Research Institute for Advanced Computer Science
NASA Ames Research Center

N ~E/
/306627

Evolutionary Tree Reconstruction ¢ ¥

Peter Cheeseman and Bob Kanefsky

March 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 90.27

NASA Cooperative Agreement Number NCC2-387

{MASA-(2-1383862) TVOLUTIONARY TRFEE N?1-32316
RECTNSTPUCTIGN (Research Inst. for Advanced
Computoer Scisnce) A D CSLL 098

unclas

G3/c1 0043062

Evolutionary Tree Reconstruction

Peter Cheeseman and Bob Kanefsky
Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5
Moffett Field, CA 94035
RIACS Technical Report 90.27

March 1990

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National
Acronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

Evolutionary Tree Reconstruction

and

Peter Cheeseman (RIACS)

Bob Kanefsky (Sterling Software)

Address: NASA Ames Research Center, Mail Stop 244-17, Moffett Field, CA 94035
Email: CheesemanQPluto.ARC.NASA.gov and KanefQCharon.ARC.NASA.gov

Abstract

This paper describes how Minimum Description Length
(MDL) can be applied to the problem of DNA and pro-
tein evolutionary tree reconstruction. If there is a set of
mutations that transform a common ancestor into a set
of the known sequences, and this description is shorter
than the information to encode the known sequences di-
rectly, then strong evidence for an evolutionary relation-
ship has been found. We describe a heuristic algorithm
that searches for the simplest tree (smallest MDL) that
finds close to optimal trees on our test data. Various
ways of extending the MDL theory to more complex evo-
lutionary relationships are discussed.

Introduction

A major challenge for the 90’s will be making sense
of the flood of data generated by the Human Genome
project. If we know the evolutionary history of genes, we
can often make strong predictions about their function,
by comparison with other more distantly related genes
whose function we do know. Such sequence comparisons
are routinely performed for newly sequenced genes us-
ing existing gene databases (e.g. GenBank), and many
interesting, unexpected relationships have been discov-
ered. In addition to using evolutionary relationships
to predict the function of genes, evolutionary tree re-
construction is of interest in its own right, as it often
shows relationships between species that cannot be re-
constructed from the fossil record alone. Also, evolu-
tionary information provides useful information about
protein 3-D structure, because proteins whose structure
is known can give structural information about related
proteins. We present a MDL approach to evolutionary
tree reconstruction below.

Basic Theory

The problem addressed in this paper is: “Given a set
of known DNA sequences, find the most probable evolu-
tionary tree (or trees) that relates these sequences”. A
simple example of an evolutionary tree is shown in Fig. 1,
where the known sequences are shown on the bottom
row, and all other sequences are hypothetical reconstruc-

tions of ancestors. The length of a branch from parent to
child sequence is proportional to time since divergence.
The mutations that change a parent into the correspond-
ing child sequence are shown on the connecting branches.
A tree, such as Fig. 1, is a possible evolutionary model

ge T Q- CA
141

wem —{EmeE}—

y Qs C
TAGACATG A
g~ 1
-t
£ Aaa R et

- AT

Xa

st 52 53 54 53
[Taccata lﬁurmu [(argarcaca J[carcaca [easarac |

Figure 1: A Simple Evolutionary Tree

that “explains® how the known sequences (on the bottom
row) were created. However, there are many possible
trees, all having the same terminal sequences; so which
tree (or set of trees) should be preferred over another?
Intuitively, the “simplest” tree seems the most plausible,
and this intuition has lead to the “parsimony” approach
to evolutionary tree reconstruction {2]. The usual defini-
tion of parsiminoy is unable to account for more complex
evolutionary models, such as unequal rates of mutation
on paralle]l branches, and so in some cases asymptotically
approaches the wrong answer as more data is provided
[2). The MDL approach described below captures the
basic intuition behind the parsimony approach, but de-
fines “parsimony” in terms of probabilities.

Although Fig. 1 relates all the known sequences
through a single tree, we consider the general problem
to include reconstructing multiple trees that jointly "ex-
plain” the sequence data. That is, we are not assuming
that all sequences had a common ancestor at some time
in the past, although our example will be developed un-
der this assumption. For a set of related proteins, a
graph (instead of a tree} is sometimes the correct repre-
sentation of the evolutionary events®.

1Sometimes a protein evolves {rom » combination of parts of

MDL Formulation of Problem

By Bayes Theorem, the relative posterior probability ra-
tio of two different trees T; and T given a set of known
sequences S is:

p(T]S) _ p(T)p(S|Ti) (1)
p(T;1S) ~ p(Ty)p(S1Ty)

By taking logarithms of this equation and negating we
get:

—logp(T;|S) — (— log p(T;|5) =
~logp(Tz) — (— log p(T}))
—logp(S|T:) — (—logp(S|Tj) (2)

From information theory, —logp; is the minimum pos-
sible message length to encode the ith outcome if this
outcome had probability p;. If the base of the logarithm
is 2, then the message length is in bits. It is clear from
Eqn. (2) that the particular tree T; with the maximum
posterior probability relative to any other tree T} is also
the tree with the shortest relative encoding (MDL). For
each tree T}, the MDL consists of two parts: a part to
describe the model selected (T;) and a part to describe
the data given the model. To apply Eqn. (2) we need
the prior probabilities of trees, p(Tk), and the likelihood
function, p(S|Tk). Note in the following, a tree T refers
to the hypothetical construct only and does not include
the known sequences S Also, we only calculate the length
of the theoretical minimum message; we do not actually
do the encoding.

Tree Prior Probabilities

If the user has prior information about the target evo-
lutionary tree, such as from foesil evidence, then this
can be used directly in Eqn. (2), but this information is
rarely available. A common evolutionary assumption is
that the probability of a mutational event or branching
event occurring per unit time is independent of the abso-
lute time. These independence assumptions imply that
the probability of a sub-tree is independent of the events
in the super tree and only depends on the immediate
parent and the time since divergence from the parent.
Symbolically, these independences can be expressed as:

p(Tree) = p(Root)

p(#branches)p(Subtree, |Root) - - - p(Subtreen |Root)

where the probabilities p(Subtree; | Root) are recursively
defined by a similar decomposition in which a subtree

existing proteins (domains), and so can have multiple parents.

only depends on its immediate parent. This recursion
stops when a subtree has only known terminal sequences
for children. Taking Logarithms of this equation, includ-
ing the recursive expansion of the subtrees, leads to a
simple additive form for —log p(7;). This additive form
corresponds to a recursive coding scheme, where all im-
mediate children are described as the result of a partic-
ular set of mutations of the parent. Since the root does
not have a parent, it must be described separately. The
leaf nodes are not regarded as part of the tree T;. How-
ever, the definition of the conditional probability of a
child given its parent is the same everywhere in the tree,
including the leaf nodes. Because of the information the-
oretic interpretation of Bayes theorem, we believe that
choosing a coding scheme is equivalent to accepting par-
ticular prior probabilities (and vice versa).

Sequence Probabilities

Except for the root, which is coded directly, the infor-
mation required to describe all other nodes in the tree is
reduced by describing each child given its parent. This
reduced encoding uses the conditional probability of a
child sequence given (a) its parent, (b) a set of muta-
tions that transform the parent into the child and {¢) a
time difference between parent and child, i.e.

P(Schild | Sparent, mutations , time difference). (3)

This requires finding the most probable set of mutational
events that could have transformed the parent into the
child, or at least a very probable set. For example, in
Fig. 1, two alternative sets of mutation between P2 and
S4 are given—many more are possible. We note that
the tree building procedure described by in (2] finds the
maximum likelihood tree topology and branch lengths.
It does not infer particular ancestral sequences, but av-
erages over all possible ancestral sequences. This ap-
proach is answering a different question than the one
addressed here, and it has difficulty taking into account
insertions and deletions. Methods we use for finding the
most probable mutation events and time differences are
described below, but here we assume they are known.
There are three types of time dependent mutations that
transform the parent sequence into the corresponding
child sequence; point mutations, insertions and dele-
tions. Our coding scheme for a sequence transformation
is as follows..

1. Deletions. At each letter? in the parent string,
we state whether it is the beginning of a deleted

3We will use the term “letter” to refer to either nucleic scids
or or amino acids, as appropriate.

string or not. Thus, if there are 300 letters in the
parent, we encode up to 300 Yes or No messages.
Since deletions are rare, each No message is typi-
cally a small fraction of a bit; its length is given by
—log|1 — pau(t)], while a longer Yes message has
length — log paei(t) bits. The Yes and No messages
resume from the next letter that was not deleted.
Whenever a deletion event occurs, the length of
the deletion (beginning at the current letter) is de-
scribed, using — log p(n) bits, where n is the length
of the deletion. The ¢ parameter is the number of
time units between parent and child. Note that we
are assuming that deletion length probabilities are
independent of time.

2. Point mutations. For each letter we give & mes-
sage describing the fate of that letter of length
—log p(new | old), where we use the fact that the
probability that a particular base or residue will
turn into another depends on what it was before.
For example, a purine base is about twice as likely
to turn into another purine (i.e. A — G) than it
is to a pyramidine (e.g. A — (T or C)). An ex-
ample change probability matrix is shown in Fig. 2.
This coding scheme makes the simplifying assump-
tion that the probability of a point mutation does
not depend on its neighboring bases or residues or
its location in the sequence. Both these assumptions
are biologically incorrect. For example, a C followed
by a G is much more likely to be transformed into
a T than a C followed by A Cor T (CpG decay).
Similarly, in coding DNA, silent third position bases
have a much higher point mutation rate than non-
redundant positions.

3. Insertions. These are encoded much the same way
as we encode deletions. If the parent is 300 letters
long, we encode exactly 301 Yes and No messages.
This time, in addition to its position and length,
we must describe the letters in each inserted string.
Each inserted letter is described in — log p; bits.

The encoding method described above is similar to
describing a set of “edit commands® that transform the
parent into the child sequence. However, instead of com-
mands, such as: "skip the next 20 letters”, we prefer to
use the probabilities of different mutations at each posi-
tion in the sequence. The use of biologically meaningful
mutation probabilities allows learning to take place dur-
ing tree reconstruction. The above coding procedure al-
Jows the message length (—log p(T;)) of a tree to be cal-
culated provided all the probabilities mentioned above
are known. The known sequences at the leaf nodes are
not encoded in the tree description, since they are im-
plied by it.

Time-Dependent Probabilities

For a particular letter, the probability that it will un-
dergo a point mutation is a function of the time be-
tween the parent and the child. For a given number of
stime units®, these point mutation probabilities can be
deduced from the unit-time transition matrix. An ex-
ample of a unit time matrix for DNA is:

| A C G T
99 | .0025 | .005 | .0025
0025 | .99 | 0025 | .005
005 | .0025 | .09 | .0025
79025 | .006 | .0025 | .99

3| Q| O »

Figure 2: Point Mutation Probability Matrix

To obtain the point mutation probability for n time
units, this matrix is raised to the power n. The unit
time matrix is chosen so that the probability of a point
mutation in one time unit is .0L. Even after 25 time
units, the probability of a base remaining unaltered is
778, so that multiple mutation events at the same lo-
cation are unlikely even for this large time difference.
Note that we have quantised time, so that the informa-
tion required to describe the time between a child and its
parent is small (— log p(t)). The message length clearly
depends on the quantisation level selected, so for a given
tree there is an optimal quantisation level. For simplic-
ity, we assume that the time in which 1 PAM (1% point
mutation rate) occurs is adequate. An improved version
would dynamically optimise this parameter during tree
building.

Probability of Known Sequences

The probability of all the known sequences, p(S|T) in
equation (1), is given by:

p(SIT:) = HP(S,-l Immediate parent of S;); (4)
J

where S; isa particular known sequence. The individual
probabilities in Eqn. (4) are coded the same way as any
other child given its parent, as described above.

Dynamic Probability Learning

If all the component probabilities required above are
known from past experience, then these can be used di-

rectly, with no need for learning. However, past experi-
ence usually only provides rough prior probabilities that

can be used as initial values. As the treeis built, further
information becomes available from the frequencies of
types of mutation events in the current tree. To exploit
this additional information, we compute our tree MDL
serially, and update the probabilities for the rest of the
tree, using information from the tree encoded so far. We
use the standard Bayesian probability update formula,
illustrated here for the probability of a deletion:

Ndel + Tdel
N+R)

where ng. is the observed pumber of deletions encoun-
tered so far, N is the total number of letters (deletion
or not), rye is a prior weight for deletions and R is the
total prior weight. The situation for updating point mu-
tation probabilities is not as simple, because the muta-
tions typically occur after a number of time stepe, while
the transition probability matrix is defined for a single
time step. We solve this problem by arbitrarily assigning
a given point mutation to a single time step and all the
other time steps count as no mutation. This approxima-
tion depends on the probability of alternative multiple
mutations with the same end result being very unlikely.

We have now described how to compute the compo-
nent probabilities in Eqn. (2), so that relative MDL,
can be found. We use this relative MDL to search for
the lowest MDL tree, as described below.

Py =

Sequence Alignment

The problem of finding the most probable mutation list,
given a parent and a child sequence, is the standard pair-
wise sequence alignment problem. An alignment algo-
rithm typically uses a “penalty function”® that assigns a
penalty to any proposed mutational events—the goal is
to find the alignment with the minimum penalty. In the
MDL approach, these penalties turn out to be mutation
probabilities in disguise. There are many alignment algo-
rithms in use. Generally, their performance depends on
how well the user adjusts the penalties. We have imple-
mented an MDL based alignment algorithm in LISP that
uses given probabilities. This allows it to use knowledge
of the estimated time difference between a parent and
child, and to adjust itself to the dynamically changing
posterior probabilities for different types of mutations.
It is very similar in theory and practice to the indepen-
dently conceived procedure described by [1].

The Tree Building Procedure

The previous sections describe a MDL measure for decid-
ing which of two alternative trees is more probable. This
suggests an iterative improvement procedure for finding

an optimal tree—start with a tree that is approximately
right, then look for local improvements of the MDL mea-
sure. The obvious way of constructing a good initial tree
is to build an initial (n x n) “distance matrix® based on
the MDL alignment values, then build the tree bottom-
up. Unfortunately, the cost of constructing the distance
matrix can be prohibitive—especially as the alignment
algorithm will spend a lot of time producing alignments
of very distantly related sequences that never get used
by the tree building procedure. To reduce this cost, we
have implemented a heuristic initial tree building proce-
dure. Instead of using an alignment algorithm to pro-
duce distances between sequences, we use a combination
of approximate measures that correlate with evolution-
ary distance. The best measures between sequences we
found, in order of increasing accuracy, are:

o Length Ratio—sequences that are close evolution-
arily tend to be about the same length, because in-
sertions and deletions are rare.

e Longest common subsequence—since close se-
quences have fewer mutations, this estimator cor-
relates negatively with distance.

o Squared difference of uncommon
hexamer densities—where a hexamer is a string of
six letters. This estimator works because in closely
related sequences the probability that short uncom-
mon substrings are unaltered is high.

All these heuristic estimators are cheap to compute com-
pu'ed't.o a full alignment. The initial tree building proce-
dure builds a binary tree from the bottom up by adding
each new node into the tree at the place that minimises
the total squared error of the combined estimators for
that node, i.e. it finds the height h and the place in
the current tree to imsert a mew parent of the current
sequence so that the following measure is minimized:

M= (mf —h)? ()

k=1 i (ax)?

where k is the measure index, ¢ is an index ranging over
all sequences in the current tree, mY is the kth heuris-
tic measure between the current sequence and the sth
sequence, and ok is the standard deviation of the kth
measure. Because the positioning of the early members
of the heuristic tree did not have the benefit of the con-
straining influence of the later nodes, existing nodes are
re-added, until the tree does not change. This heuristic
approach builds remarkably accurate initial trees on our
test data. Part of the reason for this accuracy is that
the tree is the result of forcing many independent pieces

of evidence into a consistent tree, so statistical averag-
ing compensates for the crudeness of the heuristics. The
initial tree is used to guide which sequences to align, and
where to put new ancestors in a bottom-up MDL tree
construction.

Unfortunately, this bottom-up tree building procedure
does not construct optimal trees by the MDL criterion.
The reason is that in bottom-up tree construction there
is a degree of arbitrariness in how to assign insertions
and deletions to a new parent. However, once a tree
is constructed, we use a set of optimisation operations
to improve it. For example, whenever common dele-
tions or insertions are detected on neighboring branches,
we can change the parent to eliminate them. In all
these local optimisation steps, the criterion is always
“Joes the proposed change lower the MDL?". This op-
portunistic local optimisation procedure runs until it
is unable to find further improvements. The resulting
tree is not guaranteed to be the globally optimal MDL;
but on artificial data where we know the “correct” an-
swer, we found that this procedure gets close. Typi-
cally, our current implementation gets to within 20% of
the MDL of the true tree, and does a fairly good job of
placing related sequences together. Preliminary results
on a real DNA dataset, containing 126 human ala se-
quences, yields a slightly smaller description-length than
a multiple-alignment based on a “consensus sequence”.
Our description is still somewhat worse than the four-
level hierarchy proposed by Smith and Jurka (3|, becuse
our optimisation operations are still too simplistic.

Extended Theory

We made a number of simplifying assumptions in the tree
building procedure described above in order to produce
a working realistic program. The theory can be extended
to remove many of these assumptions, although the effect
of such changes on the search procedure may not be sim-
ple. The simplest extension is to allow the probabilities
of point mutations to depend on such additional factors
as neighboring letters, position in sequence, whether the
sequence is a (RNA) coding sequence or not, different
point mutation probability matrices (e.g. Fig. 2) on dif-
ferent branches, etc. In MDL approach, the question to
be answered is whether the additional information re-
quired to describe these extra probabilities is paid for in
improved predictive power. This question is answered by
seeing if the additional probabilities do indeed produce
lower MDL than without the additional probabilities.
Extending the tree building to allow for multiple par-
ents (a graph) is more challenging because the search
combinatorics are greater. Constructing a MDL that re-

flects the fact that some proteins evolved by combining
domains from very different parent proteins is simple in
principle. The code must state which parts came from
which parents and how they are ordered, in addition to
the usual mutation events. A successful graph building
program must rely on efficient methods for identifying
potential building blocks (domains).

Proteins provide a more interesting possibility for
MDL—predicting secondary or higher structure from se-
quence information and information from proteins whose
structure has been determined. The basic idea is that for
proteins, instead if just hypothesising particular ances-
tor sequences, these sequences are segmented into typed
regions, such as a-helix, f-turn, etc. From a MDL per-
spective, the question is *is the information required to
describe these typed regions paid for by the informa-
tion required to describe the sequence data given the re-
gions?”. For example, the statistics of particular amino
acids at particular locations in a type of f-turn could
provide a reduced encoding. If some proteins in a par-
ticular tree have known structure, then this greatly en-
hances the certainty of inferred ancestral structure, since
secondary structure is strongly conserved.

Summary

This paper has described the basic theory of MDL ap-
plied to the problem of evolutionary tree reconstruction
from sequence data. Also, a particular search method for
finding MDL trees was outlined. This heuristic search
procedure finds a tree as close as possible to the “true”
tree, but is unlikely to find the globally optimal tree. Ex-
periments with the algorithm on test data showed that
it captures all the broad families in the true tree, and
has & message length close to the optimum. These ex-
periments are just the first step in applying MDL to the
problem of evolutionary reconstruction, and various ex-
tensions to the theory are readily adapted to this MDL
framework.

References

[1)Allison, Wallace and Yee, “Inductive Inference over
Macrommolecules”, in these proceedings.

[2]Felsenstein, J,
“Phylogenies from molecular sequences: Inference and
reliability”. Annu. Rev. Genet. 1988, Vol. 22, pp. 512-
565.

[3]Jersy J. and Smith T., *A fundamental divi-
sion in the Alu family of repeated sequences.”
Proc. Natl. Acad. Sci. USA, Vol. 85, pp. 4775-4778, July
1988.

