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w i t h i n each
deployment and
systems was the
aval 1 a b i 1 i ty of

W i t h i n the past few years, we have
seen the development and application
of expert systems at every NASA cen-
ter. Today, we have operative expert
systems at all the NASA centers and
active expert system development at
many organizations
center. The rapid
development of expert
direct result of the
hardware and software development
support system environments. As ded-
icated a r t i f i c i a l neural systems and
fuzzy logic hardware with supporting
software become available, applica-
tion and development systems w i l l
proliferate as fast as expert system
technology.

The major purpose of t h i s workshop is
to provide researchers and practi-
tioners w i t h an opportunity to
exchange information in order to
determine the requirements and capa-
b i l i t i e s of technologies necessary to
launch these innovative methodologies
into mature and productive operative
envi ronments.

As you read the program, you w i 1 1
note that the l i s t of i n v i t e d
speakers is l i k e a "who's who" of the
worlds of neural networks and fuzzy
logic. We have assembled here an
extraordinary group of researchers. I
extend to them my deepest apprecia-
tion for their w i l l i n g n e s s to be an
integral part of th i s unique event.

It is a rare opportunity to be at the
genesis of an entirely new field of
technology. Although the under-
pinings of this technology have deep
roots in the past, we are, at this
moment, witnessing the assembling of
the critical mass of experimental and
theoretical endeavors to bring the
fruits of research in neural networks
and fuzzy logic into the application
domain. I am sure that those of us
participating in this workshop w i l l
remember it as a significant event in
the evolution of our fledgling disci-
pline. I believe that fuzzy logic is
v i t a l to our future control systems,
and that neural networks are the key
to many of the crucial problems that
have eluded the present technology.
With our combined efforts, we are
taking an important step in the quest
for the essence of a r t i f i c i a l
i n t e l 1 i gence.

Robert H. Brown Robert T. Savely
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MESSAGE FROM THE TECHNICAL AREA DEVELOPERS

Neura1
Networks

From a research point of view, arti-
f i c i a l neural systems offer many
hopes toward synthetically patterning
the complex behaviors found in na-
ture. From an applications point of
view, a r t i f i c i a l neural systems offer
hope for a more efficient method of
developing control systems, which
conventionally are d i f f i c u l t to
model. A r t i f i c i a l neural systems are
particularly exciting because it is a
science which enforces the collabora-
tion of the b i o l o g i c a l sciences,
physical sciences, cognitive sci-
ences, and engineering sciences.
This collaboration between sciences
is not found elsewhere, and is the
basis for a true whole science.

Fuzzy sets, although different from
artificial neural systems, also are
adapted toward modeling complex sys-
tems which were d i f f i c u l t or impos-
sible with conventional methods. The
combination of these fields shows
great promise toward capturing that
elusive problem of modeling nature's
complex behaviors.

I would like to extend my sincere
appreciation and gratitude to the
committee members, the i n v i t e d
speakers, and the participants for
making this workshop productive and
interesting. I would also like to
wish each of you much prosperity and
good fortune in the pursuit of these
exciting fields.

Fuzzy Logic

This workshop offers a unique oppor-
tunity for scientists and engineers,
who have common interests in fuzzy
sets and/or neural network tech-
nology, to meet and discuss problems
of mutual concern. The workshop w i l l
feature presentations of current work
by noted experts in the above
mentioned fields. The areas of dis-
cussion w i l l vary widely but w i l l all
have commonality in dealing with
decisionmaking in environments where
knowledge is imprecise, vague, incom-
plete and exact models are impossible
or at least impractical to build.

The fields of fuzzy sets and neural
networks, although considerably dif-
ferent in approach to problem
solutions, seem to have some common
a p p l i c a b i l i t y areas, or, for example,
in visual and voice pattern recogni-
tion. It is hoped that at this work-
shop much valuable information w i l l
be exchanged and some problems of
mutual interest in both fuzzy sets
and neural networks w i l l surface.

We are indeed grateful to the prom-
inent scientists who have agreed to
provide their time and share their
ideas with us. Without them, this
workshop could not be successful.
However, we also wish to acknowledge
the fact that a successful workshop
atmosphere depends on the communica-
t i o n a n d i n t e r a c t i o n o f a l l
attendees. We sincerely appreciate
everyone's participation and support.

James Vi11arreal Robert N. Lea



Neural Network/Fuzzy Logic Program Overview

Monday, May 2

7:30 Registration
8:00-8:30 Welcome and Introduction

OPENING ADDRESS SPEAKERS:

8:30-9:30 Stephen Grossberg - Boston University
Emergent Invariants of Self-organizing Neural Networks for
Pattern Recognition and Robotics

9:30-10:30

10:30-11:30

SESSION 1
1:00-1:30

Bart Kosko - University of Southern California
Fuzzy Theory and Neural Networks

Lotfi Zadeh - University of California
The Role of Fuzzy Sets in the Treatment of Uncertainty in
Control Processes and Knowledge Representation

Takeshi Yamakawa - Kumamato University
A Fuzzy Microprocessor: A Novel Device for High-Speed
Approximate Reasoning

1:30-2:00 Masaki Togai - Togai Infralogic, Inc.
Fuzzy and Neural Net Processor and its Programming
Environment

2:00-2:30 Hiroyuki Watanabe - University of North Carolina
Fuzzy Logic Inference Processor: Custom VLSI Design for
System Integration

2:30-3:00 Kaoru Hirota - Hosei University
An Application of Fuzzy Logic to Robotic Vision and Control

SESSION 2
3:15-3:45 Demetri Psaltis

Optical Neural Computers

3:45-4:15 Harold Szu - Naval Research Laboratory
What is the Significance of Neural Networks for AI?

4:15-4:45 Daniel Levine - University of Texas at Arlington
Neural Modeling of Selective Attention



7:00-8:00
8:00-9:30

KEYNOTE DINNER

COCKTAIL RECEPTION
DINNER - DR. LEON COOPER - KEYNOTE SPEAKER

Tuesday, May 3

SESSION 3
8:30-9:00

9:00-9:30

9:30-10:00

SESSION 5
1:15-1:45

1:45-2:15

2:15-2:45

James Bower - California Institute of Technology
Applied and Real Neural Networks: A Coordinated and
Interdependent Investigation of Both

Walter Freeman - University of California, Berkeley
Implementation of Pattern Recognition Algorithms Derived
from Olfactory Information Processing

Guenter Gross - North Texas State University
Multi-electrode Burst Pattern Feature Extraction from
Mammalian Networks in Culture

10:00-10:30 Mike Myers - TRW ANS Center
A Hybrid Connectionist - AI Architecture for Reflective and
Exploratory Systems

SESSION 4
10:45-11:15 William Siler - Mote Marine Laboratory

Applications of a Fuzzy Expert System

11:15-11:45 Maria Zemankova - University of Tennessee
Intelligent Information Systems with Learning Capabilities

Pentti Kanerva - RIACS, NASA Ames Research Center
Understanding Information - processing in Animals as a Way
to Building Intelligent Robots

Claude Cruz - Plexus Systems
Knowledge Processing Using Neural Networks

Rod Taber - General Dynamics
Fuzzy Logic Operators and Neuron Activation Fields



2:45-3:15 Douglas Reilly - Nestor, Inc.
Adaptive Pattern Recognition Using a Multi-Neural Network
Learning System

3:30-4:00 James Bezdek - Boeing
Knowledge Representation by Linguistic Transitive Closures of
Trapezoidal Fuzzy Members

4:00-4:30 Bill Buckles - Tulane University
Relationship Between Uncertainty and Databases and Expert
Systems

4:30-5:00 James Buckley - University of Birmingham
Linear Fuzzy Controller

* Busing will be provided for lunch hours only and will depart from the
Gilruth Recreation Center, arriving at Building 11 cafeteria for lunch.
Buses will pick those eating at cafeteria up and return them to the Gilruth
at specified times.

Monday - 11:45 am departure
12:45 pm arrival

Tuesday - 12:00 noon departure
1:00 pm arrival



Neural Networks/Fuzzy Logic Committee Members

General Chair
Robert H. Brown, NASA/JSC

Technical Chair
Robert T. Savely, NASA/JSC

Technical Area Developers

Artificial Neural Systems
James A. Villarreal, NASA/JSC

Fuzzy Logic
Robert N. Lea, NASA/JSC

Executive Chair
Sandy Griffin, NASA/JSC

Assistant Executive Chair
Carla Armstrong, NASA/Barrios

Administrative Chair
Carol Kasworm, U of H/Clear Lake

Local Publicity Chair
Daniel C. Bochsler, NASA/Lincom
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Keynote Speaker

Leon Cooper, Ph.D.

Dr. Cooper is cofounder and chairman of the board of Nestor, Inc. He
received his A.B. in 1951, his A.M. in 1953, and a Ph.D. in 1954, all from
Columbia University. He has been a professor, an associate professor, or a
v i s i t i n g professor at various universities and summer schools. He has also
served as a consultant for various governmental agencies, and industrial and
educational organizations. Dr. Cooper has given various public lectures and
presented 'papers at international conferences and symposia. Throughout his
career, he has been the recipient of the following fellowships and awards:

Nobel Prize (with J. Bardeen and J. R. Schrieffer), 1972

Award of Excellence, Graduate Faculties Alumni of Columbia University, 1974

Descartes Medal, Academic de Paris, Universite Rene Descartes, 1977

John Jay Award, Columbia College, 1985

Who's Who, Who's Who in America, Who's Who in the World, various other
1 1st ings

Comstock Prize (with J. R. Schrieffer), National Academy of Sciences, 1968

NSF Postdoctoral Fellow, 1954-55

Alfred P. Sloan Foundation Research Fellow, 1959-66

John Simon Guggenheim Memorial Foundation Fellow, 1965-66

Fellow, American Physical Society, American Academy of Arts and Sciences

Member, American Philosophical Society; National Academy of Sciences;
Sponsor Federation of American Scientists; Society for Neuroscience;
American Association for Advancement of Science; Institute for Advanced
Study, 1954-55; Counsel 1 Superieur de la Recherche de 1'Universite Rene
Descartes (Academic de Paris, Paris V); Phi Beta Kappa; Sigma Xi

Doctor of Sciences (honoris causa), Columbia University, 1973; University
of Sussex, 1973; University of I l l i n o i s , 1974; Brown University, 1974;
Gustavus Adolphus College, 1975; Ohio State University, 1976; Universite
Pierre et Marie Curie, Paris, 1977
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Stephen Grossberg, Ph.D.

Boston University
Boston, Massachusetts

Dr. Grossberg received his graduate training at Stanford University and
Rockefeller University, and was a professor at the Massachusetts Institute
of Technology before assuming his present position at Boston University. He
is professor of mathematics, psychology, and biomedical engineering at
Boston University, where he founded and is the director of the Center for
Adaptive Systems. He is also the director of the university's new graduate
program in cognitive and neural systems. In addition, Dr. Grossberg is
president of the International Neural Network Society and coeditor-in-chief
of the society's journal, Neural Networks. During the past few decades, Dr.
Grossberg and his colleagues at the Center for Adaptive Systems have
pioneered and developed a number of the fundamental principles, mechanisms,
and architectures that form the foundation for contemporary neural network
research.

EMERGENT INVARIANTS OF SELF-ORGANIZING
NEURAL NETWORKS FOR PATTERN RECOGNITION AND ROBOTICS

Abstract

Described are several real-time neural network architectures that are
capable of self-organizing invariant behavioral properties in applications
to sensory pattern recognition, cognitive information processing, and
adaptive sensory-motor control. These invariants include a s i m i l a r i t y
invariant that arises in adaptive pattern recognition and cognitive
information processing; a position invariant that arises in determining the
location of a target with respect to the head; and a synchrony invariant
that enables motor systems with multiple degrees of freedom, such as arms
and speech articulators, to generate flexible and synergetic planned
movements.



EMERGENT INVARIANTS OF SELF-ORGANIZING NEURAL NETWORKS

FOR PATTERN RECOGNITION AND ROBOTICS

Stephen Grossberg

A lecture delivered at
The 1988 First Joint Technology Workshop

on Neural Net-works and Fuzzy Logic

May 2, 1988
Lyndon B. Johnson Space Center

Houston, Texas
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FUZZY THEORY AND NEURAL NETWORKS

Abstract

Does fuzziness differ from probability? How does fuzzy theory relate to
neural networks? These questions are addressed. There are many other
connections between neural networks and fuzzy theory. Besides fuzzy entropy
minimizers, fuzzy associative memories (FAM's) map fuzzy subsets to fuzzy
subsets. Simple FAM's can be constructed using a fuzzy Hebb law and
max./min. composition instead of vector-matrix mu l t i p l i c a t i o n . Another
example is fuzzy causal networks, or fuzzy-cognitive-maps, feedback-
knowledge networks that admit degrees of causality and perform forward-
chaining inference without graph search.
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DISPOSITIONAL LOGIC AND COMMONSENSE REASONING

Abstract

Di sposi t ional logic (DL) is a branch of fuzzy logic which is concerned with
inference from dispositions, or propositions, which are preponderantly, but
not necessarily, true. Simple examples of dispositions are: birds can fly,
snow is white, and Swedes are blonde. The importance of the concept of a
disposition derives from the fact that much of "ommonsense knowledge may be
viewed as a collection of dispositions. Di spos; t ional logic provides an
alternative approach to the theories of default reasoning, nonmonotonic
reasoning, circumscription, and other widely-used approaches to commonsense
reasoning. The premises in DL are assumed to be of the form usually (X is
A) or usually (Y is B if X is A), where A and B are fuzzy predicates which
play the role of elastic constraints on the variables X and Y. Inference
from such premises reduces, in general, to the solution of a nonlinear
program. In many cases, an inference rule in DL has the form of a fuzzy
syllogism. The importance of di sposi t ional logic transcends its function as
a basis for formal izat ion of commonsense reasoning. Viewed in a broader
perspective, it underlies the remarkable human a b i l i t y to make rational
decisions in an environment of uncertainty and imprecision.
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A FUZZY MICROPROCESSOR - A NOVEL
DEVICE FOR HIGH-SPEED APPROXIMATE REASONING

Abstract

A fuzzy controller hardware device demonstrated in the second IFSA Congress
has distinctive features: (1) high speed (1 000 000 FIPS); (2) easy
programming; (3) s u i t a b i l i t y for nonlinear and/or time-variant systems; and
(4) robustness against the noise, temperature change, power supply
fluctuation, and defect of transistors. The hardware also has a s l i g h t
misprogramming. The rule board and the defuzzifier board are reduced to
small chips. They are a rule chip and a defuzzifier chip. By employing
these two types of chips, a sophisticated fuzzy controller hardware system
can be easily implemented.
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FUZZY AND NEURAL NET PROCESSOR AND ITS PROGRAMMING ENVIRONMENT

Abstract

The fuzzy logic inference processor (FLIP) is a slave processor designed to
speed rule evaluation in high-speed, real-time oriented expert systems. It
interfaces easily as a slave processor to standard microprocessors and
microcontrollers, and is capable of operating without intervention from the
host system. The FLIP device is capable of inferencing using two distinct
paradigms: fuzzy and neural. The fuzzy paradigm grades the observation
values as to their degree of support of the premise, then weighs and merges
conclusions based upon the degree of support each premise receives. The
neural paradigm weighs each of the inputs, sums all of the weighted inputs,
then applies a transfer function to derive the output. Any combination of
these paradigms may be included in a knowledge base. The software system to
support the development of fuzzy logic system or neural net descriptions for
the FLIP is also under development. This user friendly software interfaces
FLIP for evaluation of fuzzy and neural systems, allowing considerable
f l e x i b i l i t y in developing rules and rule evaluations with capacity for trace
and truth maintenance. Use of symbolic representation and "human
definitions" greatly s i m p l i f i e s the job of knowledge acquisition.
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FUZZY LOGIC INFERENCE PROCESSOR -
A CUSTOM VLSI DESIGN FOR SYSTEM INTEGRATION

Abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use
of rule-based control and dec!sionmaking in demanding real-time applications
such as robot control, and the area of command and control. The f u l l custom
CMOS VLSI is described. The chip is second generation of such design and
has several design features which make its use realistic. These features
include reconfigurable architecture, on-chip fuzzificat ion and defuzzifi-
cation, and memory and data-path redundancy for higher yield. The chip
consists of 61A 000 transistors, of which 460 000 are used for random access
memory. For the fuzzy inference chip to be useful, we must package it into
a system integrating hardware and software. We need to provide a user-
friendly interface for control engineers. We are developing a system that
combines graphic text inputs in a multiple-window environment. For rule set
programming, a multiple-window environment provides editing and display
fac i l i t i e s for the fuzzy rule sets, for fuzzy variables, and for the fuzzy
set membership functions. Separate text and graphic windows interact with
the user and display the developing system in various modes from different
levels of abstraction. Simulation of the rule execution also can be
displayed in graphic form.
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abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use of rule-based
control and decision making in demanding real-time applications such as robot control and
in the area of command and control. The full custom CMOS VLSI is described. The chip
is second generation of the design. It has several design features which make the use of this
chip realistic. These features include reconfigurable architecture, on-chip fuzzification and de-
fuzzification, and memory and data-path redundancy. The chip consists of 614,000 transistors
of which 460,000 are used for RAM memory.

1 Introduction

Fuzzy logic based control uses a rule-based expert system paradigm in the area of real-time
process control [4]. It has been used successfully in numerous areas including chemical process
control, train control [12] cement kiln control [2], and control of small aircraft [5]. In order
to use this paradigm of a fuzzy rule-based controller in demanding real-time applications, the



VLSI implementation of the inference mechanism has been an active research topic [9,10,11].
Potential applications of such a VLSI inference processor includes real-time decision- making
in the area of command and control [3], control of the precision machinery [1], and robotic
systems [6].

We have been designing a second-generation VLSI fuzzy logic inference engine on a chip.
The new architecture of the inference processor has the following important improvement com-
pared to previous work:

1. programmable rule set memory

2. on-chip fuzzifying operation — table lookup

3. on-chip defuzzifying operation - center of area algorithm

4. reconfigurable architecture

5. RAM redundancy for higher yield

The original prototype experimental chip (designed at AT&T Bell Labs) had minimal logic
on chip. For example, it used ROM for the rule set memory which reduced its utility [10].
We are now designing a more realistic chip which has RAM for the rule set memory so that
rules can be programmable. In addition to the fuzzy inference mechanism, the fuzzifying and
defuzzifying operations are performed on chip. The new design has a reconfigurable architecture
such that we can have either 51 rules, 4 inputs and 2 outputs, or 102 rules, 2 inputs and 1
output. These new design decisions render the new architecture realistic.

2 Fuzzy Set and Fuzzy Logic

Fuzzy set is based on a generalization of the concept of the ordinary set. In an ordinary set,
we associate a characteristic function for each set. For example, we can define a set S with its
characteristic function /, -» {0, 1). Then, for all e in the universal set £7,

ee5 if /.(c) = l,
e$S if /.(c) = 0.

Each element of the universe either belongs to or does not belong to the set S. In a fuzzy set,
an element can be a member of the set with varying degree of membership. The associated
characteristic function, therefore, returns any real number between 0 and 1, and it is termed
as the membership function. For a fuzzy set F, we have an associated membership function
p-r(e) — > [0, 1]. For example, if element e is a member of fuzzy set F with degree 0.34, the
associated membership function returns this value, p.p(e) = 0.34. If (J.p(e) = 0, e is entirely
outside of fuzzy set F, and if MF(C) = 1, e is entirely inside of fuzzy set F. Fuzzy set is
represented by a set of ordered pairs of an element u,- and its grade of membership:

where U is a universe of discourse. Using a fuzzy set, we can represent and manipulate imprecise
and vague concepts and data. For example, approximately 100 km/h is represented by the fuzzy
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Figure 1: Approximately 100 km/h.

set whose membership function is shown in Figure 1. We can extend classical set theory by
denning basic set theoretic operations over fuzzy sets. The following definition of intersection
and union with fuzzy sets are suggested by Zadeh [13]. The set theoretic operations with fuzzy
sets are denned via their membership functions. Let A and B be a fuzzy set, then union,
intersection and complement of the fuzzy sets are defined as follows. The membership function
of the intersection C = A n B is defined by

The membership function of the union D = A U B is defined by

The membership function of the complement -<A of A is defined by

P-A(e) = 1 - AM(e), e e U.

In the traditional logic, one of the most important inference rules is modus ponens, that is

Premise
Implication
Conclusion

A is true
If A then B
B is true

Here, A and B are crisply defined propositions. We can construct a fuzzy proposition using a
fuzzy set such as:

Current speed is approximately 100 km/h.

By introducing fuzzy propositions into modus ponens, we can generalize modus ponens. Let
C, C', D, D' be fuzzy sets. Then the generalized modus ponens states:

Premise
Implication
Conclusion

xis C'
If x is C then y is D
y is D'

We can use different premises to arrive at different conclusions using the same implication. For
example,
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Premise
Implication
Conclusion

Premise
Implication

Figure 2: Inference.

Visibility is slightly low
If visibility is low then condition is poor

Conclusion

Condition is slightly poor

Visibility is very low
If visibility is low then condition is poor
Condition is very poor

The above inference is based on the compositional rule of inference for approximate reasoning
proposed by Zadeh [14]. Suppose we have two rules with two fuzzy clauses in the IF-part and
one clause in the THEN-part:

Rule 1: If (x is AI) and (y is BI) then (z is C"i),
Rule 2: If (x is A2) and (y is B2) then (z is C2).

We can combine the inference of the multiple rules by assuming the rules are connected by
OR connective, that is Rule 1 OR Rule 2 [10].

Given fuzzy proposition (x is A') and (y is J?'), weights af and af of clauses of premises
are calculated by :

af = max(/iB-nfli(e)), e e Y for i= 1,2.

Then, weights w\ and w? of the premises are calculated by :

= min(a;2 ,a2 ),

4



Weight af represents the closeness of proposition (x is A;) and proposition (x is A'). Weight
W{ represents similar measure for the entire premise for the iih rule. The conclusion of the first
rule is

C[ = min(ttfi,Ci),

The conclusion of the second rule is

The overall conclusion C' is obtained by

C' = max(C{,C2').

This inference process is shown in Figure 2. In this example, aj* = 0.5 and af = 0.25, therefore
wi = 0.25. a£ = 0.85 and af = 0.5, therefore tt>2 = 0.5.

3 Rule-based Controller

The usual approach for automatic process control is to establish a mathematical model of the
process. However, this is riot always feasible. In some cases, there is no proper mathematical
model because the process is too complex or ill-understood. In other cases, experimenting
with plants for construction of mathematical models is too expensive. In still other cases, the
mathematical models are too complicated or computationally expensive and are not suitable
for real time use. For such processes, however, skilled human controllers may be able to operate
the plant satisfactorily. The operators are quite often able to express their operating practice
in the form of rules which may be used in a rule-based controller. The rule based controllers
model the behavior of the expert human operator instead of the process. The following is a
rule from an aircraft flight controller [5]. This rule takes three inputs and has two outputs.

If (1) The rate of descent is Positively Medium,
(2) The airspeed is Negatively Big (compared to the desired airspeed),
(3) The glide slope is Positively Big (compared to the desired slope).

Then (1) change engine speed by Positively Big, and
(2) change elevator angle by Insignificant Change.

The expressions, Positively Medium, Positively Big, Insignificant Change, and others represent
imprecise amounts. They represent intuitive feel of the expert human controller. They cor-
respond to the imprecise expressions used by the expert for communicating a rule of thumb.
They are represented by using fuzzy sets and their associated membership functions.

The fuzzy set, such as Positively Medium is represented by the membership function over an
appropriate universe of discourse such as revolutions per minute (rpm). The possible definitions
of fuzzy sets are shown in Figure 3. The control rules are encoded using typically 10 to 70
rules. The Control is performed based on the fuzzy inference mechanism described in Section
2 and Figure 2. In controlling a process, all of the rules are compared to the current inputs
(observations) and fired. The actions (THEN-part) of each rules are weighted by how close its
IF-part matches the current observation. In the example of Figure 2, a rule has two inputs and



Figure 3: Typical fuzzy sets.

a single output. The weights are represented by w\ and w?. The results of firing of each rule
are then combined by superimposing them. The final result which is supplied to a controller
should be a crisp number rather than a fuzzy set, therefore we need to perform a defuzzifying
operation. This is computed by taking a center of area under the fuzzy membership function of
the final result. Even though each individual rule is an incomplete rule of thumb, the results of
firing each rule are properly weighted and combined and the final result represents reasonable
compromise.

In order for VLSI implementation of fuzzy inference to be useful, a fair amount of pre-
processing (fuzzifying) and post-processing (defuzzifying) must be performed on chip. The
AT&T prototype chip assumed that both of these processes are performed by the host-
processor. However, the inference processing is too fast for fuzzifying and defuzzifying to
take place off-chip by a hast processor. This assumption burdened the host processor and
nullified the advantage of VLSI implementation of the inference mechanism.

4 Chip Architecture and Implementation

The process controller system is configured as in Figure 4. The VLSI implementation is done
with four components; a fuzzyer, a rule memory, an inference mechanism, and a defuzzifier
on a single chip. Each input and output data item is 6 bits. This fits well with available
A/D and D/A converters. In addition, our chip will communicate with a host processor. The
chip has three stage pipelining architecture. The pipeline consists of IF-part, THEN-part, and
defuzzifier.

We considered the size of the fuzzy set and the grade of fuzziness for practical use. In most
cases, a fuzzy variable has three to sixteen elements and the grade of fuzziness has three to
twelve levels [5,8]. In this chip implementation, the universe of discourse of a fuzzy set is a finite
set with 64 elements (i.e. 6 bits). The membership function has 16 levels (i.e. 4 bits). That
is, 0 represents no membership, 15 represent full membership, and other numbers represent
points in the unit interval [0, 1]. A fuzzy membership function is, therefore, discretized using
64 numbers of 4 bit; that is 256 bits of memory storage. The representation of a fuzzy set is
as follows:

ut
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Fuzzifying is done using a table look-up. For each observation (i.e. input stream), we store
a table of the membership function normalized at the center of the horizontal axis. That is,
the full membership is at the center. According to an input value, the membership function is
shifted. The chip can produce 64 different membership functions from a single stored pattern.
The membership function can be associated with a predicted measurement error of a sensor.
If we do not need fuzziness in the observed value, we can store a pulse function, that is only
one entry has membership 1 and all the other entries have O's. The result of the fuzzifying is
broadcasted to all of the rules. In the actual chip implementation, the content of the table is
not shifted. Rather a starting address for table look-up is shifted according to an observation
input.

The chip is re-configurable. A control system can take four inputs and produce two out-
puts or take two inputs and produce one output according to an application. With the first
configuration, we can have 51 rules on a single chip. Each rule has four clauses in the IF-part
and two actions in the THEN-part.

If A and B and C and D
Then Do E, and

DoF.

With the second configuration, we can execute 102 rules using a same data-path. Each rule
has two clauses in the IF-part and one action in the THEN-part.

If A and B Then Do E,
If C and D Then Do F.

A data-path is assigned for each rule, therefore all of 51 or 102 rules are executed in parallel.
There are only two basic units; they are a parallel minimum unit and a parallel serial unit.
The former performs the intersection operation on fuzzy sets, and the latter performs the union
operation. The configuration of the If-part of the data-path is shown in figure 5. The data-path
can execute one rule with 4 if-clauses or two rules with 2 if-clauses. Four pairs of min/max units
compute the weight Q'S for each clause. The min elements organized as a binary tree compute
weights w of the premise which is the minimum of all a's. In the 51 rule configuration, the last
two minimum units compute the same weight «;,-. In the 102 rule configuration, streams of 1's
are supplied and these two min elements behave as delay elements. The control of configuration
is done by setting a bit in the status register from the host computer. Defuzzifying is done by
computing a center of area (COA) under the final membership function. Denoting the final
fuzzy subset as A, the COA algorithm computes the following:

c* = "^

Since each element of the universe is processed serially, we can substitute multiple addition for
multiplication in the above computation. The data sequence from the THEN-part is produced
starting from the most significant data point as follows:

, AM(62),



IF.Part THEN.Part

A Input

E Action

r
F Action

TO E THEN-Tree

TO F THEN-Trw

Rfleea loadw

Figure 5: Reconfigurable data-path for rule execution.

E or F stream
Irom THEN tree

To Pins

Figure 6: Defuzzifier circuit.



Fuse

Rule Select

Figure 7: Redundancy

Two adders and two registers are used as shown in Figure 6. The numerator is computed by the
first adder and denominator is produced by the second adder. The denominator is computed
as by repeated addition of the result of the first adder by the second adder which computes
the following formula.

63

n=0

In order to achieve higher yield, we allocated 51 data-paths on the chip, and non-functioning
memory units and data-paths can be isolated from the rest of the chip. The isolation is achieved
by blowing a fuse using laser technology. Each pair of a memory unit and a data-path can be
reprogrammed to any other address also by blowing a fuse. This allows a continuous addressing
of memory/data-paths after removal of a defective unit from a chip. The schematic diagram
for address removal and re-programming circuit is shown in Figure 7.

The host processor down loads the rule set and table for fuzzification at start up time.
The fuzzy processor looks like a static RAM chip to the host processor. The RAM system,
however, only has a row decoder and does not have a column decoder. A user can address
each row (corresponds a clause/action of a rule) by a memory address register. Each column is
addressed by a shift register because data are accessed sequentially. The last address is reserved
and mapped to the status register. This register controls the configuration of data-paths and
operational modes (load, run, or test). Fuzzification tables have their own memory address
and loaded similarly as rule memory.

The chip is designed for a 1 ̂ m N-well CMOS process of MCNC [7]. It uses non-overlapping

10



Die Size 7750/i x 9080/i
No. Transistors 614K (470K RAM)
No. Pins 84 (16 Power/GND)
Package Type PGA (Standard Pad Frame)
Clock Frequency 40 MHz © 70°C
Power Supply 3.0 -3.3 v
Power (Est.) 600mW
Interface TTL Compatible
Modes 4 inputs/2 outputs/51 rules,

2 inputs/1 outputs/102 rules,
test

Redundancy Laser Programmable

Process 1 /zm N-well CMOS
Gate Length/ior 1.0/nn/22.5nm
Poly/Metal I/Metal 2 2.6/2.6/4.0//m

Table 1: Summary of circuits

two phase docking scheme. The chip is designed with a target operational speed of 40MHz.
The chip consists from approximately 614,000 transistors of which about 470,000 are used to
form the static RAM system. The die size is 7750/zm by 9080/zm, and is packaged in a standard
pin grid array with 84 pins. The supply voltage is 3.0-3.3 v. Table 1 summarizes the process,
device specifications and primary architectural features. Figure 8 shows the layout map of the
chip.

5 System Integration

For the fuzzy inference chip to be useful we must package it into a system integrating hardware
and software, hence development of hardware and software must be coordinated. We need to
provide a user friendly interface to control engineers. We have performed a substantial work in
development of software system. Hardware side of the system integration is in a preliminary
design stage.

5.1 Hardware System

For the hardware side, we will package the VLSI chip into a single board system. The
single board system should be bus compatible with widely available personal computers or
workstations. Potential candidates are: 1) IBM PC/AT, 2) Sun workstation, 3) IBM Personal
System II, 4) Apple Machlntosh II. At this moment, we believe either IBM PC/AT or Sun
workstation is most suitable for our purpose. IBM PC/AT is widely available and is used in
factory automation. On the other hand, we have extensive software on Sun worksation.

11
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The single board system consists of a VLSI fuzzy logic inference processor chip, logic for a
standard bus interface, A/D converters for inputs, D/A converters for output, and glue logic.
For applications requiring more rules, we can combine multiple fuzzy chips into one inference
processing system. We would only need a small amount of extra glue logic and chip control.
Overall the single board system is fairly modest and should be easy to construct.

5.2 Software system

For software system integration, we need a programming environment for developing the
control rules, and software to communicate and drive the fuzzy logic inference board from a
host processor. We have been developing a system that combines graphic input and text input
in a windowed environment using X window system. Window environment is useful for editing
of rule set, and graphic representation of simulation of rule set execution.

5.3 Programming Environment

As discussed above, the chip's output is driven by a set of IF-THEN rules. A rule set should
be easy to develop, test and load into the chip. Our programming environment allows a user
easily to describe a rule set which represents operating practice in the system that the chip
will control. The user must be able to define membership functions and assign them to IF and
THEN clauses of the rules. Fuzzy variables which will take on input values during chip operation
must also be assigned membership functions for the fuzzifying process. The environment allows
easy simulation and testing of the rule set. The simulated execution is displayed graphically
for ease of debugging and refinement of the rule set. Finally, the rule set will be down-loaded
to the Fuzzy Logic Board.

5.3.1 Editors

For rule set programming, a multiple window environment provides editing and display facilities
for the fuzzy rule sets, for fuzzy variables, and for the fuzzy set membership functions used
in both the fuzzifying process and the representation of the rule clauses. Separate text and
graphic windows interact with the user and display the developing system in various modes
and from different levels of abstraction.

Working in the editors, the user may proceed sequentially or select randomly among the
items to be defined. Automatic sequential entry allows fast initial setup of prototype rule
systems. Correction and modification require random access.

For each of the editors, (fuzzy set membership functions, fuzzy variables, and the fuzzy rule
set), a text window and a graphics window are available and may be displayed simultaneously.
Editing may proceed by text input to the text window, or by mouse and keyboard input to the
graphics window. As changes are made in one window, the corresponding changes will appear
in the other window as appropriate to that mode.

A fuzzy set membership function is represented internally as 64 discrete numbers, each
specifying the membership at one point in the universe of discourse. Graphic input of the
corresponding shape may be made by line segments which are immediately translated into the
step function of discrete values. Figure 9 shows an actual screen of Sun workstation perfoming
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Figure 9: Graphic editor

this task. The function is given a name such as positive medium. Alternatively, a membership
function may be a prededined shape such as a triangular.

A library of fuzzy set membership functions gives the programmer the option of using
predefined terms for the rule set clauses and fuzzifying functions. Without the need for extensive
initial definition of terms, prototyping can progress quickly to the simulation stage. The system
may then be fine-tuned through custom redefinition of terms. Predefined fuzzy set membership
functions may also be associated with application derived terminology without the need for
customized function shape specification. Additions and deletions may be made in the library.

A fuzzy variable is the internal representation of some input or output such as airspeed,
glide slope, or elevator angle. For processing by the fuzzy system, a single value is represented
by a membership function over a universe of discourse. Thus a fuzzy variable must be associated
with a membership function which will fuzzify an input value or represent the output of a rule
for subsequent output value determination. Using the editor, the associated function may be
layed out in the graphics window or an existing membership function name may be specified in
the text window. The corresponding graphic shape will then appear in the graphics window.

The rule editor has a structured text editor. The user fills in the blanks and is prompted
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input value

IF is ____ and

is and

is and

is and

action value

THEN DO and

DO

Figure 10: Rule editor - text window.

at the next blank. See Figure 10. The user may move the cursor to any blank and may select
at random the rule currently being edited. As blanks are filled in, the corresponding graphic
shapes will appear in the graphics window. The window configurations on Sun workstation are
shown in Figure 11.

5.3.2 Simulation

The development of control rules is experimental in nature; a trial and error approach is
customary. Simulation of the rule set system is therefore required. This includes offline,
software simulation of the behavior of the chip as well as interaction with a program simulating
the process to be controlled. These simulation processes are integrated with the rule editing
facilities. The rule set programmer makes changes and views their effects without delay or
exiting from the system.

The system graphically displays the inference process of the simulated chip execution within
the system windows. This facilitates debugging and refinement of the rule set. Rule by rule
analysis of the simulation is possible as well as monitoring overall behavior. The user selects a
subset of the rules. This subset, which may be one, some, or all of the rules, can be fired one
at a time or simultaneously. The effect on the chip output is displayed in a separate window.
Any subset may also be 'unfired', or deleted after firing of some, or all of the rules. The system
then displays the intermediate or final output that would result absent that rule or subset of
rules. Again, this unfiring may be done stepwise or simultaneously.

The system makes the output available at interprocess communication sockets, and similarly
will accept input variable values at sockets. A simulation of a process to be controlled by the
chip may thus be controlled directly from the rule set programming environment. The actual
operation of the current rule set on the controlled process may be monitored and the rule set
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Figure 11: Window configuration.
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changed immediately in response to this simulation.

5.4 Device Driver

Driving the chip is fairly simple. It is done by down loading a rule set and setting the chip to
run mode. At execution time, the chip can communicate with A/D and D/A converters either
directly or through a host. To the host, the fuzzy logic chip looks like a static RAM chip. It
has the usual R/W and enable pins. Down-loading of the rule is done using address and data
registers.
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AN APPLICATION OF FUZZY LOGIC TO ROBOTIC VISION AND CONTROL

Abstract

A robot arm system able to manipulate a moving object on a belt conveyor at
various speeds is built, consisting of two parts. The first part is related
to recognizing patterns in real time. In this part, a method of construct-
ing a fuzzy discriminant tree is proposed, where three newly defined
measures called effectiveness, importance, and a p p l i c a b i l i t y are introduced.
The robot arm system is able to recognize the shape and the size of moving
patterns on a belt conveyor based on the fuzzy discriminant tree. The
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inference (or approximate reasoning) rules with the aid of an image process-
ing technique. The whole system is controlled by one 16-bit personal
computer and works in real time. The advantages of the proposed method are
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Fuzzy labels of V , L , P

(a) Fuzzy labels of Speed ( V )
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0
0

.8

.6
0
0
0
0

.2
1

.1
0
0
0

0
.6
.6
0
0
0

0
.1

1
.1
0
0

0
0

.6

.6
0
0

0
0

.1
1
0
0

0
0
0
1
0
0

0
0
0
1

.1
0

0
0
0

.6

.6
0

0
0
0

.1
1
0

0
0
0
0
1
0

0
0
0
0
1

.1

0
' 0
0
0

.6

.6

0
0
0
0

.1
1

0
0
0
0
0
1

0
0
0
0
0
1

(c) Fuzzy labels of ( estimated )moving-Distance ( P )

a l i t t l e auay < > far a uay

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PI
P2
P3
P4
P5
P6
P7
P8

1
.1
0
0
0
0
0
0

0
.6
.2
0
0
0
0
0

0
1
1

.1
0
0
0
0

0
.6
.2
.6
0
0
0
0

0
.1
0
1

.1
0
0
0

0
0
0

.6

.6
0
0
0

0
0
0

.1
1

.1
0
0

0
0
0
0

.1

.6
0
0

0.
0
0
0

.6
1

.1
0

0
0
0
0

.1

.6

.6
0

0
0
0
0
0

.1
1
0

0
0
0.
0
0
0
1

.1

0
0
0
0
0
0

.6

.6

0
0
0
0
0
0

.1
1

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1
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Table 1 Fuzzy labels of H, A, P

(a) Fuzzy labels of H

PI
P2
P3
P4
P5

-9

1
0
0
0
0

(b) Fuzzy

Al
A2
A3
A4
A5

-10

1
0
0
0
0

(c) Fuzzy

PI
P2
P3
P4
P5

-9

1
0
0
0
0

lof tleit
-8 -7 -6 -5 -4

1 .9 .6 .2 .1
.1 .2 .6 .9 1
0 0 0 0 .1
0 0 0 0 0
0 0 0 0 0

labels of A

negative
-9 -8 -7 -6 -5

1 .9 .6 .2 .1
.1 .2 .4 .8 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

labels of P

le f tieit
-8 -7 -6 -5 -4

1 .9 .6 .2 .1
.1 .2 .6 .9 1
0 0 0 0 .1
0 0 0 0 0
0 0 0 0 0

~3

0
.9
.2
0
0

-4

0
1
.1
0
0

-3

0
.9
. 2
0
0

-2

0
.6
.6
0
0

-3

0
.8
.2
0
0

-2

0
.6
.6
0
0

-1

0
.2
.9
0
0

-2

0
.4
.6
0
0

-1

0
.2
.9
0
0

0

0
.1
1
.1
0

-1

0
.2
.9
0
0

0

0
.1
1
.1
0

1 2

0 0
0 0
.9 .6
.2 .6
0 0

0 1

0 0
.1 0
1 .9
.1 .2
0 0

1 2

0 0
0 0
.9 .6
.2 .6
0 0

3

0
0
.2
.9
0

2

0
0
.6
.4
0

3

0
0
.2
.9
0

4

0
0
.1
1
.1

3

0
0
.2
.8
0

4.

0
0
. 1
1
.1

5

0
0
0
.9
.2

4

0
0
.1
1
0

right
6

0
0
0
.6
.6

5

0
0
0
1
.1

7

0
0
0
.2
.9

8

0
0
0
.1
1

9

0
0
0
0
1

positive
6

0
0
0
.8
.2

7

0
0
0
.6
.6

8

0
0
0
.2
.9

9 10

0 0
0 0
0 0
.1 0
1 1

right
5

0
0
0
.9
.2

6

0
0
0
.6
.6

7

0
0
0
. 2
.9

8

0
0
0
.1
1

9

0
0
0
0
1
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OPTICAL NEURAL COMPUTERS

Abstract

A neural computer consists of a large number of simple processing elements
(neurons) that are densely interconnected. The information that is needed
to solve a particular problem is stored in the strength of the interconnec-
tions using a learning procedure. Some of the basic characteristics of such
a computer and the class of problems for which it is best suited are dis-
cussed. Optics is a technology particularly well suited for implementing
neural computers because of the relative ease with which a programmable,
massive interconnection network can be optically synthesized. Several
experimental demonstrations of optical networks w i l l be described and the
ultimate capabilities of optical neural computers w i l l be projected.
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WHAT IS THE SIGNIFICANCE OF NEURAL NETWORKS FOR Al?

Abstract

Associative memory (AM) and attentive associative memory (AAM) have been
reviewed in terms of simple neural networks (both uniform and nonuniform
matched filter banks - read by inner products and written by outer products
in parallel). Whereas AM has been applied to optical character recognition
(OCR) using the set of orthogonal feature vectors deduced from image proc-
essing and computer vision, AAM can incorporate Al expert system techniques
for determining the nonuniform linear combination of outer products. A
rule-based system can more efficiently incorporate the frequency distribu-
tion of distorted characters according to user group profiles; i.e., left-
handed versus right-handed writing. Specifically, in this paper we have
examined the degree of fault tolerance in AM, the a b i l i t y of generalization
by interpolation (auto-associative memory), and abstraction by extrapolation
(hetero-associative memory). The efficiency of the closed system of rule-
based knowledge representation of Al using tuple storage has been combined
with the f l e x i b i l i t y of the non-rule-based open system using the matrix
knowledge representation of Nl (coined for either neural, or network, or
natural intelligence). Thus, the a b i l i t y of generalization and abstraction
becomes possible in a combined i n t e l l i g e n t system of Al and Nl.



WHAT IS THE SIGNIFICANCE OF NEURAL NETWORKS FOR AI ?

by Harold H. Szu
Naval Research Laboratory, Code 5756

Washington D.C. 20375

ABSTRACT
Associative memory (AM) and attentive associative memory (AAM) have been reviewed

in terms of simple neural networks (both uniform and non-uniform matched filter banks: read by
inner products and write by outer products in parallel). While AM has been applied to the optical
character recognition (OCR) using the set of orthogonal feature vectors deduced from image
processing and computer vision, AAM can incorporate AI expert system techniques for
determining the non-uniform linear combination of outer products. A rule-based system can
more efficiently incorporate the frequency distribution of distorted characters according to user
group profiles, say left-handed writing versus right-handed writing. Specifically in this paper, we
have examined the degree of fault tolerance in AM, the ability of generalization by interpolation
(auto-associative memory) and abstraction by extrapolation (hetero-associative memory). The
efficiency of the closed system of rule-based knowledge representation of AI using the tuple storage
has been combined with the flexibility of the non-rule based open system using the matrix
knowledge representation of NI (coined for either Neural, or Network, or Natural Intelligence).
Thus, the ability of generalization and abstraction becomes possible in a combined intelligent
system of AI and NI.

1. INTRODUCTION

The question of the significance of neural networks for AI may be subdivided into three
aspects.

(i) How can neural networks help solve AI problems ?

ANSWER: Both the well understood fault-tolerance of associative memory (AM), and the
lesser understood ability of neural networks for generalization and abstraction, can be usefully
incorporated into AI techniques.

(ii) How can AI help solve neural network problems ?

ANSWER: Similar to computer aided design, AI expert systems with a neural network
modules can help design special purpose architectures for neural network computing.

(iii) What unsolved problems can be solved efficiently by combining AI and NI (coined for
either Neural, or Network, or Natural Intelligence) techniques to utilize their respective strengths?

ANSWER: The optical character recogniton (OCR) for reading hand-written bank check
and zip-codes, can be solved by combining both AI and NI techniques, as described in this paper.



Because we can only build a small neural network, we wish to endow a small se4
neurons with a human-like intelligence. With present technology, whether it be electronic^
optical, one cannot build a neural network of more than several hundred neurons, using existi
processor elements (PE's), because of the technological diff icul ty associated with den
interconnectivity, about N^ for N PE's. Thus, artificial neural networks can not yet match the si
and the complexity of the human brain, that has billions of neurons and thousands
interconnects for each neuron. If we are not, overly ambitious in developing a general purpc
neural computer, we can built a special purpose neural computer for solving special purpc
problems, such as OCR.

One way to accomplish this special purpose neural computer is to combine the traditior
rule-based AI wisdom with non-rule-based NI learning. This is particularly desirable in solvi;
OCR problems because the available small neural networks can use better feature vectors obtain
from other disciplines. Neural networks, built with current technology, can then provide fai
tolerance for input feature vectors variations. The specific problem of hand-written charact
recognition, differs from the more regular, hand-printed, alphanumeric recognition problem
that it must account for such complications as connected characters and characters broken 1
segmentation.

Conceptually, one could solve the OCR problem using analytic, rule-based AI or neui
network techniques. The OCR problem can be subdivided into character (or character strin
statistics, font recognition, and character recognition; the most efficient techniques for these thr
subproblems are analytic (statistical), rule-based AI, and neural networks, respectively. Since t.
statistical techniques, applied to alphanumeric frequencies, is well known, this topic will noy
discussed further. In solving the font recognition subproblem, AI rules can be set by the (statist™
frequency distribution of individual distorted characters according to user group profiles, e.g. lei
handed writing versus right-handed writing. It is efficient to design AI expert system that drS
upon the classical statistical pattern recognition, e.g. one stroke difference exists between "P " a:
"R ", or between"O " and "Q ", or in a low pass filter viewpoint only one stroke locatioi
difference exists among four rounded letters "P " and "R ","O ", and "Q ". Furthermore, the
rules of pair character distortion distribution can help solve the problem of connected charac
and broken character after segmentation, such as two scripted zeros. The pair characer correlati
matrix can be analyzed by the technique of the Karhunen-Loeve procedure in image processii
The Karhunen-Loeve technique is compatable with AM's outer product decomposition. With t
help of AI rule-based system, both the first and the second order statistics can be incorporated in t
formalism of attentive associative memory (AAM), that processess the extra degrees of freedom
the non-uniform storage of vector outer products based on a given set of critical feature vectors.

Because the open-ended knowledge of input pattern variations may be efficien
controlled by using other disciplinary knowledge, such as AI and computer vision with a result
better combined technology, we shall review AM and AAM, and various OCR approaches
means of their specific techniques used for feature extraction and techniques used for gro
classification. The sooner we accept implementation limitations of the present neurocompute
the better we can work with other disciplinary researchers. For example, we can work w
researchers in AI, computer vision, image processing. Since this cross disciplinary collaboration



by nature not easy because of different trainings and languages involved, then this paper may serve
a door opener for both.

Pattern recognition reseachers have been successful in machine-printed character
recognition (CR) compared to optical character recognition (OCR) of hand-written bank checks or
zipcodes. Difficulties of applying AI alone to an intelligent OCR may be due to the lack of non-
rule-based capability of generalization and abstraction. This may be constrained by the traditional
AI one dimensional (1-D) knowledge representation, e.g. an ordered set of tuples used in semantic
networks. Similarly, difficulties of applying the neural network alone to an intelligent OCR may
be in selecting critical features that is precisely one of the most challenging and unsolved problems
(others are segmentations and locations). On the other hand, AI is efficient in reduce the problem
to a sub-problem based on 1-D knowledge representation of simple rules, and NI provides the
fault-tolerant OCR system based on 2-D knowlege representation. Together they give the possibility
of generalization and abstraction. Thus, Szu and Tan (1988) have considered a less risky approach
that consists of the traditional AI researchers who know about OCR critical features, and the neural
network experts who know about AM fault tolerance. Technological developments have pointed
to the readiness of such collaborations, since 2-D storage by chips or optical disks becomes cheaper
than the traditional 1-D content addressable memory (CAD) processor. What's needed is a smart
coprocessor such as neurocomputer. As a matter of fact, due to the 2-D nature of light, optical
expert systems based on AM have been designed by Szu and Caulfield (1987) who have shown as
simple replacement of 1-D tuples by 2-D matrices in a semantic network the alias problem for data
fusion is solved by matrix addition and thresholding. The opto-electronical implementation of
attentative associative memory model of Athale, Szu & Frielander (1986) can be expanded by
means of a priori probability compiled by a pair-character correlation function of script letters.
These papers may facilitate both sides the starting line of collaborations.

In this paper, we have reviewed the orthogonal subspaces of features and examined (1) the
degree of fault tolerance , (2) the generalization by interpolation to other orthogonal feature vectors
within the subspace, and (3) the abstraction by extrapolation to other subspaces. AAM may be
formulated by a linear combination of outer products based on a set of orthogonal feature vectors.
The combination coefficient is called the attention parameter, because it enters into the eigenvalue
of AAM matrix that governs the recall convergence. We review briefly about the dynamics of
attentive associative memory published by Szu (1988) elsewhere using arbitrary coefficients. In
this paper we explicitly introduce a Al-tuple for the attention vector a = {an , n=l,...M), where the
inner product between the difference vector between an averaged stochastic input IQ > and a fixed
memory state lm> is naturally used as the attention parameter defined in terms of Dirac's inner
product notation: a m = < m | m > - < m I Q >. Such an AAM matrix has non-white eigenvalue
spectrum Xn= an- (A / B ) where the attentive memory capacity is A = £^n=l ^n/ anc* B is the
length of the feature vectors (e.g. the number of bits). Iterative recalls are used. Paying non-
uniform attention (an> 1) increases the memory capacity A > M together with a faster
convergence rate proportional to the larger eigenvalue Xm ̂  X than a uniform attention( i.e.am =
1). Szu's (1988) analysis has suggested that the eigenvalue spectrum and its dithering by input
ensemble can play a crucial role for the convergence associated with a nonlinear dynamical
system.



2. Associative Memory j

Matrix associative memory- works like a parallel bank of matched filters but much rr
efficiently in at least three counts: (1) no address coding of input and decoding for output
necessary , (2) operations are done in parallel, and (3) the connectivity matrix can be determi
by itself using various adaptive (learning) algorithms.

An analytical and numerical example of AM is given as follows:

We denote M feature vectors as binary words, u(m), m=l,...M. Each word has B bits.
inner product of Eq(l) measures the norm, the number of bits that are one.

UT «u = # of one's (1)

where the superscript transpose the column vector to a row vector.

The associated bipolar words, denoted by V (m) , m=l, ...M, are defined as follows:

V = (2 U - 1) = Sgn( U ) (2)

where the unit vector 1 has all entries equal 1 and Sgn is the sign function that changes zero ;
negative quantities to -1. We prefer bipolar version to binary version because : (1) the in
product norm is always identical to the number of bits, B:

VT • V = B = <V I V> , (3) '

rewritten here in terms of Dirac's bracket notation: <bra I ket> for the inner and I ketxbra I for
outer product, (2) the nature of "exclusive or" can be easily represented by bipolar multiplication

+1 X +1 = 1, -1 X -1 = 1, +1 X -1 = -1, -1 X +1 = -I,

(3) the inner product norm is related to the Hamming distance, defined to be the numbei
different bits between two vectors no matter where the differences occur.

We assume an orthogonal set of feature vectors defined as follows:

v(n)T »v(m) = B 5nim =< n | m > (4)

where 5n m is the Kronecker delta. The outer product weight matrix W represents ai
associative memory:

W ]= Im [ V(m )v(m)]= Im | m >< m I (5)



Hopfield (1982, 1984) assumed the auto-associative matrix [T] to be traceless. That was used
together with the symmetry property to prove convergence. Thus, the second term of Kronecker's
delta matrix (1's along the main diagonal and zero elsewhere) is introduced in Eq (6) to make it
traceless.

B[ T ] ij = [ W ] ij - M Sg (6)

B is the normalization constant, and M is the memory capacity. Using the trace operation denoted
by Tr, we can easily verify Eq (6) to be traceless.

Tr( I m x m l ) -B (7)

Tr( [5g ] ) - B (8)

The tradeoff between the memory capacity and the degree of fault-tolerance has been estimated to
be about 15 % of B bits [Hopfield (1982)] for pseudo-orthogonal vectors. That is,

M - 0.15 B (9)

For orthogonal feature vectors, however, the capacity is 100 %.

M- B (10)

This fact can be demonstrated by the eigenvalue problem of the matrix which is defined to be

[T] I n> =Xn I n> (11)

where the eigenvalue can be easily verified, using Eqs (4) and (6), to be degenerate , namely, a
white spectrum for all M states,

Xn = 1 - (M/B) (12)

The full capacity, M = B, corresponds to a zero eigenvalue for all B orthogonal eigenstates, one for
each feature vector.

Consider a simple example where B = 4. There are 4 possible orthogonal vectors and 24 =
16 possible words denoted by:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

We introduce orthogonal subspaces defined by the number of contiguous 1's in the binary
word. The subspace consisting of words 13, 11, 7, and 14 is obviously orthogonal by shifting a "one"
among 3 zeroes from the the left to the right end of the word.



Word

13
11
7
14

15
6
12
10

Binary

P

1101

1 Oil

0111

1110

1111

0110
1100
1010

Word

2
4
8
1

0
9
3
5

B i n a r y Word Bipolar

comple.
0010
0100
1000
0001

0000
1001
0011
0101

3
3
3
3

4
2
2
1

13
11
7

14

15
6

12
10

11-11
1-111
-1111
111-1

1 1 1 1
-1 1 1-1
1 1 -1-1
1-1 1-1

2
4
8
1

0
9
3
5

comple.
-1-1 +1-1

-1+1-1 -1
+1-1-1-1
-1-1-1+1

-1-1 -1 -1
+ 1-1-1+1
-1-1+1+1
-1 + 1-1 + 1

Word Bipolar

3

3
3
3

4
2
2
1

It is readily verified that the sub-space of bipolar words (13, 11, 7, 14) are mutua
orthogonal to one another, as shown in Figure 1. They happen to be related to the Walsh funct
of periodicity p=3. The corresponding binary words have an equal angle among them [cos"1 (2/
that is not 90°. Also, the second subspace of bipolar words (15, 6, 12, 10) are also orthogonal but
two subspaces are not orthogonal to each other.

15

12

10

13

11

14

Figure 1. Two-Dimensional Representation of Walsh Base Functions
Used to illustrate the fault tolerance and generalization properties
of Associative Memory

We consider the storage of one word in memory.

4 [T i ]=[13]= 113x13! -5 (13)



If the outer product is properly normalized, it is related to the projection operator:

[P] -8 - 113x131 (1/B) (14)
Using Eq (4) , it can be verified that

[P12 = [P]. (15)

We will show (1) the ability of fault tolerance, and (2) the ability for generalization.

Fault Tolerance

The following sequence of erasing (zero out) successively from the bipolar bits illustrate
tolerance of missing bits.

(1) one missing bit

[13]( 0 1-1 l)T=Sgn( 3 -2 -2 3)T= 113> (16)

where Sgn is sign function representing the sigmoid neuron response by the point nonlinearit)
extracting the algebra sign of each entries.

(2) two missing bits

[13]( 0 0-1 l)T=Sgn( 2 2 - 1 1)T= 113> (17)

(3) three missing bits

[13] ( 0 0 0 l)T=Sgn(l 1-10)T=I12>

[13]2( 000 1)T= Sgn( 1 1 -1 3)T= 113> (18)

(4) four missing bits

[13] (0 0 0 0)T = Sgn ( 0 0 0 0 )T = (-1-1-1-1)T= 10>

[13]2(0 0 0 0)T = Sgn (-1-1 3 -1)T = 12>

[13]3(0 0 0 0)T = Sgn (-3-3+3-3)T = 12> (19)

which converges to a fixed point that is precisely the bipolar complement to 113>. In other words,
the phase information is lost as an overall minus sign in the last case.

The following sequence of reversing successively from the bipolar bits illustrate tolerance
of erroneous bits.



(1) one erroneous bit.

[13]( -1 1-1 l)T=Sgn( 3 1-1 1)T= 113> (20)

(2) two erroneous bits.

[13]( -1 -1- -1 l)T=Sgn( 1 1 1 -1)T= ! H>

[13]2 (-1 -1 - -1 1)T = Sgn (-1 -1 -1 1)T = 11>

[13]3(-l -1 -1 1 )T = Sgn (1 11 1)T = | is>

[13]4(-T -1 -1 1 )T - Sgn (1 1-3 1)T = 113> (21)

(3) three erroneous bits.

[13]( -1 -1-1 l)T=Sgn( -1 -1 1 -3)T= | 2 > (22)

which also converges to a fixed point that is also the bipolar complement of 113>.

Generalization within a subspace

We consider the ability to recognize a new vector that is different from the stored \
In other words, an AM can recognize its related vectors that has not been memorized before. 1
recognition, we mean convergence to a different fixed point. In this sense, we say that the AM c
generalize its memory to include other fixed points.

In the case of bipolar vectors, if and only if a new vector x is orthogonal to the stor
vectors, associative recall "converges in a cycle of two" as defined in the following iterations:

Sgn([T] l x > ) = - l x > (23a)

Sgn(-[T] !x>) = + lx> (23b)

This necessary and sufficient condition allows us to determine efficiently the orthogonali
between a new vector and all the stored vectors.

We shall show that when a new vector l l l> is presented to the AM [13], due to tl
orthogonality between 113> and 111> and traceless property of [13],

[13] l l l>=Sgn( - l l l> )= I4>,and

(24)



Once the system has acknowledged the second vector l l l>, it is incorporated into the
matrix storage.

4 [T2] =[13,11] =[13] +[11]

= 113x131 +111x111 -25 (25)
If another vector, I 7> is presented,

[13,11] !7>=Sgn(-2 I7>)= I8>,and

I 7 > ) = I 7> (26)

Thus, we enlarge the memory storage to have three memorized states.

4[T3] = [13,11,7] -[13] + [!!] + [7] =

113x131 + 111x111 + 17x71-35 (27)

This process is continued until the 4-bit orthogonal subspace (p=3) is filled up.

4 [T4] = [13]+[l !] + [?] + [14] (28)

We have demonstrated the ability to include other orthogonal vectors that have not been
stored before. This example also shows the important consequence of traceless storage through its
contribution to the "generalization by interpolation within the orthogonal subspace".

Given a table of orthogonal vectors, one may argue that computing inner products will
also determine orthogonality. However, inner products must be done pairwise among all vectors
and become inefficient as the number of vectors gets large. The above method remains efficient for
all sizes.

One may furthermore argue that the difficulty is not how to construct orthogonal set, but
to select critical bipolar features from gray-scale, imperfect images.

Algorithms for Construct A Critical Feature :

We shall not rely on the auto-AM to select features. One can carry out one's favorite
image processing procedure to extract a set of gray-scale feature vectors, {IF >). Bipolar feature
vectors are preferred in AM because of demonstrated fault-tolerance and the special ability of
traceless outer product that allow a quick convergence to a fixed point of cycle two. Given a gray-
scale feature vector I F>, several procedures for generating a bipolar feature vector are given. The
first procedure is "bipolarization", i.e. ,

I f > = Sgn ( I F> - threshold ) (29)



The second procedure is to use the Walsh transform. We apply two-dimensional \W
transform (as orthogonal bipolar vector space{ I wj > )) to all gray-scale features. We select <
bipolar feature vector from a specific Walsh base vector that is associated with the maxim
coefficient in the Walsh transform.

i f> = Sgn(Maxj (I I wj>< wj I F>) - threshold) (30)

where the orthonormality condition of Walsh base vectors is inserted to relate to the first methc

I iwi><wi I = [1] (31)

The third and the fourth procedures are to extract from the arbitrary feature vector I (
the closest vector I g> from either the bipolar orthogonal feature set {I N> } or the { I F> } using
following traceless associative memory storage.

! g> = Sgn( [IS I NX FI ] I G> - threshold) (32)

I g> = Sgn ( Z cp [ I FxF ] I G> - threshold) (33)

The linear combination coefficients { cp } may be determined by the statistics of sin
character distortions and variances (similar to finding the normal modes that diagonalizes
covariance matrix and the Karhunen-Loeve orthogonal procedure used for outer prod
representation of 2-D imagery). Furthermore, the statistics of character pair distortions, sud|
two scripted zeros, could be used to determine the coefficients so as to resolve the problefl
recognizing connected character and broken character after segmentation. We will not go ij
details in this approach, because of its problem-dependent nature.

The mechanism to select critical features is given as follows.

(1) Human being picks a critical feature (pictures) among the set of distorted, handwrit
characters, e. g. the extra stroke among O, P, Q .

(2) Walsh transform the selected feature.

(3) Pick the Walsh function that has the largest transform value.

We choose a feature vector that is closest to the Walsh vector associated with the largest
transform coefficient, and the rest follows from the procedure described in eq (24-28). We call s
a set of features the critical features.

Lessons to be learned about applying associative memory to pattern recognition:

AM can only do so much. There is no way to judge the correctness of an associative rec
except by the convergence to a fixed point. One can only assign meaning to those fixed poi:
whether it is new or old. The proven capabilities of the AM model are (1) missing and erronej



bits recovery, and (2) the creation of new orthogonal vectors, as illustrated above. Therefore, to
apply AM to pattern recognition, one must apply human interpretations to those capabilities.

Since learning is by trial and error, it is a continuous process. Suppose that a feature
vector with many components representing many features (such as leg-feature and fur-feature, etc,
for a tiger, coded fully as 1 13>) has been memorized by the traceless outer product. Furthermore,
suppose that only certain features are known in a sequence of imperfect input vectors. (I. e., some
feature values are missing, e. g. , the first in the sequence is (0, 0, 1, 1))- Then, the AM can fill in
the missing bits. After three iterations, one finds (-1, -I, I, -1)T= I 2>. One can then enlarge the
traceless outer product memory to include both vectors, [13, 2]. One examines the second input
vectors (0, 0, 1, 1). One can verify that the enlarge memory can indeed recall the vector 12 >,
which correspond to, say, a lady, rather than a tiger. The AM "mental" capacity of recognizing
other distinct objects when they show up has been demonstrated. Following this line of thought,
the different subspace of different size could be assigned for different classes of objects related by a
hetero-associative memory of a rectangular matrix. Such a recognition of different classes requires
a complete feature set coded in the AM. It can fill all orthogonal subspaces by the "generalization
procedure" illustrated in Eq(24-28).

3. ATTENTIVE ASSOCIATIVE MEMORY

Recently, Amari et al has studied the dynamics of such a system, which we will give a
simple theorem. We summarize our model equations as follows:

< n| m > = B 5 n , m (34)

[T] ln> = Xn |n> (35)

The simple model of attentive associative memory [ T ] is a linear combination of outer products
based on the set of orthogonal feature vectors, { | n> , n =1, ... M}, and a cue of initial state I Q > that
determines the set of attention parameters { a n } as follows:

a n = < n | n > - < n | Q > (36)

B [ T ] jj = ZM n=1 a n | nj > < n j | - A [5jj] (37)

that is traceless, Tr 5jj = Tr | nj ><n j | = B , giving

=1 an (38)
and

Xn = a n - ( A / B ) (39)

The attentive memory capacity A and eigenvalue Xn are reduced to Hopfield's memory capacity

and a degenerate eigenvalue X, in case of a uniform attention( i.e. an = 1),



(40) "

where Amari's pattern ratio r= (M/B) it defined for M bipolar words (states) of B bits (neurons)
each.

The dynamics is assumed to be governed by matrix-vector inner product

Q(t + l) sSgn ( [T ]Q( t» (41)

where a point nonlinear ity function is defined as Sgn(x) = + I if x > 0 , and - 1 if x < 0.
succesive associative recall gives the iteration, indexed by t= 0, 1,2,..., such that Q (t)- Q when
O.The eigenvalue spectrum, not the distance alone, is a proper macroscopic parameter to explain
transient dynamical behaviors of the recalling process. In particular, the direction cosine

Sm ( t ) ) = < m| Q(t) > / < m i m > (42)

has been derived and the logarithmic derivative is given by

(d/dt) log (1 - Sm (t)) < log Um/ 2) < 0 (43)

Convergence to a specific m-th state is guaranteed if m-th eigenvalue ( Xm ) is bounded 2 > Xm x

Theorem 1 about the lower bound says that paying attention (i.e. non-uniform an

always increases the memory capacity A) L M n _ - ] an > M with a faster convergence
proportional to the eigenvalue Xm > X s 1 - r

We conjecture that the statistical neurodynamics of associative memory may have similar beha
to the deterministic dynamics of attentive associative memory with a non-white eigenv;
spectrum due to random initial conditions that change with respect to the initial guess vector h
>, t =0. The difference vector between ! Q(t) > from I m > has an inner product norm defined as

2 Dm (t) = < m I m > - < m I Q(t) > (44)

If we assume that paying attention to the initial small guess error 2 Dm(0) amounts to choo:
nonuniform and biased storage

am = 2 Dm(0) > 1 (45)

and all other coefficients to be identical to I

an = 1 , n # m. (46)



By definition

A = M + 2 Dm(0) - 1. (47)

Theorem 2 about the upper bound of /\-m assumes that if a small difference vector betweei
the input I Q > and the specific state I m >, is used as the attention parameter am, Eq(31a), then thi
critical relationship between the Amari's pattern ratio r and the initial error is analytically founc
for successful recalls.

2 Dm(0) < 2 + (M + I)/ (B - 1 ) (48)

The maximum permissible Hamming distance DJ.J, from the desired m-th state to b<
reached after iterative recalls, is given by the formula

DH < ( B/2) - 1 -[ ( M- 1 )/ 2 ( B + 1 ) ] « B/2) - 1 - (r/2 ) (49)

4. Conclusion

Associative memory (AM) works like a match filter , but does so efficiently. It should not
be applied to image domain directly. Rather, it should be applied to feature domain so that a
relatively small AM can do useful tasks at the present technology.

We shall not rely on the auto-AM to select features. Instead, features should be selected
using human judgement. However, auto-AM will help us find critical features and hetero-
associative memory can perform feature extraction efficiently.

There exists a large body of knowledge pertaining to features selection and extraction and
pattern classification for traditional optical character recognition in the literature. This body of
knowledge should be tapped and coupled with associative memory. One should not rule out
the use of traditional classification techniques (such as syntactical) as extraction of high-level
features which then become part of the input feature vector to an AM.

Classical pattern recognition has been demonstrated with a relatively greater success in
machine-printed character recognition compared to handprinted character recognition.
Difficulty may be rooted in the lack of generalization and abstraction due to machine's limited
one-dimensional knowledge representation. In principle, AM should be able to complement
traditional OCR with 2-D knowledge representation. Various degrees of abstraction can be
achieved through a multi-layer, two-dimensional AM architecture. Note that the present
technology has evolved to the point where 2-D memory (chip or optical disk) is not more
expensive than 1-D memory storage with logic unit tree content addressable memory
processor.



In conclusion, we can combine traditional wisdom in traditional OCR with simple I
implementable in present technology to form a human-intelligence-endowed neui
network.

Character segmentation is an important step in character recognition. Fukushima h
developed neural network model (selective attention) for character segmentation in \
Neocognitron [Fukushima (1987)]. The attentive associative memory model implement
opto-electronically by Athale, Szu & Friedlander (1986) can be augmented by a priori probabili
compiled by a character-pair correlation function of connected characters. This is an interesti:
area for more research.

Inputs to associative memory are linear vectors whereas inputs to OCR are rectangul
arrays. Can associative memory replicate the concept of (2-D) neighborhood? The tw
dimensional transform that preserves the neighborhood relationship should be used for ima:
pre-processing before applying AM to the pattern. For example, 2-D Walsh transform can gi
a 1-D base Walsh vector (associated with the largest coefficient) as input feature vector to t
AM.

Can AM perform syntactical parsing [AH and Pavlidis (1977)] or rule-based structui
analysis [DAmato (1982)]? Any traditional classification technique can be used to extract hig
level features for AM.

How can AM extract position and rotation invariant features? [cf. Szu (1986), Messner ai
Szu (1987)].

One difficulty in applying backpropagation network has been network size-scalii
problem. One way to circumvent it has been to extract a small number of features as input. |
Burr (1987), Gullichsen and Chang (1987)]. Recent advances by Ballard in 1987 permit parti
connectivity between two successive layers which avoids combinatorial explosions oft<
encountered when the input layer is directly connected to image pixels. Thus, spatial patte
relationship can be efficiently preserved in such a network while coarse-graining betwei
successive layers can desensitize pattern variation in input images.

An AI extension of the simple AM model is attentive associative memory, (AAM), th
allows us to apply AI to pay a non-uniform attention to each term of outer product storage, i
a linear combination of outer products in which the set of combination coefficients
determined by AI rule-based system, e.g. the frequency distribution of distorted characte
according to user group profiles, e.g. left hand writing versus righthand writing. The efficient
of the closed system of rule-based knowledge representation of AI using the tuple storage
combined with the flexibility of the non-rule based open system using the matrix knowled
representation of NI ( coined for either neural, or network, or natural intelligence). Thus, t!
ability of generalization and abstraction becomes possible for AI, and is demonstrated in
combined intelligent system of AI & NI. We can endow a simple neural network architectu
based on a small set of neurons with a human-like intelligence by combining the tradition
rule-based AI wisdom with non-rule-based learning. This is achievable because OCR requir



better feature vectors obtained from other discipline in the sense of fault tolerance that neural
networks built at the present technology can already provide with.

Appendix: Generic Definition of Neural Networks

Associative memory is a special model of neural networks. Examples of associative
recalls from partial images and the success of nonlinear signal processing are recorded in the
literature [cf. Kohonen (1984)]. An axiomatic definition is outlined as follows.

We shall define three kinds of neurons: fine-grained, medium-grained and large-grained
processor elements (PEs). A fine-grained PE, represented by the lower case word neuron , has
no internal memory analogous to neurons in the hippocampus part of the brain that is
responsible for fault-tolerant associative recall. A medium-grained PE, Neuron, has a built-in
memory analogous to Neurons in biological sensory and motor control which are responsible
for reactions to approaching danger. A large-grained PE, NEURON , has built-in memory,
control logic, and communication capabilities equivalent to a computer. NEURONs occur in
nature in the form of grandmother cells or pacer/conductor cells.

These three types of neurons and their associated circuits have four kinds of interactions:
(1) exciting, (2) inhibiting, (3) bursting, (4) grading and delaying transmission. In general they
follow the law of the middle response or the sigmoid function (hyperbolic tangent or logistic
functions) to amplify weak signals with a nonlinear quick rising function and suppress strong
signals with a nonlinear tapering off saturation function. The generic definition of a Neural
Network is a system which is:

1. Non-linear ~ sigmoid function = point non-linearity (hard limiting) shown as
follows:

2. Non-local ~ weighted outer product = outer product (white spectrum) shown as
follows:

c



f ~\ )

3. Non-stationary - piecewise time stationary = iterative algorithm sho\vn as follows:

\

4. Non-convex = constrained global optimization = simulated annealing schematica
shown as follows:

5. Other attributes yet to be discovered .

These successive approximations of the four non~principles, indicated by wiggly equal
signs in (1-4), makes possible the unveiling of the complex and nonlinear neural (bra
behavior. This is possible with the use of powerful computers and more accurate models
intelligent functions. The theory is amenable to numerical simulations due to piecew\
linear, regionally local, temporarily stationary, and locally convex approximations.

Three decades ago, Rosenblatt and co-workers built the perceptron solely based upon t
first attribute (nonlinearity) with stochastic implementations. Thus, with hindsight, it was r
surprising that Minsky and Papert could show a limited utility and propose useful alternati1

artificial intelligence (AI) rule- based systems. AI works in closed systems where rules gave
while neural intelligence (NI) works in open systems where rules have yet to be discovert
Various exploitation of these efforts in neural networks are:



Software
Simulat ion

Emulaticn Herdware
Embodiment

Opt ics
VLSI

Wetware
Algo(rithm)-(archi)tecture

The term wet-ware, coined by Carver Mead, is neither software nor hardware, but more like a
Hecht-Nielsen's net-ware based on non-programmable but trainable networks. A special version
of layered neural networks has been demonstrated with the ability of phonetic interpolation in
the Rumelhart, Sejnowski connectionist's networks, such as Net-Talk, Boltzmann and Cauchy
Machines, and error back propagation networks.
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NEURAL MODELING OF SELECTIVE ATTENTION

Abstract

A neural network is presented in which there are modifiable, bidirectional
connections between nodes representing sensory events and other nodes repre-
senting reinforcement sources. There is also competition between sensory
nodes. Through these competitive and associative mechanisms, the presenter,
together with Stephen Grossberg, has simulated some data on attentionally
modulated Pavlovian conditioning. In particular, if two stimuli are pre-
sented simultaneously, and one of them has already been associated with a
primary reinforcer (such as electric shock or food), selective attention
occurs which inhibits the other stimulus from forming new associations.
Context changes can profoundly alter the dynamics of selective attention.
For example, if one stimulus has been paired with a reinforcer and that
stimulus combined wi t h another is paired with a greater or lesser amount of
that reinforcer, the second stimulus is no longer blocked. Also, selective
attention based on positive or negative reinforcement can compete with
selective attention based on other criteria. Nonmotivational criteria are
enhanced by frontal lobe damage, which weakens the sensory-reinforcement
linkage. For example, a frontally lesioned monkey can prefer a novel object
to one that has previously been rewarded. Also, a human frontal lobe
patient can persevere in a habit that was once, but is no longer, rewarding.
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APPLIED AND REAL NEURAL NETWORKS:
A COORDINATED AND INTERDEPENDENT INVESTIGATION OF BOTH

Abstract

One and a half years ago, Caltech organized a new graduate program in
Computation and Neural Systems (CNS). This program involves 15 faculty
members with interests as diverse as statistical physics, concurrent
computing, analog VLSI, signal processing, optical computing, machine vision
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ABSTRACT

Based on anatomical and physiological data, we have developed a computer simulation of pin-
form (olfactory) cortex which is capable of reproducing spatial and temporal patterns of actual
cortical activity under a variety of conditions. Using a simple Hebb-type learning rule in conjunc-
tion with the conical dynamics which emerge from the anatomical and physiological organiza-
tion of the model, the simulations are capable of establishing cortical representations for differ-
ent input patterns. The basis of these representations lies in the interaction of sparsely distribut-
ed, highly divergent/convergent interconnections between modeled neurons. We have shown that
different representations can be stored with minimal interference, and that following learning
these representations are resistant to input degradation, allowing reconstruction of a representa-
tion following only a partial presentation of an original training stimulus. Further, we have
demonstrated that the degree of overlap of cortical representations for different stimuli can
also be modulated. For instance similar input patterns can be induced to generate distinct cortical
representations (discrimination), while dissimilar inputs can be induced to generate overlapping
representations (accommodation). Both features are presumably important in classifying olfacto-
ry stimuli.

INTRODUCTION

Piriform cortex is a primary olfactory cerebral cortical structure which receives
second order input from the olfactory receptors via the olfactory bulb (Fig. 1). It
is believed to play a significant role in the classification and storage of olfactory
information1'2'3. For several years we have been using computer simulations as a
tool for studying information processing within this cortex4-5. While we are ulti-
mately interested in higher order functional questions, our first modeling objective
was to construct a computer simulation which contained sufficient neurobiological
detail to reproduce experimentally obtained cortical activity patterns. We believe
this first step is crucial both to establish correspondences between the model and
the cortex, and to assure that the model is capable of generating output that can
be compared to data from actual physiological experiments. In the current case,
having demonstrated that the behavior of the simulation at least approximates
that of the actual cortex4 (Fig. 3), we are now using the model to explore the
types of processing which could be carried out by this cortical structure. In partic-
ular, in this paper we will describe the ability of the simulated cortex to store and
recall cortical activity patterns generated by stimulus various conditions. We
believe this approach can be used to provide experimentally testable hypotheses
concerning the functional organization of this cortex which would have been diffi-
cult to deduce solely from neurophysiological or neuroanatomical data.
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Fig. 1. Simplified block diagram of the olfactory system and closely related structures.

MODEL DESCRIPTION

This model is largely instructed by the neurobiology of pirifonn cortex3. Axon-
al conduction velocities, time delays, and the general properties of neuronal inte-
gration and the major intrinsic neuronal connections approximate those currently
described in the actual cortex. However, the simulation reduces both the number
and complexity of the simulated neurons (see below). As additional information
concerning the these or other important features of the cortex is obtained it will be
incorporated in the model. Bracketed numbers in the text refer to the relevent
mathematical expressions found in the appendix.

Neurons. The model contains three distinct populations of intrinsic cortical
neurons, and a fourth set of cells which simulate cortical input from the olfactory
bulb (Fig. 2). The intrinsic neurons consist of an excitatory population of pyrami-
dal neurons (which are the principle neuronal type in this cortex), and two popula-
tions of inhibitory intemeurons. In these simulations each population is modeled
as 100 neurons arranged in a 10x10 array (the actual pirifonn cortex of the rat
contains on the order of 106 neurons). The output of each modeled cell type con-
sists of an all-or-none action potential which is generated when the membrane
potential of the cell crosses a threshold [2.3]. This output reaches other neurons
after a delay which is a function of the velocity of the fiber which connects them
and the cortical distance from the originating neuron to each target neuron [2.0,
2.4]. When an action potential arrives at a destination cell it triggers a conduc-
tance change in a particular ionic channel type in that cell which has a characteris-
tic time course, amplitude, and waveform [2.0, 2.1]. The effect of this conductance
change on the transmembrane potential is to drive it towards the equilibrium
potential of that channel. Na+, CT, and K+ channels are included in the model.
These channels are differentially activated by activity in synapses associated with
different cell types (see below).
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Fig. 2. Schematic diagram of piriform cortex showing an excitatory pyramidal cell and two
inhibitory intemeurons with their local interactions. Circles indicate sites of synapric modi/La-
bility.

Connection Patterns. In the olfactory system, olfactory receptors project to the
olfactory bulb which, in turn, projects directly to the piriform cortex and other olfac-
tory structures (Fig. 1). The input to the piriform cortex from the olfactory bulb is
delivered via a fiber bundle known as the lateral olfactory tract (LOT). This fiber
tract appears to make sparse, non-topographic, excitatory connections with pyra-
midal and feedforward inhibitory neurons across the extent of the cortex3-6. In the
model this input is simulated as 100 independent cells each of which make ran-
dom connections (p=0.05) with pyramidal and feedforward inhibitory neurons
(Fig. 1 and 2).

In addition to the input connections from the olfactory bulb, there is also an
extensive set of connections between the neurons intrinsic to the cortex (Fig. 2).
For example, the association fiber system arises from pyramidal cells and makes
sparse, distributed excitatory connections with other pyramidal cells all across the
cortex7-8-9 . In the model these connections are randomly distributed with 0.05
probability. In the model and in the actual cortex, pyramidal cells also make exci-
tatory connections with nearby feedforward and feedback inhibitory cells. These
intemeurons, in turn, make reciprocal inhibitory connections with the group of
nearby pyramidal cells. The primary effect of the feedback inhibitory neurons is to
inhibit pyramidal cell firing through a Cl" mediated current shunting mecha-
nism10-1 1<12. Feedforward intemeurons inhibit pyramidal cells via a long latency,
long duration, K* mediated hyperpolarizing potential12-13. Pyramidal cell axons
also constitute the primary output of both the model and the actual piriform cor-
tex7.14



Synaptic Properties and Modification Rules. In the model, each synaptic con-
nection has an associated weight which determines the peak amplitude of the con-
ductance change induced in the postsynaptic cell following presynaptic activity
[2.0]. To study learning in the model, synaptic weights associated with some of
the fiber systems are modifiable in an activity-dependent fashion (Fig. 2). The
basic modification rule in each case is Hebb-like; i.e. change in synaptic strength
is proportional to presynaptic activity multiplied by the offset of the postsynaptic
membrane potential from a baseline potential. This baseline potential is set
slightly more positive than the Cl" equilibrium potential associated with the shunt-
ing feedback inhibition. This means that synapses activated while a destination
cell is in a depolarized or excited state are strengthened, while those activated
during a period of inhibition are weakened. In the model, synapses which follow
this rule include the association fiber connections between excitatory pyramidal
neurons as well as the connections between inhibitory neurons and pyramidal neu-
rons. Whether these synapses are modifiable in this way in the actual cortex is a
subject of active research in our lab. However, the model does mimic the actual
synaptic properties associated with the input pathway (LOT) which we have
shown to undergo a transient increase in synaptic strength following activation
which is independent of postsynaptic potential15. This increase is not permanent
and the synaptic strength subsequently returns to its baseline value.

Generation of Physiological Responses. Neurons in the model are represented t

as first-order "leaky" integrators with multiple, time-varying inputs [1.0]. During
simulation runs, membrane potentials and currents as well as the time of
occurence of action potentials are stored for comparison with actual data. An
explicit compartmental model (5 compartments) of the pyramidal cells is used to
generate the spatial current distributions used for calculation of field potentials
(evoked potentials, EEGs) [3.0,4.0].

Stimulus Characteristics. To compare the responses of the model to those of
the actual cortex, we mimicked actual experimental stimulation protocols in the
simulated cortex and contrasted the resulting intracellular and extracellular
records. For example, shock stimuli applied to the LOT are often used to eb'cit
characteristic cortical evoked potentials in vivo16-17-18. In the model we simulated
this stimulus paradigm by simultaneously activating all 100 input fibers. Another
measure of cortical activity used most successfully by Freeman and colleagues
involves recording EEC activity from piriform cortex in behaving animals19-20.
These odor-like responses were generated in the model through steady, random
stimulation of the input fibers.

To study learning in the model, once physiological measures were established,
it was required that we use more refined stimulation procedures. In the absence of
any specific information about actual input activity patterns along the LOT, we
constructed each stimulus out of a randomly selected set of 10 out of the 100 input



fibers. Each stimulus episode consisted of a burst of activity in this subset of
fibers with a duration of 10 msec at 25 msec intervals to simulate the 40 Hz peri-
odicity of the actual olfactory bulb input. This pattern of activity was repeated in
trials of 200 msec duration which roughly corresponds to the theta rhythm period-
icity of bulbar activity and respiration21-22. Each trial was then presented 5 times
for a total exposure time of 1 second (conical time). During this period the Hebb-
type learning rule could be used to modify the connection weights in an activity-
dependent fashion.

Output Measure for Learning. Given that the sole output of the cortex is in the
form of action potentials generated by the pyramidal cells, the output measure of
the model was taken to be the vector of spike frequency for all pyramidal neurons
over a 200 msec trial, with each element of the vector corresponding to the firing
frequency of a single pyramidal cell. Figures 5 through 8 show the 10 by 10 array
of pyramidal cells. The size of the box placed at each cell position represents the
magnitude of the spike frequency for that cell. To evaluate learning effects, overlap
comparisons between response pairs were made by taking the normalized dot
product of their response vectors and expressing that value as a percent overlap
(Fig. 4).

Simulated Actual

Fig. 3. Simulated physiological responses of the model compared with actual cortical respons-
es. Upper Simulated intracellular response of a single cell to paired stimulation of the input
system (LOT) (left) compared with actual response (right) (Haberly & Bower/84). Middle:
Simulated extracellular response recorded at the conical surface to stimulation of the LOT
Gefl), compared with actual response (right) (Haberly.'73b). Lower Stimulated EEC
response reconed at the conical surface to odor-like input (left), for actual EEC see Freeman
1978.



Computational Requirements. All simulations were carried out on a Sun
Microsystems 3/260 model microcomputer equipped with 8 Mbytes of memory and
a floating point accelerator. Average time for a 200 msec simulation was 3 cpu
minutes.

RESULTS

Physiological Responses

As described above, our initial modeling objective was to accurately simulate
a wide range of activity patterns recorded, by ourselves and others, in piriform
cortex using various physiological procedures. Comparisons between actual and
simulated records for several types of response are shown in figure 3. In general,
the model replicated known physiological responses quite well (Wilson et al in
preparation describes, in detail, the analysis of the physiological results). For
example in response to shock stimulation of the input pathway (LOT), the model
reproduces the principle characteristics of both the intracellular and location-
dependent extracellular waveforms recorded in the actual cortex9'17-18 (Fig. 3).
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Fig. 4. Convergence of the cortical response during training with a single stimulus with synaptic
modification.

56% overlap 80% overlap

Full Stimulus 50% Simulus Full Stimulus 50% Simulus
Before Training After Training

Fig. 5. Reconstruction of cortical response patterns with partially degraded stimuli. Left-
Response, before training, to the full stimulus (left) and to the same stimulus with 50% of the
input fibers inactivated (right). There is a 44% degradation in the response. Right: Response
after training, to the full stimulus (left), and to the same stimulus with 50% of the input
fibers inactivated (right). As a result of training, the degradation is now only 20%.



Trained on A Trained on B Retains A Response

Fig. 6. Storage of multiple patterns. Left: Response to stimulus A after training. Middle:
Response to stimulus B after training on A followed by training on B. Right: Response to
stimulus A after training on A followed by training on B. When compared with the original
response (left) there is an 85% congruence.

Further, in response to odor-like stimulation the model exhibits 40 Hz oscillations
which are characteristic of the EEG activity in olfactory cortex in awake, behaving
animals19. Although beyond the scope of the present paper, the simulation also
duplicates epileptiform9 and damped oscillatory16 type activity seen in the coitex
under special stimulus or pharmacological conditions4.

Learning

Having simulated characteristic physiological responses, we wished to
explore the capabilities of the model to store and recall information. Learning in
this case is defined as the development of a consistent representation in the activ-
ity of the cortex for a particular input pattern with repeated stimulation and synap-
tic modification. Figure 4 shows how the network converges, with training, on a
representation for a stimulus. Having demonstrated that, we studied three proper-
ties of learned responses - the reconstruction of trained cortical response patterns
with partially degraded stimuli, the simultaneous storage of separate stimulus
response patterns, and the modulation of cortical response patterns independent
of relative stimulus characteristics.

Reconstruction of Learned Cortical Response Patterns with Partially Degrad-
ed Stimuli. We were interested in knowing what effect training would have on the
sensitivity of cortical responses to fluctuations in the input signal. First we pre-
sented the model with a random stimulus A for one trial (without synaptic modifi-
cation). On the next trial the model was presented with a degraded version of A
in which half of the original 10 input fibers were inactivated. Comparison of the
responses to these two stimuli in the naive cortex showed a 44% variation. Next,
the model was trained on the full stimulus A for 1 second (with synaptic modifica-
tion). Again, half of the input was removed and the model was presented with the
degraded stimulus for 1 trial (without synaptic modification). In this case the dif-



27% overlap 46% overlap
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Fig. 7. Results of merging cortical response patterns for dissimilar stimuli. Left: Response to
stimulus A and stimulus B before training. Stimuli A and B do not activate any input fibers in
common but still have a 27% overlap in cortical response patterns. Right: Response to stimu-
lus A and stimulus B after training in the presence of a common modulatory input £1. The
overlap in cortical response patterns is now 46%.

ference between cortical responses was only 20% (Fig. 5) showing that training
increased the robustness of the response to degradation of the stimulus.

Storage of Two Patterns. The model was first trained on a random stimulus A
for 1 second. The response vector for this case was saved. Then, continuing with
the weights obtained during this training, the model was trained on a new non-
overlapping (i.e. different input fibers activated) stimulus B. Both stimulus A and
stimulus B alone activated roughly 25% of the cortical pyramidal neurons with 25%
overlap between the two responses. Following the second training period we
assessed the amount of interference in recalling A introduced by training with B
by presenting stimulus A again for a single trial (without synaptic modification).
The variation between the response to A following additional training with B and
the initially saved reponse to A alone was less than 15% (Fig. 6) demonstrating
that learning B did not substantially interfere with the ability to recall A.

Modulation of Conical Response Patterns. It has been previously demon-
strated that the stimulus evoked response of olfactory cortex can be modulated by
factors not directly tied to stimulus qualities, such as the behavioral state of the
animal 1>2°i23. Accordingly we were interested in knowing whether the representa-
tions stored in the model could be modulated by the influence of such a "state"
input.

One potential role of a "state" input might be to merge the cortical response
patterns for dissimilar stimuli; an effect we refer to as accomodation. To test this
in the model, we presented it with a random input stimulus A for 1 trial. It was
then presented with a random input stimulus B (non-overlapping input fibers).
The amount of overlap in the cortical responses for these untrained cases was
27%. Next, the model was trained for 1 second on stimulus A in the presence of an
additional random "state" stimulus El (activity in a set of 10 input fibers distinct
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Fig. 8. Results of differentiating cortical response patterns for similar stimuli. Left:
Response to stimulus A and stimulus B before training. Stimuli A and B activate 75% of
their input fibers in common and have a 77% overlap in cortical response patterns. Right:
Response to stimulus A and stimulus B after training A in the presence of modulatory input
El and training B with a different modulatory input E2. The overlap in cortical response pat-
terns is now 45%.

from both A and B). The model was then trained on stimulus B in the presence of
the same "state" stimulus El. After training, the model was presented with stim-
ulus A alone for 1 trial and stimulus B alone for 1 trial. Results showed that now,
even without the coincident El input, the amount of overlap between A and B
responses was found to have increased to 46% (Fig 7). The role of El in this case
was to provide a common stimulus component during learning which reinforced
shared components of the responses to input stimuli A and B.

To test the ability of a state stimulus to induce differentiation of cortical
response patterns for similar stimuli, we presented the model with a random input
stimulus A for 1 trial, followed by 1 trial of a random input stimulus B (75% of the
input fibers overlapping). The amount of overlap in the cortical responses for these
untrained cases was 77%. Next, the model was trained for a period of 1 second on
stimulus A in the presence of an additional random "state" stimulus El (a set of
10 input fibers not overlapping either A or B). It was then trained on input stimu-
lus B in the presence of a different random "state" stimulus E2 (10 input fibers not
overlapping either A, B, or El) After this training the model was presented with
stimulus A alone for 1 trial and stimulus B alone for 1 trial. The amount of overlap
was found to have decreased to 45% (Fig 8). In this situation El and E2 provided
a differential signal during learning which reinforced distinct components of the
responses to input stimuli A and B.

DISCUSSION

Physiological Responses. Detailed discussion of the mechanisms underlying
the simulated patterns of physiological activity in the cortex is beyond the scope
of the current paper. However, the model has been of value in suggesting roles for



specific features of the cortex in generating physiologically recorded activity. For
example, while actual input to the cortex from the olfactory bulb is modulated into
40 Hz bursts24, continuous stimulation of the model allowed us to demonstrate
the model's capability for intrinsic periodic activity independent of the comple-
mentary pattern of stimulation from the olfactory bulb. While a similar ability has
also been demonstrated by models of Freeman25, by studying this oscillating
property in the model we were able to associate these oscillatory characteristics
with specific interactions of local and distant network properties (e.g. inhibitory
and excitatory time constants and trans-cortical axonal conduction velocities).
This result suggests underlying mechanisms for these oscillatory patterns which
may be somewhat different than those previously proposed.

Learning. The main subject of this paper is the examination of the learning
capabilities of the cortical model. In this model, the apparently sparse, highly dis-
tributed pattern of connectivity characteristic of piriform cortex is fundamental to
the way in which the model learns. Essentially, the highly distributed pattern of
connections allows the model to develop stimulus-specific cortical response pat-
terns by extracting correlations from randomly distributed input and association
fiber activity. These correlations are, in effect, stored in the synaptic weights of
the association fiber and local inhibitory connections.

The model has also demonstrated robustness of a learned cortical response
against degradation of the input signal. A key to this property is the action of
sparsely distributed association fibers which provide reinforcment for previously
established patterns of cortical activity. This property arises from the modification
of synaptic weights due to correlations in activity between intra-cortical associa-
tion fibers. As a result of this modification the activity of a subset of pyramidal
neurons driven by a degraded input drives the remaining neurons in the response.

In general, in the model, similar stimuli will map onto similar cortical respons-
es and dissimilar stimuli will map onto dissimilar cortical responses. However, a
presumably important function of the cortex is not simply to store sensory infor-
mation, but to represent incoming stimuli as a function of the absolute stimulus
qualities and the context in which the stimulus occurs. The fact that many of the
structures that piriform cortex projects to (and receives projections from) may be
involved in multimodal "state" generation14 is circumstantial evidence that such
modulation may occur. We have demonstrated in the model that such a modulato-
ry input can modify the representations generated by pairs of stimuli so as to
push the representations of like stimuli apart and pull the representations of dis-
similar stimuli together. It should be pointed out that this modulatory input was
not an "instructive" signal which explicitly directed the course of the representa-
tion, but rather a "state" signal which did not require a priori knowledge of the
representational structure. In the model, this modulatory phenomenon is a simple
consequence of the degree of overlap in the combined (odor stimulus + modulator)
stimulus. Both cases approached approximately 50% overlap in cortical responses
reflecting the approximately 50% overlap in the combined stimuli for both cases.



Of interest was the use of the model's reconstructive capabilities to maintain the
modulated response to each input stimulus even in the absence of the modulatory
input.

CAVEATS AND CONCLUSIONS

Our approach to studying this system involves using computer simulation to
investigate mechanisms of information processing which could be implemented
given what is known about biological constraints. The significance of results pre-
sented here lies primarily in the finding that the structure of the model and the
parameter settings which were appropriate for the reproduction of physiological
responses were also appropriate for the proper convergence of a simple, biologi-
cally plausible learning rule under various conditions. Of course, the model we
have developed is only an approximation to the actual cortex limited by our knowl-
edge of its organization and the computing power available. For example, the
actual piriform cortex of the rat contains on the order of 106 cells (compared with
102 in the simulations) with a sparsity of connection on the order of p=0.001
(compared with p=0.05 in the simulations). Our continuing research effort will
include explorations of the scaling properties of the network.

Other assumptions made in the context of the current model include the
assumption that the representation of information in piriform cortex is in the form
of spatial distributions of rate-coded outputs. Information contained in the spatio-
temporal patterns of activity was not analyzed, although preliminary observation
suggests that this may be of significance. In fact, the dynamics of the model itself
suggest that temporally encoded information in the input at various time scales
may be resolvable by the cortex. Additionally, the output of the cortex was
assumed to have spatial uniformity, i.e. no differential weighting of information
was made on the basis of spatial location in the cortex. But again, observation of
the dynamics of the model, as well as the details of known anatomical distribution
patterns for axonal connections, indicate that this is a major oversimplification.
Preliminary evidence from the model would indicate that some form of hierarchical
structuring of information along rostral/caudal lines may occur. For example it
may be that cells found in progressively more rostral locations would have
increasingly non-specific odor responses.

Further investigations of learning within the model will explore each of these
issues more fully, with attempts to correlate simulated findings with actual record-
ings from awake, behaving animals. At the same time, new data pertaining to the
structure of the cortex will be incorporated into the model as it emerges.
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APPENDIX

Somatic Integration

(1.0)

(1.1)

number of input types
\ i ( t ) » membrane potential of itb cell
/a (r) • current into cell i due to input type i
£i - equilibrium potential associated with input type t

I, « resting potenna)
r, m membrane leakage resistance
cm • membrane capacitance
| j 0) •= conductance due to input type k in cell i

(2.0)

.V-^L t/O-i) cos -2-

Propagation

and Synoptic Input

(2.1)
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for

otherwise (2.3)

IJ - (2.4)

nctll] - number of cells in the simulabon
Ax • distance between adjacent cells
dt m duration of conductance change due to input type k
Vj - velocity of signals for input type k
C* » latency for input type k
p, « spatial anenuation factor for input type i
p,""" . minimum spatial anenuation for input type k
Ar, « refiractory period

T"; « threshold for cell y
Liy « distance from cell i to cell j
A k • distribution of synapoc density for input type
H, « tynaptic weight from cell j to cell i
£u (') • conductance due to input type i in cell i
Fk (r) • conductance waveform for input rype t
S. (t) « spike output of cell ; at time i
V ( i ) m unit step function

Field Potentials
K, «—• "•••

«* .?! .?!
(3.0)

« number of cells in the simulation
« number of segments in the companmental model

l(') - approximate extracellular field potential at cell j
*(i ) m membrane current for segment n in cell i

i^ * depth of recording site
2, - depth of segment n
I. * x location of the y'th cell
K, - extracellular resistance per unit length

Dendritic Model

f..
' ( (4.1)



ncta, - number of different channels per segment /«(') " membrane current for segment *
V. (j) • membrane potential of nth segment /. » length of segment n
cJJ - membrane capacitance for segment n d, « diameter of segment n
r" - axial resistance for segment n /?„ « membrane resistivity
r* • membrane resistance for segment n Ki « intracellular resistivity per unit length
/„. (/) » conductance of channel c in segment n Kt • extracellular resistance per anil length
Ec - equilibrium potential associated with channel c Cm * capacitance per unit surface area
T*(') " •*i*l current between segment nil and n
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ABSTRACT

Much experimental study of real neural networks relies on the proper classification of
extracellular)- sampled neural signals (i.e. action potentials) recorded from the brains of ex-
perimental animals. In most neurophysiology laboratories this classification task is simplified
by limiting investigations to single, electrically well-isolated neurons recorded one at a time.
However, for those interested in sampling the activities of many single neurons simultaneously,
waveform classification becomes a serious concern. In this paper we describe and constrast
three approaches to this problem each designed not only to recognize isolated neural events,
but also to separately classify temporally overlapping events in real time. First we present two
formulations of waveform classification using a neural network template matching approach.
These two formulations are then compared to a simple template matching implementation.
Analysis with real neural signals reveals that simple template matching is a better solution to
this problem than either neural network approach.

INTRODUCTION

For many years, neurobiologists have been studying the nervous system by
using single electrodes to serially sample the electrical activity of single neu-
rons in the brain. However, as physiologists and theorists have become more
aware of the complex, nonlinear dynamics of these networks, it has become
apparent that serial sampling strategies may not provide all the information
necessary to understand functional organization. In addition, it will likely be
necessary to develop new techniques which sample the activities of multiple
neurons simultaneously . Over the last several years, we have developed two
different methods to acquire multineuron data. Our initial design involved
the placement of many tiny microelectrodes individually in a tightly packed
pseudo-floating configuration within the brain . More recently we have been
developing a more sophisticated approach which utilizes recent advances in
silicon technology to fabricate multi-ported silicon based electrodes (Fig. l).
Using these electrodes we expect to be able to readily record the activity pat-
terns of larger number of neurons.

As research in multi-single neuron recording techniques continue, it has be-
come very clear that whatever technique is used to acquire neural signals from
many brain locations, the technical difficulties associated with sampling, data
compressing, storing, analyzing and interpreting these signals largely dwarf the
development of the sampling device itself. In this report we specifically consider
the need to assure that neural action potentials (also known as "spikes") on
each of many parallel recording channels are correctly classified, which is just
one aspect of the problem of post-processing multi-single neuron data. With
more tradi t ional single electrode/single neuron recordings, this task usual ly in-



volves passing analog signals through a Schmidt trigger whose output indicates
the occurence of an event to a computer, at the same time as it triggers an
oscilloscope sweep of the analog data. The experimenter visually monitors the
oscilloscope to verify the accuracy of the discrimination as a well-discriminated
signal from a single neuron will overlap on successive oscilloscope traces (Fig.
Ic). Obviously this approach is impractical when large numbers of channels
are recorded at the same time. Instead, it is necessary to automate this classifi-
cation procedure. In this paper we will describe and contrast three approaches
we have developed to do this.
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Fig. 1. Silicon probe being developed in our lababoratory for multi-single unit recording
in cerebellor cortex, a) a complete probe; b) surface view of one recording tip; c) several
superimposed neuronal action potentials recorded from such a silicon electrode in cerebellar
cortex.

While our principal design objective is the assurance that neural waveforms
are adequately discriminated on multiple channels, technically the overall ob-
jective of this research project is to sample from as many single neurons as
possible. Therefore, it is a natural extention of our effort to develop a neural
waveform classification scheme robust enough to allow us to distinguish act ivi-
ties arising from more than one neuron per recording site. To do this, however,
we now not only have to determine that a part icular signal is neural in origin,
but also from which of several possible neurons it arose (see Fig. 2u). While
in general signals from different neurons have different waveforms aiding in
the classification, neurons recorded on the same channel firing simultaneously
or nearly s imultaneously wi l l produce novel combination waveforms (Fig. 2b)
w h i c h also need to be classified. It is this last complication which par t icular ly



bedevils previous efforts to classify neural signals (For review see 5, also see
3-4). In summary, then, our objective was to design a c i rcui t that would:
1. dist inguish different waveforms even though neuronal discharges tend

to be qui te similar in shape (Fig. 2a);
2. recognize the same •waveform even though unavoidable movements

such as animal respiration often result in periodic changes in the amplitude
of a recorded signal by moving the brain relative to the tip of the electrode;

3. be considerably robust to recording noise which variably corrupts all
neural recordings (Fig. 2);

4. resolve overlapping waveforms, which are likely to be particularly in-
teresting events from a neurobiological point of view;

5. provide real-time performance allowing the experimenter to detect
problems with discrimination and monitor the progress of the experiment;

6. be implementable in hardware due to the need to classify neural sig-
nals on many channels simultaneously. Simply duplicating a software-based
algorithm for each channel will not work, but rather, multiple, small, in-
dependent, and programmable hardware devices need to be constructed.

neurons

Fig. 2. a) S c h e m a t i c diagram of an electrode recording from two neuronal cell bodies b) An
actua l mult i -neuron recording. Note the similarit ies in the two waveform? and ( l ie overlapping
event , c) and d) Synthesized data wi th different noise levels for tes t ing classification algorithms
(c: 0.3 NSR ;d: 1.1 NSR).



METHODS

The problem of detecting and classifying multiple neural signals on sin-
gle voltage records involves two steps. First, the waveforms that are present
in a particular signal must be identified and the templates be generated;
second, these waveforms must be detected and classified in ongoing data
records. To accomplish the first step we have modified the principal com-
ponent analysis procedure described by Abeles and Goldstein to automat-
ically extract templates of the distinct waveforms found in an initial sam-
ple of the digitized analog data. This will not be discussed further as it is
the means of accomplishing the second step which concerns us here. Specif-
ically, in this paper we compare three new approaches to ongoing wave-
form classification which deal explicitly with overlapping spikes and vari-
ably meet other design criteria outlined above. These approaches consist of
a modified template matching scheme, and two applied neural network im-
plementations. We will first consider the neural network approaches. On
a point of nomenclature, to avoid confusion in what follows, the real neu-
rons whose signals we want to classify will be referred to as "neurons" while
computing elements in the applied neural networks will be called "Hopons."

Neural Net-work Approach — Overall, the problem of classifying neural
waveforms can best be seen as an optimization problem in the presence of
noise. Much recent work on neural-type network algorithms has demonstrated
that these networks work quite well on problems of this sort^"®. In particular,
in a recent paper Hopfield and Tank describe an A/D converter network and
suggest how to map the problem of template matching into a similar context*.
The energy functional for the network they propose has the form:

(i)• 3 «
where Ttj — connectivity between Hopon i and Hopon j, Vt = voltage output
of Hopon *, 7, = input current to Hopon i and each Hopon has a sigmoid
input-output characteristic V = g(u) = l/(l + exp(-au)).

If the equation of motion is set to be:

dujdt = -dE/dV = JJ TtjVj + 7, ( la)
j

then we see that dE/dt = - (E> T<3V} + I^dV/dt = -(du/dt)(d\ ' /dt) =
— g'(u)(du/dt)2 < 0. Hence E wil l go to to a minimum which, in a network
constructed as described below, will correspond to a proposed solution to a
particular waveform classification problem.

Template Matching using a Hopfield-type Neural Net — \Ve have
taken the following approach to template matching using a neural network. For
simplicity, we i n i t i a l l y restricted the classification problem to one involving two
waveforms and have accordingly constructed a neural network made up of two
groups of Hopons, each concerned with discr iminat ing one- or the other wave-
form. The classification procedure works as follows: first, a Schmidt trigger



is used to detect the presence of a voltage on the signal channel above a set
threshold. When this threshold is crossed, implying the presence of a possible
neural signal, 2 msecs of data around the crossing are stored in a buffer (40
samples at 20 KHz). Note that biophysical limitations assure that a single real
neuron cannot discharge more than once in this time period, so only one wave-
form of a particular type can occur in this data sample. Also, action potentials
are of the order of 1 msec in duration, so the 2 msec window will include the full
signal for single or overlapped waveforms. In the next step (explained later)
the data values are correlated and passed into a Hopfield network designed to
minimize the mean-square error between the actual data and the linear com-
bination of different delays of the templates. Each Hopon in the set of Hopons
concerned with one waveform represents a particular temporal delay in the
occurrence of that waveform in the buffer. To express the network in terms of
an energy function formulation: Let x(t) = input waveform amplitude in the
tth time bin, Sj(t) = amplitude of the jth template, Vjk denote if Sj(t - k}(jth

template delayed by k time bins)is present in the input waveform. Then the
appropriate energy function is:

5 £
* tj.k

7 £

/.*
* - l)s;(* - *) (2)

The first term is designed to minimize the mean-square error and specifies
the best match. Since V 6 [0, l], the second term is minimized only when each
Vjk assumes values 0 or 1. It also sets the diagonal elements Tl} to 0. The
third term creates mutual inhibition among the processing nodes evaluating
the same neuronal signal, which as described above can only occur once per
sample.

Expanding and simplifying expression (2), the connection matrix is:

. . . n . . . . . . . (3a)
« Ji = J2,*i = KZ

and the input current

- *)

As it can be seen, the inputs are the correlations between the actual data and
the various delays of the templates subtracting a constant term.

Modified Hopfield Network — As documented in more detail in Fig.
3-4, the above f u l l Hopfield-type network works well for temporally isolated
spikes at moderate noise levels, but for overlapping spikes it has a local minima
problem. This is more severe with more than two waveforms in the network.



Further, \ve need to build our network in hardware and the fu l l Hopfield net-
work is di f f icul t to implement with current technology (see below). For these
reasons, we developed a modified neural network approach which significantly
reduces the necessary hardware complexity and also has improved performance.
To understand how this works, let us look at the information contained in the
quantities !T,y and 7,; (eq. 3a and 36 ) and make some use of them. These
quantities have to be calculated at a pre-processing stage before being loaded
into the Hopfield network. If after calculating these quantities, we can quickly
rule out a large number of possible template combinations, then we can sig-
nificantly reduce the size of the problem and thus use a much smaller (and
hence more efficient) neural network to find the optimal solution. To make the
derivation simple, we define slightly modified versions of T,j and 7,j (eq. 4a
and 46) for two-template case.

i ( t - i ) s 2 ( t - j ) (4a)
t

- 0 -r 5-2(1 - j)} - i £«»(« - 0 -l^&t-j) (46)

In the case of overlaping spikes the T,;'s are the cross-correlations between Si(t)
and s*(t) with different delays and 7,-y's are the cross-correlations between input
x(t) and weighted combination of Si (<) and sz(0- Now if x(t) = Si(t — i) -f
s^(t — j) (i.e. the overlap of the first template with i time bin delay and the
second template with j time bin delay), then A,, = \Ti, — 7,y| = 0. However
in the presence of noise, At; will not be identically zero, but will equal to the
noise, and if AtJ > ATjj (where AT,; = |T|; - 7V>'| for i ^ i' and j == /) this
simple algorithm may make unacceptable errors. A solution to this problem
for overlapping spikes will be described below, but now let us consider the
problem of classifying non-overlapping spikes. In this case, we can compare
the input cross-correlation with the auto-correlations (eq. Ac and 4d).

( '-0 (40

So for non-overlapping cases, if z(t) = s :(t — t), then Aj = \T't — I[\ = 0. If
*(*) = *2(< - 0, then A? = P7 -';'! = 0.

In the absence of noise, then the minimum of A,y, AJ and A" represents the
correct classification. However, in the presence of noise, none of these quantit ies
will be identically zero, but wil l equal the noise in the input x(t) which will
give rise to unacceptible errors. Our solution to this noise related problem is
to choose a few minima (three have chosen in our case) instead of one. For
each min imum there is either a known corresponding linear combination of
templates for overlapping cases or a simple template for non-overlapping cases.
A three neuron Hopfield-typc network is then programmed so tha t ench neuron
corresponds to each of the cases. The input x( t ) is fed to this t iny network to
resolve whatever confusion remains after the first step of "cross-correlation"
comparisons. (Note: Simple template matching as described below ran also be
used in the place of the t iny Hopfield type network.)



Simple Template Matching — To evaluate the performances of these
neural network approaches, we decided to implement a simple template match-
ing scheme, which we wil l now describe. However, as documented below, this
approach turned out to be the most accurate and require the least complex
hardware of any of the three approaches. The first step is, again, to fill a buffer
with data based on the detection of a possible neural signal. Then we calculate
the difference between the recorded waveform and all possible combinations of
the two previously identified templates. Formally, this consists of calculating
the distances between the input x(m] and all possible cases generated by all
the combinations of the two templates.

= E WO - 5 >(< - 01; < = E l*(0 - *2(« - 01

dmin gives the best fit of all possible combinations of templates to the actual
voltage signal.

TESTING PROCEDURES

To compare the performance of each of the three approaches, we devised a
common set of test data using the following procedures. First, we used the prin-
cipal component method of Abeles and Goldstein to generate two templates
from a digitized analog record of neural activity recorded in the cerebellum
of the rat. The two actual spike waveform templates we decided to use had
a peak-to-peak ratio of 1.375. From a second set of analog recordings made
from a site in the cerebellum in which no action potential events were evident,
we determined the spectral characteristics of the recording noise. These two
components derived from real neural recordings were then digitally combined,
the objective being to construct realistic records, while also knowing absolutely
what the correct solution to the template matching problem was for each oc-
curring spike. As shown in Fig. 2c and 2d, data sets corresponding to different
noise to signal ratios were constructed. We also carried out simulations with
the amplitudes of the templates themselves varied in the synthesized records to
simulate waveform changes due to brain movements often seen in real record-
ings. In addition to two waveform test sets, we also constructed three waveform
sets by generating a third template that was the average of the first two tem-
plates. To further quantify the comparisons of the three diffferent approaches
described above we considered non-overlapping and overlapping spikes sepa-
rately. To quantify the performance of the three different approaches, two
standards for classification were devised. In the first and hardest case, to be
judged a correct classification, the precise order and timing of two waveforms
had to be reconstructed. In the second and looser scheme, classification was
judged correct if the order of two waveforms was correct but t iming was al-
lowed to vary by ±100 /isccs(i.e. ±2 time bins) which for most ncurobiological
applications is probably sufficient resolution. Figs. 3-4 compare the perfor-
mance results for the three approaches to waveform classification implemented
as digi ta l s imulat ions.



PERFORMANCE COMPARISON

Two templates - non-overlapping waveforms: As shown in Fig. 3a, at
low noise-to-signal ratios (NSRs below .2) each of the three approaches were
comparable in performance reaching close to 100% accuracy for each criterion.
As the ratio was increased, however the neural network implementations did
less and less well with respect to the simple template matching algorithm with
the fu l l Hopfield type network doing considerably worse than the modified
network. In the range of NSR most often found in real data (.2 - .4) simple
template matching performed considerably better than either of the neural
network approaches. Also it is to be noted that simple template matching
gives an estimate of the goodness of fit betwwen the waveform and the closest
template which could be used to identify events that should not be classified
(e.g. signals due to noise).

a.

o
u

b.

iu

I .1 .. .1 .1 I.I
noise level: 3<?/peak amplitude

• .1 .« .1 .1 i.i

noise level: 3a/peak amplitude

ou

•l« -II -II -• -i -* -2 I J

degrees of overlap

light line — absolute criteria
heavy line — less stringent criteria

simple template matching
Hopfield network
modified Hopfield network

Fig. 3. Comparisons of the three approaches detecting two non-overlapping (a), and over-
lapping (b) waveforms, c) compares the performances of the neural network approaches for
different degrees of waveform overlap.

Two templates - overlapping waveforms: Fig. 3b and 3c compare perfor-
mances when waveforms overlapped. In Fig. 3b the serious local minima prob-
lem encountered in the f u l l neural network is demonstrated as is the improved
performance of the modified network. Again , overall performance in physi-



ological ranges of noise is clearly best for simple template matching. When
the noise level is low, the modified approach is the better of the two neural
networks due to the reliability of the correlation number which reflects the
resemblence between the input data and the template. When the noise level
is high, errors in the correlation numbers may exclude the right combination
from the smaller network. In this case its performance is actually a little worse
than the larger Hopfield network. Fig. 3c documents in detail which degrees
of overlap produce the most trouble for the neural network approaches at av-
erage NSR levels found in real neural data. It can be seen that for the neural
networks, the most serious problem is encountered when the delays between
the two waveforms are small enough that the resulting waveform looks like the
larger waveform with some perturbation.

Three templates - overlapping and non-overlapping: In Fig. 4 are shown
the comparisons between the full Hopfield network approach and the simple
template matching approach. For nonoverlapping waveforms, the performance
of these two approaches is much more comparable than for the two waveform
case (Fig. 4a), although simple template matching is still the optimal method.
In the overlapping waveform condition, however, the neural network approach
fails badly (Fig. 4b and 4c). For this particular application and implementa-
tion, the neural network approach does not scale well.

.1 .4 .1 .1 I.I

noise level: 3a/peak amplitude
.> .4 .1 .1 >••

noise level: 3<7/peak amplitude

Hopfield network
simple template matching

bght line — absolute criteria
heavy line — less stringent criteria
a — variance of the noise

noise level: Sa/peak amplitude

Fig. 4. Comparisons of performance for three waveforms, a) nonoverlappinp waveforms; b)
two waveforms overlapping; c) three waveforms overlapping.

HARDWARE COMPARISONS

As described earlier, an important design requirement for this work was the
ability to detect neural signals in analog records in real-time originating from



many simultaneously active sampling electrodes. Because it is not feasible to
run the algorithms in a computer in real time for all the channels simultane-
ously, it is necessary to design and build dedicated hardware for each channel.
To do this, we have decided to design VLSI implementations of our circuitry.
In this regard, it is well recognized that large modifiable neural networks need
very elaborate hardware implementations. Let us consider, for example, im-
plementing hardwares for a two-template case for comparisons. Let n = no.
of neurons per template (one neuron for each delay of the template), m =
no. of iterations to reach the stable state (in simulating the discretized dif-
ferential equation, with step size = 0.05), / = no. of samples in a template
tj(m). Then, the number of connections in the full Hopfield network will be
4n2. The total no. of synaptic calculations = 4mn2. So, for two templates
and n = 16, m = 100,4mn2 = 102,400. Thus building the full Hopfield-type
network digitally requires a system too large to be put in a single VLSI chip
which will work in real time. If we want to build an analog system, we need
to have many (O(4n2)) easily modifiable synapses. As yet this technology is
not available for nets of this size. The modified Hopfield-type network on the
other hand is less technically demanding. To do the preprocessing to obtain
the minimum values we have to do about n2 = 256 additions to find all possible
lijS and require 256 subtractions and comparisons to find three minima. The
costs associated with doing input cross-correlations are the same as for the full
neural network (i.e. 2nl = 768(/ = 24) multiplications). The saving with the
modified approach is that the network used is small and fast (120 multiplica-
tions and 120 additions to construct the modifiable synapses, no. of synaptic
calculations = 90 with m = 10, n = 3).

In contrast to the neural networks, simple template matching is simple
indeed. For example, it must perform about n~l -f n — 10,496 additions and
n2 = 256 comparisons to find the minimum d tj. Additions are considerably less
costly in time and hardware than multiplications. In fact, because this method
needs only addition operations, our preliminary design work suggests it can be
built on a single chip and wil l be able to do the two-template classification
in as little as 20 microseconds. This actually raises the possibility that with
switching and buffering one chip might be able to service more than one channel
in essentially real time.

CONCLUSIONS

Template matching using a full Hopfield-type neural network is found to
be robust to noise and changes in signal waveform for the two neural waveform
classification problem. However, for a three-waveform case, the network does
not perform well. Further, the network requires many modifiable connections
and therefore results in an elaborate hardware implementation. The overall
performance of the modified neural network approach is better than the ful l
Hopfield network approach. The computation has been reduced largly and
the hardware requirements are considerably less demanding demonstrating the
value of designing a specific network to a specified problem. However, even the
modified neural network performs less well than a simple template-matching
algorithm which also has the simplest hardware implementation. Using the
simple template matching algorithm, our simulations suggest it will be pos-
sible to bui ld a two or three waveform classifier on a single VLSI chip using
CMOS technology that works in real time with excellent error characteristics.
Further, such a chip wil l be able to accurately classify variably overlapping



neural signals.
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IMPLEMENTATION OF PATTERN-RECOGNITION
ALGORITHMS DERIVED FROM OLFACTORY INFORMATION PROCESSING

Abstract

Sensory and perceptual information exists as space-time patterns of neural
activity in cortex in two modes. Neural analysis of sensory input, as in
feature extraction, is done with action potentials of single neurons in
point processes. Neural synthesis of input with past experience and expec-
tancy of future action is done with dendritic integration in local mean
fields. Both kinds of activity are found to coexist in olfactory and visual
cortex, each preceding and then following the other. The transformation of
information from the pulse mode to the dendritic mode involves a state
transition of the cortical network that can be modeled by a Hopf bifurcation
in both software and hardware embodiments. These models show robust powers
for amplification and correct classification of noisy and incomplete
patterns corresponding to sensory inputs to biological nervous systems in
attentive and motivated animals. The evidence is reviewed and the
requirements are summarized for machine simulations of these operations.
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IMPLEMENTATION OF PATTERN RECOGNITION ALGORITHMS

DERIVED FROM OLFACTORY INFORMATION PROCESSING

SUMMARY

1. Modes of information in cerebral cortex -

point process: action potential frequency

local mean field: dendritic potential amplitude

2. Spatial amplitude modulation of carrier waves -

olfactory bulb of rabbit

primary visual cortex of monkey

3. Implementation with high-dimensional nonlinear ODEs

linear integration '

asymmetric sigmoid nonlinearity

modifiable associational connections

4. Comparison of software and hardware embodiments

amplification and classification

chaos and the tolerance of disorder
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DlSCRIMINANT ANALYSIS OF THE FACTOR SCORES SHOWS THAT 75% OF BURSTS ARE
CORRECTLY CLASSIFIED WITH 2 DISCRIMIN/WT FUNCTIONS. A PLOT IS SHOW Of
DISCRIMINANT SPACE FOR ONE RABBIT.
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Physiology of the Olfactory Bulb
1967-1987

Walter J. Freeman
Department of Physiology-Anatomy

University of California, Berkeley
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to graduate school in 1968 and received a Ph.D. in biophysics and neuro-
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MULT I ELECTRODE BURST PATTERN FEATURE
EXTRACTION FROM SMALL MAMMALIAN NETWORKS IN CULTURE

Abstract

We are investigating the properties of small (100 to 400 neuron), monolayer
networks grown in culture from dissociated mouse spinal cord tissue on glass
plates featuring 64 photoetched microelectrodes. These networks form vigor-
ous organotypic activity that becomes organized with time. At 4 weeks after
seeding, the cultures exhibit synchronized burst patterns on many elec-
trodes. The spontaneous activity can be maintained for as long as 100 days
in culture and is often rhythmic. Network d i s i n h i b i t i o n via the inhibitory
synapse blockers strychnine and bicuculline produces rapid, rhythmic burst-
ing in all cultures with highly stereotyped spike patterns wi t h i n the
bursts, regardless of the nature of the prior spontaneous activity. Data
are processed on two levels: (1) burst pattern analysis in terms of burst
frequency, duration, and period, and (2) analysis of spike patterns within
bursts. Data compression is achieved by burst integration which preserves
the character of the spike patterns. Integrated bursts are being classified
according to shape and identified with letters, allowing 2 hours of activity
on one electrode to be condensed to one page of letter sequences. Pattern
recognition and cross-correlations with other electrodes are therewith
simplified. In view of the fact that all synapses integrate spike trains,
the ignoring of detailed spike information is reasonable and makes real-
time, statistical analysis of compressed multichannel data possible.
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systems engineer with both d i g i t a l and analog processing experience in
m i l i t a r y communications, d i g i t a l avionics, integrated aircraft antenna
systems, radar, and sixth-generation computing (artificial neural systems).
He has had international marketing experience with both General Electric
Information Services and the (former) Singer Business Machines Division, and
speaks several foreign languages including Russian, German, Swedish, and
French. In the past 5 years, he has received six patents for signal
processing inventions in the areas of waveform demodulation, synchroniza-
tion, and adaptive interference cancellation, and has presented numerous
technical papers. Mr. Myers organized and set up the first computer time-
sharing link between the United States and the U.S.S.R. He was appointed by
the Assistant Secretary of Commerce to serve a term on the Computer Systems
Technical Advisory Committee of the Office of Export Administration, having
a charter to develop U.S. export licensing policy guidelines for the sale
and/or transfer of advanced technology to foreign entities, including the
Eastern bloc.

A HYBRID CONNECTIONIST/AI ARCHITECTURE FOR
REFLEXIVE, REFLECTIVE, AND EXPLORATORY SYSTEMS

Abstract

Implementing autonomous systems capable of operation in both f a m i l i a r and
unfamiliar environments is a goal being hotly pursued in many communities,
both m i l i t a r y and commercial. This presentation discusses an autonomous
system philosophy and architecture which combines both trainable and non-
trainable a r t i f i c i a l neural network elements for both mapping and dynamic
system simulation, with rule-based decision-directed structures. The archi-
tecture presented should manifest interesting behavior characteristics,
including the a b i l i t y to handle an unbounded dimensional environment, the
a b i l i t y to provide rapid reflex response as well to enable reflecting and
planning actions, and the a b i l i t y to execute generic exploratory behaviors
designed to enhance knowledge of the environment when it is ambiguous. A
methodology for embedding both discrete rules and apprentice learning in the
system is used to i n i t i a l i z e the autonomous system. It is hoped that this
presentation w i l l help air some of the issues faced by neural network
designers attempting to merge connect ionist and rule-based technologies.
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FLOPS: A PARALLEL-RULE-FIRING FUZZY EXPERT SYSTEM SHELL

Abstract

The use of fuzzy systems theory as a basis for expert systems is reviewed
with particular reference to a fuzzy expert system having rules that are
fired in parallel. Examples are given of fuzzy sets, fuzzy numbers, and
fuzzy logic, and their use in pattern recognition and process control.
Fuzzy systems theory may be looked upon as furnishing ways of processing
information which is uncertain, imprecise, vague, ambiguous, or contra-
dictory. This paper is concentrated on the use of fuzzy systems theory in
processing information which is ambiguous or contradictory, rather than
uncertain, vague, or imprecise. We also show how advantages can be reaped
from the intentional introduction of ambiguities in description, even in a
field as objective as process control.
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BLACKBOARD EXPERT SYSTEM FRAMEWORK

SYSTEM SUPERVISOR
AND SCHEDULER

r
EXPERT

SUBSYSTEM
PROCEDURAL
PROGRAM

PROCEDURAL
PROGRAM

DATA COMMUNICATION AREA

BLACKBOARD SYSTEM PERMITS COMBINING ADVANTAGES OF
BOTH PROCEDURAL AND NON-PROCEDURAL LANGUAGES.

REQUIREMENTS:

Expert system should be able to call programs or
systems in any other language; control should revert to
expert system on program or system termination.

A flexible common framework should be chosen for data,
so the programs can communicate effectively and
conveniently with each other.

Few expert system shells meet these requirements.



HANDLING UNCERTAINTIES

Candidate Methods:

Ad hoc methods (e.g. Mycin, Ml)

Bayes' Theorem (e.g. Prospector derivatives)

Dempster-Shafer Theory

Fuzzy Systems Theory

HANDLING AMBIGUITIES:

An ambiguity: the situation when more than one of
several possibilities might be true.

A Contradiction: only one of several possibilities is
true, but we don't know which one.

Candidate Methods:

Ad hoc methods (virtually non-existent)

Probability distributions (theoretically possible, but
very awkward and seldom if ever done)

Fuzzy Systems Theory (extremely easy)



EXAMPLES OF A FUZZY SET:

ATHLETES IN MASH 4077

Member . Grade of Membership

Lt. Col. Penobscot 1.0
Father Mulcahey 0.8
Major Houlihan 0.6
B. J. Honeycutt 0.5
Klinger 0.4
Hawkeye Pierce 0.15

OBJECTS ON A RADAR SCREEN

Member Grade of Membership

Commercial Airliner 0.02
Military Jet 0.01
Light Plane 0.13
Powered Ultralight 0.44
Hang Glider 0.63
Santa Claus 0.99



EXAMPLE OF A FUZZY NUMBER: A FUZZY TWO

Grade of
Membership

1.0 + *
_ * *
_ * *
_ * *
_. * *

0.5 + * *
_ * *
_ * *
_ * *
_ * *

o. o *********** i ************
0 1 2 3 4

Member



EXAMPLE OF FUZZY LOGIC:

My talk will be a success if the material is
interesting, the visual material good and the audience
is really interested or if the talk is given by a very
exciting speaker*

Rule 1: ( ( Material = interesting
AND

visuals = good
AND

audience = interested )
OR

( speaker = exciting )
—>

talk = success

Confidence that (material = interesting) = 0.75
Confidence that (visuals = good) = 0.6
Confidence that (audience = interested) = 0.88
Confidence that (speaker = exciting) = 0.33

Combined confidence:
first clause, min(0.75, 0.6, 0.88) = 0.6
second clause = 0.33
first OR second clause, max(0.33, 0.60) = 0.60

(AND Rule: A chain is no stronger than its weakest
link.)
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ASSIGNING WORD DESCRIPTORS TO NUMERIC FEATURES:

AREA of image region to be classified = a numeric
feature

SIZE of image region is a fuzzy set of word
descriptors:

SIZE = {TEENY SMALL MEDIUM LARGE HUGE}

RULE (in English): if for any region the AREA is
approximately less than or equal to a fuzzy 100 plus or
minus 50 then the SIZE is TEENY.

In FLOPS:
rule ( region ~area ~<= 100,50,0 )

—> modify 1 ~size.TEENY ;

Other descriptors:

xbar = numeric feature,
xpos = {FAR_LEFT LEFT CENTER RIGHT FAR_RIGHT} = fuzzy
set

•

ybar = numeric feature,
ypos = {HIGHEST HIGH MIDDLE LOW LOWEST} =fuzzy set



CLASSIFICATION RULES:

Classification fuzzy set used in echocardiogram
classification:

class = {LV RV LA RA LV+LA RV+RA ARTIFACT PAPILLARY

RULE (in English) If in any region the size is SMALL
and the x-position is CENTER and the y-position is
HIGHEST then it is likely to be an ARTIFACT.

In FLOPS:
rule ( region '"size. SMALL ^xpos. CENTER

"

modify 1 ~class.ARTIFACT ;



MATCHING OBSERVED PATTERN AGAINST LIBRARY PATTERN

For illustration, we match only one fuzzy set, that for
size. In general, more than one fuzzy set would be
simultaneously matched.

Fuzzy Set Size:

Observed Pattern 1 Observed
AND

Patternl

Member

Very Large
Large
Medium
Small
Very Small

Grade-Of- Grade-Of- Grade-Of-
Membership Membership Membership

0
0.04
1.00
0.65
0

0.15
1.00
0.45
0
0

0
0.04
0.45
0
0

Confidence in match = match on Very Large OR Large OR
• • * •

= max(0, 0.04, 0.45, 0, 0)
= 0.45
= grade of membership of PATTERN_1 in fuzzy set of
classifications.

(We are on our way toward a simple and reliable
pattern-matching technique, making use of the
ambiguities in the word descriptor fuzzy sets.)
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SIMPLE PROCESS CONTROL PROGRAM:

1. Convert error, rate of change of error to fuzzy set
of word descriptors such as NEGATIVE_SMALL,
POSITIVE_LARGE (fuzzification).

2. Use control rules to obtain fuzzy set of word
descriptors for controller output.

3. Convert fuzzy set for controller output to voltage
(defuzzification).

Typical control rules:

IF error is POSITIVE_SMALL and rate is ZERO then
controller-output is NEGATIVE_SMALL.

In FLOPS:-
rule ( process ~error.P_SMALL ^rate.ZERO )

( controller )
—>
modify 2 *output.N_SMALL ;



PLOPS: A FUZZY EXPERT SYSTEM SHELL. <

Features:

(1) Deductive reasoning is emulated by a
conventional sequential-rule-firing mode; inductive
reasoning is emulated by a unique parallel-rule-firing
mode which in turn emulates a non-von-Neumann parallel
computer.

(2) Data types include integers; floats; strings;
fuzzy numbers; fuzzy sets and confidence levels.

(3) Two external file types are provided: Type I,
FLOPS programs and commands; and Type II, "flat file"
relational data base format.

(4) External programs written in any language may
be called in the same manner as a DOS call: program
name plus command string. With (3), provides a
blackboard system. (

(5) A basic truth maintenance system is provided
based on monotonic fuzzy logic; this may be overridden
by the programmer to provide fully non-monotonic logic.

(6) Backtracking is fully automatic in sequential
mode. Since in parallel mode all fireable rules are
fired concurrently, backtracking is irrelevant.



SUMMARY

(1) Fuzzy systems theory permits handling
uncertainties, ambiguities and contradictions in a
mathematically convenient and rigorous fashion. It may
be used both in procedural and non-procedural
languages. When employed in an expert system, a system
shell should be written or selected which incorporates
these basic features:

Confidence factors for strings, floats and
integers;
Discrete fuzzy sets;
Fuzzy numbers;
Approximate numerical comparison operators.

(2) Although expert production systems are too slow to
permit their unassisted use in most online
applications, they may be used in conjunction with
procedural language programs in a blackboard system to
combine the reasoning skills of an expert system with
the computational ability of procedural language
programs.

(3) While fuzzy techniques are very powerful, they are
unfamiliar to most American engineers and scientists.
Study and practice in their use is required.



NOTES
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INTELLIGENT INFORMATION SYSTEMS WITH LEARNING CAPABILITIES

Abstract

An intelligent information system is designed to derive information (that
may not be explicitly stored in the data base) by application of rules for
inferring plausible answers to queries. The system is divided into the
knowledge base (KB) and the inference engine (IE). The KB can be further
partitioned into a factual base (FB) and an explanatory base (EB). The FB
is used for storing facts (data) that may be imprecise or incomplete, and
the EB contains knowledge; i.e., flexible (fuzzy) concepts, relationships,
or rules that are used to interpret the available data. The IE is designed
to perform flexible reasoning. Clearly, the "intelligence" of the system
depends on the knowledge available in the KB and the types of inferences
that the IE is capable of performing. An experimental system (APPLAUSE) is
discussed, together with demonstration of system function in the knowledge
acquisition and querying modes, including its explanatory capabilities.
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THEME

• Make Machines Behave Intelligently

Marks of intelligence:

• Learning Capability

• Reasoning with Insufficient, Unreliable or Imprecise Data

• Reasoning Under Resource Constraints

• Creativity- Discovery



PLAUSIBLE REASONING

• A Core theory- proposed by Collins and Michalski

• Modifications and Implementation

MODEL

• Hierarchical Organization of Knowledge

• Mechanism to Manipulate Incomplete and Uncertain

Knowledge Base

• Domain Independent Inference Mechanism

• Theory is Operationalized with Chemical Periodic Table

as a Test Domain



KNOWLEDGE REPRESENTATION

ELEMENTS OF EXPRESSIONS

• Arguments

• Descriptors

• References

• Terms

• Facts - veracity-^i, frequency-^, confidence-7

Dependency - forward-back ward dependencies

• Implication - forward-backward implications

• Hierarchies - generalization, specialization

Similarity - context, dominance, typicality



ELEMENTS OF EXPRESSIONS

Descriptor: d.

breed attribute

temperature attribute, function

flies predicate

Terms: c?i(ai), or c?2(ai,a2» • • •)

breed(Fido)
temper ature(latitude, altitude)
temper ature(place)

References: 7*1, {ri,...}.

4 integer

true logical

groupG hierarchical



Factual statements: d\(ai) = 7*1 : [^,7M,0, 70]

• p.- veracity: Veracity indicates degree with which refer-

ence 7*1 is applicable to descriptor-argument pair.

• <t>- frequency: Frequency indicates proportion of argu-

ment for which the reference is a valid description of the

descriptor-argument pair.

7/z. 7^- confidences in //, 0.

Examples:

density (aluminum) = 2.7 : [1, .99, 1, 1]
is-old(john) = yes : [.7, .9, 1, 1]
engine -type(car) = ^-cylinder : [1, 1, .8, .95]

Dependency between terms:

< - > c?2(a2) : [a,7«

• a,/?- forward and backward dependency strengths

is. philosopher (X] < - > is.greek(X) : [.5, .8, .0001, .8]



Implications between factual statements:

= r2 : [a,

grain(place) = rice

rain(place) = [80.. 120m] : [.9, .9, .5, .8]

The implications can also be encoded by functions

d\(ai) = TI <<=>• d2(a2) = /(n).

radius (circle) = r <$=£>

area(inscribed square) = 2r2 : [1, 1, 1, 1]



TRANSFORMATIONS

The transforms A GEN, A SPEC, A SIM, R GEN, R SPEC,

R SIM allow traversal in a hierarchy, in the process of infer-

ence. Simplified (no parameters) applications of the trans-

forms are given below.



A GEN

speed(computer_l) = slow
micro.computer = gen(computer_l): ex = alu_size
alu_size(COMPUTER) <—> speed(COMPUTER)
micro_computer = spec(COMPUTER)
speed(micro_computer) = slow

A GEN Transformation



• A SPEC

height(basketbalLplayer) = tall
karim = spec(basketbalLplayer)
height(karim) = tall



• A SIM

economy(singapore) = strong
Hongkong = sim(singapore): ex = economic structure

economy(hongkong) = strong



• R GEN

reacts_with(potassium) = chlorine
group? = gen(chlonne)
reacts_with(potassium) = group?



• R SPEC

likes(mary) = carbonated_drinks
coke = spec(carbonated_drink)
likes(mary) = coke



• R SIM

habitat(whales) = atlantic_ocean
pacific_ocean = sim(atlantic_ocean)
habitat(whales) = pacific_ocean



Combination of A SIM and R GEN

reacts_with( potassium) = chlorine
sodium = sim(potassium) A SIM
reacts.with (sodium) = chlorine
group? = gen(chlorine) R GEN
reacts_with(sodium) = group?

A SIM, R GEN Combination



Theory of Plausible Reasoning and its
Implementation.

Collins and Michalski introduced a theory to model human

plausible reasoning. APPLAUSE is an implementation of an

extended and modified version of the theory. The method-

ology is eminently suitable to reason in the domains where

knowledge is organized hierarchically. The theory provides

mechanisms to manipulate the knowledge base in case of in-

complete and uncertain knowledge. Some features of the

theory are highlighted with examples from chemical periodic

table.



QUERIES

Form:

descriptor (argument] = re/7/^,7^, 0,7^]? (1)

In query 0) the system is to retrieve best reference value

together with the estimated parameters. The best reference

is one with highest /z * 7^ * (f> * 7^ product.

• Type checking is performed for arguments and descrip-

tors and references when applicable.



ALGORITHM for processing Queries:

• get_query(Q)

• if ( get_fact(Q) successful) then - report retrieved in-
formation, exit.

• elseif reasoning_depth_counter > depthJimit then
- combine whatever evidence available and exit.

• else

— increment depth-counter by one.

— Dep := set of dependencies/implications, such that
descriptor occurs in RHS and a * ja > threshold T.

— sort dependencies and implications according to de-
creasing a * 7a (gather strongest evidence first).

— repeat until no more dependencies.

* evaluate LHS of dependency or implication. If
necessary call this routine to evaluate LHS.

* apply suitable transforms such as A GEN,
A SPEC, A SIM and compute RHS, decrement
depth.counter by one and exit.

• combine evidences:

— choose best 7^, j9 or /i*7/0 <^>*7<? products, for type 1
or type 2 query respectively.

— compute union and intersection of ranges to give up-
per and lower bounds on the range of the conclusion
respectively.



EXAMPLE

Given:

o GroupSa consists of gases [He, Ne, Ar, Kr, Xe, Rn].

• Boiling points of only 4 gases are known.

[He/-269, Ne/-246, Ar/-185f Xc/-108].

Query: Find boiling point of Kr.

Process:

• Statistical analysis will be made to see if it is reasonable

to aggregate the boiling points into a range and propa-

gate it to a parent node.

• Kr has two parents, groupSa and period4.

• Suitability of generalization is tested in both hierarchies.

• The better one is selected for inference.
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Criteria for generalization:

• Low standard deviation of residuals

• Generalize from large number of points.

• Low range of residual errors (fewer outliers)

• Presence of functional dependencies with characteristics

similar to those in the neighboring classes.

• 'Causal connection'



Criteria for generalization:

• Low standard deviation of residuals

• Generalize from large number of points.

• Low range of residual errors (fewer outliers)

• Presence of functional dependencies with characteristics

similar to those in the neighboring classes.

• 'Causal connection1



Total # of Points = 100

Total # of Variables = 3

Names of the attributes GROUP PERIOD ATNUM

A suitable hierarchy is to be decided for attribute ATNUM

Evaluating Group as the Primary Attribute for Classification

Total Number of Distinct Classes = 18

Class

#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Group

#

1
2

2.1
2.2
2.3
2.4
2.5
2.6

2.65
2.7
2.8
2.9
3
4
5
6
7
8

Group

IA
IIA
1MB
IVB
VB
VIB
VIIB
VIII
VIII
VIII
IB
MB
IMA
IVA
VA
VIA

VIIA
VINA

Attr
Max

87
88
100
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Attr
Min

1
4
21
22
23
24
25
26
27
28
29
30
5
6
7
8
9
2

Attr
Avg

30.43
36.33
74.27
44.66
45.66
46.66
47.66
48.66
49.66
50.66
51.66
52.66
35.8
36.8
37.8
38.8
39.8

34.33

Std dev of
residuals as

% of Attr Avg

35.9
24.6
6.3
12.8
12.2
12.2
12.0
11.7
11.5
11.3
11.0
10.8
21.3
20.7
20.2
19.6
19.1
26.1



Evaluating Period as the Primary Attribute for Classification

Total Number of Distinct Classes — 1

Class#

1
2
3
4
5
6
7

Period#

1
2
3
4
5
6
7

AttrMax

2
10
18
36
54
86
100

AttrMin

1

3
11
19
37
55
87

AttrAvg

1.5
6.5
14.5
27.5
45.5
70.5
93.5

Std dev of
residuals as

% of AttrAvg

26.1
0.0
0.0
2.7
2.7
6.5
3.8



Generalization

BP range

slope 77?
std dev of

residuals a,.
% intersection with
neighboring class x
number of points n

Computed a
Computed 7Q

groupSa

[-108 .. -269]
42

5%

60%

4

0.88
0.93

period4

[58 .. 3450]
-416
46%

100%

17

0.8
.3

The equation (implication in a functional form) derived by

best line fit method:

BP = -317 + 41.8*period (valid for groupSa).

The parameters a and 7a are estimated by evaluating com-

pliance to the criteria for generalizing.

7'a = 0.5

a = (1 -0.2* a:)

0.4*(1 -ov
n

n i cue

Tabulated factors favor generalization in groupSa rather than

in period 4.



PARAMETERS FOR THE DERIVED CONCLUSION:

Derivation using A SPEC without functional dependency

BP(Kr) = [-108, -269]

Parameters [/z, 7^, </>, 7^] are directly inherited from the parent

node, however the precision of the answer is low.

The answer is made more precise (narrower range) by using

functional dependencies discovered in the related elements.

Derivation using A SPEC together with functional dependency.

Assume r and 7r for Kr within groupSa = .9, .95

These can be estimated by evaluating common relevant fea-

tures among the siblings.

BP(Kr) = -317 + 41.8*4 = -149.8

= 7^ * Oi * 7a * r * 7r

= 1 * .9 * .9 * .9 * .95 = 0.6925
</>c = (f>i = 1

= 7<^i * <* * 7a * 7" * 7r

= 1 *. 9*. 9*. 9*. 95 = 0.6925



Derivation using A SIM transform.

Find elements similar to Kr in some context which affects

boiling point.

Suppose, relevant context is

CX = (.7*group + .3*period) Rule 1

and the dependency is given by,

CX -> boiling point: a = ,75,7a = 1; Rule 2

• a and 7Q estimated by global multiple regression analysis.

• Localize the search space within the neighborhood of the

argument in question

• Similarity a and 7^ are computed according to the for-

mulas:

cr(Arg l,Arg2) = £ W; * a(attri(Argl], attr l(Arg2))

i) = £ WL *

where, the weights W?; are normalized such that the sum

of weights is 1.



Assuming pairwise similarity a and 7^ values

a(gr8a, gr7a) = .2; 7<7 = .95
a(per4, per3) = .8; 7^ = .95
a(per4, per5) = .7; ja = .95

and Wi given by context in Rule 1, we get

Elem

Ar
Xe
Cl
Br

1

Gr.

8a
8a
7a
7a
7a

Per.

3
5
3
4
5

<7(Kr, Elem)

.7*1 + .3*. 8 = .94

.7*1 + -3*.7 = .91

.7*.2+ .3*. 8 = .38
.7*. 2+ .3*1 = .44
.7*. 2+ .3*. 7 = .35

7CT(Kr, Elem)

.95

.95

.95

.95

.95

Disregard elements with a * 7a < threshold T.



Similarity transform reference and parameter estimation:

BP(Kr) = BP(Element) [/*,7/»&7*]

Ac BP(Ar) = -185 [/* = 1,7,, = 1,0 = 1,7, = 1]

BP(Kr) = BP(Ar) = -185.94
fj,c = fJL = 1,

7/zc = 7j* * 0" * 7<r * « * 7a
= 1 *.94*.95*.7*1 = .625

<t>c = 4> = i
7<Ac = 7^ * 0" * 7a * & * 7a

1 * .94*.95*.7*1 = .625

similarly,

Xe: BP(Xe) = -108 [1, lr 1, 1]

BP(Kr) = BP(Xe) =-108.91

/*=!
= 1 * .91 * .95 * .7 * 1 = .605

= l

= 1 * .91 * .95 * .7 * 1 = .605



COMBINATION OF EVIDENCES

— Take the reference value of the result as the weighted

average value of the BPs where the weights are de-

cided by a *7a product.

— The parameters are taken as the weighted average of

the evidences.

BP(Kr)= [(BP(Ar)*a(Kr,Ar) + BP(Xe)*a(Kr,Xe)

BP(Kr) = (-185*.94+-108*.91)/(.94+.91) = -147.1

[JLC = E^i/N (if A^ not large)

(1 + l)/2 - 1

c = E 7^. * o- * a * 7Q/7V

= (1*. 94*. 75* 1 + 1*. 91*. 75* 1)/(1 + 1) = .6175

(1 + l)/2 -

= (1 * .94 * .75 * 1 + 1 * .91 * .75 * 1) = .6175



Comparison of parameters:

Parameter
BP

H

la
4>
7*

A SPEC
-149.8

1
.6925

1
.6925

A SIM
-147
1

.6175
1

.6175

Actual
-152

-
-
-
-

Choose results obtained by A SPEC since it yields infer-

ence with higher confidence.



CONCLUSION

Plausible Reasoning provides a useful mechanism to manip-

ulate available knowledge base to infer conclusions not arriv-

able by traditional logic.
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UNDERSTANDING INFORMATION PROCESSING IN
ANIMALS AS A WAY TO BUILDING INTELLIGENT ROBOTS

Abstract

One motive for the study of a r t i f i c i a l neural systems is that knowledge
derived from understanding the brain (and its b i l l i o n s of neurons) can be
exploited and utilized in the building of machines. We hope to bui l d
machines with observational, adaptive, and manipulative powers resembling
those of animals and humans. The machines could be used to reduce human
exposure to conditions hostile to humans. Severe, dangerous, and unknown
environments; long missions to remote locations; and critical, but tedious
tasks represent such conditions. Fundamental understanding of nervous
systems may be our only hope for building such machines, as no machine b u i l t
on other principles has come close to achieving this goal.
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Plexus Systems
Nashua, New Hampshire

Claude Cruz received his B.S. in electrical and biomedical engineering from
the University of Southern California, and a joint M.S. in these same
subjects from the University of I l l i n o i s . Following graduate school, Mr.
Cruz spent 11 years with IBM. The first 5 years of this were devoted to
various circuit and systems design functions. This was followed by a
transfer to the IBM Palo Alto, California, Scientific Center, where Mr.
Cruz's i n i t i a l work involved processor architecture and a r t i f i c i a l i n t e l l i -
gence (particularly expert systems technology). In 1981, Mr. Cruz founded a
wide-ranging IBM neural-net project. This work covered neural-net theory,
applications, and implementation techniques. In particular, it led to the
creation of three generations of sophisticated tools for neural-net experi-
mentation. These include a novel network "compiler", an interactive network
debug environment, and a parallel d i g i t a l network emulator. In May of 1987,
Mr. Cruz left IBM to become a neural-net consultant, and to pave the way for
founding a neural-net company (Plexus Systems).

KNOWLEDGE PROCESSING USING NEURAL NETWORKS

Abstract

Artificial neural networks (ANN's) are novel information processing
mechanisms. Such networks are based on formal models of the function and
organization of biological nerve nets. Neural nets possess several traits
which make them an attractive substrate for a r t i f i c i a l intelligence applica-
tions. They are an inherently parallel processing mechanism promising great
speed of operation. In addition, most a r t i f i c i a l neural nets are adaptive
in that the behavior of the network may change over time as a function of
its "experience" (cumulative operating history). Traditional Al involves
the emulation of very high-level behaviors and cognitive mechanisms. Neural
nets are a comparatively simple, low-level mechanism. Thus, applying them
to complex tasks requires the resolution of a great many issues. These
include problems of knowledge representation, definition and implementation
of inference mechanisms, and control of the inference process. This presen-
tation w i l l identify some of the particular issues to be addressed, as well
as some possible approaches and early results in ANN-based knowledge
processing.

ft



NEURAL NETWORKS

AND

ARTIFICIAL INTELLIGENCE

Claude A. Cruz
Plexus Systems
10 Whitford Road
Nashua, NH 03062
(603)595-2334



Overview

Project goa!1 explore flow-of-activation networks (FAN)
as a new way to represent and process information:

• Inspired by function and organization of biological
nerve nets.

• Use many simple processors to collectively
perform operations (rather than one, or a few,
processors operating independently).

• System performs "pattern processing" operations,
rather than "symoolic" or "numeric" processing.

• FAN's can be adaptive; network behavior can
change over time.

• Simple processors act as "smart memory"—
system's processors and memory are combined.

• A FAN is a static network of "nodes'' (processors)
and "links" (communication paths). Acts like a
"circuit" performing some function, rather than a
sequence of procedure calls and data-structure
instantiations.

MEXFRES 2/87



GENERAL COMPUTATIONS

DYNAMIC COMPUTATION
NETWORKS

»PROCESSES AND DATA-FLOW
PATHS ARE CREATED AND
DESTROYED DURING RUN

STATIC COMPUTATION
NETWORKS

PROCESSES AND DATA-FLOW
PATHS ESTABLISHED BEFORE
RUN, UNALTERED DURING RUN

DATA-FLOW NETWORKS
*PASS ARBITRARY STRUCTURED

DATA OVER PATHS BETWEEN
ARBITRARY PROCESSES

V
EAN NETWORKS

* POINT-TO-POINT PATHS
XMIT ONLY SCALAR DATA
(NO DATA STRUCTURES)

* PROCESSORS OPERATE ON
SCALAR LOCAL DATA
(e.g. ACTIVATION LEVELS)

PAN NETWORKS
(NEURAL NETS)

* NODE PROCESSORS COMBINE
LOCAL STATE INFORMATION

* LINK PROCESSORS XMIT
MODIFIED STATE INFORMATION

PANO.
• PARTICULAR NETWORK TOPOLOGY AND

NODE/LINK PROCESSOR CHARACTERISTICS
<NETTAX 2/87>
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Computing by flow-of-activation

A non-von Neumann computing mechanism

FAN attributes:

• Highly parallel (fast)

+ Simple, uniform (pattern) processing

$ Can be adaptive-("learning" model)

Basic bahavior:

+ Static net represents events and responses

4 Events "activate" nodes

• Nodes drive other nodes by "flow-of-activation"

• Active nodes trigger actions

• Result: each event and each action processed
simultaneously in parallel

ALMADEN 3/87



Some Attributes of Natural Intelligence

• Purpose: to enable an organism to meet its needs
(goals) in the face of a changing environment

• Learning is key; "hard-wired", "programmed" behavior
limits organism's adaptiveness (like "brittle" programs)

• Nature of environment:

• Contains regular "features" (entities and events)

• Entities obey certain laws

• Both features and laws exhibit some variability

• Intelligence capitalizes on these traits:

• Learn to recognize features, and to associate
significance ("meaning") with them

• Predict attributes and behavior of features— build
"world model" of environment

• Use "fuzzy processing" to make time-varying best
guesses about current contents.of environment;
seek adequate (not necessarily optimal) plan for
meeting goals

KREV0287



System Embedded in Environment

• Cycle relating system and environment:

1. Event occurs in environment (feature appears);

2. System detects external event (internal event
occurs);

3. Internal event triggers system response;

4. Response causes changes in environment
(external events).

• System needs internal representation of external
reality:

• "Features'' to represent external entities

• "Relationships" to represent regularities between
entities

• "Operations" to embody responses to external
events

• "Rules" to associate specific responses with
specific external or internal events

KREV0287
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Establishing Representations

Purpose: set up equivalences (mappings) between
external and internal entities:

+ External entities have regularity (content)
• Presence of entity constitutes an event
• Internal events produced by "detection" of external

events (through fixed "transduction" mapping)

Two basic schemes are possible:

• "Symbolic" representation: assign a "symbol"
(referent) to "stand for" (point to a description of)
represented entity. This scheme separates the
definition (meaning) of an entity from its referent,
coupling the two through an (arbitrarily assigned)
association. No relationship (e.g. transduction)
required between content of external entity and
form of internal representation pointed to by
symbol.

• "Semantic" representation: map the "transduction"
of an external entity onto an internal "analog".
This maps content of external event onto
structure of internal representation. The mapping
is fixed by transduction process (not arbitrary
association). Mapping replaces use of referent
(pointer).

KREV0287



Standard Al Techniques

Based on "symbolic processing":

• Processing uses descriptions (formal models) ,
rather than analogs— incomplete information

• Processing based on algorithms (sets of explicit,
detailed rules)— missing rules problematic, no
generalization possible

• Data content (meaning) not used in processing;
formal manipulation only— only programmer has
knowledge, or "interpretation", of data's "meaning"

• Through above, processing uses only explicit
relationships— cannot use implicit relationships,
such as "similarity" between data

• Through above, "learning" (i.e. changes in
knowledge-base) requires mediation by centralized
"performance assessor"— inherently a serial,
high-level function

• Processing is normally precise, as are symbols—
no role for ambiguity, like that in fuzzy sets or
approximate reasoning methods



Control/decision-making normally centralized- ^
parallel processing difficult, therefore slow



Intelligence via Artificial Neural Systems

Based on "semantic processing":

• Processing based on analogs of entities being
reasoned about- — acquired through learning or
detailed formal specification, thus can contain
complete information

• Processing based on structure (contents) of
knowledge-entities (KE's), plus connections
(relationships) between them— inter-KE
connections cause "rule-like" behavior.
Generalization possible through "approximate"
satisfaction of rules

• Data content (therefore structure) constrains
inferences a KE can participate in— uniquely
determines "interpretation" of KE's "meaning". No
formal manipulation, just inference via
"flow-of-activation"

• No implicit relationships, just explicit ones (through
inter-KE connections)— "similar" KEs have similar
(largely-shared) structure

• "Learning" occurs as local, low-level function
(through change in inter-KE coupling)— no central



'"performance assessor" needed (though one may (
be used; e.g. an attention mechanism)

• Both processing and KE's are normally imprecise
(but can be made arbitrarily precise)-
approximate reasoning is the norm

• Decisions made through locally-controlled
flow-of-activation— processing is inherently parallel
and fast (but can be made serial)



What Are Knowledge Representation
Networks (KRN)?

• An attempt to emulate some biological information
processing capabilities ("intelligence"):

• Process multi-modal input (sensory processing)

• Produce flexible output activity (distributed motor
control)

• Intelligent decision-making (cognitive functions;
adaptive planning using a learned "world model")

• Assumption: choice of low-level implementation medium
(FAN) is important:

• Must encompass above three types of functions

• Underlies important functional capabilities
(associative storage, learning, distributed
processing and memory, etc.)

• Draw insight from biological organizational
principles

KREV0287



KRN ARCHITECTURE

• Basic knowledge units (features, operations and
relationships) are represented by KRN networks

• Inferences are performed through interactions between
knowledge units

• Underlying KRN has static structure (no additions or
deletions of nodes or links during inferences)

• Channelled flow of activation creates dynamic
knowledge structures as subsets of overall KRN (like
instantiation of variables)

• PAN is ideal implementation medium for KRN
(parallel network, flow of activation, learning model)

'



KRN Architecture

• Overall structure of KRN net— a "feature" hierarchy
cross-coupled with an "operation" hierarchy (like
advanced nervous systems):

• Feature hierarchy represents events and entities
which the KRN net can recognize. Conjunctions
of features define higher-level (more complex)
features.

• Operation hierarchy represents operations (actions)
which the net is capable of executing in response
to detected features. Operations are decomposed
into sequences of sub-operations.

• Cross-coupling from features to operations
provides "rule-like" firing of operations as
triggering features become active.

• Cross-coupling from operations to features
activates "expectations" of state-changes which
should result from execution of operations. This
allows operations to execute in "closed-loop"
mode.

KREV0287
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Why Build KRN's from PAN's ?

• Need to represent events (features and operations):

• Events are discrete and uniquely-identifiable

• Represent events by distinct PAN nodes

• Detection of feature has a "certainty" measure
(strength of belief); execution of operation has a
"priority" measure (degree of appropriateness)

• Encode in (a pattern of) continuous-valued PAN
node activation levels

• Need to represent relationships between events:

• Events favor or inhibit other events with some
pair-wise "degree of causality" (implication
strength)

• Represent events by distinct (positive or negative)
PAN links

KREV0287



• Adaptiveness alters beliefs about degree of influence
of one event on another:

• Modify pair-wise degree of causality

• Use FAN-link "learning" mechanism
(e.g. Hebb model)

• Operations produce sequences of events:

• Arbitration between candidate operations requires
comparison of candidates' "appropriateness"
measure

• Encode in FAN node activation levels

• Temporal constraints important in executing some
operations (use network dynamics)

• Event sequencing requires "handshaking" (use
directed FAN flow of activation)

• Basic functions to implement behavior
(stimulus-response cycle):

• Detect occurrence of events (like IF-clauses; use
FAN "pattern-encoder" circuits)

KREV0287



<y Internal events represent responses |
(like THEN-clauses; use FAN "decoder circuits" to
produce activity patterns)

Events and operations may occur independently, and
should be processed independently:

• FAN nodes and links are asynchronous
independent processors

• FAN processing is local (events and operations in
FAN nodes, inter-node dependencies through FAN
links)

KREV0287
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Basic KRN "Building-Blocks"

• Features are represented by FAN "encoder" circuits:

+ Output becomes active IF all required input-feature
values are active (present)

• KRN net inputs can drive encoder input features.

• Match performed by encoder is "fuzzy"— there is
some tolerance for input features within a
satisfactory range, not just one exact value.

• Sets of encoders may take input from same set
of input features. Inter-encoder competition is
used to maximize activity of single encoder with
best match to current inputs.

• FAN "column" circuit acts as encoder; FAN
"hypercolumn" circuit acts as competing set of
encoders with shared inputs.

• "Decoders" produce a given output activity pattern
across a set of output nodes:

• In producing specific network state-transitions,
decoders act like production-rule THEN-cIauses.

KREV0287



$ Decoder input activity level scales output activity
vector.

• Decoder outputs can produce output from the
overall KRN net.

• Encoders cascaded into decoders form "fuzzy"
state-machine:

• Encoders detect current network state;

• Active decoders trigger associated decoders
(via FAN links);

• Active decoders cause state-transition (i.e. change
activity of features which feed encoders).

• Local FAN "attention mechanism" can be used to
"enable" or "disable" sets of encoders and decoders.
This helps focus processing. (Use and implementation
of attention is crucial current research area).

KREV0287
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FUZZY LOGIC OPERATORS AND NEURON ACTIVATION FIELDS

Abstract

A neural structure in l i g h t of fuzzy sets and operators is examined. During
a study of underwater acoustic signatures, it was discovered that a simple
version of the avalanche could be improved for classification purposes by
adding two simulated hardware memories (or latches) to each neuron. The
performance of the new structure, called a neuron ring, approximates the
performance of cross correlation. Only simple operators, such as the sigma-
count and the triangular norms MAX and MIN are necessary. In brief, the
pattern exciting the neuron is viewed as simply a means to induce a possi-
b i l i t y distribution in the neuron. The height of the distribution is
partial support for the hypothesis in question. The summation of support
after a time sequence of excitation is support for the hypothesis.



Fuzzy Sets and Neural Networks
W.R. Taberand P.O. Deich

General Dynamics, Electronics Division, Box 85310
San Diego, CA 92138, MZ 7202-K

INTRODUCTION

Fuzzy sets [15,17] and their operators
have interesting applications in neural net-
works. The performance of fuzzy decision
rules for pattern classification provides a
compelling reason to use graded set mem-
bership functions. As we will show, fuzzy
operators enable a simple structure, the
neuron ring, to classify non-stationary pat-
terns in the presence of severe noise. With-
out fuzzy processing, the ring is exceptional-
ly sensitive to noise. Its operation as a shift
invariant filter is not appropriate.

The underlying problem with non-fuzzy
rings is that decision rules examine terminal
activation instead of the historical activation
record.

In this paper, we report the performance
of neural structures trained with undersea
ship signatures from San Diego Bay and
elsewhere. We compare performance to
cross correlation - a conventional process-
ing algorithm that seldom fails. Backpropa-
gation [9,10,13] performance is also com-
pared both with and without stationarity
assumptions.

Reference to ship signatures should not
sidetrack the reader from recognizing the
contributions of fuzzy processing to pattern
recognition. Fuzzy processing may be the
best model for non-stationary patterns -
those patterns that change their descriptive
statistics over time1. That ship acoustic
energy survives to propagate over geo-
graphic distances is amazing. Yet the digi-

1 See reference 2 for definitions.

tal computer, simulating fuzzy rings, correct-
ly identifies ships in the presence of pseudo-
white, colored, chirp, and other types of
noise. This being the case, the algorithm
outlined in this paper has intrinsic value
apart from its underwater application.

FUZZY SET EXAMPLE

The indicator function of a standard set
is either a 1 or a 0. Either the set element is
present or it is not. In distinction, the indica-
tor function of a fuzzy set admits graded
membership. An element can be present or
absent, or it may be present to a degree. A
simple example will illustrate this concept.

Suppose a man with a full head of hair
is the subject of an experiment to quantify
baldness. The experiment consists of pluck-
ing a single hair then recording the answer
to the question, "Is this man bald?" The
first time, the answer is definitely "no".
However, continued experiments with the
same subject and other observers will lead
to positive answers. The outcome of the
experiment is justification for statements of
the form "the probability that this man is
bald is .50."

Are there other ways to estimate bald-
ness? The answer is yes, and fuzzy set the-
ory provides an approach.

A fuzzy practitioner views bald individ-
uals as a set and tries to estimate an indi-
vidual's membership from data. For exam-
ple, he estimates the number of hairs on the
average head, then estimates the number of
hairs on the subject's head. Without solici-
tation, he is able to use an estimate of the



number of hairs as the numerator of the ratio
of the subject's hair to the average. This is
an estimate of the approximate baldness
degree. His membership in the set of bald
individuals is about the ratio.

Often, there is no information or even
requirement to justify probability estimation
either from a frequentist's or from a Baye-
sian's viewpoint. It is in these situations
that fuzzy sets offer complementary value.

THE NEURON RING

There are a number of connection inten-
sive networks for pattern classification [7].
The Grossberg avalanche [5] cascades neu-
ral elements to learn and recognize spa-
tiotemporal patterns. In signal processing
terminology, the avalanche recognizes non-
stationary patterns. Hecht-Nielsen [6] fur-
ther reduced the connectivity of this struc-
ture in the commercial SPR (spatiotemporal
pattern recognizer) feedforward network.

The neuron ring resembles the SPR but
has new architectural features. Its closest
approximation is the torus of Goles [4].
The ring's processing element is the DPNL-
the dot jjroduct neuron with latches that
hold time (T) and activation (M) values.
These are visible in figure 1.

The DPNL operates in the following

i - l
u

Figure 1. DPNL

manner. During training, the reference pat-
tern is hardwired (fast-learn mode) into the
neuron as vector Z. During recognition, the
test pattern U is dotted with Z yielding a
scalar. This quantity initializes an accumula-
tor in DPNL i. The next operation multiplies
the unit's old activation, X^, by -a. Another
term is computed with decouple gating the
activation of the previous neuron. The acti-
vation sum is multiplied by a gain factor A,
yielding the activation increment SX.̂ V.

Decouple, couples a small fraction of
activation or encouragement forward. When
zero, the signal enables a special mode for
spectral classification using permutations of
firing order as similarity metrics. When
decoupled, the DPNLs activate indepen-
dently, leaving an audit trail of firing order.

Equation (1) relates these quantities
for DPNL i with a variation in the terminolo-
gy established by Hecht-Nielsen for the
SPR.

Figure 2 illustrates the tertiary struc-
ture of a ring assembly. The lateral feedfor-
ward and the single return are its gross fea-
tures. The input layer is not shown.

A pattern sequence excites the ring to a
graded activation level. Rather than invoke
the all or none firing principle, the DPNL
exports its activation untouched except for
hard limiting the value to the unit interval
[0,1]. The basis for excitation is partial cor-
relation by dot product. That is, correlation
at zero time lag. For pattern vectors of unit
length, the dot product is in the unit interval.
The higher the number, the greater the simi-
larity between Vi and Va on the unit hyper-
sphere in 9?n. Each pattern excites every
DPNL. Initially, both latches are reset to 0.
As the patterns arrive at the DPNL, the reg-
isters latch new values. The max latch, M,
changes only when the current activation
exceeds M.

After complete pattern presentation,
the activation field or max latch array is ana-



lyzed with fuzzy primitives. It is this histor-
ical record and processing that is absent in
most network paradigms.

x new = x old old

Equation 1

Xnew= Activation for neuron1
X'Ai
A
a
b

0ld = Old activation

= Attack factor

= Decay constant for old activation

= Gain for activation from previous
neuron (decouple)

= Activation from previous neuron

= Gain for dot product

= Dot product of pattern Zf with

unknown U

Before discussing fuzzy activation field
processing, we first examine two point-sen-
sitive decision rules in common use before
this study. They are:

Dp The ring with the highest acceptable
activation in its last neuron wins.

D2: The ring with the first activation of 1
wins the competition.

We eliminate D, immediately. Imagine
a ring with 100 neurons. Suppose the test
input is identical to the training pattern
except that time slice vector 99 is an attenu-
ated version of the true vector. DPNL 100
will not be fully excited. Another ring, condi-
tioned on a different signal, may win at the
end of time slice 100 by a simple twist of
fate at time 99.

The other rule has competitive merit but
it makes little sense when applied in a noisy
environment with rampant phase errors.
Transients may induce random neuron firing.

Point failure is serious because a sys-
tem which allows it to occur discounts his-
torical evidence in favor of the current state
as does a markov process. Other decision
rules are possible. Before addressing the
rule(s) of choice, we will discuss some
aspects of sampling and phase error.

Pattern 1 •©—<D-
Pattern 2 -©•

kD—-0—•©-Pattern 3

Figure 2: A three pattern ring assembly. Pattern i conditions ring i. Each DPNL
supports a microhypothesis (MH) for time j.



Phase error can be illustrated with an
example from the undersea application.
Assume the acoustic signature is a periodic
and deterministic function of propeller angle
as it spins. Suppose the training pattern
was sampled when the propeller was verti-
cal. The remaining samples follow at equal
intervals. During a sea trial, the probability
that sampling started with a vertical pro-
peller is small. This being the case, the test
and the training signal are similar except for
a phase difference.

The re-entrant ring compensates for
phase, although the effect is large only for
small rings. It makes no difference which
DPNL is first stimulated; DPNLs activate
around the ring by virtue of the syndetic
lines. Phase displacement lies latent in the
T latch chain.

A better decision rule or heuristic for
pattern classification will now be sought.

Each DPNL continually provides a sta-
tistic for testing the hypothesis the pattern
is as expected as a correlation by-product.
The first DPNL in a ring holds the pattern
vector for time slice 1. Therefore, it esti-
mates the grade of membership or suitabili-
ty of the test pattern's first vector. The sec-
ond DPNL estimates the suitability of the
second pattern vector. Anthropomorphically,
operation is a question and answer se-
quence: "How well, on a unit scale, do you
like what you see at this time?" The prob-
lem is to decide, that of all the activations
generated by a DPNL during presentation,
which best indicates support for the hypoth-
esis?

The answer is stated without proof; it is
the height of the time series of activation for
the DPNL, otherwise called the fuzzy possi-
bility measure. It is just the contents of M.

We estimate the compatibility of the
test pattern with the ring as a whole. The
appropriate operator is the sigma-count
[16] of the fuzzy set M. Kosko [8] proved
the sigma-count, ZC, is a positive measure

of set cardinality. It represents support for
the ring's hypothesis.

Up to the present time, the discussion
has been limited to a single ring. More sig-
nals require more rings. The supervisory
system, if it exists, recruits empty rings and
conditions them as necessary based on
mean squared error criteria.

Assuming £Ci is support for signal i,
what rule robustly adjudicates the race for
classification?

This discussion argues that no point
estimate from the ring during excitation will
suffice as a fuzzy statistic, unless its value
is unity. We propose the following calcula-
tions as a foundation for a better decision
rule.

Support^ =

Non-supportj = Card - support^

where support is belief in the hypothesis the
pattern is f. and j is the DPNL index. Card
is the cardinality of the ring's non-fuzzy
superset, i.e., the number of DPNLs per
ring. Non-support is the degree to which the
hypothesis is not warranted.

A walk through figure 3 data will clarify
the procedure for classification. Morphologi-
cally, the assembly that generated the data
had 10 rings. Each had 20 DPNLs, one per
time slot

The numbers in the top matrix are the
contents of the max latches at the end of the
excitation. Rows index the pattern while
columns index time.

The contents of the max latch for DPNL
for pattern 1, time 18, is 9 (the lack of a deci-
mal is a concession to display technology).
The 114 under EC is the support for pattern
1 while its non-support is 200 - 114 = 86.
With the implied decimal, these values are
.9, 11. 4, 20, and 8.6.

The certainty ratio (CR) is calculated:



CR = Suppor^/Z (Support^

Next, each CR is divided by the maxi-
mum in the CR column. Finally, "FUZZY
MEMBERSHIP" (FM) is reported as a per-
centage.

The quantities under "FUZZY MEM-
BERSHIP" indicate the degree to which the
training pattern is supported by the data if a
decision must be made. Its associated
degree of non-support is 100 - itself. For
pattern 1, the values are 100 and 0.

If a delayed decision is permitted, the
EC column is more appropriate than FM. If
the support for any ship is lower than a
threshold, classification can be deferred until
more samples are available.

The formal definition of the possibility
computations is as follows. Let the time slot
set for a single neuron be A = {1, 2, 3, ...,
n}. Let x j be the activation of a neuron at

time i:

X = IX j X 2 Xj ... XnJ

STATISTICS FOR TEST FILE: SHIPS INPUT SIGNAL: Boat 2

WINDOW «=

Boat 2

Boat 3

Elizabeth

SEINER

FF1041A

FF1041B

FFG41B

FFG41C

DREDGE

ZODIAC

CEF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 2 4 6 5 5 5 4 6 6 7 7 7 6 8 7 g 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 4 3 3 3 3 3 2 2 2 2 2 2 2 2 4 5 5

0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1

VTAINTY MEASURES FOR INPUT SIGNAL: Boat 2

zc
Tu]

0
51
14

0
12

0

0

20

69

TRAINING SIGNAL CERTAINTY RATIO FUZZY MEMBERSHIP

Boat 2 I 0.407 | 100 I

Boat 3 0.000 0

Elizabeth 0.182 45

SEINER 0.050 12

FF1041A 0.000 0

FF1041B 0.043 11

FFG41B 0.000 0

FFG41C 0.000 0

DREDGE 0.071 18

ZODIAC 0.246 61

CLOSEST MATCH FOR INPUT SIGNAL: Boat 2
CURRENT PERTURBATION PERCENT = 40
TEST NUMBER = 25

FIGURE 3. Computer screen depicting the excitation signal Boat 2
with 40 % noise in its power spectrum. Numbers in the top matrix are
the contents of the max latch at termination. The last column is the
measure of support for the hypothesis implied by the row heading.



Then the possibility distribution:

nx = + Xj/2 +

is induced on the neuron. The term Xj/1
means: the possibility that the signal is
appropriate given the signal at time 1 is xr

Then the possibility measure

7t(A) = max( ^ ... xn)

is held in the max latch, M.
Either the EC or the FM statistic is

now considered a better decision statistic
than those used by either
adopt a decision rule:

or Dr We

or

quently declares the class to be frigate.
Variation 2 scrutinizes the output of the

ring - the 1C or FUZZY MEMBERSHIP
tal data alone. Figure 3 illustrates that two
of the fishing boats excite the ring but that
the Zodiac raft does also. These boats have
much in common in the frequency domain.
On a broader note, the ring permits the test-
ing of any fuzzy hypothesis that can be con-
structed from the universe of discourse.

Analysis of the activation history or
field is facilitated with an element of set the-
ory called the power set - the set of all sub-
sets from the universe of discourse. Its car-
dinality is 2n.

Two constructs derivable from the pow-
er set are the frame of discernment or dis-
junctive frame (Strat [11]) and the frame of
concernment or conjunctive frame. In all,
they contain 2(n+1)-(n-»-l) unique hypotheses
and from them, any hypothesis with conjunc-
tion/disjunction is constructible. For exam-
ple, support for the hypothesis:

where the functor arc is a pointer back to the
pattern name. Thus D3(l 14) is boat 2.

One objective of pattern recognition is
to generalize [1] , to go from a specific sig-
nal to the class to which it belongs. An
admissible algorithm is driven by the joint
similarity between the training pattem(s)
and the set of all patterns produced by the
same signal source. It infers that while the
test signal is different from any in the train-
ing set, it has the gross properties of, say, a
frigate. There are at least two variations on
generalization. The first is mentioned only
for the sake of completeness.

Variation 1 examines the output string
of the supervisory system if present. For
example, the ring's postprocessor declares
the signal to be the frigate Mir on the basis
of its emissions. Variation 1 parses the text
string for the underlined word and subse-

H( Elizabeth)

is 51 in the ZC column. We can also test:

H(the Elizabeth or boat 3)

with MAX, the fuzzy set union operator.
The arithmetic is a straightforward

application of the sigma-count, and the
Frank [3] triangular norms and co-norms
MAXandMIN:

H(Elizabeth) = 51

^(Elizabeth or boat 3) =
MAX(0,51) = 51

^(Elizabeth or boat 3)



AND
H(FF1041AorFF1041B) =

MIN(12,51)= 12

Yager [14] and Zadeh [15,17] discuss other
operators for reasoning with uncertain infor-
mation. Similar exercises apply to FM.

EXPERIMENTS AND NOISE

Signatures from ten vessels were col-
lected from San Diego Bay with an omnidi-
rectional hydrophone. They joined an exten-
sive library of marine mammal vocalizations,
munition launches, seismic explosions, and
other acoustic events.

We soon developed a comprehensive
procedure for simulating ship encounters
and testing performance. Classification mer-
it is equated to the probability of correct
classification, PCC. Graphs of this function
have PCC on the vertical axis and percent
noise perturbation on the horizontal. The
graph indicates the sensitivity level of the
procedure under test to levels of increasing
noise. Noise is added as percentage of sig-
nal power from 0 to 100 percent. A noise
level of 25% implies there is 25% uncertain-
ty in the true value of any frequency bin.

All signatures had ambient bay noise.
They also contained aperiodic impulse
spikes from nearby power rails. These were
attenuated with a median filter (Taber [12])
before Fourier transformation.

Uniformly distributed pseudo-white
noise is not the only kind of noise in the
ocean. As an aid to more comprehensive sit-
uations, we used five noise types.

• uniform white

• ramp up with frequency

• ramp down with frequency

• time shift

• convex combinations of signals

Uniform noise occurs in narrow band
samples. Our passband was 0-3.5 KHz. In
some cases, the uniform noise assumption
is justifiable. However, for example, the
sudden appearance of a second boat in the
water injects frequency and range depen-
dent noise.

Ramp up and ramp down are analogous
to linear chirp in radar. The amount of noise
is frequency dependent; the amplitude of the
zero mean noise either increases or de-
creases with frequency, simulating ocean
anomalies and opening and closing ranges.

Time shifts are expected. Seldom will
the training signal be an exact replica of the
test. An ocean buoy for monitoring harbor
traffic must contend with tracking vessels
over a range of perhaps hundreds of miles.
In the laboratory, we simulate the buoy by
taking the test signal from a different tape or
tape segment than the training signal.

Finally, convex combinations of existing
signals test the resolving power of the net-
work to identify fleets of ships. Can it gener-
ate activation consistent with known signal
mixes? For example, if we mix 75% destroy-
er with 25% frigate, can the network confirm
the 75/25 split? Convexity means that for
any combination C, of signals, Sk,

the coefficients sum to 1.

RESULTS

Our experiments tested the ring's abili-
ty to recognize signals in the presence of
severe noise. Figures 4 and 5 illustrate the



varied behavior of the algorithms in uniform
zero mean noise. Cross correlation almost
always recognizes the signal. Backpropaga-
tion (BP) trained with the average Fourier
power spectrum rather than the entire non-
stationary spectrum does not perform ade-
quately. Its failure justifies the use of the
non-stationary signals for training in spite
of the expensive training sweeps. The BP
network for figure 4 has 16 input neurons, 9
middle layer neurons, and 5 in the output
layer (16:9:5). The BP networks for figures
5 and 7 are 320:20:5. BP training time on a
Sun 3/140 for ten non-stationary signals is
approximately 30 minutes. Training time for

the ring is less than a second if training time
is measured from the time a pattern is
interned to the time the network is prepared
to recognize signals.

The non-fuzzy rules make the ring into
a very narrow bandwidth matched filter for
uniform noise. It does not matter whether
Dj or D2 is selected; the results are similar
to the trace in figure 4b.

The ramp up and ramp down tests
caused a single fault in the PCC graph. All
plots for the fuzzy ring were constant at
100% PCC for noise levels that started at
25% in the 0-60 Hz band and escalated to
75% in the 3.5 KHz band, and constant for
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Figure 4. Probability of correct classification (PCC) as a function of additive noise percentage for
back-propagation (BP), the neuron ring (NR) , cross correlation (CC), and the non-fuzzy ring
structure using non-fuzzy rules Dj or D2. Non-fuzzy performance is approximate. BP trained on
spatial data ; spatio-temporal patterns produced by averaging Fourier data records. Top and
bottom graphs pertain to the frigate FF 1041A and to the Elizabeth, respectively. Each trace is
based on 5000 simulated ship encounters or trials.



the reverse situation for noise ramping
down from 75% to 25% with increasing fre-
quency. Thus, the effective correct classifica-
tion percentage is 99.99% for these tests.

The format of the convexity test was
simply to mix the signals then excite the
network with the mixture. Work is still in
progress to detect if the mix percentage
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Figure 5. Performance of backprop a gallon and the fuzzy ring in uniform additive zero mean
percentage noise for the frigate and boat 2. Training is with spatio-temporal patterns.
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Figure 6. PCC as a function of additive noise.
Top diagrams are for the frigate FF1041A and
ing is spatial only.
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Figure 7. Probability of correct classification as a function of uniform additive noise.
Time shift - 2 minutes, a) BP and NR for boat 2; b) cross correlation for boat 2.
c) BP and NR for the frigate; and d) cross correlation for the frigate. Training is
spatio-temporal.

propagates to
cussed earlier.

SUMMARY

the decision metrics dis- esis is the sum of each neuron's possibility
measure. This support is a better indicator
of pattern class than those used before this
study.

This study implies that the analysis of
the historical activation record or activation
field is more effective than using point esti-
mates, at least for simple structures such as
the neuron ring. We simulated over a quar-
ter of a million ship encounters in the study;
the graphs indicate typical performance. The
breadth of the noise and signal characteris-
tics lend credence to the thesis of this
paper, namely, that excitation induces a pos-
sibility distribution on the neuron's activa-
tion. The total support for the ring's hypoth-
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û"0
£

 Q
.

dCO
CO

CM
Q

eo



fe2

|^

•

I0O"eo

o

80'
• 
i

-^
•X

*""
§ s ? 

s
 c

oQ
. CC

CO
 

Z
+

 
•

++

1

, ++

0
 

O
 

0
 

0
 
C

oo 
3

 
•* 

e
vi

OOQ
.

«-s 
8•

S
<
D<o

0CMO

| 
8

 8
 §

 S
 
c

^
 

oQ
. 

O
C

C
O
 

Z

§
 

+
 
'

•
 

I

+
• 

+;f

8
«
 

|

?
l 

*

>
 

/
i
 +

|
 

8
 8

 §
 S

 
c

o* 
8Q

.

T
—

OC
O

(O
 

C
Dw

oC\J

o>I§"'C
D.52

§o9

cp cd. 
co-

'ill!
.p

fi

37-1 ~
 

N
 <

D
O

 
.
3

0
n

 
••—

 ̂

H
it

o^o-co

=
 

o
 W

E

'
^

0
 

-

wa



0
,

03

I
18

§
 

g
 

S
 
§

a, as
«
 Z

o•* c

88

is
8CL,



8
8

.•••

\ 
§
 

S
 

§
 

8
 

c

3. 
£j

888
§

80
|<••T

•

1

§
 

S
 

§
 

8
 

c

? 
g

8§S
* o

§Qi

ig«2H

H
is §^111

'5 2* o
S

 
-cl

•21
-1

1
!

f
i.
lb

 1

CQ
O

.
C

Q

•i •  
J

•
 +

0
 

J
-

••J"J
^

/1

8
 

.*

a 
r• •

sg 
i:

*5S
 

' '
O

 
«
 .

°§
 

J
:

8 
I!i '

§
S

8
§

8
° 

2
s

^
 

r .
"
N

 
Q

J
 

X
^

e« 
U

 
0

i

S
^5

 
^
5

 
o

T
f 

C
^

8

«2

PQ
rtW

)

CQ



c03CDCCD
«
^̂CO

CDCOCOLLJ
O0DCQ

_

NNZ
)

LL

cg•§7
3&15"coCOoQ
.<3CDO~J2COcJs"CO

Q
_

CD13COCOCDE£»15"coCOoQ
.

oCD
-t—

 •

cr0gE5CD

*£^_0
)

"CD

uN
M

szQ<BCxi

r^o

g"cog"coCO
_co^COD

)
"CDCD
£*o0w

15§o

ELECTR

C
\J 

C
O



COLU
•

—
 1

—
 NDECISION Rl

CD
_Q£"5.
CD08"55CDD

)
X

I

CD

*^

"1C
D

CD

H
fra

Q
V^
^

m

,

c •

Cok
.

13CDCtoCOC
/)

~

activation in

^
 

^
^
^

>
^

NDLLi
zOz

,__*5C.g"co
•_j3OCO

"wM
—0t
lD
)

0" C
M

Q

_-^

cf0"4^0Q
.

E0o0COC/

o" 
^~

W
 

L
L

CO 
CO

II 
11

C
O
 

t̂
Q

 
Q

 
-»

±£
^

^
 

' 
o

Y
^
^
 

OCOED
)

CO

N
 

"

3
 

0
L
L
 

N

1/5
L;§ẑ>
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Douglas L. Rei1ly, Ph.D.

Nestor, Inc.
Providence, Rhode Island

Dr. Reilly is a summa cum laude graduate of Georgetown University, with a
B.S. in physics. He received his M.S. and Ph.D. degrees in physics at Brown
University, doing research in the field of neural networks. His thesis was
entitled "A Neural Model for Category Learning." From 1980 to 1983, Dr.
Re i l l y was a postdoctoral research fellow and assistant professor at the
Center for Neural Science at Brown. In 1983, he joined Nestor, Inc., as its
first employee and vice president of research and development. Dr. R e i l l y
was instrumental in establishing Nestor's research and development office,
and under his direction, the company has developed an adaptive pattern
recognition technology based upon neural network principles - applying that
system to problems in character recognition, speech recognition, object
recognition, and risk assessment in financial services.

ADAPTIVE PATTERN RECOGNITION USING
A MULT I NEURAL NETWORK LEARNING SYSTEM

Abstract

A learning system composed of multiple neural networks and present examples
of its application to problems in adaptive pattern recognition is discussed.
The system makes use of multiple restricted Coulomb energy (RCE) networks
that are powerful pattern classification subsystems, able to dynamically
learn to separate nonlinearly-separable pattern classes in feature space, as
well as to estimate class probabilities in nonseparable portions of the
feature space. A controller integrates the responses of these various
multiple neural networks to produce an overall system response. Addition-
ally, the controller determines the training signals directed to the various
component networks of the system to ensure that networks train to make the
decisions for which they are best suited. Results of applying the system to
problems in character recognition, industrial parts inspection, and decision
support for risk analysis w i l l be reviewed.
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James C. Bezdek, Ph.D.

Boeing Electronics
Company

Seatt le, Washington

Dr. Bezdek received his B.S. in c i v i l engineering from the University of
Nevada (Reno) in 1969, and his Ph.D. in applied mathematics from Cornell
University in 1973- Currently, he is the director of the Information
Processing Lab at the Boeing Electronics High Tech Center. Dr. Bezdek is
the past president of NAFIPS, the current president of IFSA, and the editor
of the International Journal of Approximate Reasoning. His research
interests .include pattern recognition, expert systems, information
retrieval, and optimization.

KNOWLEDGE REPRESENTATION BY LINGUISTIC
TRANSITIVE CLOSURES OF TRAPEZOIDAL FUZZY NUMBERS

Abstract

We present a theory for the representation and manipulation of uncertainties
that might be supplied by an expert (or team thereof) about object-pair
relationships in some knowledge domain. We propose a theory based on the
representation of relational knowledge by semantic term sets and trapezoidal
fuzzy numbers. The extended max - (*) l i n g u i s t i c transitive closure (LTC)
is offered as a means for consistency enforcement and completion of partial
knowledge in the relational network. Theorems are given that provide
conditions for the existence and uniqueness of the LTC under three
(extended) T-norms. We present an algorithm for computing each LTC and
exhibit a number of features of this method through numerical examples.
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B i l l P. Buckles, Ph.D.

Tulane University
New Orleans, Louisiana

Dr. Buckles is an associate professor of computer science at Tulane
University. He received his B.S. in mathematics, M.S. degrees in computer
science and operations research, and Ph.D. in operations research from the
University of Alabama in Huntsville, 1981.

RELATION BETWEEN UNCERTAINTY
REPRESENTATION IN DATA BASES AND RULE-BASED SYSTEMS

Abstract

Uncertainty in a rule (if A, then B) arises from its deductive v a l i d i t y , the
preciseness of the antecedent A, and the proximity of A to the data to which
it is matched. The latter two causes of uncertainty are both related to the
data and its representation. Uncertainty in data represented in data bases
takes the form of null values, range values, nonatomic values (e.g.,
embedded relations), and various representations based on fuzzy set theory.
There are s i m i l a r i t i e s between the instantiation of the terms in a query and
the action of matching rule antecedents. The latter is further complicated
by the unification process, which, in some ways, resembles evaluation of
transitive queries. These and other correspondences (and differences) are
examined.
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James J. Buckley

University of Alabama
Birmingham, Alabama

Dr. Buckley received his Ph.D. in applied mathematics from Georgia Tech
University in 1970. From 1970 to 1976, he was an assistant professor at
University of South Carolina, and since 1976» he has been an associate
professor of mathematics at the University of Alabama at Birmingham. Dr.
Buckley's research interests are in fuzzy sets, mathematical programming,
control, decision theory, economics, game theory, and a r t i f i c i a l
intelligence. He is also an associate editor of the ORSA Journal on
Comput i ng.

the

LINEAR FUZZY CONTROLLER

Abstract

We consider a process controlled by a controller described by an n-th order
linear ordinary differential equation toward its target output. As a
special case, the controller is a proport ional -integral -deri vat ive (PID)
controller. We show how to construct a linear fuzzy controller that gives
precisely the same control as the PID controller. It is speculated that
nonfuzzy controllers and fuzzy controllers may coincide on an unsuspectingly
large class of control problems.
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Hao Ying, M.S.E.

Kemp-Carraway Heart
Inst i tute

Birmingham, Alabama

Mr. Ying received his masters degree in electrical engineering from the
Department of Electrical Engineering and Computer Science, Textile
University, Shanghai, China, in 1984. From 1984 to 1986, he was an
instructor in the same department at the university. He is a Ph.D. student
in the Department of Biomedical Engineering at the University of Alabama at
Birmingham, and he is also a research fellow at Carraway Methodist Medical
Center, Birmingham. Mr. Ying's research interests are in fuzzy sets, fuzzy
control theory and its applications, expert systems, and a r t i f i c i a l
intel1igence.

FUZZY CONTROL THEORY: A NONLINEAR CASE

Abstract

We prove theoretically that a nonlinear fuzzy controller is a nonfuzzy
proportional-integral-derivative (PID) controller with proportional gain,
integral constant, and derivative constant changing with error, rate change
of error, and rate change of error rate about a setpoint of a process. The
nonlinear fuzzy controller consists of the following parts:

1. The linear defuzzificat ion algorithm

2. The linear fuzzy control rules

3. Zadeh's AND and OR fuzzy logics for evaluating the fuzzy control
rules

4. The nonlinear defuzzification algorithm

The nonlinear fuzzy controller is a linear fuzzy controller which is pre-
cisely equivalent to a nonfuzzy PID controller if the linear defuzzification
algorithm is used instead of the nonlinear one listed above.

The results of computer simulation reveal that the control performances of
the nonlinear fuzzy controller and a nonfuzzy PID controller are almost the
same if a linear process is controlled. However, the nonlinear fuzzy
controller can control some nonlinear processes much better than a nonfuzzy
PID controller does.




