
ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Hiroyuki Watanabe, Ph.D.

University of North
Carolina

Chapel Hi 11, North
Carolina

Dr. Watanabe received his M.S. in computer science from Indiana University
in May 19/8, and a second M.S. and Ph.D. from the University of Rochester in
May 1980, and September 1983, respectively. In October 1983, he joined AT&T
Bell Laboratories as a member of the technical staff and participated in two
major research projects: the design of a VLSI fuzzy logic inference engine
for real-time control, and development of an expert system for full custom
VLSI design. Since August 1986, Dr. Watanabe has been a member of the
Department of Computer Science at the University of North Carolina at Chapel
H i l l teaching VLSI design. As a consultant with the Microelectronics Center
of North Carolina, he is continuing his research of fuzzy logic VLSI wh i l e
designing a new chip with more than 600 000 transistors. He is also
designing a software environment for programming and simulation of fuzzy
rules, and is seeking a funding organization for this research. Dr.
Watanabe's research interests include CAD for VLSI, VLSI design, fuzzy
logic, applied Al and neural networks, with a particular interest in
designing a VLSI architecture for Al application.

,\\

FUZZY LOGIC INFERENCE PROCESSOR -
A CUSTOM VLSI DESIGN FOR SYSTEM INTEGRATION

Abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use
of rule-based control and dec!sionmaking in demanding real-time applications
such as robot control, and the area of command and control. The f u l l custom
CMOS VLSI is described. The chip is second generation of such design and
has several design features which make its use realistic. These features
include reconfigurable architecture, on-chip fuzzificat ion and defuzzifi-
cation, and memory and data-path redundancy for higher yield. The chip
consists of 61A 000 transistors, of which 460 000 are used for random access
memory. For the fuzzy inference chip to be useful, we must package it into
a system integrating hardware and software. We need to provide a user-
friendly interface for control engineers. We are developing a system that
combines graphic text inputs in a multiple-window environment. For rule set
programming, a multiple-window environment provides editing and display
fac i l i t i e s for the fuzzy rule sets, for fuzzy variables, and for the fuzzy
set membership functions. Separate text and graphic windows interact with
the user and display the developing system in various modes from different
levels of abstraction. Simulation of the rule execution also can be
displayed in graphic form.

Fuzzy Logic Inference Processor :
A Full Custom Design for System Integration

Hiroyuki Watanabe
Wayne Dettlofft

James Symon
Phil Jacobsen
Russell Taylor

Ian Philp

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514
(919)962-1817

Microelectronics Center of North Carolina'
Research Triangle Park, NC 27709

(919)248-1874

March 26, 1988

abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use of rule-based
control and decision making in demanding real-time applications such as robot control and
in the area of command and control. The full custom CMOS VLSI is described. The chip
is second generation of the design. It has several design features which make the use of this
chip realistic. These features include reconfigurable architecture, on-chip fuzzification and de-
fuzzification, and memory and data-path redundancy. The chip consists of 614,000 transistors
of which 460,000 are used for RAM memory.

1 Introduction

Fuzzy logic based control uses a rule-based expert system paradigm in the area of real-time
process control [4]. It has been used successfully in numerous areas including chemical process
control, train control [12] cement kiln control [2], and control of small aircraft [5]. In order
to use this paradigm of a fuzzy rule-based controller in demanding real-time applications, the

VLSI implementation of the inference mechanism has been an active research topic [9,10,11].
Potential applications of such a VLSI inference processor includes real-time decision- making
in the area of command and control [3], control of the precision machinery [1], and robotic
systems [6].

We have been designing a second-generation VLSI fuzzy logic inference engine on a chip.
The new architecture of the inference processor has the following important improvement com-
pared to previous work:

1. programmable rule set memory

2. on-chip fuzzifying operation — table lookup

3. on-chip defuzzifying operation - center of area algorithm

4. reconfigurable architecture

5. RAM redundancy for higher yield

The original prototype experimental chip (designed at AT&T Bell Labs) had minimal logic
on chip. For example, it used ROM for the rule set memory which reduced its utility [10].
We are now designing a more realistic chip which has RAM for the rule set memory so that
rules can be programmable. In addition to the fuzzy inference mechanism, the fuzzifying and
defuzzifying operations are performed on chip. The new design has a reconfigurable architecture
such that we can have either 51 rules, 4 inputs and 2 outputs, or 102 rules, 2 inputs and 1
output. These new design decisions render the new architecture realistic.

2 Fuzzy Set and Fuzzy Logic

Fuzzy set is based on a generalization of the concept of the ordinary set. In an ordinary set,
we associate a characteristic function for each set. For example, we can define a set S with its
characteristic function /, -» {0, 1). Then, for all e in the universal set £7,

ee5 if /.(c) = l,
e$S if /.(c) = 0.

Each element of the universe either belongs to or does not belong to the set S. In a fuzzy set,
an element can be a member of the set with varying degree of membership. The associated
characteristic function, therefore, returns any real number between 0 and 1, and it is termed
as the membership function. For a fuzzy set F, we have an associated membership function
p-r(e) — > [0, 1]. For example, if element e is a member of fuzzy set F with degree 0.34, the
associated membership function returns this value, p.p(e) = 0.34. If (J.p(e) = 0, e is entirely
outside of fuzzy set F, and if MF(C) = 1, e is entirely inside of fuzzy set F. Fuzzy set is
represented by a set of ordered pairs of an element u,- and its grade of membership:

where U is a universe of discourse. Using a fuzzy set, we can represent and manipulate imprecise
and vague concepts and data. For example, approximately 100 km/h is represented by the fuzzy

v>
k.
0)
JO

E
at

90 100
Speed

110 Km/h

Figure 1: Approximately 100 km/h.

set whose membership function is shown in Figure 1. We can extend classical set theory by
denning basic set theoretic operations over fuzzy sets. The following definition of intersection
and union with fuzzy sets are suggested by Zadeh [13]. The set theoretic operations with fuzzy
sets are denned via their membership functions. Let A and B be a fuzzy set, then union,
intersection and complement of the fuzzy sets are defined as follows. The membership function
of the intersection C = A n B is defined by

The membership function of the union D = A U B is defined by

The membership function of the complement -<A of A is defined by

P-A(e) = 1 - AM(e), e e U.

In the traditional logic, one of the most important inference rules is modus ponens, that is

Premise
Implication
Conclusion

A is true
If A then B
B is true

Here, A and B are crisply defined propositions. We can construct a fuzzy proposition using a
fuzzy set such as:

Current speed is approximately 100 km/h.

By introducing fuzzy propositions into modus ponens, we can generalize modus ponens. Let
C, C', D, D' be fuzzy sets. Then the generalized modus ponens states:

Premise
Implication
Conclusion

xis C'
If x is C then y is D
y is D'

We can use different premises to arrive at different conclusions using the same implication. For
example,

•1 0

0.85

-1 0

or

Premise
Implication
Conclusion

Premise
Implication

Figure 2: Inference.

Visibility is slightly low
If visibility is low then condition is poor

Conclusion

Condition is slightly poor

Visibility is very low
If visibility is low then condition is poor
Condition is very poor

The above inference is based on the compositional rule of inference for approximate reasoning
proposed by Zadeh [14]. Suppose we have two rules with two fuzzy clauses in the IF-part and
one clause in the THEN-part:

Rule 1: If (x is AI) and (y is BI) then (z is C"i),
Rule 2: If (x is A2) and (y is B2) then (z is C2).

We can combine the inference of the multiple rules by assuming the rules are connected by
OR connective, that is Rule 1 OR Rule 2 [10].

Given fuzzy proposition (x is A') and (y is J?'), weights af and af of clauses of premises
are calculated by :

af = max(/iB-nfli(e)), e e Y for i= 1,2.

Then, weights w\ and w? of the premises are calculated by :

= min(a;2 ,a2),

4

Weight af represents the closeness of proposition (x is A;) and proposition (x is A'). Weight
W{ represents similar measure for the entire premise for the iih rule. The conclusion of the first
rule is

C[= min(ttfi,Ci),

The conclusion of the second rule is

The overall conclusion C' is obtained by

C' = max(C{,C2').

This inference process is shown in Figure 2. In this example, aj* = 0.5 and af = 0.25, therefore
wi = 0.25. a£ = 0.85 and af = 0.5, therefore tt>2 = 0.5.

3 Rule-based Controller

The usual approach for automatic process control is to establish a mathematical model of the
process. However, this is riot always feasible. In some cases, there is no proper mathematical
model because the process is too complex or ill-understood. In other cases, experimenting
with plants for construction of mathematical models is too expensive. In still other cases, the
mathematical models are too complicated or computationally expensive and are not suitable
for real time use. For such processes, however, skilled human controllers may be able to operate
the plant satisfactorily. The operators are quite often able to express their operating practice
in the form of rules which may be used in a rule-based controller. The rule based controllers
model the behavior of the expert human operator instead of the process. The following is a
rule from an aircraft flight controller [5]. This rule takes three inputs and has two outputs.

If (1) The rate of descent is Positively Medium,
(2) The airspeed is Negatively Big (compared to the desired airspeed),
(3) The glide slope is Positively Big (compared to the desired slope).

Then (1) change engine speed by Positively Big, and
(2) change elevator angle by Insignificant Change.

The expressions, Positively Medium, Positively Big, Insignificant Change, and others represent
imprecise amounts. They represent intuitive feel of the expert human controller. They cor-
respond to the imprecise expressions used by the expert for communicating a rule of thumb.
They are represented by using fuzzy sets and their associated membership functions.

The fuzzy set, such as Positively Medium is represented by the membership function over an
appropriate universe of discourse such as revolutions per minute (rpm). The possible definitions
of fuzzy sets are shown in Figure 3. The control rules are encoded using typically 10 to 70
rules. The Control is performed based on the fuzzy inference mechanism described in Section
2 and Figure 2. In controlling a process, all of the rules are compared to the current inputs
(observations) and fired. The actions (THEN-part) of each rules are weighted by how close its
IF-part matches the current observation. In the example of Figure 2, a rule has two inputs and

Figure 3: Typical fuzzy sets.

a single output. The weights are represented by w\ and w?. The results of firing of each rule
are then combined by superimposing them. The final result which is supplied to a controller
should be a crisp number rather than a fuzzy set, therefore we need to perform a defuzzifying
operation. This is computed by taking a center of area under the fuzzy membership function of
the final result. Even though each individual rule is an incomplete rule of thumb, the results of
firing each rule are properly weighted and combined and the final result represents reasonable
compromise.

In order for VLSI implementation of fuzzy inference to be useful, a fair amount of pre-
processing (fuzzifying) and post-processing (defuzzifying) must be performed on chip. The
AT&T prototype chip assumed that both of these processes are performed by the host-
processor. However, the inference processing is too fast for fuzzifying and defuzzifying to
take place off-chip by a hast processor. This assumption burdened the host processor and
nullified the advantage of VLSI implementation of the inference mechanism.

4 Chip Architecture and Implementation

The process controller system is configured as in Figure 4. The VLSI implementation is done
with four components; a fuzzyer, a rule memory, an inference mechanism, and a defuzzifier
on a single chip. Each input and output data item is 6 bits. This fits well with available
A/D and D/A converters. In addition, our chip will communicate with a host processor. The
chip has three stage pipelining architecture. The pipeline consists of IF-part, THEN-part, and
defuzzifier.

We considered the size of the fuzzy set and the grade of fuzziness for practical use. In most
cases, a fuzzy variable has three to sixteen elements and the grade of fuzziness has three to
twelve levels [5,8]. In this chip implementation, the universe of discourse of a fuzzy set is a finite
set with 64 elements (i.e. 6 bits). The membership function has 16 levels (i.e. 4 bits). That
is, 0 represents no membership, 15 represent full membership, and other numbers represent
points in the unit interval [0, 1]. A fuzzy membership function is, therefore, discretized using
64 numbers of 4 bit; that is 256 bits of memory storage. The representation of a fuzzy set is
as follows:

ut

|| oooo I ooii oooo

User

Fuzzy logic
controller

host
Processor

Inference
engine

process

Figure 4: Fuzzy logic controller.

Fuzzifying is done using a table look-up. For each observation (i.e. input stream), we store
a table of the membership function normalized at the center of the horizontal axis. That is,
the full membership is at the center. According to an input value, the membership function is
shifted. The chip can produce 64 different membership functions from a single stored pattern.
The membership function can be associated with a predicted measurement error of a sensor.
If we do not need fuzziness in the observed value, we can store a pulse function, that is only
one entry has membership 1 and all the other entries have O's. The result of the fuzzifying is
broadcasted to all of the rules. In the actual chip implementation, the content of the table is
not shifted. Rather a starting address for table look-up is shifted according to an observation
input.

The chip is re-configurable. A control system can take four inputs and produce two out-
puts or take two inputs and produce one output according to an application. With the first
configuration, we can have 51 rules on a single chip. Each rule has four clauses in the IF-part
and two actions in the THEN-part.

If A and B and C and D
Then Do E, and

DoF.

With the second configuration, we can execute 102 rules using a same data-path. Each rule
has two clauses in the IF-part and one action in the THEN-part.

If A and B Then Do E,
If C and D Then Do F.

A data-path is assigned for each rule, therefore all of 51 or 102 rules are executed in parallel.
There are only two basic units; they are a parallel minimum unit and a parallel serial unit.
The former performs the intersection operation on fuzzy sets, and the latter performs the union
operation. The configuration of the If-part of the data-path is shown in figure 5. The data-path
can execute one rule with 4 if-clauses or two rules with 2 if-clauses. Four pairs of min/max units
compute the weight Q'S for each clause. The min elements organized as a binary tree compute
weights w of the premise which is the minimum of all a's. In the 51 rule configuration, the last
two minimum units compute the same weight «;,-. In the 102 rule configuration, streams of 1's
are supplied and these two min elements behave as delay elements. The control of configuration
is done by setting a bit in the status register from the host computer. Defuzzifying is done by
computing a center of area (COA) under the final membership function. Denoting the final
fuzzy subset as A, the COA algorithm computes the following:

c* = "^

Since each element of the universe is processed serially, we can substitute multiple addition for
multiplication in the above computation. The data sequence from the THEN-part is produced
starting from the most significant data point as follows:

, AM(62),

IF.Part THEN.Part

A Input

E Action

r
F Action

TO E THEN-Tree

TO F THEN-Trw

Rfleea loadw

Figure 5: Reconfigurable data-path for rule execution.

E or F stream
Irom THEN tree

To Pins

Figure 6: Defuzzifier circuit.

Fuse

Rule Select

Figure 7: Redundancy

Two adders and two registers are used as shown in Figure 6. The numerator is computed by the
first adder and denominator is produced by the second adder. The denominator is computed
as by repeated addition of the result of the first adder by the second adder which computes
the following formula.

63

n=0

In order to achieve higher yield, we allocated 51 data-paths on the chip, and non-functioning
memory units and data-paths can be isolated from the rest of the chip. The isolation is achieved
by blowing a fuse using laser technology. Each pair of a memory unit and a data-path can be
reprogrammed to any other address also by blowing a fuse. This allows a continuous addressing
of memory/data-paths after removal of a defective unit from a chip. The schematic diagram
for address removal and re-programming circuit is shown in Figure 7.

The host processor down loads the rule set and table for fuzzification at start up time.
The fuzzy processor looks like a static RAM chip to the host processor. The RAM system,
however, only has a row decoder and does not have a column decoder. A user can address
each row (corresponds a clause/action of a rule) by a memory address register. Each column is
addressed by a shift register because data are accessed sequentially. The last address is reserved
and mapped to the status register. This register controls the configuration of data-paths and
operational modes (load, run, or test). Fuzzification tables have their own memory address
and loaded similarly as rule memory.

The chip is designed for a 1 ̂ m N-well CMOS process of MCNC [7]. It uses non-overlapping

10

Die Size 7750/i x 9080/i
No. Transistors 614K (470K RAM)
No. Pins 84 (16 Power/GND)
Package Type PGA (Standard Pad Frame)
Clock Frequency 40 MHz © 70°C
Power Supply 3.0 -3.3 v
Power (Est.) 600mW
Interface TTL Compatible
Modes 4 inputs/2 outputs/51 rules,

2 inputs/1 outputs/102 rules,
test

Redundancy Laser Programmable

Process 1 /zm N-well CMOS
Gate Length/ior 1.0/nn/22.5nm
Poly/Metal I/Metal 2 2.6/2.6/4.0//m

Table 1: Summary of circuits

two phase docking scheme. The chip is designed with a target operational speed of 40MHz.
The chip consists from approximately 614,000 transistors of which about 470,000 are used to
form the static RAM system. The die size is 7750/zm by 9080/zm, and is packaged in a standard
pin grid array with 84 pins. The supply voltage is 3.0-3.3 v. Table 1 summarizes the process,
device specifications and primary architectural features. Figure 8 shows the layout map of the
chip.

5 System Integration

For the fuzzy inference chip to be useful we must package it into a system integrating hardware
and software, hence development of hardware and software must be coordinated. We need to
provide a user friendly interface to control engineers. We have performed a substantial work in
development of software system. Hardware side of the system integration is in a preliminary
design stage.

5.1 Hardware System

For the hardware side, we will package the VLSI chip into a single board system. The
single board system should be bus compatible with widely available personal computers or
workstations. Potential candidates are: 1) IBM PC/AT, 2) Sun workstation, 3) IBM Personal
System II, 4) Apple Machlntosh II. At this moment, we believe either IBM PC/AT or Sun
workstation is most suitable for our purpose. IBM PC/AT is widely available and is used in
factory automation. On the other hand, we have extensive software on Sun worksation.

11

Layout Mao

c

c

0
u
t
P
u
t

E

HOST Interface

0

3

U

WD
a r
• i
d v

e
Q

D
ntrol

D
WD
3 r
• i
d v

e
^

n
itrol

D
WD
o r
• i
d v

e
Q

D

Clod

R/W, SA. Decode

Rule Ram

IF Logic
THEN Tree

R/W, SA, Decode

Rule Ram

IF Logic

THEN Tree
R/W, SA, Decode

Rule Ram

IF Logic
THEN Tree

Fuzzi tiers
Defuzziti©r ' ' ' '

(S •.--1 II 1
Defuzzifier

Inputs A-C

1
n
P
u
t

A

0
u
t
P
u
t

F

Figure 8: Layout map

12

The single board system consists of a VLSI fuzzy logic inference processor chip, logic for a
standard bus interface, A/D converters for inputs, D/A converters for output, and glue logic.
For applications requiring more rules, we can combine multiple fuzzy chips into one inference
processing system. We would only need a small amount of extra glue logic and chip control.
Overall the single board system is fairly modest and should be easy to construct.

5.2 Software system

For software system integration, we need a programming environment for developing the
control rules, and software to communicate and drive the fuzzy logic inference board from a
host processor. We have been developing a system that combines graphic input and text input
in a windowed environment using X window system. Window environment is useful for editing
of rule set, and graphic representation of simulation of rule set execution.

5.3 Programming Environment

As discussed above, the chip's output is driven by a set of IF-THEN rules. A rule set should
be easy to develop, test and load into the chip. Our programming environment allows a user
easily to describe a rule set which represents operating practice in the system that the chip
will control. The user must be able to define membership functions and assign them to IF and
THEN clauses of the rules. Fuzzy variables which will take on input values during chip operation
must also be assigned membership functions for the fuzzifying process. The environment allows
easy simulation and testing of the rule set. The simulated execution is displayed graphically
for ease of debugging and refinement of the rule set. Finally, the rule set will be down-loaded
to the Fuzzy Logic Board.

5.3.1 Editors

For rule set programming, a multiple window environment provides editing and display facilities
for the fuzzy rule sets, for fuzzy variables, and for the fuzzy set membership functions used
in both the fuzzifying process and the representation of the rule clauses. Separate text and
graphic windows interact with the user and display the developing system in various modes
and from different levels of abstraction.

Working in the editors, the user may proceed sequentially or select randomly among the
items to be defined. Automatic sequential entry allows fast initial setup of prototype rule
systems. Correction and modification require random access.

For each of the editors, (fuzzy set membership functions, fuzzy variables, and the fuzzy rule
set), a text window and a graphics window are available and may be displayed simultaneously.
Editing may proceed by text input to the text window, or by mouse and keyboard input to the
graphics window. As changes are made in one window, the corresponding changes will appear
in the other window as appropriate to that mode.

A fuzzy set membership function is represented internally as 64 discrete numbers, each
specifying the membership at one point in the universe of discourse. Graphic input of the
corresponding shape may be made by line segments which are immediately translated into the
step function of discrete values. Figure 9 shows an actual screen of Sun workstation perfoming

13

Editing FuzzlFylnf function

* Value Value

10
11
12
13
14
15

0.0667
0.1133
0.1600
0.2067
0.2533
0.
0.
0.
.440
0.4867
0.5333
0.5800
0.6267
0.6733
0.7200
0.7667

.
0.3000
0.3467
0.3933

16 0
17 0

|1 8
II 1
23 1

1

1
1

1
1

24
25
26
27
28
29
30
31

8133
8600
9067
9533
OOOO
OOOOcooooooooooooooooooooooooooooooooooooooo

Value

1 1;
37 1

II i
4?
42 1
43 1
44
45
46
47

0000
0000oooo
0000
0000

oooo
0000oooooooooooooooo
oooooooo

Value

48 1
49 1
50 1
51 1
52 1
53 1.
54 1.
55
56
57
58
59
60
61
62
63

OOOO
OOOO
OOOOoooo
oooooooooooooooo
oooooooooooooooooooooooooooooooo

Editing FuzziFulnt Function

1

Figure 9: Graphic editor

this task. The function is given a name such as positive medium. Alternatively, a membership
function may be a prededined shape such as a triangular.

A library of fuzzy set membership functions gives the programmer the option of using
predefined terms for the rule set clauses and fuzzifying functions. Without the need for extensive
initial definition of terms, prototyping can progress quickly to the simulation stage. The system
may then be fine-tuned through custom redefinition of terms. Predefined fuzzy set membership
functions may also be associated with application derived terminology without the need for
customized function shape specification. Additions and deletions may be made in the library.

A fuzzy variable is the internal representation of some input or output such as airspeed,
glide slope, or elevator angle. For processing by the fuzzy system, a single value is represented
by a membership function over a universe of discourse. Thus a fuzzy variable must be associated
with a membership function which will fuzzify an input value or represent the output of a rule
for subsequent output value determination. Using the editor, the associated function may be
layed out in the graphics window or an existing membership function name may be specified in
the text window. The corresponding graphic shape will then appear in the graphics window.

The rule editor has a structured text editor. The user fills in the blanks and is prompted

M

input value

IF is ____ and

is and

is and

is and

action value

THEN DO and

DO

Figure 10: Rule editor - text window.

at the next blank. See Figure 10. The user may move the cursor to any blank and may select
at random the rule currently being edited. As blanks are filled in, the corresponding graphic
shapes will appear in the graphics window. The window configurations on Sun workstation are
shown in Figure 11.

5.3.2 Simulation

The development of control rules is experimental in nature; a trial and error approach is
customary. Simulation of the rule set system is therefore required. This includes offline,
software simulation of the behavior of the chip as well as interaction with a program simulating
the process to be controlled. These simulation processes are integrated with the rule editing
facilities. The rule set programmer makes changes and views their effects without delay or
exiting from the system.

The system graphically displays the inference process of the simulated chip execution within
the system windows. This facilitates debugging and refinement of the rule set. Rule by rule
analysis of the simulation is possible as well as monitoring overall behavior. The user selects a
subset of the rules. This subset, which may be one, some, or all of the rules, can be fired one
at a time or simultaneously. The effect on the chip output is displayed in a separate window.
Any subset may also be 'unfired', or deleted after firing of some, or all of the rules. The system
then displays the intermediate or final output that would result absent that rule or subset of
rules. Again, this unfiring may be done stepwise or simultaneously.

The system makes the output available at interprocess communication sockets, and similarly
will accept input variable values at sockets. A simulation of a process to be controlled by the
chip may thus be controlled directly from the rule set programming environment. The actual
operation of the current rule set on the controlled process may be monitored and the rule set

15

Variables

Name Fuzzlfylng Function

Humidity very Fuzzy

Rotation blank

Oxlgen Steep

Temprature center

Rule HO 1

IF Humidity Is PosBig And

Rotation Is VerySmall And

Oxlgen is And

Temprature is

Then make

make

r

FuzzlFying Functions

" gfc
F2 BBHI

f3 A

F4 •
'*

Membership Functions

IF J| AND

Po>B^« flND
V^^U^mM 1

IHHMI ftMD

mm
Then 1HHH

aamm

FuzziFying Library

half blank

cup hills

center Steep

veryFuzzy

r

Membership Library

slope PosBlg

PoiMed Zero

NegBli

r

Figure 11: Window configuration.

16

changed immediately in response to this simulation.

5.4 Device Driver

Driving the chip is fairly simple. It is done by down loading a rule set and setting the chip to
run mode. At execution time, the chip can communicate with A/D and D/A converters either
directly or through a host. To the host, the fuzzy logic chip looks like a static RAM chip. It
has the usual R/W and enable pins. Down-loading of the rule is done using address and data
registers.

6 Acknowledgement

The defuzzifying circuits were designed by JeffHultquist and Jih-Fang Wang of the University
of North Carolina at Chapel Hill. Kathy E.Yount of MCNC assisted for designing VLSI layout
and producing figures for publication. Research reported here is supported in part by Micro-
electronic Center of North Carolina through MCNC Design Initiative Program, by the Office
of Naval Research (Contract No. N00014-86-0680) and University of North Carolina Junior
Faculty Development Fund.

References

[1] Burg, B., L. Foulloy, J. C. Heudin, and B. Zavidovique, "Behavior Rule Systems for Dis-
tributed Process Control," Proc. of 2ed Conf. on AI Applications, pp. 189-203, December
1985.

[2] Holmblad, L. P. and J. J. Ostergaard, "Control of a Cement Kiln by Fuzzy Logic," in
Fuzzy Information and Decision Processes, M. M. Gupta and E. Sanchez (Eds), pp. 389-
399, 1982.

[3] Kawano, K., M. Kosaka, and S. Miyamoto, "An Algorithm Selection Method Using Fuzzy
Decision-Making Approach," Trans. Society of Instrument and Control Engineers, Vol. 20,
No. 12, pp. 42-49, 1984. (in Japanese)

[4] King, P. J. and E. H. Mandani, "The Application of Fuzzy Control Systems to Industrial
Processes," Automatica, Vol. 13, No. 3, pp. 235-242, 1977.

[5] Larkin, L. L, "A Fuzzy Logic Controller For Aircraft Flight Control," in Industrial Appli-
cations Of Fuzzy Control, M. Sugeno (Ed), pp. 87-103, 1985.

[6] Murakami, S., F. Takemoto, H. Fujimura, and E. Ide, "Weld-line Tracking Control of
Arc Welding Robot Using Fuzzy Logic Controller," Proc. of 2nd Inter. Fuzzy Systems
Association Congress, pp. 353-357, July 1987.

[7] Sharma, D., S. Goodwin-Johansson, D. S. Wen, C. K. Kim, and C. M. Osburn, "A l/«n
CMOS Technology with Low Temperature Processing," Extended Abstracts of 171 meet-
ings of the Electrochemical Society, Vol. 87-1, pp. 213-214, May 1987.

17

[8] Sugeno, M. and Murakami, K., "Fuzzy Parking Control of Model Car," Proc. the 23rd
IEEE Conf. Decision and Control, December 1984.

[9] Togai, M, and S. Chiu, "A Fuzzy Logic Accelerator and a Programming Environment for
Real-Time Fuzzy Control," Proc. of 2nd Inter. Fuzzy Systems Association Congress, pp.
147-151, July 1987.

[10] Togai, M. and H. Watanabe, "An Inference Engine for Real-time Approximate Reasoning:
Toward an Expert on a Chip," IEEE EXPERT, Vol. 1, No. 3, pp. 55-62, August 1986.

[11] Yamakawa, T. and T. Miki, "The Current Mode Fuzzy Logic Integrated Circuits Fabri-
cated by the Standard CMOS Process," IEEE Transactions on Computers, Vol. C-35, No.
2, pp. 161-167, February 1986.

[12] Yasunobu, S., S. Miyamoto, T. Takaoka, and H. Ohshima, "Application of Predictive Fuzzy
Control to Automatic Train Operation Controller," Proc. ofIECON'84, pp. 657-662, 1984.

[13] Zadeh, L. A., "Fuzzy set," Information and Control, Vol. 8 pp. 338-353, 1965.

[14] Zadeh, L. A., "Outline of a New Approach to the Analysis of Complex Systems and
Decision-Making Approach," IEEE Transactions on Systems, Man and Cybernetics, Vol.
SME-3, pp. No. 1, pp. 28-45, January 1973.

18

