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Chapter 1

Introduction

If we do not succeed in solving a mathematical problem,

the reason frequently consists in our failure to recognize

the more general standpoint from which the problem before us

appears only as a single link in a chain of related problems.

After finding this standpoint, not only is this problem frequently

more accessible to our investigation, but at the same time,

we come into possession of a method

which is applicable to related problems.

--David Hilbert--

Computers are being used with increasing frequency in areas where the correct

implementation of the computer hardware is critical. These include:

Safety-critical applications where the computer is directly involved in the

control of systems that maintain human life. A flight control system on an

aircraft or the control system in a nuclear power plant are examples of this

type of application.

Security-critical applications where the computer is used to process informa-

tion that is economically or politically sensitive. Almost any computer used

in government or industry falls into this category to one degree or another.

Mass produced consumer goods where the computer is an integral part of the

product and a mistake in the design or implementation could result in product

recalls costing enormous amounts of money.

In these and other applications it is vital that the computer system be correct.

There are two comphmentary approaches to computer correctness: fault tolerance

and fault exclusion. The former is most useful in handling dynamic faults occurring

during system operation due to component failure or other unexpected events. The

latter is a static process intended to remove errors in design and implementation

before the computer system is in service.

Testing is an example of a fault exclusion technique. Testing can be divided into

two distinct kinds. Implementational testing, which is used to verify that a physical



device is implemented correctly, and functional testing which is used to verify that

a design functions as the designer intended. Because it is impossible to exhaus-

tively testing a computer system, formal verification is an attractive alternative to

functional testing.

Formal verification requires at least two descriptions of a system: one of its im-

plementation and one of its specification. Correctness is shown by demonstrating

through mathematical proof that the former implies the latter. Since verification

entails reasoning about formal logic, producing specifications with the formality

needed for verification is difficult. Several steps must be taken to make verification

available and acceptable to industry:

• Methodologies that provide a step-by-step approach to system verification
must be produced.

• Exemplary verified systems must be provided.

Our goal is to make microprocessor verification tractable. To that end, this

dissertation contains a methodology for microprocessor verification that results in

a step-by-step approach. We also give an example showing how the methodology

can be applied to the verification of a realistic microprocessor.

1.1 Abstraction.

Abstraction is the suppression of irrelevant detail or information. Uses of abstrac-

tion abound in everyday life. For example, a map is an abstraction of the area it

represents. The irrelevant details of the area being mapped are suppressed so that

the map's users are not confused or hampered by unnecessary facts.

Abstraction is a key concept in both mathematics and computer science. Using

abstraction, we make complex models more tractable, avoid repeating work, and

develop methods for solving general problems. For example, procedural and data

abstraction are used frequently in software engineering to ease the burden of pro-

gramming by suppressing detail, providing reusable structures, and giving general

algorithms for computational problems.

Naturally, abstraction has a place in formal verification as weU. Melham [Me188]

provides an important discussion of structural, behavioral, data, and temporal ab-

straction in the verification of computer hardware. Structural abstraction sup-
presses detail about the internal structure of a device. A behavioral abstraction is

a partial specification of a device; the specification may leave out timing details or

other functionality not considered important. Data abstraction suppresses imple-

mentation details of a data type so that only its functionality is visible. Temporal

abstraction relates different views of time in the specification of a device.



Melham discusses the use of abstraction in hardware verification in general; we

will concentrate on the application of abstraction to modeling and verifying micro-

processors. We ask the questions:

1. Are there particular forms of behavioral and structural abstraction that are

more efficacious in the verification of microprocessors than others?

2. Can we formalize a general model that incorporates the behavioral, data, and

temporal abstractions used in microprocessor verification so that they can be

easily reused?

As we will see in the chapters that follow, we beheve that the answer to both of

these question is _/es and we will describe a hierarchical decomposition strategy

and a generic interpreter model that make the verification of large microprocessors

practical.

1.2 Main Ideas.

This section introduces the main ideas in this paper. These concepts will be

discussed in detail in later chapters.

1.2.1 Hierarchical Decomposition.

As we mentioned, verification requires at least two formal descriptions of the com-

puter system: one behavioral, B, and one structural, S. Verification consists of

showing through formal proof techniques that

S_B

One need not be limited, of course, to one level of abstraction. Supposing that B2

through B,_ represent increasingly abstract specifications of the system's behavior,

one could verify its correctness by proving

SmBl_ ...m B.

Figure 1.1 shows how this principle can be apphed to the specification of a micro-

programmed microprocessor. At the bottom of the hierarchy is the usual structural

specification of the electronic block model. This specification describes the com-

puter's implementation; that is, the connections among its various components. At

the top is the behavioral specification corresponding to the programmer's model of



Macro Level
Specification

T
Micro Level
Specification

Phase Level
Specification

T
Electronic Block

Model

Figure 1.1: A microprocessor specification can be decomposed hierarchi-

cally.

the microprocessor. In between these are two additional abstraction levels: one for

the microcode interpreter and one specifying the phase (or subcycle) behavior.

Hierarchical decomposition plays an important role in the methodology for ver-
ifying microprocessors presented in this dissertation. The use of a hierarchical

decomposition can lead to significant reductions in the amount of effort used to

structure and complete a correctness proof.

1.2.2 Generic Interpreters.

With one exception, each of the levels in the specification hierarchy shown in Fig-

ure 1.1 has the same structure. The bottom level specification is a structural de-

scription; but, the other specifications all share a common structure. Each of the

abstract behavioral descriptions can be specified using an interpreter model.

Perhaps the most distinguishing feature of an interpreter is that it has a flat

control structure. One of n instructions is chosen based on the current state. The

chosen instruction operates on the state and the cycle begins anew. There are

a large number interesting computer systems that have a flat control structure:

microprocessors, operating systems, language interpreters, and editors are a few.

Since each of the behavioral descriptions in the specification hierarchy are similar,

we would prefer to develop a general model of an interpreter and use this model in

our specification rather than treating each level in the hierarchy separately. We can

ask several interesting questions about the interpreter model:

4



• How can one interpreter be used to implement another interpreter?

• Can we formalize the data and temporal abstractions between these levels?

• What, if anything, can we say about the correctness of an interpreter's imple-

mentation?

• Can we formalize the model in a verification environment so that it can be

easily reused in verifying microprocessors?

The chapters that follow provide the answers to these questions.

1.2.3 Composition of Verified Modules.

Verified systems can be constructed using verified components. The composition of

verified components that share state is a topic that has not received much attention.

Indeed, most of the microprocessor verifications done in the past have assumed t! ,t

the CPU was the sole user of memory---even when the CPU's designer claimed that

input/output was memory mapped.

In this dissertation we take a first step toward the specification of computer

components that share state with other devices. We defined the concept of shared

state and propose mechanisms for specifying the reading of and writing to shared

state. The assumptions on the final proof of correctness clearly state how conflicts

regarding shared state are resolved.

1.3 Contributions.

The work described in this dissertation makes the following contributions:

°

.

The hierarchical decomposition strategy provides a firewall for the structural

complexity of the electronic block model specification well below the large case

explosion that occurs at the top-level. This firewall results in a substantial

savings in effort over past specification methods since the large number of

cases in the upper levels can now be handled in a regular, largely automatic

manner.

Generic proofs formalize a methodology for verifying microprocessors. The

generic interpreter proof clearly states what definitions need to be made and

what lemmas need to proven about these definitions in order to verify a micro-

processor. This is in sharp contrast to previous microprocessor verifications

where the specification and verification proceeded on an ad hoc basis.



3. Our technique for specifying components with shared state decreases the se-

mantic gap between what the designer intends and what the specification

says. Our CPU specification recognizes that other components may change

the contents of memory and other shared registers. The proofs that result

from these specifications have very satisfying interpretations with respect to
the assumptions that indicate how conflicts over shared state are resolved.

In addition to the major benefits listed above, there are a number of other benefits
that result from our work:

The generic theory can be instantiated, resulting in the reuse of large pieces

of the generic proof.

Temporal and data abstraction are handled completely within the generic

theory freeing the user from proving theorems about these abstractions.

The generic proofs show exactly what has been proven. There is no superfluous

detail cluttering up the definitions and theorems.

Our interpreter model recognizes the environment and treats it separately
from the state.

1.4 Formal Proofs.

The paper deals with the formal verification of generic interpreters. What exactly

is implied by the word formal?

The word .formal is used to describe many things in mathematics: formal systems,

formal logics, formal proofs, and so on. A formal object is one where rigor is

maintained through a methodical treatment.

In a formal system, great emphasis is placed on syntaz (i.e. the form). In a formal

logic, for example, the syntax of the logic is set forth unambiguously and inference

rules for manipulating the syntax are dearly defined. A formal proof in this logic

takes place syntactically through the application of inference rules in a sequential

manner. The use of inference rules to transform terms syntactically helps keep the

prover's semantic biases from creeping into the proof.

The behavioral and structural models for computer systems can be very large.

Proofs of correctness for microprocessors have, in some cases, been done using

paper and pencil. Usually, however, the proofs are so large that some form of

mechanical proof support is necessary to maintain the required rigor. In one case,

the formal verification of a microprocessor found errors in a completed informal

proof [Coh88b]. Most proofs involving mechanical theorem provers are done using

some sort of formal logic since formalization is a prerequisite to mechanization.

6



In s strictly proof theoretic sense, the proofs in this paper are not formal. A formal

proof is like a number -- an abstract object that can never be represented in the

physical world. Numerals are not numbers, but merely represent them. While in a

strict mathematical sense formal proofs are impossible to express, the term formal

verification is used ubiquitously in the verification community to mean a proof in a

formal logic, usually with the help of some sort of mechanized theorem prover. We

use the term formal in this sense.

1.5 Notation and Conventions.

Our notation will be that of standard logic with a few extensions:

• Terms in the logic will be written in typewriter font.

• Conjunction, disjunction, negation, implication, universal quantification, ex-

istential quantification, and lambda abstraction use the usual symbols: A, V,

-_, ==_, V, 3, and )t respectively.

• We use a conditional operator that is written a _ b I c, meaning "if a,

then b, else c."

• Definitions will be denoted with a prepended F def.

• Terms that have been formally proven in the logic will be prepended with F.

Other notations and logical expressions will be explained as they are used.

1.6 Chapter Summaries.

This document begins, in Chapter 2, with a discussion of related work. The idea

of using abstract representations of theories is not new to our research. There are

several specification and theorem proving systems that support generic modules and

several examples of their use in the literature. In addition, a number of microproces-

sors have been specified and verified in formal systems. Most of these verifications

used an implicit interpreter model for the behavioral specification.

Our research is, we believe, the first where the interpreter model has been formal-

ized. Chapter 3 discusses our model of interpreters, gives a mathematical definition

of an interpreter, and defines what it means to verify one interpreter in terms of

another. The chapter also discusses how hierarchical decomposition can be used

in the specification of microprocessors and discusses the composition of verified

components that share state.



This theme is extended in Chapter 4 where we show how the mathematical deft-

nition can be formalized in the HOL verification system. We present two different

models: a synchronous interpreter model and an asynchronous model.

Chapter 5 contains an example of the use of the generic interpreter theory in

specifying and verifying a microprocessor, AVM-I. AVM-1 is designed to serve as

a testbed for the concepts in this dissertation. The architecture and organization

of AVM-I are described, the formal specification is presented, and the verification

is discussed.

Appendix A provides a description of the ML package developed for using generic

theories in HOL.

Appendix B presents the technical details of the A VM-1 proof. The theory hier-

archies are discussed and the run times for the proof scripts of the various theories

constituting the verification of AVAt-1 are presented.



Chapter 2

Previous Work

This chapter is divided into four sections. The first section discusses research in the

verification of sequential machines and its relation to our work. The second section

discusses previous microprocessor verifications where a model similar to the one

formalized in this dissertation was employed. The third section describes related

work in generic theories. The last part of this section describes how hardware

behavior and structure are specified in a formal logic.

2.1 Sequential Circuit Verification.

Reasoning about and verifying sequential circuits is a topic that has generated much

research interest due to the inherent difficulty involved in reasoning about state. The

standard engineering formalism taught in undergraduate switching theory classes

is useful for reasoning about small state machines; but when the number of states

increases the model suffers from exponential case explosion. In this section we will

discuss some of the approaches to the problem.

Sequential machines have been studied for decades. The work in this disserta-

tion is similar in spirit to Gordon's work [GorS0] in the denotational semantics of

sequential machines and Plotkin's state transition systems [PloS1]. Our goal is,

however, not to simply describe sequential machines, but to verify them.

Several researchers have developed special purpose languages for describing and

reasoning about sequential machines. Browne and Clark [BC87] have developed a

high-level language, called SM£, for describing finite state machines. SML is based

on a temporal logic semantics. The state transition table generated from an SML

program can be fed to a temporal logic verifier that allows some properties of the

state machine to be verified.

Bronstein and Talcott [BT89] have developed a string-functional semantics of

synchronous sequential logic and have apphed it to the verification of pipe-lines

and systolic arrays. The theory is based on finite rather than infinite arrays and

thus cannot reason about asynchronous circuits. Because of the finite property of

the underlying semantics, the theory can be developed and used in a first-order

system such as the Boyer-Moore theorem prover IBM79].

Loewenstein has developed a theory of state machines in HOL [LoeB9]. The

9



distinguishing feature of Loewenstein's work is that the theory is developed in the

same theorem proving environment that he uses to reason about his state machines.

The theory contains theorems that define both deterministic and non-deterministic

state machines and derives lemmas that state what it means for one state machine

to implement another and what it means for two state machine to be equivalent.

Loewenstein's theory is similar to the model that we will define in Chapter 3. The

primary difference is that Loewenstein's model does not formalize temporal and

data abstraction between a state machine and its implementation.

SDVS (State Delta Verification System) was originally developed and described

by Crocker in [Cro77]. A state-delta is a temporal logic formula that describes the

changes in the global state of a machine over a time interval. SDVS is currently

under development at the Computer Science Laboratory of the Aerospace Corpo-

ration [MCL84,Mar87]. The original goal of SDVS was to provide a usable system

for proving the correctness of microcode expressed in the ISPS register transfer

language. SDVS was also used to reverify Hunt's FM8501 (see Section 2.2.2).

The next section discusses the work in state machine verification that most closely
resembles our own Work.

2.2 Microprocessor Verification.

There have been numerous efforts to verify microprocessors. Many of these have

used the same implicit behavioral model. We will first describe this implicit model

and then describe the microprocessor verifications that use it.

In general, the model uses a state transition system to describe the microproces-

sor. The microprocessor specification has four important parts:

1. A representation of the state, S. This representation varies depending on the

verification system being used.

. A set of state transition functions, J, denoting the behavior of the individual

instructions of the microprocessor. Each of these functions takes the state

defined in step (1) as an argument and returns the state updated in some

meaningful way.

3. A selection function, N, that selects a function from the set J according to
the current state.

4. A predicate, I, relating the state at time t + 1 to the state at time t by means
ofJ andN.

In some cases, the individual state transition functions, J, and the selection func-

tion, N, are combined to form one large state transition function. Also, a functional

l0



specification would use a function for part (4) instead of a predicate. The specifi-

cations, however, are largely the same.

After the microprocessor has been specified, we can verify that a machine de-

scription, M, implements it by showing

Vs G S. M(s) :_ I(s).

That is I has the same effect on the state, s, that M does. This theorem is typically

shown by case analysis on the instructions in J by establishing the following lemma:

Vj E J. M(s) =_ (Vt:time. C(j,s,t) =_ s(t + n_) = j(s(t)))

where C is a predicate expressing the conditions for instruction j's selection, s(t) is

the state at time t, and rtj is the number of cycles that it takes to execute j. This

lemma says that if an instruction j is selected, then applying j to the current state

yields the state that results by letting the implementing interpreter M run for ,_

cycles. We call this lemma the instruction correctness lemma.

The remaining parts of this section describe microprocessor verifications where

some variation of this general model was used.

2.2.1 Tamarack

Tamarack is a small microcoded microprocessor that has been verified by Jeffrey

Joyce at the University of Cambridge [Joy89a, Joy88]. Joyce has verified Tamarack

to the transistor level using HOL and has fabricated an 8-bit version of the design

in CMOS. In addition to verifying the microprocessor, Joyce has also verified a

compiler for Tamarack [Joy89b].

Tamarack is a 16--bit computer with a 13-bit address space. The computer has

8 instructions: halt, jump, jump if zero, add, subtract, load, store, and skip (or no

operation). The architecture has an accumulator and a program counter visible to

the assembly language programmer in addition to the memory. The computer is

implemented in microcode and has a single bus connecting each of the blocks in the

electronic block model. The microstore is 32 microwords long.

Tamarack is based on a computer designed and verified using LCF-LSM by Mike

Gordon [Gor83]. Daniel Weise verified Gordon's design using a Lisp-based system

called Silica Pithecus [Wei86] and Harry Barrow verified it using a system called

VERIFY [Bar84], making this the most widely verified microcomputer design.

The specification and verification of Tamarack corresponds closely to the general

model developed at the beginning of this section. The macro--level specification

denotes what each instruction does and ties the descriptions of each instruction
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together with a predicate stating the relation between the state at time t and time

t+l.

The verification of Tamarack is enlightening since it has been done many times

with many different verification systems and using many levels of abstraction.

Tamarack is, however, small and research is needed to discover methods for scal-

ing the Tamarack experience to larger microprocessors, including those with larger

instruction sets and support for operating systems.

2.2.2 FM8501.

FM8501 is a microprocessor designed and verified by Warren Hunt using the Boyer-

Moore theorem prover [Hun87]. The architecture has a register file containing eight,

16-bit registers, a 64K-byte memory space, 26 instructions, and four memory ad-

dressing modes. FM8501 models memory as an asynchronous process. The imple-
mentation is microcoded and has a microstore of 16 microwords.

The specification of FM8501 consists of two recursive functions: one for the be-

havioral specification and one for the implementation. The functions recurse at

each clock cycle, computing a new state. Time and the asynchronous inputs to

the CPU are modeled by an oracle. The oracle is represented by a list; it is this

list that the specifications recurse on. Time is represented by the current position

of the recursive specification in the list. Each member of the list gives whatever

asynchronous inputs may exist at that time. The proof shows the equivalence of

the two recursive functions using an abstract (uninterpreted) oracle function.

Crocker et al. reverified FM8501 using a specification written in ISPS in the

SDVS verification system [CCLO88]. The reverification is significant because the

work used no part of Hunt's work directly and thus represents an independent

verification of the design using a different verification system.

On the surface, the verification of FM8501 appears quite different than the verifi-

cation of Tamarack, but in fact, they are very similar. The methods of specification

for the top-level can be seen as an instance of the general model presented at the

beginning of this section. The verification, even though done on a functional speci-

fication in a first-order system, uses the a form of the instruction correctness lemma

to show that the electronic block model implements the top-level specification.

2.2.3 VIPER.

VIPER was designed by Britain's Royal Signals and Radar Establishment (RSRE)

at Malvern to provide a formally verified microprocessor for use in safety critical

applications. VIPER's designers chose not to include a stack and interrupts -- an-

ticipating that they might lead to difficulties in the verification of software running
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on the VIPER. The machine was designed to halt on errors and raise an external

exception. The fabrication was carried out by two separate manufacturers and is

commercially available.

VIPER is the first microprocessor available for commercial use where formal veri-

fication was used. As we will see, the verification was not completed. While VIPER

is significantly simpler than today's general purpose microprocessors, its verification

provides a benchmark on the state--of-the-art in microprocessor verification.

VIPER has a 20-bit program counter, a 32-bit general purpose accumulator, and

two 32-bit index registers. VIPER has a single instruction format that allows the

user to select a source register, one of four memory addressing modes, one of eight

destinations, whether or not to compare, and one of sixteen ALU functions. In ad-

dition to the fields just mentioned, each instruction contains a 20-bit address. The

VIPER design is described in detail in [Cu188]. The implementation is hardwired

instead of being microcoded.

The combination of fields in the instruction format (excluding source and des-

tination selections) yields 128 different instruction cases. Recent research on the

VIPER design [Aro90] has characterized the VIPER instruction set using only 20

instructions. As we will see, this is an important distinction that bears on the

difficulty of verifying VIPER.

The specification of VIPER is hierarchical. The top-level specification of VIPER

is similar to that of [Joy89a]. The next level of the specification is called the major-

state machine and is a description of VIPER's major states. The next level in

the specification is the electronic block model. The top two levels were specified

first in LCF-LSM and later in HOL. The electronic block model was specified in

HOL. Below the electronic block model the circuit was described using a hardware

description language called ELLA and verified by "intelligent exhaustive simulation"

[Pyg851.

An paper-and-pencil proof of correctness between the top-level of VIPER and

the major-state machine was done by RSRE. Because of the complexity of the

loweT-level (electronic block model to major state machine) proof, RSRE did not

attempt a hand proof of this level. RSRE contracted with Avra Cohn at Cambridge

University to formalize the top-level proof and perform the lower-level proof. Cohn

describes her formal verification of the major-state machine with respect to the top-

level specification in [Coh88b].

Cohn decided to forego the proof of the top-level correspondence in trying to ver-

ify the electronic block model since that the major-state level specification and the

electronic block model yielded dissimilar structures under cases analysis. Rather,

she attempted to show a direct correspondence between the top-level and the elec-

tronic block model. The proof is described in detail in [Coh88a]. Cohn's proof of

this level remains incomplete because of the large case explosion that occurred and

the size of the proofs in each of the cases. This is not to say that the proof could

not be completed; but only at large expense.
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It seems dear from Cohn's experience with VIPER that abstraction is critical

in dealing with the large case explosion that occurs in these kinds of proofs. The

major-state machine did provide a level of abstraction in-between the top-level

and the electronic block model, but it appears to be the wrong one. In addition,

Cohn had almost no access to VIPER's designers and thus had little or no help

in deciphering and understanding the informal specification of the electronic block
model.

2.2.4 SECD.

Brian Graham et al. at the University of Calgary have undertaken the implemen-

tation and verification of the SECD machine [GB89]. The SECD machine is an

abstract Lisp machine invented by Landin to reduce lambda expressions [Lan64].

The variant of SECD implemented by Graham is described in [Hen80]. Graham's

work is part of a larger effort at the University of Calgary to verify a complete

system including a LispKit compiler as weU as the SECD chip.

The architecture has four registers, called S, E, C, and D. The S register holds

a stack pointer, the E register holds a pointer to the environment, the C register

functions as a program counter, and D points to a stack used to dump the state of

the machine. There are approximately 20 instructions and the implementation is
microcoded.

The remarkable thing about the SECD proof is that even though the architecture

is specialized, the specifications and proofs are done in a manner very similar to the
proofs of the more conventional architectures described in the last three sections.

The behavioral model corresponds to the general model described at the beginning

of this section. The top-level specification is based on state-transitions and the

description of the dectronic block model is a predicate-based circuit description

similar to both [Joy89a I and [Coh88a]. The garbage collection mechanism is imple-

mented in hardware and the proof was done without taking it into account. Work

is in progress on a second proof that verifies the garbage collection hardware and a
second implementation.

2.2.5 Comparison.

Table 2.1 summarizes the designs of the four microprocessors presented in this

section. The table, like all such tabulations, cannot hope to capture all of the im-

portant characteristics of the microprocessors, but the data presented does provide

some basis for judging relative complexities.
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Table 2.1: Comparison of verified microprocessors.

Tamarack FM8501 Viper SECD

User Registers 2 8 4 4

Instructions 8 26 20 21

Microcoded

Microstore size
yes

32 words
yes

16 words

no

N/A

yes

512 words

Interrupts yes no no no

sync
32-bit

1M

Memory Model async async
Word Width 16-bit 16-bit

Memory Size 8K 64K

sync
32-bit

16K

2.3 Generic Theories.

Genetic theories provide structures to support theorem reuse. Genetic theories are

similar in spirit to generic modules in programming languages such as Ada [Ada83].

Even accounting for the obvious differences between Ada as a programming language

and our use of generics in a verification environment, however, we shall see that the

notion of a generic theory is stronger than that of a genetic module in Ada.

An generic theory consists of three parts:

1. An abstract representation of the uninterpreted constants and types in the

theory.

2. A list of theory obligations defining relationships between members of the

abstract representation.

3. A collection of abstract theorems about the representation.

The abstract representation contains a set of abstract operations and a set of

abstract objects. An abstract object does not necessarily need to be specifically

declared, but can be declared through use. The semantics of the abstract represen-

tation are unspecified; that is, we don't know (inside the theory) what the objects

and operations mean.

The theory obligations are a set of predicates. Inside the theory, the obligations

represent axiomatic knowledge about the abstract representation. Using the obli-

gations as axioms allows us to prove theorems of interest about the abstract objects

and operations. Outside the theory, the obligations represent the criteria that a

concrete representation must meet if it is to be used to instantiate the abstract

theory.

The theory obligations represent the largest difference between genetic theories

and the generics of Ada. If we view the generic portion of our theory as the interface,
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the abstract representation can be thought of as the syntaz of the interface. The

abstract representation corresponds to the declaration of the generic parameters in

an Ada module. The theory obligations denote the semantics of the interface and

Ada provides no corresponding structure.

The abstract theorems are a body of facts concerning the abstract objects. Usu-

ally, the theorems are based on the theory obligations and can stand alone only

after the theory obligations have been met.

Our goal is to instantiate the generic theory with a concrete representation. To

effect the instantiation, the concrete representation must meet the syntactic re-

quirements of the abstract representation as well as the semantic requirements of

the theory obligations. If the syntactic and semantic requirements are met, then

the instantiation provides a collection of concrete theorems about the new repre-
sentation.

Several specification and verification systems support generic theories. Some,

such as OBJ and EHDM, offer explicit support. HOL, the verification environment

used in the research reported here, does not explicitly support generic theories;

however, HOL's metalanguage, ML, combined with higher--order logic, provides a

framework sufficient for implementing generic theories.

2.3.1 OBJ.

OBJ is a specification and programming language developed by Joseph Goguen et

al. that has most recently been described in [GW88]. OBJ is widely known and the

semantics of its theories and views match our use of generic theories much more

dosdy than do Ada generics.

OBJ is based on a many-sorted (or typed) algebraic semantics and supports

parameterized specification and programming [Gog84]. OBJ has three kinds of
entities:

1. Objects, which are concrete modules that encapsulate executable code,

2. Theories, which are parameterized modules that correspond to generic the-

ories as used in this dissertation, and

3. Views, which bind objects and theories to parameters in another theory.

Objects are said to contain executable code because the expressions in an object

module give the initial algebraic semantics of the sorts and operations being defined.

The fact that their semantics is initial implies that they describe just one model (up

to isomorphism). Theories, on the other hand, are said to have a "loose" semantics

since they define a variety of models. A loose semantics describes a class of objects;

any member of that class will satisfy the theory.
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A view is not an instantiation. Instantiation is done using a special command,

make, after the view has been established. A view can be seen as a mapping of

the operators and objects from one module onto a theory, as well as a declaration

of intent that the module meets the obligations set forth in the equations of the

theory module. OBJ does not require that the user prove that the obligations are

met--a simple declaration is sufficient. Of course, if the view is not proper, then

the OBJ program will not operate as intended.

2.3.2 EHDM.

EHDM is a specification and verification system that is being developed by SRI

International [EHD88]. The language of EHDM is based on first-order predicate

logic, but includes some elements of higher-order logic as well. For example, vari-

ables can range over functions, functions can return other functions, and functions

can appear in quantifications. Parameterized modules are an important part of

the EHDM language where they are used to organize specifications. Modules can

be parameterized with types, constants, and functions. The module parameters

can have constraints placed on them that must be met before the module can be

instantiated.

In EHDM, a parameterized module is called a generic module and an instantia-

tion is called a module instance. EHDM module declarations give the uninterpreted

types, constants, and functions over which the module is parameterized. This dec-

laration is analogous to our abstract representation.

The module body contains (among other things) an ASSUMING clause that

gives the properties of the module parameters. The formulae in the ASSUMING

clause are analogous to our theory obligations.

The module can also contain declarations of concrete types, constants, and func-

tions that define the theory associated with the module and proofs of theorems

about the abstract operations in the theory. These proofs may rely on the formulae

in the ASSUMING clause.

2.3.3 HOL.

HOL is a general theorem proving system developed at the University of Cambridge

[Gor88,CGM87] that is based on Church's theory of simple types, or higher-order

logic [Chu40]. Church developed higher-order logic as a foundation for mathematics,

but it can be used for describing and reasoning about computational systems of

all kinds. Higher--order logic is similar to the more familiar predicate logic, but

allows quantification over predicates and functions, not just variables, allowing more

general systems to be described.
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HOL grew out of Robin Milner's LCF theorem prover [GMW79] and is similar to

other LCF progeny such as NUPRL [Con86]. Because HOL is the theorem proving

environment used in the body of this work, we will describe it in more detail.

HOL's proof style can be tailored to the individual user, but most users find

it convenient to work in a goal-directed fashion. HOL is a tactic based theorem

prover. A tactic breaks a goal into one or more subgoals and provides a justification

for the goal reduction in the form of an inference rule. Tactics perform tasks such

as induction, rewriting, and case analysis. At the same time, HOL allows forward

inference and many proofs are a combination of both forward and backward proof

styles. Any theorem proving strategy a user employs in connection with HOL is

checked for soundness, eliminating the possibility of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem

prover. Using the metalanguage, tactics can be put together to form more powerful

tactics, new tactics can be written, and theorems can be combined into new theories

for later use. The metalanguage makes the HOL verification system extremely
flexible.

In HOL, all proc_fs, even tactic-based proofs, are eventually reduced to the appli-

cation of inference rules. Most non-trivial proofs require large numbers of inferences.

Proofs of large devices such as microprocessors can take many millions of inference

steps. In a proof containing millions of steps, what kind of confidence do we have

that the proof is correct? One of the most important features of HOL is that it

is secure, meaning that new theorems can only be created in a controlled manner.

HOL is based on 5 primitive axioms and 8 primitive inference rules. All of high-

level inference rules and tactics do their work through some combination of the

primitive inference rules. Because the entire proof can be reduced to one using only

8 primitive inference rules and 5 primitive axioms, an independent proof checking

program could check the proof syntactically.

2.3.3.1 The Language.

The object language of HOL is described in this section.

terms and types.

We will discuss HOL's

Terms. All HOL expressions are made up of terms. There are four kinds of

terms in HOL: variables, constants, function applications, and abstractions (lambda

expressions). V_Lt'iables and constants are denoted by any sequence of letters, digits,

underIines and primes starting with a letter. Constants are distinguished in the

logic; any identifier that is not a distinguished constant is taken to be a v_riable.

Constants and variables can have any finite arity, not just 0, and thus can represent
functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax.
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Operator
Z

A

V

Application

tl - t2

tl,t2

tl A t2

tl V t2

tl ===_ t2

Mean/ng

t I equals t2

the pair tl and t2
tl andt2

tl or t2

tl implies t2

Table 2.2: HOL Infix Operators

Binder

V

3

C

Appl.ication

Vx. t

3x.t

ex. t

Meaning

for allx, t

there exists an x such that t

choose an x such that t is true

Table 2.3: HOL Binders

Thus a term of the form "t 1 t2" is an application of the operator t 1 to the operand

t2. Its value is the result of applying tl to t2.

An abstraction denotes a function and has the form "A x. t". An abstraction

"A x. t" has two parts: the bound variable x and the body of the abstraction t. It

represents a function, f, such that "f(x) = t". For example, "A y. 2*y" denotes

a function on numbers which doubles its argument.

Constants can belong to two special syntactic classes. Constants of arity 2 can

be declared to be infix. Infix operators are written "randl op rand2" instead of

in the usual prefix form: "op rand1 rand2". Table 2.2 shows several of HOL's

built-in infix operators.

Constants can also belong another special class called binders. A famihar example

of a binder is V. If c is a binder, then the term "c x.t" (where x is a variable) is

written as shorthand for the term "c(A x. t)". Table 2.3 shows several of HOL's

built-in binders.

In addition to the infix constants and binders, HOL has a conditional statement

that is written a --, b I c, meaning "if a, then b, else c."

Types. HOL is strongly typed to avoid Russell's paradox and others like it. Rus-

sell's paradox occurs in a high--order logic when one can define a predicate that leads

to a contradiction. Specifically, suppose that we define P as P(x) = -_x(x) where

-_ denotes negation. P is true when its argument applied to itself is false. Applying

P to itself leads to a contradiction since P(P) s -_p(p) (i.e. true = false). This

kind of paradox can be prevented by typing since, in a typed system, the type of P

would never allow it to be applied to itself.

Every term in HOL is typed according to the following recursive rules:
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Operator Arity

bool 0

ind 0

num 0

(*)list I

(*,**)prod 2

(*,**)sum 2

(*,**)fun 2

Table

Meaning

booleans

individuals

natural numbers

lists of type *

products of * and **

coproducts of * and **

functions from * to **

2.4: HOL Type Operators

• Each constant or variable has a fixed type.

• If x has type a and t has type fi, the abstraction A x. t has the type (a --, fi).

• If t has the type (a ---*fl) and u has the type a, the apphcation t u has the

type _.

Types in HOL are built from type variables and type operators. Type variables

are denoted by a sequence of asterisks (*) followed by a (possibly empty) sequence of

letters and digits. Thus *, ***, and *ab2 are all valid type variables. All type vari-

ables are universally quantified implicitly, yielding type polymorphic expressions.

Type operators construct new types from existing types. Each type operator has

a name (denoted by a sequence of letters and digits beginning with a letter) and an

arity. If al,..., an are types and op is a type operator of arity n, the (al,..., a,_)op

is a type. Note that type operators are postfix while normal function apphcation is

prefix or infix. A type operator of arity 0 is a type constant.

HOL has several built-in types which are listed in Table 2.4. The type operators

boo1, ind, and fun are primitive. HOL has a special syntax that allows (*,**)prod

to be written as (* # **), (*,**)sum to be written as (* + **), and (*,**)fun

to be written as (* -> **).

2.3.3.2 The Proof System.

HOL is not an automated theorem prover but is more than simply a proof checker,

falling somewhere between these two extremes. HOL has several features that

contribute to its use as a verification environment:

I. Several built-in theories, including booleans, individuals, numbers, products,

sums, lists, and trees. These theories contain the five axioms that form the

basis of higher-order logic as well as a large number of theorems that follow
from them.
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Rules of inference for higher-order logic. These rules contain not only the eight

basic rules of inference from higher--order logic, but also a large body of derived

inference rules that allow proofs to proceed using larger steps. The HOL

system has rules that implement the standard introduction and elimination

rules for Predicate Calculus as well as specialized rules for rewriting terms.

A collection of tactics. Examples of tactics include REWRITE_TACwhich rewrites

a goal according to some previously proven theorem or definition, GEN_TAC

which removes unnecessary universally quantified variables from the front of

terms, and EO_TAC which says that to show two things are equivalent, we should

show that they imply each other.

A proof management system that keeps track of the state of an interactive

proof session.

A metalanguage, ML, for programming and extending the theorem prover.

Using the metalanguage, tactics can be put together to form more powerful

tactics, new tactics can be written, and theorems can be aggregated to form

new theories for later use. The metalanguage makes the verification system

extremely flexible.

2.3.3.3 Generic Theories in HOL.

HOL provides a non-parameterized module structure called a theory. A theory is a

set of types, definitions, constants, axioms and parent theories. Higher-order logic

is extended by defining new theories. To use a theory, one declares it a parent of

the current draft theory; all of the components of the parent and its ancestors are

then available for use in the child theory.

HOL does not explicitly support parameterized, or generic, theories and thus

might seem a poor vehicle for the research presented in this dissertation. However,

HOL's other features, in particular its flexible proof style and programmability,

make it a desirable system in which to work. We choose to use HOL and implement

generic theories. The fact that generic theories can be defined at the user level in

HOL without exphcit support for them in the system is a testament to the flexibility

of HOL.

Three things axe required to implement generic theories in HOL:

1. A way of representing abstract objects and operations.

2. A method for declaring theory obhgations and using these obhgations in

proofs.

3. Functions for instantiating an abstract theory with concrete objects.
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Our implementation of abstract theories in HOL is described in Appendix A.

Jeffrey Joyce of Cambridge University presents a method of representing abstract

objects and operations using HOL in [Joy89a] where he uses them to provide an

abstract view of n-bit words. We use Joyce's methods in our implementation of

abstract representations. We have extended Joyce's work by developing full-fledged

generic theories including theory obligations and methods of instantiating a generic

theory.

HOL has a type polymorphic logic that supports top-level universal quantification

over type variables; we use type variables to denote abstract objects. Abstract

operations on these objects make use of HOL's ability to quantify over functions.

Abstract operations are synthesized by creating variables that hold n-tuples; each

entry in the tuple represents one of the abstract operations. The abstract operations

select the appropriate field from the tuple.

We have implemented an ML function that defines a new abstract representation.

The following example shows how our implementation can be used to define an

abstract representation for groups. (Recall that type variables are denoted in HOL

by prepending an asterisk.)

let G = new_abstract_representation

[

('op' ,": (*group × *group) -_ *group")

('e',":*group")

('inv' ,":*group -* *group")

];;

The abstract representation is given as a list of pairs where the first member of the

pair is a string giving the name of the abstract operation and the second is an HOL

term giving its type. 1

The theory obligations are declared by giving a list of terms; each term denotes

a predicate that will be used as an axiom inside the generic theory. Note that the

predicates are not true axioms since we want them to exist only inside the generic

theory; they will be satisfied and discharged by the instantiation when the theory

is used. Continuing the group theory example from above, we present the theory

obligations:

1Lists in HOL take the form [zl ;... ;z.'l. Strings are enclosed in backquotes. HOL types always
begin with a colon.
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new_theory_obligations

["V g:*group. (op rep (g,e rep) = g)";

"V g:*group. (op rep (e rep,g) = g)";

"V g:*group. (op rep (g,inv rep g) - (e rep))";

"V g:*group. (op rep (inv rep g,g) = (e rep))";

"V g g' g' ':',group.

op rep (g, oprep (g',g")) --op rep (op rep (g,g'), g'')"

];;

The abstract operations op, e, and inv are all used as selectors on a variable called

rep. Recall that function application in HOL is denoted by juxtaposition. The

variable rep is a 3-tuple in this case; when the theory is instantiated rep will

be replaced with a tuple containing three concrete functions. The five obligations

given in the above example state the usual group theoretic requirements that e be

an identity element, that inv be an inverse, and that op be associative.

Using the abstract representations and the obligations, we can prove theorems

from group theory. For example, we can show that left cancellation holds, that the

identity is unique, and that inverse reverses itself:

LEFT_CANCELLATION =

V x y a:*group.

(op rep (a,x) = (op rep (a,y))) ==_ (x = y)

IDENTITY_UNIQUE =

V f:*group.

(V a:*group.

(f = (e rep))

(op rep(a,f) = a) A (op rep(f,a) = a)) ==_

INVERSE_INVERSE_LEMMA =

V a:*group. (inv rep (inv rep a)) = a

We can instantiate a generic theory by giving

• the name of the generic theory,

• a list of theorems showing that our instantiation meets the obligations for the

generic theory,

• a list of mappings from variables in the generic theory to concrete objects in

the instantiation, and

• a string that will be prepended to the names of the generic theorems to make

them unique and prevent name clashes.

For example, if we have defined exclusive-disjunction and proven the corresponding

group theory obligations, we can instantiate the generic theory for groups as follows:
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let theorem_list =

±nstantiate_abstract_theorems

'group _

[LEFT_IDENT; RIGHT_IDENT; LEFT_INVERSE;

RIGHT_INVEP_E; XOR_ASSOC]

[("rep","(XOR, F, XOR_INV)")]

This gives a list of all of the theorems in the generic theory specialized for our theory

of exdusive-disjunction:

XOR_LEFT_CANCELLATION =

V x y a. (XOR(a,x) = XOR(a,y)) _ (x = y))

XOR_IDENTITY_UNIQUE=

V f. (V a. (XOR(a,f) = a) A (XOR(f,a) = a))

(f = F)

XOR_INVERSE_INVERSE_LEMMA =

V a. XOR_INV(XOR_INV a) = a

Note that there is no mention of any part of the abstract representation in these

theorems and the theorems are free of the theory obligations. In fact the theorems

appear just as they would had we proven them directly rather than inheriting them

from the generic theory.

2.4 Using Logic to Specify Hardware.

A circuit is a collection of devices composed by interconnection. Each of these

devices has ports which are used for input, output, or both. The behavior of a

device can be expressed in terms of its ports. Each of the devices in a circuit can,

in turn, be viewed as a composition of still other devices. This hierarchy of devices

eventually leads to the devices that the designer considers primitive. The smallest

devices we will deal with in this dissertation are logic gates and indeed, in many

cases, we will stop much higher than even gates.

Clocksin describes several ways to specify circuit structure [Clo87]:

• We can use imperative declarations of the circuit structure (this is referred to

as the extensional method).

• .We can use functions to describe the output in terms of the input.

• We can use predicates in a quantified logic to relate the ports of a device using
behavioral or structural constraints.
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Each of the methods has advantages and disadvantages. The extensional method

has the advantage of being familiar to designers since it resembles imperative lan-

guages such as Pascal that most designers have used. The disadvantage of the

extensional method is that it is difficult to treat formally, just as traditional imper-

ative languages are hard to treat formally.

The functional model is widely used; Hunt's specification of the FM8501 pro-

cessor, for example, is functional [Hun87]. To specify the behavior of sequential

circuits functionally, the specification language must support recursion. Hunt uses

recursion in his specification to describe the sequential operation of his CPU.

In the functional model, circuit interconnection is given by the syntactic structure

of function application. This can cause several problems:

• Describing circuits with bi-directional ports is difficult since functional spec-

ifications differentiate between input and output syntactically.

The purpose of a structural specification is to show how components are con-

nected together. Since the only means of expressing connection is function

application, even returning a tuple is insufficient for describing circuits with

more than one output.

• Sequential circuits feedback on themselves. Recursion is the best alternative;

but that can be inadequate for circuits with multiple feedback paths.

The predicate method is the most widely used specification technique in the HOL

community IGor86]. The disadvantage of the predicate method is that designers are

likely to find it the most unfamiliar of the three and thus difficult to use. In addition,

to use the predicate method, the logic must support existential quantification, either

explicitly or implicitly. (Prolog's Horn clause notation is an example of a language

with implicit existential quantification.) The predicate method does, however lend

itself to a wide variety of circuit types, including those with multiple outputs and

bi-Mirectional ports.

The specifications in this report will use a mixture of the functional and predicate

methods. Functions will be used inside the specification, but the device structure

will be specified using predicates.

2.4.1 Specifying Circuits with Predicates.

As an example of the predicate model, we will specify the behavior and structure

of a very rumple circuit designated D. The predicate that specifies the behavior of

the circuit can be given by the following high-order logic definition:

IF4,f D(a,b,c,d,out) = out - (a A b) V (c A d) ]
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Figure 2.1: Implementation of a simple circuit, D

Notice that the inputs a_nd outputs are all included in the arguments and the be-

havior is expressed as a constraint among the outputs and the inputs.

One possible implementation for D is shown in Figure 2.1. As was mentioned

earher, each device can be thought of as representing a constraint on its inputs

and outputs. For example, the top And gate constrains a, b, and p in a manner
consistent with the behavior of the device.

_del And(a, b, p) = (p = a ^ b)

To get the constraint represented by the entire device, we can compose the individual

constraints using conjunction.

And(a, b, p) A And(c, d, q) A Or(p, q, out)

This expression constrains the values not only on the ports of the device, a, b, c, d,

and out, but also on the internal lines p and q. We normally wish to regard such

a device as a "blackbox" and consequently are really only interested in the values

of the external hnes. We can hide the internal hnes using existentially quantified

variables and define a predicate D_imp that represents the structure of the circuit.

[-de/D_imp(a, b, c, d, out) =

3 p q. And(a, b, p) A And(c, d, q) ^ Or(p, q, out)

For comparison, the following gives a specification of the same circuit using func-
tions:

_dd D(a,b,c,d) = Dr(And(a,b),And(c,d))

The outputs are not mentioned exphcitly; the result of the function is taken to be

the output of the circuit.

Similarly, we can write a extensional specification of the circuit in a language such
as VHDL [Arm89]:
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Entity D_imp is

port(a, b, c, d :in Bit; outp :out Bit);

end D_imp;

architecture Structure of D_imp is

component ANDGate port(il,i2:in Bit; outp :out Bit);

component ORGate port(il,i2:in Bit; outp :out Bit);

signal p, q: Bit

GI: ANDGate port map (a, b, p);

G2: ANDGate port map (c, d, q);

G3: ORGate port map (p, q, outp);

end Structure ;

The difference between this specification and the predicate model of the circuit

structure is largely superficial. The primary difference is the abundance of keywords

in the extensional specification. The biggest impediment to using specification lan-

guages such as VHDL is that they sometimes lack a clear semantics. This problem

can be overcome by defining a semantics of the specification language in the object

language of a verification such as HOL. Van Tassel has done just that using VHDL

and HOL in [Tas89,TH89].

2.4.2 Specifying Sequential Behavior.

The last section specified a simple combinatorial circuit. We specify the behavior

of sequential circuits in higher-order logic using an explicit representation of time.

For example, we can specify the behavior of a simple latch as follows:

J _d@ latch in out set = V t. out (t+l) = set t -_ in t I out t

In the specification, in, out, and set are functions of time. The value of a signal

at time f is returned when the function representing the signal is applied to f. The

specification says that the value of out at time _ + 1 gets the value of the input

port, in, at time t if the set line is high and remains unchanged otherwise. Notice

the use of the universal quantification over time in "defining the predicate.

We can also use existential quantification to describe temporal operators. For

example, suppose that we wish to define a predicate that says that a signal will

et_en$uallv go high. The following is a definition of an EVENTUALLY operator:

[_d@ EVENTUALLY d tl = 3 t2. t2 > tl A d t2
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When applied to the signal d, and the current time, tl, the predicate states that

there exists a time, t2, in the future when the signal d will be true. The use of exis-

tential quantification over time is also used to specify the behavior of asynchronous

interconnections between devices.

Many of the specifications in this report will be sequential and will use this explicit

representation of time. In addition to these uses of explicit quantification to treat

sequential behavior, Joyce [Joy89a] has shown how temporal logic can be embedded

in higher-order logic.

2.4.3 Abstraction and Specification.

Specifications can be written for many purposes. For example, in specifying a two

input binary decoder, one might write:

kd4 decoder_spec sO sl oO oi 02 03 =
(o0 ffi (sl --* (sO --_ F } F) [ (sO --* F [ T))) A

(oi = (sl -_ (sO -_ F [ F) I (sO -_ T [ F))) A

(02 = (sl -_ (sO -_ F J T) I (sO _ F I F))) A

(03 = (sl -_ (sO -_ T ] F) [ (sO -_ F [ F)))

While this specification works, its meaning is not very clear.

Here is another specification for the same behavior:

5d4 decoder_spec sO sl o0 ol 02 03 =
(o0 = _sl A _s0) A

(ol = _sl A sO) A

(02 = el A _s0) ^

(03 = sl A sO)

This specification closely models one possible implementation for the circuit; conse-

quently, using it as the behavioral specification would make the verification easier,

but would not tell us much about the abstract behavior of the decoder.

The next specification is more abstract and says more about the behavior of the
decoder:

kd4 decoder_spec sO sl oO oi 02 03 ffi
(o0 _ ((sl,s0) = (F,F))) A

(ol _ ((sl,s0) = (F,T))) A

(02 _-, ((sl,sO) = (T,F))) A

(o3 _ ((sl,s0) = (T,T)))
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This specification clearly shows the binary numbers being represented by the inputs.

Moreover, the specification does not suggest any particular implementation. In

general, the more abstract a specification, the easier it is to understand, but more

difficult it is to verify.

We could make the above specification even more abstract by defining a function,

p_tirval, that converts boolean pairs into numbers and then writing the specifica-

tion as follows.

decoder_spec sO sl oO ol o2 03 =

let n = pairval(sl,sO) in

(o0 _ (n = 0)) ^

(ol _ (n = 1)) ^

(02 _ (n = 2)) ^
(03 _ (n = 3))

This specification can be easily generalized to have n inputs and 2 n outputs.
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Chapter 3

Interpreters

In Chapter 2, we presented a description of a general model for specifying the

behavior of microprocessors. The model had four parts:

1. A representation of the state, S.

2. A set of state transition functions, J, denoting the behavior of the individual

instructions of the microprocessor.

3. A next state function, N, that selects a function from the set J according to

the current state.

4. h predicate, I, relating the state at time t + 1 to the state at time t by means

of J and N.

In this chapter we concentrate on this model, which we call the interpreter model.

We begin with an informal discussion of the interpreter model. Much of our

discussion follows that of [Anc86]. The chapter continues with a description of

hierarchical decomposition. Finally, we present a mathematical definition of the

interpreter model. This mathematical definition is formalized in Chapter 4.

The top level view of an interpreter is shown in Figure 3.1. The distinguishing

feature of an interpreter is that it has a fiat control structure. One of n instructions

is chosen based on the state. The chosen instruction operates on the state and the

cycle begins anew. In a programming language, this model could be described using

a case statement in a while loop. There are a large number interesting computer

systems that have a flat control structure: microprocessors, low-level system calls

in an operating system, language interpreters, and editors are a few. Each of these

is an instance of our general interpreter model.

The interpreter model is useful for modeling multiple abstraction levels in a mi-

croprocessor specification. So, before discussing the interpreter model, we introduce

hierarchical decomposition.
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3.1

Figure 3.1: An interpreter has a flat control structure.

Hierarchical Decomposition.

The goal of our work is microprocessor verification. There are two properties of a

microprocessor specification that make its verification difficult:

1. The size of J=_,o, the instruction set at the macro-level, is large. A typical

instruction set has on the order of 2s to 2 s instructions. For example, the

original VIPER proof had 128 instruction cases.

2. The specification describing the electronic block model, MEBm, is large. The

formal specification of the electronic block model for a typical microprocessor

can take many pages. The expanded expression describing VIPER's electronic

block model is 7 pages long.

According to the instruction correctness lemma (introduced in Section 2.2), we need

to show that the electronic block model correctly implements each instruction in

the macro-level in order to verify the microprocessor; this results in hundreds of

multi-page theorems that must be proven.

3.1.1 The Hierarchy.

In order to reduce the number of long, difficult theorems, we have developed a

strategy for describing the specification by means of a series of increasingly ab-

stract interpreters. This strategy, which follows conventional microprocessor design

practice, is shown in Figure 3.2.

At the bottom of the hierarchy is a structural description of the electronic block

model. By specifying the electronic block model as a circuit rather than an inter-

preter, we ground the abstract behavioral descriptions in the hierarchy to the circuit
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Figure 3.2: A microprocessor specification can be decomposed as a series

of interpreters.

model, which is familiar to hardware designers. We specify circuits as conjunctions

of predicates as described in Section 2.4.

The electronic block model is the lowest level that we will consider in this disserta-

tion; below the electronic block model, the circuit no longer behaves as a computer,

but rather as pieces of a computer. In order to implement the computer, however,

the electronic block model would have to be reduced to gates.

The phase-level specification describes the behavior of the electronic block model

from the perspective of the register transfer actions. During each phase, or clock

sub-cycle, a set of elementary operations is executed in parallel by the machine.

The phase-level specification ties each set of operations to a particular phase of the

dock and states how the clock is sequenced. The sequencing of phases is usually a

trivial serialization, although some conditional operation may be present in order

to respond to asynchronous external events and error conditions.

The phase-level either implements the macro-level directly (in a hardwired ma-

chine) or implements the micro-level. In the latter case, the actions taken during

each phase are conditioned upon the contents of the microstore. Thus, every mi-

croinstruction is implemented by a composition of phases operating on the contents

of the microstore.

The micro-level description (if present) is a behavioral model of the micro-level

interpreter. The micro-level is an abstraction of the phase-level:

• Time at the micro-level is more coarsely grained than time at the phase-level.

At the micro-level, time is measured by the execution of a single microinstruc-
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tion. At the phase--level, time is measured by the execution of a single phase.

The state at the micro-level is a subset of the state at the phase-level. For

example, there will be latches at the phase--level that are not important in de-

scribing the behavior of the micro-level. These latches would not be included

in the description of the micro-level state.

The behavioral description at the micro-level is concerned with a courser

sequence of actions. Rather than concentrating on what happens in parallel

in the datapath of the CPU, we concentrate on the state transition effected

by an entire microinstruction.

At the top is the macro-level--the level visible to an assembly language pro-

grammer. Just as the micro-level is an abstraction of the behavior specified by

the phase-level interpreter, the macro--level is an abstraction of the micro-level

interpreter.

• Time at the macro-level is measured by the execution of a single macroin-

struction. This instruction will be implemented by multiple microinstructions.

• The state at the macro-level is a subset of the state at the micro--level. For

example, the instruction register is usually not visible at the macro--level.

• The behavioral specification of the macro-level describes the state transition

for an entire macroinstruction.

The hierarchical decomposition, and in particular the explicit representation of

the phase-level as a behavioral specification, can significantly reduce the number of

long, difficult theorems that must be proven in a microprocessor proof. The next

section shows why this is so.

3.1.2 Hierarchical Verification.

We wish to estabhsh that the structure specified in the electronic block model

implies the behavior of the macro-level. Past microprocessor verification efforts

[Hun87,Joy88,Coh88a] have been done in one step, directly showing that

IEBM ::_ Imago.

As we have seen, this can make the proof intractable for large microprocessors,

due to the many long lemmas that need to be proven to establish the instruction

correctness lemma. In fact, the VIPER verification [Coh88a] was never completed

for this very reason; funding to complete the verification ran out before all of the

cases could be considered.
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The hierarchical decomposition discussed in the last section provides a way of

making the proof tractable: we can establish

IEBM =_ ].,.=_o

in stages by showing

It may not be immediately obvious how this decomposition has solved the problem

of verifying a large microprocessor. Recall that two things combine to make the

verification of a level, _, in terms of another level, _', difficult:

1. the size of the term describing the implementing level, It,, and

2. the number of instructions in the instruction set of the level being verified, Jz.

The decomposition makes the proof tractable because although IESM is still large,

Jp_,e typically contains from 2 to 4 instructions instead of the 2 s to 2 s instructions

in the macro-level of a typical microprocessor. Thus, the number of long, difficult

theorems is reduced by at least an order of magnitude.

The proof that the electronic block model correctly implements the phase-level

interpreter is tedious, but can be done since the number of cases is small. The

decomposition has, however, increased the total number of cases to be considered

since we must now prove that the phase-level correctly implements the micro-level

and that the micro--level correctly implements the macro-level. Fortunately, the

proofs of I_,, _ I_a_o and I_o _ I_,,_o are very regular and most of the

work in the proofs can be automated. The proofs between interpreter levels are

automatable for two reasons:

1. Both specifications have similar structure; they are both interpreters whereas

the electronic block model description is a circuit.

2. In a proof that one interpreter implements another, one can generally avoid

deahng with the expanded form of the implementation, and so the goals are

much smaller.

As we wiU see in Chapter 5, even though there may be a large number of cases to

consider in proving the instruction correctness lemma in these two levels, the cases

are all similar and a single tactic suffices at both levels. Thus, the amount of human

effort required to complete the proof is not substantially increased by the proofs of

these two levels.
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Figure 3.3: A hierarchy of interpreters.

Interpreter Hierarchies.

The hierarchical decomposition of microprocessor specifications leads us to con-

sider a general model of interpreter hierarchies. The most important issue in the

interpreter model with respect to interpreter hierarchies is using one interpreter to

implement another interpreter.

Figure 3.3 shows a hypothetical interpreter hierarchy. In the hierarchy, the top

level interpreter, Ix, is implemented by the one below it, I2, which is implemented

by the one below it, and so on. Each interpreter in the hierarchy is an abstraction

of the one below it. They receive input from the environment, communicate with

the interpreters above and below, and use some abstraction of the state.

Because the interpreters on the top of the hierarchy are simply abstractions of the

ones below them, they are not cauJaI agents. Only the bottom interpreter sees the

complete state (not an abstraction). Consequently, the bottom interpreter in the

hierarchy is the only one that can modify the state. An interpreter in the hierarchy

can only affect the state by issuing instructions to the interpreter below it.

Figure 3.4 shows an individual interpreter from the hierarchy in more detail. The

interpreter receives instructions from the interpreter above and issues instructions

to the interpreter below. The interpreter does not merely pass the instructions

along, but issues a new instruction stream to the interpreter below based on an

interpretation of the instruction it has been asked to execute. The overall effect

of this instruction stream is the state change required by the instruction being

interpreted. When the interpreter is ready for the next instruction, it signals the

interpreter it is implementing on the Next line.

Figure 3.4 shows the state being filtered through an abstraction box before being

sent to the interpreter. The Filter has a switch line connected to the Next line. The
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Figure 3.4: Interconnecting interpreters in the hierarchy.

abstraction serves two purposes:

1. When the Next line is raised, it takes a snapshot of the current state. The

interpreter at this level does not see the finer grained state changes of the

interpreters below it; the interpreter only sees the state when it is time to

make a decision about which instruction to issue next.

2. The filter also performs a data abstraction on the state. As we will see in more

detail later, the state visible at one level is a function of the overall system

state.

3.3 A Mathematical Definition of Interpreters.

The rest of this chapter gives a mathematical definition to the interpreter model.

3.3.1 Basic Types.

The basic types for our model are defined in Table 3.1. In addition to these basic

types, we also use the following type constructors: product, written (a × /3);

coproduct, written (a +/3) ; function, written (ct _/3); and list, written (a)list.

An n-tuple is given by

(_ × _ ×... × ___ × _)

which is a shorthand for

(_ × (_ ×... × (_.__ × _.)...))
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Table 3.1: Basic types for interpreter definition.

Symbol Members Meaning

T {true, false} truth values

N {0,1,...} natural numbers

B N _ T bit vectors

M N _ B stores

3.3.2 State.

Abstractly, we think of state as being something of type S, where S is an uninter-

preted type. This allows us to treat state in an abstract manner, knowing nothing

of its structure or content.

More concretely, we can represent state using n-tuples. We let S,_ be the domain

of n-tuples representing state. These n-tuples have the type

(0_ 1 X Clt 2 X ... X Otn_ 1 X O/n)

where

Vi. a, E T+B+M

We write S < S' to indicate that S is an abstraction of S'. The fact that S is an

abstraction of S' imphes that there exists a function, $ : S' --. S. The function $

is called the state abstraction function.

3.3.3 Time.

In general, different levels in the interpreter hierarchy will have different views of

time. We use temporal abstraction to produce a function that maps time at one

level to time at another. Figure 3.5 shows a temporal abstraction function 2-. The

circles represent clock ticks. Notice that the number of clock ticks required at the

implementing level to produce one clock tick at the implemented level is irregular.

The temporal projection, 2-, can be defined recursively on time. The resulting

function is monotonically increasing and maps time at the implemented level to

time at the implementing level.

We will use members of N to represent time, Thus we define 2- : N --* N such

that

vn ,,-,-,,.(n > ,n) (2-(n)> 2-(m))

We will discuss temporal abstraction in detail in Section 4.2.1.
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Figure 3.5: A temporal abstraction function maps time at one level to time

at another level.

3.3.4 State Streams.

A state stream, U, is a function from time to state, N _ S. We have chosen

n-tuples of booleans, bit-vectors, and stores to represent state. We would like a

representation of streams such that the application of a stream to some time, t,

yields an n-tuple representing the state at time t. We use a lambda expression for

our concrete representation.

;_t.(a_(O,a_(t),... ,___(t),..(t))

where

Vi.a_EN --* (T+B+M)

An important part of our theory will be the abstraction between state streams at

different levels. When we say that state stream u is an abstraction of state stream

u', we are saying

1. that the members of u are state abstractions of the members of u' and

2. there is a temporal mapping from time in u to time in u'.

There are two distinct types of abstraction going on: the first is a data abstraction

and the second is a temporal abstraction.

Using the state abstraction function, S, and the temporal abstraction function,

.F', we say that u is an abstraction of u' if and only if

3(S: S' --_ S). 3(_': N ---* N). (u o :F) = (S o u')

where o denotes function composition. When this is true, we write
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3.3.5 Environments.

The environment represents the external world and it plays an important part in

our theory. The environment is where interrupt requests originate, reset signals are

generated, and so on. In our model, the environment is used only for input; output

to the environment is assumed to be simply a function of the state.

At the abstract level, we treat the environment as an abstract object. We know

nothing about its structure or content. We denote it as E. Just as we defined $,

the state abstraction function, we define an environment abstraction function, C,

such that £ : E' _ E.

Concretely, we represent for the environment using n-tuples of booleans and bit-

vectors. We perform the same kinds of abstraction on the environment as on states:

we assume that there exists a function, C, that abstracts one environment tuple

to another. Temporal abstraction is performed as it was for states. We define

abstraction for environment streams in the same manner that we defined it for

state streams. Thus, we write e _ e_ when e is an stream abstraction of d:

3(E: E' E). 3(Y: N N). o = (Co

3.3.6 The Interpreter Specification.

The preceding parts of this section have given preliminary definitions for concepts

important in the mathematical definition of interpreters. This section presents that

definition.

Interpreters are state transition systems. The difference between our model of

interpreters and other models of state transition systems such as deterministic finite

automata (dfa) is that our model accounts for state abstraction and aggregation.

By state aggregation, we are referring specifically to stores. A store represents a

collection of state that we deal with as a monolithic unit. In a dfa model, each

location in memory would be represented by a different piece of state which would

be treated individually. This clearly would not work for sizable memories.

The first step in defining an interpreter is to define a set of instructions. Let

J* be the set of all functions with domain (S × E) and codomain S. Of course,

not all functions in J* are meaningful; the specifier's job is to choose meaningful

functions. We use a subset of J* to represent the instruction set; we call this set J.

The functions in J provide a denotational semantics for the instructions that they

represent.

In order to uniquely identify each instruction in J, we associate it with a unique

key. At the abstract level, we take keys from the domain K. At the concrete level,

keys can have various representations, as we will see in the example in Chapter 5.
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We must be able to choose instructions from J according to some predefined

selection criteria. Usually, the selection will be based on the current state and

environment. We define )C to be a function with domain (S x E) and codomain K.

Further, we define C to be a choice function that has domain (J × K) and codomain

(S × E _ S). That is, C picks the state transition function from J that has a

particular key in K.

We define an interpreter, I[s, el, as a predicate over the state stream, s, and the

environment, e. The definition of I is given as

Ih, el = _(t + 1) = c(J,k) (_ t) (_ t)

where

k = JC(s,e)

The predicate constrains the state of the interpreter at time t + 1 to be a function of

the state and environment at time t. The function is determined by the instruction

currently selected by )C.

3.3.7 Interpreter Verification.

The goal of this formalization is to prove a correctness relation between the inter-

preters at different levels of a microprocessor abstraction. In particular, for two

state streams, st and sk, and two environments, et and ek, where st -'< sk and

et -< ek, we wish to show that

Ik[sk, ek] :* Il[slo .T, et o .7"]

where _" is the temporal abstraction function defined in Section 3.3.3. When this

implication is true, It is an abstraction of Ik and Ik is said to implement It.

We leave the proof of this for the formalization in Chapter 4.

3.4 Composing Specifications.

We have begun to examine how verified components can be composed to implement

a more abstract behavioral specification. In the simplest case, where there is no

shared state between the components, the problem reduces to the structural speci-

fication problem discussed in Section 2.4.1. When the devices share state, however,

the problem is more difficult.
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Considera system consisting of a CPU and a memory subsystem with memory

mapped I/O. We might be tempted to specify a single-ported memory unit as
follows:

_dd MF.RORY_LrNITwrite read memory address port =

(read t ==_ (port = fetch(memory,address))) A

(write t -* (memory(t+1) = store(memory t, address, port))

((memory(t+1) = memory t)

This specification says that when the read signal is true, the port carries the

value of memory at address. If the write signal is true, the memory is updated

by storing the value on the port to the location given by address. Otherwise the

value of memory remains unchanged.

There is a problem with this specification if we expect to use the CPU with

memory mapped I/O. The specification assumes that the CPU is the only device

that can change memory. Obviously this is not the case if the memory is shared by

the CPU and other devices making up the I/0 subsystem.

There are two obvious fixes to the problem:

1. Use another kind of I/O that doesn't require sharing the memory.

2. Specify all of the I/O in the system being careful to account for all the changes

that can occur to memory.

The first solution is unpalatable since we would like to be able to specify a design

with memory mapped I/O. The second is equally distasteful since it requires that

we know all of the I/O needs that they system will ever have up front when the

system is initially specified, or reverify the system with every change.

Now consider the following specification of the memory unit:

Va_ HF.ROKY_UNITwrite read memory address port =

(read t _ (port = fetch(memory,address))) A

(write t -, (memory(t+l) = store(memory t, address, port))

I (memory(t+l) = trans (memory t))

The only difference is the addition of a function, trans, that transforms the value

of memory at time t to a new value of memory at time t + 1 when a write is not

occurring.

The transformation function represents all of the changes that are occurring in

memory for which the CPU is _tot responsible. Consider the styhzed specifications

for the simple case of a piece of state, S, shared by two devices. Device A specifies
Sas
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IS(t÷l) = sig t -_ storeA(S t)I tranBA(S t)

Device B specifies S as

I S(_+I) = sig t _ storeB(S t)I transB(S t)

At a given time, transs is either storea or I, the identity function. Simi-

larly, transA is either storeB or I.

We cannot know at the time of specification what the value of the transformation

function will be. The use of an uninterpreted function (from a generic theory) as

the transformation function allows the function to appear as a place holder in the

proof. Later, when the specification is composed with the specification of another

device, the uninterpreted transformation functions in both specifications can be

instantiated with the appropriate values.

Having the transformation function appear directly in the specification, as was

just shown, has a disadvantage: we must specify every level of the device using

transformation functions and, more importantly, must deal with temporal issues

between levels as they relate to the tra.nsformation functions. For example, the

transformation occurring on the state at the micro-level is a composition of the

smaller transformations occurring to the state at the phase-level. Thus, we need a

different transformation function at each level and we must know how they compose.

This places a large burden on the proof, as these assumptions about the abstract

transformation functions will all have to be put into the proof and discharged when

the devices are composed.

There may be times when we need to know the transformations taking place in

a piece of shared state in detail. Many times, however, we can use some abstrac-

tion of the transformation and only look at changes to the state using a courser

time granularity. We do not want to have the transformation functions appear in

the lower levds of the specification. In these cases, we can put the transformation

functions in the state abstraction function. By putting the transformation in the

state abstraction function for the micro-level state, for instance, the transformation

function appears in the specification of the macro-level, but not in the specifica-

tion of the micro-level (or below). This is the technique used in the specification

of AVM-I; we present a concrete example of its use in Chapter 5.
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Chapter 4

The Formal Models

This section presents a formalization of the theory developed in the last section.

There are two points to make before we formalize the mathematical definition:

• We are free to make some of the abstract entities in the mathematical def-

inition more concrete. For example, we will represent the instruction set as

a list. What we make concrete and what we leave abstract is a subjective

choice. We want to make the definition concrete enough that we can prove

interesting theorems about it without restricting the model in unnecessary

ways.

• There will be more details to consider concerning types, definitions, and so on

since we are dealing with a formal system. HOL's polymorphic type system

frees us from some of this, but the details still have to be right.

This chapter formalizes two interpreter models: a synchronous model and an

asynchronous model. The terms "synchronous" and "asynchronous" are historical.

Our original, synchronous model was too restrictive to support asynchronous mem-

ory and thus was described as a model for synchronous memory machinesmquickly

shortened to the synchronous model. The less restrictive model was naturally called

"asynchronous." Perhaps the terms are unfortunate since, as we will see, the tem-

poral abstraction in both models is synchronous. The synchrony is deterministic

in the "synchronous" model and non-deterministic in the "asynchronous" model.

Of course, calling the models "deterministic" and "non-deterministic" would be

confusing as well and we have chosen to keep the historical names. The first part

of this chapter will present the theory of synchronous interpreters. The second part

of the chapter presents the less restrictive model of asynchronous interpreters.

4.1 Synchronous Interpreters

The theory presented in this section is for synchronous interpreters. In a syn-

chronous interpreter model, the number of instructions in the implementation re-

quired to implement each instruction in the interpreter is deterministic. Obviously

for microprocessors that have loops in their microcode or use asynchronous memory,

the synchronous model will not suffice. We present it, however, because it is more
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straightforward and somewhat easier to use; there are times when one can live with

the restrictions of the synchronous model.

4.1.1 The Abstract Representation.

The abstract representation is the interface to the generic theory. We specify the

abstract representation by defining a list of abstract objects and operations. The

operations are functions with domains consisting of both abstract and concrete

types.

let cpu_abs = new_abstract_representation

[
('inst_list'," :(*key#(*state->*env->*state)) list")

P

('select ',":*state->*env->*key")

('keyc,":*key->num")

(' cycles'," :*key->num")

('subst ate'," :*state '->*state" )

I

('subenv ',":*env '->*env")

('Impl' ,

(' count'
.

( 'begin' ,
.

P

];;

" : (time ' ->*state' ) -> (time ' ->* env ' ) ->bool")

," :*state ' - >* env ' ->*key ' ")

":*key'")

Not all of the members of the abstract representation are used in the definition of

the interpreter. Some of them are only used to specify the theory obligations and
formulate the correctness statement.

Before describing the abstract representation, we must emphasize that the repre-

sentation is abstract and therefore, the objects and operations have no definitions.

The descriptions that follow are what we intend for the representation to mean.

The representation is purely syntactic, however; the names are simply convenient
mnemonics.

We begin by giving a description of the abstract types used in the representation.

We know nothing of the structure or composition of an abstract type.

• :*state represents the state and corresponds to S in the informal description

presented in Chapter 3.

46



• :*env represents the environment and corresponds to E in the informal de-

scription presented in Chapter 3.

• : *key is type containing all of the keys and corresponds to K in the informal

description presented in Chapter 3.

In addition to these abstract types, the representation makes use of several concrete

types: :time, :hum, and :bool. The list and --. (function) type constructors are

used as well. We add primes to the types to indicate that they represent state,

time, etc. at the implementing rather than the implemented level.

As we mentioned earlier, there is a trade-off between the concreteness of the

representation and the strength of the final result. We could make the specification

of generic interpreters more abstract, but the result would likely be weaker. We

could make it more concrete to strengthen the conclusions, but then we risk making

it unusable. A good example of this trade-off is the representation of the instruction

set.

Our consideration for concreteness led us to discard a completely abstract object

such as :*inst_set. As a practical issue, the theorems and tools for manipulating

lists are codified much better in HOL than they are for sets. Since we will be

proving results about the instruction set in order to instantiate the abstract theory,

we chose lists over sets as the aggregation mechanism.

The abstract function inst_list corresponds to J in the mathematical definition

presented in Chapter 3. The instruction set, inst_list, is a collection of state

transition functions and is denoted by a list of pairs. The first member of the pair

is a key and the second member is a state transition function which operates on a

state object and an environment object to produce a new state.

The second member of the representation is the select function that picks a key

based on the present state and environment. The select function corresponds to

)C from the definition in Chapter 3.

The key returned by the select function is used to choose a member of the

instruction list. The third member of the representation is used in indexing the

instruction list. Since our representation for the instruction set is a list, key maps

an object of type :*key to a number which is used with the HOL list indexing

function EL to pick an instruction from the list. Together, EL and key correspond

to the function C from the definition in Chapter 3.

The model presented here is synchronous and therefore the proof requires that

the number of cycles in the implementation be determinate for each instruction in

inst_list. The function cycles returns, for each object of type :*key, the number

of cycles used to implement the instruction associated with that key.

The function substate, which corresponds to ,.q in Chapter 3, is the state abstrac-

tion for the interpreter. Notice that the domain of substate is primed indicating
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that it is from the implementing level. The function subenv, which corresponds to

£ in Chapter 3, is the environment abstraction function.

The definition in Chapter 3 did not treat the implementation. Because we want

to prove correctness results about the interpreter, we must have something to verify

it against. The final three functions in the abstract representation provide the

necessary abstract definitions for the implementation.

Impl is the abstract implementation. We could have chosen to make this function

more concrete and define it as we do the interpreter (see Section 4.1.3), but doing

so would require that every implementation be an interpreter or at least have some

pre-chosen structure. As we wiU see in the example (Chapter 5), the implementation

need not be modeled as interpreter at all. Thus, we say nothing about it besides

defining its type. For now, its structure and operation are completely unknown.

The abstract function count is analogous to select except it operates at the

implementing level. Notice that it uses the state and environment at the imple-

menting level to produce a key for the implementing level. As we will see, this

function is important in synchronizing the two levels. In the course of the verifica-

tion we will ensure that the implementation periodically reaches the beginning of

its cycle, denoted by the last member of the abstract representation, begin.

We must emphasize once again that even though we have spent several paragraphs

defining what each of the members of the abstract representation mean, they are

truly abstract and have no meaning in the formal theory other than the relationships

that will be defined in the theory obligations.

4.1.2 The Theory Obligations.

Theory obhgations represent the semantics of the interface to the generic theory. In-

side the theory, the only thing we know about the abstract representation presented

in the last section is what the theory obhgations say about it.

What properties should the theory obligations have?

We would like the theory obhgations to be su._icient to prove the correctness

result. We make no claim that they are sufficient to prove any other property
about our model.

We also would like, but do not require, that the theory obhgations all be

necessa_ to prove the correctness result. An unnecessary obhgation must be

satisfied over and over again for every instantiation, even though it follows

from the other obligations and definitions in the abstract theory. We ignore

obviously unnecessary obhgations that are never used in proving the theorems

in the abstract theory.
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We cannot prove that all of the obligations in the genetic interpreter theory

are necessary, but there are only three of them and they seem reasonably

disjoint.

To prove the correctness result, we must know something about the implementa-

tion. Since the implementation is a member of the abstract representation, nothing

is known about it except the requirements set forth in the theory obligations. Prov-

ing that the implementation implies the interpreter definition is typically done by

case analysis on the instructions; we show that when the conditions for an in-

struction's selection are tight, the instruction is implied by the implementation. In

Section 2.1 we called this the instruction correctness lemma.

The predicate IIISTRUCTION_CORRECT expresses the conditions that we require in

the instruction correctness lemma.

INSTRUCTISN_CORRECT rep s' e' inst =

(Imp1 rep s' e') =_

(V t :time'

let s = (1 t. (substate rep (s' t))) in

1e% s -- (I %. (subenv rep (e' t))) in

let c = (cycles rep (select rep (s t) (e t))) in (

(select rep (s t) (e t) = (FST inst)) A

(count rep (s' t) (e' t) = (begin rep)) ==_
((SND inst) (s t) (e t) = (s (t ÷ c))) A

(count rep (s' (t + c)) (e' (t ÷ c)) = (begin rep))))

INSTRUCTI01__C0PdtECT is not really as complicated as it looks. The predicate op-

erates on a single instruction inst. The implementation implies that for all time,

if inst is selected and the implementation's counter is at the beginning, then two

things are true:

1. Applying the instruction to the current state yields the same state change

that the implementation does in c cycles and

2. The counter in the implementation returns to the beginning of its cycle after c

cycles.

In all cases the number of low-level cycles it takes to implement one upper-level

instruction must be determinate. The use of the abstract function cycles to deter-

mine how long the instruction takes to run, c, enforces this condition.

Using IIISTRUCTION_COI_RECT we can define the theory obligations:
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new_theory_obligations

[

"EVERY (INSTRUCTION_CORrECT rep s' e')

"V k :*key.

"V k:*key.

];;

(inst_list rep)"

(key rep k) < (LENGTH (inst_list rep))"

k ffi(FST (EL (key rep k) (inst_list rep)))"

The first obligation says that every instruction in the instruction list, inst_list,

satisfies INSTRUCTION_CORItECT. The second obligation says that every key maps to

some location in the instruction list. The third obligation says that key actually

maps a key to the instruction with which it is associated (i.e. that the list is ordered

correctly).

As mentioned in Section 2.3, the obligations are used in two ways. First they

are used axiomatically in proving the correctness result; we will do this in the next

section. Second, they are the properties that users of the theory must prove about

an instantiation. We will show this in Section 5.3. As we will see, the obligations

are really a small burden since the first obligation would have to be proven whether

the generic theory was used or not and the other two are simple to prove for most

instantiations.

4.1.3 The Correctness Statement.

Before proving the correctness statement, we must define the abstract interpreter.

In addition to the state and environment, the interpreter is parameterized by the

representation, rep. As discussed in Section 2.3.3, the objects in an abstract rep-

resentation are really selection functions on a higher-order tuple in the logic. Thus

the expression (key rep) in the interpreter definition selects the key function from

the representation. When rep is instantiated, the selection function returns the

concrete function for key.

Fay IrI'EI%P rep (s:time --+ *staze) (e:time ---+ *env) =
V t:time.

le¢ n = (key rep (selecZ rep (s z) (e Z))) in (

s(z÷l) ffi (SND (EL n (insZ_list rep))) (s t) (e t))

The interpreter definition corresponds to I[8, e] in the definition in Chapter 3.

The interpreter relates the state at time t + 1 to the state and environment at

time t through an instruction selected from the instruction list. The instruction

is indexed in the list using the number returned from applying key to the result
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of select and HOL's list indexing instruction EL. The state transition function is

the second element in the resulting pair (selected using SND).

We wish to show that when the theory obligations are met, the implementa-

tion implies the interpreter definition. In order to prove the correctness result, we

will need to define the temporal abstraction between the implementation and the

interpreter.

When time appears in the theory obligations, it is time at the implementation

level. Before we can relate the interpreter and its implementation, we must relate

the different time granularities at the two levels. The relationship between the two

representations of time can be expressed in a recursive function.

(time_shift g s e 0 ffi O) A

(time_shift g s e (SUC n) ffi (

let t ffi (time_shift g s e n) in

t + (g (s z) (e t))))

When applied to time at the interpreter level, time_shift returns time at the

implementation level. Time_shift is the function Y" in Figure 3.5. The function 9

takes a state value and an environment value and returns the number of cycles for

the instruction that is to be executed. We implement 9 using select and cycles.

The function recurses to determine how many implementation cycles were required

to reach the current instruction.

The instruction correctness lemma contains a termination assumption that says

that the implementation clock always returns to the beginning of its cycle at every

interpreter clock tick. This assumption is too messy to appear in the final result

since it seems difficult to discharge. Actually, we can show that a much simpler

assumption implies the more complicated one. This is known as the clock lemma.

The clock lemma shows that if count, the implementation level clock, is at the

beginning of its cycle at time 0, then it will be at the beginning of its cycle for every

clock tick at the interpreter level.

CLOCK_LEMMA =

(Impl rep) s' e' A

((count rep) (s' O) (e' O) ffi(begin rep))

let s = (l t:time. (substate rep (s' t))) and

e = (l t:time. (subenv rep (e' t))) in (

V t. let t_impl ffi

(time_shift

(l st env.

(cycles rep (select rep st env))) s e ¢) in

(count rep) (s' t_impl) (e' t_impl) = (begin rep))

We can use a reset button in the implementation to force the clock to the beginning
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of its cycle at time O.

Using the clock lemma, the theory obligations and several intermediate lemmas,

we can prove the correctness result for our generic, synchronous interpreter.

INTER__CORRECT ffi

let s ffi (A t:time. (substate rep (s' t))) and

• = (A t:time. (subenv rep (e' t))) in (

(Impl rep) s' e' A

((count rep) (e' O)
let f = time_shift

(A st env.

(INTERP rep) (s o f)

(e' O) = (begin rep)) =:_

(cycles rep (select rep st env))) s e in

(e o f))

The state and environment variables in the correctness theorem, s and e, are func-

tions of time at the implementation level. Of course, to use them as arguments to

the interpreter definition, INTERP, we need to temporally abstract implementation

time to interpreter time. Using time_shift, we can modify the state and environ-

ment streams, producing streams appropriate for the interpreter. The expression (s

o f) represents the interpreter level state stream whereas s is the implementation
level state stream.

The correctness theorem states that the implementation implies the definition of

the interpreter as long as the implementation clock starts off at the beginning of its

cycle. Of course, the result is also predicated on the theory obligations. They are

not visible in the theorem, but they must be discharged before it can be used.

4.2 Asynchronous Interpreters

The previous section presented a formal model of generic interpreters where the

synchronization function, time_shift, operated deterministically. The determin-

ism was provided by the abstract function cycles which returns the number of

implementation cycles for each member of the instruction set. Often, such deter-

ministic synchrony is not desirable, or even possible.

• The number of implementation cycles may depend not only on the instruction,

but on the arguments to the instruction as well. A multiply instruction is one

example.

• The number of implementation cycles may depend on some external device or

signal. Examples of this include asynchronous memory, an interrupt, or user

input.

Since instructions with non-deterministic synchrony in their implementations oc-

cur so frequently in computer systems, our model would not be very useful if it
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Figure 4.1: The function .7", which maps time at one level to another, can

be defined in terms of a predicate, _, which is true only when

the mapping occurs.

excluded them. This section presents a modification of the synchronous model pre-

sented in the last section. The new model removes the restriction that the number

of implementation cycles for each instruction be deterministic, while maintaining

the strong correctness result. The section starts off with a discussion of a more

general view of temporal abstraction and then presents the modified theory.

4.2.1 Temporal Abstraction

Section 3.3.4 presented an informal look at stream abstraction. As discussed in that

section, a major component of abstraction over streams was temporal abstraction.

The function time_shift, which appeared in Section 4.1.3, was an attempt to

relate the different views of time at the implementing and implemented levels in

the synchronous interpreter. The function was simple in concept and execution,

but is too restrictive. This section presents the development of a formal theory for

temporal abstraction. The development follows that of [Joy89a,Me188,Her88]. The

ML code creating this theory is contained in [Wing0b] .

Figure 4.1 is the same as Figure 3.5 except for the representation of the predicate,

_. This predicate is true whenever there is a valid abstraction from the lower

level to the upper level. We can define a generic temporal abstraction function

in terms of {_. It may seem that we have given up having to define cycles only

to be burdened by having to define _; but as we will see, defining G is much less

restrictive than defining cycles. In a microprocessor specification, _ is usually

a predicate indicating when the lower level interpreter is at the beginning of its

cycle--a condition that is easy to test.

To begin, we can define First and Nex't, two predicates that use _ to express
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two very important concepts. The predicate First is true when t is the first time

that 8 is true.

_a,J First g t =

(V p:time, p < t ==_ "(g p))

(g t)

The predicate Next is true when t2 is the next time after tl that g is true.

_a_ Next g (tl,t2) =

(tl (t2) A

(V t:time, tl < t A t < t2

(g t2)

-(g t)) A

We would like to define _" (see Figure 4.1) using First and Next. Clearly, at time

tl, First g t_ is true. In addition, Next g (t_,t_), Next g (t_,t_), Next g (t_,t_),
! I

and Next g (ts, tlo ) are true as well. How can we use First and Next, both pred-

icates, to return the proper wlues?

The axiomatisation of HOL uses Hilbert's choice operator, e. Given some predi-

cate P, e z. P(z) represents a value satisfying P. For example,

[_ x:num, x * • = 25 I

denotes 5 (but not -5 as the type ntm only contains the natural numbers). So, using

the choice operator, we can define _" as follows (.T has been renamed to Temp_Abs

which is more mnemonic):

_a_ (Temp_Abs g 0 - _ t:time. First g t) A

(Temp_Abs g (SUC n) • e t:time. Next g (Temp_Abs g n,t))

So, Temp_Abs at time 0 is the first time g is true and Temp_Abs at time n + 1 is the

next time after time, when 8 is true.

The only problem with this definition is that Hilbert's operator is difficult to use

in proofs since the methods for handling it in HOL are relatively weak. Fortunately,

it is possible to prove theorems about Temp_Abs that make it simple to reason about

its behavior. Several of these are defined in the temporal abstraction theory found

in [Win90b] . One of the most important is the following theorem that says that

if 8 is true infinitely often and a relation, r, holds between points of time at the

upper level, then the same relation holds between the times returned by Temp_Abs.
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INF_Temp_Abs-

_- Vgr.

(3 z:time, g t) A

(V t:tlme, g t _ 3 n. Next g (%,t+n) A r(t,%+n))

V u. r(Temp_lbs g u, Temp_lbs g (u+l))

Another useful theorem describes what happens when g is always true.

Temp_Abs_DEOENERATE =

F-Temp_Abs (X t:time. T) --I

This is a degenerate case and as intuition would suggest, Temp_Abs simply reduces

to the identity function, I. It might not be clear why this last theorem is of use.

In defining the generic theory, we will assume that a temporal abstraction always

exists between levels in a specification. Such is not the case; sometimes, there

is no temporal abstraction. Rather than dealing with this as a special case, it

is convenient to use the general theory with a degenerate temporal abstraction

function.

4.2.2 The Abstract Representation

The abstract representation for the asynchronous model is identical to the repre-

sentation for the synchronous model except that the abstract function cycles has
been eliminated.

let cpu_abs - new_abstract_representation

[

('inst.list ',":(*key#(*state->*env->*state) )list" )

('key', ": *key->num")

( ' select '," :*st at e->*env->*key" )

('substate',":*state '->*state" )

('subenv'," :*env'->*env" )

('Impl' ,": (time'->*state' )->(time '->*env ')->bool")

('count ',":*state '->*env j->*key '")

('begin' ,":*key'")

];;

55



The meaningsof the abstract functions in the representation are identical to the

meanings of the functions in the abstract representation for the synchronous model.

Of course, they are only place holders in the definitions that follow.

4.2.3 The Theory Obligations

The major change in the theory obligations for the asynchronous model involves

the instruction correctness predicate. The instruction correctness predicate for the

synchronous model was able to calculate the number of cycles required to implement

an instruction using the abstract operation cycles. The length of an instruction

cycle in the asynchronous model is indeterminate, but finite. In fact, that is all we

need to say about it to prove the correctness statement. We will say that there

exists a time in the future when the current cycle will be over. The currently

selected instruction applied to the current state should yield the same value as the

state at beginning of the next cycle.

_de! INST_CORRECT rep s' e' inst =

(Impl rep s' e')

(V t :time'.

let s ffi(_ t. (substate rep (s' t))) in

let e = (A t. (subenv rep (e' t))) in

let g = (A t. (count rep (s' t) (e' t) = (begin rep)))

(select rep (s t) (e t) = (FST inst)) A

(count rep (s' t) (e' t) = (begin rep))

3 c. Next g (t,t+c) A
((SND inst) (s t) (e t) = (s (t * c)))))

in (

As before, s and e are the abstracted state and environment. We define, g, the

predicate that is true when the cycle is over, by testing if count is equal to begin.

The predicate Next uses g to constrain the existentially quantified variable, c, to

the time when the cycle ends.

Once the instruction correctness predicate has been defined, the theory obliga-

tions for the asynchronous model are identical to the theory obhgations for the

synchronous model.

new_theory_obligations
[

"EVERY (INST_CORXECT rep s' e') (inst_list rep)"

"V k:*key. (key rep k) < (LENGTH (ins¢_list rep))"

"V k:*key k = (FST (EL (key rep k) (inst_list rep)))"

];;
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Due to the changes in the instruction correctness predicate, the theory obligations

for the asynchronous model are less restrictive than the theory obligations in the

synchronous model; nevertheless, they are sufficient for proving the correctness

result. As we will see in Chapter 5, however, satisfying the less restrictive obligations

can be more difficult than satisfying the obligations for the synchronous model; this

can make instantiating the generic theory more difficult.

4.2.4 The Correctness Statement

Just as in the synchronous model, we must define the interpreter before we prove

a correctness statement about it. The definition for the interpreter is the same in

both models.

_d4 INTERP rep s • =
V t:time.

let n = (key rep (select rep (s t) (e t))) in (

s(t+l) ffi (SND (EL n (insr_list rep))) (e t) (e t))

The specification of an interpreter is a predicate relating the contents of the state

stream at time t + 1 to the contents of the state stream at time t. The relationship

is defined using the functions from the abstract representation in the same manner
as before.

An important step in proving the correctness result is showing that the implemen-

tation implies that the next state follows from the currently selected instruction. Of

course, the theory obligations play an important part in proving this lemma, which

is called the next-state lemma.

INPL_NEXTSTATE_LEMMA ffi

let s = (A t:time. (substate rep (s' t))) and

e = (A t:time. (subenv rep (e' t))) and

f = (A %. (count rep (s' t) (e' t) = (begin rep)))

(Impl rep s' e')

(V t:time '.

(count rep (s' t) (e' t) ffi(begin rep))

3c.

|ext f (t,t+c) A

((substate rep (s' (t + c))) ffi

(SND (EL (key rep (select rep (s t) (e t)))

(inst_list rep))) (s t) (e t))))

in (

The implementation-level clock is assumed to start at the beginning of its cycle

and the Next function is used to constrain the clock so that it terminates, ready to

start the cycle again.
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We use the next-state lemma to prove the correctness result. There is no need

to prove a clock lemma in the asynchronous model. The clock lemma in the syn-

chronous model proved that the temporal abstraction function, time_shift, be-

haved correctly. In the asynchronous model the temporal abstraction function is

correct b_/ definition. The use of the choice operator says that the value wiU be

correct provided one exists.

IMPL_I_CORRECT ffi

F let s = (A ¢:time. (substate rep (s' t))) and

• " (A r:time. (subenv rep (e' t))) and

f - (A t:time. (count rep (s' t) (e * t) = (begin rep)))
let abs- (Temp_Abs f) in (

(Imp1 rap s' e') ^
C3 t. _ t)

(INTERP rep) (s o abs) (s o abs))

in

In the correctness statement, s' and e' are the state and environment streams

in the implementation. The terms (s 0 abs) and (e o abs) are the state and

environment streams for the interpreter defined in the theory. They are data and

temporal abstractions of s ' and e'. The correctness statement says that if the

implementation is valid on its state and environment streams and there is a time

when the implementing clock is at the beginning of its cycle, then the interpreter is
valid on its state and environment streams.

4.3 Conclusions

We have now proven a correctness statement for two different interpreter models.

These models each define a class of computational objects. The correctness results

provide a verification of ever_ microprocessor matching the loose semantics defined
in the models.

The most important benefit of the generic models is that they structure the proof.

A generic model states explicitly which definitions must be made (one for each of the

members of the abstract representation) and which lemmas need to be proven about

these definitions (namely, the three theory obligations). This is a large improvement

over previous microprocessor verifications where these decisions were made on an
ad hoc basis.

For each model, the correctness theorem, definitions, and abstractions that make

up the theory are important for several reasons.

1. The models show exactly what is required to verify that an interpreter is cor-

rect. There is no superfluous detail cluttering up the definitions and theorems.
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The generic proof is easier than the specific proof. This point is subjective,

but having completed three different specific interpreter proofs, we found that

proving the correctness result for the generic interpreter was easier than sim-

ilar theorems for specific interpreters. In proving theorems about specific

interpreters, there is always some amount of detail that is necessary for the

specific interpreter, but not meaningful in the correctness result. Even so, this

detail must be manipulated to complete the proof.

Temporal abstraction issues are handled completely within the generic theory.

This frees the user of the theory from proving theorems about the temporal

abstraction; it is only done once, when the theory is built.

Similarly, data abstraction between the state and environment streams at

the two levels in the theory is clearly defined and consistently performed.

The user's contributions are to define the abstractions, the theory uses the

abstractions to effect the proof.

The generic proof can be instantiated, allowing the theorems to be reused and

saving the verifier from having to reverify these theorems.

The use of a generic interpreter theory for specifying and verifying micropro-
cessors provides a methodological approach. Making specification and verification

methodological is an important step in turning what has primarily been a research

activity into an engineering activity. We believe that the most important contribu-

tion of this work may be the organization that the generic theory provides.

59



60



Chapter 5

A Verified Microprocessor

We have designed a computer designated AVM-I (A Verified Microprocessor) to

demonstrate the ,se of generic interpreters in verifying hierarchically decomposed

microprocessor specifications. There are several reasons why we chose to design our

own microprocessor rather than using an existing one:

In order to verify a commercial microprocessor, we would have to have access

to the design, which is likely to be proprietary. Further, the design would

have to be correct, which is unlikely.

A formal specification for a commercial microprocessor is unlikely to be avail-

able.

Any specification written for a commercial microprocessor would be "after the

fact" and therefore suspect.

There are architectural and organizational features that can ease the burden

of verification. An existing microprocessor might not have these features.

Among these are regular instruction formats and microcoding. We will explain

why these features reduce the verification effort.

Our design is am attempt to build a microprocessor that is at once verifiable,

implementable, mad usable. We have been influenced by our own experience in ver-

ifying microproce, sors [Wing0a], the experience of others [Joy89a,Coh88a], and our

desire to provide hardware features in support of operating systems; such features

include interrupts, memory management, and supervisory modes. A VM-1 is part of

a verified chip set being designed and verified by the Computer Systems Verification

Group at the University of California, Davis. Other pieces of the system include

a memory management unit, a floating point unit, an interrupt controller, and a

direct memory access chip.

Counter to the current trend in microprocessor design, we have chosen to imple-

ment A VM-I usiog microcode. We believe that microcoding a verified design can

reduce the amou,t of effort required to verify the implementation. As we mentioned

in Section 3.1, we can hierarchically decompose the specification in order to limit the

number of difficult cases in the proof. Recall that the difficulty is caused by the size

of the electronic block model description and the fact that it is a structural, rather
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than a behavioral specification. In verifying a hierarchically decomposed specifica-

tion, these difficult cases occur when verifying the phase-level with respect to the

electronic block model. If the microprocessor is not microcoded, the phase--level

description becomes much more complicated and the difficulty of the phase-level

proof is exacerbated. This is not to say that hardwired designs cannot be verified,

just that they are more difficult.

Another reason for using microcode in the design of a verified microprocessor

is the opportunity it affords for easily reverifying the microprocessor when minor

changes to the design are made. As we will see, the most difficult part of a micropro-

cessor verification is proving the correspondence between the electronic block model

and the phase-level. The phase-level description can be parameterized over the mi-

crorom so that the microrom, and consequently the microprocessor's behavior, can

be changed without having to redo the difficult phase-levd verification. Once a

verified phase-level interpreter exists, establishing a proof for a new macro-level can

be accomplished with little additional effort.

• Because of the regularity of the proofs for the macro-level and micro-level,

general purpose tactics can be devised to verify these levels.

• The proof can be completed by defining the microcode, reverifying the new

design using the tactics mentioned above, and instantiating the generic inter-

preter theory to generate the proof.

Thus a microprocessor design can be customized at very little additional cost after

the initial micro-engine has been verified and tactics for verifying the higher levels

in the hierarchy have been developed.

This chapter presents a detailed example of how the generic interpreter theory

can be used to verify a microprocessor. We begin with a discussion of the archi-

tecture and organization of A VM-1. The second section of the chapter formally

specifies each of the levels in the hierarchical decomposition of A VM-1. The last

section describes the development of a correctness proof for A VM-I using the formal
specifications and the HOL verification environment.

5.1 A VM-I's Architecture and Organization.

We distinguish between a computer's architecture and its organization. The former

is behavioral in nature and the latter structural. Our goal in this chapter is to

show that a particular organization correctly implements our desired architecture.

This section will give a brief, natural language description of the architecture and

organization of AVM-I. Later in this chapter, we will present a formal specification

of both using higher-order logic.
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5.1.1 An Architectural View.

A computer's architecture is its programming interface; an architecture describes a

language and how that language is interpreted. The language definition contains a

specification of the computer's state and the instructions available for manipulating

that state. The architecture must also define how instructions are selected.

Specifying an architecture amounts to defining a language. This definition can

be done in a natural language or in a more formal language; but, still primarily

tells the programmer how the machine interprets instructions. This section uses

a combination of natural language and a less ambiguous register transfer language

(RTL) to describe AVM-I. The description is similar to what one would find in a

programmer's manual for a commercial microprocessor.

The instruction set was inspired by the RISC I instruction set found in Kateve-

nis [Kat85]. There are a number of differences, but many features in the RISC I

instruction set (such as using ALU operations to synthesize a MOVE instruction)

were incorporated into the AVM-1 instruction set. As we will see in the section

on organization, however, AVM-1 cannot be called a RISC architecture since its

microcoded implementation is different than today's RISC chips.

One caveat: AVM-I was not designed to be a showcase for architecture, but

rather to show that microprocessors with modern features such as privileged modes

and interrupts could be verified. While one may quibble with the design of AVM-1,

this in no way affects the usefulness of the example.

5.1.1.1 RTL Notation.

We will use a register transfer language to describe the semantics of the instruction

set. There are many register transfer languages in use; the notation and symbols

for the RTL used in this dissertation are found in Table 5.1. In general, any capital

letter refers to a register. We will define the symbols standing for certain registers

later, as the registers are described. Memory is designated by M. Most of the other

symbols are sdf-explanatory. The keyword status returns the status of the last

ALU operation, that is the carry, overflow, negative, and zero flags.

5.1.1.2 The Registers.

AVM-1 has a load-store architecture based on a large register fLle. The register f-Lie

(denoted R in our RTL) is divided into three portions:

1. Register 0 which is read-only and contains the constant 0.
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Table 5.1: Symbols in the Register Transfer Language.

Symbol Meaning Example

letters

subscripts

R[x]
()
MIX]
¢=

p-_ Opl [ Opl

+

V

A

@

shl

shr

_Br

msb

lsb

status

a register

one or more bits in a register

register X of the register file

field in a register

location X in memory

transfer of information

if p then Opl else Op2

separates parallel operations

add

subtract

logical-OR

logical-AND

logical--exclusive--OR

logical-complement

logicalshiftleft

logicalshiftright

arithmetic shiftright

most significantbit

least significantbit

status of last ALU operation

PSW, PC

PSW4

R[IO]

PSW(1-4)

M[PC]

PC _ R[3]

PSW8 --+ (B ¢= C) I(B ¢= D)

B_C,D_E

B_C+D

Bc=C-D

Bc=CVD

Be=CAD

B¢=COD

B ¢= -_C

B _= shl C

B _= shr C

B ,_= asr C

PSWl ¢= msb C

PSW, ¢= lsb C

PSW(O-3) ¢= status
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Table 5.2: The program status word.

Bit Meaning when set

0 Last ALU result was zero

1 Last ALU operation caused a carry

2 Last ALU result was negative

3 Last ALU operation caused a overflow

4 Interrupts enabled

5 In supervisory mode

. Seven supervisor-mode registers including a distinguished register for use as

the supervisor stack pointer (denoted SSP). The supervisor-mode registers

are read-only unless the CPU is in supervisor-mode (determined by the 6 th

bit in the program status word).

3. Twenty-four general purpose registers.

Two additional registers are visible at the architectural level: the program counter

and the program status word. The program counter (denoted PC) is used to sequence

the computer--it indicates which instruction in memory to execute next.

The program status word (denoted PSi/) is used to keep track of the status of the

last ALU operation, whether or not interrupts are enabled, and the privilege level

of the CPU. Table 5.2 shows the meaning of the 6 bits in the program status word.

AVM-I shares a register, IVEC, with the interrupt controller. This register con-

tains the interrupt vector and is read--only as far as the CPU is concerned.

5.1.1.3 The Instruction Set.

The instruction set contains 30 instructions. The opcode space has room for 64; the

upper half of the opcode space is reserved for future co-processors. As mentioned

above, the instruction set is based on a load-store architecture, meaning that most

instructions are not allowed to access memory for their operands.

The Instruction Format. The instruction formats are simple and regular. Fig-

ure 5.1 shows the four instruction formats. All of the formats use the same opcode
field.

In formats 1 and 2, the instruction is divided into four fields. The top 6 bits

(31-26) give the opcode of the instructions. The next 5 bits (25-21) denote the

destination register in most operations. The third field (bits 20-16) selects the

register used as the A operand in most operations. In format 1, the fourth field is

comprised of bits 15-11 and is used to select the register used as the B operand.
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Format 1:

31 25 20 15 10 0

opcode dest A B unused

Format 2:

31 25 20 15 0

opcode dest A immediate

Format 3:

31 25 20 0

I dest unusedopcode

Format 4:

31 25 0

opcode unused

Figure 5.1: The instruction formats in AVM-1.

In format 2, the fourth field uses all of the 16 remaining bits to form an immediate

number (0 to (216- 1)).

Format 3 is identical to formats 1 and 2 except that only the opcode and desti-

nation fields are used. Format 4 uses only the opcode field.

There is a trade off between instruction format complexity and verification effort,

so in general the instruction format should be kept as simple as possible. A regular

instruction format, while not essential to verification, can greatly reduce the amount

of detail that has to be dealt with in the proof.

Instruction Set Semantics. The instruction format is essentially an instruc-

tion's syntax. Of course, syntax alone is not enough; we must also specify what

each instruction means. There are many ways of specifying the semantics of CPU

instructions; this dissertation will use two of them. In this section, we give a register

transfer language description of the instructions in A VM-1. In Section 5.2.6 we give

a formal description of the semantics of a sample of the instructions; the complete

description can be found in [Win9Ob] .

The 30 programming levelinstructionsare shown in Table 5.3. There is a group

of eight,3-argument arithmetic instructionsand another group of 8 arithmetic in-

structionsthat use a 16--bitimmediate value. There are 4 instructionsfor loading
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Table 5.3: The AVM-I instruction set.

Mnemonic Format Effect

JMP 2 Jump to new location on condition flags

CALL 2 Call subroutine

INT 2 User interrupt

RTI 4 Return from interrupt

GPSW 3 Get program status word

PPSW 3 Put program status word

LD 1 Load register

ST 1 Store register

LSL 1 Logical shift left

1LSR

ASR

RTN

LDI

STI

ADD

ADDC

SUB

SUBC

Logical shift right

Arithmetic shift right

Return from subroutine

Load register using immediate value

Store register using immediate value

Add

Add with carry

Subtract

Subtract with borrow (carry)

BAND 1 Bit-wise conjunction

BOR 1

1

BXOR

BNOT

ADD

ADDC

SUB

SUBC

BAND

BOR

BXOR

1

1

Bit-wise disjunction

Bit-wise exclusive disjunction

Bit-wise negation

Add using immediate value

Add with carry using immediate value

Subtract using immediate value

Subtract with borrow using immediate value

Bit-wise conjunction using immediate value

Bit-wise disjunction using immediate value

Bit-wise exclusive disjunction using immediate value

NOOP 4 No operation
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Table 5.4: Jump codes for the JMP instruction.

Code Meaning

0 carry

1 no carry

2 overflow

3 no overflow

4 negative

5 positive

6 equal

7 not equal

8 lower or same (unsigned

9 higher unsigned)

10 less than (signed)

11 greater or equal (signed)

12 greater than (signed)

13 greater or equal signed)

14 unconditional

15 unconditional

and storing registers. In addition, there are instructions for performing user inter-

rupts, juml_, subroutine calls, and shifts.

The remainder of this section provides detailed descriptions of A VM-I's instruc-

tion set. The instructions are specified in our register transfer language and de-

scribed where appropriate. The RTL specification only describes the part of the

state that changes; state that is unaffected by the instruction is ignored. In the

descriptions, a is the value of the A source field in the instruction, b is the value of

the B source field, d is the value of the destination field, and ±ram is the immediate

field value.

JMP -- jump. The JMP instruction jumps on one of 15 different conditions

according to the value returned from the function j c. The destination field, d, is

used as an argument to j c to select one of the jump conditions listed in Table 5.4.

If the result is true, the sum of R [a] and ±ramis loaded into the program counter.

Otherwise, the program counter is incremented.

jc(d) --+ (PC _ R[a] + imm) I (PC _ PC + I)

CALL _ call a subroutine. The program counter is loaded with the sum

of R[a] and i_m. The old value of the program counter is saved on a stack in

memory. The destination field points to the stack pointer.
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PC ¢= R[a] + imm,

R[d] 4= R[d] + I,

M[R[d]] 4= PC + I

Note that the operations in the above RTL description allhappen in parallel(de-

noted by the comma). Thus M [R [d]] refersto the memory value at the location

pointed to by the 0ri#i_alvalue of R [d].

RTN -- return from a subroutine. The top of the stack pointed to by regis-

ter R [d] is popped and loaded into the program counter.

PC 4= M[R[d] - i],
R[d] 4= R[d] - I

INT -- user interrupt. The INT instructionjumps to the location given in the

8 least significantbitsof £mm and storesthe old program counter on the supervisor

stack pointer. Interrupts are disabled and the CPU goes into supervisory mode.

PC 4= imm A 255

R[ssp] 4= R[ssp] + I,

M[R[ssp]] 4= PC + I,

PSW4 4= false,

PSWs 4= true

RTI -- return from interrupt. The program counter gets the value on top of

the supervisor stack, the value is popped from the top of the stack, interrupts are

enabled, and the CPU leaves supervisory mode.

PC 4= M[R[ssp] - I],

R[ssp] 4= R[ssp] - I,

PSW4 4= true,

PSWs 4= false

GPSW -- get program status word. The program status word is stored in

the register selected by the destination field, R [d].

R[d] 4= psw,

PC 4= PC + I
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PPSW -- put program status word. The register selected by the destination

field, R[d], is moved to the program status word if the CPU is in supervisory mode.

PSWs --_ (psw ¢= R[d]),

PC _= PC + i

LD -- load from memory. Register R [d] isloaded with the contents of memory

at the location given by the sum of registersR [a] and R [b].

R[d] M[R[a] + Rib]],

PC _ PC + I

LDI -- load from memory using immediate value. LDI operates exactly

like LD except that the address is given by the sum of R [a] and imm.

R[d] _ M[R[a] + imm],

PC _ PC + 1

ST -- store to memory. The contents of the destination register, R[d], are

stored in memory at the address given by the sum of registers R [a] and R [b].

M[R[a] + R[b]] ,_= R[d],

PC ,_= PC + I

STI -- store to memory using immediate value. STI operates exactly like ST

except that the address is given by the sum of R [a] and imm.

MEREa] + imm] _ R[d],

PC _ PC + 1

LSL -- logical shift left. The destination register, Rid], gets the contents

of R [a] shifted left one position. The carry field of the program status word gets

the value of the bit that was shifted out.

R[d] ,_: shl R[a],

PSWl _;=msb R[a],

PC _ PC + 1
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LSR -- logical shift right. The destination register, R[d], gets the contents

of R[a] shifted right one position. The carry field of the program status word gets

the value of the bit that was shifted out.

R[d] 4= shr R[a],

PSWI 4= isb R[a],

PC 4= PC + i

ASR -- arithmetic shift right. The destination register, R[d], gets the con-

tents of R [a] shifted right arithmetically one position. That is, the most significant

bit isretained in itsposition during the shift.The carry fieldof the program status

word gets the value of the bit that was shiftedout.

Rid] 4= asr R[a],

PSWI 4= isb R[a],

PC 4= PC + I

NOOP -- no operation. No state changes take place except that the program

counter is incremented.

PC 4= PC + I

ADD _ add. The destination register, R [d], gets the sum of the R [a] and R[b]

registers. The program status word is updated with the status from the ALU.

Rid] 4= R[a] + R[b],

PSW(O-3) 4= status,

PC _ PC + 1

ADDI -- add immediate. The result is identical to that of the ADD instruction

except that the value of the immediate field is used instead of R[b].

R[d] 4= R[a] + imm,

PSW(0-3) 4= status,

PC 4= PC + 1

ADDC -- add with carry. The destination register,R[d], gets the sum of

the R[a] and R[b] registersplus the value of the carry bit in the program status

word. The program status word isupdated with the statusfrom the ALU.
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REd] _ REa] ÷ REb]
PSW(O-3) 4= status,

PC 4= PC + I

+ PSWI,

ADDCI -- add immediate with carry. The result is identical to that of

the ADDC instruction except that the immediate field is used instead of the R [b]

register.

R[d] _ R[a] + imm ÷ PSWI,

PSW(O-3) _ status,

PC _ PC + I

SUB -- subtract. The destination register, l_[d], gets the value produced by

subtracting l_[b] from 1_[a]. The program status word is updated with the status

from the ALU.

R[d] 4= R[a] - Rib],

PSW(O-3) _ status,

PC 4= PC + 1

SUBI -- subtract immediate. The result is identical to that of the SUB in-

struction except that the immediate field is used instead of the R[b] register.

KEd] 4= R[a] - imm,

PSW(O-3) 4= status,

PC 4= PC + 1

SUBC -- subtract with borrow (carry). The destination register, R[d], gets

the value produced by subtracting the contents of the R [b] register and the value

of the carry bit from the contents of the R[a] register. The program status word is

updated with the status from the ALU.

REd] 4= REa] - R[b]

PSW(O-3) _ status,

PC _ PC + 1

- PSW,,

SUBCI -- subtract immediate with borrow. The result is identical to that of

the SUBC instruction except that the immediate field is used instead of the contents

of the R[b] register.
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Rid] _ R[a] - imm - PSWl,

PSW(O-3) _ status,

PC _ PC ÷ I

BAND -- bit-wise conjunction. The destination register, R[d], gets the value

produced by taking the bit-wise conjunction of the contents of the R [a] register

with the contents of the R[b] register. The negative and zero flags in the program

status word are updated with the status from the ALU.

R[d] 4= R[a] A R[b],

PSW(0,2) ¢= status,

PC ¢: PC + 1

BANDI -- bit-wise conjunction with immediate. The result is identical to

that of the BAND instruction except that the immediate field is used instead of the

contents of the R [b] register.

R[d] 4= R[a] A imm,

PSW(0,2) _= status,

PC _ PC + I

BOR -- bit-wise disjunction. The destination register, Rid], gets the value

produced by taking the bit-wise disjunction of the contents of the R [a] register

with the contents of the R [b] register. The negative and zero flags in the program

status word are updated with the status from the ALU.

R[d] 4= R[a] V Rib],

PSN(0,2) ¢= status,

PC 4= PC ÷ 1

BORI -- bit-wise disjunction with immediate. The result is identical to

that of the BOR instruction except that the immediate field is used instead of the

contents of the R [b] register.

Rid] 4= R[a] V imm,

PSW(0,2) 4= status,

PC 4= PC + 1

BXOR -- bit-wise exclusive disjunction. The destination register, R[d],

gets the value produced by taking the bit-wise exclusivedisjunctionof the contents
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of the R[a] register with the contents of the Rib] register. The negative and zero

flags in the program status word are updated with the status from the ALU.

R[d] ,_=R[a] G R[b],

PSN(0,2) ,_= status,

PC _= PC + i

BXORI -- bit-wise exclusive disjunction with immediate. The result is

identical to that of the BXOR instruction except that the immediate field is used

instead of the contents of the R [b] register.

R[d] ,_=R[a] • imm,

PSW(0,2) _= status,

PC _ PC + 1

BNOT -- bit-wise conjunction. The destinationregister,R[d], gets the value

produced by taking the bit-wise negation of the contents of the R [a] register.The

negative and zero flagsin the program status word are updated with the status

from the ALU.

R[d] _= -i R[a],

PSW(0,2) _= status,

PC _ PC + 1

Synthesizing Addressing Modes. Besides the CALL and INT instructions which

must access a stack, only the load and store instructions can access memory. All

of the other instructions only operate on the internal registers. This makes the

implementation of the instruction set easier and results in faster operation of most
of the instructions.

The addresses for the load and store instructions are calculated using the sum

of two numbers: a register and either a register or an immediate value. This is a

flexible scheme which allows most popular addressing modes to be synthesized.

Table 5.5 (adapted from [Kat85]) shows how the memory addressing scheme

in A VM-I can be used to support common constructs in modern high-level lan-

guages.

• In direct mode, the A register holds the base of the data segment and the

immediate value allows addressing within +2 is of the base.

• In indirect mode, the A register holds the value of the pointer. R [0] holds
the constant 0.
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Table 5.5: Synthesizing addressing modes using AVM-I's

load and store instructions.

Mode HLL Usage Synthesizing in A VM-1

Direct

Indirect

Indexed

Indexed

Global Scalar

Pointer Dereferencing
Record Field

Array Element

M[R[a] + imm]

M[R[A] + R[0]]

M[R[a] + imm]

M[R[a] + R[b]]

Table 5.6: Synthesizing instructions using A VM-I's instruc-
tion set.

Instructions Synthesizing in A VM-1
Move s to d

Clear d

Set bit x in s

Clear bit x in s

Test s

Increment s

Decrement s

Complement s

ADD R[d]R[s]R[0]
ADD R[d]R[0]R[0]
BORIR[s]R[s]2(_+')
BANDIR[s]R[s]2'8-2(_+')
ADD R[0]R[s]R[0]
ADDIR[s]R[s]1
SUBIR[s]R[s]1
SUBa[s] R[0]R[s]

• To perform memory operations on records, the A register holds the base ad-
dress of the record and the immediate field is used to hold the field offsets

into the record.

• Array operations are performed by using the A register to hold the base ad-

dress of the array and the B register hold the index.

Synthesizing Other Instructions. Even though the instruction set of AVM-1

is quite simple, many common instructions can be synthesized using only one in-

struction. For example, a move instruction can be synthesized by adding the register

to be moved to R [0] which always contains 0. Table 5.6 shows the implementation
of this and other instructions.

The idea behind the simple instruction set of AVM-1 is to implement the opera-

tions that are used frequently in hardware and synthesize operations that are used

less frequently by composing simple operations. For example, the memory address-

ing scheme allows the implementation of the common stack operations in just a few

primitive instructions. Another example is clearing or setting a bit in the program

status word. This takes at least three operations and a temporary register. This is

acceptable, however, since toggling program status word bits is an operation that

occurs much less frequently than the operations that are built into the instruction

set.
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Table 5.7: Opcode breakdowns for AVM-I's instruction set.

00XXX 01XXX 10XXX llXXX

000

001

010

011

I00

101

II0

111

JMP LSL ADD ADDI

CALL LSR ADDC ADDCI

INT ASR SUB SUBI

RTI RTN SUBC SUBCI

GPSW NOOP BAND BANDI

PPSW NOOP BOR BORI

LD LDI BXOR BXORI

ST STI BNOT NOOP

5.1.1.4 Selecting Instructions.

We select instructions in the instruction set using the opcode portion of the word

in memory pointed to by the current value of the program counter. We will only

use the 5 least significant bits of the opcode field, allowing 32 instructions.

Table 5.7 gives a breakdown of the opcodes for AVM-1. The instruction set is

divided into four groups depending on the value of the first 2 bits in the opcode. The

first two groups contain miscellaneous instructions, the third group contains ALU

operations and the fourth group contains the immediate version of the instructions

in group 3.

5.1.2 An Organizational View.

A computer's organization is its structure---what components are used and to what

effect. An organization must define the behavior of the components and how they

are connected together. Abstractly, the goal of the organization is to implement

a particular architecture; but, there may be system requirements not expressed at

the architectural level (such as the memory interface) that are specified and met at

the organizational level.

There are many ways of describing a computer organization. Circuit diagrams,

computer programs, natural language, CAD tools, and mixtures of all of these have

been used. This section will describe the implementation of A VM-1 using circuit

diagrams, pictures, and natural language descriptions.

The implementation of AVM-1 can be divided into two major parts: the datapath
and the control unit. We will discuss each of these.
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Table 5.8: Implementation of the jump codes for the JMP

instruction, c_ is the carry flag in the PSW, zf

is the zero flag, etc.

Code Implementation

0 cf

1 "-,cf

2 vf

3 -vf

4 nf

5 -,nf

6 zf

7 "-,zf

8 (-_cf vzf)
9 "_(_cf Vzf)

10 (nf xor vf)

11 -,(nf
12 --,((nfevf Vzf)

13 ((hi Gvf) Vzf)
14 true

15 true

5.1.2.1 The AVM-1 Datapath.

The A VM-1 datapath is loosely based on the AMD 2903 bit-sliced datapath [Adv83]

and is shown in Figure 5.2. The signals shown at the right-hand side of the fig-

ure connect to the control unit. The signals on the left go to or come from the

environment. Note that none of the clocking signals are shown.

The datapath has three buses, a register file containing 32 registers, and numerous

support registers and latches. Two buses, A and B, are connected to the output ports

on the register file and system registers. The C bus is connected to the input port on

the register file and the system registers. In addition, the interrupt vector register

is attached to the B bus through a special port to the interrupt controller.

The A and B buses feed the inputs to the ALU through two latches. The memory

buffer register can also serve as the A input to the ALU through a multiplexor on

the ALU input. The ALU performs simple arithmetic and boolean operations on

the values on its A and B inputs. The results of the ALU operation are fed to the

shifter which can perform logical and arithmetic shifts. The result from the shifter

is put onto the C bus for distribution.

In addition to a result, the ALU produces a set of status bits (negative, zero,

carry, and overflow) which can be saved in the program status word directly. A
one-bit multiplexor also allows the bit shifted out of the shifter to be saved in the
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carry field of the PSW. The control lines to the PSW allow the supervisor and

interrupt enable bits to be set and cleared and each of the status bits to be loaded

individually.

The status from the PSW and the destination field of the instruction register are

fed into the jump code circuitry. This combinatorial circuit calculates the jump

conditions shown in Table 5.8 and supplies a boolean result which is used to deter-

mine if the program counter should be loaded from the C bus. The program counter

can also be loaded unconditionally.

The instruction register can be loaded from the C bus, but only the immediate

portion of the instruction register can be placed on the B bus.

The memory address register can be loaded directly from the program counter or

from the C bus. This allows the MAR to be loaded quickly for instruction fetches

while still allowing calculated addresses for loads and stores.

The datapath has two flipflops for holding the status of interrupt actions and

three demultiplexors for decoding register selection signals from the control unit.

5.1.2.2 The Control Unit.

The control unit for AVM-1 is shown in Figure 5.3. The control unit has four major

blocks: the mictoprogram counter, the microinstruction register, the clock, and the
microrom.

The microprogram counter is the most complex of the four. The purpose of

the microprogram counter is to compute the next address for the microprogram

based on the current system state. The microprogram counter is fed the condition

and address (addr) fields from the microinstruction register, the opcode from the

instruction register, and the supervisory and interrupt enable bits from the program

status word. There are 5 jump conditions:

.

.

3.

.

5.

No jump; the microprogram counter is incremented. This is the default oper-

ation.

Jump to addr unconditionally

Jump to the locationgiven by the 0pcode signaland an offset(4 in thiscase).

This allows us to use a table lookup approach to instruction decoding in the

microcode. We only use the 5 least significantbits of the f-bit opcode; the

top halfof the instructionset isreserved for a coprocessor.

Jump to addr if the interrupt signal is true and interrupts are enabled.

Jump to addr if the supervisory mode signal is true.
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The microinstruction register is a 40-bit register that holds the current microin-

struction. The only special feature of the register is that each of the fields from

the microinstruction are available through separate ports for use elsewhere in the

control unit and datapath.

The microinstruction format is shown in Table 5.9. A microinstruction consists

of 40 bits in 24 fields. The fields in a microinstruction can be broken into 4 groups:

those affecting the operation of the microprocessor, those affecting the program

status word, those dealing with external signals, and those that are used for mi-

croinstruction sequencing.

The operational group consists of the following fields:

• AMUX - If set, the A-latch (feeding the ALU) is loaded from the memory

buffer register, otherwise the A-latch is loaded from the A-bus.

• SHFT - This field is passed unchanged to the shifter where it is used to select

the shifter operation.

• ALU - This field is passed unchanged to the ALU where it is used to select

the ALU operation.

• MAR - If high, the MAR is loaded with the value on the output port of the
PMUX.

• MBR - If high, the MBR is loaded from the C-Bus

PMUX - Determines the value of the PMUX output. If high, the output is

equal to the value in the program counter, otherwise the output is equal to
the value on the C-Bus.

• SRCA - Determines the source of the value on the A-Bus.

• SRCB - Determines the source of the value on the B-Bus.

• TRGT - Selects a register in which to store the value on the C-Bus.

The program status word group consists of the following fields:

• S_SM - When high, the supervisory mode bit in the PSW is set.

• C_SM - When high, the supervisory mode bit in the PSW is cleared.

• S_.IE - When high, the interrupt enable bit in the PSW is set.

• C_IE - When high, the interrupt enable bit in the PSW is cleared.

• LD_C - When high, the carry bit in the PSW is loaded from the carry-bit

input port.
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Table 5.9: The microinstruction format for AVM-1.

Operation Group

Bits

1

2

4

1

1

1

3

2

3

Mnemonic Description

Toggle MUX on A-busAMUX

SHFT Shifterfunction

ALU ALU function

MAR Load MAR from P-Mux

MBR Load MBR from C-bus

P_JX Toggle MUX loading MAR

SRCA A-bus source

SRCB B-bus source

TRGT C-bus target

Program Status Word Group

Bits

1

1

1

1

1

1

1

1

1

Mnemonic Description

S_SM Set supervisory mode bit in PSW

C_SM Clear supervisory mode bit in PSW

S_IE Set interrupt enable bit in PSW

C_IE Clear interrupt enable bit in PSW

LD_C Load carry bit in PSW

LD_V Load overflow bit in PSW

LD_N Load negative bit in PSW

LD_Z Load zero bit in PSW

CSRC Source of carry (shifter or alu)

Ezternal Signals Group

Bits

1

1

1

1

Mnemonic Description

IACK Interrupt acknowledge signal

FTCH Fetch signal

RD Read signal

WR Write signal

Microprogram Counter Group

Bits

3

6

Mnemonic Description

COND

ADDR

Microcode jump condition

Next address
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LD_V - When high, the overflow bit in the PSW is loaded from the overflow-

bit input port.

LD_N - When high, the negative bit in the PSW is loaded from the negative-

bit input port.

LD_Z - When high, the zero bit in the PSW is loaded from the zero-bit input

port.

CSRC - The ALU and shifter both produce a carry out. This bit controls

a multiplexor that selects which of these carry signals is fed to the carry-bit

input port on the PSW.

The external signals group consists of the following fields:

IACK - This value is passed to the interrupt acknowledge flipflop to control

the external interrupt acknowledge signal.

FTCH - Passed to the environment to inform external devices that the CPU

is in fetch mode.

RD - Used to control loading of the MAR and MBR. It is also passed to the

environment to control reading from memory and other devices.

Wit - Used to control loading of the MAR and MBR. It is also passed to the

environment to control writing to memory and other devices.

The microprogram counter group consists of the following fields:

COND - Selects one of 8 possible jump conditions for the microprogram

counter. Every microinstruction is a potential control point in the micropro-

gram. Sequencing is done explicitly.

ADDR - The next address for the mlcroprogram counter. This may or may

not be used depending on the value of the cond field.

The clock is a simple four-phase counter with a strobe line for each phase. Fig-

ure 5.4 shows the output timing for the clock. The clkl line, for example, is only

true during phase 1, the clk2 line is true during phase 2, and so on.

The microrom holds the microcode and is made from a read-only memory that

is 40-bits wide and 64 words long.
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Figure 5.5: A PERT phase diagram for AVM-1.

5.1.2.3 Timing.

The timing of AVM-1 is based on a four phase clock (see Figure 5.5). During the

four phases, the machine performs the following state transitions:

1. In phase 1, the microinstruction register is loaded from the microrom.

2. In phase 2, the latches feeding ALU are loaded from the register file and

system registers.

3. In phase 3, the results from the ALU and shifter are calculated. In addition,

the MAR can be loaded from the PC in this phase.
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Table 5.10: Comparison of verified microprocessors and AVM-I.

AVM-I Tamarack-3 FM8501 Viper SECD

User Registers 31 2 8 4 4

Instructions 30 8 26 20 21

Microcoded yes yes yes no yes

Microstore size 64 words 32 words 16 words N/A 512 words

Interrupts yes yes no no no

Supervisory Mode yes no no no no

Memory Model sync async async sync sync

Word Width 32-bit 16-bit 16-bit 32-bit 32-bit

Memory Size 4G 8K 64K 1M 16K

4. In phase 4, the result calculated in phase 3 is stored back into the register file

and system registers.

Every microinstruction is executed by this phase sequence.

Since microinstructions are used to implement the macroinstructions, the tim-

ing for a macroinstruction is dependent on the number of microinstruction in its

implementation. In most cases this number is 4.

5.1.3 Comparisons.

Table 5.10 compares the design of AVM-1 to the designs of the four microprocessors

discussed in Chapter 2. The table, like all such tabulations, cannot hope to capture

all of the important characteristics of the microprocessors, but the data presented

does provide some basis for judging relative complexities.

5.1.4 Observations.

Having completed the description of AVM-I's architecture and organization, we
have several observations.

The design of AVM-1 is not intended to push the architectural envelope, but

rather to serve as a test bed for experimenting with using generic interpreter proofs

in microprocessor verification. To this end, we have tried to include interesting

features (such as a privileged mode and interrupts), but have not been overly anxious

about small inefficiencies.

For example, the implementation of A VM-1 is not optimal. A good example of

where the implementation could be improved is the FETCH--ISSUE--DECODE cycle.
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The only purpose of the ISSUE microinstruction is to transfer the contents of the

memory buffer register to the instruction register. Being able to read the memory

bus directly into the instruction register during the FETCH cycle would eliminate

this step and result in nearly a 25% speed-up in the execution time since almost

every instruction is implemented in 4 microinstructions. Making this modification

to the design of A VM-1 would have very little impact on the verification.

The implementation makes the assumption that memory can be read in a single

machine cycle. This is not unreasonable given the speed of today's high-speed

memory devices, but limits the usefulness of the chip. A more versatile approach

would be to interface memory to the CPU asynchronously. Eventually, A VM-I will

have an asynchronous memory interface so that it can be coupled with the memory

management unit being designed as part of the UC Davis Verified Chip Set. In

anticipation of this change to the design, the specification in the next section uses

the asynchronous generic interpreter theory.
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5.2 AVM-I's Formal Specification.

Section 5.1 presented an informal description of AVM-I. This section presents

the formal specification of the microprocessor at each level in the decomposition

hierarchy. We begin by describing the electronic block model and then present the

phase-level specification, the micro-level specification, and finally the macro-level

specification.

Turning an informal description of a microprocessor into a formal specification

is a difficult task. Avra Cohn, in [Coh89], describes her specification of VIPER's

electronic block model from informal descriptions supplied by VIPER's designers

as follows:

... VIPER's top-level specification and its major-state level were both

supplied in a logical language; but its block-level model was given partly

formally and partly pictorially (as was natural). Combining these two

parts required both ingenuity and some guesswork. The guesses were

based on the coincidence of line names, on the names of bound variables

in the functional definitions, and on the annotations in the text of the

definitions. None of these notational devices can be regarded as formal

specification.

This quote not only tells of the difficulties of developing formal specifications from

the kinds of informal descriptions commonly in use, but also alludes to the inad-

equacies of those descriptions. The formal specification of A VM-1 was probably

easier than VIPER since the designer and the specifier were the same person.

The rest of this section is organized as follows: We begin by describing the theory

of abstract words that is used in the specification of AVM-1. Following that, we

present the specifications of the electronic block model, phase-level, micro-level,

and macro-level in turn. We also describe the definition of the microcode. There

is a fair amount of detail and it is easy to get lost. Each of the sections describing

a particular level have been further divided into important subparts.

The electronic block model specification is unique. The electronic block model

is a composition of two large blocks: the datapath and the control unit. Within

these two blocks are many major blocks. Each of the major blocks are described

in a separate subpart of the section. Many of these can be skipped by readers not

interested in the details without losing continuity.

The descriptions of the abstract interpreter levels all follow the pattern imposed

by the generic theory. The generic theory requires that we make definitions for each

of the abstract objects in the representation; the following abstract objects will be

defined in each section: inst_list, select, key, substate, and subenv. We will

break each chapter into parts defining each of these abstract objects. (Note that we
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do not have to define Imp1, count, and begin; they are defined by the lower level

in the hierarchy.)

One note about the following descriptions: this sectio/1 attempts to describe the

meaning of the formal specifications in English text. In all cases, the true meaning

should be taken from the logic, not the English description accompanying it.

5.2.1 A Theory of Abstract Words.

The specification of any microprocessor is based upon the fundamental data type

that the microprocessor is to manipulate and a set of primitive operations on

that data type. Usually, the data type is a bit-vector and the primitive opera-

tions define addition, subtraction, and so on for bit-vectors. Sometimes a single

specification may use more than one representation. For example, the verification

of MA C-_. [Win90a] used natural numbers as the base type in the abstract repre-

sentations and a bit-vector representation in the electronic block model.

The verification of the microprocessor is orthogonal to the concrete representation

of the fundamental data type. Using concrete data representations for defining the

fundamental data type clutters the proof with the implementation details of the

data type; these are frequently a bother to manipulate and usually irrelevant in the

correctness proof.

We can solve this problem by choosing an abstract representation for the funda-

mental data type. Our abstract data type is called :*wordn and we have defined a

number of abstract operations on it.

The fact that there are two abstract representations used in this dissertation might

be a point for some confusion. The generic interpreter theory uses an abstract rep-

resentation to specify the operations of the generic interpreter. This representation

is instantiated with the definitions for the various levels in the decomposition in the

course of completing the verification.

The definitions for the various levels in the design are also parameterized over the

abstract representation for the fundamental data type for AVM-1. Thus, the cor-

rectness result for the microprocessor forms yet another generic theory. The generic

theory for the microprocessor must be instantiated with a concrete representation

for bit-vectors in order to arrive at the gate-level implementation of the electronic

block model and complete the implementation.

The abstract theory of n-bit words defines the following abstract objects through

use:

• *wordn - the type for n-bit words.

• *memory - the type for memories.
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• *address - the type for memory addresses.

• *reg_len- the type for bit-vectors used to select registers.

The operations in the abstract theory form the set of primitive operations for

defining the blocks in the electronic block model and specifying the actions taken

by instructions at all levels. Some may object to using abstract operations for

defining the behavior of the macro-level as well as electronic block model. This is

really no different, however, than using the + symbol at both levels. The fact that

one operation has a concrete definition and the other does not, makes no difference.

In fact, the concrete definition attached to the + symbol may fool the reader of the

specification into believing that the microprocessor has been proven to correctly

add, when in fact, it has not. The use of abstract representations for this purpose

makes it clear which operations are taken as primitive and consequently not verified.

The abstract representation for n-bit words is large and contains several sections.

We will deal with each of them individually.

ALU Functions. The n-bit word theory defines the following abstract functions

for defining ALU operations:

• (Cadd c ,": (*wordn × *wordn --* *wordn)") - add two n-bit words.

• ('addc c ,": (*wordn × *wordn × bool --* *wordn") - add two n-bit words

with carry.

(Caddp',":(*wordn × *wordn × *wordn) --* bool")-predicatethatuses

the arguments to and result from the add operation to determine if carry-out

has occurred.

• ('addcp' ,": (*wordn ×*wordn x*wordn) --4 bool") - determine if carry-

out has occurred using the arguments to and result from the addc operation.

('aovfl' ,": (*wordn × *wordn × *wordn) --. bool") - determine if over-

flow has occurred using the arguments to and result from the add and addc

operations.

• ('inc c , ": (*wordn --_ *wordn)") - increment an n-bit word.

• ('sub', ": (*wordn × *wordn --, *wordn)") - subtract two n-bit words.

• ('subc', ": (*wordn × *wordn × bool) _ *wordn") - subtract two n-

bit words with carry (borrow).

('subp' ,": (*wordn × *wordn × *wordn) --* bool") - predicate that uses

the arguments to and result from the sub and subc operations to determine

if carry-out has occurred.
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('sovflC,":(*wordn x *wordn x *wordn) --_ bool")-determineifover-

flow has occurred using the arguments to and result from the sub and subc

operations.

• ('dec' " (*wordn ---* *wordn)"), : - decrement an n-bit word.

('band', ": (*wordn x *wordn --, *wordn)") -perform bitwise conjunc-
tion of two n-bit words.

('bxor', ": (*wordn × *wordn --, *wordn)") - perform bitwise exclusive-

disjunction of two n-bit words.

('bor', ":(*wordn x *wordn -+ *wordn)") - perform bitwise disjunction
of two n-bit words.

('bnot', ": (*wordn --+ *wordn)") - perform bitwise negation of an n-bit
word.

Test functions. In addition to the operations used to define the ALU operations,

two predicates for testing whether a number is negative and whether it is zero are

used in the specification.

• ('negp', ": (*wordn --, bool)") - is the argument negative?

• ('zerop', " :(*wordn --, bool)") -is the argument zero?

SHIFTER functions. The shifter has a set of primitive operations as well:

• ( ' shl ', " : (*wordn --+ *wordn) ") - shift the argument left one bit.

• ('shr', ":(*wordn _ *wordn)") - shift the argument right one bit.

• ('asr', ":(*wordn --, *wordn)") - arithmetically shift the argument right

one bit (i.e. preserve the sign bit).

Bit functions. We do not need a full range of bit manipulation functions in the

specification, but we do need to select the most significant and least significant bits.

• ('msb', ":(*wordn --, bool)") - select the most significant bit in the ar-

gument.

• ('lsb', ": (*wordn --* bool)") - select the least significant bit in the ar-

gument.
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Coercion functions. Coercion functions convert objects from one type to an-
other.

• ('val', ": (*worcln --, num)") - returns the numeric value of an n-bit word.

• ('wordn', ": (hum --, *wordn)") - return the n-bit word representation of

number.

• (_reg_len c , ": (*reg_len _ num)")- coerces a value of type :*reg_len

to a number.

• (Caddress,, ": (*wordn _ *address)") - return the address representa-

tion of an n-bit word.

The use of type *address gives the user of the abstract word representation the

freedom to use only portions of a word for an address or to manipulate them in

some way prior to use.

Subranging functions. Subranging functions return a portion of an n-bit word

corresponding to some meaningful component. The following functions are used to

implement the instruction formats in A VM-I.

('opcode c, ": (*wordn _ bt6)") - return the opcode portion of an n-bit

word which isrepresented as a boolean 6-tuple.

('dest', ": (*wordn ---, *reg_len)") - return the portion of an n-bit word

designating the destination register of an operation.

(Csrca', ": (*wordn _ *reg_len)") - return the portion of an n-bit word

designating the source A registerof the operation.

(rsrcb ' , ": (*w0rdn ---* *reg_len)") - return the portion of an n-bit word

designating the source B register of the operation.

(timmt, ,,:(*wordn _ *wordn) ") - return the portion of an n-bit word des-

ignating the immediate value used in the operation.

The use of type :*reg_/en to describe the size of the sub-word designating registers

makes the proof independent of the size of the register file. The opcocle, however, is

returned as a boolean 6--tuple. Making it concrete has advantages in the verification.
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Constructor and selectors for the Program Status Word. The program

status word is a register that keeps track of the status of the most recent ALU

operation as well as recording whether or not the CPU is in supervisory mode

and whether or not interrupts are enabled. The following operations represent a

constructor and 6 selectors on the program status word.

('ak_psw', ":(bt6 --* *wordn)") - construct a new program status word.

('get_ice, ": (*wordn _ bool)") - select the interrupt enable bit in the

program status word.

('get_sin', ": (*wordn _ boo1)") -select the supervisory mode bit in the

program status word.

('get_cf', ": (*wordn --_ bool)") - select the carry bit in the program

status word.

('get_vf', ": (*wordn -_ bool)") - select the overflow bit in the program
status word.

(' get_zf ', ": (*wordn --* bool)") - select the zero bit in the program sta-
tus word.

('get_nf c , ": (*wordn --* boo1)") - select the negative bit in the program

status word.

Memory functions. We need special functions for interacting with memory be-

cause it represents shared state. The CPU cannot assume that it is the only device

that changes memory. The fetch and store operation are fairly self-explanatory.

The use of the abstract transformation functions is described in Section 3.4.

• ('fetch' ,":(*memory × *address) _ *wordn") - retrieve a word from

memory at a particular address.

• ('store' ,": (*memory × *address × *wordn)_*memory") - store a word

to memory at a particular address.

• ('trans'," :*memory --* *memory") - transform memory.

Interrupt instructions. The interrupt vector is another example of shared state.

We will use the following functions to interact with the interrupt vector.

• ('int__etch ¢ , " :*wordn --_ *worcin") - fetch the interrupt vector

• (' int_trans ', " :*wordn _ *wordn") - transform the interrupt vector

92



5.2.2 Defining the Electronic Block Model.

As we mentioned before, the electronic block model is a structural description and

is modeled using existentionally linked conjunctions of predicates as described in

Section 2.4. We choose blocks, define predicates to specify their behavior, connect

them together using hidden internal lines, and connect the remaining lines to the

external buses.

We have some leeway in choosing the blocks. Each block will be specified using

a behavioral description. We will not continue the proof below the electronic block

model level in this dissertation; to completely verify the circuit making up the CPU

to the gate-level, we would have to specify implementations for each of the blocks

and prove that the implementation implies the behavioral specification. These

proofs could be used along with the proof we give here to prove a correctness

statement showing that the gate-level circuit implies the macro-level interpreter

specification.

The level to which the proof should be performed is a subjective consideration.

We could carry the proof to the transistor level, but there is a point where the

benefits of the proof are outweighed by its difficulty. For example, we could expend

effort showing that all the gates we use are correctly implemented in some transistor

model, but such effort would probably be wasted since a verification is only as good

as the modal used in the specification. Given the current state-of-the-art in the

mathematical modehng of transistors, it is probably more reasonable to assume

that an AND gate is correctly implemented than it is to assume we have a good

transistor model.

The Datapath Blocks. Some of the blocks in the datapath are fairly small (a

flip-flop for instance) and others are fairly large (the ALU is specified as a single

block). Still, we believe that our block model is a good compromise between circuit

detail and proof effort. Much more detail in the electronic block model would have

made the verification of the phase-level even more difficult. Much less detail would

have made the verification of the phase-level trivial. As a general rule of thumb, we

have tried to keep our blocks simple enough that there would be little doubt that a

device could be made which satisfies the specification.
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Simple Blocks. We begin by defining some simple blocks.

_-i4 0ND out - (ou'c a F)

_-a,! MUI_SPEC ctl a b c = (c = (c¢1 --+ a [ b))

J-a,! NUX_I_SPEC ctl a b c = (c = (ctl _ a [ b))

kd,! LATCH_SPEC i id ou¢ =

V "c:'cima . out(t+l) = id t

F_,! FF_SPEC i ld q --
V ¢:num . q(t+l) = ((Id ¢)

kd4 BEG_SPEC i Id prt out contenZs --

V t:time .

(contents (t+l) -- id t -_ i t [

(prt t ==_ (out = contents))

kd4 C255_SPEC rep pr+ out =

prt ==_ (ouz = (vordn rep 255))

-+ i r [ out t

i I (q t))

contents t) A

GND is the ground line. Its output is always false. MUX_SPEC is a simple n-bit, two-

to-one multiplexor. MUX_I_SPEC is a 1-bit multiplexor; it is identical to MUX_SPEC

except for its type (which is not shown).

FF_SPEC and LATCH_SPEC specify a flip-flop and a latch respectively. The only

difference between the two specifications is that FF_SPEC operates on a single bit,

while tLEO_$PEC operates on n-bit words.

KEG_SPEC specifies a register. For our purposes, the difference between a register

and a latch is that a register has a tri-stated output port (controlled by the signal

prt).

C255_SPEC specifies a hard-wired constant that is tri-stated to the port out.

In this case, the constant is 255. The function vordn is from the abstract word

package that was just discussed. The abstract functions must be applied to an

abstract representation, so wordn rep returns a function that coerces an integer
into an n-bit word.

The Register Block. The register block is a triple-ported register file with

32 registers. (The formal specification does not actually say how many registers

there are until the abstract word package has been instantiated with a concrete

representation.) The basic operation in the register block is described by the func-

tion UPDATE_KEG
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_d_ UPDATE_KEG rep psw n reg_lis% value =

let sm = (ge%_sm rep psw) in

(n = zero.reg) --+ reg_lis% I

(IS_SUP_KEG n A _sm) -_ reg_lis% i

(SET_EL n reg_list value)

This function is used to update the list representing the register file when certain

conditions have been met. Register 0 is has a constant value of 0 which cannot be

changed. Registers 1 through 7 are reserved for privileged mode; they cannot be

changed unless the supervisory mode bit of the program status word is set. The

function SET_EL changes the value of the n th element of a list.

In general, the register file reads values on the in port and write values to the

outA and outB ports. In addition to the three ports, there are two lines that control

loading the register from the input port, four lines controlling the two output ports,

and three switch lines of type : *reg_len that select registers in the block for various

reasons. There is one distinguished register in the register file used as the stack

pointer when the CPU is in supervisory mode called ssp_reg.

_d_ KEGISTER_BLOCK rep c a b ld Id_ssp prt_A pr%.D ssp prt_B

in outA ourB psw reg.list =

V %:%ime

(reg_lisr (t+l) =

(ld t) -+

(UPDATE_KEG rep

(Id_ssp %) --+

(UPDATE_PEG rep

(reg.lis% %)) A

(pr%_A % =:_ (ou%A % =

(pr%_D % _ (ou%A % =

(ssp % _ (ou%A % =

(prt_B % _ (ou%B % =

(psw %) (reg_len rep (c %))

(reg_lis% %) (in %)) )

(psw %) ssp_reg

(reg_list %) (in %)) m

(EL (reg_len rep (a %)) (reg_lis¢ t)))) A

(EL (reg_len rep (c %)) (reg_list t)))) A

(SSP_KEG (reg_lis% %)))) A

(EL (reg_len rep (b Z)) (reg_lisZ %))))

The register file is designated reg_list in the specification and is represented as a

list. The list indexing function EL is used to select specific registers. The register

block operates as follows:

. When Id is high, the register selected by the c line is updated with the value

on the input port in.

e When ld_ssp is high, ssp_reg is updated with the value on the input port in.

e When prt_A is high, outA has the value of the register selected by the value

on the a line.

95



• When prt_D is high, outA has the value of the register selected by the value
on the c line.

• When ssp is high, outA has the value of ssp_reg.

• When prt_B is high, outB has the value of the register selected by the value
on the b line.

The Instruction Register. The instruction register is similar to the regis-

ter defined in EEG_SPEC; but it has four additional ports that supply the opcode,

destination, A source, and B source fields from the register.

_d_ IR_SPEC rep set prt in out contents

opc_port dest_port srca_port srcb_port =
V t:time.

(contents (t+l) = (set t) -, in t I contents t) A

(opc_port t = opcode rep (contents t)) A

(dest_port t =dest rep (contents t)) A

(srca_port t =srca rep (contents t)) A

(srcb_port t = srcb rep (contents t)) A

(prt t _ (out t = (imm rep (contents t))))

The value on the output port (when the port line is high) is the immediate field,

not the entire instruction. There is no way to read the complete contents of the

instruction register onto the bus.

The PSW Register. The register that holds the program status word (PSW)

is the most complicated register specification. Each of the 6 bits used for the CPU

status are individually addressable for the input and output, much as if they were

6 independent flipflops. The unit functions as a register as well, with input and

output ports for reading and writing the entire for the program status word at
once.
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_jd PSW_SPEC rep set elk prt in out ie sm conzenzs

vf nf cf zf

s_sm c_sm s_is c_ie ld_v id_n id_c Id_z =

V t:zime.

(contenZs (t+l) =

((sez t) A (get_sm rep (contents t))) -+

(in z) i

(elk t)

(mk_ps. rep (

(s_smz -_ T i

c_smZ -_ F

(s_ie t _ T I
c_ieZ -+ F

(Id_v Z _ vf I

(id_n Z -* nf I

(ld_c t -* cf I

(ld_z Z _ zf I

I (geZ_sm rep (contents Z))),

I (geZ_ie rep (contents t))),

(get_vf rep (contents t))),

(get_nf rep (contents t))),

(get_cf rep (contents Z))),

(get_zf rep (contents t)))))

(contenZs _)) A

Cam t = get_sm rep (contents t)) A

(iet = get_ie rep (con_enZs t)) A

(prt Z _ (out = conZents))

The PSW register operates as follows:

• When the set line is high and the supervisory mode bit is set, then the current

contents are replaced by the value on the in port.

• When the elk line is high, the new value of the PSW is constructed from the

input ports for the individual fields, provided that their associated load lines

are high.

• The sm port gets the current value of the supervisory mode bit.

• The ie port gets the current value of the interrupt enable mode bit.

• When the prt line is high, the output port holds the current contents of the

register.

The Jump Circuitry. As mentioned in Section 5.1, the jump instruction

in AVM-I uses the 4 least significant bits of the destination field to select a jump

condition. Calculating jump codes could be done in the microcode, but would be

extremely slow. The electronic block model contains a special block for calculating

jump codes based on the current PSW and the destination field of the instruction.

Fdd JUI__SPEC rep d paw out =
V z:time

(out t) = JUMP_COND rep (reg_len rep (d t)) (paw z)
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The definition relies on an auxiliary definition, JUMP_COND

_-_.! JUNP_CONDrep d paw =
leZ cf = (get_cf rep psw) and

vf = (get_vf rep psw) and

nf = (ge__nf rep psw) and

zf = Cget_zf rep paw) in (
(d= 0) --* cf

(d = 1) -* " cf

(d = 2) _ vf

(d" 3) --* " vf

(d = 4) -_ nf

(d = S) ---+" nf

(d " 6) --* zf

(d" 7) --* " zf

(d- 8) --* ('cf V zf)

(d-- 9) --, -(-cf v zf)

(d = 10) --, (nf xor vf)

(d = 11) --* "(nf xor vf)

(d = 12) -* "((nf xor vf) V zf)

(d = 13) --* ((nf xor vf) V zf)
T

The meanings of the jumps codes can be found in Table 5.4.

The Memory Buffer Register. The memory buffer register has a complicated

porting arrangement. The register has one bi-directional port, mere_port, a second

input port, in, and a second output port, bus.

_ MBR_SPEC set clk rd_s wr_s in value bus mem_port =
(V t:zime.

((value (z+l) =(((clk r) A (rd_s t)) --, mem_porr r [
((clk r) A (set _)) -, in Z l value r)) ^

(wr_s r ==_ (mem_port = value)))) ^
(bus = value)

The specification describes three different parts of the register:

1. The new value of the register is the value on the memory port if the clock, clk,

and the read line, rd_s are high. Otherwise, if the clock and the set line are

high, the new value is the value of the input port. If neither of these conditions

is true, then the value of the register is unchanged.

2. Then memory port carries the value of the register only if the write line, wr_s

in high.

3. The value on the output bus is always the value of the register.
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The Interrupt Vector Register. IVEC_SPEC describes the interrupt vector

register. This register does not actually reside on the CPU, but is shared with the

interrupt controller. Thus, the following specification can be thought of as a partial

specification for the interrupt controller; the ouly part specified is the part that the

CPU actually uses to read the interrupt vector.

_d4 IVEC_SPEC rep prt out contents =
V t:time

(contents (t+l) = (contents t)) A

(prt t _ (out t = (int_fetch rep (contents t))))

The Demultiplexors. The specification of the electronic block model makes

use of several demultiplexors. The following specification describes a 2-to-4 demul-

tiplexor. The specification of a 3-to-8 is similar.

5d4 DEMUX_2_SPEC s O0 oi 02 03 =
(V t . oO t ffi ((s t) = (F,F))) A

(V t . ol t ffi ((s t) ffi (F,T))) A

(V t . 02 t ffi ((s t) = (T,F))) A

(V t . 03 t ffi ((s t) = (T,T)))

The Memory Block. The operation of the memory block is based on the

operation of two abstract functions: store and fetch. Memory has a single bi-

directional data port, data, an address port, a read signal, rd_s and a write signal,

wr_s.

_4,] MEM rep wr_s rd_s addr data mere =

V t:time .

(=m (t+l) =

(wr_s t _ store rep (mem t,

I m_t)) ^

(rd_s t

(data t = (fetch rep

address rep (addr t), (data t))

(mem t, address rep (addr t)))))

When the write signal is high, the new value of memory is the result returned

by applying store to the old memory, the address, and the data. Otherwise, the

value of memory is unchanged. If the read signal is true, then the value of memory

returned by the fetch function is placed on the data port.

We specify the memory as one of the blocks in the electronic block model. There

are other ways of specifying memory. For example, Joyce [Joy89a] separates the

memory block from the electronic block model and then uses the combination to

verify the macro-level. There is, however, little difference in meaning.
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F AVM_ALU_SPEC rep switch(in_A.in_B,cin)out(neg,zero,ovfl,carry) =

((swiZch = F,F,F,F) -+

ADD_WITHOUT_CARRY rep(in_A,in_B,cin)out(neg,zero,ovfl,carry) [

((swiZch = F,F,F,T)

ADD_WITH_CARRY rep(in_A,in_B,cin)out(neg,zero,ovfl.carry) l

((switch = F,F,T.F) -+

INCREMENT rep(in.A,in_B.cin)ouZ(neg,zero,ovfl.carry) l

((switch = F,F,T.T) -+

SUB_WITHOUT_CARRY rep(in_A.in_B,cin)out(neg,zero,ovfl,carry) J

((switch= F,T,F,F) --*

SUB_WITH_CARRY rep(in_A,in_B,cin)ouz(neg,zero,ovfl,carry) [

((switch = F,T,F,T) -+

DECREMENT rep(in_A,in_B,cin)out(neg,zero,ovfl,carry) [

((swiZch = F,T,T,F) -+

BITWISE_AND rep(in_A,in_B,cin)out(neg,zero,ovfl,carry) J
((swiZch = F,T,T,T) -+

BITWISE_XOR rep(in_A,in_B,cin)ouZ(neg.zero,ovfl,carry) [
((swiZch = T,F,F,F) -+

BITWISE_0R rep(in_A,in_B,cin)out(neg,zero,ovfl,carry) J

((swiZch = T,F,F,T) -+

BITWISE_NOT rep(in_A,in_B,cin)ouZ(neg.zero,ovfl,carry) I

((switch = T,F.T,F) -+

ALU_NOOP rep(in_A,in_B,cin)ouz(neg,zero.ovfl.carry) I

((switch = T,F,T,T) -+

ALU_N00P rep(in_A,in_B.cin)ouZ(neg,zero,ovfl,carry) I

((switch = T,T,F,F) -+

ALU_N00P rep(in_A,in_B,cin)out(neg.zero,ovfl,carry) l

((switch = T,T,F,T) -_

ALU_N00P rep(in_A,in_B,cin)out(neg,zero.ovfl,carry) l

((switch = T,T,T,F) -+

ALU_NOOP rep(in_A,in_B,cin)out(neg,zero,ovfl,carry) ]

ALU_NOOP rep(in.A.in_B,cin)out(neg,zero,ovfl,carry)
)))))))))))))))

Figure 5.6: The ALU Specification for AVM-1.
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The ALU Block. The ALU definition used in the specification of the electronic

block model is shown in Figure 5.6. The ALU selects one of 16 functions based on

the value of a 4-bit input, switch. Only'10 of the 16 available functions are used in

our implementation. The complete specification gives the formal definition of each

of the functions, including how flags are set for each operation. The ALU performs

addition, with and without carry; incrementing; subtraction, with and without

carry; decrementing; and bitwise disjunction, conjunction, exclusive disjunction,

and negation. The 16 functions are filled out with a NOOP operation that passes the

A input through unchanged, but sets the appropriate flags. The functions operate

on the A and B inputs (±n_A and ±n_B respectively) and produce the output, out. In

addition, there is a carry in, tin, and four result flags indicating a negative result,

a zero result, overflow and carry.

The auxiliary functions used to define the ALU are defined in terms of the abstract

word package. For example, here is the auxiliary function used to define addition

without carry:

_d4 ADD_WITHOUT_CARRY rep (in_A,in_B,cin) out

(neg,zero,ovfl,carry) =

let result = (add rep) (in_A,in_B) in

let c = (addp rep) (in_A,in_B,result) and

n = (negp rep) result and

z = (zerop rep) result and

v = (aovfl rep) (in_A,in_B,result) in

((out = result) A

(neg ffin) A

(zero = z) A

(ovfl = v) A

(carry = c))

This predicate specifies addition without carry simply because it uses the auxiliary

functions that we have decided describe that operation. In fact, this specification

makes no statement about what addition without carry means. Furthermore, we

will not prove that the ALU adds correctly or performs any other mathematical

operation. What we will prove is that the primitive operations are called in such a

way that the top level specification is met.

The Shifter Block. The shifter has four functions: 1-bit shift left, 1-bit shift

right, 1-bit arithmetic shift right, and a NOOP. The functions are selected by a
2-bit switch.
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Fa4 SHIFTER_SPEC rep switch in_A out c_flag =

((switch - (F,F)) -_ ((out - (ehl rep) in_A) A

(c_flag • (msb rep) in_A)) I
(switch • (F,T)) -* ((out - (shr rep) in_A) A

(c_flag • (lab rep) in_A)) I
(switch- (T,F)) _ ((out • (asr rep) in_A) A

(c_flag • (lab rep) in_A)) l

((out - in.A) ^

(c_flag = F)) )

The specification of the shifter is also given in terms of the abstract representation

for the microprocessor. In addition to calculating the output of the shifter, the

specification produces a carry corresponding to the bit shifted out of the word.

Miscellaneous Logic. In addition to several and-gates and or-gates, the spec-

ification makes use of several larger chunks of logic to describe the selection signals

for the memory address register and the program counter register.

Fd4 MAR_LOGIC_SPEC pmux clk_3 clk_4 mar out =
V z:time. (out t) =

((((pmux Z) ^ (clk_3 z)) V

('(pmux t) A (clk_4 t))) A (mar t))

Fd4 PC_LOGIC_SPEC clk pc_enable pc_jmp_enable jump_flag out ffi
V t:time. (out t) ffi(clk t) A

((pc_enable t) V

((pc_imp_enable t) ^ (jump_flag t)))

The Datapath Specification. The datapath definition (shown in Figure 5.7) is

made from the blocks that we have specified. We specify the internal lines using

existential quantification. The specification of the datapath is difficult to read; it

is also difficult to write. There is, however, a close correspondence between the

major blocks, the internal lines, and the external lines in the specification given in

Figure 5.7 and the circuit diagram shown in Figure 5.2. In a production setting,

the structural specification could be derived from a CAD description of the circuit,

given the appropriate definitions for the blocks. This would make the specification

of the electronic block model much easier.

Some of the blocks in the datapath expect arguments that are functions of time

and others do not. The use of the blocks in the specification of the datapath reflects

this. For example, MUX_SPEC uses (MuxIn 1;) as an argument, while MBR_SPEC simply

uses MuxIn.
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_Je! DATAFATH rep me,, reg mar mbr alatch blatch ir pc psw ivec

iack_ff ireq_ff ireq_e amux_s alu_s shft_s mbr_s

mar_s pmux_s cselect aselect bselect

s_sm c_sm s_ie c_ie Id_c id_v id_n Id_z csrc_s

iack.s rd_s wr_s opc ie sm clk_l clk_2 clk_3 clk_4 •

V t :time.

3 Abus Bbus Cbus MuxOut MuxIn MemData AluOut Gnd Marln

regal_enable ssp_enable psw_enable ir_enable pc_enable

pc_imp_enable reg_a_enable reg_sa_enable ssp_a_enable

psw_a_enable C2SS_enable pc_a_enable reg_b_enable

ivec_enable ir_b_enable ld_reg_block Id_ssp ld_ir

id_psw Id_mar ld_pc do_write dest_s srca_s srcb_s

alu_c shif__c cf nf vf zf jump_flag pc_a_1 pc_a_2

pc_a_3 ir_b_1 it_b_2 floatO float1 .

(GND (GnU t)) ^

(DEMUX_3_SPEC cselect regal_enable ssp_enable psw_enable

ir_enable pc_enable pc_imp_enable

floatO float1) A

(DEMUX_3_SPEC aselect reg_a_enable reg_sa_enable ssp_a_enable

psw_a_enable C2SS_enable pc_a_1

pc_a_2 pc_a_3) A

(OR_3_SPEC pc_a_1 pc_a_2 pc_a_3 pc_a_enable) A

(DEMUX_2_SPEC bselect reg_b_enable

ivec_enable ir_b_l ir_b_2) A

(OR_SPEC ir_b_1 ir_b_2 ir_b_enable) A

(AND_SPEC clk_4 regd_enable ld_reg_block) A

(AND_SPEC clk_4 ssp_enable ld_ssp) ^

(REGISTER_BLOCK rep dest_s srca_s srcb_s

ld_reg_block ld_ssp reg.a_enable

reg_sa_enable ssp_a_enable reg_b_enable

Cbus Abus Bbus pew reg) A

(AND_$FEC clk_4 Jr_enable id_ir) ^

(IR_SPEC rep Id_ir ir_b_enable Cbus Bbus ir

opc dest_s srca_s srcb_s) A

Figure 5.7: The specification for the datapath (continued on next page).
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o.. A

(LATCH_SPEC Abus clk_2 alatch) A

(LATCH_SPEC Bbus clk_2 blatch) A

(IVEC_SPEC rep ivec_enable Bbus ivec) A

(FF_$PEC iack_s clk_2 iack_ff) A

(FF_SPEC ireq_e clk_l ireq_ff) A

(__SPEC (amux_s t) (MuxIn t) (alaZcb t) (MuxOut z)) A

(MAC2_ALU_SPEC rep

(alu_s Z)

(MuxOuZ t,blatch t,get_cf rep (psg t))

(AluOut t) (nf z, zf t,vf z,alu_c t)) A

(SHI_FER_SPEC rep (sbft_s Z) (AluOut Z) (Cbus Z)

(sbift_c t)) A

(MUX_I_SPEC (csrc_s t) (alu_c t) (shift_c t) (cf t)) A

(MBR_SPEC mbr_s clk_4 rd_s wr_s Cbus mbr MuxIn Men_)ata) /_

(AND_SPEC clk_4 paw_enable Id_psw) A

(PSW_SPEC rep ld_psw clk_4 psw_a_enable Cbus Abus ie am psw

(vf t) (nf t) (cf t) (zf t)

a_sm c_sm s_ie c_ie Id_v id_n id_c Id_z) A

(JUMP_SPEC rep deat_s psw jump_flag) A

(PC_LDGIC_SPEC clk_4 pc_enable pc_jmp_enable

jump_flag id_pc) A

(REG_SPEC Cbus id_pc pc_a_enable Abus pc) A

(C255_SPEC rep (C255_enable t) (Abus t)) A

(MIF__SPEC (pmux_s z) (pc t) (Cbus t) (Matin z)) A

(MAR_LOGIC_SPEC pmux_s clk_3 clk_4 mar_a Id_mar) A

(LATCH_SPEC Matin Id_mar mar) A

(AND_SPEC clk_4 wr_s do_.rize) A

(MF._ rep do_.rite rd_s mar MemDaZa mere)

Figure 5.8: The specification for the datapath (continued).
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The Control Unit Blocks. Now that we have specified the datapath, we will

turn our attention to the control unit. The control unit has three main parts: (1) the

microprogram counter and its associated logic, (2) the microinstruction register, and

(3) the clock. The microrom, is specified as a variable. The microrom specification

for the microcode in AVM-I is described in Section 5.2.4.

The Microprogram Unit Block. The microprogram unit calculates the next

value of the microprogram counter from the current value, the contents of the

microinstruction register, and some signals from the datapath. The microprogram

counter is 6 bits wide; the function add_bt6 adds a boolean 6-tuple and a number.

kde! MPC_UNIT mpc opc addr cond ireq_f ie sm=
fez bz6_inc n ffi(add_bt6 n I) in

((cond = (F,F,F)) -_ (bt6_inc mpc) I

(cond ffi (F,F,T)) _ addr I

(cond = (F,T,F)) -, (add_bt6 (F,(SND opc)) 4) I

(cond = (F,T,T)) --_

((ireq_f Aie) -* addr [
(bt6.inc mpc)) l

(cond = (T,F,F)) --+ (sm -_ addr l (br6_inc mpc))

(bt6_inc mpc) )

There are 5 jump conditions:

1. No jump; the microprogram counter is incremented. This is the default oper-

ation.

2. Jump to addr unconditionally

3. Jump to the location given by the opc signal plus an offset(4 in this case).

This allows us to use a table lookup approach to instruction decoding in the

microcode. Note that no matter what the opcode is,we only use the 5 least

significantbitsfor a value. The top half of the instruction set isreserved for

a coprocessor.

4. Jump to addr if the interrupt signal is true and interrupts are enabled.

5. Jump to addr if the supervisory mode signal is true.

We use the above definition in specifying the microprogram counter:
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_j,! MPC_SPEC rep mpc clk opc irq ie sm addr_s cond_s =
V t :time.

mpc (t+l) -
((clk t) -_

(MPC_UNIT (mpc t) (opc t) (addr_s t)

(cond_s t) (irq t) (ie t) (sm t))
mpc t)

When the clk signal is high, the new value of the microprogram counter is calculated

using HPC_UNIT. Otherwise, the value remains unchanged.

The Microinstruction Register Block. The microinstruction register is sim-

ple in concept, but rather unwieldy to specify. The specification describes a register

with 25 ports---one corresponding to each of the fields in the microinstruction. The

following specification uses selection functions on microinstructions to produce the

various fields. For example, Alu is a selector on a microinstruction that returns a

4-bit field giving the ALU operation.
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_de! MIR_SPEC mir clk in

amux_s sh_s alu_s mbr_s mar_s pmux_s csslect

aselect bselect s_sm_s c_sm_s s_ie_s c_ie_s

ld_c_s ld_v_s ld_n_s ld_z_s csrc_s ftch_s

iack_s rd_s wr_s addr_s cond_s =

V t :t£me

(mir (t÷1) =(clk t -4 (in t) I (mir t))) A

(amux_s t = (Amux (mir t))) A

(sh_s t = (Shift (mir t))) A

(alu_s t = (Alu (mir t))) A

(mbr_s t = (Mbr (mir t))) A

(mar_s t = (Mar (mir t))) A

(pmux_s t -- (Pmux (mirt))) A

(cselect t- (Trgt (mir t))) A

(aselect t - (SrcA (mir t))) A

(bselect t - (SrcB (mirt))) A

(s_sm_s t = (S_sm (mir t))) A

(c_sm_s t

(s_ie_s %

(c_ie_s %

(id_c_s t

(Id_v_s t

(id_n_s t

(Id_z_s t

(csrc_s t

(ftch_s t

(iack_s t

(rd_s t =

(wr_s t =

(addr_s t

(cond_s t

= (C_sm (mir t))) A

= (S_ie (mir %))) A

= (C_ie (mir t))) A

= (Ld_c (mirt))) A

= (Ld_v (mir t))) A

= (Ld_n (mir t))) A

= (Ld_z (mir t))) A

= (Csrc (mir %))) A

= (Ftch (mir %))) A

= (lack (mir t))) A

(Rd (mir t))) A

(Wr (mir t))) A

= (Address (mir %))) A

= (Cond (mir t)))

The Clock Block. The clock is a four-valued counter with a strobe linefor

each of the phases. The counter sequences from 0 to 3. The strobe clk_1 isonly

high in the firstclock phase, the strobe clk_2 isonly high in the second clock phase,

and so on.

_d4 CLOCK_SPEC clk clk_l clk_2 clk_3 clk_4 =
V t:time.

(clk (t÷l) =(((clk t) = (F,F)) --* (F,T) I

((clk t) = (F,T)) -_ (T,F) I

((clk t) = (T,F)) _ (T,T) I

(clk_1 t =(clk t = (F,F))) A

(clk_2 t = (clk t = (F,T))) A

(clk_3 t =(clk t = (T,F))) A

(clk_4 t =(clk % = (T,T)))

(F,F))) A
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The Control Unit. The control unit is specified by connecting the behavioral

specifications for the microprogram counter, microinstruction register, and clock.

The only internal lines carry the address and jump condition portions of the mi-

croinstruction from the microinstruction register to the microprogram counter unit.

_de! CONTROL_UNIT rep

mpc mir clk urom

clk_l clk_2 clk_3 clk_4

amux_s sh_s alu_s mbr_s mar_s pmux_s cselect aselecZ

bselect s_sm c_sm s_ie c_ie Id_c Id_v id_n id_z csrc_s

ftch_s iack_s rd_s wr_s opc sm ie ireq_f =

3 addr_s cond_s

(MPC_SPEC rep mpc clk_4 opc ireq_f ie sm addr_s cond_s) A

(MIR_SPEC mir clk_l (A t. (urom Z (bZ6_val (mpc t))))

amux_s sh_s alu_s mbr_s mar_s pmux_s cselecz

aselect bselect s_sm c_sm s_ie c_ie id_c Id_v

Id_n id_z csrc_s fZch_s

iack_s rd_s wr_s addr_s cond_s) A

(CLOCK_SPEC clk clk_l clk_2 clk_3 clk_4)

EBM State. Before we put the datapath and the control unit together to specify

the structure of the electronic block model, we describe the state that is visible at

this level. The following state-tuple is used to describe the state at the electronic

block model level.

(reg, psw, pc, mem, ivec, Jr, mar, mbr, mpc,

alatch, blatch, ireq_ff, iack_ff, mir, urom, clk)

The state-tuples for more abstract levels will contain a subset of the members of

the state-tuple at this level. We have kept the names consistent between levels for

clarity.

• reg - A variable of type : (*wordn)list used to represent the register fi/e.

• psw - A variable of type :*wordn used to represent the program status word.

• pc - A variable of type :*wordn used to represent the program counter.

• mem - A variable of type :*memory used to represent external memory.

• ivec -A variable of type : *wordn used to represent the interrupt vector.

• ir - A variable of type :*wordn used to represent the instruction register.

• mar - A variable of type :*wordn used to represent the memory address

register.
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• mbr - A variable of type :*wordn used to represent the memory buffer reg-

ister.

• rope - A variable of type :bt6 (boolean 6-tuple) used to represent the mi-

croprogram counter.

• alatch - A variable of type :*vordn used to represent the latch feeding the

A side of the ALU.

• blatch - A variable of type :*wordn used to represent the latch feeding the

B side of the ALU.

• ireq_ff- A variable of type :boo1 used to represent the interrupt request

ttipflop.

• iack_ff- A variable of type :boo1 used to represent the interrupt acknowledge

flipflop.

• mir - A variable of type :ucode (a complex bit-string) used to represent the

microinstruction register.

• urom- A variable of type :num --+ ucode used to represent the microrom.

• clk - A variable of type :bt2 (boolean 2-tuple) used to represent the phase-

level clock.

The EBM Specification. The electronic block model is specified by connecting

the datapath and the control unit using existential quantification to represent in-

ternal lines. We want a definition of the electronic block model that can be used

with the generic interpreter specification. The electronic block model is used to

instantiate the abstract implementation, Impl, which has the abstract type

:(time' --* *state') --* (time' --+ *env') --, bool

The definition must take two functions of time, one representing the state stream

and the other the environment stream and return a boolean. We use tuples, ab-

stracted over time to represent these state and environment streams.
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EBM

rep
CA r.

(reg t,psw _;,pc t,mem t,ivec t,ir t,mar t,mbr t,mpc t,

alatch t,blatch t,ireq_ff t,iack_ff t,mir t.urom,clk t))

(A t. (ireq_e t)) =

(3 amux_s alu_a ahft_a mbr_a mar_a pmux_a cselect aaelect

baalect s_am c_sm a_ie c_ie id_c Id_v Id_n Id_z carc_a

iack_s rd_s wr_a ftch_a opc ie am clk_1 clk_2 clk_3 clk_4.

DATAPATH rep

merereg mar mbr alatch blatch ir pc ps.

ivec iack_ff ireq_ff iraq_e amux_s alu_s

shft_s mbr_s mar_s pmux_a cselecr aselect bselect

s_sm c_am s_ia c_ie Id_c ld_v ld_n Id_z csrc_s

iack_s rd_s .r_s opc ie sm

clk_1 clk_2 cik_3 clk_4 A

CONTROL_U_IT rep

mpc mir clk (A t. urom) clk_1 cik_2 clk_3 clk_4

amux_s shft_s alu_s mbr_s mar_s pmux_s

cselect aselect bselecr s_sm c_sm s_ie c_ie

id_c ld_v id_n id_z csrc_s ftch_s iack_s

rd_s .r_s opc sm ie ireq_ff)

The above specification is not a definition, but rather a theorem; a definition cannot

have lambda abstractions on the left-hand side. To create this theorem, we define

the electronic block model using single variables for the state and the environment

and selectors on those variables. Using that definition and the definition of the state

selectors, we can derive the theorem given above.

The EBM Clock. There are two other parts of the abstract representation that

need to be instantiated with definitions related to the specification of the electronic

block model. We must define a function representing count, which takes the elec-

tronic block model state and environment streams and returns the clock. We must

also define a constant begin that designates the beginning state for the electronic

block model clock. There's one small problem: the electronic block model clock and

the phase-level clock are the same; in other words, there is no temporal abstract

between those two levels. We can still use the generic interpreter theory, however,

since we can model this using a 1-phase clock at the electronic block model level.

The following definitions for GetEBMClock and EBM-Begin, which represent count

and begin respectively, implement a 1-phase clock. There are many ways of doing

this; we chose to use an arbitrary boolean value to represent the single phase.

I10



F_d GetEBMClock rep (reg, ps., pc, mem, ivec. ir, mar,

mbr, mpc, alatch, blanch, ireq_ff,

iack_ff, mir, urom, clk)

(int_e) - z x:bool. F

_d EBM_Begin = e x:bool. F

The expression e x :bool. F chooses a boolean value for x such that the expression

F is true. Since F can never be true, we get an arbitrary value of the same type as

x, boolean.

5.2.3 Defining the Phase Level.

The phase-level represents the lowest level interpreter in our hierarchy. It is really a
reflection of the electronic block model rather than an abstraction. All of the state

present in the electronic block model is present in the phase-level and they share

the same clock. Although we only show that the electronic block model implies the

phase-level, we could show that they are equivalent. We first present an informal

description of the phase-level interpreter and then present the formal definitions.

Defining the Phase-Level State. The state-tuple that describes the phase-

level interpreter state is identical to the tuple describing the state of the electronic

block model.

(reg, psw, pc, mem, ivec, it, mar, mbr, mpc,

alatch, blatch, ireq_ff, iack_ff, mir, urom, clk)

The variables have the same meaning as they did in the electronic block model.

Defining the Instruction List. The operation of the phase-level interpreter is

fairly simple. We associate each phase in the system clock with an instruction in

the phase-level interpreter. The instructions define the state transitions that occur

during each phase of the clock. This same information is available in the electronic

block model, but is not as apparent. During the four phases, the machine performs

the following state transitions:

1. In phase 1, the microinstruction register is loaded from the microrom.

2. In phase 2, the latches feeding ALU are loaded from the register file and

system registers.

3. In phase 3, the ALU and shifter calculate a result based on their inputs.
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4. In phase 4, the result calculated in phase 3 is stored back into the register file

and system registers.

The formal definitions for these phases describe in detail what happens at each

phase.

Phase-One. During the first phase, the microinstruction register is loaded with

the contents of the microrom at the location given by the current microprogram

counter, the flip-flop holding the interrupt request is latched from the interrupt

request line in the environment, and the dock is updated so that the second phase

is selected next.

F_j phase_one rep (reg, psw, pc, mem, ivec, ir, mar, mbr, mpc,

alatch, blatch,ireq_ff, iack_ff, mir, urom,

clk)

(int_e) =

let new_mir = urom (bt6_val mpc) and

new_ireq_ff = int_e and

new_clk = (F,T) in

(reg, psw, pc, mem, ivec, it, mar, mbr, mpc,

alatch, bla¢ch, ne._ireq_ff, iack_ff, new_mir,

urom, new_clk)

Phase-Two. During the second phase, the latches that feed the ALU are

loaded from the register file and system registers according to the SrcA and SrcB

fields in the microinstruction register. In addition, the interrupt acknowledge flip-

flop is set if the interrupt acknowledge field is set in the microinstruction register.

The clock is updated to select the third phase.
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_d_ phase_two rep (reg, psw, pc, mem, ivec, Jr, mar, mbr, mpc,

alatch, blatch, ireq_ff, iack_ff, mir, urom,

let

let

clk)

(int_e) =

new_alatch = (

((SrcA mir) =

((SrcA mir) =

(($rcA mir) =

((SrcA mir) =

((SrcA mir) =

new_bla¢ch = (

((SrcB mir) =

((SrcB mir) =

(F,F,F)) --_

(EL (reg_len rep (srca rep ir)) reg)

(F,F,T)) -*

(EL (reg_len rep (dest rep it)) reg)

(F,T,F)) -_ (SSP_KEG reg) l

(F,T,T)) -_ psw ]

(T,F,F)) --_ (wordn rep 255) I

pc) in

(F,F)) -_

(EL (reg_len rep (srcb rep ir)) reg)

(F,T)) -_ (int_fetch rep ivec) I

(imm rep Jr)) in

let new_iack_ff =Iack mir and

new_clk = (T,F) in

(reg, psw, pc, mem, ivec, Jr, mar, mbr, mpc,

new_alatch, new_blatch, ireq_ff, new_iack_ff,

mir, urom, new_clk)

Note that setting the interrupt acknowledge i_p-flop in this phase is not conditioned

upon the value of the interrupt request i_p-flop set in phase one, but the current

contents of the nficroinstruction feaster. Any connection between the values on

these lines is estabhshed in the n_crocode, not in the hardware.

Phase-Three. The primary function of the third phase is to allow the result

from the ALU and shifter to stabihze. In addition, the memory address register is

loaded from the program counter if the Mar and Pmux fields are tdgh in the current

nficroinstruction. The clock is updated to select phase four.

_gef phase_three rep (reg, psw, pc, mem,

alatch, blatch,

clk)

(±nt_e) =

lee new_mar = (((PmuI mir)

new_clk = (T,T) in

(reg, psw, pc, mem, ivec,

alatch, blatch, ireq_ff,

ivoc, ir, mar, mbr, mpc,

ireq_ff, iack_ff, mir, urom,

A (Mar mir)) --_ pC I mar) and

ir, new_mar, mbr, mpc,

iack_ff, mir, urom, new_clk)

Phase-Four. Phase four (shown in Figure 5.9) is the busiest of the four phases.

The program status word is updated, the results from the ALU and shifter are stored
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F',h! phase_four rep (reg, psw, pc, mere, ive¢, ir, mar, mbr, mpc,

alatch, blatch, ireq_ff, iack_ff, mir, urom,
clk)

(int_e) =

let a_input = ((Amux mir) -. mbr I alatch) in

lee carry_in = (get_cf rep ps.) in

let alu_result =

ALU_FUNC rep (Alu mir) a_input blatch carry_in in

let cf =

ALU_CARR¥_FUNC rep (Alu mir) a_input blarch carry_in in
let vf =

ALU_0VFL_FUNC rep (Alu mir) a_inpur blatch carry_in in
let nf =

ALU_NEG_FUNC rep (Alu mir) a_input blatch carry_in in

let zf =

ALU_ZER0_FUNC rep (Alu mir) a_input blatch carry_in in

let result = SHIFTER_FUNC rep (Shift mir) alu_result in

let shft_c = SHIFTER_CARRY_FUNC rep (Shift mir) alu_result in

let opc = (opcode rep ir) in

let ie = (get_ie rep ps.) and

sm = (get_sm rep ps.) in

let new_psw = (

(((Trgt mir) = (F,T,F)) A sm) -. result [

(mk_ps. rep (

((S_sm mir) -* T [ (C_sm mir) -+ F [ sm),

((S_ie mir) -+ T I (C_ie mir) -. F [ie),

((Ld_v mir) -+ vf [ (get_vf rep ps.)),

((Ld_n mir) -+ nf [ (get.nf rep ps.)),

((Ld_c mir) -+

((Csrc mir) -+ cf [ shft_c) [ (get_cf rep ps.)),

((Ld_z mir) -4 zf [ (get_zf rep ps.))))) in

Figure 5.9: Phase four of the phase-level interpreter (continued on next page).
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let new_reg = (

((Trgt mir) = (F,F,F)) -_

(DPDAT__REG rep psw

(reg_len rep (dest rep ir)) reg result) I

((Trgt mir) = (F,F,T)) --*

(UPDATE_REG rep psw ssp_reg reg result) I

reE) in

let new_mpc - (

MPC_UNIT mpc opc (Address mir)

(Cond mir) ireq_ff ie sm) in

let new_ir = (((Trgt mir) = (F,T,T)) -_ result I Jr) in

let jmp = (JUMP_COND rep (reg_len rep (dest rep Jr)) psw) in

let new_pc = (

((TrgZ mir) = (T,F,F)) -* result I

(((Trgt mir) = (T,F,T)) A imp) -, result ] pc) in

leZ new_mbr = (

(Rd mir) -_ (fetch rep (mem, address rep mar)) I

(Mbr mir) -_ resulZ l

mbr) in

let new_mar =

(('(Pmux mir) A (Mar mir)) -_ result I mar) in

let new_mere =

((Wr mir) -_ store rep (mem,address rep mar,mbr)

i mem) in

let new_clk = (F,F) in

(new_reg, new_psw, new_pc, new_mem, ivec, new_ir, new_mar,

new_mbr, new_mpc, alatch, blatch, ireq_ff, iack_ff, mir,

urom, new_clk)

Figure 5.10: Phase four of the phase-level interpreter (continued).
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back in the register file and other system registers, the microprogram counter is

updated, the memory buffer register is updated, and a new value of memory is

calculated.

The specigcation of the fourth phase is dependent on several auxiliary functions.

For example, the result from the ALU is calculated by ALU_FUNC.

_d,/ ALU_FINC rep s a_input blatch carry_in =

((s = (F.F.F,F)) -* (add rep (a_input.blatch)) I

(s-- (F.F.F.T)) -* (addc rep (a_input.biatch.carry_in))

(s = (F.F.T.F)) -_ (inc rep a_input) l

(s = (F.F.T.T}) -* (sub rep (a_input.blatch)) I

(s- (F.ToF.F)) -* (subc rep (a_input.blatch.carry_in))

(s = (F,T,F,T)) -_ (dec rep a_input) i

(s = (F,T,T,F)) -_ (band rep (a_input,blatch)) J

(s-- (F,T,T,T)) -_ (bxor rep (a_input,blatch)) [

(s = (T,F.F,F)) -_ (bor rep (a_input,blatch)) l

(s = (T,F,F,T)) -_ (bnot rep a_inpuZ) [

a_input)

The auxihsa7 functions keep the specification of the fourth phase from being more

unwieldy tlmn it already is and significantly reduce the amount of time to verify

the phase-level since the time to rewrite a term grows exponentially with its size.

An interesting point in the specification of the fourth phase is that the we calculate

the value of the microprogram counter using the same function, MPC_UNIT, that

we do in the electronic block model. The specification for MPC_UNIT represents

a functionMity assumed at every level in the specification. Thus, we have not

proven very much about the microprogram unit, only that it is hooked up correctly.

As we mentioned earlier, we have not implemented and verified the blocks in the

electronic brock model in this proof. The goal of this work is a demonstration that

the generic interpreter theory and hierarchical decomposition work. The proof of

low-level objects is orthogonal to this goal. We believe, however, that the abstract

specificatiom used at different levels are reasonable and that circuits meeting our

speciflcatio, could be built.

Defining select. The abstract function select returns a key based on the value

of the state and the environment. In the case of the phase-level, the key is simply

the clock.

_d GetPhaseClock rep

_eg, psw, pc, men, ivec, it, mar, mbr, mpc,

alatch, blatch, ireq_ff, iack_ff, mir. urom.

(in__e) = elk

elk)
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Defining key. Key transforms a key into a number. Our clock is represented by a

boolean 2-tuple, so the tuple function bt2_val serves as the representation for key.

Defining substate. The state is identical at the phase-level and the electronic

block model; therefore, the substate function is represented using the built-in

identity function, I.

Defining subenv. The environment is identical at the phase-level and the elec-

tronic block model; therefore, the subenv function is represented using the built-in

identity function, I.

Defining the Phase-Level Interpreter. Unlike the electronic block model

specification, we do not combine the phase-level definitions together into a specifi-

cation for the phase-level. We will use a properly instantiated form of the definition

of the generic interpreter from Section 2.3 as our phase-level specification.

In Section 2.3, we defined a generic interpreter, INTERP. The first argument

to INTEKP is the representation. The representation tuple cont_ns the concrete

instantiations for the abstract objects from the abstract representation, in the order

that they appear in the abstract representation. Table 5.11 shows the functions

used to instantiate the abstract representation. The result is a specification of the

phase-level interpreter:

_d4 Phase_Int rep s e =
INTEKP

([(F,F) ,phase_one rep;

(F,T) ,phase_two rep;

(T,F) ,phase_three rep ;

(T,T) .phase_four rep],

bt2_val,

GetPhaseClock rep,

I,

I,

EBM rep,

GetEBMClock rep,

EBM_Start) s e

Note that the first argument to the phase-level description, Phase_Int, is rep.

This is a different abstract representation than the one used to describe the generic

interpreter theory. As we mentioned earlier, the definition of the microprocessor

is given in terms of an abstract representation for n-bit words, :*wordn. The

variable rep in the above definition is a representation variable for the abstract

word data type.
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Table 5.11: The functions usedto instantiate the abstract represen-

tation of the generic interpreter theory for the phase-

level.

Operation Ins_antiation

inst_list list of phase instructions

key bt2_val

select GetPhaseClock

substate The identityfunction, I

subenv The identity function, I

Impl EBM

count GetEBMClock

begin EBM_Begin

The definition of our microprocessor has two layers of abstraction. We instantiate

the generic interpreter theory to get an abstract representation of the microproces-

sor, which is then instantiated with a word package (for example, vord32, for a

32-bit microprocessor) to yield a completely specified microprocessor. Thus, rep in

the above definitions, and all of the definitions and theorems in this section, denotes

the abstract representation for the microprocessor's basic data type.

The definition of Phase_Int is not very satisfying since it does not look like the

predicate that we expect to see in an microprocessor specification. We can instan-

tiate the definition using a function from the abstract theory package as follows:

let Phase_Int ffisave_ibm

('Phase_Int ',

BETA_RULE (

EXPAND_LET_RULE

(instantiat e_abstract_definition

' gen_ I '
' INTERP '

Phase_Int_def) )

);;

The string gen_I in the above expression is the name of the generic interpreter theory

and INTEEP gives the name of the definition to instantiate. We expand the let terms

in the result to create the more familiar top-level predicate specification:
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Phase_Int rep s e =

(V r.
s(t + I)

SND

(EL

(bt2_val(GstPhassClock rep (s _)(e t)))

[(F,F),phase_one rep;

(F,T),phase_t.o rep;

(T,F),phase_three rep;

(T,T),phase_four rep]) (s t) (e t))

This theorem defines the phase-level interpreter by relating the state at time t + 1 to

the state and environment at time t. The relationship is based on the n th member

of the instruction list where n is calculated from the phase-level clock.

5.2.4 Defining the Microcode.

The phase-level interpreter definition is independent of the contents of the micro-

tom; the microrom appears as a variable. Thus, the microcode is not a level in the

abstraction, but rather the data that the phase-level interpreter will act upon to

implement the micro-level interpreter.

Recall from the discussion of the microinstruction register in Section 5.1.2 that a

microinstruction consists of 40 bits in 24 fields which can be broken into 4 groups:

those affecting the operation of the microprocessor, those affecting the program

status word, those dealing with external signals, and those that are used for mi-

croinstruction sequencing. Table 5.12 briefly reviews the meaning of these fields.

Refer to Section 5.1.2 for a more detailed description.

5.2.4.1 The Microcode Assembler.

We use ML to assemble the microcode into the bit-strings that will be used by

the phase-level interpreter to implement the micro--level interpreter. The goal in

writing this assembler was not to produce a production quality assembler, but

rather to allow mnemonic names to be used to define the microcode so that errors

can be reduced. This section will describe how the microassembler is used. For

implementation details, see [Win90b] .

The microcode assembler is implemented using four functions, one for each of the

four groups of fields in the microinstruction.

The Operations Group. The operations group is specified using a function Oper

which takes the following 6 arguments:
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Table 5.12: The microinstruction format for AVM-I.

Operaf.ion Group

Bits

1

2

4

1

1

1

3

2

3

Mnemonic Description

AMUX Toggle MUX on A-bus

SHFT Shifter function

ALU ALU function

MAR Load MAR from P-Mu.x

KBR Load MBR from C-bus

PMUX Toggle MUX loading MAR

SRCA A-bus source

SRCB B-bus source

TRGT C-bus target

Program Stat.uJ Word Group

Bits

1

1

1

1

1

1

1

1

1

Mnemonic Description

S_SM Set supervisory mode bit in PSW

C_SM Clear supervisory mode bit in PSW

S_IE Set interrupt enable bit in PSW

C_IE Clear interrupt enable bit in PSW

LD_C Load carry bit in PSW

LD_V Load overflow bit in PSW

LD_N Load negative bit in PSW

LD_Z Load zero bit in PSW

CSRC Source of carry (shifter or alu

Ezternal SignaIJ Group

Bits

1

1

1

1

Mnemonic Description

IACK Interrupt acknowledge signal

FTCH Fetch signal

RD Read signal

WR Write signal

Microprogram Counter Group

Bits Mnemonic Description

3 COND Microcode jump condition

6 ADDR Next address
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Table 5.13: Register mnemonics for the microassembler.

Mnemonic Meaning

reg_:f ±le Register file

ssp Supervisor stack pointer

ir Instruction register

psw Program status word

pc Program counter (unconditional

pcj Program counter using jump conditions

mar Memory address register

mbz Memory buffer register

noreg No register

mar_gets_pc Load MAR from PC

reg_dest Register file (using dest field from IR

C255 Constant value (255)

±vec Interrupt vector

Table 5.14: Shifter mnemonics for the microassembler.

Mnemonic Meaning

shl Shift left

shr Shift right

asr Arithmetic shift right

nsh No shift

1. Specifies the target register for the operation using the mnemonic values shown

in Table 5.13.

2. Specifies the shifter operation using the mnemonic values shown in Table 5.14.

3. Specifies the A source register using the mnemonic values shown in Table 5.13.

4. Specifies the ALU operation using the mnemonic values shown in Table 5.15.

5. Specifies the B source register using the mnemonic values shown in Table 5.13.

6. Specifies special operations related to the memory address register and the

memory buffer register using the mnemonic values shown in Table 5.13.

Note that not all of the mnemonic values for the registers are allowable in every

position. For example, ttbr can appear in the target field or the source A field, but

not the B source field. This is not checked by the assembler, so improper use can

give unexpected results.

Here are a few examples of the use of 0per:
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Table 5.15: ALU mnemonics for the microassembler.

Mnemonic Meaning

add Add without carry

addc Add with carry

inc Increment

sub Subtract without borrow

subc Subtract with borrow

dec Decrement

band Bit-wise conjunction

bxor Bit-wise exclusivedisjunction

bor Bit-wise disjunction

bnot Bit-wise negation

hop No ALU operation

Table 5.16: Program status word mnemonics for the

croassembler.

Mnemonic Meaning

set_sin Set the supervisory mode bit

clr_sm Clear the supervisory mode bit

set_ie Set the interrupt enable bit

clr_ie Clear the interrupt enable bit

pass Take no action

Id_from_alu Load carry from the ALU

ld_rom_shifter Load carry from the Shifter

ld_vf Load the overflow bit

Id_.nf Load the negative bit

ld_zf Load the zero bit

re=i-

0per(reg_file,nsh,reg_file,add,pc,noreg);;

Oper(reg_file,shl,mbr,band,reg_file,mar);;

The first example adds the contents of the register selected by the A source field in

the instruction register to the program counter and stores the result in the register

selected by the destination field of the instruction register. The second example

takes bit-wise conjunction of the MAR with the register selected by the B source

field in the instruction register, shifts the result left and stores it in the register

selected by the destination field of the instruction register; the MAR is loaded with
the result as well.
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Table 5.17: External signal mnemonics for the mlcroassem-

bier.

Mnemonic Meaning

rd A read is in progress

wr A write is in progress

nomem_op No memory operation is in progress

±_ack Set the interrupt acknowledge flag

off Turn the signal off

in_fetch CPU is in a fetch cycle

The PSW Group. Table 5.16 gives the names and meanings for the mnemonics

affecting the program status word (PSW). The value of the PSW group of bits is

declared using function Set_.PSW which has 6 arguments. The meaning of the 6

arguments is given below:

1. Set, clear, or pass (leave unchanged) the supervisory mode bit.

2. Set, clear, or pass the interrupt enable bit.

3. Load the carry bit from either the ALU or the Shifter or take no action.

4. Load the overflow bit or takes no action.

5. Load the negative bit or takes no action.

6. Load the zero bit or takes no action.

The following examples show how the Set_PSW function is used:

Set_PSW (set_sm, clr_ie, pass, pass, pass, pass);;

Set_PSW (pass, pass, ld_from_alu, ld_vf, ld_nf, ld_zf);;

Set_PSW (pass, pass, ld_from_shifter, ld_vf, ld_nf, id_zf);;

The first example, sets the supervisory mode bit, clears the interrupt enable bit,

and leaves the others unchanged. The second example leaves the supervisory mode

bit and the interrupt enable bit unchanged and loads the carry bit from the ALU

as well as setting the other status bits from the last ALU operation. The third

example differs from the second only in that the carry bit is loaded from the Shifter

instead of the ALU. Like the 0per function, the Set_PSW function does not check

for most errors.
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Table 5.18: Microprogram counter mnemonics for the mi-
croassembler.

Mnemonic Meaning

step Increment the program counter and go there

jmp Jump unconditionally

j op Jump relative to mpc based on current opcode

j int Jump on interrupt

j sm Jump when in supervisory mode

The External Signals Group. Table 5.17 give the names and meanings for the

mnemonics affecting the external signals. The value of the group of bits for external

signals is declared using function ExtS±g which has 3 arguments. The meaning of

the 3 arguments is given below:

1. Specifies whether or not an interrupts being acknowledged.

2. Specifies whether or not the CPU is in fetch mode.

3. Specifies the current memory operation.

The following examples show how the ExtSig function is used:

ExtSig(off,off,rd);;

ExtSig(i_ack,in_fetch,no_mem_op);;

In the first example, the microcode turns off interrupt acknowledge, is not in fetch

mode, and is performing a read. The second example is acknowledging an interrupt,

is in the fetch portion of its cycle, and has no memory operation occurring.

The MPC Group. Table 5.18 give the names and meanings for the mnemon-

ics affecting the microprogram counter. This group of bits is declared using the

function Mpc which has 2 arguments:

1. The jump condition.

2. The address of the next microinstruction for all jump conditions except the

sequencing operator step

When a conditional jump fails, the microprogram counter is incremented. The

following examples show how the Mpc function is used:
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let TEST_ADDE = "(F,F,F,F,F,F)";;

Mpc(Btep,TEST_ADDE);;

Mpc(jint,TEST_ADDR);;

The first example goes to the next instruction in the microrom regardless of the

address given. The second example jumps to location TEST_ADDR when the interrupt

ttipflop is set.

Assembling Microcode. Each of the four functions returns an HOL term con-

sisting of the appropriately sized n-tuple of boolean values. The four functions can

be used to specify a microinstruction using HOL's antiquotation operator:

I "('(Oper(noreg,nsh,noreg,nop,noreg,msr_gets_pc)),

"(Set_PaW (pass, pass, pass, pass, pass, pass)),

"(ExtSig(off,off,rd)),

"(Mpc(jint,EINT_ul_ADDE)))"

The antiquotation operator (caret) allows an expression that results in a term to be

incorporated into an explicit term declaration. This example returns a bit-string

broken into four groups--one for each of the four operations just described.

5.2.4.2 The Microinstructions.

Using the microassembler, we can define the microprogram. The microprogram

is 53 microwords long and begins at location 0 of the microrom. Most of the

macroinstructions are implemented in 4 microinstructions. This section will briefly

describe the important features of the microprogram and give several examples

of microinstructions that implement macroinstructions. The complete program is

contained in [Win90b] .

The FETCH Instruction. Every macroinstruction begins with the same, three

microinstruction sequence. The only exception is when an external interrupt is

being processed. The first microinstruction fetches the instruction from memory to

be executed next (pointed to by the program counter).

Fad FETCH_mc =

('(Oper(noreg,nsh,noreg,nop,norog,mar_gets_pc)),

"(Set_PaW (pass, pass, pass, pass, pass, pass)),

"(ExtSig(off,off,rd)),

"(Mpc(jint,EINT_uI_ADDR)))
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If the interrupt flipflop is set, the program branches to the routine that handles

external interrupts (located at EINT_ul.ADDR).

The definition of FETCH given above actually gets assembled before it is stored in

the theory. Here is what the assembled version looks like.

I-de! FETCH_mc -

(F, (T,T), (T,F,F,T) ,F ,T,T, (T,T,F), (T,F,T) ,T,F),
(F,F,F,F,F,F,F,F,F),

(F,F,T,F),

(F,T,T) ,T,T,F,F,F,T

Throughout this section, we will show the unassembled versions, but they are ac-

tually stored as bit-strings.

The ISSUE Instruction. If the interrupt f]Jpflop is not set, the FETCH instruction

is followed by the ISSUE instruction. The ISSUE instruction moves the word that

was just fetched from memory to the instruction register.

Fd4 ISSUE_mc ffi

('(Oper(ir,nsh,mbr,nop,noreg,noreg)),

"(Set_PSW (pass, pass, pass, pass, pass, pass)),

"(ExtSig(off,off,no_mem_op)),

"(Mpc(step,DUMMY)))

The DECODE Instruction. The next instruction is the DECODE instruction which

increments the program counter (in preparation for the next cycle) and branches to

the locations in the microcode given by the opcode of the word in the instruction

register plus an offset of 4. Thus, locations 4 through 35 of the microrom are a

look-up table of raicroinstructions. The correct microinstruction is selected by the

opcode of the current macroinstruction.

Fd_ DECODE_mc ffi

('(0psr(pc,nsh,pc,inc,noreg,noreg)),

"(Set_PSW (pass, pass, pass, pass, pass, pass)),

"(ExtSig(off,off,no_mem_op)),

"(Mpc(jop,DUMMY)))

The j op jump condition does not use the address portion of the rnlcroinstruction,

so a dummy address is used as the addr field.
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The JRP_ul Instruction. After the instruction has been decoded, the work spe-

cific to the macroinstruction being implemented is performed. For example, if the

opcode of the current instruction has a value of 0 (the JMP instruction), then DECODE

would jump to location 4 and execute the following microinstruction:

Fdd JMP_ul_mc =

('(Opsr(pcj,nsh,reg_file,add,ir,norsg)),

"(Set_PSg (pass, pass, pass, pass, pass, pass)),

"(ExtSig(off,off,no_mem_op)),

"(Mpc(jmp,FETCH_ADDR)))

This microinstruction conditionally loads the program counter with the value of

immediate portion of the instruction register plus the contents of the register in the

register file selected by the current instruction. The conditional load is based on

the value of the destination field of the current instruction and the values of the

status bits in the program status word. After loading the program counter, the

microinstruction returns to the beginning of the microprogram.

The ADD_ul Instruction. The ADD macroinstruction isimplemented by the fol-

lowing microinstruction.

Fd_ ADD_u1_mc =

('(0per(reg_file,nsh,reg_file,add,reg_file,noreg)),
"(Set_PSW (pass, pass, ld_vf, ld_nf, ld_from_alu, ld_zf)),

"(ExtSig(off,off,no_mem_op)),

"(Mpc(jmp,FETCH_ADDR)))

This instruction takes both operands from the register file and stores the result of

adding them to the register file. The A source, B source, and destination registers

in the register file are all selected by the respective fields in the instruction register.

The ADD instruction sets the appropriate bits in the program status word based on
the results of the addition.

The MICROROM Definition. The microrom is a function with domain :hum

and range :ucode. we define it by using EL to select the n th element from a list of

the microinstructions.
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_d_ micro_rom n =
ELn

[FETCH_mc;

ISSUE_mc;

DECODE_mc;

NOOP_ul_mc;

JMP_ul_mc;

ADD_ul_mc;

NOOP_ul_mc]

5.2.5 Defining the Micro-Level.

The micro-level interpreter is an abstraction of the behavior described by the phase-

level interpreter. At the micro-level, we are concerned with the behavior of the

microinstructions, not their implementation.

Defining the Micro-Level State. The state--tuple that describes the micro-

level interpreter state is an abstraction of the state-tuple describing the state of the

phase-level.

(reg, psw, pc, mem, ivec, Jr, mar, mbr, mpc)

These variables have the same meaning as they did at the electronic block model

level. Note that state-variables such as the latches feeding the ALU are no longer

available. The only state visible at the micro-level is that seen by someone writing
microcode.

Defining the Instruction List. The instruction list at the micro-level is the

same length as the microrom and the keys associated with each instruction are

identical to the instruction's location in the microrom (rather than being an opcode).

We will give abstract behavioral descriptions of each of the microinstructions that

were described in section 5.2.4.

The FETCH Instruction. The memory buffer register is loaded with the in-

struction currently pointed to by the program counter. If the interrupt flag is high
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and interrupts are enabled, the CPU enters the interrupt routine in the microcode,

otherwise the next instruction in the microrom is executed.

_4 FETCH rep (reg, pew, pc, mem, ivec, ir, mar, mbr, mpc)
(int_e, reset_e) =

let new_mar = pc and

new_mbr = fetch rep (mem, address rep pc) and

new_mpc = (int_e A (get_ie rep pew)) --*"EINT_ul_ADDR

I add_bt6 mpc I in

(reg, pew, pc, mem, ±vec, ir, new_mar, new_mbr, new_mpc)

The ISSUE Instruction. The contents of the memory buffer register are moved

into the instruction register. The program continues with the next instruction in

the microrom.

_d4 ISSUE rep (reg, pew, pc, mem, "ivec, Jr, mar, mbr, mpc)
(int_e, reset_e) =

let new_Jr = mbr and

new_mpc = add_hi6 mpc i in

(reg, pew, pc, mem, ivec, new_Jr, mar, mbr, new_mpc)

The DECODE Instruction. During this instruction, the program counter is in-

cremented. The most important action, however, is the jump at the end of the

instruction to a location based on the current opcode portion of the instruction

register.

_4 DECODE rep (reg, pew, pc, mem, ivec, ir, mar, mbr, mpc)
(int_e, reset_e) m

let new_pc = inc rep pc and

new_mpc = (add_bt6 (F,(SND(opcode rep ir))) 4) in

(reg, pew, new_pc, mem, ivec, Jr, mar, mbr, new_mpc)

Note that the value used for the look-up is not the entire 6-bit opcode, but only the

5 least significant bits, padded with a false value in the most significant bit. The

effect of this is to decrease the opcode space to 32 instructions. This was adequate

for AVld-1; the top 39. instruction are reserved for a future co-processor.

The JMP_ul Instruction. This microinstruction changes the program counter to

the new value (computed by adding R [a] to irur) if the jump conditions are met.

The microprogram counter is set so that control returns to the beginning of the

microprogram (FETCH_ADDR is the address of the FETCH instruction).
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rep Creg, ps., pc, mem, ivec, ±r, mar, mbr, mpc)

(int_e, reset_e) -

a = EL (reg_len rep (srca rep ir)) reg and

i = imm rep ir and

d = reg_len rep Cdest rep ir) in

let result = add rep Ca, i) in

let jump_cond = JUMP_COND rep d psw in

le_ ne._p¢ - (jump_cond -_ result I pc) and

ne._mpc - "FETCH_ADDR in

(reg, ps., ne._pc, mem, ivec, ir, mar, mbr, new_mpc)

The boolean valued j ump_cond is calculated using the function JUMP_COND defined

in section 5.2.2.

The ADD_u1 Instruction. This microinstruction adds the values in I_ [a] and R [b]

and stores the result back into l_[d]. In addition, the program status word is

updated to reflect the status of the ALU after the operation, and the microprogram

counter is loaded with the address of the FETCH microinstruction.

_ ADD_u1 rep Creg, psw, pc, mem,

(±nt_e, reset_e) =

let

(new_reg, new_psw, pc, mem, ivec,

ivec, ir, mar, mbr, mpc)

a = EL (reg_len rep (srca rep Jr)) reg and

b = E1 (reg_len rep (srcb rep ir)) reg and

d = reg_len rep (dest rep it) in

let result = (add rep (a, b)) in

let cflag = addp rep (a, b, result) and

vflag = aovfl rep Ca, b, result) and

nflag = neEp rep result and

zflag = zerop rep result and

sm - get_sm rep ps. and

ie = get_ie rep psw in

let ne._reg = UPDATE_REG rep psw d reg resul_ and

new_psw =

mk_ps, rep (sm, ie, vflag, nflag, cflag, zflag) and

ne._mpc = "FETCH_ADDR in

Jr, mar, mbr, new_mpc)

The Instruction List. Once we have defined all of the state transition func-

tions denoting the microinstructions, we can put them together in a list suitable

for use with the generic interpreter theory. The micro-level instruction set is repre-

sented by a list of pairs, where the first member of the pair is the key for selecting

it (the location of the microinstruction in the microrom in this case) and the second

member of the pair is the state transition function.
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F-a_ micro_inst_list rep =

[((F,F,F,F,F,F),(FETCH rep));

((F,F,F,F,F,T),(ISSUErep));

((F,F,F,F,T,F),(DECODE rep));

((F,F,F,F,T,T),(N00P_ul rep));

((F,F,F,T,F,F),(JMP_ul rep));

((F,T,F,T,F,F),(ADD_ul rep));

((T,T,T,T,T,T),(N00P_ul rep))]

Defining select. At the micro-level,we willview each locationin the microrom

as constitutinga new instruction.Actually thisisnot true sincethere arc a several

instructionsin the microrom that appear more than once. In fact,the nor-operation

instructionappears 13 times. Due to the largelyhorizontalnature of the rnicrocode,

however, most of the instructionsare unique. Because we are treatingeach location

in the microrom as a separate instruction,we selectthe next instructionto execute

using the value of the microprogram counter.

Fd_ GetMPC (reg, psw, pc, mem, ivec, ir, mar, mbr, mpc)

(int_e, reset_e) = mpc

Defining key. Key transforms a key into a number. The microprogram counter

is represented by a boolean 6-tuple, so the tuple function bt6_val serves as the

representation for key.

Defining substate. At the micro-level, substate is a function for performing the

data abstraction on the phase-level state to produce the micro-state tuple shown

earlier:

Fa_ Phase_Substate rep

(reg. ps,. pc. mem. ivec,

alatch, blatch, ireq_ff,

(rsg, psv, pc, mem, ivec,

it, mar, mbr, mpc,

iack_ff, mir, urom, clk)=

ir, mar, mbr, mpc)

Defining subenv. The environment isidenticalat the micro-leveland the phase-

level;therefore,the subenv function isrepresented using the built-inidentityfunc-

tion, I.
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Table 5.19: The functions used to instantiate the abstract represen-

tation of the generic interpreter theory for the micro-
level.

Opera_ion

inst_list

key
select

substate

subenv

Impl

clock

begin

Inntantiation

micro_inst_1ist

bt6_val

GetMPC

Phase_Substat e

I

Phase_Int

GetPhaseClock

PhaseClockBegin

Defining the Micro-Level Interpreter. The definitions given in this section

(along with selected definitions from the previous section) are sufficient to instanti-

ate the interpreter definition in the generic interpreter theory. Table 5.19 shows the

functions used to instantiate the abstract representation for the micro-level. Just

as we did at the phase-level, we can use these definitions to produce a top-level

specification of the interpreter at the micro-level:

Micro_InZ =

Micro_Inz rep s • =

(V z.

s(Z + 1) =

SND (EL (bt6_val(GeZMPC(s Z)(e t))) (micro_inst_list rep))

(s t)

(e t))

5.2.6 Defining the Macro-Level.

The macro-level is the topmost specification in our hierarchy--making it the most

abstract. The macro-level specification is a formal specification of what one would

generally find in a programmer's manual for a microprocessor (see Section 5.1.1).

The specification describes the effect of each of the macro-level instructions on the

processor's state and defines how the instructions are selected. The major differ-

ence between the formal specification of the microprocessor and the programmer's

manual is that the formal specification is less ambiguous and usually more concise.
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Defining the Macro-Level State. The state-tuple that describes the macro--

level interpreter state is an abstraction of the state-tuple describing the state of the
micro-level.

(reg, psw, pc, mere)

These variables have the same meaning as they did at the micro-level. Note that

registers such as the instruction register and the memory address register are no

longer available. The only state visible at the macro-level is that seen by someone

writing assembly code.

Auxiliary Definitions. Before we specify the instructions, there are a few aux-

iliary functions that are used to define the behavior of almost every instruction.

_dd GetSrcA rep pc mem ffi

reg_len rep (srca rep (fetch rep (mem, address rep pc)))

_d_ GetSrcB rep pc mem =

reg_len rep (srch rep (fetch rep (mem, address rep pc)))

_d_ GetImm rep pc mem =

(imm rep (fetch rep (mem, address rep pc)))

_d_ GetDest rep pc mem ffi

reg_len rep (dest rep (fetch rep (mem, address rep pc)))

These functions return the values of the instruction fields from the word in memory

pointed to by the program counter. Note that they reference memory and not

the instruction register; at the macro-level, the instruction register is not visible.

Also, not every instruction will use all of these auxiliary functions since the B and

immediate fields overlap and some of the formats do not use all of the fields.

Defining the Instruction List. We will not specify every instruction at the

macro-level in this section, but will highlight a few example instructions. The

complete specification for the macro--level is contained in [Wing0b] .

The JHP Instruction. The JHP instruction has a simple description. The value

of the program status word and the contents of the destination field of the current

instruction are used to determine if a jump should occur. If so, the program counter

is loaded with the sum of the A register and the value of the immediate field from

the current instruction. Otherwise, the program counter is incremented.
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_a,! 3MP rep (reg, ps., pc, mere, ivec) =

let a - EL (GetSrcA rep pc mem) reg and

i - GetImm rep pc mem and

d = GetDest rep pc mem in

let jump_cond = JUMP_COND rep d psw in

let new_pc = (jump_cond -* (add rep Ca, i))

(reg. psw, new_pc, mem, ivec)

I inc rep pc) in

The ADD Instruction. The ADD instruction adds the contents of the registers

selected by the A and B fields in the current instruction and stores the result in

the register selected by the destination field of the current instruction. In addition,

the program status word is updated to reflect the results of the calculation and the

program counter is incremented.

Fad ADD rep (reg, psw, pc, mem, ivec) =
let a = EL (GetSrcA rep pc mem) reg and

b _ EL (GetSrcB rep pc mem) reg and

d _ GetDest rep pc mem in

let result = add rep (a, b) in

let cflag = addp rep (a, b, result) and

vflag = aovfl rep (a, b, result) and

nflag = negp rep result and

zflag = zerop rep result and

sm = get_sm rep psw and

ie = get_ie rep psw in

let new_reg © UPDATE_REG rep psw d reg result and

new_psw =mk_psw rep (sm, ie, vflag, nflag, cflag, zflag)

new_pc = inc rep pc in

(new_reg, new_psw, new_pc, mem, ivec)

and

The EINT Instruction. The EINT instruction describes the behavior of the

microprocessor upon an external interrupt. The selection criteria for the external

interrupt instruction distinguishes it from the other instructions specified at this

level. Every other instruction is selected based on the value of the opcode portion

of the word in memory pointed to by the program counter; the EINT instruction

is selected whenever the external interrupt line in the environment is set. Because

its selection criteria differs substantially from that of the other instructions (and

because an assembly language programmer would not really think of it as an in-

struction) we term EINT a "pseudoinstruction." Even though we have not described

the implementation of this instruction in earlier sections, we include it here because

it has interest both in its own right and in showing how pseudoinstructions can be

spedfied.

Every state variable in the macro-level state except the interrupt vector is changed

in the execution of the EII_T instruction. The program status word is updated to
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enter supervisory mode and disable further interrupts. The contents of the program

counter are pushed onto the supervisory stack, the supervisory stack pointer (SSP)

is incremented, and the program counter is loaded with the 8 least significant bits

of the interrupt vector.

rep (reg, psw, pc, mem, ivec) --

cd = SSP_REG reg and

d --ssp_reg in

let cflag = get_el rep psw and

vflag = get_vf rep psw and

nflag = get_nf rep psw and

zflag = get_zf rep psw and

sm = T and

ie - F in

let new_psw =

mk_psw rep (sm, ie, vflag, nflag, cflag, zflag) in

let new_reg = UPDATE_REG rep new_psw d reg (inc rep cd) and

new_pc = band rep (wordn rep 255, int_fetch rep ivec) and

new_mem = store rep (mem, address rep cd, pc) in

(new_reg, new_psw, new_pc, new_mem, ivec)

Note that the value of the interrupt vector is retrieved using the int__et ch operation

from the abstract theory. This is required because the interrupt vector is shared

state.

The Instruction List. Before defining the instruction list and the selection

function for the macro-level, we must decide upon a representation for the keys.

The instruction's opcode seems particularly well suited to be used as the key since

it uniquely identifies the instruction and is a natural part of the description of an

assembly language. However, there is one instruction, EINT, that has no opcode.

We could assign an unused opcode to EINT, but this raises the issue of what to do

if that opcode appears in a program.

We chose to represent the keys at the macro-level using a coproduct of boolean

five-tuples (:btS) and the type containing exactly one object (:one). Left injec-

tions on the type represent real instructions and right injections represent pseu-

doinstructions. We chose boolean five--tuples because there were approximately 32

instructions. There is only one pseudoinstruction, so : one, the type with only one

member, was the logical choice for its representation. There was nothing special

about associating :one with the pseudoinstructions; if there had been more than

one pseudoinstruction, another representation (such as boolean n-tuples) would

have worked.

Another small hurdle in defining the instruction list is that since none of the in-

structions used the environment vector, the state transition functions defined above

take only one argument--the state. The second member of an instruction is defined
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in the generic theory to take two arguments: the state and the environment. We

define ABS_ENV, which takes a function of type : (macro_state --, macro_state)

and creates a function of type : (macro_state _ macro_env --, macro_state).

_-d¢! ABS_ENV f x y ffi f •

We can now define the macro-level instruction list. Every instruction uses the

environment abstraction function to give it the proper type. The keys readily distin-

guish between the real instructions and the pseudoinstructions--clearly specifying

the opcodes associated with each real instruction.

_dt] macro_inst_list rep =

[(INL(F,F,F ,F,F), ABS_ENV (JMP rep) ) ;

(INL(T,F,F,F,F),ABS_ENV (ADD rep));

(INR(one),

]

ABS_ENV (EINT rep));

Defining select. The instruction selection function 0pcode uses the environment

and the state to determine which instruction to execute.

_d4 0pcode rep (reg, psw, pc, mem, ivec) (int_e, reset_e) ffi

(int_e ^ (get_ie rep psw))
INR(one) I

INL(SND (opcode rep (fetch rep (mem, address rep pc))))

If the interrupt line in the environment is high and interrupts are enabled, then

the key associated with the external interrupt instruction, INR(one), is returned.

Otherwise, a left injection of the 5 least significant bits of the opcode portion of the

word in memory pointed to by the program counter is returned.

Defining key. To instantiate the generic interpreter theory, we must be able to

turn a key into a number that indexes the instruction associated with that key in

the instruction list. The function Opc_Val performs that task:

_d40pc_Val (x:(bt5 + one)) =
(ISL x) -_ (btS_val (OUTL x))

I 32
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The function determines whether its argument is a left or tight injection and then

uses the appropriate function to return the value. Because there is only one possible

right injection, we can return 32 withotlt any further work.

Defining substate. Micro_Substate is the function used to transform a micro-

level state-tuple into the macro-level state tuple shown above. Micro_Substate

is not as straightforward as the substating functions from the previous levels. In

particular, the variables representing memory and the interrupt vector register both

represent shared state. The interrupt vector register is shared with the interrupt

controller and the memory is shared with a variety of devices.

_d_ Micro_Substate rep

(reg, psw, pc, mem, ivec, Jr, mar, mbr, mpc) =

(reg, psw, pc, trans rep mem, int_trans rep ivec)

In Section 3.4, we discussed the specification of shared state. The definition

of Micro_Substate presents a concrete example of the theory in application. The

memory at the macro-level is a function of the memory at the micro-level. This

function takes into account the changes that are occurring in memory due to the

actions of other devices. In this way, the lower levels of the implementation can

assume that they own memory without the top-level specification making the same

assumption. The interrupt vector is handled similarly. As we will see in the verifi-

cation of the macro-level, the use of the transformation functions on shared state

leads to requirements in the proof that have very satisfying interpretations.

Defining subenv. The environment is identical at the macro-level and the micro-

level; therefore, the subenv function is represented using the built-in identity func-

tion, I.

Defining the Macro-Level Interpreter. The definitions given in this section

(Mong with selected definitions from the previous section) are sufficient to instanti-

ate the interpreter definition in the genetic interpreter theory for the macro-level.

Table 5.20 shows the functions used to instantiate the abstract representation. Just

as we did at the micro-level, we can use these definitions to produce a top-level

specification of the interpreter at the macro-level:
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Table 5.20: The functions used to instantiate the abstract represen-

tation of the generic interpreter theory for the macro-

level.

Operation

inst llst

key

select

substate

subenv

Impl

clock

begin

Instantiation

macro_inst_list

Opc_Val

Opcode

Micro_Substate

I

Micro_Int

GetMPC

FETCH_ADDR

Macro_Int =

Macro_In_ rep s e =

(V t.

s(t + l) :

SND

(EL(Opc_Val(Opcode rep(s t)(e t)))(macro_inst_list rep))

(s t)
(e t))

5.2.7 Observations.

Having completed the formal specification of A VM-1, we have several observations.

This section has shown how a variety of architectural and organizational features

can be modeled using the generic interpreter theory. One should not assume that

we are claiming that every architectural feature will map onto the models presented

in Chapter 4. Indeed, many may not. For example, we have not explored the use

of our generic interpreter theory in pipehned architectures.

What does this say then for the utifity of generic theories? Certainly, many

interesting features, such as interrupts, can be mapped onto the models given in

this dissertation. Furthermore, formalizing new models is not a difficult process.

We expect that our models will change and new models will be developed to suit

new features. The major utility of generic theories, structuring the proof, is not
diminished.

Each of the interpreter levels uses a different concept of "key." The phase-level,

for example, uses the value of a polyphase clock as the instruction key. The micro-

level, on the other hand, uses location in memory as the key to sdect an instruction.

The macro-level uses an opcode as the key. Thus a program that is thousands of
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instructions long at the micro-level imphes that there are thousands of instructions.

A program that is thousands of fines long at the macro-level would still only uses

the 30 instructions given here.

Another interesting point concerning keys is their use at the macro-level to dis-

tinguish between user instructions and pseudoinstructions. When specifying an

interpreter, it is important to be flexible about the concept of an instruction. We

would not have been able to model the external interrupts using the interpreter

theory if we had not been willing to think of it as just another instruction that is

selected using an environment signal instead of the program counter.

The use of coproducts to specify the user instructions and pseudoinstruction

keys also points out the utility of having a specification language that is powerful

and expressive. Because ttOL had coproducts, we were easily able to specify the

distinction between these two types of instructions while continuing to use the

opcode to select user instructions.

The phase-level instructions perform the same action on every cycle. The only

difference between one cycle and the next is the data in the microinstruction register.

The phase-level could have been structured differently. We could have used the

values in the microinstruction register to select among several instructions. For

example, instead of selecting the second phase instruction when the clock was (F, T),

we could take action conditioned upon the contents of the microinstruction register.

This would have made the specification of the phase-level much more complex and

subsequently increased the amount of effort required to establish the electronic block

model to phase-level correctness result given in the next section.

The specifications of the electronic block model and phase-level provide an inter-

esting point of discussion. The results from the ALU and shifter are calculated in

the fourth phase in the phase-level interpreter even though in the electronic block

model the results are calculated in the third phase. The difference is that the cal-

culations in the phase-level interpreter happen instantaneously (from the state's

perspective) and are therefore calculated and stored in the last phase. The phase

when the values are stored is what is important in verifying that the phase-level

implies the electronic block model, not the phase when they are calculated. This

is a good example of the kind of design mistake that our model will not catch.

Because we are not concerned with gate delays, there is no way to model that the

result from the ALU will not be available for some time after the latches are loaded.

We probably could have left the third phase out of the design and still verified that

the design was correct; obviously, the chip would not have worked even though the

design was verified.

In order to deal with timing issues, gate--delays would have to be built into the

models. There is nothing to keep us from building specifications that model gate--

delay; however, the models would be more complex and the verification that much

more difficult. Given current state--of-the--art, it is probably better to leave timing

analyses to CAD systems for VLSI layout. In time, the timing analysis may also
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be done in the formal system; but for now, it seems prudent to let the CAD tools

do what they do well and let formal verification so what it does well, namely verify

abstract functionality of structural descriptions.

One of the merits of an abstract specification can be clearly seen in the phase-

level specification. The interrupt request environment signal, ±req_e, is latched

into the interrupt flip-flop in the datapath during the first phase. The value of

the flip-flop is not used until the fourth phase when its contents are used by the

MPC_glIIT to calculate the new contents for the microprogram counter. One could

legitimately ask why the llne is latched so early. The point of this discussion is not

to debate that issue, but to point out that the phase-level specification is a useful

tool for exploring these kinds of design issues. The circuit diagram and specification

of the electronic block model contain this information, but it is more difficult to
extract.

Each level in the decomposition hierarchy corresponds to a real level in the micro-

processor. We could introduce levels that do not correspond to these real levels. For

example, we might add an additional level of abstraction between the micro-level

and phase-level to reduce the size of the instruction set that we have to use at the

micro-level. This is an area that needs further exploration.

The specification of interrupts is incomplete until the specification presented in

this chapter is composed with a priority interrupt controller that receives signals

from devices and sets the interrupt vector accordingly.

The specification treats ivec as a piece of state. Actually, the specification never

changes the value of ivec and it seems that it could probably be treated as a

member of the environment rather than the state. There is no set rule about what

should be in the environment and what should be in the state, but in general, the

environment is a good place to put signals that are read-only. A respecification

of A VM-I should place ±vec in the environment instead of the state. This would

simplify the specification since we would not have to treat ivec as shared state.

More importantly, the composition of A VM-I with a priority interrupt controller
would be easier.
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5.3 A VM-I's Formal Verification.

Microprocessor verification involves generating a correctness result of the form

Structure _ Behavior

from the microprocessor's structural and behavioral specifications. The specifica-

tions presented in the last section were written in the object language of HOL and

can be manipulated in the HOL system.

The opening part of this section describes how the generic interpreter theory can

be used to prove the correctness of the macro-level with respect to the electronic

block model using the hierarchical decomposition presented in the last section.

Next, each level in the proof is examined, showing in detail how the proof of

correctness for that level was obtained. The three levels are interesting in that

different methods of proof were necessary in each.

The last part of this section describes how the proofs of correctness for the three

levels can be combined into a overall proof of correctness for A VM-1.

5.3.1 Instantiating the Generic Interpreter Theory.

Before describing the actual instantiations of the generic interpreter theory, we

discuss exactly what we hope to gain by this instantiation. Figure 5.11 shows how

a combination of the generic interpreter and the definitions leads to specifications

for the three interpreter levels. We want more than a description however, we want

a verified correctness statement.

The diagonal lines in from the interpreter specification at one level to the defini-

tions at the level above represent the proofs that must be done to satisfy the theory

obligations. Because of

1. the definitional relationship between the generic interpreter and the specifica-
tion on one level and

2. the theory obligations relating the implementation and the definitions between

levels,

we can conclude that the electronic block model implies the phase-level, the phase-

level implies the micro--level, and that the micro-level implies the macro-level.

Using these theorems we can prove a result about the overall correctness of our

microprocessor.
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Macro Level

Interpreter

Micro Level [Interpreter

Phase Level IInterpreter

Electronic Block
Model

Figure 5.11: The generic interpreter theory can be instantiated with defini-
tions of the various levels from the hierarchical decomposition

to yield a proof of the microprocessor.

In the sections that follow, we will be instantiating the generic interpreter proof

to provide the desired correctness lemmas at each level. In each case, we will follow

the following plan:

1. Instantiate the generic interpreter definition, providing a specification of the

interpreter at that level.

2. Instantiate the generic correctness predicate so that it can be used in the

proofs of the theory obligations.

3. Prove the three theory obligations for the instantiation. This step constitutes

the bulk of each section that follows.

4. Using the proofs of the theory obligations, instantiate the correctness result

from the generic theory.

The sections that follow will be divided into subparts roughly corresponding to this

plan.

The instantiations, for the most part, are done by calling functions defined in the

library package abstract which is discussed in Appendix A. We win describe the

functions from that package as they are used. All of the instantiation functions are

secure; that is, they do their work entirely through primitive inference in the object

world of HOL.
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Table 5.21: The functions used to instantiate the abstract represen-

tation of the generic interpreter theory for the phase-

level.

Operation Instantiation

inst_list list of phase instructions

key bt 2_val

select GetPhaseClock

substate The identity function, I

subenv The identity function, I

Impl EBM

count GetEBMClock

begin EBM_Begin

5.3.2 Verifying the Phase Level.

We would like to show that the phase-level is implemented by the electronic block

model. Logically, this amounts to showing that the electronic block model implies

the phase-level by proof.

Table 5.21 gives the concrete functions used to instantiate the generic interpreter

theory at this level. These functions were all defined in Section 5.2 with the excep-

tion of bt2_val which gives a numerical value to a boolean 2-tuple.

The Definition. The definition of the phase-level specification was given in Sec-

tion 5.2.3. Using the function for instantiating definitions from the abstract package

and expanding the let terms in the result we get the following theorem:

P Phase_I rep s • ffi

(V t.
s(t + 1)
SND

(EL
(bt2_val(GetPhaseClock(s t)(e t)))

[(F,F),phase_one rep;

(F,T),phase_two rep;

(T,F),phase_three rep;

(T,T),phase_four rep]) (s t) (e t))

This theorem defines the phase-level interpreter by relating the state at time t + 1 to

the state and environment at time t. The relationship is based on the n th member

of the instruction hst where n is calculated from the phase-level clock.
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The Correctness Predicate. After instantiating the top-level specification for

the phase--level, we instantiate the instruction correctness predicate for the phase-

level. Each of the phase-level instructions must satisfy this predicate if we are

to meet the theory obligations. We first apply the generic instruction correctness

definition INSTRUCTION_CORRECT to the concrete representation given in Table 5.21.

_d_ Phase_Int_Inst_Correct rep s' e' =

INST_CORRECT

([(F,F),phase_one rep;

(F,T),phase_t.o rep;

(T,F),phase_three rep;

(T,T),phase_four rep],

bt2_val,

GetPhaseClock rep,

I,I,

EBM rep,

GetEBMClock rep,EBM_Start) s' e'

After calling the function for instantiating definitions from the abstract package

and some minor manipulation we get a predicate that can be used in subsequent

proofs.

Phase_Int_Inst_Correct =

Phase_Int_Inst_Correct rep s' e' p =

EBM rep s' e' ==_

(V t.

(GetPhaseClock rep(s' t)(e' t) = FST p) A

(GetEBMClock rep(s' t)(e' t) = EBM_Start) ==_
(3 c.

Next(A t'. GetEBMClock rep(s' t')(e' t') ffiEBM_Start)(t,t + c) A

(SND p (s' t) (e' t) - s'(t + c)))

It is interesting to compare this version of the instruction correctness predicate with

the generic one. The structure is the same, but the names have changed.

The Theory Obligations. There are three theory obligations that we are re-

quired to meet before we can instantiate the generic theory.

° We must show that each instruction in the phase-level specification is correct

with respect to the electronic block model. Specifically, we must prove that the

instruction correctness predicate, Phase_Int_Inst_Correct is true for every

instruction in the phase-level specification.

2.We must show that every key selectsan instruction.

3. We must show that every key selects the right instruction.
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The Instruction Correctness Lemma. To establish the first theory obliga-

tion for the generic interpreter theory, we will prove that the phase--level instruction

correctness predicate applies to each of the phases and then use these results to es-

tablish that the predicate applies to every instruction.

In order to prove the correctness lemma, we will need a lemma about Next.

NEXT_LF.YIHA states the following:

I liEXT_LEMMA = [h-V "c. -c < (i: + i) A (Vt' "(t < t' A t' < (I: + i)))

This is a special form of the Next predicate when the existential variable is 1. It says

that t is less the t + 1 and that no natural number exists between t and t + 1.

The following theorem says that the instruction correctness predicate applied to

the first instruction, phase_one, is a tautology.

PHASE_ONE_EBM_LEMMA ffi

Phase_Int_Inst_Correct rep

(_ t.

(reg t,psw t,pc t,mem t,ivec t,ir t,

mar t,mbr t,mpc t,alatch t,blatch t,

ireq_ff t,iack_ff t,mir _,_trom,clk r))

(_ t. (ireq_e t))

((F,F),phase_one rep)

We proved the instruction correctness lemma for the first phase using the following

tactic:

Pt__0NCE_REWRITE_TAC [Phase_Int_Inst_Correct]

THEN REPEAT GEN_TAC

THEN BETA_TAC

THEN REWRITE_TAC [GetPhaseClock;Next;

GetEBMClock;EBM_Start;phase_one_def;]

THEN SUBST_TAC [EBM_expanded]

THEN REPEAT STRIP_TAC

THEN POP_ASSUM_LIST

(A as1. (MAP_EVERY (STRIP_ASS_E_TAC o SPEC_ALL) as1))

THEN EXISTS_TAC "I"

THEN ASM__WRI__TAC [PAIR_EQ;NEXT_LF_A]

This tactic performs the following actions:

I. Rewrite with the definition of the instruction correctness predicate.

2. Strip the universal quantification using GEN_TAC.
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3. Beta reduce the goal to remove the lasnbda expressions using BETA_TAC.

4. Rewrite with the definitions of functions from the instantiation and the defi-

nition of the first phase.

5. Substitute the expanded form of the electronic block model definition. The

expanded form has all of the definitions completely expanded and is about 4

pages long. Substitution does not perform unification the way that rewrit-

ing does and is thus faster than rewriting. Substitution is sufficient for our

purposes.

6. Strip the antecedent of the implication (the expanded form of the electronic

block model) and place it in the assumption list.

7. Break the expanded form of the electronic block model into the definitions

of the individual blocks using STI_IP_ASSUME_TAC. This tactic picks arbitrary

constants for the existential variables and then splits any conjunctions into

two assumptions.

8. Pick a witness for the existential variable in the instruction correctness pred-

icate. For this level, finding an existential witness is easy; because there is no

temporal abstraction taking place, the existential variable is always 1.

9. Rewrite using the assumptions, NEXT_LEI_A, and a theorem about the equality

of pairs.

The above tactic only proves the first instruction correctness lemma. The tactics

to prove the other instructions at the phase-level are more involved than this one.

The tactic that proves the fourth phase is quite long.

The instruction correctness lemma is difllcult to prove at the phase-level since

every instruction requires a different proof. As we will see, at the micro and macro-

levels, one tactic suffices to prove every instruction correctness lemma. We will not

show all of the proofs for the phase-level here, but they are contained in [Win90b].

After we have shown that the instruction correctness predicate is true for each of

the instructions, we can show that it is true for every instruction. This satisfies the

_st theory obligation.
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Phase_ Int_Correct_LEMMA ffi

EVERY

(Phase_Int_InsC_Corrsct rep

(_ t.

(reg t,psw t,pc t,mem t.ivec t,ir t.mar t,mbr t,

mpc t,alatch t,blatch t,ireq_ff t,iack_ff t,

mir t.urom,clk t))

CA t. (ireq_e t)))

[(F,F) ,phase_one rep;

CF,T) ,phase_two rep;

(T,F) ,phase_three rep ;

(T,T) ,phase_four rep]

The Length Lemma. The second theory obligation is easy to show. The

theorem says that the numeric value of a boolean 2-tuple is always less than the

length of a four element list.

Phase_Int_LENGTH_LEMMA =

bt2_val clk < (LENGTH [(F,F),phase_one rep;

(F,T),phase_two rep;

(T,F),phase_three rep;

(T,T),phase_four rep])

The Order Lemma. The third theory obligation says that the numeric value

of the first part of the pair denoting an instruction is the index of that instruction

in the instruction list (i.e. that the list is correctly ordered).

Phase_Int_OKDER_LEMMA =

elk = FST (EL (bt2_val elk)

[(F,F).phase_one rep;

(F,T),phase_two rep;

(T,F),phase_three rep;

(T,T),phase_four rep])

This lemma is also quite easy to show by case analysis.

Instantiating the Correctness Theorem. Having proven the theory obliga-

tions, we can instantiate the generic interpreter theory. The function from the

abstract package which does this takes several arguments.

1. The name of the theory to instantiate.
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2. A list of the lemmas proving the theory obligation.

. A list of substitutions for the parameters in the generic theorems. These

substitutions take the form of a pair, where the first member of the pair

gives the v_iable to specialize and the second gives the term with which to

specialize it.

. A string to prepend to the names of the theorems resulting from the instan-

tiation. This is used to prevent name clashes with the names in the generic

theory.

The instantiation of the generic interpreter theory for the A VM-1 microengine is

shown in Figure 5.12.

The Final Result. The result of the instantiation can be simplified through

minor rewriting and beta reduction. In particular, we note that the temporal ab-

straction function, Temp__bs is equivalent to the identity function at this level since

the clock for the electronic block model and the phase-level are the same.

Temp_Abs_DEGENERATE = _ Temp_Abs($ t. T) = I

Using the last theorem and a few minor manipulations, the result of the instanti-

ation is a correctness result for the electronic block model and phase-level becomes:

PHASE_LEVEL_CORKECT_LEMMA =

F EBM rep
CA r.

(regt,psw t,pc r,mem ¢,ivac r,ir t,

mar t,mbr t,mpc t,alatch t,blatch t,

ireq_ff t,iack_ff t,mir t,urom,clk t))

(A t. (ireq_e t))

Phase_Int rep
CA t.

(reg z,psw ¢,pc t,mem t,ivec r,ir t,

_ar t,mbr t,mpc t,alatch t,blatch t,

ireq_ff t,iack_ff t,mir t,urom,clk t))

(A t. (ireq_e t))

This result is the same theorem that we would have proven about the phase-level

and the electronic block model if we had not used the generic interpreter theory. The

result says that the electronic block model implies the phase--level for the concrete

state and environment in our model. The result is a little cleaner than the proofs of

correctness for other levels since it does not include a temporal projection function

and there are no assumptions.
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let theorem_list =

inst ant iat e_abstract_theorems

'gen_I'

[Phas e_Int _Correct _LEMMA ;

Phas e_Int _LENGTH_LEMMA ;

Phase_Int_0RDER_LEMMA]

[

("rep :"I_rep_ty",

"([(F,F) ,phase_one rep ;

(F,T) ,phase__;wo rep ;

(T,F) ,phase_three rep;

(T,T) ,phase_four rep3 ,

bt2_val,

GetPhaseClock rep,

I,

I,

EBM rep,

Ge_EBMCIock rep") ;

("e' :_ime '->*env' '_,

"(_ t. (ireq_e t))");

("s' :time->*state '",

"(A t. (reg r, psw t, pc t, mem t, ivec t,

ir t, mar t, mbr t, mpc t,

alatch t, blatch t, ireq_ff t,

iack.ff t, mir t, urom, clk t))");

Figure 5.12: Instantiating the abstract theory for the phase-level.
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5.3.3 Verifying the Micro-Level.

The verification of the micro-level is at once the most straightforward and the

largest of the proofs presented here. In the proof of correctness for this level, we axe

showing that the phase-level specification implements the micro--level specification.

Again, we do this by instantiating the genetic interpreter proof.

The instantiation is possible even though the implementation for this level, the

phase-level specification, is vastly different in structure from the implementation in

the proof we just completed. The electronic block model is a structural specification

and the phase-level is a behavioral, interpreter-based specification. The reason that

these two different types of specifications can be used in the instantiation for the

implementation is that the genetic interpreter theory places very few restrictions

on the abstract operator representing the implementation.

Table 5.22 gives the concrete functions used to instantiate the generic interpreter

theory at this level. These functions were all defined in Section 5.2 with the excep-

tion of bt6_val which gives a numerical value to a boolean 6-tuple.

The Definition. The definition of the micro--level specification was given in Sec-

tion 5.2.5. Using the function for instantiating definitions from the abstract package

and expanding the let terms in the result we get the following theorem:

Nicro_Int =

Micro_Int rep s • =

(V t.

s(t + I) =

SND

(EL (bt6_val (GetMPC (s _)

(micro_inst_list rep))

(s t)
(e t))

(e t)))

This theorem defines the micro-level state at time t + 1 in terms of the state at

time t using the instruction in the instruction list selected by the current value of

the microprogram counter.

The Correctness Predicate. After instantiating the top-level specification for

the micro-level, we instantiate an instruction correctness predicate for the micro-

level. Each of the micro-level instructions must satisfy this predicate if we axe

to meet the theory obligations. We first apply the generic instruction correctness

definition INSTRUCTION_CORRECT to the concrete representation given in Table 5.22.
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Table 5.22: The functions used to,instantiate the abstract represen-

tation of the genetic interpreter theory for the micro-
level.

Operation

inst list

key
select

substate

subenv

Impl

clock

begin

Instantiation

micro_inst_list

bt6_val

GetMPC

Phase_Substate

I

Phase_Int

GetPhaseClock

PhaseClockBegin

_a_ Micro_Int_Inst_Correct rep s e =

INST_CORRECT

(micro_inst_list rep,

bt6_val, Ge_MPC,

Phase_Substa_e rep, I, Phase_Int rep,

GetPhaseClock rep, PhaseClockBegin) s e

After applying the function for instantiating definitions from the abstract package

and some minor manipulation we get a predicate that can be used in subsequent

proofs.

Micro_Int_Inst_Correct =

Micro_Int_Inst_Correct rep s e p =

Phase_Int rep s •

(V t.

(GetMPC(Phase_Substate rep(s t))(e t) = FST p) A

(GetPhaseClock rep(s t)(e t) = PhaseClockBegin)

(3 c.

Next

(A t'. GetPhaseClock rep(s t')(e t') ffiPhaseClockBegin)

(t,t + c) A

(SND p(Phase_Substate rep(s t))(e t) =

Phase_Substate rep(s(t ÷ c)))))

The instruction correctness predicate for the micro-level looks very similar to the

instruction correctness predicate for the phase-level; only the names are different.

This should not come as a surprise since they were generated by instantiating the

same generic definition.
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The Theory Obligations. Just as we did at the phase-level, we must meet the

three theory obligations of the generic theory before we can instantiate it.

The Instruction Correctness Lemma. The first theory obhgation for this

instance of the generic interpreter theory is that Micro_Int_Inst_Correct applies

to every instruction in micro_inst_list. We do this by case analysis, first showing

that it applies to each instruction in the instruction set, and then using those lemmas

to show that it applies to every instruction.

There are fi4 instructions at the micro-level. In order to prove this large number

of lemmas, we use the recta-language of HOL, ML, to automate most of the proof.

We write an ML function that when apphed to a number, returns the instruction

correctness lemma for the instruction in micro_inst_list corresponding to that

number. This function is mapped onto a list of numbers from 0 to 63 to create a

list of lemmas---one for each instruction in the list. The regularity of the proof for

the micro-level makes this possible.

The first step is to write a function to produce the desired goal. The following

function, when applied to a number, returns the goal for the instruction correspond-

ing to that number.

let MK_INST_CORRECT_GOAL n =

let inst = term_list_el n

(snd(dest_eq (

snd(dest_forall(concl micro_inst_list))))) in

"V (rep:'rep_ty) reg mem

psw pc ivec ir mar mbr alatch blatch

mpc clk urom mir ireq_ff iack_ff int_e.

(V p. mk_psw rep

(get_sm rep p,get_ie rep p,get_vf rep p,

get_nf rep p,ger_cf rep p,get_zf rep p) = p)

Micro_Int_Ins__Correct rep

(A t. (reg t,psw t,pc t,mem t,

ivec t,ir t,mar r,mbr t,mpc r,

alatch t, blatch t, ireq_ff t, iack_ff t,

mir t, micro_tom, clk t))

(A t. (int_e t)) "inst";;

For example, when applied to 4, ME_INST_CORRECT_GOAL returns the goal for

the JMP_ul microinstruction:
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"V (rep:'rep_ty) reg mere

psw pc ivec ir mar mbr alatch blatch

mpc clk urom mir

ireq_ff iack_ff int_e.

(V p. mk_psw rep

(get_sm rep p,get_ie rep p0get_vf rep p,

get_nf rep p,get_cf rep p,get_zf rep p) = p)

Micro_ Int_ Inst_Correct rep

(_ t. (reg t,pst; t,pc t,mem t,

ivec t,ir t,mar t,mbr _,mpc t,

alatch t, blatch t, ireq_ff t, iack_ff t,

mir t, micro_rom, clk t))

(A t. (int_e t)) ((F,F,F,F,F,F),JMP_ul rep)";;

In order to establish the correctness of the micro-level, the goal contains an as-

sumption about the abstract word representation:

V p. mk_psw rep

(get_sm rep p0get_ie rep p,get_vf rep p,

get_nf rep p,get_cf rep p,get_zf rep p) = p

This assumption requires that the constructors and selectors for the program status

word be mutually consistent.

We can solve goals of this form though symbolic execution. As we said, the regu-

laxity of the goals allows us to write a single tactic that solves all 64 microinstruction

correctness goals. The complete tactic is to large to include here; it can be found

in [Win90b] . Rather than include it, we will describe the theory behind how the

tactic works.

We will establish an intermediate lemma for each instruction at the phase-level to

aid in the symbolic execution. This lemma gives relationships between the various

state variables at time t and t + 1 provided that the phase-level interpreter is valid

and the clock selects that instruction at time t. For example, for phase--one, we can

easily prove the following lemma using the definition of the phase-level interpreter

and the definition of the first instruction at the phase--level.
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PHASE_ONE_LEMMA -

Phase_Int rep

(A t. (re E z,psw t.pc t,mem t,ivec z,ir t,mar z,

mbr t,mpc t,alatch z,blatch t,ireq_ff z,

iack_ff t,mir t,urom,clk t))

CA t. (int_e t))

(V t. (clk t = F,F)

(regCZ ÷ 1) = (reg Z)) ^

(ps.Ct * 1) = (ps. z)) ^
(pcCz + l) = (pc t)) ^
(mem(z + 1) - (mem z)) ^

(ivec(t + 1) = (ivec z)) ^
(ir(t + 1) = (it t)) ^

(marCz + 1) = (mar z)) ^

(mbr(z ÷ 1) = (mbr Z)) A

(mpc(t + 1) = (mpc t)) ^
(alaZch(Z + 1) = (alaZch Z)) A

(blazch(Z ÷ 1) = (blaZch Z)) A

(ireq_ff(Z + 1) = (ireq_ff t)) A
(iack_ff(Z ÷ 1) = (iack_ff t)) A

(mir(t + 1) = (urom(bt6_val(mpc t)))) A

(clk(z ÷ 1) = (F,T)))

Note that the selection is based on the clock being (F,F) for phase-one. Just as

we expect from the definition of phase-one, the mir and clk are the only variables

that change. We would also establish PHASE_TWO_LEI_A, PHASE_THItEE_LEMMA, and

PHASE_FOUI__LF_MMA.These can all be proven using a single inference rule.

Now we turn our attention to the symbolic execution that establishes the instruc-

tion correctness lemma. We begin by stripping the universally quantified variables

and the antecedents of the implication from the goal and rewriting it with the def-

inition of the instruction correctness predicate for the micro-level, the definition of

the microinstruction, and the definition of Next. This is the result:
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3 C.

(t < (t + C) ^ (V t'. t < r' A t' _ (t ÷ C)

(A t'' clk t" = F,F)t') A

(A t'. clk t' = F,F)(t + c)) A

(reg t,psw "c,

(JUMP_COND repCreg_len rep(dest rep(ir t)))Cpsw Z) =>

add rep(EL(reg_len rep(srca rep(ir t)))(reg _),imm rep(ir t)) [

pc t),

mem t,ivec t,ir t,mar t,mbr t,F,F,F,F,F,F =

reg(t + c),psw(t * c),pc(t + c),mem(t + c),ivec(t + c),

ir(¢ + c),mar(t + c),mbr(t + c),mpc(Z * c))

[ "V p. mk_psw rep

(ger_sm rep p,get_ie rep p,get_vf rep p,

ge__nf rep p,get_cf rep p,get_zf rep p) = p" ]

[ "Phase_Int rep

(A t. (reg t,psw t,pc t,mem t,ivec t,ir t,mar t,mbr t,mpc t,

alatch t,blatch t,ireq_ff t,iack_ff t,mir _,micro_rom,clk t))

(A t. (int_e t))" ]

[ "mpc t = F,F,F,T,F,F" ]

[ "clk Z = F,F" ]

The assumption list holds the antecedents of the implication in PHASE_ONE_LEMMA.

We can resolve PHASE_ONE_LEMMA with the assumptions using Mod_a Po_ena to

perform one step in the execution. The results are put back on the assumption list.

..°

[ "reg(t + 1) = reg t" ]

[ "psw(t + I) = psw r" ]

[ "pc(t + i) = pc Z" ]

[ "mem(t + 1) = mere t" ]

[ "ivec(t + 1) = ivec ¢" ]

[ "it(l; + 1) ,. ir t" ]

[ "ma_(t * i) = max r" ]

[ "mbr(t + 1) = mbr t" ]

[ "mpc(t + 1) = F,F,F,T,F,F" ]

[ "ala_ch(z + I) = alatch t" ]

[ "blatch(i; + I) = blatch t" ]

[ "ireq_ff(t + I) = int_e t" ]

[ "iack_ff(t + I) = iack_ff t" ]

[ "mir(t + 1) =(F,(T,T),(F,F,F,F),F,F,F,(T,F,T),(F,F,F),T,F),

(F,F,F,F,F,F,F,F,F), (F,F,F,F), (F,F,T),F,F,F,F,F,F" ]

[ "clk(t * 1) = F,T" ]

Note that the value of urom has been expanded so that the microinstruction reg-

ister holds the actual bit string for the microinstruction currently selected by the

microprogram counter. Also note that the clock, clk, has advanced to (F,T).

We can now use PHASE_TWO_LEMMA to symbolically execute the second phase. We
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resolve it with the assumption that the phase-level is valid and the clock at time

t + 1 to obtain the following step-wise changes to the phase-level state

• ° •

[ "reg(Ct + 1) + 1) = regCt + I)" ]

[ "pswC(t + 1) + 1) = pswCt + I)" ]

[ "pcCCt + 1) + 1) = pc(_ + 1)" ]

[ "memCCt + 1) + 1) = memCt + 1)" ]

[ "ivec((z + 1) + 1) -- ivec(t + 1)" ]

[ "ir((t + 1) ÷ 1) = irCz + 1)" ]

[ "mar((t + 1) + 1) = mar(Z + 1)" ]

[ "mbr((Z + 1) + i) = mbrCZ + I)" ]

[ "mpc((Z + 1) + I) = mpcCt + 1)" ]

[ "alatch((t + 1) + 1) =

EL(reg_len rep(srca rep(ir(t + 1))))(reg(z + 1))" ]

[ "blatch((z + 1) + 1) = i_n rep(ir(z + 1))" ]

[ "ireq_ff((t + 1) + 1) = ireq_ff(t + 1)" ]

[ "-iack_ff((t + 1) + 1)" ]

[ "mir((Z + 1) + i) = (F,(T,T),(F,F,F,F),F,F,F,(T,F,T),(F,F,F),T,F),

(F,F,F,F,F,F,F,F,F), (F,F,F,F), (F,F,T),F,F,F,F,F,F" ]

[ "clk((t + 1) ÷ i) = T,F" ]

The alatch and btatch have been loaded at time (t + 1) + 1 just as we expect and

the clock has advanced to (T,F).

To execute the third phase, we resolve PHASE_THKEE_LEMMA with the assumption

list and add the changes that occur during phase-three to the assumption list.

[ "reg(((t + 1) ÷ i) + 1) = reg((t + 1) ÷ 1)" ]

[ "psw(((Z ÷ I) + i) + I) = ps,((t + I) + I)" ]

[ "pc(({z + 1) + 1) + 1) - pc{(t + 1) + 1)" ]

[ "mem(C(t + I) ÷ 1) + i) = mem(Ct + I) + I)" ]

[ "ivec(((t + 1) + 1) + 1) = ivec(Ct + 1) + 1)" ]

[ "ir(((z + I) + I) + I) = ir((t ÷ I) + I)" ]

[ "max(((Z + 1) + I) + I) = m_((Z + I) + I)" ]

[ "mbr(((t + 1) + 1) + 1) = mbr((t + 1) + 1)" ]

[ "mpc(((Z + 1) + I) + 1) = mpc((t ÷ I) ÷ I)" ]

[ "alatch(((t + 1) + 1) + 1) = alaZch(('c ÷ 1) + 1)" ]

[ "blatch(((t + 1) + 1) ÷ 1) = blaZch((Z + 1) + 1)" ]

[ "ireq_ff(((t + I) + I) + I) = ireq_ff((t + I) + I)" ]

[ "iack_ff(((t ÷ I) + I) + 1) = iack_ff((t + I) ÷ I)" ]

[ "mir(((t + I) + I) ÷ I) =

(F, (T,T), (F,F,F,F),F,F,F, (T,F,T),(F,F,F),T,F),

(F,F,F,F,F,F,F,F,F), (F,F,F,F),(F,F,T),F,F,F,F,F,F" ]

[ "clk(((Z + I) + I) ÷ I) = T,T" ]

The only change in this phase is the new clock value.
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The fourth phase is executed in the same manner, using PHASE_FOUR_LEHMA to

obtain the state changes during the fourth phase.

.°°

[ "regCCCCt + 1) + 1) + 1) + 1) = regCCCt + 1) + 1) + 1)"]

[ "psw((((¢ + 1) + 1) + 1) + 1) =

mk_pse rep

(ge¢_sm rep(ps,(((t + 1) + 1) + 1)),

get_ie rep(psw(((1; + 1) + 1) + 1)),

gez_vf rep(psw(((z + 1) + 1) + 1)),

get_nf repCpswCC(z + 1) + 1) + 1)),

get_cf rep(psw(((t + 1) + I) + 1)),

get_zf rep(psw(((t + I) ÷ I) + 1)))" ]

[ "pc((((Z + 1) + 1) ÷ 1) + 1) =

(JUMP_COND rep

(reg_len rep(dest rep(ir(((t + 1) + 1) + 1))))

(ps.(((Z + 1) + 1) + 1)) =>

add rep(aiatch(((t + 1) + 1) + 1),

blatch(((t + 1) + 1) + 1)) I pc(((t + 1) + 1) + 1))" ]

[ "mem((((t + 1) + 1) + 1) + 1) = mem(((t + 1) + 1) + 1)" ]

[ "ivec((((Z + 1) + 1) + 1) + 1) = ±vec(((Z + 1) + 1) + 1)" ]

[ "ir((((t + I) + I) + I) + I) = ir(((Z + i) + 1) + 1)" ]

E "mar((((t + 1) + 1) + 1) + 1) = mar(((t + 1) + 1) + 1)" ]

[ "mbr((((t + 1) + 1) + 1) + 1) = mbr(((t + 1) ÷ I) ÷ I)" ]

[ "mpc((((Z ÷ I) + I) + I) + 1) =

MPC_UIII? (mpc(((t + I) + I) + l))(opcode rep(ir(((t + I) + I) + I)))

(F,F,F,F,F,F) (F,F,T)(ireq_ff(((t + 1) + 1) + 1))

(get_ie rep(psw(((t ÷ 1) + 1) ÷ 1)))

(geZ_sm rep(psw(((t + 1) + I) + 1)))" ]

[ "alatch((((t + 1) + 1) + 1) + 1) = alatch(((z + 1) + 1) + 1)" ]

[ "blazch((((t + 1) + 1) + 1) + 1) = blatch(((t + 1) + 1) + 1)" ]

[ "ireq_ff((((Z + 1) + 1) + 1) + 1) = ireq_ff(((t + 1) + 1) + 1)" ]
[ "iack_ff((((t + 1) + 1) ÷ 1) ÷ 1) - iack_ff(((z + 1) + 1) + 1)" ]

[ "mir((((Z + 1) + 1) ÷ 1) + 1) ffi

(F, (T,T),(F,F,F,F),F,F,F, (T,F,T),(F,F,F),T,F),

(F,F,F,F,F,F,F,F,F), (F,F,F,F), (F,F,T),F,F,F,F,F,F" ]

[ "clk((((t + 1) ÷ 1) + 1) + 1) = F,F" ]

In the fourth phase, the program counter is finally updated with the new value

(provided the jump condition is true). The clock returns to (F,F), signalling that

we are through.

The assumption list now contains the step-wise changes for each phase in the

phase-level instruction sequence for the JMP_ul microinstruction. We can solve the

goal by rewriting with the assumptions and a few auxiliary lemmas.

The symbolic execution technique can be used to prove each of the instruction

correctness lemmas for the 64 microinstructions. Using the instruction correctness

lemmas, we can prove that every instruction in the microinstruction listis correct.
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Micro_Int_CORRECT_LEMMA =

(V p. mk_psw rep

(get_sinrep p,get_ie rep p,get_vf rep p,

get_nf rep p,get_cf rep p,get_zf rep p) = p)

EVERY (Micro_Int_Inst_Correct rep

(A t. (reg t,psw t,pc tomem t,
ivec Z,ir t,mar t,mbr t,mpc t,

alatch t, blatch t, ireq_ff t, iack_ff t,

mir Z, micro_rom, clk t))

(A t. (inZ_e t))) (micro_inst_lisZ rep)

The Length Lemma. The length lemma in the micro-level is similar to the

length lemma at the phase-level. The only difference is that the keys are represented

by boolean 6-tuples, so there are many more cases to consider.

IMicro_Int_LENGTH_LEMMA =bt6_val mpc < (LENGTH (micro_inst_list rep))

The Order Lemma. The order lemma at the micro-level is also similar to the

order lemma at the micro--level. Again the number of cases is greater, but the proof

is straightforward.

IMicro_Int_ORDER_LEMMA =mpc = (FST (EL (bt6_val mpc) (micro_inst_list rep)))

Instantiating the Correctness Theorem. After we have established the in-

struction correctness lemma, the length lemma, and the order lemma for the micro-

level, we are ready to instantiate the generic interpreter theory for the micro-level.

Figure 5.13 shows the instantiation. The variable rep (in the generic theory) gets the

concrete representation shown in Table 5.22, s' gets the phase-level state stream,

and e' gets the phase-level environment stream.

The Final Result. After the instantiation is complete and some minor rewriting

and beta reduction, the correctness lemma for the micro-level becomes
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let theorem_list =

instant iat e_abst ract_theorems

gen_I '

[Micro_ Int_ CORRECT_LEMMA;

Micro_ Int_LENGTH_LEMMA ;

Micro_ Int_ ORDER_LEMMA]

[

("rep :"I_rep_ty",

"(micro_inst_list rep,

bt6_val,

Ge_MPC,

Phase_Substate rep,

I,

Phase_Int rep,

GetPhaseClock rep,

PhaseClockBegin) ") ;

(,,e_ :time,->,env ,,,,

"(A t. int_e t)");

("S ' :time->*s_ate '",

"(A t. (reg t,psw t,pc t,mem t,

ivec t,ir t,mar t,mbr t,mpc t,

alatch t, blatch t, ireq_ff t, iack_ff t,

mir t, micro_rom, clk _))")

3

'MICRO '; ;

Figure 5.13: Instantiating the abstract theory for the micro-level.

159



MICRO_LEVEL_COBJ_ECT_LEMMA =

(V p. mk_psw rep

(get_sm rep p,ge__ie rep p,get_vf rep p,

get_nf rep p,ge__cf rep p,get_zf rep p) = p)

Phase_Int rep

(A r. (reg t,psw t,pc t,mem t,ivec t,ir t,

mar t,mbr t,mpc t,alatch t,blatch t,

ireq_ff t,iack_ff t,mir t,micro_rom,clk _))

(A t. (int_e t)) A

(3 t. clk t = F,F) ==_

Micro_In_ rep

((A t. (reg t,ps, t,pc t,msm t,ivec t,

ir r,mar t,mbr t,mpc r)) o

(Temp_Abs(A t. clk t = F,F)))

((A t. (int_e t)) o

(Temp_Abs(A t. clk t = F,F)))

The lambda expression

(A t. (reg t,psw t,pc t,mem t,ivec t,ir t,mar t,mbr t,mpc t))

in the above theorem models a state vector that is a function of time, that is a

state stream. It is important to note, however, that this expression represents a

data abstraction of the phase-level state stream and thus is not a micro-level state

stream until it is composed with the temporal abstraction function

(Temp_Abs(_ t. clk t -- F,F))

which maps micro-level time onto phase-level time.

The correctness result also contains the assumption

(3 t. clk t -- F,F)

This assumption must be met for the correctness result to be valid. That is, unless

we can guarantee that at some time the clock will be at the beginning of its cycle, we

cannot say that the computer will function correctly. Of course, we can guarantee

this using a reset button.

It is useful to compare the proof at this level with what would have happened

had the phase-level specification not been used. We could have still proven the

instruction correctness predicate for the microinstructions, but the form of the proof

would have been quite different. Instead of being able to write a single tactic that

uses symbolic execution to verify the instruction correctness ]emma, the irregular

types of proof done for the phase-level would have had to have be done for each
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of the 64 instructions at the micro-level. The proof of the phase level is the most

difficult one because of the length of the terms and its irregularity; having to repeat

it 64 times would have made the proof intractable. The expficit specification of

the phase-level is vital to the successful completion of a large microprocessor proof

because it places a firewall between the structural specification of the electronic

block model and the large instruction case explosion of the upper levels.

We should also point out that even though the size of the microrom was fairly

small (64 microwords), proofs containing larger microstores could be completed with

very little extra human effort. Some effort could certainly be invested in making the

symbolic execution faster; but, once the tactic to prove the instruction correctness

lemma is written, the difference between proving 64 microinstructions or 512 is

simply a matter of computer time.

For even larger microstores, the proof would have to be restructured. In the proof

presented here, we assumed that every word in the microrom was unique and used

the position of the instruction in the microrom as the key. By fixing a set of microin-

structions that are repeated often and using keys to identify identical instruction,

much larger microroms could be verified. This amounts to a nanoprograrnming

level that may or may not reflect the actual structure of the machine. Only the
instruction set would be verified at the micro--level and the microrom would not be

used until the microprogram was needed to verify the macro-level.

5.3.4 Verifying the Macro-Level.

The goal of the macro-level verification is to show that the micro-level implements

the macro-level. At this level, the micro-level specification becomes the implemen-

tation and the macro-level interpreter is used as the abstract behavioral model. We

want to show that under some small set of assumptions, the micro-level specification

implies the macro-level specification.

Table 5.23 gives the concrete functions used to instantiate the generic interpreter

theory at this level. These functions were all defined in Section 5.2.

The Definition. We define the macro-level in the usual manner, using the func-

tion for instantiating abstract definitions from the abstract theory package. Using

the concrete representation in Table 5.23 we produce the following specification of

the macro--level interpreter.
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Table 5.23: The functions used to instantiate the abstract represen-

tation of the generic interpreter theory for the macro--

level.

Operation
inst llst

key

select

substate

subenv

Impl

clock

be n

Instantiation

macro_inst_list

Opc_Val

Opcode

Micro_Substate

I

M±cro_Int

GetMPC

FETCHADDR

Macro_Int =

Macro_Int rep s e =

(V t.
sCt + l) =

SND

(EL(Opc_Val(Opcode rep(s t)(e t)))(macro_insZ_list rep))
(s t)

(e t))

The Correctness Predicate. Just as we did at the phase-level and the micro-

level, we instantiate the instruction correctness predicate for the macro-level. The

instruction correctness predicate, once instantiated, says exactly what must be

proven about the instructions at the macro--level to meet the theory obligations

and instantiate the generic theory.

Macro_Inst_Correct ffi

F Macro_Inst_Correct rep s' e' p ffi

Micro_Int rep s" e'

(V z.

(Opcode rep(Micro_SubszaZe rep(s' t))(e' Z) = FST p) ^

(GetHPC(s' Z)(e' Z) = F,F,F,F,F,F) ==_

(3 c.

Nex¢CA Z'. GeZNPC(s' Z')(e' Z') ffi F,F,F,F,F,F)(t,t + c) A

(SND p(Micro_Subszaze rep(s' t))(e' t) =

Micro_Substate rep(s'(Z + c)))))

The Theory Obligations. We must satisfy the same three theory obligations

at the macro-level as we did at the phase-level and micro-level. The instruction

correctness lemma and the order lemma are a little more interesting at this level
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than they were at the micro-level because of our use of coproducts to represent the

keys.

The Instruction Correctness Lemma. We wish to show that every instruc-

tion in the macroinstruction set meets the instruction correctness lemma. The

instruction list for the macro-level can be broken into two parts based on whether

the key is a right or left injection to the coproduct used as the instruction key. If

the key is a right injection, then the instruction is a pseudoinstruction. If it is a left

injection, then the instruction is a user instruction.

We develop a tactic that will prove the instruction correctness lemrna for every

instruction in the set. At the macro-level, however, there is only one pseudoinstruc-

tion and so handling the pseudoinstruction as a special case makes more sense than

developing a tactic general enough to solve both types of instructions. We will not

deal with the proof of EINT here, but rather refer the interested reader to [WingOb]

We do note, however, that the techniques used for solving the user instructions

are similar to the method used to verify the pseudoinstruction.

Every user instruction at the macro--level has the same three microinstructions

in common for the first part of its execution cycle. The FETCH, ISSUE, and DECODE

microinstructions are always executed in that order before microinstructions specific

to a macroinstruction are executed. Because of this, we prove the following lemIna

which gives the state at time t + 3 as a function of the state at time t.

FID_LEMMA =

Micro_Int rep (A t. (reg t,psw t,pc t,mem t,ivec t,

ir t,mar t,mbr t,mpc t))

(A t. (int_e t)) ==_

V t. (int_e t A get_ie rep (psw t) = F) A

(mpc r = (F,F,F,F,F,F)) =_
((reg(t + 3),psw(t + 3),pc(¢ + 3),mem(t + 3),ivec(t + 3),

$r(t ÷ 3),mar(t + 3),mbr(t + 3),mpc(t ÷ 3)) ffi

(reg t,psw t,inc rep(pc t),mem t,ivec t,
fetch rep(mem ¢,address rep(pc t)),pc t,

fetch rep(mem t,address rep(pc t)),

add_bt6 (F,SND(opcode rep

(fetch rep

(mem t,address rep(pc t))))) "OFFSET)) A

"(mpc(¢ ÷ 1) = F,F,F,F,F,F) A

"(mpc((t + I) * I) ffiF,F,F,F,F,F) A

"(mpc(((t + I) + 1) + 1) ffi F,F,F,F,F,F)"),

Using this lemma in the proof allows the FETCH--ISSUE--DECODE sequence to be

symbolically executed in one step instead of three. Since we will do this for each of

the 32 user instructions, this results in substantial savings in time.
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Using the same strategy that we used at the micro-level to prove the instruction

correctness lemma through symbolic execution, we can prove the instruction cor-

rectness lemma for each instruction at the macro-level. For example, here is the

instruction correctness lemma for the first instruction in the list, JMP.

HAC_INST_0 =

k- (V in a. fetch rep (trans rep re,a) -- fetch rep (re,a)) A

(V m a x. store rep ('crane rep m,a,x) =
traus rep (store rep (ra.a,x))) A

(V m. int_fetch rep (int_trans rep ra) = (in'c_fetch rep ra))

Macro_Inst_Correcr rep

(_ t. rag t, paw t, pc t, rasm t, ivec t.
ir t, mar t, mbr t, mpc t)

(_ t. int_e t)

(IliL(F,F,F,F,F),ABS_ENV (JMP rep)) °'

Note that the instruction correctness lemrna is predicated on three assumptions:

(V m a. fetch rep (trans rep m,a) = fetch rap (m,a))

(V m a x. store rap (trans rep m,a,x) = trans rep (store rep (m,a,x)))
(V m. ±nt_fstch rep (int_trans rep m) = (int_fetch rep m))

Recall that memory is shared state. The function trans is a memory transformation

function that represents what other devices that share memory with the CPU are

doing to memory. Using trans we can write a specification that allows changes to

memory besides those resulting from CPU action.

The first assumption says that fetching something from memory when another

device is changing it is the same as fetching the same thing from memory when no

changes are occurring. The second assumption says that the order of memory write

operations is not important. In effect, these statements are assumptions of non-

interference between the CPU and other devices that use memory. This is exactly

what we want to have happen, of course, if we are to say anything reasonable about

the reliable operation of a system built using AVM-1. The third assumption is a

similar statement about the interrupt vector which is shared by the CPU and the

interrupt controller.

These three assumptions will appear in the final correctness result. When the

correctness result for A VM-1 is used to verify some more abstract specification

relating to the connection of the CPU chip with some other device that uses memory,

these assumptions will have to be met to complete the verification. This kind of non-

interference might be guaranteed with a hand-shaking protocol. The handshaking

protocol would result in lemmas that would be used to discharge these assumptions.

Using the individual results about each instruction in the list, we can prove the

instruction correctness lemma for the macro-level.
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Macro_ Int_CORRECT_LEMMA =

(V m. int_fetch rep (int_trans rep m) = (int_fetch rep m)) A

(V m a. fetch rep (trans rep m,a) = fetch rep (m,a)) A

(V m a x. store rep (trans rep m,a,x) =

trans rep (store rep (m,a,x)))

EVERY (Nacro_Inst_Correct rep

(A t. reg t, psw t, pc t, mem t, ivec t,

ir t, mar t, mbr r, mpc r)

(A t. inr_e t))

(macro_inst_list rep)

The Length Lemma. In the length lemma, the opcode variable opc has the

type :bt5+one. The representation of the keys as coproducts makes the proof of

the length 1emma slightly more interesting than the proof of the length 1emma for

the other levels; but, not substantially more difficult.

Macro_Int_LENGTH_LEMMA =

0pc_Val opc < (LENGTH (macro_ins__list rep))

The Order Lemma. The proof of the order lemma for the macro-level is also

different from the proof of the order lemma for the other levels due to the coproduct

representation of the keys.

I Macro_Int_0RDER_LEMMA =k opc= (FST (EL (Dpc_Val opc) (macro_inst_list rep)))

Again, the result is not difficult to prove.

Instantiating the Correctness Theorem. After the theory obligations for the

macro-level have been established, we can instantiate the generic theory to provide

a correctness result for this level. The concrete representation matches that of

Table 5.23. The generic environment stream stream, e', is instantiated with the

micro-level environment stream and the generic state stream, s', is instantiated
with the micro-level state stream.

The Final Result. After the instantiation is complete, some minor rewriting and
beta reduction lead to the final result for this level.
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let theorem_list -

instantia_e, abstract_theor eros

'gen_I'

[Macro_ Int_CORILECT_LEMMA ;

Macro_ In¢_LENGTH_LEMMA;

Macro_Int_0RDER_LEMMA]

[

("rep :"I_rep__y",

"(macro_inst_list rep,

0pc_Val,

0pcode rep,

Micro_Substate rep,

I,

Micro_Int rep,

GetMPC, "FETCH_ADDR) ") ;

(..e_:time _->.env ,.,

"(_ t:time, int_e t)");

('IS_:time->*st ate '" ,

"(A _:time. reE t, ps. t, pc t, mem t,

ir t, mar ¢, mbr t, mpc t)")

]

'MACRO';;

ivec _,

Figure 5.14: Instantiating the abstract theory for the macro-level.
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MACRO_ LEVEL_ CORRECT_LEMMA =

F (V m. int_fetch rep(int_trans rep m) = int_fetch rep m) A

(V m a. fetch rep(trans rep m,a) = fetch rep(m,a)) A

(V m a x. store rep(_rans rep m,a,x) =

trails rep(store rep(m,a,x)))

Micro_Int rep

(_ t. (reg t,psw t,pc t,mem t,

ivec t,ir t,mar t,mbr t,mpc t))

(A t. (int_e t)) A

(3 Z. mpc t = F,F,F,F,F,F)

Macro_Int rep

((A Z. (reg Z,psw Z,pc %,

trans rep(mem t),int_trans rep(ivec t))) o

(Temp_Abs(A r. mpc Z = F,F,F,F,F,F)))

((A Z. (int_e Z)) o

(Temp_Abs(A t. mpc t ffiF,F,F,F,F,F)))

The expression

(Temp_Abs(A t. mpc t = F,F,F,F,F,F))

is the temporal abstraction function for the macro-level state stream.

5.3.5 AVM-1 Is Correct.

We have successfully instantiated the generic interpreter theory for each of the levels

in our hierarchical decomposition.

As discussed in Section 3.1, we can establish

IEBM _ Imac',o

in stages by showing

We will use the correctness results from each of the levels and Modus Ponens to

prove the correctness result for the entire CPU.
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AVN_COPo_ECT --

]- fez micro_abs - Temp_Abs(A Z. clk t - F,F) in

let abe ,,micro_abs o

(Temp_Abs(A t. (mpc o micro_abs)t = F,F,F,F,F,F))

((V m. int_feZch rep(int_¢rans rep m) = int_fetch rep m) A

(V m a. fezch rsp(zrans rep re,a) --fetch rsp(m,a)) A

(Vmax.

szore rep(trans rep m,a,x) =

trans rep(s%ore rep(m,a,x)))

(V p. mk_psw rep

(get_sm rep p,get_ie rep p,

get_vf rep p,get_nf rep p,

get_cf rep p,get_zf rep p) = p) ==_

EBM rep

(A t. (reg t,psw t,pc t,mem t,ivec %,it %,

mar t,mbr %,mpc t,alatch %,blatch t,

ireq_ff ¢, iack_ff t,mir t,micro_rom,clk %))

(A %. (ireq_e t)) A

(3 I;. elk % = F,F) A

(3 ¢. (mpc o micro_abs)1; = F,F,F,F,F,F) ==_

Macro_InZ rep

((A %. (reg t,psw t,pc t,

trans rep(mem t),int_Zrans rep(ivec t))) o abs)

((A t. (ireq_e t)) o abs))

in

We can make several points about the final correctness result for A VM-I:

• The function abs, which is defined as

micro_abs o

(Temp_Abs(A t. (mpc o micro_abs) % - F,F,F,F,F,F))

where

micro_abs = Temp_Abs(A %. elk % = F,F)

is a temporal abstraction function that maps time at the macro-level to time
at the electronic block model.

The assumption that the shared state operations are non-interfering and the

assumption that the selectors and constructors on the program status word

are consistent both appear in the final result. The first will be satisfied when

the CPU is used correctly in conjunction with other devices. The second

represents a constraint on the abstract word package (the only one).

• We must also requirethat there is a time when the elk and the mpc are at

the beginning of theircycles.The composition of ,.pcwith micro_abs further
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requires that this time be congruent for both variables. As we mentioned

earlier, both these assumptions can be met using a reset button.

• The definition of EBH uses a variable to represent the ndcrorom, urom. In

the correctness theorem, EBM been specialized to use the program specified

by micro_tom. The electronic block model only implements Hacro_Int when

coupled with a correctly written microprogram.

5.4 Observations.

Having completed the verification of A VM-1, we have several observations:

The verification presented in this section has said nothing about whether the

macro-level specification is any good. The specification could be wrong--that is,

not correctly specify the behavior that the designer had in mind. All we have

done is show that we have a machine that implements this behavior, not that it

is the behavior we want. We could prove properties about the instructions. For

example, we could show that calling a subroutine and then returning from it leaves

the program counter with the correct value. We could also come up with a method

of executing the specification so that it could be tested. While we have not done

either of these in this dissertation, they would be important if we were going to

implement A VM-1.

The verification of A VM-1 is dependent upon the high-level specifications of the

blocks in the electronic block model. In order to build AVM-1, of course, we would

need to decide upon implementations for these blocks and show that these imple-

mentations satisfy the behavioral requirements imposed upon them by the high-

level specifications in the electronic block model. Thus, the verification of A VM-1

is independent, in a sense, of the particular implementations used for the individual

blocks. This gives the designer the flexibility to change the implementation of the

blocks without affecting the verification. For example, a designer might include an

adder with no look ahead or an adder with 4-bit look ahead depending on the power

and space budgets for the chip.

The proof of the instruction correctness lemma was done using a single tactic at

the micro-level and another tactic at the phase-level. These tactics both operate

through symbolic execution. Because of the great regularity imposed on the proofs

of correctness by the generic interpreter theory, it should be possible to write a

tactic which solves the instruction correctness lemma for any instantiation (provided

that the implementation was an interpreter). This would be an important step

since the instruction correctness lemma is the largest part of the effort involved in

instantiating the theory.
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The verification highlights the fact that the generic interpreter theory uses the

same temporal abstraction for the environment and the state streams, This does

not have to be so, but seems reasonable for our purposes.
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Chapter 6

Summary

6.1 Summary of Major Results.

This paper has described a theory of generic interpreters and shown how that theory

can aid in the verification of a microprocessor. We believe that several important
benefits accrue from our work.

We have provided a methodology for verifying microprocessors that changes what

has been primarily a research activity into an engineering activity. The generic

interpreter theory structures the specification by stating what definitions must be

made. The generic interpreter theory also structures the proof by stating what

lemmas must be proven about those definitions.

We believe that the structure provided by the generic interpreter theory, coupled

with the savings afforded by the hierarchical decomposition strategy, make the

verification of usable microprocessors a viable engineering activity. We are currently

in the process of conducting an experiment that will test this hypothesis. We

have begun a project to reverify VIPER using graduate students not familiar with

HOL or microprocessor verification. We plan to complete the verification using

less than 6 man-months of effort. The project is about two-thirds complete. A

preliminary report describing the specification of the hierarchy and the verification

of the hierarchy's two lowest levels can be found in [Aro90].

We have demonstrated that a hierarchical decomposition of the specification can

lead to an order of magnitude reduction in the number of difficult cases that must be

considered to complete a microprocessor proof. If we had verified A VM-1 using the

standard approach of directly establishing the macro-level from the electronic block

model, we would have to prove 32 long, difficult instruction correctness lemmas. In

the verification of AVM-1 from Chapter 5, the number of these lemmas was reduced

to 4 due to the hierarchical decomposition. Machines with larger instruction sets

or fewer cycles, provide the opportunity for even larger savings.

In addition to reducing the number of difficult cases in a verification, the hierar-

chical decomposition leads to proofs of the other cases that are readily automatable.

We have shown that at each level in the hierarchy above the electronic block model

a single tactic suffices for verifying the resulting lemmas. This regularity can be

easily exploited in HOL using ML.
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We havedemonstratedhow generic theories can be used to make the verification

of hardware easier. Certainly, the generic interpreter theory is not the only useful

generic theory. We found that the generic proof for the interpreter was considerably

easier than the specific proofs reported in [Win90a]. Because of this, new models

for various architectural features can be easily developed and catalogued.

The generic proofs show exactly what a correctness statement for a micropro-

cessor mews. Because there is no superfluous detail cluttering up the definitions

and theorems, we are less likely to mistakenly think that we have proven that the

microprocessor adds, for example, when we look at the generic proof. The final

result is a simple statement of the correctness of an interpreter with respect to its

implementation.

IMPL_I_CORRECT =

let s = (A t:time. (substate rep (s' _))) and

e = (_ t:time. (subenv rep (e' t))) and

f- (A t:Zime. (count rep (s' t) (e' t) =

(begin rep))) in

let abs - (Temp_Abs f) in (

(Impl rep s" e') A (3 t. f t)

(INTERP rep) (s o abs) (e o abs))

The correctness theorem simply states that any true statement about the imple-

mentation is similarly true about the abstract interpreter describing its behavior.

Generic theories are a powerful mechanism for reusing theorems. We have demon-

strated how a generic interpreter theory can be instantiated--saving the user from

having to reverify a number of difficult theorems. The generic theory can be thought

of as a structured library that not only provides useful theorems, but also provides

a framework for using those theorems. For example, temporal and data abstrac-

tion between the interpreter and its implementation are handled entirely within the

generic interpreter theory; the user can define the temporal and data abstractions

without having to explicitly prove theorems about them.

We have provided the first, to our knowledge, microprocessor specification with

provisions for shared state. The work reported in this dissertation does not compose

the microprocessor specification with other specifications. However, the inclusion

of the transformation functions in the specification leads to conditions on the final

result that have very satisfying interpretations.

(V ,, a x. store rep (trans rep m,a,x) ffi trans rep (store rep (m,a,x))) I

(V m a. fetch rep (trans rep re,a) ,. fetch rep (m,a))

These assumptions amount to non-interference requirements between the memory

actions of the CPU and the other devices in the system. The first assumes that a

fetch will not be interfered with and the second assumes that a store will not be
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interfered with. These assumptions must be met when the CPU is composed with

other devices if we are to be able to say anything reasonable about the reliable

operation of the system. The non-interference proofs are similar to critical regions

in concurrent programming. Most likely, we would compose the devices using a

handshaking protocol to prove that neither accesses the same location in memory
at the same time.

6.2 Future Work.

The work presented here has shown how the generic interpreter theory and hier-

archical decomposition strategy can be used in microprocessor verification. The

success of this effort has led to us to begin exploring several related areas.

The Computer Systems Verification Group at the University of California, Davis

is designing and verifying a complete chip set including a memory management

unit, an interrupt controller, a direct memory access controller, and a floating point

coprocessor. Composing these and other devices will provide an important test of

our methodology for specifying shared state.

The specifications for the various levels in our hierarchy are all very regular due

to the use of the generic interpreter theory. Imposing regularity in this way leads

to possibility of writing tools that make use of this structure.

• For example, we believe that a general tactic for verifying the instruction

correctness lemmas could be written that would reduce the amount of effort

on the part of the human verifier to simply writing the specification.

• Another example of a general purpose tool that would benefit from the struc-

ture imposed by the generic interpreter theory is a tool for executing the

specifications. Being able to execute the specifications would eliminate the

need for separate simulators (which may or may not match the specifications)
for code development.

• We believe that the regular structure imposed by the theory will also prove

useful in connecting a verification system with a CAD system or a sihcon

compiler. Being able to link high-level functional verifications to low-level

tools for implementation and design would greatly increase our confidence in
a device.

The generic models presented here were used exclusively in "microprocessor ver-

ification. Of course, microprocessors are not the only hardware devices that act

like interpreters. For example, an interpreter theory can be used to describe co--

processors, such as the floating point unit and the memory management unit. We

are exploring general models of these devices and how these models relate to the

generic interpreter theory presented here.
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6.3 Conclusion.

The goal of our work has been to make the verification of usable microprocessors

tractable. In this dissertation we have described a strategy for hierarchically de-

composing specifications that reduces the number of diftlcult cases by an order of

magnitude. We have also described a generic theory useful for specifying and ver-

ifying microprocessors. The generic theory structures both the specification and

the verification. This structure not only says what has to be done, but provides

a framework for building tools to further support the verification. The combina-

tion of hierarchical decomposition and the generic interpreter theory represents a

substantial improvement over past methods for verifying microprocessor designs.
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Appendix A

Abstract Theories in HOL

A theory is a set of types, definitions, constants, axioms and parent theories. Logics

are extended by defining new theories. A generic or abstract theory (we will use the

two terms interchangeably) is parameterized so that some of the types and constants

defined in the theory are undefined inside the theory except for their syntax and an

algebraic specification of their semantics. Group theory provides an example of a

generic theory from mathematics. The multiplication operator is undefined except

for its syntax (a binary operator on type :group) and a semantics given in terms

of the axioms of group theory.

Generic theories are useful because they provide proofs about g_neric structures

which can then be used to reason about specific instances of the structure. In groups,

for example, after showing that addition over the integers satisfies the axioms of

group theory, we can use the theorems from group theory to reason about addition

on the integers.

This appendix describes the use and documents the implementation of generic

theories in the HOL theorem prover. The abstract theory package was not designed

to be a final implementation of generic theories in HOL, but rather is seen as an

interim solution until the system can be modified to provide them as full-fledged

objects. The appendix describes how to use abstract theories in HOL and briefly

describes the implementation of abstract theories in HOL. The implementation is

interesting because it displays the flexibility of the HOL theorem prover.

A.1 Abstract Theories.

The key components of an generic theory are a set of abstract objects and a set of

abstract operations. This abJtract representation is unspecified, that is, we don't

know (inside the theory) what the objects and operations mean. Their meaning is

specified through a set of predicates that define relationships among members of the

abstract representation. The theory describes a model. Any structure with objects

and operations that satisfy the predicates is a homomorphism of that model.

The theory obligations axiomatize the theory. Using the obligations as axioms

allows us to prove theorems of interest about the abstract objects and operations.

Our goal is to be able to instantiate the generic theory with a concrete represen-
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tation meeting the obligations. The instantiation specializes the generic theorems,

resulting in a set of theorems about the concrete representation. The concrete rep-

resentation is an instance of the generic theory and represents a member of the class

of abstract objects that it describes.

An generic theory consists of three parts:

1. An abstract representation where the abstract operations and their types are
declared.

2. A list of theo_ obligations defining the relationships between members of the

abstract representation.

3. A collection of abstract theorems which are proven with respect to the obliga-

tions.

A.I.1 Using the Abstract Theory Package.

The remainder of this section describes the functions in the abstract theory package.

Before beginning a abstract theory, the ML file abstract should be loaded. This

sets up the commands in the abstract package and modifies some of the standard

HOL commands to support its operation.

One declares a new abstract theory in the same way that one declares a standard

theory, using ne__theory. One is free to use any of the standard HOL commands

for manipulating a draft theory in their usual manner. For example, definitions can

be done in the usual way using new_definition.

A.1.2 Abstract Representations.

The abstract representation describes the abstract objects and operators in the

generic theory. The abstract theory package defines new_abstract_representat ion

for declaring the abstract representation. The function is applied to a list of pairs.

The first member of the pair is a string giving the name of the abstract object and

the second member of the pair is the type of the operator. There is no limit on the

length of the list.

The system does not require that abstract objects be specifically declared. We

represent abstract objects as type variables in HOL (denoted by a prepended as-

terisk). Since HOL does not require that type variables be declared, we are free to

use them wherever we wish. The declaration of abstract objects is implicit, being

the set of type variables occurring in the abstract representation.

The result of declaring a new abstract representation is a list of definitions. The

definitions can usually be ignored. There is one exception: After declaring the
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abstract representation, you should apply the function make_inst_ttms to the re-

sulting list of definitions if you intend to'use the instantiation functions described

later. This will automatically prove a lemma about each definition for use during

any subsequent instantiations. This is not done in the declaration of the represen-

tation to save time when abstract theories are being drafted.

In order to use the abstract representation, we will need to know its type. The

abstract package provides a function for determining the type of an abstract repre-

sentation. The ML function abstract_type is applied to two strings. The first is

the name of the abstract theory defining the representation and the second is the

name of any of the objects in the representation.

When one defines a constant in the abstract theory, by convention, the first

argument to the constant will be a variable with the same type as the abstract

representation. This variable must, in turn be the first argument to any of the

abstract constants from the abstract representation used in the definition. Later,

during instantiation, the definition will be applied to a concrete representation and

the instantiation functions wiU replace the abstract constants with the appropriate

concrete constants in the instantiation.

A.1.3 Theory Obligations.

The theory obligations are declared using the ML function theory_obligations.

The function is applied to a list of HOL terms. Each term should represent an

axiom concerning the abstract objects. These obligations will be available for use

in the draft theory. The system will automatically add them to the assumption list

when the standard HOL commands for declaring goals and proving theorems, such

as set_goal, are used. The HOL command close_theory closes the current draft

and after it has been issued, the system no longer automatically appends the theory

obligations to the assumption list.

One note on writing theory obligations: the representation variable and any vari-

ables with abstract types that are to be instantiated must not be included in the

universally quantified variables of any of the theory obligations.

A.1.4 Instantiating Theories.

One makes use of a genetic theory by instantiating it. The first step is to make the

generic theory a parent of the draft theory using the ML function new_parent.

HOL theories differentiate between definitions and theorems. In order to instan-

tiate a theory we need to be able to instantiate both. Instantiating definitions is

the easier of the two. By convention, the first variable in an abstract definition has

the same type as the representation. To use this definition, the following steps are
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performed:

.

.

Make an auxiliary definition that uses the abstract definition and applies it to

a concrete representation (an ordered n-tuple containing, in order, a concrete

constant to instantiate each abstract constant in the abstract representation).

Use the ML function instantiate_abstract_definition to produce an in-

stance of the abstract definition. This function is applied to three arguments.

The first is the name of the abstract theory where the abstract definition was

defined. The second is the name of the abstract definition. The third is the

name of the definition from step (1).

The result of this instantiation is a theorem that defines a concrete instance of the

abstract definition and makes no reference to the abstract definition.

As part of drafting an abstract theory, one normally proves theorems about the

abstract representation using the theory obligations as axioms. In addition, the

theorems may make use of some of the abstract definitions in the abstract theory.
When the abstract theory is used, we instantiate the theorems in it so that the

theory obligations are discharged and the new concrete theorems stand on their

own.

The ML function instantiate_abstract_theorems instantiates all of the ab-

stract theorems in the theory. The function takes four arguments:

1. th - the name of the abstract theory where theorems reside.

2. axioffi_list - a list of theorems that satisfy the theory obligations and thereby
discharge the antecedents of the abstract theorems.

3. tin_list - a list of term pairs that instantiate variables with concrete repre-
sentations. The first term in the pair is the variable to instantiate and the

second is the concrete representation.

4. base - a name to prepend to newly created theorems. This is done to avoid

name clashes with existing theorems.

A.2 Implementational Considerations.

This section briefly describes the principles behind the implementation of abstract

theories used in this report. The section is not intended to provide a full discussion

of the implementation, but rather to describe how the facilities of HOL were used

to reason about generic theories. The ML code that implements the abstract theory
package is contained in Section A.4.
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There are two features of HOL that allowed generic theories to be implemented

without changing the HOL system. The first is higher-order logic which is necessary

for implementing abstract representations. The second is the recta-language ML

which allowed the theory obligations to be declared and used in the proofs.

The idea of using ,-tuples of functions to implement abstract representations in

HOL is due to Jeff Joyce [3oy89a]. The idea is that abstract types can be represented

by type vaxiables and that abstract functions can be represented as selectors on a

n-tuple. Each member of the tuple has the type of the corresponding member

in the abstract representation. Since the abstract functions are selectors on the

representation variable, we can use them in an abstract representation by applying

them to the representation (thus producing the right type) and we can instantiate

them by applying them to a n-tuple containing concrete functions.

For example, suppose we declare an abstract representation containing three func-

tions as follows:

new_abstract_represent ation

[

('f',":*_ 1->*t2")

(,g C,,,:*t2->*t3")

('h', " :*_3->*t I")

];;

The abstract package described in this report creates a representation with the type

:(*tl->*t2 # *t2->*t3 # *t3->*tl)

The package also makes the definitions:

Fd_! V rep.

b_4 V rep.

Fd_y V rep.

f rep ffi FST rep

8 rep = FST (SND rep)

h rep ffi SND (SND rep)

and proves the theorems

Fa,! Vxyz.

t-d,t Vx yz.

Fd,! Vxyz.

f (x,y,z) ffi x

g (x,y,z) - y

b (x,y,z) ,, z

183



The implementation of theory obligations depends on the use of sequents as the

underlying structure for goals and theorems and the meta-language used to program

the system. A sequent is a pair where the first member is a list of terms representing

the assumption list and the second member is a term representing the conclusion.

Goals are represented as sequents and transformed into theorems (which have the

same structure) when they have a proof.

The HOL system has three ML functions that are used for proof and goal man-

agement.

set_goal: goal -> void

TAC_PROOF: (goal # tactic) -> void

prove_thm: (string # goal # tactic) -> void

The first sets a goal in the proof management system for subsequent interactive

proof. The second proves the goal using the tactic (if it can). The third solves the

goal using the tactic and saves the resulting theorem in the draft theory using the

name given in the string.

The function theory_obligations takes a single argument, a list of terms. This

list of terms is saved in a variable. When one of the above ML functions for setting

up a goal is called, the list of terms in the theory obligations is appended to the

(usually null) list of terms in the assumption list of the goal. These terms appear

on the assumption list and can be used to prove the goal. The theory obligations

remain on the assumption list of any resulting theorem, serving as a reminder that
the theorem cannot stand on its own.

A.3 Limitations.

There are several limitations to the abstract package that should be fixed if this

package is not superseded by a full-fledged abstract theory implementation in the

HOL system.

The entire abstract theory must be declared in one file. The primary problem

is that there is no way for a theory to know whether or not it is an abstract

theory. The theory obligations from an abstract parent are not available in an

abstract child. This could be fixed by storing them in the theory and creating

a special nee_parent command for recalling them.

The package only supports goal-directed proofs. Forward proof styles could be

supported with a little more work. Some of the things necessary for supporting
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multiple file abstract theories mentioned in the previous item would be used

here as well.
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A.4 Implementing Abstract Theories in HOL.

This appendix provides the complete source code for the implementation of abstract
theories in HOL.

%

File: abstract.ml

Description:

Defines NL functions for defining generic structures.

Author: (c) P. J. Windley 1989
Date: 29 DEC 89

let new_abstract_representation 1st = (

letrec make_type 1st =
null let => ":one"

I let rest = make_type (tl let) in

": "(snd (hd let)) # "rest" in

let rep_type = make_type Ist in

letrec make_definitions ist n =

null let => nil J

let f = (make_definitions (tl Ist) (n+1)) and

name = (fst (hd let)) and

nterm = (int_to_termn) in

letrec make tuple term n =

(n=O) => "rep:'rep_type" J

let f = make_tuple_tera (n-l) in

"SND "f" in

let tuple_term = "FST "(make_tuple_term (n-l))" in

let op_type = ":'rep_type -> -(end(hd let))" in

(name,

"! rep:'rep_type.'(__var(name, op_type)) rep =

"tuple_term") . f in

map ne._definition (make_definitions let I))

? faileith 'nee_abstract_representation' ;;

let abstract_type th const = (

hd(snd(dest_type

(snd(dest_const(hd(filter (\x. (let o dest_const) • = const)

(constante th))))))))
? failwith 'abstract_type';;

let make_inst_thm8 th_list = (

let is_FST_term t =

fst(dest_const(fst(strip_comb t))) = 'FST' in

let i8_SND_term t =

fst(dest_const(fet(strip_comb t))) = rSID' in

let FST_CONV t =
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if is_FST_term t then

let op,pr = deer_comb t in

let op, [tl;t2] = strip_comb pr in

SPECL [tl;t2] (

lIST_TYPE [((type_of tl),":*") ;

((type_of t2),":**")] FST)
else fail in

let SND_COIV t --

if is_S_D_term t then

let op, [tl;t2] = strip_comb (snd (deer_comb t)) in

SPECL [tl;t2] (

INST_TYPE [((type_of tl) ,":*") ;

((type_of t2),":e*")'1 SID)

else fail in

let make_inst_thm th = (

letrec MY_DEPTB_COIV cony t =

(SUB_CONV (NY_DEPT__COJV cony) THEJC (TRY_CONV cony)) t in

let rep_type =
(snd(dest_var (rand (rand (rator (concl (SPEC_ALL th))))))) in

letrec make_spec_term tp n = (

if tp = ":one" then "y:one" else

let new_types = (end(deer_type tp)) in

let new_term = make_spec_term (hd(tl new_types)) (n+l) in

let term_sir = ¢oncat Celm' (string_of_int n) in

"" (ink vat (term_str.hd new_types) ), "new_term")

? failwith Cmake_spec_term' in

let spec_th = SPEC (make_spec_term rep_type O) th in

CONV_RULE ((RA_D_CONV (MY_DEPTH_CDNV SJD_COIV)) THENC

(I_ND_CONV FST_COIV)) spec_th) in

let save_thin list basename th_ist = (

letrec process_Ist th_Ist n =

if null th_Ist then [] else

let name = concat basename (string_of_int n) in

(save_tlm (name,hd th_lst)), procese_lst (tl th_lst) (n+l) in

(process_Ist th_ist 0)) in

save_tim_list (current_theory ()) (map make_inst_tim th_list))

? faileith 'make_inst_tims' ; ;

let get_abstract_time th_name =
letrec retrieve_rims n = (

let name = (concat th_name (etring_of_int n)) in

(theorem th_name name) . (retrieve_time (n+l))) ? [] in

retrieve_rims 0;;

let instantiate_abetract_definition th_name defnl defn2 =

let th_list = get_abstract_thms th_name in

(ONCE_REWRITE_RULE th_liet

(OJCE_RE_ITE_RULE [definition th_name defnl] defn2));;

instantiate_abstract_theorems

th -- abstract theory where theorems reside
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axiom_list -- list of theorems that discharge antecedents in
abstract theorems

tn_l ist -- list of term pairs that instantiate free variables.

The first term in the pair is the variable to

instatiate and the second is the instantiation.

base -- name to prspend to newly created theorems

let instantiate_abstract_theorems th axiom_list tm_list base =

let abs_thm = get_abstract_thms th in

letre¢ add_one_at_end p = (

let f,s : dest_pair p in

mk_pair(f,add_one_at_end s) ? mk_pair(f,mk_pair (s,"@x:one.F"))) in

letrec build_type_list tm_pair_list =

if null tm_pair_list then D else

let (gem_tn,spec_tm) = hd(tm_pair_list) in

let alt_gpec_tm = (add_one_at_end spec_tm) ? spec_tm in

let type_list : 8nd((match gen_tm 8pec_tm)?

(match gen_tm alt_spec_tm)) in

type_list 0 (build_type_list (tl tm_pair_list)) in

let type_li_t = build_type_list tm_list in

letrec GEJ_FRON_LIST tm_pair_list thm = (

if null tm_pair_list then thm else

let (gen_tm,spec_tm) = hd(tm_pair_list) in

let gen_tlut = (GEN gen_tm thm) in

GE__FRON_LIST (tl tm_pair_list) gen_thm)

? thm in

letrec SPEC_FRON_LIST tm_pair_list thm = (

if null tm_pair_lis_ then thm else

let (gen_ta,spec_tm) = hd(tm_pair_list) in

let alt_spec_tm = (add_one_at_end spec_tm) ? spec_tm in

let 8pec_thn= ((SPEC 8pec_ta tlm) ?

(SPEC alt_spec_tm thm)) in

SPEC_FR__LIST (tl tm_pair_list) spec_thm)

? tea in

let multi_mpthn alist =

letrecmulti_np_auz tha alist =

if mall alist then tea else

let mew_thm = PROVE_HYP (hd aliet) thm in

multi_np_auxnew_thm (tl alist) in

DISCH_ALL (multi_mp_aux (UNDISCH_ALL tea) alist) in

let instantiate_one_thnthm = (

let unAisch_thm= (DISCH_ALL thm) in

le_ gea_tEa = GEl_FROM_LIST tm_list undisch_thm in

let imst_tha = I|ST_TYPE (build_type_list tm_list) gen_thm in

let spe¢_1_ha= SPEC_FKON_LIST (rev tm_list) ins%_thm in

le_ new_ibm=

(PU]t£_REERITE_RULB abs_thns spec_tEa) in

multi__ new_the axiom_list) ? the in

letrec genexate_names th_name n =
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let name = concat th_name (string_of_int n) in

(theorem th_name name) ; (name. (generate_names th_name (n+l))) ? [name] in

let th_tluu = (theorems th) in

let real_tlms = subtract th_thms

(filter (\x:Cstring#thm). (mere (fst x) (generate_names th 0)))

th_thms) in

let new_bass = concat base '_' in

letrec hake_save_list hi_list =

if null nt_list then [] else

let name,thin = hd(nt_list) in

(concat new_base name,instantiate_one_thm thin) .

(hake_save_list (tl nt_list)) in

make_save_list real_thns; ;

X set up obligation lists

letter theory_obligation_list = [] :(term)list;;

let new_theory_obligations tm_list =

theory_obligation_list := tm_list;;

Modify the standard comnands so that they know about obligation

lists.

X
_Prove and store a theorem_

let prove_thm(tok, w, tac:tactic) =

let gl,prf = tac ((_ @ theory_obligation_list),w) in

if null gl then save tlun (tok, prf[3)

else

(message ('Unsolved goals:');

map print_goal gl;

print_newline();

failwith (fprove_thm -- could not prove ' " tok));;

TAC_PROOF (g,tac) uses tac to prove the goal g

let TAC_PROOF : (goal # tactic) -> tlun =

set_fail_prefix 'TIC_PROOF'

(\(g,tac).

let new_g = ((fst g) @ theory_obligation_list,snd g) in

let gl,p = tac new_g in

if null gl then p_

else (

message ('Unsolved goals:');

map print_goal gl;

print_negline();

failwith 'unsolved goals'));;

Y_et the top-level goal, initialize %

let set_goal g =

Y.
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le_ new_g = ((fst g) @ theory_obliEation_list,snd g) in

change_sta_e (abs_goals (no._mtack new_g));;

let g = \t. nz__oal(_,t);;

let close_theory_orig = close__heory;;

let close_theory x =

theory_obligation_list := _;

close_theory_orig x;;

let new_theory_orig = new_theory;;

let nev_theory • =

theory_obliEation_list := [] ;

new_theory_ori E x;;
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Append B

The Organization of the Proof

This appendix presents the organization of the proof of AVM-1 in HOL. The ap-

pendix discusses the overall proof organization, gives a description of the theories

making up the proof and gives some measurements of the complexity of the proof.

B.1 Proof organization

The proof for A VM-1 contains more than 25 theories. This section presents the gen-

eral proof organization (the hierarchy of theories) and briefly describes the contents

of each theory.

Figure B.1 shows how the main theories of the proof of AVM-1 are related. This

hierarchy shows avm. th as the child theory of a long ancestry that follows the

hierarchical decomposition discussed in the body of this dissertation. The picture

is not complete; there are many theories not shown. For example, aux_def, th is

the ancestor of almost every theory in the proof.

The rest of this section gives a taxonomy of the major theories in the proof of
A VM-1.

Generic Interpreters. The generic interpreter theories include the synchronous

model, the temporal abstraction theory, and the asynchronous model.

* gen_.I_sync.th -- Defines and verifies a synchronous version of the generic

interpreter theory.

• time_abs.th _ Defines a temporal abstraction function and proves several

useful lemmas concerning it.

• gen_I.th -- Contains the generic definition of an interpreter used in the def-

inition and proof of the various levels in A VM-1.

Auxiliary Theories. There are a number of auxihary theories that are used

throughout the proof of A VM-1.

191



#

Figure B.I: The theory hierarchy for the proof of AVM-1.

aux_defs.th -- Contains the abstract definition for n-bit words. The defi-

nition is accomplished using the functions in abstract .ml, the ML code for

producing abstract theories.

aux_thms.th -- Contains auxiliary definitions and theorems. The theory is

an ancestor of many of the main theories in the proof.

jump_def.th m Contains the definition of the jump condition logic that is

used at every level.

regs_def.th -- Contains the definition of the register file. Several distin-

guished registers are defined and the function for updating the register file is

given.

The Electronic Block Model. The dectronic block model description depends

on a number of theories. The definition makes use of a generic ALU that is subse-

quently instantiated to define the ALU used in AVM-1. The shifter and micropro-

grara counter _re also defined separately.

• muxl6_def.th -- Contains the definition of a 16 input multiplexor that is

used in the definition of the generic ALU theory.

• gen nlu.th -- Contains the abstract definition and verification of a 16 func-
tion ALU.

alu_def.th m Contains the instantiation of the generic ALU theory presented

in the last section for a specific set of functions. The correctness result is mean-

ingless since the modules used to implement the functions are null modules.
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This does not affect the validity of the proof presented here since only the

definition is used in subsequent theories. A number of theorems about the

ALU's output are proven here and are used in subsequent proofs.

shifter_def.th -- Contains the definition of a 4 function shifter that is used in

defining the electronic block model. A number of theorems about the shifter's

output are proven here and are used in subsequent proofs.

mpc_def.th -- Contains the definition of the microprogram counter unit that

is used in the definition of the electronic block model and the phase-level.

mpc_def.th -- Contains the definition of the state selectors for the electronic

block model.

block_def.th -- This theory contains the definition of the electronic block

model. The theory contains the definition of most of the blocks used to

construct the electronic block model.

The Phase-Level. This section presents the theories that define the phase-level

interpreter. Also presented is the theory that verifies the phase-level interpreter

with respect to the electronic block model.

ucode_aux.ml -- Contains the ML code that defines the microcode assem-

bler. No theory is created; the assembler is an ML program that creates the

appropriate terms for a given program statement.

ucode_def.th -- Defines the type for the microcode as well as a number of

selector functions that return the various fields that make up a microinstruc-
tion.

phase_def.th -- Defines the abstract behavior of the 4 phase-level instruc-

tions and gives several auxiliary definitions used in instantiating the abstract

interpreter theory.

phase.th _ Contains the correctness result for the phase-level. The result is

obtained by instantiating the generic interpreter theory contained in gen_I, th.

The Micro-Level. This section presents the theories that define the micro-level

interpreter. Also presented is the theory that verifies the micro-level interpreter

with respect to the phase-level interpreter.

• rnicro_def.th -- Defines the abstract behavior of the 64 micro-levd instruc-

tions and gives several auxiliary definitions used in instantiating the abstract

interpreter theory.
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• uinst_def.th -- Defines the microinstructions and combines them together
into the microrom.

• micro.th -- Contains the correctness result for the micro-level. The result

is obtained by instantiating the generic theory gen_I, th.

The Macro-Level. This section presents the theories that define the macro-level

interpreter. Also presented is the theory that verifies the macro-level interpreter

with respect to the micro-level interpreter.

• macro_def.th -- Defines the abstract behavior of the 32 macro-level instruc-

tions and gives several auxiliary definitions used in instantiating the abstract

interpreter theory.

• macro.th -- Contains the correctness result for the macro-level. The result

is obtained by instantiating the generic theory gen_I, th.

The Final Result. This section presents the theory that proves that A VM-I is

correct. The theory is the descendant of all of the theories presented earlier.

• avm.th -- Contains the correctness result for the microprocessor. The fi-

nal result is obtained by combining the correctness results from phase .th,

micro .th, and macro.th.

B.2 Proof Metrics.

Table B.1 presents the run-times for the various theories in the proof on a SPARC-

Station with 16 Mbytes of memory. The times are CPU seconds. The table also

gives the number of primitive inferences required to run the corresponding ML script

in HOL. We were using version 1.11 of HOL built using the Austin Kyoto Common
Lisp compiler.

The total time to run the proof was 208029.1 CPU seconds, or nearly 58 CPU

hours. The proof took almost a week of elapsed time because the core images were

quite large (as high as 29 Mbytes) and caused the operating system to thrash when

garbage collecting.

There are several files in the table that were not discussed in the last section.

Due to size limitations, the files mk_mic_xl .ml and mk_mi¢..x2 .ml were broken out

of mknmicro .ml and mk_mac_I .,,I, mk_mac_1 .ml, and ink_mac_2 .ml were broken out

of nk_nacro, ml.
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Table B.I: Script run-times on a SPARCStation with 16M

File Name Time (CPU sec.) Inferences
deL_ux.ml 3070.7 88

mk_nu_x.ml 1117.5 33852

def_regs.ml 41.0 14

def_jump.ml 50.7 4

def maero.ml 2373.5 84

mk_time.ml 126.8 7256

mkJ.ml 229.9 11727

def_micro.ml 7063.6 48460

def_mpc.ml 6.4 4

115.6 50def_ucode

def_phase.ml

def muxl6.ml

915.2

344.2

32

29211

101155mk_gen_alu.ml 8038.4
def_du.ml 2325.3 70815

def_hiR.ml 129.0 2891

defmelect.rrd 1969.0 43903

def_block.rnl 1316.0 14738

mk_phase.ml 12818.4 355161

def_uinst 568.5 107

mkmlc_xl.ral 54846.2 1589683'

mkmle_x2.ml 51300.6 1500604

mkmaicro.ml 13505.3 295744

mk_macJ.ml 688.3 3985

mk_mac_l.ml 16774.1 389738

mk_mac_.ml 20256.1 457606

rnkrnacro.ml 7247.9 200120

mk.avm.ml 790.9 10031

208029.1 5167063

of memory.
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