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[571 ABSTRACT 
This is a recurrent or feedforward analog neural net- 
work processor having a multi-level neuron array and a 
synaptic matrix for storing weighted analog values of 
synaptic connection strengths which is characterized by 
temporarily changing one connection strength at a time 
to determine its effect on system output relative to the 
desired target. That connection strength is then ad- 
justed based on the effect, whereby the processor is 
taught the correct response to training examples con- 
nection by connection. 
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of error from the plurality of learning rule processor 
means at input thereof and for providing a summation 
thereof at an output; scaling means for receiving the 
summation from the summing amplifier means at an 

5 input thereof and for providing the summation scaled 
by a pre-established learning rate factor at an Output; 
update generator means for receiving a scaled summa- 
tion from the scaling means at an input thereof and for 
generating a voltage signal required to change the con- 

10 ductance of a synapse and applying the voltage signal to 
the weighting factor update conductor; and, digital 
events sequencer means having a CLOCK input thereto 
for causing the sequencer means to repeatedly sequence 
through a plurality of learning steps, the digital events 

ANALOG HARDWARE FOR LEARNING NEURAL 
NETWORKS 

ORIGIN ON THE INVENTION 
The invention described herein was made in the per- 

formance of work under a NASA contract, and is sub- 
ject to the provisions of Public Law 96-517 (35 USc 
202) in which the Contractor has elected not to retain 
title. 

TECHNICAL FIELD 
The invention relates to computer architectures and, 

more Particularly, to a neural network Processor caps- 

~~-~aximum speed of operation comprising, a Plurality of 
input neurons each having an input for receiving a volt- 

ble of fully-parallel analog implementation of both sin- 15 sequencer means including logic means for updating 
gle-attraCtOr and multiple-attractor configurations with each synapse in turn by enabling its switch, changing 

the conductance value of the synapse slightly, evaluat- 
ing the effect of that slight change On an output of the 

age stimulus and an output for outputting a voltage synapse, and causing the plurality of learning rule pro- 
Output; a plurality of Output neurons each having an *’ cessor means to implement the learning rule to deter- 
input for receiving a voltage input and an output for mine a final change in that the synapse’s conductance. 
outputting a voltage output; a synaptic array compris- 
ing a plurality of synapses connecting the output of 

respective ones of the output neurons, each of the syn- 25 proach to information processing that is inherently 

determining the conductance therethrough and means problems (e.g. image or speech recognition), and ex- for changing the weighting factor including a weighting tremely fast. To realize its full potential for high-speed factor changing input; a weighting factor update con- 
ductor disposed throughout the synaptic array; a plural- 3 0  processingy 

BACKGROUNDART 
respective Ones Of the input to the input Of Neural network systems promise a totally new ap- 

apses having a weighting factor associated therewith fau1t-tolerant, suited to fuzzy and ill-posed 

a network must be 
ity of individually addressable switches connected be- merited in parallel hardware. Furthermore* the 
tween the weighting factor changing input of respective majority of applications require that a neura1 network 
Ones of the synapses and the weighting factor update be capable of learning from example and generalizing 
conductor; and, learning controller means connected to the learned examples to new input values. This is neces- 
the switches and the weighting factor update conductor 35 sary in situations where the relationship between input 
for enabling selected ones of the switches to connect the and output is difficult to ascertain explicitly Or changes 
weighting factor changing input of the associated syn- with time. This, Of course, iS a major point Of difference 
apse to the weighting factor update conductor and for between the implementation of problems on digital 
simultaneously applying a weighting factor update volt- computers and their implementation in a neural net- 
age value to the weighting factor update conductor. 40 work. The digital computer is merely an automaton 

In the preferred embodiment, the learning controller which can perform a sequence of precisely defined steps 
means includes logic for updating each synapse in turn 0.e. a computer program) on data. Any data which does 
by enabling its switch, changing the conductance value not conform to the definition of the problem as con- 
of the synapse slightly, evaluating the effect of that tained in the programming produces an error state. A 
slight change on an output of the synapse, and imple- 45 neural network, on the other hand, has the problem 
menting a learning rule to determine a final change in loosely defined by the logic of the synapses. The 
that synapse’s conductance. weighting factors associated with the various synapses 

In one exemplary implementation, the learning rule are adjusted as part of a repetitive process wherein sets 
implements the change in the conductance value Aw as: of input values are input to the network, the outputs 

5 0  from the network are compared to known results for 
the inputs, and the weighting factors adjusted until the 
correct answers are produced for all the inputs. In this 
way, the network “learns” how to solve the problem 
under any input conditions. Interesting descriptions of 

where 7 is a previously-established learning rate, O+ 55 Prior art techniques and apparatus of the neural net- 
and 0- are the i‘houtput neuron results before and after work variety can be found in the very recently issued 
the temporary synapse conductance modification, t is an patents of Faggin et al. (U.S.  Pat. No. 4,773,024 (SeP- 
irh target value, and “sign” is the direction in which the tember 1988) and U.S. Pat. NO. 4,802,103 (January 
i‘h output changes with respect to the i‘h target. 1989). The teachings of the now-expired patent of Yo- 

The preferred learning controller means comprises, a 60 shino (U.S.  Pat. NO. 3,601,811) are also relevant to the 
plurality of learning rule processor means connected to problem as applied to f ~ ~ ~ - r u n n e r s  of neural networks, 
the output of respective ones of the output neurons for i.e. discrete component analog computer “learning ma- 
determining a component of error reduction or increase chines”. 
due to each output neuron’s variation in response to a Standard learning algorithms used for “teaching” 
voltage stimulus applied to the input of the input neu- 65 neural networks, such as backpropagation, can be dem- 
rons and a temporary synapse conductance modifica- onstrated for simple cases in simulation with ease but 
tion according to a learning rule implemented thereby; are extremely difficult to implement in hardware, par- 
summing amplifier means for receiving the component ticularly for more than trivial problems. Analog systems 

M 
A w  = 9 1=0 ,I sign, lo,+ - ol-l IoI+ - f , l  
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exhibit non-ideal circuit behaviors that are not compen- 
sated by the learning algorithms; and, digital implemen- 
tations require prohibitive amounts of silicon real estate. 
It should be noted that many applications do not require 
that the learning phase of the network implementation 
and operation be time efficient, only the retrieval phase. 
Military applications would be a good example of such 
conditions. The time necessary to teach a neural net- 
work decision-making computer as part of the manufac- 
turing process is unimportant as compared to the real- 
time operation of the network under field conditions 
which will take place well in the future. Another good 
example is speech recognition wherein a machine em- 
ploying the neural network is trained from taped re- 
cordings of one or more speakers. For such cases 
(which represent the vast majority), the problem then is 
how to implement a learning neural network system in 
fully parallel analog hardware; that is, how best to im- 
plement the learning process without regard to the time 
involved in order to implement the neural network itself 
as fully parallel analog hardware in order to minimize 
the run-time time of computation. 

The standard method of training a learning network 
is to iteratively cycle through a training set. For each 
training set item, the prompt &e. the inputs) is applied 
to the network inputs, a data retrieval operation is per- 
formed, and the connection weights of the synapses are 
modified so that the network output approaches the 
target (desired) vector. Weights are only slightly ad- 
justed for each training set item as, otherwise, the sys- 
tem tends to “forget” information previously stored. 
Consequently, the learning phase of the prior art algo- 
rithms tends to require much computation. In some 
cases, literally millions of training iterations may be 
required to reduce errors to acceptable levels. 

In traditional learning algorithms, the difference be- 
tween the output of the network and the target for each 
prompt (Le. the error) is backpropagated through a 
complex distributed feedback system that serves to 
calculate the increment by which each weight in the 
system is modified. It is this complicated learning cir- 
cuitry which adds to the complexity of the network as 
mentioned earlier. In this regard, it should be mentioned 
that while it may be possible to perform the learning on 
a computer and then download the weights into the 
neural network hardware (and thereby eliminate the 
learning portion of the hardware), such an approach 
can only work if the learning program accurately simu- 
lates the actual hardware behavior. Again, in all but 
trivial cases, such a goal is virtually impossible to real- 
ize. The feedback system is difficult to implement reli- 
ably in analog hardware for two reasons. First, back- 
propagation circuit components non-idealities are not 
intrinsically compensated for by the design of the algo- 
rithm; thus, error signals are generated by component 
error. Second, the weights (i.e. conductance) values are 
required in the backpropagation as well as in the feed- 
forward portions of the algorithm. This latter factor is 
significant in some weighting circuit designs in which 
the weight circuit must be switched from one circuit 
configuration to another. In other words, in addition to 
the circuitry of the backpropagation algorithm which 
must be implemented as part of the neural network, 
there must be switching circuitry to switch commonly 
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used components between the feedforward portions of 65 
the network and the backpropagation portions of the 
circuit. As can be appreciated, such a requirement sim- 
ply adds to an already overly complex circuit design as 

4 
well as increasing the probability of component and 
operation introduced errors. 

STATEMENT OF THE INVENTION 
Accordingly, it is an object of this invention to pro- 

vide a replacement for traditional learning algorithms in 
neural networks which does not require backpropaga- 
tion through a complex distributed feedback system. 

It is another object of this invention to provide a 
replacement for traditional learning algorithms in neu- 
ral networks which allows the neural network to be 
implemented in fully parallel analog hardware. 

It is still another object of this invention to provide a 
replacement for traditional learning algorithms in neu- 
ral networks which allows the neural network to run at 
maximum speed at run-time at the sacrifice of learning 
time. 

Other objects and benefits of this invention will be- 
come apparent from the detailed description which 
follows hereinafter when taken in conjunction with the 
drawing figures which accompany it. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified drawing of the data retrieval 
network portion of a neural network according to the 
present invention. 

FIG. 2 is a simplified block diagram and drawing of 
the learning network portion of a neural network ac- 
cording to the present invention. 

FIG. 3 is a simplified block diagram of the learning 
controller employed in a neural network according to 
the present invention. 

FIG. 4 is a circuit drawing of an analog circuit for 
implementing a learning rule processor as can be em- 
ployed in the learning controller of FIG. 3 when em- 
ploying a learning rule as provided by way of example 
in the specification of the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Keeping in mind the basic philosophy of sacrificing 
learning time of speed at run-time, the learning system 
approach for a neural network implemented by the 
present invention is to update one weight at a time by 
slightly changing the weight and measuring the effect 
that the change has on the output. The weight is then 
permanently updated based on that change. If the out- 
put values approach the target values, the weight is 
updated in the direction of the slight change. If no 
change is noted in the output, or if the output is at the 
target, the weight is left at its original value. If the 
output diverges from the target, the weight is updated 
in the opposite direction or the small change. Several 
different rules for updating the weight based on the 
output and target values are possible. While the learning 
efficiency of this algorithm is poorer than that of the 
prior art backpropagation approach, it has several pro- 
found advantages over traditional algorithms. First, it is 
easily amenable to a hardware implementation, as will 
be described hereinafter. This results from the fact that 
the learning circuitry is separate from the data access 
circuitry; indeed, the data access scheme is irrelevant as 
far as the learning circuitry is concerned. Second, be- 
cause of the independence of the data access scheme, 
feedback (recurrent) neural network architectures can 
be implemented. Learning algorithms such as back- 
propagation require strictly feedforward architectures 
(i.e. no feed back in the data retrieval phase). They are 
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called single-attractor systems because outputs vary 
more or less continuously as inputs are varied continu- 
ously. Multiple-attractor systems, on the other hand, 
embody stable output states, such that the output tends 
to remain at one of these equilibrium points until the 
input varies enough to push the system to another stable 
state. Such stable states are created by the feedback 
connections of recurrent networks. Multiple-attractor 
systems are important in applications such as pattern 
recognition. To have the type of implementation of the 
neural network itself limited by the requirements of the 
circuitry needed to teach the network is a case of the 
tail wagging the dog. The approach of this invention 
does not suffer from imposing such needless constraints 
on system design. As will be seen, it is a unique learning 
system that is amenable to hardware implementation; 
and, its architecture can be programmed to implement 
either feedforward or recurrent networks. 

The hardware to implement a recurrent/feedforward 
learning network accbrding to the present invention 20 
consists of two systems-a data retrieval network and a 
learning network. A block diagram of the data retrieval 
network is shown in FIG. 1 where it is generally indi- 
cated as 10. The data retrieval network 10 is a modifica- 
tion of a standard Hopfield neural network configura- 25 
tion and consists of an array of processing elements 
called neurons 12 that are connected together by a 
two-dimensional array of programmable conductance 
elements called synapses 14. There are three kinds of 
neurons 12: input neurons 120, hidden neurons 126, and 
output neurons 12. Input neurons 120 serve to inject 
the prompt information into the network 10. Output 
neurons 12c serve to transmit results calculated by the 
network 10. All the other neurons 126 are called “hid- 
den” because it is not possible to ascertain their state 
from an examination of the system’s inputs and outputs. 
Note that it is possible for one neuron to be in input as 
well as an output neuron, and that the structure of the 
three neuron types may be different. 

In the most general case, synapses 14 connect all 
output neurons 12c to all input neurons 120 via the 
synaptic array. In this case, an N neuron system requires 
N2 synapses. Each synapse 14 allows the transmission of 
a percentage of the signal at the input of the synapse 14 
to pass to the output of the synapse 14. If no information 
is transmitted, the synapse 14 is defined to be “off’. If 
the synapse array is described by the conductance be- 
tween input and output, where an off neuron 12 has a 
conductance of zero, then it can be seen that a single- 
attractor, feedforward network is implemented by mak- 
ing the synapse matrix lower triangular, with zero diag- 
onal. In this case, no feedback is allowed in the system; 
all weights transmit information in a direction from 
input to output. This is equivalent to the feedforward 
configuration of the backpropagation algorithm. If the 
matrix is not lower-triangular, then the system has feed- 
back elements that can generate additional attractors. 

The structure of the neurons 12 employed in the 
present invention is standard. A summing amplifier 
combines the individual weighted signals from all syn- 
apses 14, and an activation function circuit is used to 
translate this signal. Not all neurons 12 necessarily use 
the activation function. For most learning algorithms to 
work, hidden neurons 126 (and possibly others) must 
have an activation function that is continuous and non- 
decreasing. The synapses 14 may be implemented in a 
number of ways, including, for example, the program- 
mable analog resistive devices presently under develop- 
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6 
ment at the Jet Propulsion Laboratory in Pasadena, 
California, digitally controlled quantized digital to ana- 
log conductance converters, or cooled capacitors com- 
bined with multipliers. 

A block diagram of the learning network of the pres- 
ent invention is shown in FIG. 2 where it is generally 
indicated as 16. Each synapse 14 has a third terminal 18 
for modifying its weight. This programming terminal 18 
is enabled by closure of the switch 20 connecting the 
synapse 14 to the update line 22. The learning controller 
24 consists of circuitry to update each synapse 14 in turn 
by enabling its programming switch 20 (via the row and 
column select lines 26, 28, respectively), changing the 
conductance value of the synapse slightly, and evaluat- 
ing the effect of that slight change on the output 30. A 
learning rule as also implemented within the learning 
controller 24 is then applied to determine the final 
change in that synapse’s conductance. It should be 
noted at this point that the manner and method of imple- 
menting the foregoing functional aspects of the learning 
controller 24 and the synapses 14 can be according to 
any of several well known to those skilled in the art 
without undue experimentation and, accordingly, in the 
interest of simplicity and the avoidance of redundancy, 
the particulars thereof are not addressed herein. 

A number of possible learning rules can be used by 
the learning controller 24 to perform the final synapse 
update. A rule that has been used successfully in simula- 
tions by the inventor herein is: 

where q is the learning rate, o+ and 0- are the ithoutput 
neuron results before and after the temporary synapse 
modification, t is the irh target value, and “sign” is the 
direction in which the irh output changes with respect to 
the ith target. This particular learning algorithm is quite 
simple and can be readily implemented in VLSI hard- 
ware. Note that the system is based on a “trial and 
error” paradigm-weights are updated to the extent 
that a slight change in weight (the trial) causes a useful 
change (error reduction) in the output. Thus, errors and 
malfunctions in the data retrieval network 10 are taken 
into account in calculating weight update values. It 
should also be noted that although a single-channel 
learning circuit is described herein, it is possible to use 
correlation techniques to update several synapses 14 in 
parallel. This can be done, for example, by applying a 
small amount of noise to perform the initial synapse 
variation, and correlating the noise with the output 
variation. 

A possible configuration for the learning controller 
24 is shown in FIG. 3. Connected to receive the results 
of each output neuron 12c is a learning rule processor 32 
which determines the component of error reduction or 
increase due to that neuron’s variation (Le. the calcula- 
tion following the summation in the above equation, for 
example). Individual error components are summed in 
the summing amplifier 34 and the result is scaled by the 
learning rate at 36. The update generator 38 is used to 
generate the actual signals required to change the 
weight of the synapses; the actual circuitry depending, 
of course, on the specific synaptic device used. The 
overall procedure for performing learning is under the 
control of a digital events sequencer 40 which is repeat- 
edly sequenced through its steps of operation as de- 
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scribed herein by a CLOCK input as indicated. After 
new training data is available at the network and target 
inputs, the sequencer 40 iteratively selects a synapse 14 
(via row and column enable signals on lines 26,28), and 
controls the initial and final weight change operations. 

A block diagram of a learning rule processor 32 that 
implements the learning rule given in the equation 
above is shown in FIG. 4. The component blocks 
thereof can be implemented readily in custom analog 
CMOS VLSI chips. The absolute value of the change in 
neuron output is calculated using a sample-and-hold 
capacitor 42 and switch 44, and an absolute value differ- 
encing circuit 46. The absolute value of the difference 
between target and output is calculated by a subtraction 
circuit 48 and an absolute value circuit 50. The latter 
subtraction result is also integrated and thresholded at 
52 to determine the direction of change of the neuron 
output (i.e. toward or away from the target). Multiplier 
circuits 54 are used to perform the actual multiplica- 
tions. 

In conclusion, neural networks that learn will play an 
important role in future systems that perform ill-defined 
functions such as pattern recognition and decision-mak- 
ing based on sketchy or noisy input data. Many applica- 
tions will require real-time data retrieval, which can 
only be achieved with a fully-parallel hardware imple- 
mentation of the neural network systems; yet wherein, 
the time required for learning often is not a critical 
factor. The learning system of this invention as de- 
scribed hereinbefore and in the drawing figures which 
accompany it may be used to implement a wide variety 
of applications that require either single-attractor or 
multiple-attractor neural network system; and, is emi- 
nently suitable for implementation in analog VLSI. 

Wherefore, having thus described my invention, 
what is claimed is: 

1. A neural network processor capable of fully-paral- 
le1 analog implementation of both single-attractor and 
multiple-attractor configurations with maximum speed 
of operation comprising: 

a) a plurality of input neurons each having an input 
for receiving a voltage stimulus and an output for 
outputting a voltage output; 

b) a plurality of output neurons each having an input 
for receiving a voltage input and an output for 
outputting a voltage output; 

c) a synaptic array comprising a plurality of synapses 
connecting said output of respective ones of said 

8 
voltage value to said weighting factor update con- 
ductor; and, 

wherein said learning controller means includes logic 
for updating each said synapse in turn by enabling a 

5 corresponding one of said individually addressable 
switches, making an initial change in the conductance 
value of said corresponding synapse, evaluating corre- 
sponding changes at outputs of said output neurons, and 
implementing therefrom a learning rule to determine a 

10 final change in said conductance of said corresponding 
synapse. 

2. The neural network processor of claim 1 wherein 
said learning rule determines said final change in the 
conductance value of said corresponding synapse as: 

15 

2o where Aw is the final change in the conductance value 
of said corresponding synapse, T is a previously-estab- 
lished learning rate, o+ and 0- are, respectively, values 
of the output of an i‘h one of said output neurons before 
and after said learning controller means makes said 

25 initial change, tiis a target value for the output of the ifh 
one of said output neurons, and “sign” is a direction in 
which the output of the ith output neuron changes with 
respect to ti. 

3. The neural network processor of claim 1 wherein 
said learning controller means comprises: 

a) a plurality of learning rule processor means con- 
nected to said output of respective ones of said 
output neurons for determining an error reduction 
or increase due to a change in the output of each of 
said output neurons in response to voltage stimuli 
applied to said inputs of said input neurons and said 
initial change in the conductance value of said 
corresponding synapse, according to a learning 
rule implemented thereby; 

b) summing amplifier means for receiving said com- 
ponent of error from said plurality of learning rule 
processor means at an input thereof and for provid- 
ing a summation thereof at an output; 

c) scaling means for receiving said summation from 
said summing amplifier means at an input thereof 
and for providing said summation scaled by a pre- 
established learning rate at an output thereof; 

d) update generator means for receiving a scaled 
summation from said scaling means at an input 

35 

45 

input neurons to said input of respective ones of 50 thereof and for generating a VokW signal required 
said output neurons, each of said synapses having a to change the conductance of a said synapse and 
weighting factor associated therewith determining applying said voltage signal to said weighting fac- 
a conductance value therethrough and means for tor update conductor; and, 
changing said weighting factor including a e) digital events sequencer means having a CLOCK 
weighting factor input; input thereto for causing said digital event se- 

d) a weighting factor update conductor disposed quencer means to repeatedly sequence through a 
throughout said synaptic array; plurality of learning steps. 

e) a plurality of individually addressable switches 4. The neural network processor of claim 3 wherein 
connected between =id weighting factor input of said learning rule determines said final change in the 
respective ones of said synapses and mid weighting 60 conductance value of said corresponding synapse as: 
factor update conductor; 

55 

f) learning controller means connected to said indi- M 
Au = 7 Z sign, lol+ - o,-l loI+ - I , /  

i=O vidually addressable switches and said weighting 
factor update conductor for enabling selected ones 
of said switches to connect said weighting factor 65 where Aw is the final change in the conductance value 
input of a corresponding one of said synapses to of said corresponding synapse, TJ is a previously-estab- 
said weighting factor update conductor and for lished learning rate, o+ and 0- are, respectively, values 
simultaneously applying a weighting factor update of the output of an i‘h one of said output neurons before 
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and after said learning controller means makes said 
initial change, tiis a target value for the output of the ith 
one of said output neurons, and “sign” is a direction in 
which the output of the ith output neuron changes with 
respect to ti. 

5. A neural network processor capable of fully-paral- 
le1 analog implementation of both single-attractor and 
multiple-attractor configurations with maximum speed 
of operation comprising: 

a) a data retrieval network portion comprising, 
al)  a plurality of input neurons each having an 

input for receiving a voltage stimulus and an 
output for outputting a voltage output, 

a2) a plurality of output neurons each having an 
input for receiving a voltage input and an output 
for outputting a voltage output, and 

a3) a synaptic array comprising a plurality of syn- 
apses connecting said output of respective ones 
of said input neurons to said input of respective 
ones of said output neurons, each of said synap- 
ses having a weighting factor associated there- 
with determining a conductance value there- 
through and means for changing said weighting 
factor including a weighting factor input; and, 

b) a learning network portion comprising, 
bl)  a weighting factor update conductor disposed 

throughout said synaptic array, 
b2) a plurality of individually addressable switches 

connected between said weighting factor input 
of respective ones of said synapses and said 
weighting factor update conductor, and 

b3) learning controller means connected to said 
individually addressable switches and said 
weighting factor update conductor for enabling 
selected ones of said individually addressable 
switches to connect said weighting factor input 
of a corresponding one of said synapses to said 
weighting factor update conductor and for si- 

l o  
7. The neural network processor of claim 5 wherein 

a) a plurality of learning rule processor means con- 
nected to said output of respective ones of said 
output neurons for determining an error reduction 
or increase due to a change in the output of each of 
said output neurons in response to voltage stimuli 
applied to said inputs of said input neurons and said 
initial change in the conductance value of said 
corresponding synapse, according to a learning 
rule implemented thereby; 

b) summing amplifier means for receiving said com- 
ponent of error from said plurality of learning rule 
processor means at an input thereof and for provid- 
ing a summation thereof at an output; 

c) scaling means for receiving said summation from 
said summing amplifier means at an input thereof 
and for providing said summation scaled by a pre- 
established learning rate at an output thereof; 

d) update generator means for receiving a scaled 
summation from said scaling means at an input 
thereof and for generating a voltage signal required 
to change the‘conductance of a said synapse and 
applying said voltage signal to said weighting fac- 

e) digital events sequencer means having a CLOCK 
input thereto for causing said digital event se- 
quencer means to repeatedly sequence through a 
plurality of learning steps. 

8. The neural network processor of claim 7 wherein 
said learning rule determines said final change in the 
conductance value of said corresponding synapse as: 

said learning controller means comprises: 

5 

10 

15 

20 

25 tor update conductor; and, 

30 

35 

where Aw is the final change in the conductance value 
of said corresponding synapse, 17 is a previously-estab- 

m&ne&ly applying a weighting factor update 40 lished learning rate, o+ and 0- are, respectively, values 
voltage value to said weighting factor update of the output of an ith one of said output neurons before 
conductor, wherein =id learning controller and after said learning controller means makes said 

includes logic for updating each =id syn- initial change, tiis a target value for the output of the ith 
a,.,se in turn by enabling a correswndinn one of one of said outvut neurons, and “sign” is a direction in 
d id  individuilly addressable switches,-making 
an initial change in the conductance value of said 
corresponding synapse, directly evaluating cor- 
responding changes at outputs of said output 
neurons, and implementing therefrom a learning 
rule to determine a final change in said conduc- 
tance of said corresponding synapse. 

6. The neural network processor of claim 5 wherein 
said learning rule determines said final change in the 
conductance value of said corresponding synapse as: 

’ 

where Aw is the final change in the conductance value 
of said corresponding synapse, 7) is a previously-estab- 
lished learning rate, o+ and 0- are, respectively, values 
of the output of an ith one of said output neurons before 
and after said learning controller means makes said 
initial change, tiis a target value for the output of the ith 
one of said output neurons, and “Hign” is a direction in 
which the output of the ith output neuron changes with 
respect to ti. 

45 which the output of the ith output neuron changes with 
respect to ti. 

9. A neural network processor capable of fully-paral- 
le1 analog implementation of both single-attractor and 
multiple-attractor configurations with maximum speed 

50 of operation comprising: 
a) a data retrieval network portion comprising, 

al) a plurality of input neurons each having an 
input for receiving a voltage stimulus and an 
output for outputting a voltage output, 

a2) a plurality of output neurons each having an 
input for receiving a voltage input and an output 
for outputting a voltage output, and 

a3) a synaptic array comprising a plurality of syn- 
apses connecting said output of respective ones 
of said input neurons to said input of respective 
ones of said output neurons, each of said synap- 
ses having a weighting factor associated there- 
with determining a conductance valve there- 
through and means for changing said weighting 
factor including a weighting factor input; 

55 

60 

65 
b) a learning network portion comprising, 

throughout said synaptic array, 
bl) a weighting factor update conductor disposed 
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b2) a plurality of individually addressable switches 

connected between said weighting factor input 
of respective ones of said synapses and said 
weighting factor update conductor, and 

b3) learning controller means connected to said 
individually addressable switches and said 
weighting factor update conductor for enabling 
selected ones of said individually addressable 
switches to connect said weighting factor input 
of a corresponding one of said synapses to said 
weighting factor update conductor and for si- 
multaneously applying a weighting factor update 
voltage value to said weighting factor update 
conductor, said learning controller means com- 
prising, 
a plurality of learning rule processor means con- 

nected to said output of respective ones of said 
output neurons for determining an error re- 
duction or increase due to a change in the 
output of each of said output neurons in re- 
sponse to voltage stimuli applied to said inputs 
of said input neurons and said initial change in 
the conductance value of said corresponding 
synapse, according to a learning rule imple- 
mented thereby, 

summing amplifier means for receiving said com- 
ponent of error from said plurality of learning 
rule processor means at an input thereof and 
for providing a summation thereof at an out- 
put, 

scaling means for receiving said summation from 
said summing amplifier means at an input 

5,056,037 

thereof and for providing said summation 
scaled by a pre-established learning rate at an 
output thereof, 

update generator means for receiving a scaled 
summation from said scaling means at an input 
thereof and for generating a voltage signal 
required to change the conductance of a said 
synapse and applying said voltage signal to 
said weighting factor update conductor, and, 

digital events sequencer means having a 
CLOCK input thereto for causing said digital 
event sequencer means to repeatedly sequence 
through a plurality of learning steps. 

10. The neural network processor of claim 9 wherein 
said learning rule determines said final change in the 
conductance value of said corresponding synapse as: 

5 

10 

15 

20 

where Aw is the final change in the conductance value 
of said corresponding synapse, 7) is a previously-estab- 

25 lished learning rate, o+ and 0- are, respectively, values 
of the output of an ith one of said output neurons before 
and after said learning controller means makes said 
initial change, tjis a target value for the output of the i‘h 
one of said output neurons, and “sign” is a direction in 

30 which the output of the ith output neuron changes with 
respect to ti. 

* * * * *  
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