantly.

The objective of this study is to investigate the influence of radiative interactions on the
subsonic and supersonic region flows. To accomplish this, a mixture of water vapor an air
flowing laminarly between parallel plates is considered. The walls are maintained at constant
temperatures. The strong temperature gradient between walls and the fluid requires the use of
temperature dependent fluid properties. The flow and energy conservation equations, therefore,
are solved simultaneously. The effects of various parameters such as Mach number, pressure,
amount of participating species, and the plate separation distance are investigated.

2. BASIC THEORETICAL FORMULATION

2.1 Flow Equations

Two-dimensional Navier-Stokes equations in fully conservative form are used to describe
the flow field. These equations, in physical domain, can be written as (Fig. 1)

TR R 0 (2.1)

where vectors U, F and G are expressed as

U=lp pu pH - P]
F = [p pu2 +P— Tz PUV — Tyy (Et + P)u — UTgy — UTgy + Gz + QRz]
G = [P pUv — Ty pv’ +p— Tyy (Et +p)v — utey — vTyy +qcy + ‘IRy]

The viscous stress terms are given by

2 Ju Ov
=2 — = 22
T2z 3“(26:: 3y) (2.22)
2 dv Ou
w =505 -~ 5) 220

rey = ,,(23_“ + @) =1 @2.20)
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where ¢c, and gp, are component of conductive flux in z and y directions, respectively, and
are expressed as

or

- K= 23
or
= K== 2.3b
gy = — I 3y (2.3b)

The terms ggr, and qp, in the definitions of vector F and G represent the radiative flux in z and
y directions, respectively. The relations for the radiative flux are developed in Sec. 3. The total
energy flux in a given direction is given by the corresponding last term in the definition of F and
G. The coefficient of viscosity u is evaluated using the Sutherland’s formula and the coefficient
of thermal conductivity is calculated by using a constant value of the Prandtl number equal to
0.72. In order to complete the system, the equation of state is used as

P = pRT (2.4)

The above equations can be used for subsonic as well as supersonic flows. However, the
boundary conditions are numerical procedures for the two flows are quite different.

2.2 Inlet and Boundary Conditions

The treatment of the inflow boundary conditions is guided by the theory of characteristic.
A locally one-dimensional flow has four characteristic equations with slopes u, u+c, u and u-c.
If the flow is subsonic at the inflow, then the u-c characteristic has a negative slope and it
propagates information from the interior upstream to the inflow boundary. In this case, only
three quantities can be specified at the inflow and the fourth quantity must be allowed to vary
as the solution progresses.

In this study, the stagnation pressure, stagnation temperature and flow angle are specified
at the inflow. These quantities are related to the state pressure and state temperature by the
following equations

1/(v-1)
% - (1 + ——le) 2.5)
? (1 + IMZ) (2.6)
v
o= tan (0rr) 2.7

Equations (2.5)-(2.7) are a system of three equations in four unknown, P, T, u and v. To
complete the system of equations, a zero order extrapolation is used for the pressure at the
inflow. The outflow boundary is also calculated based on theory of characteristic. For subsonic
flow at the outflow, the u-c characteristic propagates information upstream from the boundary to
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the interior, i.e. only one quantity can be specified at the outflow. The state pressure is specified
at the outflow while u and v and T are calculated using a zeroth-order extrapolation. Along the
surfaces, following boundary conditions were applied

opP
dy
The density is obtained from the equation of state using the computed surface pressure and

prescribed surface temperature. Fourier’s heat conduction law is used to calculate the conductive
heat flux.

u=0, v=0,

For supersonic flows, the inflow properties are assumed to be chemically frozen. The
outflow conditions are calculated from adjacent nodes using a first order extrapolation. The
pressure at walls are calculated by a second order one-sided differencing procedure. The free
stream conditions considered for each case are indicated in discussing the results.

3. RADIATIVE TRANSFER MODELS

Radiative transport is a quite complicated phenomenon, as an element not only exchanges
energy with its neighbors, but also from all other elements. This results in an integral expression
with integration with respect to frequency, solid angle, and spatial coordinates. The applicability
and validity of the radiative transfer in a physical problem depends on the accuracy with which
the radiation is modeled. In most studies, the “tangent slab approximation” [8, 10, 36] is invoked;
it treats the gas layer as one-dimensional slab in evaluation of the radiative flux (Fig. 1). In recent
years, there have been few studies [36-39] which include the multidimensional effects. In this
section, a brief discussion of various absorption models is given and essential equations for the
radiative flux are presented.

3.1 Absorption Models

The gray gas approximation is the simplest model to calculate the radiative flux. Although
unrealistic, this model has yielded accurate prediction of heat flux burning rates in moderate size
fires [40]. It has also been useful for estimating the total radiative flux in furnaces [41]. In this
model, the absorption coefficient is assumed to be independent of frequency. It overestimates the
radiative flux because participating gas is actually transparent over large region of spectrum, and
may be practically opaque in other regions. Thus, an attempt to represent the entire spectrum
with a mean absorption coefficient will lead to overestimation of radiant flux in the transparent
and opaque regions. The model, however, is very useful as first approximation in providing
insight into the parametric trends to be expected in the system and in estimating the significance
of radiation.

There are various nongray models available which relax the gray gas assumption. A few of
these are line by line models, narrow band models and wide band models. These are discussed
here briefly.

The line by line models [12, 13] by far are the most accurate models available. They
account for each line of the absorbing species. However, these models are very expensive to
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use. Since most applications require knowledge of only the properties averaged over spectral
range, the narrow band models which are computationally fast and accurate are widely used. Four
commonly used narrow band models are the elasser, statistical, random elasser and quasi random
[12, 13]). Next in order are the wide band models which provide correlations that are valid over
the entire band pass. These correlations are quite accurate for many engineering applications.
The most commonly used wide-band model correlations are the Edwards exponential wide band,
Tien and Lowder, and Cess and Tiwari [9-13]. The application of a model to a particular case
depends on the nature of the absorbing emitting species.

3.2 Radiative Flux

For a nonscattering medium and diffuse boundaries, the expression for the radiative flux is
given as [1, 42]

qrw(y) = 261, E3(kuy) — 2620 E3[ku(L — )]
+ 2{/ ew(é)nsz[nw(y - 6)]d£

L
- [ eut@rnoBalrate - y)]df} 3.
Yy
where
Batn) = Sexo (-3
and

The total radiative flux is given by

qr = / qRw dw (3.2)
0

For a gray medium, «,, is independent of the wave number and an expression for the radiative
flux is obtained from Egs. (3.1) and (3.2) as

=) =cr—ext 3 [ 1e©) - erlexp [ Futy - €)] e

-/ * 1el®)  eslexp |- 3xts - 0] e 33)

Differentiating Eq. (3.3) twice, the integrals are eliminated and there is obtained a nonhomoge-
nous ordinary differential equation as [1, 36]

1 d’qp(y) 9 3 de(y)
ll _2Z = L2\ 34
2 dy? 79R) = — dy (3.4)
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This is a second order differential equation; hence it requires two boundary conditions. For
nonblack diffuse surfaces, these are given as

1 1 1 [dqg]

—_=Z -2 = 3.5
(El 2)[‘”2(?/)]!1:0 Ix i dy ly=0 0 ( a)

1 1 1 [dqr]

- - — == = 3.5b
(E] Q)IqR(y)]y=L + 3'{ ] dy ] y=L 0 ( )

In order to solve Eq. (3.4), one needs an expression for x, which is given as
| T
£=—2—=) e, (T)SiT (3.6)
TiG) ); (T)SA(T)

Here, « represents the Planck mean absorption coefficient and is function of temperature and
species partial pressure P;.

An expression for the divergence of radiative flux in the optically thin limit is obtained from

Eq. (3.1) as [1}].

d
—3—53 = 2k, (2ep, (y) — €1 — €9] 3.7

In the optically thick limit, Eq. (3.1) reduces to [1]

4 dey,
— ¥ 3.8
R, 3k, dy G.8)

Equations (3.7) and (3.8) can be used to obtain limiting solutions for the gray model.
For a nongray model consisting of n-molecular (vibration-rotation) bands, a combination of
Egs. (3.1) and (3.2) results in [1, 42]

qr(€) = e1 — €2
n ¢
3 n 4! 3 f /
+ 5 ;Aoiuoi{/Flwi (f )A, l:iuo,'(ﬁ — E )]d{

_/: sz(ﬁ,),qg[guo,-(f'—6)}&'}

where
Fr,.(§) = 6w.~(§) = €lw;y Fou,(€) = ew.‘(f) —en é=y/L = ufu,

and A'(u) denotes the derivative of A(u) with respect to u. Equation (3.9) is the most convenient
equation to use when employing the band model correlations in nongray radiative transfer
analyses. Spectral properties and correlation quantities for various participating species are
available in [9, 11].
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In the optically thin limit [1, 10], A(u) = u and A’(u) = 1. In this limit, the divergence of
radiative flux is obtained by differencing Eq. (3.9) as

d ot i
qR—‘Z % 2, (¥) = e1us — €3] (3.10)

In the large path length (i.e., for u,; >> 1 for each band), A'(x) = In(u) and A'(u) = 1/u.
Consequently, in this limit, one obtains a simple relation from Eq. (3.9) as {1, 10]

dqR dew; d{'
Z / T (3.11)

Equations (3.10) and (3.11) are used to obtain limiting solutions for nongray radiation.

For nongray radiative interactions, the continuous correlation proposed by Tien and Lowder
[9] is employed in this study. This correlation is relatively simple and provides accurate results
for pressures higher than 0.5 atmosphere.

4. METHOD OF SOLUTION

The governing equations, Egs. (2.1) through (2.3), are transformed from the physical plane
(x, y, t) to computational domain (¢, 7, t) to facilitate the treatment of general geometry.
Equations (2.1) and (2.2) are expressed in the computational domain as

oU 8F oG
= 4
FrrT o + 9 =0 4.1
where
U=UJ

F:Fy,,—G:c,,;é’:G’a:g:Fyf

J = zeyn — yey

Equation (4.1) is solved by a time-asymptotic two steps, explicit MacCormack method [43].
This method is second order accurate in space. If a solution to Eq. (4.1) is known at some time
t = nAt, then the solution at next time step ¢ = (n + 1)At can be calculated from

Urt = (AU

for each grid point (2, 7). The operate L consists of predicter and corrector steps. For this study,
the code developed by Kumar [44] was modified to include the radiation model. The details of
the solution procedure are available in [44, 45].
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The radiative flux equations, Eq. (3.4), is discretized using the central differencing scheme

as
2 | [ 2 ( L, 1)+§nz]q.
A1+ 8) Y T Ay (1 + B \BAy; * Ay ) T4 |V
2 €j+1 — € €5 — e_,‘_l]
+ b1 = 1.5n-[ 2 + (42)
Ay}’(lJrﬁ‘j)ﬁjqJ+l 7| BiAy; Ay,
where

Ay =y; —yj-1

B = y1.+l "“' Y;
Y5i —¥5i-1
Equation (4.2) along with Eq. (3.5) forms a tridiagonal system of equation, which can be
efficiently solved by the Thomas algorithm.

In the nongray gas formulation, the divergence of the radiative flux is evaluated using
a central differencing scheme and is treated as radiative source term in the energy equation.
Since the nongray formulation involves an integro-differential equation, the radiative flux term
is uncoupled and treated separately [45].

S. RESULTS AND DISCUSSION

Based on the theory and computational procedure described in the previous sections, a
computer code was developed to solve the two-dimensional Navier-Stokes equations for radiating
supersonic laminar flows between two parallel black plates. A similar but different code was
developed for radiating subsonic flows. The dimensions of the channel were taken as 3 cmx
10 cm for the supersonic flow case and 3 cmx15 cm for the subsonic case. The radiative
interaction was considered only in the normal direction. Extensive results have been obtained
for pure H,O as participating species and different mixture of H,O and air flowing laminarly
between the plates. These are available in {36, 45] for the supersonic case and in [46] for the
subsonic case. Selected results for both case are presented and discussed in this section; results
for supersonic flows are presented first.

For the case of supersonic flow, a comparison of the divergence of radiative flux for general
(nongray), gray, and their optically thin limit models is presented in Fig. 2 for two different
y-locations (y=0.2 and 1.5 cm). The inflow conditions for this case are Po, = 1 atm, Ty, =
1,700 K, M, = 4.3, fg,0 = 05, f,, = 0.1, and fy, = 0.4. The gray formulation is based on
the Planck mean absorption coefficient which accounts for the detailed information on different
molecular bands. As such, this approach is referred to as the “pseudo-gray formulation.” The
range of optical thickness calculated in [45] was found to be between 0.003 and 0.4. Thus, for
the physical model and inflow conditions considered, the radiative interaction is essentially in
the optically thin range. No significant difference in results is observed for the two y-locations;
this is a typical characteristic of the optically thin radiation [1, 10]. The solution of the gray
formulation requires about ten times less computational resources in comparison to the' solution
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of the nongray formulation [45]. As such, for basic parametric study, all other results presented
in this section were obtained by using the pseudo-gray gas formulation.

Another case considered for the supersonic flow corresponds to the inflow conditions of P
=1atm, T = 1,700 K, Uy = 2574 m/s (Mo, = 3.0), and various amounts of water vapor and
air mixtures. The results for radiative flux are illustrated in Figs. 3 and 4 as a function of the
nondimensional y-coordinate. For P = 1 atm, the results presented in Fig. 3 for different water
vapor concentrations indicate that the radiative interaction increases slowly with an increase
in the amount of the gas. The results for 50% H,O are illustrated in Fig. 4 for two different
pressures (P = 1 and 3 atm) and x-locations (x = 5 and 10 cm). It is noted that the increase
in pressure has dramatic effects on the radiative interaction. The conduction and radiation heat
transfer results are compared in Fig. 5 for P = 3 atm and for two different x-locations x =
5 and 10 cm). The results demonstrate that the conduction heat transfer is restricted to the
region near the boundaries and does not change significantly from one x-location to another.
The radiative interaction, however, is seen to be important everywhere in the channel, and this
can have significant influence on the entire flowfield. The results presented in Figs. 3-5 should
be physically symmetric; but, due to the predictor-corrector procedure used in the McCormack’s
scheme, they exhibit some unsymmetrical behavior.

The results for subsonic flows were obtained for two specific Mach numbers, M, = 0.8 and
M, = 0.3. Most results presented here are for M, = 0.8; however, certain resuits for M, =
0.3 are also presented for comparative purposes.

The free stream (inflow) conditions corresponding to Mo, = 0.8 are, Py = 1.524 P, Ty =
1.128 =1 atm, T, Peo = 1 atm, To, = 500 K, fy,0 = 0.5, and fy;r = 0.5. The wall temperature
was maintained at Ty, = 1,500 K. The pressure at the channel exit was taken to be one atmosphere.

The variation in axial velocity across the channel is shown in Fig. 6a for different x locations.
It is clearly evident that the fluid velocity in the inviscid core increases along the axial length
due to increase in the boundary layer. A fully-developed flow has not been achieved at the
channel exit. Figure 6b shows the variation of normal component of velocity across the channel
at various axial locations. The two-dimensional effects are clearly evident from the results of x =
0.015 m which is predominantly in the entrance region. The magnitude of v velocity decreases
as x increases; it is positive in the lower half and negative in the upper half of the channel
due to the symmetry of the problem. For a fully-developed flow, the v component of velocity
should be zero.

The variation in temperature across the channel is shown in Fig. 7 for different x locations.
The temperature decrease from the walls to the center of the channel indicating the development
of the thermal boundary layer. The flow is not thermally developed at the exit of the channel.

The variations in conductive and radiative fluxes along the length of the plate are shown
in Fig. 8 for different y-locations. The fluxes are zero along the centerline of the plate because
of physical symmetry. The conductive flux increases slowly with increasing x and becomes
essentially constant at the channel exit. The radiative interaction is strong in the first ten percent
of the length and then it slowly decreases and reaches about the same value as conductive flux
at the exit. The variation in total energy flux (qy) with x is illustrated in Fig. 9 for different
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y-locations. A comparison of results presented in Figs. 8 and 9 demonstrates that the rate of
convective (flow) energy is considerably higher than the rate of conductive or radiative energy
transfer.

The variations in qcy, qry and gy with y are shown in Figs. 10, 11 and 12, respectively.
It is note that the variation in conductive flux occurs mainly within the first 20% distance from
the wall (Fig. 10). The situation, however, is not the same with respect to the radiative transfer
(Fig. 11). The radiative interaction occurs in the entire width of the channel. This is similar to
the results for supersonic flow presented in Fig. 5, although the extent of interaction is entirely
different. The results presented in Fig. 12 demonstrate that the rate of total energy transfer in
the y-direction is highest closer to the entrance (x = 0.015 m) than any other x location. This is
a result of high enthalpy flow and strong radiative interaction in this region.

Figure 13 shows the variation of radiative and conductive flux across the channel. The
radiative flux peaks at some distance away from the wall while conductive flux peaks at the
wall. This is because at the lower wall the effect of positive heat flux is partially cancelled by
the negative flux from the layers of hot gases next to the wall. At a small distance away from
the wall, however, the positive flux from both the wall and gas combine to give a maximum
heat flux. Farther into the gas, the flux from the wall and hot gas is attenuated by the cooler
gas and is partially cancelled. At the center of the channel, the fluxes from both modes cancel
each other. This effect prevails throughout the length of the channel as is clearly evident from
the results of Figs. 13a and 13b and Ref. 46. This trend in result is somewhat similar to the
trend for the supersonic flow presented in Fig. 5.

The variation of the radiative, conductive and normal component of the total flux across
the channel is shown in Fig. 14 for x = 0.06 m. The total flux includes the convective (flow),
radiative and conductive fluxes. It is interesting to note that except very near the boundary, the
total flux is about an order of magnitude higher than the radiative flux and much higher than the
conductive flux. In other words, according to the definition used in this study, the convective
(flow) energy is the predominant mode of energy transfer. This trend in result continues for
all axial stations [46].

For My, = 0.3, the free stream conditions considered are, P, = 1.064 P, T: = 1.018 T,
Po =1 atm, T, = 500 K, fg,0 = 0.5, and fy, = 0.5. In this case also, the wall temperature
was maintained at Ty, = 1,500 K and the channel exit pressure was one atmosphere.

The results for M, = 0.3, in general, show the same trend as the results for M, = 0.8.
Certain definite changes, however, are noted for specific cases. For M, = 0.3, the magnitude
of velocity variations obviously are relatively lower but the velocity boundary layers are thicker
[46]. The temperature variations shown in Fig. 15 for Mo, = 0.3 are about the same as shown
in Fig. 7 for M, = 0.8. This is because T,, and T,, are the same for both flows. The thermal
boundary layer, however, is thicker for M, 0.3.

A comparison of My, = 0.8 and 0.3 results for qcy, qry and gy is shown in Fig. 16 for x
= 0.12m. The resuits demonstrate that while conductive and total energy fluxes are influenced
considerably by changes in the Mach number, the radiative energy transfer is insensitive to such
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changes. This is because radiation is influenced primarily by specified temperature and pressure
conditions and these conditions are same for both cases.

6. CONCLUSIONS

Two-dimensional compressible Navier-Stokes equations have been used to investigate the
influence of radiative energy transfer on the entrance region flow under supersonic and subsonic
flow conditions. Computational procedures have been developed to incorporate gray as well
as nongray formulations for radiative flux in the general governing equations. Specific results
have been obtained for different amounts of water-vapor in water vapor-air mixtures. Results
demonstrate that the radiative interaction increases with an increase in pressure, temperature and
the amount of water vapor. This can have a significant influence on the overall energy transfer
in the system. Most energy, however, is transferred by convection in the flow direction. As
a result, the radiative interaction does not alter the flow field significantly. Further parametric
studies are needed to make definite recommendations.
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NOMENCLATURE
A band absorptance = A(u, 3), cm’!
Ao band width pararhctcr, cm’!
Co correlation parameter, atm™! - cm’!
Co specific heat at constant pressure kJ/kg-K = erg/gm-K
ew Planck’s function, (W-cm2)/cm’!
€w, Planck’s function evaluated at wave number w,
€1,e2 emissive power of surfaces with temperature Ty and T, W-cm™2
k thermal conductivity, erg/cm-sec-K
P pressure
P; partial pressure
Py stagnation pressure
Pr Prandtl number
qr total radiative heat flux, J/m2-s

Qe conduction heat flux, J/m2-s
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qrw spectral radiation heat flux, (w-cm2)/cm’!

S integrated intensity of a wide band, atm™!-cm?2

T temperature, K

T, T2 wall temperature, K; Ty = Ty

u nondimensional coordinate = SPy/A,

Uo nondimensional path length = SPL/A,

0 flow angle

Kw spectral absorption coefficients, cm'!

& computational coordinate

p density, kg/m

o Stefan-Boltzmann constant, erg/(sec-cm2-K*)

w wave number, cm!

Wo wave number at the band center, cm'!
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