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APPLIED AND REAL NEURAL NETWORKS:
A COORDINATED AND INTERDEPENDENT INVESTIGATION OF BOTH

Abstract

One and a half years ago, Caltech organized a new graduate program in
Computation and Neural Systems (CNS). This program involves 15 faculty
members with interests as diverse as statistical physics, concurrent
computing, analog VLSI, signal processing, optical computing, machine vision
robotics, and the neurobiological study of numerous real neural systems.
The Bower laboratory is an integral part of the CNS program with our primary
interest being the coordinated study of information processing in real
neural networks. The principal approach taken is one that views these
networks as systems of complex processing elements having functions that are
intimately related to their specific distributed architectures. W i t h i n the
lab, our multidisciplinary approach includes standard anatomical and
physiological investigations linked to computer modeling techniques. In
addition, we are developing new experimental techniques which directly
address computational issues in real neural structures. For example, we are
using modern silicon manufacturing technology to make m u l t i s i t e brain
recording electrodes which capture the activity of m u l t i p l e , functionally
related neurons. We have also constructed a general-purpose neural network
simulator with interactive graphics (CAD/CAM for neural networks) that runs
on concurrent computers. F i n a l l y , we have been exploring the use of applied
neural networks in recognizing and categorizing recorded signals from real
neurons. Each of these efforts is described. This work is sponsored by the
Whitaker Foundation, the Joseph Drown Foundation, and Lockheed Corporation.
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ABSTRACT

Based on anatomical and physiological data, we have developed a computer simulation of pin-
form (olfactory) cortex which is capable of reproducing spatial and temporal patterns of actual
cortical activity under a variety of conditions. Using a simple Hebb-type learning rule in conjunc-
tion with the conical dynamics which emerge from the anatomical and physiological organiza-
tion of the model, the simulations are capable of establishing cortical representations for differ-
ent input patterns. The basis of these representations lies in the interaction of sparsely distribut-
ed, highly divergent/convergent interconnections between modeled neurons. We have shown that
different representations can be stored with minimal interference, and that following learning
these representations are resistant to input degradation, allowing reconstruction of a representa-
tion following only a partial presentation of an original training stimulus. Further, we have
demonstrated that the degree of overlap of cortical representations for different stimuli can
also be modulated. For instance similar input patterns can be induced to generate distinct cortical
representations (discrimination), while dissimilar inputs can be induced to generate overlapping
representations (accommodation). Both features are presumably important in classifying olfacto-
ry stimuli.

INTRODUCTION

Piriform cortex is a primary olfactory cerebral cortical structure which receives
second order input from the olfactory receptors via the olfactory bulb (Fig. 1). It
is believed to play a significant role in the classification and storage of olfactory
information1'2'3. For several years we have been using computer simulations as a
tool for studying information processing within this cortex4-5. While we are ulti-
mately interested in higher order functional questions, our first modeling objective
was to construct a computer simulation which contained sufficient neurobiological
detail to reproduce experimentally obtained cortical activity patterns. We believe
this first step is crucial both to establish correspondences between the model and
the cortex, and to assure that the model is capable of generating output that can
be compared to data from actual physiological experiments. In the current case,
having demonstrated that the behavior of the simulation at least approximates
that of the actual cortex4 (Fig. 3), we are now using the model to explore the
types of processing which could be carried out by this cortical structure. In partic-
ular, in this paper we will describe the ability of the simulated cortex to store and
recall cortical activity patterns generated by stimulus various conditions. We
believe this approach can be used to provide experimentally testable hypotheses
concerning the functional organization of this cortex which would have been diffi-
cult to deduce solely from neurophysiological or neuroanatomical data.
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Fig. 1. Simplified block diagram of the olfactory system and closely related structures.

MODEL DESCRIPTION

This model is largely instructed by the neurobiology of pirifonn cortex3. Axon-
al conduction velocities, time delays, and the general properties of neuronal inte-
gration and the major intrinsic neuronal connections approximate those currently
described in the actual cortex. However, the simulation reduces both the number
and complexity of the simulated neurons (see below). As additional information
concerning the these or other important features of the cortex is obtained it will be
incorporated in the model. Bracketed numbers in the text refer to the relevent
mathematical expressions found in the appendix.

Neurons. The model contains three distinct populations of intrinsic cortical
neurons, and a fourth set of cells which simulate cortical input from the olfactory
bulb (Fig. 2). The intrinsic neurons consist of an excitatory population of pyrami-
dal neurons (which are the principle neuronal type in this cortex), and two popula-
tions of inhibitory intemeurons. In these simulations each population is modeled
as 100 neurons arranged in a 10x10 array (the actual pirifonn cortex of the rat
contains on the order of 106 neurons). The output of each modeled cell type con-
sists of an all-or-none action potential which is generated when the membrane
potential of the cell crosses a threshold [2.3]. This output reaches other neurons
after a delay which is a function of the velocity of the fiber which connects them
and the cortical distance from the originating neuron to each target neuron [2.0,
2.4]. When an action potential arrives at a destination cell it triggers a conduc-
tance change in a particular ionic channel type in that cell which has a characteris-
tic time course, amplitude, and waveform [2.0, 2.1]. The effect of this conductance
change on the transmembrane potential is to drive it towards the equilibrium
potential of that channel. Na+, CT, and K+ channels are included in the model.
These channels are differentially activated by activity in synapses associated with
different cell types (see below).
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Fig. 2. Schematic diagram of piriform cortex showing an excitatory pyramidal cell and two
inhibitory intemeurons with their local interactions. Circles indicate sites of synapric modi/La-
bility.

Connection Patterns. In the olfactory system, olfactory receptors project to the
olfactory bulb which, in turn, projects directly to the piriform cortex and other olfac-
tory structures (Fig. 1). The input to the piriform cortex from the olfactory bulb is
delivered via a fiber bundle known as the lateral olfactory tract (LOT). This fiber
tract appears to make sparse, non-topographic, excitatory connections with pyra-
midal and feedforward inhibitory neurons across the extent of the cortex3-6. In the
model this input is simulated as 100 independent cells each of which make ran-
dom connections (p=0.05) with pyramidal and feedforward inhibitory neurons
(Fig. 1 and 2).

In addition to the input connections from the olfactory bulb, there is also an
extensive set of connections between the neurons intrinsic to the cortex (Fig. 2).
For example, the association fiber system arises from pyramidal cells and makes
sparse, distributed excitatory connections with other pyramidal cells all across the
cortex7-8-9 . In the model these connections are randomly distributed with 0.05
probability. In the model and in the actual cortex, pyramidal cells also make exci-
tatory connections with nearby feedforward and feedback inhibitory cells. These
intemeurons, in turn, make reciprocal inhibitory connections with the group of
nearby pyramidal cells. The primary effect of the feedback inhibitory neurons is to
inhibit pyramidal cell firing through a Cl" mediated current shunting mecha-
nism10-1 1<12. Feedforward intemeurons inhibit pyramidal cells via a long latency,
long duration, K* mediated hyperpolarizing potential12-13. Pyramidal cell axons
also constitute the primary output of both the model and the actual piriform cor-
tex7.14



Synaptic Properties and Modification Rules. In the model, each synaptic con-
nection has an associated weight which determines the peak amplitude of the con-
ductance change induced in the postsynaptic cell following presynaptic activity
[2.0]. To study learning in the model, synaptic weights associated with some of
the fiber systems are modifiable in an activity-dependent fashion (Fig. 2). The
basic modification rule in each case is Hebb-like; i.e. change in synaptic strength
is proportional to presynaptic activity multiplied by the offset of the postsynaptic
membrane potential from a baseline potential. This baseline potential is set
slightly more positive than the Cl" equilibrium potential associated with the shunt-
ing feedback inhibition. This means that synapses activated while a destination
cell is in a depolarized or excited state are strengthened, while those activated
during a period of inhibition are weakened. In the model, synapses which follow
this rule include the association fiber connections between excitatory pyramidal
neurons as well as the connections between inhibitory neurons and pyramidal neu-
rons. Whether these synapses are modifiable in this way in the actual cortex is a
subject of active research in our lab. However, the model does mimic the actual
synaptic properties associated with the input pathway (LOT) which we have
shown to undergo a transient increase in synaptic strength following activation
which is independent of postsynaptic potential15. This increase is not permanent
and the synaptic strength subsequently returns to its baseline value.

Generation of Physiological Responses. Neurons in the model are represented t

as first-order "leaky" integrators with multiple, time-varying inputs [1.0]. During
simulation runs, membrane potentials and currents as well as the time of
occurence of action potentials are stored for comparison with actual data. An
explicit compartmental model (5 compartments) of the pyramidal cells is used to
generate the spatial current distributions used for calculation of field potentials
(evoked potentials, EEGs) [3.0,4.0].

Stimulus Characteristics. To compare the responses of the model to those of
the actual cortex, we mimicked actual experimental stimulation protocols in the
simulated cortex and contrasted the resulting intracellular and extracellular
records. For example, shock stimuli applied to the LOT are often used to eb'cit
characteristic cortical evoked potentials in vivo16-17-18. In the model we simulated
this stimulus paradigm by simultaneously activating all 100 input fibers. Another
measure of cortical activity used most successfully by Freeman and colleagues
involves recording EEC activity from piriform cortex in behaving animals19-20.
These odor-like responses were generated in the model through steady, random
stimulation of the input fibers.

To study learning in the model, once physiological measures were established,
it was required that we use more refined stimulation procedures. In the absence of
any specific information about actual input activity patterns along the LOT, we
constructed each stimulus out of a randomly selected set of 10 out of the 100 input



fibers. Each stimulus episode consisted of a burst of activity in this subset of
fibers with a duration of 10 msec at 25 msec intervals to simulate the 40 Hz peri-
odicity of the actual olfactory bulb input. This pattern of activity was repeated in
trials of 200 msec duration which roughly corresponds to the theta rhythm period-
icity of bulbar activity and respiration21-22. Each trial was then presented 5 times
for a total exposure time of 1 second (conical time). During this period the Hebb-
type learning rule could be used to modify the connection weights in an activity-
dependent fashion.

Output Measure for Learning. Given that the sole output of the cortex is in the
form of action potentials generated by the pyramidal cells, the output measure of
the model was taken to be the vector of spike frequency for all pyramidal neurons
over a 200 msec trial, with each element of the vector corresponding to the firing
frequency of a single pyramidal cell. Figures 5 through 8 show the 10 by 10 array
of pyramidal cells. The size of the box placed at each cell position represents the
magnitude of the spike frequency for that cell. To evaluate learning effects, overlap
comparisons between response pairs were made by taking the normalized dot
product of their response vectors and expressing that value as a percent overlap
(Fig. 4).

Simulated Actual

Fig. 3. Simulated physiological responses of the model compared with actual cortical respons-
es. Upper Simulated intracellular response of a single cell to paired stimulation of the input
system (LOT) (left) compared with actual response (right) (Haberly & Bower/84). Middle:
Simulated extracellular response recorded at the conical surface to stimulation of the LOT
Gefl), compared with actual response (right) (Haberly.'73b). Lower Stimulated EEC
response reconed at the conical surface to odor-like input (left), for actual EEC see Freeman
1978.



Computational Requirements. All simulations were carried out on a Sun
Microsystems 3/260 model microcomputer equipped with 8 Mbytes of memory and
a floating point accelerator. Average time for a 200 msec simulation was 3 cpu
minutes.

RESULTS

Physiological Responses

As described above, our initial modeling objective was to accurately simulate
a wide range of activity patterns recorded, by ourselves and others, in piriform
cortex using various physiological procedures. Comparisons between actual and
simulated records for several types of response are shown in figure 3. In general,
the model replicated known physiological responses quite well (Wilson et al in
preparation describes, in detail, the analysis of the physiological results). For
example in response to shock stimulation of the input pathway (LOT), the model
reproduces the principle characteristics of both the intracellular and location-
dependent extracellular waveforms recorded in the actual cortex9'17-18 (Fig. 3).

100

Percent Overlap
with

Final Response
Pattern

60
0 5

Number of Trials
Fig. 4. Convergence of the cortical response during training with a single stimulus with synaptic
modification.
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Fig. 5. Reconstruction of cortical response patterns with partially degraded stimuli. Left-
Response, before training, to the full stimulus (left) and to the same stimulus with 50% of the
input fibers inactivated (right). There is a 44% degradation in the response. Right: Response
after training, to the full stimulus (left), and to the same stimulus with 50% of the input
fibers inactivated (right). As a result of training, the degradation is now only 20%.



Trained on A Trained on B Retains A Response

Fig. 6. Storage of multiple patterns. Left: Response to stimulus A after training. Middle:
Response to stimulus B after training on A followed by training on B. Right: Response to
stimulus A after training on A followed by training on B. When compared with the original
response (left) there is an 85% congruence.

Further, in response to odor-like stimulation the model exhibits 40 Hz oscillations
which are characteristic of the EEG activity in olfactory cortex in awake, behaving
animals19. Although beyond the scope of the present paper, the simulation also
duplicates epileptiform9 and damped oscillatory16 type activity seen in the coitex
under special stimulus or pharmacological conditions4.

Learning

Having simulated characteristic physiological responses, we wished to
explore the capabilities of the model to store and recall information. Learning in
this case is defined as the development of a consistent representation in the activ-
ity of the cortex for a particular input pattern with repeated stimulation and synap-
tic modification. Figure 4 shows how the network converges, with training, on a
representation for a stimulus. Having demonstrated that, we studied three proper-
ties of learned responses - the reconstruction of trained cortical response patterns
with partially degraded stimuli, the simultaneous storage of separate stimulus
response patterns, and the modulation of cortical response patterns independent
of relative stimulus characteristics.

Reconstruction of Learned Cortical Response Patterns with Partially Degrad-
ed Stimuli. We were interested in knowing what effect training would have on the
sensitivity of cortical responses to fluctuations in the input signal. First we pre-
sented the model with a random stimulus A for one trial (without synaptic modifi-
cation). On the next trial the model was presented with a degraded version of A
in which half of the original 10 input fibers were inactivated. Comparison of the
responses to these two stimuli in the naive cortex showed a 44% variation. Next,
the model was trained on the full stimulus A for 1 second (with synaptic modifica-
tion). Again, half of the input was removed and the model was presented with the
degraded stimulus for 1 trial (without synaptic modification). In this case the dif-
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Fig. 7. Results of merging cortical response patterns for dissimilar stimuli. Left: Response to
stimulus A and stimulus B before training. Stimuli A and B do not activate any input fibers in
common but still have a 27% overlap in cortical response patterns. Right: Response to stimu-
lus A and stimulus B after training in the presence of a common modulatory input £1. The
overlap in cortical response patterns is now 46%.

ference between cortical responses was only 20% (Fig. 5) showing that training
increased the robustness of the response to degradation of the stimulus.

Storage of Two Patterns. The model was first trained on a random stimulus A
for 1 second. The response vector for this case was saved. Then, continuing with
the weights obtained during this training, the model was trained on a new non-
overlapping (i.e. different input fibers activated) stimulus B. Both stimulus A and
stimulus B alone activated roughly 25% of the cortical pyramidal neurons with 25%
overlap between the two responses. Following the second training period we
assessed the amount of interference in recalling A introduced by training with B
by presenting stimulus A again for a single trial (without synaptic modification).
The variation between the response to A following additional training with B and
the initially saved reponse to A alone was less than 15% (Fig. 6) demonstrating
that learning B did not substantially interfere with the ability to recall A.

Modulation of Conical Response Patterns. It has been previously demon-
strated that the stimulus evoked response of olfactory cortex can be modulated by
factors not directly tied to stimulus qualities, such as the behavioral state of the
animal 1>2°i23. Accordingly we were interested in knowing whether the representa-
tions stored in the model could be modulated by the influence of such a "state"
input.

One potential role of a "state" input might be to merge the cortical response
patterns for dissimilar stimuli; an effect we refer to as accomodation. To test this
in the model, we presented it with a random input stimulus A for 1 trial. It was
then presented with a random input stimulus B (non-overlapping input fibers).
The amount of overlap in the cortical responses for these untrained cases was
27%. Next, the model was trained for 1 second on stimulus A in the presence of an
additional random "state" stimulus El (activity in a set of 10 input fibers distinct
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Fig. 8. Results of differentiating cortical response patterns for similar stimuli. Left:
Response to stimulus A and stimulus B before training. Stimuli A and B activate 75% of
their input fibers in common and have a 77% overlap in cortical response patterns. Right:
Response to stimulus A and stimulus B after training A in the presence of modulatory input
El and training B with a different modulatory input E2. The overlap in cortical response pat-
terns is now 45%.

from both A and B). The model was then trained on stimulus B in the presence of
the same "state" stimulus El. After training, the model was presented with stim-
ulus A alone for 1 trial and stimulus B alone for 1 trial. Results showed that now,
even without the coincident El input, the amount of overlap between A and B
responses was found to have increased to 46% (Fig 7). The role of El in this case
was to provide a common stimulus component during learning which reinforced
shared components of the responses to input stimuli A and B.

To test the ability of a state stimulus to induce differentiation of cortical
response patterns for similar stimuli, we presented the model with a random input
stimulus A for 1 trial, followed by 1 trial of a random input stimulus B (75% of the
input fibers overlapping). The amount of overlap in the cortical responses for these
untrained cases was 77%. Next, the model was trained for a period of 1 second on
stimulus A in the presence of an additional random "state" stimulus El (a set of
10 input fibers not overlapping either A or B). It was then trained on input stimu-
lus B in the presence of a different random "state" stimulus E2 (10 input fibers not
overlapping either A, B, or El) After this training the model was presented with
stimulus A alone for 1 trial and stimulus B alone for 1 trial. The amount of overlap
was found to have decreased to 45% (Fig 8). In this situation El and E2 provided
a differential signal during learning which reinforced distinct components of the
responses to input stimuli A and B.

DISCUSSION

Physiological Responses. Detailed discussion of the mechanisms underlying
the simulated patterns of physiological activity in the cortex is beyond the scope
of the current paper. However, the model has been of value in suggesting roles for



specific features of the cortex in generating physiologically recorded activity. For
example, while actual input to the cortex from the olfactory bulb is modulated into
40 Hz bursts24, continuous stimulation of the model allowed us to demonstrate
the model's capability for intrinsic periodic activity independent of the comple-
mentary pattern of stimulation from the olfactory bulb. While a similar ability has
also been demonstrated by models of Freeman25, by studying this oscillating
property in the model we were able to associate these oscillatory characteristics
with specific interactions of local and distant network properties (e.g. inhibitory
and excitatory time constants and trans-cortical axonal conduction velocities).
This result suggests underlying mechanisms for these oscillatory patterns which
may be somewhat different than those previously proposed.

Learning. The main subject of this paper is the examination of the learning
capabilities of the cortical model. In this model, the apparently sparse, highly dis-
tributed pattern of connectivity characteristic of piriform cortex is fundamental to
the way in which the model learns. Essentially, the highly distributed pattern of
connections allows the model to develop stimulus-specific cortical response pat-
terns by extracting correlations from randomly distributed input and association
fiber activity. These correlations are, in effect, stored in the synaptic weights of
the association fiber and local inhibitory connections.

The model has also demonstrated robustness of a learned cortical response
against degradation of the input signal. A key to this property is the action of
sparsely distributed association fibers which provide reinforcment for previously
established patterns of cortical activity. This property arises from the modification
of synaptic weights due to correlations in activity between intra-cortical associa-
tion fibers. As a result of this modification the activity of a subset of pyramidal
neurons driven by a degraded input drives the remaining neurons in the response.

In general, in the model, similar stimuli will map onto similar cortical respons-
es and dissimilar stimuli will map onto dissimilar cortical responses. However, a
presumably important function of the cortex is not simply to store sensory infor-
mation, but to represent incoming stimuli as a function of the absolute stimulus
qualities and the context in which the stimulus occurs. The fact that many of the
structures that piriform cortex projects to (and receives projections from) may be
involved in multimodal "state" generation14 is circumstantial evidence that such
modulation may occur. We have demonstrated in the model that such a modulato-
ry input can modify the representations generated by pairs of stimuli so as to
push the representations of like stimuli apart and pull the representations of dis-
similar stimuli together. It should be pointed out that this modulatory input was
not an "instructive" signal which explicitly directed the course of the representa-
tion, but rather a "state" signal which did not require a priori knowledge of the
representational structure. In the model, this modulatory phenomenon is a simple
consequence of the degree of overlap in the combined (odor stimulus + modulator)
stimulus. Both cases approached approximately 50% overlap in cortical responses
reflecting the approximately 50% overlap in the combined stimuli for both cases.



Of interest was the use of the model's reconstructive capabilities to maintain the
modulated response to each input stimulus even in the absence of the modulatory
input.

CAVEATS AND CONCLUSIONS

Our approach to studying this system involves using computer simulation to
investigate mechanisms of information processing which could be implemented
given what is known about biological constraints. The significance of results pre-
sented here lies primarily in the finding that the structure of the model and the
parameter settings which were appropriate for the reproduction of physiological
responses were also appropriate for the proper convergence of a simple, biologi-
cally plausible learning rule under various conditions. Of course, the model we
have developed is only an approximation to the actual cortex limited by our knowl-
edge of its organization and the computing power available. For example, the
actual piriform cortex of the rat contains on the order of 106 cells (compared with
102 in the simulations) with a sparsity of connection on the order of p=0.001
(compared with p=0.05 in the simulations). Our continuing research effort will
include explorations of the scaling properties of the network.

Other assumptions made in the context of the current model include the
assumption that the representation of information in piriform cortex is in the form
of spatial distributions of rate-coded outputs. Information contained in the spatio-
temporal patterns of activity was not analyzed, although preliminary observation
suggests that this may be of significance. In fact, the dynamics of the model itself
suggest that temporally encoded information in the input at various time scales
may be resolvable by the cortex. Additionally, the output of the cortex was
assumed to have spatial uniformity, i.e. no differential weighting of information
was made on the basis of spatial location in the cortex. But again, observation of
the dynamics of the model, as well as the details of known anatomical distribution
patterns for axonal connections, indicate that this is a major oversimplification.
Preliminary evidence from the model would indicate that some form of hierarchical
structuring of information along rostral/caudal lines may occur. For example it
may be that cells found in progressively more rostral locations would have
increasingly non-specific odor responses.

Further investigations of learning within the model will explore each of these
issues more fully, with attempts to correlate simulated findings with actual record-
ings from awake, behaving animals. At the same time, new data pertaining to the
structure of the cortex will be incorporated into the model as it emerges.
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APPENDIX

Somatic Integration

(1.0)

(1.1)

number of input types
\ i ( t ) » membrane potential of itb cell
/a (r) • current into cell i due to input type i
£i - equilibrium potential associated with input type t

I, « resting potenna)
r, m membrane leakage resistance
cm • membrane capacitance
| j 0) •= conductance due to input type k in cell i

(2.0)

.V-^L t/O-i) cos -2-

Propagation

and Synoptic Input

(2.1)

(2.2)

for

otherwise (2.3)

IJ - (2.4)

nctll] - number of cells in the simulabon
Ax • distance between adjacent cells
dt m duration of conductance change due to input type k
Vj - velocity of signals for input type k
C* » latency for input type k
p, « spatial anenuation factor for input type i
p,""" . minimum spatial anenuation for input type k
Ar, « refiractory period

T"; « threshold for cell y
Liy « distance from cell i to cell j
A k • distribution of synapoc density for input type
H, « tynaptic weight from cell j to cell i
£u (') • conductance due to input type i in cell i
Fk (r) • conductance waveform for input rype t
S. (t) « spike output of cell ; at time i
V ( i ) m unit step function

Field Potentials
K, «—• "•••

«* .?! .?!
(3.0)

« number of cells in the simulation
« number of segments in the companmental model

l(') - approximate extracellular field potential at cell j
*(i ) m membrane current for segment n in cell i

i^ * depth of recording site
2, - depth of segment n
I. * x location of the y'th cell
K, - extracellular resistance per unit length

Dendritic Model

f..
' ( (4.1)



ncta, - number of different channels per segment /«(') " membrane current for segment *
V. (j) • membrane potential of nth segment /. » length of segment n
cJJ - membrane capacitance for segment n d, « diameter of segment n
r" - axial resistance for segment n /?„ « membrane resistivity
r* • membrane resistance for segment n Ki « intracellular resistivity per unit length
/„. (/) » conductance of channel c in segment n Kt • extracellular resistance per anil length
Ec - equilibrium potential associated with channel c Cm * capacitance per unit surface area
T*(') " •*i*l current between segment nil and n
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