
r

Recognition of Simple Visual Images Using A
Sparse Distributed Memory:

Some Implementations and Experiments

Louis A. Jaeckel

v3o 62---

March 1990

Research Institute for Advanced Computer Science

NASA Ames Research Center

)

RIACS Technical Report 90.11

NASA Cooperative Agreement Number NCC 2-408 and NCC 2-387

(NASA-CR-18_olO) RFCgGNITION OF BIM?LE

VISUAL IMAGES U_ING A SPARSE DISTRIBUTED

MEt4NRY: SqMF IMPLEMENTATIONS AND EXPERIMENTS

(R_su_:rch Inst. for Adv,_nced Computer
3_i<_nce) 58 D CSCL 09B G3/60

Nql-32797

Unclas
0043052

Research Institute for Advanced Computer Science

Recognition of Simple Visual Images Using A

Sparse Distributed Memory:

Some Implementations and Experiments

Louis A. J_¢kd

Research Institute for Advanced Computer Science

MS 230-5, NASA Ames Research Center

Moffett Field, CA 94035

RIACS Technical Report 90.11

March 1990

Abstract. In a previous report I described a method of representing a class of simple

visual images so that they could be used with a Sparse Distributed Memory (SDM). The
images considered consist of several pieces, each of which is a line segment or an arc of a

circle. This class includes simple line drawings of alphabetic characters. Each segment
or arc is represented by five parameters, and the image as a whole is viewed as an

unordered set of segments and arcs. In this report I describe two possible

implementations of an SDM, for which these images, suitably encoded, will serve both as
addresses to the memory and as data to be stored in the memory. A key feature of both

implementations is that a pattern that is represented as an unordered set with a variable

number of members can be used as an address to the memory. In the first model, an

image is encoded as a 9072-bit string to be used as a read or a write address; the bit string

may also be used as data to be stored in the memory. Another representation, in which an

image is encoded as a 256-bit string, may be used with either model as data to be stored

in the memory, but not as an address. Since an image can be approximately recovered

from this encoding, it is possible to do a sequence of iterated read operations, in which

the result of each read operation is convened to an image which is then used as the next

read address. In the second model, an image is not represented as a vector of fixed length

to be used as an address. Instead, I give a rule for determining which memory locations

are to be activated in response to an encoded image. This activation rule treats the pieces
of an image as an unordered set. With this model, the memory can be simulated, based

on a method of computing the approximate result of a read operation. I describe the

results of some experiments with a rough small-scale simulation of the second model.

Work reported herein was supported in part by Cooperative Agreements NCC 2-408 and

NCC 2-387 between the National Aeronautics and Space Administration ('NASA) and the

Universities Space Research Association (USRA).

RECOGNITION OF SIMPLE VISUAL IMAGES

USING A SPARSE DISTRIBUTED MEMORY:

SLIMEIMPLEMENTATIONSAND EXPERIMENTS

INTRODUCTIUN

In Jaeckel (1989a) I described a method of representing a

class of simple two-dimensional visual images. The images

considered are assumed to consist of several pieces, each of

which is a line segment or an arc of a circle. This class of

images is broad enough to include a variety of shapes for line

drawings of alphabetic characters. Although I use alphabetic

characters as examples in this report, the methods described

would apply to any images made of segments and arcs. I also

assume that we have a means of identifying the pieces in an

image, such as a preprocessor. The number of pieces in an image,

NP, is assumed to be not greater than eight. Each piece is

represented, or described, by five parameters, in a unique and

continuous way, and thus can be thought of as a point in a

five-dimensional manifold M. The image as a whole is then

represented by an uaordered set of points in M, one for each

piece.

h Sparse Distributed Memory (SDM), proposed by Kanerva

(1988), is a memory system that uses addresses that are very long

bit strings, or binary vectors, and is able to retrieve stored

2

data if the retrieval information (the read address) is known

only approximately. I assumethat the reader is familiar with

the basic concept of an SDM. Brief descriptions of it mayalso

be found in Keeler (1988), Kanerva (1989), and Jaeckel (1989b).

The memory may be used for various pattern recognition tasks. To

do this, there must be a way of encoding the input patterns so

that they may be used as read or write addresses. These

addresses may be long bit strings, as in Kanerva (1988), or they

may have other forms, depending on the problem. To recognize

patterns, the SDM is first trained on a set of patterns by

writing representations of them to the memory, using an encoding

of each pattern as an address to the memory. Then, when it is

presented with a pattern which it must try to recognize D that

is, identify it or classify it as an instance of one of the

stored patterns -- the system reads from the memory using an

encoding of the pattern as the read address.

This report presents some ways of implementing an SDM so

that an image of the kind described above, suitably encoded, can

be used as an address to the memory. Since an image is

represented by an unordered set of points in M, with different

images represented by different numbers of points, a key issue is

how to adapt the SDM concept so that the memory can be addressed

by patterns represented in this form.

In the first SDM implementation below, called Model 1, the

unordered set of points in M representing an image is converted

to a string of 9072 bits, in a way that is independent of the

order in which the pieces may have been listed. Each of these

3

bits is associated uith a lattice point in M; a bit is set to 1

if a point representing a piece of the image is near the

corresponding lattice point. _hile these bit strings are very

long, this method allous us to use a binary vector of fixed

length as an address, as in ganerva (1988).

I then give a different way of encoding an image as a

256-bit string, to be used as data to be stored in the memory but

not as an address. This encoding method could be used with

either of the models described below. Since this method involves

putting the pieces of an image in an arbitrary order, I will not

use it to convert an image to an address. With this encoding

method, an image can be approximately recovered from its 256-bit

representation; therefore, the memory can be thought of as

resembling an autoassociative memory, that is, a memory in which

the data word to be written to the memory is the same as the

write address. _e Can then do a sequence of iterated read

operations, in which the result of each read operation is

converted to an image which is then used as the next read

address, as in Kanerva (1988), p. 68. In some cases, this

process will co_verge to a fixed point, resulting in a more

accurate response than can be obtained with a single read

operation.

In Model 2, the second SDM implementation, a different

method of addressing is used. In an SDM, any read or write

address causes a subset of the memory locations to be activated.

In this model, an image is not represented as a vector of fixed

length to be used as an address. Instead, I give a rule for

4

determining the subset of locations to be activated in response

to an encoded image. A memory location is defined by choosing

three definiag poiats at random in M+, an expanded version of the

manifold M. A memory location is activated by an image used as

an address if, for each of the three points defining the

location, there is at least one piece of the image, represented

by a point in M, that is within some given distance of that

defining point. This activation rule treats the pieces of an

image as an unordered set. With this definition of memory

locations, it is possible to compute the approximate number of

memory locations activated by both of two images. The memory can

be simulated by using this computation to approximate the result

of a read operation. I describe a rough small-scale simulation

of Model 2 based on this computation.

I then give the results of some experiments done with the

simulation. The system was trained with a set of 20 characters,

shown in Figure 1. (I will usually use the term character to

refer to the images that will be stored in the memory.) Each

member of the training set was assumed to be written to the

memory by adding its 256-bit encoding to the contents of the

counters for the memory locations activated by it. Then, since

there was some error in the memory's response, due to

interference caused by similar characters in the training set,

the memory was given a small amount of "retraining", in order to

reduce the errors in the response for two of the characters. The

system was then'able to recognize all of the characters on which

it was trained, with only a small amount of interference due to

5

similar stored characters. It was also able to recognize some

images of characters similar to those in the training set (Figure

2). Someother images were too dissimilar to be recognized with

one read operation (Figure 3). Someexperiments were also done

with sequencesof iterated read operations, to see whether the

system would converge to a fixed point representing a stored

character. In somecases, the memorywas able to recognize a

character after one or two iterations, or to improve the accuracy

of its initial response. In other cases, the memory was not able

to recognize the character even after iterating.

Further experiments could be done to find out how many

characters can be stored in the memory before it becomes

overloaded, or how similar the characters can be to one another

and still be distinguishable. Experiments could also be done to

test the performance of the system with various character sets,

design parameters, and methods of retraining the system to

improve its performance. I will indicate some possible design

alternatives and directions for further work.

In order to give some perspective, I will at times discuss

various ways to accomplish a particular task. But in

experimenting with and simulating the system, I usually tried to

use a design option that is relatively simple mathematically and

conceptually, so that it will be easier to understand and to give

rough mathematical estimates of its performance. Various

refinements and more complex options would probably give better

performance, especially with a large character set, but they are

not as amenable to simple mathematical estimates of performance.

Different methods will have to be experimented with to see what

works best under various conditions.

SDM IMPLEMENTATION, MODEL 1: ENCODINGAN IMAGE AS AN ADDRESS

I will now describe a method for implementing an SDM system

based on the ideas in Jaeckel (1989a) for representing and

encoding the pieces of an image. Another method will be

described in a later section. The underlying principle in both

methods is that an image consists of an unordered set of several

pieces, each of which is a line segment or an arc of a circle,

and is represented by a point in the manifold M. As explained in

Jaeckel (1989a), p. 40, there is not a natural, continuous way to

order the pieces. A segment or an arc is described by five

parameters: the X and Y coordinates of a center point for the

piece, relative to the other pieces; the relative size of the

piece; and an unordered pair of angles (or points on a circle)

which jointly represent the orientation and shape of the piece.

See Jaeckel (1989a), p. 18-25. I assume that we have a means of

finding the pieces in an image; the problem of building a

preprocessor to find the pieces is discussed in Jaeckel (1989a),

p. 42-48.

To implement an SDM, we must be able to use an image as an

address to the memory, both for writing and for reading, and also

as data to be stored in the memory. Note that it is not

necessary to use the same method of encoding the images both for

addressing and for data storage. Encoding the images for use as

7

data will be discussed in the next two sections. To use an image

as an address, I will encode it as a bit string, or binary

vector, using a method that is based on the representation of an

image as a set of points in M. With this method, the length of

the bit string will be the same for all images, regardless of the

number of pieces the image has; a small change in the parameters

describing the pieces will produce only a small change in the bit

string; and the pieces will be treated as an unordered set. (A

similar problem of encoding an unordered set of variable size as

a bit string of fixed length is dealt with in Kahan et al.

(1987), p. 276, in their work on character recognition.)

I begin by choosing a large set of points spanning M, that

is, a set of points spread uniformly throughout M so that no

point in M is very far from one of these selected points. As an

example, I will use the set of 9072 lattice poi_$s described

below. An image will be encoded as a string of 9072 bits, that

is, a binary vector, in which each bit position, or coordinate,

corresponds to one of the lattice points. For a distance

function in M, I will use the Euclidean (L2) metric, as defined

in Jaeckel (1989a), p. 30-32. I then choose a value R to be used

as the radius of a sphere in M (the set of all points in M within

R of some point).

Given a set of points in M representing the pieces of an

image, consider the set of spheres in M of radius R, whose

centers are the points representing the pieces of the image.

Note that these spheres may overlap, or extend beyond the borders

of M. For each lattice point lying in one or more of these

8

spheres (that is, in the union of the spheres), assign a 1 to the

corresponding bit. All bits corresponding to lattice points not

lying in any of the spheres are assigned a O. Wenow have a

9072-bit representation of the image: A bit is I if and only if

its corresponding lattice point is ¢ithin R of one or more of the

points representing pieces. Note that the order in uhich the

pieces may have been listed makes no difference, and that the

length of the bit string is the same, regardless of the number of

pieces in the image.

If R is such that a sphere of radius R about a point in M

representing a piece of an image contains a few hundred lattice

points, then if the piece is altered slightly, causing a small

movement in the point in M representing it, the sphere about the

moved point uill contain most of the lattice points that uere in

the original sphere, and a fen that uere not. Thus there uill be

only a small change in the bit string representing the image. In

other uords, this method of representation is continuous in the

sense defined in Jaeckel (1989a), p. 14. Note that even a very

small movement of a point in _ nil1 probably cause some

differences as to which lattice points are in the sphere about

the point.

There is a kind of duality here: Instead of spheres about

the points representing the pieces of an image, ue can consider

spheres of radius R uhose centers are the lattice points. For

any of the 9072 bits, the bit is assigned a 1 if one or more of

the points representing the pieces of an image lie in the sphere

of radius R about the corresponding lattice point. Thus each bit

9

is analogous to a "feature detector", whose receptive field is

the set of all segments and arcs that are represented by points

within R of the lattice point for that bit. (These spheres are

like the intervals for which a particular bit is set to 1,

defined in Jaeckel (1989a), p. 36.) Note that these feature

detectors have overlapping receptive fields. This method of

encoding is somewhat like a concept called "coarse-coding" by

Hinton (1981), p. 1094.

If R is a fixed number, then the number of l's in the bit

string for an image will be roughly proportional to the number of

pieces in the image. If, however, we want to keep the number of

l's more or less constant (an option that may be important in

some SDM designs), we can make R a function of the number of

pieces. Something like this will be done in Yodel 2 below.

I will choose a set of 9072 lattice points in M as follows:

_Tnen the pieces of an image are each represented by five

parameters as in Jaeckel (1989a), p. 18, the values for the first
g

three parameters for each piece (the X and Y coordinates of the

center point of the arc, and the size of the arc) all lie between

0 and 1. I choose six numbers in each of these three unit

intervals, for example, O, 0.2, 0.4, 0.6, 0.8, and 1. In the

Cartesian product of these three intervals, that is, the set of

all possible combinations of values for the first three

parameters, the combinations of the chosen values above define

63 = 216 points.

Now consider the MSbius strip of all possible unordered

pairs of angles (or pairs of points on a circle) representing the

10

orientation and shape of an arc (Jaeckel, 1989a, p. 26). I will

choose 42 lattice points in this set. Imagine 12 points,

numbered1 through 12, arranged counterclockwise around a circle,

beginning at "3 o'clock". If we choose unordered pairs of points

from amongthese 12 points such that the two points are at least

900 apart (as in Jaeckel, 1989a, p. 24), we see that there are 42

possible unordered pairs, beginning with {1,4), (1,5},

{1,10}; then {2,5}, {2,11}; and so on, up to {9,12}.

(Each point maybe paired with seven others, giving 12x7 = 84

ordered pairs; this number must be divided by two since each

unordered pair corresponds to two ordered pairs.) Each of these

42 pairs corresponds to a point on the MSbius strip. These

points are evenly spread out on the strip. Because of the way in

which the unordered pairs represent orientation and shape, these

42 points are arranged on the strip in a sort of diagonal

pattern: Moving from one of these points to one of its nearest

neighbors corresponds to changing one of the angles describing an

arc by 30 ° while holding the other angle fixed; this is a

diagonal motion on the strip, changing both the orientation

(longitude) and'shape (latitude) of the arc. (See Figure 2 in

Jaeckel, 1989a.)

In Jaeckel (1989a) I defined M to be a subset of the

Cartesian product of three line segments and a MSbius strip. For

simplicity, I will now change the definition of M to be the

entire five-dimensional Cartesian product, although, as explained

in Jaeckel (1989a), p. 25-26, some of the points in this set do

not correspond to possible arcs.

11

I

Since M is now the Cartesian product of the three unit

intervals and the MSbius strip, I can define a set of lattice

points in M by taking each possible combination of the six values

for the first three parameters, combined with each of the 42

points on the strip, giving a total of 216x42 = 9072 lattice

points in M. Every point in M is near one of these lattice

points. If we use the distance function defined for Model 2

below, then each lattice point is one unit of distance from its

nearest neighbors in every direction.

There are a number of possible variations on the above

scheme. Since discussing alternatives may help give some

perspective, and since I may want to experiment with some of

these alternatives, I will mention a few of them here.

The number and spacing of the lattice points gives us a

certain degree of resolution, which might be measured by

comparing the difference in the encoding of two points in M that

are very close to each other. This difference depends on which

lattice points are in the sphere of radius R about one point,

compared to the other. If we want higher resolution, we could

have more lattice points, which would mean longer bit strings; or

we could give up some resolution in order to have shorter bit

strings. If we redefine the metric to give greater weight to

some of the parameters, as was suggested in Jaeckel (1989a), p.

30, we could choose lattice points so that their spacing would be

consistent with that metric.

Another ua_ to choose lattice points on the MSbius strip is

to choose 40 points arranged in more of a square pattern, as

12

follows: Choose eight points on the "equator" of the strip (the

set of points representing line segments with different

orientations) and then, for each of those points, choose four

other points, two above and two below the point on the equator,

representing arcs with the same orientation but with different

shapes. The result will be eight sets of five points, where each

set of five points lies on a line perpendicular to the equator.

The 40 lattice points can be chosen as follows: Imagine 16

points, numbered 1 through 16, arranged counterclockwise around a

circle. Choose unordered pairs of these 16 points, such that the

angle between the points in a pair is either 90 °, 135 °, or 180 °.

Since each point may be paired with five others, there are 80

such ordered pairs, and therefore 40 unordered pairs,

corresponding to 40 points on the strip arranged as described

above. If we combine each of these 40 points with each of the

216 possible combinations for the other parameters, we will have

8640 lattice points in M. A possible reason for using this set

of lattice points is that it allows us to think about segments

and arcs in a way that separates their orientation from their

shape. (See Jaeckel, 1989a, p. 28.)

A problem with these sets of lattice points is that since

they are the vertices of five-dimensional cubes in M, the center

of each cube is relatively far away from any lattice point.

While there is probably an optimal way to choose a set of points

in a five-dimensional space so that no point in the space is far

from a lattice point, the advantage of the lattice points defined

above is that they are easy to work with.

13

DEFINING MEMORY LOCATIONS FOR MODEL I

To define an SDM, we must define a set of potential memory

locations, a random sample of which will be implemented and

called hard locations, as in Kanerva (1988). In Kanerva's basic

design, each point in the address space represents a potential

memory location, and the set of read and write addresses for

which the memory location represented by the point x would be

activated is the set of address vectors that are within some

given Hamming distance of x. The address space for Model 1 is a

9072-dimensional binary vector space. However, since an image is

encoded as a bit string that somewhat resembles a union of

five-dimensional spheres, the set of possible addresses is only a

small part of the entire 9072-dimensional address space. So,

instead of choosing the addresses for the hard locations at

random throughout the address space, it might be better to define

hard locations using only addresses that are close to the set of

possible addresses for images, so that we do not have a large

number of hard locations that are far away from any possible

address. Keeler (1988), p. 321-24, has suggested choosing the

addresses of the hard locations so that their distribution is

like that of the addresses corresponding to the images that will

actually be encountered. If this is done, the system should use

the memory locations more efficiently. The activation radius

would then have to be adjusted so that when reading or writing, a

desired number of hard locations would be activated. One way to

choose such addresses for hard locations would be to create

14

artificial images made up of several pieces chosen at random,

encode them as address vectors, and use these vectors as

addresses of hard locations. This is somewhat analogous to the

method of defining memory locations in Model 2 below.

In two recent technical reports (Jaeckel, 1989b, 1989c) I

described some alternative designs for an $DM. Any of those

designs could be used here. Because of the very long addresses

used in Model 1, the address decoding in some of those designs,

such as the "selected-coordinate design" and the "hyperplane

design", would be simpler than in Kanervals design.

The next issue in designing an SDM is what to store in the

counters for the memory locations activated during a write

operation. This depends on how we are going to read from the

memory. If we intend to use the memory as an autoassociative

memory -- that is, when we write to the memory the data word

stored is the write address --we would need 9072 counters for

each hard location. We could then do a sequence of iterated read

operations to attempt to converge to a fixed point, as in Kanerva

(1988), p. 68. With this number of counters, we could also store

sequences by writing at each address the next address in the

sequence (Kanerva, 1988, p. 80). However, such a large number of

counters would require a lot of hardware. An alternative method

of storing images, requiring only 256 counters per hard location,

will be described in the next section.

If we are doing supervised learning, that is, if we know the

response to be given for each member of the training set, then

when we write to the memory we can store some kind of identifier

15

or code (such as an ASCII code) for each character to be stored

in the memory, rather than the entire write address. These

identifiers would require only a small number of bits, compared

to 9072 (or to 256), and the memory system would need

correspondingly less hardware. The identifiers could have some

redundancy built into them, at the cost of a few extra bits, so

that the memory would only have to recover most of the bits

correctly, instead of every bit. If we intend to do a single

read operation to attempt to recognize an image of a character,

all we need to store are these character identifiers. On the

other hand, if we want to do iterated read operations to improve

the memory's response, we could store both the write addresses

and the identifiers. In either case, reading from the memory

gives us an identifier in response to a read image; we can then

use a look-up table or some other means to find the relevant

information associated with that identifier.

If we store 9072-bit address vectors to be used in iterated

read operations, then when we read from the memory we obtain 9072

sums, as a result of adding the contents of the corresponding

counters for the activated hard locations. What do we do with

these sums? That is, how do we interpret the result of the read

operation? We could compare each sum to a threshold, for example

an overall average of the bits that have been written to that bit

position, and then convert the sums to l's or O's, or we could

scale them in some other way. If we are using the memory as an

autoassociative memory, and we read at an address near the

address of a stored character, we expect to get an approximation

16

to the write address of that character; that is, we expect to

find large sumsfor the bit positions corresponding to lattice

points close to the points in M representing the pieces of the

stored character. So, whenwe read, we want to find sets of bit

positions corresponding to clusters of lattice points in _, all

of whosesumsare large. In other words, we want to find roughly

spherical hills or plateaus in a discretized five-dimensional

space. And whenwe find such a plateau, we need to estimate its

center and its extent, and maybeits mass. Finding these

plateaus could be a difficult pattern recognition problem, or

search problem, in itself.

There are a numberof possible approaches. Wecould look

for relative maximaamongthe sums, or we could first smooth the

sumsby computing a linear combination of each sumwith its

nearest neighbors, and then look for relative maxima. These

operations might be done quickly by parallel computations. Once

we find a potential plateau, some amount of computation will be

required to estimate its parameters, and to decide whether it

really represents a piece of a stored character. When searching

for plateaus, we might use the pieces of the image being read as

starting points. If the read image is similar to a stored

character, the pieces of the read image should be near the

corresponding pieces of the stored character, so we might be able

to move toward them by an iterative procedure. We would also

need to check to see whether or not there is a piece of the

stored character near each piece of the read image, and whether

there are apparent pieces in the memory's response that do not

17

correspond to any of the pieces of the read image.

Actually, when we are doing a sequence of iterated read

operations, we may not need to interpret the sums at each step as

pieces of an image. All we need at each intermediate step is the

next read address to try, and that does not have to correspond

exactly to an address of a possible image; we only need a set of

values for the address bits that is likely to be closer to the

address to which we are trying to converge. At the end of the

process we may want to use the sums to identify the pieces of the

character we have found, so that we can reconstruct it directly.

Or, if an identifier was stored with each stored character, then

the identifier found by a sequence of read operations can be

treated as the memory's response to the read image.

The main disadvantage of this model is the large number of

bits in the addresses. This is a consequence of trying to use a

vector of fixed length to grasp all of the pieces of an image at

once, without imposing an ordering on them. Moreover, if ue want

to improve the resolution of the system, that is, its ability to

distinguish between points close to each other in _, we would

need a set of lattice points forming a finer mesh; since M is a

five-dimensional manifold, this would require a great increase in

the number of lattice points, and hence in the length of the

addresses. However, I believe that with the numbers used above,

the system would have adequate resolution for recognizing simple

images. The capacity of the system to store a large number of

characters might well be constrained more by the number of hard

locations implemented, than by the number and spacing of the

18

lattice points.

A small-scale prototype SDM has been constructed at Stanford

University (Flynn et al., 1988). It allows for addresses of up

to 256 bits. While this is a long way from 9072, it might be

possible to implement a scaled-down version of Model 1 above for

performing simple demonstrations and experiments, by choosing 256

lattice points in M and assigning an address bit to each.

Although such a system could be expected to have poor resolution,

it would be interesting to know what could be achieved with such

limited resources. One possibility would be to use images made

only of line segments, instead of segments and arcs, in which

case the pieces would be represented by points in a

four-dimensional manifold.

A REPRESENTATIONOF AN IMAGE TO BE USED ONLYAS DATA

In Jaeckel (1989a) I showed that if we could assign an order

to the pieces of an image, we could represent it by a bit string

containing only a few hundred bits, rather than several thousand.

If we use 30 bits per piece and allow up to eight pieces, as

discussed in Jaeckel (1989a), p. 39, we can represent an image by

a string of up to 240 bits. Note that an image can be

reconstructed, at least approximately, from such a

representation. In either of the SDM implementations in this

report, we could use a representation of this kind for the data

to be stored in the counters when writing to the memory. Since
I

this representation puts an ordering on the pieces of an image, I

19

will not use it to convert an image to an address. This method

is used in the simulation of Model 2 described below. Since we

can approximately reconstruct an image from this form of

representation, the model can act like an autoassociative memory,

and in some cases we will be able to do a sequence of iterated

read operations to attempt to converge to a fixed point, as in

Kanerva (1988), p. 68. Compared to the autoassociative version

of Model I above, it will be much easier with this representation

to interpret the result of a read operation, and fewer counters

will be needed for each memory location.

The representation of an image of a character that I will

use as a data word to store in the counters for the memory

locations is a 256-bit binary vector constructed as follows: The

first 240 bits are divided into eight 30-bit blocks, or

piece-positions, each of which can contain one piece, encoded as

a 30-bit string. Some of the blocks may be blank. Each 30-bit

block contains sub-blocks of six bits each for the X and Y

coordinates of the center of the piece, six bits for the size,

and 12 bits for the pair of angles representing orientation and

shape. These parameters are encoded as bit strings as described

in Jaeckel (1989a), p. 34-39. When an image of a character is to

be written to the memory, it is assigned one of the eight blocks

at random as a starting block. A piece is placed in that block

and in each of the succeeding blocks, wrapping around from the

eighth block to the first block if necessary. The order of the

pieces does not matter, except in the situation described below.

Unused blocks are filled with O's. A random starting block is

2O

used so that when many characters are stored, each of the eight

blocks will be used to store about the same amount of data. The

remaining 16 bits are used to indicate which blocks have been

filled with pieces of the character. In the first eight of these

bits, the bit corresponding to the starting block is assigned a

1, and in the last eight bits, the bit corresponding to the final

block filled is assigned a 1. The other 14 bits are set to O.

A write operation consists of determining which memory

locations are activated by the write address, and then adding the

components of this 256-bit string to the numbers already in the

data counters for the activated locations. Thus there must be

256 counters for each memory location. If we use more bits to

represent an image, which would require more counters, we could

increase the resolution of the system by using more bits per

block, or we could increase the capacity by having more blocks,

so that any two characters would be less likely to have to share

the same blocks.

Although I assign an ordering to the pieces in an image when

I store this representation of it in the counters for the

activated memory locations, I will continue to treat an image as

an unordered set of pieces when I use it as an address to the

memory. In both Model 1 and Model 2 the activation rule for the

memory locations is such that the set of memory locations

activated by an image does not depend on the order in which its

pieces may have been listed. The reason for this is to avoid the

problem of discontinuities caused by assigning an ordering to the

pieces in an image. (See Jaeckel, 1989a, p. 40.)

21

WhenI assign an ordering to the pieces of a character for

storing in the counters, it does not matter how the pieces are

ordered, except in the following situation: If two or more

similar instances of a character are included in the training set

and written to the memory, such as several instances of upper

case "A", each consisting of three line segments in the usual

way, the corresponding pieces must he encoded in the same order

and in the same piece-positions, so that when we read from the

memory the stored data words will reinforce each other. If this

were not done, differently ordered instances of the character

would partially cancel each other out when stored in the memory.

Therefore, this method requires that we know which items in the

training set are to be considered as different instances of the

same character. The rule above does not apply, however, to

dissimilar versions of a character, such as the two distinct ways

to make a lower case"g"; these should be viewed as two different

characters that happen to have the same name.

SDM IMPLEMENTATION, MODEL2

I will now describe a simple design for an SDM, for which

unordered sets can be used as addresses. Instead of representing

an image as a vector to be used as an address, I will give an

activation rule for determining which memory locations are to be

activated by an image used as an address. I will then describe a

rough approximate simulation that was done to test the

performance of the memory, and give some examples.

22

Wewill need a distance function to measure the distance

between points in M. I will use the Euclidean (L2) distance,

computed as described in Jaeckel (1989a), p. 31. The distance

function is adjusted so that for each of the first three

parameters, 0.2 is considered as one unit, and for each member of

the pair of angles representing orientation and shape, 300 is one

unit. These choices reflect a judgment about the relative

importance of a change in one parameter compared to a change in

another parameter; see Jaeckel (1989a), p. 30. (Because of the

representation of orientation and shape as a pair of angles,

changing one angle by 30 ° would correspond to moving one unit of

distance diagonally on the _Sbius strip. This is not the same as

changing both angles by 15°; that would correspond to moving a

distance of 0.7071.)

Now I will make another change in the definition of the

manifold _. I will expand M beyond its borders somewhat, by

allowing each of the first three parameters (X, Y, and size) to

lie in the interval [-0.2, 1.2] instead of [0,1], and by

adding a strip to the edge of the _Sbius strip component of M so

that on the edge of the expanded strip a point corresponds to a

pair of angles whose difference is 47.570 instead of 90 °. The

effect of these changes is to extend the borders of _ in all

possible directions by one unit of distance, according to the

measure of distance defined above. I will call this expanded set

_+. The reason for doing this is that when we look at a sphere

about a point in _ representing a piece of an image, if the point

is near the boundary of _ a substantial part of the sphere about

23

it might extend beyond the original borders of M. This would

reduce the effective volume of the sphere. Because of the way in

which the memory locations are defined in this model, the number

of memory locations activated by an image depends on the volumes

of spheres about the points in M representing its pieces. With

M+, the expanded M, the volume of a sphere about a point near the

boundary of M will not be reduced by quite as much.

I define a memory location and its activation rule as

follows: Choose three points at random in M+. These will be

called the defining points of the memory location. Note that

these points may be any points in M+, not just lattice points.

(However, choosing them from among a set of lattice points might

simplify some of the computations.) A write or a read address

consists of an image represented by an unordered set of pieces,

each of which is represented by five numerical parameters. These

parameters will be used as numbers in the addressing process;

they will be converted to bit strings only for the purpose of

storing them as data. A radius R is chosen as explained below,

depending on the number of pieces in the image. A memory

location is activated by an image used as an address if each of

its three defining points is _ithin £ of at least one of the

points in I representing the pieces of the image. Note that more

than one defining point may be within R of the same piece of the

image, but each defining point must be within R of some piece.

(An alternative design, discussed below, would require each

defining point to be within R of a distinct piece of the image.)

We can think of each memory location as having an address

24

decoder that computes the distance between each defining point

and each of the NP pieces of the image used as the address,

creating a 3xNP matrix. If each of the three rows of the

matrix contains an entry less than or equal to R, the location is

activated. It does not matter if some of those entries are in

the same column. (For the alternative mentioned above, those

three small entries would have to be in distinct columns as well

as in distinct rows.) This model is very similar to a version of

Model 1 above: If in Model 1 we make R a function of NP and

define memory locations as in the "hyperplane design" described

in Jaeckel (1989c), p. 17, then the rule for activating a memory

location is essentially the same as in Model 2.

I assume that a large number of memory locations, say

100,000, are chosen at random and implemented as hard memory

locations. I will use a uniform probability distribution for the

points in M+ defining the memory locations; this may not be the

best distribution to use, but it will enable us to do some simple

computations. The radius R will be chosen to be a function of NP

so that the proportion of memory locations activated by an image

is approximately'a predetermined amount, say 1/1000, as in some

examples given by Kanerva (1988). Consequently, about 100 memory

locations would be activated by an image. The actual number will

vary, because of the random choice of the memory locations. _ith

these numbers in mind, I decided to use three defining points for

each memory location. Using more than three would require larger

values for R, resulting in poorer resolution, and using fewer

might make it more difficult to distinguish between images that

25

have somepieces in common.

If the radius used is very large, then it will be difficult

for the system to distinguish between images, fin the other hand,

for a given number of memory locations, the radius must be large

enough so that a substantial number of them are activated by an

image. Expanding M to M+ results in using a larger radius than

would have been used with M, but was necessary so that roughly

the same number of memory locations would be activated by any

image. The effect of using a larger radius is that the estimates

of the memory's performance will err on the conservative side,

since a larger radius means poorer resolution.

For a given image, let U be the union (in M+) of the spheres

of radius R about the points in M representing the pieces of the

image, that is, the set of all points within R of at least one

piece. Let p be the volume of U divided by the volume of M+;

this is the probability that a point chosen at random in M+ will

lie in U. So if three points are chosen at random to be the

defining points of a memory location, the probability that all

three lie in U is p3. But this is the condition for activating

a memory location -- that each of its defining points be within R

of some piece of the image. (Note that the three points defining

a memory location do not have to lie in different spheres.)

Therefore, the probability that a memory location selected at

random is activated by an image is p3 and the expected number

of memory locations activated is p3 times the total number of

hard memory locations. For example, if p = 0.1, then

approximately 1/1000 of the memory locations would be activated

26

by an image.

Instead of looking at spheres of radius R about the pieces

of an image, we can look at the spheres of radius R about the

three defining points of a memory location. This is analogous to

the duality mentioned earlier. In this view, a memory location

is activated by an image if each of those three spheres contains

a piece of the image.

To simplify the computations, I will assume that U is

approximately a union of disjoint spheres in M+. For moderate

values of R, and for the images of characters used in the

experiments, the overlaps between the spheres of radius R about

the points representing the pieces of an image are fairly small,

since the points are not very close to one another. Also, most

of the volume of these spheres lies within M+; this was the

reason for expanding M. Therefore, the volume of U is

approximately NP times the volume of a five-dimensional sphere of

radius R.

I will show that the volume of M+, computed with the measure

of distance defined above, is 18168.90. This is considerably

more than the volume of N, which can be shown to be 4500;

expanding M in four of its five dimensions greatly increases its

volume. Although the MSbius strip curves back on itself, locally

it is like a plane surface. Consequently, M+ is locally like

five-dimensional Euclidean space. Since the range of each of the

first three parameters in M+ is from -0.2 to 1.2, corresponding

to a distance of 7, the volume of the Cartesian product of these

three intervals is 73 = 343. This volume must be multiplied by

27

the area of the expanded MSbius strip. Since the strip is just a

rectangle with a twist, we need to find its length and width.

Suppose we travel once around the "equator" of the strip (the

points representing line segments); this corresponds to a 180 °

rotation of a line segment. If we change the orientation of a

line segment by 300 , we change both of the angles that represent

its position on the strip by 300 . Since each angle is displaced

by one unit of distance, and the distance function is defined so

that these two angle parameters are orthogonal to each other,

changing both of them by 300 corresponds to a motion of ¢2.

Therefore, moving all the way around the equator corresponds to a

motion of 6¢2. Now if we move from the equator, perpendicularly

to it, to the edge of the strip as originally defined

(corresponding to bending a line segment into an arc), we move

the two angles representing a point on the strip toward each

other, shrinking their difference from 180o to 90°. In other

words, each angle is changed by 45°, or 1.5 units of distance.

Therefore, the distance from the equator to the edge is 1.5q_,

and so the width of the strip is 3q_. Since I expanded the strip

by adding one more unit of distance to the edge, the expanded

width is 3_ + 2. (Since moving one unit of distance outward

from the equator can be shown to correspond to changing each

angle by 15¢2 degrees, a point on the edge of the expanded strip

corresponds to a pair of angles whose difference is 47.57o.)

Therefore, the area of the expanded strip is 6¢_.(3¢2 + 2), and

so the volume of M+ is 18168.90.

If we want 1/1000 of the memory locations to be activated

28

by an image, the radii of the spheres about the points in M

representing the pieces of the image must be such that the volume

of their union will be approximately one tenth of the volume of

M+, or 1816.89. I will first compute the radius of a single

sphere with this volume. The volume of a five-dimensional sphere

of unit radius is 5.263789. (See the Appendix.) Since the

volume of a sphere is proportional to the fifth power of the

radius, we find that the radius must be 3.218148. If an image

has NP pieces, and if the NP spheres about the points

representing them are assumed to be disjoint and to lie within

M+, then the volume of each sphere must be 1816.89/NP. To find

the radius of a sphere with this volume, I divide 3.218148 by the

fifth root of NP. The program described below uses radii

computed in this way.

The access overlap for two images is the set of memory

locations activated by both. When we read from an SDM, we

compute a vector of sums by adding the contents of the

corresponding counters for the activated memory locations.

Therefore, when we write to the memory at one address, and then

read from the memory at another address, the size of the access

overlap for the two addresses determines the number of copies of

the written data word that are included in the sums computed in

the read operation. It follows that the vector of sums computed

in a read operation is a weighted sum of the data words stored in

the memory, in which the weights are the sizes of the access

overlaps for the write addresses and the read address (assuming

that none of the counters had reached its ceiling during writing

29

to the memory). See Kanerva (1988), p. 67. If two images are

near each other, that is, if the points in M representing one

image are near the corresponding points in M for the other image,

then their access overlap will be large. On the other hand, two

very different images will have a small access overlap.

Consequently, if the read address is near one of the addresses at

which data was stored in the memory, and if no other write

address is near the read address, then the result of the read

operation will be approximately proportional to the data stored

at the nearby write address, mixed with some "random noise".

If U1 and U2 are the respective unions of spheres for two

given images, as described above, then a memory location is

activated by both images if and only if all three of its defining

points lie in the intersection of U1 and U2. The expected number

of such memory locations is therefore proportional to the cube of

the volume of this intersection. More precisely, if q is the

volume of the intersection divided by the volume of M+ -- the

probability that a randomly chosen point lies in the intersection

-- then the probability that three points chosen at random will

lie in the intersection is q3; hence the expected number of

memory locations in the access overlap is q3 times the total

number of hard memory locations. Since U1 and U2 are each unions

of spheres, their intersection is the union of the pairwise

intersections of each sphere in U1 with each sphere in U2. Based

on the assumptions about these spheres made above, we may assume

that these pairwise intersections are mostly disjoint from one

another and that they lie mostly within M+; therefore, the volume

3O

of the intersection of U1 and U2 may be roughly approximated by

the sum of the volumes of the individual pairwise intersections

of the spheres. A formula for the volume of the intersection of

two five-dimensional spheres is derived in the Appendix.

Since the size of the access overlap determines the relative

weight of a data word written at one address when we compute the

sums during a read operation at another address, it may be

thought of as an intrinsic measure of the similarity or

dissimilarity of two images used as addresses. Thus, the

effective similarity of two images depends on the nature of the

system, in particular the measure of distance in M, the choice of

memory locations, and the chosen values of R. For example, if

the set U1 for a particular upper case "E" consists approximately

of four disjoint spheres, each of volume p/4 (relative to M+),

and the set U2 for a slightly different "E" consists

approximately of four like spheres whose centers are near the

centers of the spheres for the first "E", then the corresponding

spheres will have large intersections.

This intrinsic measure of similarity also applies to images

with different numbers of pieces, for example an "E" and an "F".

Let U1 be the set defined above for the "E", and let U2 be the

set for the "F", consisting approximately of three spheres, each

of relative volume p/3. If we assume that in these particular

instances of "E" and "F", the three pieces of the "F" exactly

match three of the pieces of the "E", then each of the spheres in

U2 is concentric with one of the spheres in U1. Since the radii

of the spheres in U2 are greater than those in U1 (so that both

31

sets have the samevolume), it follows that the intersection of

U1 and U2 consists approximately of three of the spheres in U1,

each having a relative volume of p/4. Therefore, q, the

relative volume of the intersection, is 3p/4, and the

probability that three points chosen at randomwill lie in the

intersection is 27p3/64, or about 0.42p3. The result of this

calculation is that approximately 42%of the memorylocations

activated by the "E" are also activated by the "F" (and vice

versa). However, since the spheres for an image are not

completely disjoint, the program described below overestimates

the volumes of these intersections, probably by about 10-20%.

But since it does so for all of the volumes computed, the effect

of this error is partially cancelled out.

A SMALL-SCALE SIMULATION

I have written a computer program to perform a small-scale

approximate simulation of the Model 2 implementation. The

program, called CREAD3, is written in BASIC, and runs on an IBM

PC. This simulation does not have any hard memory locations as

such. Instead, it simulates a read operation by computing the

approximate size of the access overlap for the read address and

each write address, and by then computing a weighted sum of the

data assumed to be stored in the memory, as explained below.

Since it is based on the assumptions and approximations described

above, it is not highly accurate. Bowever, it is easy to

implement on a small computer, so I can carry out a variety of

32

simple experiments, and make changes in the design as I go along.

The simulation can be used to test the performance of the memory

design under various conditions. Thus it can provide some

valuable insights, both into the nature of the encoding scheme

and into a number of general issues concerning an SDM.

The program sets up a c,rre,t memory, a working area that

can hold two encoded images at a time. An image, represented as

a set of segments and arcs, can be entered into current memory

through the keyboard (Jaeckel, 1989a, p. 17). The program can

also store an image in current memory onto a disk file, and can

load an image into current memory from the disk file. When an

image is entered into current memory, whether through the

keyboard or from the disk file, it is centered and scaled

(Jaeckel, 1989a, p. 17-18), and the five parameters used to

represent each piece as a point in M are computed. Each piece is

also converted to a 30-bit string, as described earlier.

To compare the two images in current memory, the program

computes the Euclidean distance, as defined above, between each

point in M representing a piece of the first image and each point

representing a piece of the second image. It then finds the

radii of the spheres about these points, as described above. The

program then uses the formulas derived in the Appendix to compute

the volume of the intersection of each sphere about a point for

the first image with each sphere about a point for the second

image. Under the simplifying assumptions above, the volume of

the intersection'of the two unions of spheres is approximately

the sum of those computed volumes, and the size of the access

33

overlap for the two images is approximately proportional to the

cube of that sum.

The memoryis assumedto be trained by writing the

characters in a training set to the memory. For each of these

characters, its 256-bit encoding, described above, is assumedto

be added to the counters for the memorylocations activated by

the character. The memoryis then used to recognize an image of

a character by reading from the memoryusing that image as the

read address. In the simulation, the memory is not actually

written to. Instead, a read operation is simulated by computing

the approximate result of reading from the memory, as if it had

beentrained as described above.

As stated earlier, when we read from an SDM, we compute a

vector of sums by adding the contents of the corresponding

counters for the activated memory locations. These sums are made

of multiple copies of the data words written to the memory, where

the number of copies of each data word is equal to the number of

memory locations activated by both the read address and the

address at which that data word was written. Thus the resulting

vector of sums is a weighted sum of the stored data words, each

weighted by the size of the access overlap for the corresponding

write address with the read address.

The program performs a simulated read operation by comparing

each write address (representing a character assumed to be stored

in the memory), one at a time, with the given read address, and

computing the approximate size of the access overlap for that

write address with the read address. It does this by computing

34

the volumes of the pairwise intersections of the spheres, as

explained earlier. The cube of the sum of those volumes is

approximately proportional to the expected number of memory

locations activated by both images. The 256-bit data word for

the character assumed to be written to the memory is multiplied

by the size of the access overlap, and the corresponding products

for all of the stored characters are added. The resulting vector

of 256 sums is converted to bits as described below.

Since this simple simulation is based on some

approximations, it is inexact because of the following sources of

error: First, the spheres about the pieces of an image may not

be disjoint, and they may extend beyond N+; these factors cause

the program to overestimate the volume of the intersection of the

unions of spheres for two images, probably by about lO-20Z.

Second, the cube of the volume of the intersection is

proportional to the expected number of hard memory locations in

the access overlap --the actual number would differ somewhat

because the hard memory locations would be chosen at random.

Finally, if the counters for the memory locations have ceilings,

and if in some counters the ceiling is reached while the data is

being stored in the memory, then the contents of those counters

will not be exactly the sum of the data written to those memory

locations.

35

CONVERTINGTHE SUMS COMPUTEDIN A READ OPERATIONTO BIT STRINGS

REPRESENTINGSEGMENTSAND ARCS

If we store data using the 256-bit representation described

earlier, then the result of a read operation is a vector of 256

sums, found by summing the contents of the corresponding counters

for the activated memory locations. To interpret this vector as

a representation of a stored character, we must convert it to a

vector of bits, such that the patterns of O's and l's in each of

the 30-bit blocks are of the form created by the method used to

encode the pieces, and so that the other 16 sums indicate the

starting and final blocks for the character found.

Hen a character to be written to the memory is encoded as a

256-bit string, each of the eight 30-bit blocks in the string may

contain a piece of the character. Some of these eight blocks

will contain pieces, and others may be blank (filled with O's).

Each block is divided into four sub-blocks, consisting of three

six-bit strings, each containing a parameter value, and a 12-bit

string, containing two parameter values. These five parameter

values are each encoded as either two or three consecutive l's

within a sub-block, as explained in Jaeckel (1989a), p.34-39.

To convert the 256 sums to bits, the program does the

following: First, for each sub-block in each 30-bit block, it

computes all possible sums of two consecutive sums and sums of

three consecutive sums. In the 12-component sub-blocks, since we

think of the components as arranged in a circle, the sets of two

or three consecutive sums are defined accordingly. In each of

36

the first three sub-blocks of each block, the object is to find

the largest set of two or three consecutive sums. In the

12-componentsub-blocks, we need to find the two largest

non-overlapping sets of two or three consecutive sums, subject to

the condition that the bit positions for these two sets represent

a pair of angles at least 90° apart. (This condition is

satisfied by any 12-bit string representing the shape and

orientation of a piece.) To makethe sumsof two sumsand the

sumsof three sumscomparable, the program divides the sumsof

three sumsby 1.333, a somewhatarbitrary number chosen to allow

for somebackground noise. It then finds the largest sumof sums

(or, for the pair of angles, the largest pair of such sums

subject to the condition above) in each sub-block, and converts

the componentsof these sumsto l's. The other componentsof

each sub-block are converted to O's. (Note that someof these

computations could be done in parallel.)

Assumefor a momentthat the read image is similar to one

and only one of the stored characters, which I will call the

"target character". Each block of 30 bits now represents the

system's best guess as to the parameters of the piece stored in

that block, assuming that a piece of the target character is

stored there. If a block is supposedto be blank, that is, if it

does not contain a piece of the target character, then the random

noise due to the other stored characters will cause the system to

find an apparent piece there anyway. However, if no other stored

character is very close to the read image, then the sums in those

blocks should be small compared to the sums in the blocks

37

containing true pieces.

The next step is to decide which blocks actually contain

pieces of the target character, and which should be considered

blank. The program finds the largest sum among the sums for the

eight starting-block bits, and calls the corresponding block the

starting block. It then does the same for the final block. The

program tentatively decides that the blocks containing the pieces

to be found are those from the starting block to the final block,

inclusive --wrapping around from the eighth block to the first

if necessary. To confirm this decision, the program also

computes a number for the strength of the piece found in each

block. The strength of a piece found in a block is taken to be

the minimum of the five sums of sums chosen as representing the

parameter values, that is, the weakest of the five. If the

strengths of the pieces in all of the blocks identified above as

containing pieces are greater than the strengths of the pieces in

all of the other blocks, then the decision as to which blocks

contain the pieces is confirmed, and the pieces found in those

blocks are taken to be the memory's response. If not, a warning

message is displayed.

I used this somewhat rigid rule because of its simplicity

and conservatism, and because I wanted to explore the general

properties of an SDM without getting too deeply involved in the

subtleties of the particular encoding scheme used here. More

sophisticated ways of utilizing the information contained in the

256 sums could probably be devised.

38

RESULTSOF SIMULATION EXPERIMENTS

I did some experiments using the 20 characters shown in

Figure 1 as the training set; that is, I assumed that the 256-bit

encodings of these characters were written to the memory. Note

that among these characters there are several groups of two or

three similar characters. I then used the program to simulate

read operations, as described above. That is, given an image

that might be like One Of the Stored characters, the program

would try to identify it.

As a first experiment, I tried reading from the memory with

each of the characters in the training set E that is, using each

stored character as a read address E to see if the memory could

recognize it. I compared the results with the "right answer" by

computing the Hamming distance between the pieces found, in the

form of 30-bit strings, and the 30-bit encodings of the

corresponding pieces of the stored character. (The Hamming

distance is the number of bit errors in the pieces found.) At

first I assumed that no "retraining" of the memory was done

that is, that each character was written to the memory once by

adding its 256-bit encoding to the counters of the activated

memory locations. For all of the characters, the blocks

containing the pieces were correctly identified and confirmed.

15 of the 20 characters were recovered perfectly: The Hamming

distance between the pieces found and the right answer was O.

For three of the characters the Hamming distance _as 1; that is,

there was one wrong bit among the pieces found. For the two

39

other characters, "P" and "R", the Jamming distances were 4 and 8

respectively, with most of the errors occurring in block 8. It

is clear that these two similar characters, and perhaps some

others, were interfering with each other, especially in that

block. None of the pieces found in the other blocks were off by

more than one bit.

Note that due to the method of encoding numbers as bit

strings, an error of one bit in a block means that one of the

five parameters will be off by only a small amount; so if the

piece is reconstructed from the 30-bit string, it will not be off

by much. This amount of error is tolerable at this stage of

development. If each of the pieces found is close to the correct

piece, the character in the training set could be approximately

reconstructed from the results of the read. Each 30-bit string

could be converted to the five parameter values describing a

segment or arc by choosing, for each group of two or three

consecutive l's in the block, the midpoint of the interval

represented by that group of bits. (See Jaeckel, 1989a, p.

35-38.) Using this information, the character could be

approximately reproduced graphically.

I then added a small amount of retraining to the memory to

improve its performance. A systematic method of retraining the

memory would be to make several passes through the training set;

during each pass we would measure the error in the memory's

response for each item in the training set, and then make small

changes in the dontents of the counters, in a way that is

intended to incrementally improve the memory's response. A

4O

method of this kind was used by Joglekar (1989). Since there

were serious errors with only two characters in the training set,

I did not use a formal retraining method. Instead, I made small

changes in the data assumed to be stored in some of the counters

for block 8. When each character was originally written to the

memory, each number added to a counter was 0 or 1. For the "P" I

altered two of these numbers by _0.15, and for the "R" I altered

three of them by that amount. In other words, the contents of

two of the counters for every memory location activated by "P",

and of three of the counters for every memory location activated

by "R", were altered by _0.15, as if new write operations were

done at these two addresses. These changes in the stored data

are like the changes that would be made by a more systematic

retraining method.

The rest of the experiments were done with the memory

retrained in this way. I read from the memory again, using each

character in the training set as the read address. This time the

response for "P" was two bits off, one bit in each of two

different pieces, and for "R" the response was four bits off, one

bit in each of four pieces. For the other 18 characters the

results were the same as before. Thus, after only a small amount

of retraining, no individual piece of a character was in error by

more than one bit. It seems likely that more retraining could

remove most or all of the remaining errors. But the response now

is good enough to permit some further experiments with the memory

as it is.

I then read from the memory using as read addresses some

41

images of characters (shown in Figures 2 and 3) that are similar

to characters in the training set. Some of them are distorted

versions of characters in the training set, but with pieces that

correspond in a one-to-one way to the pieces of those characters.

Some are "noisy" -- they have an extra piece, or are missing a

piece. Two of the images in Figure 3 are in between two

characters in the training set. I did not try distortions of the

characters that would significantly change the way in which the

image would be broken down into segments and arcs; the

representation I used would not be expected to work in such

cases.

I tried both single read operations and sequences of

iterated read operations. A single read operation was sufficient

to correctly recognize each of the characters in Figure 2. For

each of them, the blocks containing the pieces of the right

answer were correctly identified and confirmed, as described

above, and for each such block the Hamming distance between the

30-bit string obtained as a result of the read operation and the

30-bit encoding of the corresponding piece of the right answer

(that is, the number of wrong bits) was small. For five of the

characters in Figure 2, there were no bit errors in any of their

pieces. For the others, a few of the pieces found were one bit

off, two pieces found for the "G" were two bits off, and one

piece found for the "h" in Figure 2 was three bits off. None of

the images in Figure 3 was recognized by doing a single read

operation.

I then tried iterated read operations, both with those

42

characters in Figure 2 for which there were some errors in the

pieces found, and with the characters in Figure 3. A sequence of

iterated read operations with an autoassociative memory consists

of using the result of each read B the response of the memory w

as the read address for the next read. If the original read

address is similar to a pattern (considered to be both an address

and a data pattern) stored in the memory, the sequence of

responses will sometimes converge to the stored pattern, as in

Kanerva (1988), p. 68. Since an image can be approximately

reconstructed from the 256-bit encoding used here, the memory

system can be used like an autoassociative memory: We can do

iterated read operations by converting the result of each read to

an image and then using that image as the next read address.

The method of choosing the next read address when iterating

is as follows: First the program decides which blocks lie

between the starting block and the final block, as described

above. If that decision is confirmed w that is, if those blocks

are the ones with the greatest strengths B then the pieces found

in those blocks are used. Otherwise, the program uses the pieces

found in all of the blocks for which the strength is greater than

or equal to the minimum strength for the blocks from the starting

block to the final block. For each block used, the 30-bit string

found in it is converted to the five parameter values describing

a segment or arc. This is done by choosing, for each group of

two or three consecutive l's in the block, the midpoint of the

interval represented by that group of bits. (See Jaeckel, 1989a,

p. 35-38.) These segments and arcs may be thought of as

43

comprising an image; this image is used as the new read address.

The sequenceof iterated reads was continued until the

responses either converged to the right answer, or converged to

something way off, or appeared not to be converging at all.

For five of the characters in Figure 2 there were some

errors in the pieces found on the first read operation. In three

cases, one iteration reduced the total Hamming distance (the

number of wrong bits) to O; in one case, the Hamming distance

went from 1 to 2; and in one case -- the "6" -- the lamming

distance went from 5 to 11, and continuing to iterate caused the

response to drift even farther away from the right answer. For

the Characters in Figure 3, the "m" and the "C" converged to the

right answer in one or two iterations. The " /-_ " converged to

"A" after three iterations, rather than to "_". The " S "

converged to "E" after one iteration, rather than to "S"; this is

not surprising since three of its pieces are almost exactly like

three of the pieces of the "E". Two of the characters converged

to completely wrong characters after about six iterations, and

two characters did not converge to anything.

These experiments can give us a feeling for the kinds of

images that can be recognized by an SDM based on the method of

representing images used here. Although more sophisticated

iteration procedures might do better with some of the examples, I

wanted to use a simple, automatic procedure in the initial

experiments.

44

SOMEDESIGNALTERNATIVES

There are manypossible variations and alternatives to the

designs above. For example, there is the alternative to Model 2

mentioned earlier: To activate a memory location, we could

require that each of its defining points be within R of a

distinct piece of the image used as the address. (For images

with fewer than three pieces, this rule would have to be

modified.) This design should be better at distinguishing

between images with some pieces in common, such as "E" and "F",

because their access overlap, relative to the number of locations

activated by a single image, would be smaller. For example, it

can be shown that if the "F" is made of three of the four pieces

comprising the "E", then their access overlap contains only 25%

of the memory locations activated by the "E" (or by the "F"),

instead of 42%, as was shown earlier for Model 2.

This alternative is more complex, however, in that it

requires a little more work of the address decoders. When each

address decoder computes the 3xNP matrix of distances between

its defining points and the pieces of an image, it must look for

a set of three small entries lying in distinct rows and in

distinct columns. Also, the radius of the spheres would be a

different function of the number of pieces in an image.

A read operation for this design may be simulated in a

manner similar to the method above. The approximate size of the

access overlap for two images may be estimated from the matrix of

volumes (relative to M+) of pairwise intersections of spheres as

45

follows: For each set of three entries in the matrix lying in

distinct rows and in distinct columns, compute the product of

those three volumes and multiply by six; this is the probability

that three points chosen at randomto be the defining points of a

memorylocation will lie one in each of those three

intersections. The sumof all of these products is approximately

proportional to the expected numberof memorylocations in the

access overlap. This computation would be subject to the same

sources of error as the methodused above for Model 2.

The advantage of this alternative design, a reduced access

overlap for images that have somepieces in common,maybe

partially realized in Model 2 by choosing the three random

defining points for a memorylocation so that they are unlikely

to be very close to one another. This would increase the

likelihood that the defining points of a memorylocation

activated by an image would be near distinct pieces of the image.

(However, in this case we could not do a simple simulation like

the one above, because there would not be a simple way to

estimate the size of the access overlap.)

If information about the "critical points" in an image is

added to the representation, as described in Jaeckel (1989a), p.

48-52, then, in either of the SDMimplementations above, the

definition of the address space would have to be changed to

correspond to this enhancedrepresentation. Also, the rules for

defining and activating the memorylocations would have to be

changed so that the set of memorylocations activated by an image

would depend on both the piece information and the critical point

46

information.

For the Model 1 implementation, we can choose a set of

lattice points in C, the set of all possible critical points, say

about 1000 of them, and add that many bit positions onto the

9072-bit vectors used to encode the pieces of an image. We must

also define an appropriate distance function for points in C.

Then, to encode the critical points of an image, we assign a 1 to

every bit corresponding to a lattice point that is within some

distance R of one or more of the points in C representing the

critical points. The addresses and the activation rules for the

memory locations would then be defined in terms of these very

long binary vectors.

For the Model 2 implementation, we can define memory

locations by choosing defining points from both M+ and C (or an

expanded version of C). For example, one or two defining points

could be chosen fromM +, and two or one from C, for a total of

three defining points for each memory location. The bit strings

to be stored in the counters for the memory locations would be

lengthened to create several blocks of bits for critical points,

which would be encoded in a manner similar to that used for the

pieces of the images. If we represent critical points by the

method described in Jaeckel (1989a), p. 50-51, we could use six

bits for each coordinate of the position of a critical point, and

24 bits for the set of directions in which segments or arcs

radiate away from the point, for a total of 36 bits per critical

point. As _ith'the pieces, the encoded critical points can be

stored in any of the blocks, as long as similar instances of a

47

character are stored in the sameway.

The defining points for the memory locations in Model 2

could be chosen from a non-uniform probability distribution,

perhaps based on the training data, as was suggested above for

Model 1. Also, the memory locations in Model 2 could be based on

different numbers of defining points. Another possibility is to

activate a memory location if the sum, or some other function, of

the distances from each defining point to the piece of the image

nearest to it is less than some value, which would depend on the

number of pieces. The pieces matched to the defining points

might or might not be required to be distinct. Any of these

design variations could be tried _ith the uniform metric, since

the "spheres" would then be boxes, and it would be easy to

compute the volumes of their intersections. There are other

metrics that could also be tried.

More ambitious experiments could be done, using any of these

methods. For example, the training set could contain several

similar instances of each character, or pattern to be recognized,

instead of one. In that case the result of a read operation

might be a kind of average of the stored instances of the

character. The capacity and the resolution of the memory under

various conditions could be studied. Various methods of

retraining the memory to improve its response could be tried. To

obtain more accurate results, a more realistic simulation should

be used. Finally, methods of representing and encoding broader

classes of images -- in particular, methods that capture more of

the information in the images --need to be developed.

48

APPENDIX: THE VOLUMEOF THE INTERSECTION OF TWOSPHERES

In order to estimate the size of the access overlap for

Model 2, I needed to compute the volume of the intersection of

two five-dimensional spheres. I will now derive a general

formula for the volume of the intersection of two n-dimensional

spheres.

By _-dimensioaaI sphere I mean a sphere in n-dimensional

Euclidean space, including its interior; the volume of such a

sphere means the n-dimensional volume of its interior. The

volume of an n-dimensional sphere of radius r is vnrn , where

Vn is the volume of a sphere of unit radius. I will derive a

formula for Vn below.

Suppose we have two n-dimensional spheres, the first with

radius r and the second with radius s, and suppose the

distance between their centers is d. This information

determines the shape of their intersection. Note first that if

r + s g d, the spheres are disjoint (or have one point in

common), and if d + s < r or d + r < s, one sphere lies

entirely within the other. So ue may assume that Ir - s t < d <

r + s, in which case the surfaces of the spheres intersect.

In order to have a clear picture, suppose that the center of

the sphere of radius r is at the origin, that the center of the

sphere of radius s is at the point d on the positive

il-axis , and that r _ s. Choose any point in the intersection

of the surfaces of the two spheres. Let x 1 be its first

coordinate, and let h be its distance from the il-axis. We

49

then have

x12 + h 2 : r 2

Solving for Xl, we find:

and (d - x I)2 + h 2 = s _

d2 + r 2 - S 2

Xl = 2d

Note that x 1 is the same for all such points. Therefore

the intersection of the surfaces of the two spheres lies in a

hyperplane orthogonal to the line of centers, whose distance from

the center of the r-sphere is x 1. The distance of the

hyperplane from the center of the s-sphere is

d 2 _ r 2 + s 2
d - x 1 - 2d

The intersection of the spheres can now be divided at this

hyperplane into two parts: a segment of the r-sphere to the

right of the hyperplane, and a segment of the s-sphere to the

left of it. So, to find the volume of the intersection, I will

compute the volume of each segment separately, and then add them.

I will now find the volume of the part of the r-sphere to

the right of the hyperplane. If for any x on the Xl-axis

between x 1 and r, we slice through the sphere with a

hyperplane orthogonal to the Xl-axis at x, the cross-section we

find is an (n-1)-dimensional sphere _ith radius _ r 2 - x 2 Its

volume is Vn_ 1 times the (n-l) st po_er of the radius. We can

therefore integrate to find the volume of this segment of the

r-sphere:

r

Volume = f

x 1

Vn_ 1 (r _ - x_) (n-l)/2 dx .

5O

If n is odd, we see that the integrand is a polynomial, so

the integral can be evaluated easily, at least for small n. For

the case n = 5, which is used in the program described above, I

will transform the integral somewhat: Let t = r - x, the

distance from the surface of the sphere to x. Then the volume

of the segment becomes

f0tl [r2 (r)2]5V4 - - t dt

_0 tl += V4 (4r 2t 2 - 4rt 3 t 4) dt

= V4 t13"{_r2- rtl +½t121 ,

where t 1 = r - x 1. A similar computation is done for the

segment of the other sphere.

For the generalcase, if we let x = r cos 8, then dx =

-r sin 8d8 and r 2 - x2 = r 2 sin s 8, and the integral becomes

fO 1 sin n 0 dO
r n

Vn- 1

where O1 = cos-l(xl/r). This integral can be evaluated by using

a standard recursion formula that reduces the power of the sine

by two.

I will use this integral to derive a formula for Vn. Let

r = 1, and let g 1 = _, which corresponds to x 1 = O. Then the

integral is the volume of half of an n-dimensional unit sphere:

51

T

, foVn = Vn_1 sin n 8d8 .

Since this last integral may be found in a table of integrals,

and is equal to

we have

Vn-
We can now show by induction that

Tn/2

Vn = r[_ + 11

It is easy to see directly that Yl = 2 and V2 = _' and that

these values agree with this formula. The following equation

shows that if we assume that the formula is true for

it is true for n:

,(n-l)/2 r{_+ ½1= n/2

Therefore it is true for all n.

V3 = _, V4 = _- = 4.934802, and

n - 1, then

It follows that

= 5.263789. These last two values are used by the program.

52

REFERENCES

Flynn, M. J., Kanerva, P., Ahanin, B., Bhadkamkar, N.,
Flaherty, P., k Hickey, P. (1988). Sparse Distributed Memory
Prototype: Principles of Operation. Technical Report
CSL-TR-87-338, Computer Systems Laboratory, Stanford University.

Hinton, G. (1981). Shape Representation in Parallel Systems.
In Proceedings of IJCAI 198I, p. 1088-1096.

Jaeckel, L. A. (1989a). Some Methods of Encoding Simple
Visual Images for Use with a Sparse Distributed Memory, with
Applications to Character Recognition. RIACS Technical Report
89.29.

Jaeckel, L. A. (1989b). An Alternative Design for a Sparse
Distributed Memory. RIACS Technical Report 89.28 (submitted for
publication to I£££ Transactions).

Jaeckel, L. A. (1989c). A Class of Designs for a Sparse
Distributed Memory. RIACS Technical Report 89.30.

Joglekar, U. (1989). Learning to Read Aloud: A Neural
Network Approach Using Sparse Distributed Memory RIACS Technical
Report 89.27.

Kahan, S., T. Pavlidis, and H. S. Baird (1987). On the
Recognition of Printed Characters of Any Font and Size. I££E
Transactions on Pattern Analysis and Machine Intelligence,
PAM-9, 274-288.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press,
Cambridge, Mass.

Kanerva, P. (1989). A Cerebellar-Model Associative Memory as
a Generalized Random-Access Memory. In Proceedings of IEEE
CgMPCgN 89. IEEE'Computer Society Press, Washington, D. C.

Keeler, J. D. (1988). Comparison Between Kanerva's SDM and
Hopfield-type Neural Networks. Cognitive Science, I2, 299-329.

53

!
!

_)
!

!

-_ - ° j"

/

Figure I: The training set.

The twenty characters assumed to be written to the memory. The
tick marks (which do not appear in the actual images) show the
points where the curves were divided into arcs.

54

Figure 2. The system was able to correctly recognize each of
these characters with one read operation. For a few of them,

response was improved by iterating.

the

55

I

q

Figure 3. The system could not recognize these characters with
one read operation. A few of them were recognized after
iterating.

