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INTELLIGENT INFORMATION SYSTEMS WITH LEARNING CAPABILITIES

Abstract

An intelligent information system is designed to derive information (that
may not be explicitly stored in the data base) by application of rules for
inferring plausible answers to queries. The system is divided into the
knowledge base (KB) and the inference engine (IE). The KB can be further
partitioned into a factual base (FB) and an explanatory base (EB). The FB
is used for storing facts (data) that may be imprecise or incomplete, and
the EB contains knowledge; i.e., flexible (fuzzy) concepts, relationships,
or rules that are used to interpret the available data. The IE is designed
to perform flexible reasoning. Clearly, the "intelligence" of the system
depends on the knowledge available in the KB and the types of inferences
that the IE is capable of performing. An experimental system (APPLAUSE) is
discussed, together with demonstration of system function in the knowledge
acquisition and querying modes, including its explanatory capabilities.
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THEME

• Make Machines Behave Intelligently

Marks of intelligence:

• Learning Capability

• Reasoning with Insufficient, Unreliable or Imprecise Data

• Reasoning Under Resource Constraints

• Creativity- Discovery



PLAUSIBLE REASONING

• A Core theory- proposed by Collins and Michalski

• Modifications and Implementation

MODEL

• Hierarchical Organization of Knowledge

• Mechanism to Manipulate Incomplete and Uncertain

Knowledge Base

• Domain Independent Inference Mechanism

• Theory is Operationalized with Chemical Periodic Table

as a Test Domain



KNOWLEDGE REPRESENTATION

ELEMENTS OF EXPRESSIONS

• Arguments

• Descriptors

• References

• Terms

• Facts - veracity-^i, frequency-^, confidence-7

Dependency - forward-back ward dependencies

• Implication - forward-backward implications

• Hierarchies - generalization, specialization

Similarity - context, dominance, typicality



ELEMENTS OF EXPRESSIONS

Descriptor: d.

breed attribute

temperature attribute, function

flies predicate

Terms: c?i(ai), or c?2(ai,a2» • • •)

breed(Fido)
temper ature(latitude, altitude)
temper ature(place)

References: 7*1, {ri,...}.

4 integer

true logical

groupG hierarchical



Factual statements: d\(ai) = 7*1 : [^,7M,0, 70]

• p.- veracity: Veracity indicates degree with which refer-

ence 7*1 is applicable to descriptor-argument pair.

• <t>- frequency: Frequency indicates proportion of argu-

ment for which the reference is a valid description of the

descriptor-argument pair.

7/z. 7^- confidences in //, 0.

Examples:

density (aluminum) = 2.7 : [1, .99, 1, 1]
is-old(john) = yes : [.7, .9, 1, 1]
engine -type(car) = ^-cylinder : [1, 1, .8, .95]

Dependency between terms:

< - > c?2(a2) : [a,7«

• a,/?- forward and backward dependency strengths

is. philosopher (X] < - > is.greek(X) : [.5, .8, .0001, .8]



Implications between factual statements:

= r2 : [a,

grain(place) = rice

rain(place) = [80.. 120m] : [.9, .9, .5, .8]

The implications can also be encoded by functions

d\(ai) = TI <<=>• d2(a2) = /(n).

radius (circle) = r <$=£>

area(inscribed square) = 2r2 : [1, 1, 1, 1]



TRANSFORMATIONS

The transforms A GEN, A SPEC, A SIM, R GEN, R SPEC,

R SIM allow traversal in a hierarchy, in the process of infer-

ence. Simplified (no parameters) applications of the trans-

forms are given below.



A GEN

speed(computer_l) = slow
micro.computer = gen(computer_l): ex = alu_size
alu_size(COMPUTER) <—> speed(COMPUTER)
micro_computer = spec(COMPUTER)
speed(micro_computer) = slow

A GEN Transformation



• A SPEC

height(basketbalLplayer) = tall
karim = spec(basketbalLplayer)
height(karim) = tall



• A SIM

economy(singapore) = strong
Hongkong = sim(singapore): ex = economic structure

economy(hongkong) = strong



• R GEN

reacts_with(potassium) = chlorine
group? = gen(chlonne)
reacts_with(potassium) = group?



• R SPEC

likes(mary) = carbonated_drinks
coke = spec(carbonated_drink)
likes(mary) = coke



• R SIM

habitat(whales) = atlantic_ocean
pacific_ocean = sim(atlantic_ocean)
habitat(whales) = pacific_ocean



Combination of A SIM and R GEN

reacts_with( potassium) = chlorine
sodium = sim(potassium) A SIM
reacts.with (sodium) = chlorine
group? = gen(chlorine) R GEN
reacts_with(sodium) = group?

A SIM, R GEN Combination



Theory of Plausible Reasoning and its
Implementation.

Collins and Michalski introduced a theory to model human

plausible reasoning. APPLAUSE is an implementation of an

extended and modified version of the theory. The method-

ology is eminently suitable to reason in the domains where

knowledge is organized hierarchically. The theory provides

mechanisms to manipulate the knowledge base in case of in-

complete and uncertain knowledge. Some features of the

theory are highlighted with examples from chemical periodic

table.



QUERIES

Form:

descriptor (argument] = re/7/^,7^, 0,7^]? (1)

In query 0) the system is to retrieve best reference value

together with the estimated parameters. The best reference

is one with highest /z * 7^ * (f> * 7^ product.

• Type checking is performed for arguments and descrip-

tors and references when applicable.



ALGORITHM for processing Queries:

• get_query(Q)

• if ( get_fact(Q) successful) then - report retrieved in-
formation, exit.

• elseif reasoning_depth_counter > depthJimit then
- combine whatever evidence available and exit.

• else

— increment depth-counter by one.

— Dep := set of dependencies/implications, such that
descriptor occurs in RHS and a * ja > threshold T.

— sort dependencies and implications according to de-
creasing a * 7a (gather strongest evidence first).

— repeat until no more dependencies.

* evaluate LHS of dependency or implication. If
necessary call this routine to evaluate LHS.

* apply suitable transforms such as A GEN,
A SPEC, A SIM and compute RHS, decrement
depth.counter by one and exit.

• combine evidences:

— choose best 7^, j9 or /i*7/0 <^>*7<? products, for type 1
or type 2 query respectively.

— compute union and intersection of ranges to give up-
per and lower bounds on the range of the conclusion
respectively.



EXAMPLE

Given:

o GroupSa consists of gases [He, Ne, Ar, Kr, Xe, Rn].

• Boiling points of only 4 gases are known.

[He/-269, Ne/-246, Ar/-185f Xc/-108].

Query: Find boiling point of Kr.

Process:

• Statistical analysis will be made to see if it is reasonable

to aggregate the boiling points into a range and propa-

gate it to a parent node.

• Kr has two parents, groupSa and period4.

• Suitability of generalization is tested in both hierarchies.

• The better one is selected for inference.
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Criteria for generalization:

• Low standard deviation of residuals

• Generalize from large number of points.

• Low range of residual errors (fewer outliers)

• Presence of functional dependencies with characteristics

similar to those in the neighboring classes.

• 'Causal connection'



Criteria for generalization:

• Low standard deviation of residuals

• Generalize from large number of points.

• Low range of residual errors (fewer outliers)

• Presence of functional dependencies with characteristics

similar to those in the neighboring classes.

• 'Causal connection1



Total # of Points = 100

Total # of Variables = 3

Names of the attributes GROUP PERIOD ATNUM

A suitable hierarchy is to be decided for attribute ATNUM

Evaluating Group as the Primary Attribute for Classification

Total Number of Distinct Classes = 18

Class

#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Group

#

1
2

2.1
2.2
2.3
2.4
2.5
2.6

2.65
2.7
2.8
2.9
3
4
5
6
7
8

Group

IA
IIA
1MB
IVB
VB
VIB
VIIB
VIII
VIII
VIII
IB
MB
IMA
IVA
VA
VIA

VIIA
VINA

Attr
Max

87
88
100
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Attr
Min

1
4
21
22
23
24
25
26
27
28
29
30
5
6
7
8
9
2

Attr
Avg

30.43
36.33
74.27
44.66
45.66
46.66
47.66
48.66
49.66
50.66
51.66
52.66
35.8
36.8
37.8
38.8
39.8

34.33

Std dev of
residuals as

% of Attr Avg

35.9
24.6
6.3
12.8
12.2
12.2
12.0
11.7
11.5
11.3
11.0
10.8
21.3
20.7
20.2
19.6
19.1
26.1



Evaluating Period as the Primary Attribute for Classification

Total Number of Distinct Classes — 1

Class#

1
2
3
4
5
6
7

Period#

1
2
3
4
5
6
7

AttrMax

2
10
18
36
54
86
100

AttrMin

1

3
11
19
37
55
87

AttrAvg

1.5
6.5
14.5
27.5
45.5
70.5
93.5

Std dev of
residuals as

% of AttrAvg

26.1
0.0
0.0
2.7
2.7
6.5
3.8



Generalization

BP range

slope 77?
std dev of

residuals a,.
% intersection with
neighboring class x
number of points n

Computed a
Computed 7Q

groupSa

[-108 .. -269]
42

5%

60%

4

0.88
0.93

period4

[58 .. 3450]
-416
46%

100%

17

0.8
.3

The equation (implication in a functional form) derived by

best line fit method:

BP = -317 + 41.8*period (valid for groupSa).

The parameters a and 7a are estimated by evaluating com-

pliance to the criteria for generalizing.

7'a = 0.5

a = (1 -0.2* a:)

0.4*(1 -ov
n

n i cue

Tabulated factors favor generalization in groupSa rather than

in period 4.



PARAMETERS FOR THE DERIVED CONCLUSION:

Derivation using A SPEC without functional dependency

BP(Kr) = [-108, -269]

Parameters [/z, 7^, </>, 7^] are directly inherited from the parent

node, however the precision of the answer is low.

The answer is made more precise (narrower range) by using

functional dependencies discovered in the related elements.

Derivation using A SPEC together with functional dependency.

Assume r and 7r for Kr within groupSa = .9, .95

These can be estimated by evaluating common relevant fea-

tures among the siblings.

BP(Kr) = -317 + 41.8*4 = -149.8

= 7^ * Oi * 7a * r * 7r

= 1 * .9 * .9 * .9 * .95 = 0.6925
</>c = (f>i = 1

= 7<^i * <* * 7a * 7" * 7r

= 1 *. 9*. 9*. 9*. 95 = 0.6925



Derivation using A SIM transform.

Find elements similar to Kr in some context which affects

boiling point.

Suppose, relevant context is

CX = (.7*group + .3*period) Rule 1

and the dependency is given by,

CX -> boiling point: a = ,75,7a = 1; Rule 2

• a and 7Q estimated by global multiple regression analysis.

• Localize the search space within the neighborhood of the

argument in question

• Similarity a and 7^ are computed according to the for-

mulas:

cr(Arg l,Arg2) = £ W; * a(attri(Argl], attr l(Arg2))

i) = £ WL *

where, the weights W?; are normalized such that the sum

of weights is 1.



Assuming pairwise similarity a and 7^ values

a(gr8a, gr7a) = .2; 7<7 = .95
a(per4, per3) = .8; 7^ = .95
a(per4, per5) = .7; ja = .95

and Wi given by context in Rule 1, we get

Elem

Ar
Xe
Cl
Br

1

Gr.

8a
8a
7a
7a
7a

Per.

3
5
3
4
5

<7(Kr, Elem)

.7*1 + .3*. 8 = .94

.7*1 + -3*.7 = .91

.7*.2+ .3*. 8 = .38
.7*. 2+ .3*1 = .44
.7*. 2+ .3*. 7 = .35

7CT(Kr, Elem)

.95

.95

.95

.95

.95

Disregard elements with a * 7a < threshold T.



Similarity transform reference and parameter estimation:

BP(Kr) = BP(Element) [/*,7/»&7*]

Ac BP(Ar) = -185 [/* = 1,7,, = 1,0 = 1,7, = 1]

BP(Kr) = BP(Ar) = -185.94
fj,c = fJL = 1,

7/zc = 7j* * 0" * 7<r * « * 7a
= 1 *.94*.95*.7*1 = .625

<t>c = 4> = i
7<Ac = 7^ * 0" * 7a * & * 7a

1 * .94*.95*.7*1 = .625

similarly,

Xe: BP(Xe) = -108 [1, lr 1, 1]

BP(Kr) = BP(Xe) =-108.91

/*=!
= 1 * .91 * .95 * .7 * 1 = .605

= l

= 1 * .91 * .95 * .7 * 1 = .605



COMBINATION OF EVIDENCES

— Take the reference value of the result as the weighted

average value of the BPs where the weights are de-

cided by a *7a product.

— The parameters are taken as the weighted average of

the evidences.

BP(Kr)= [(BP(Ar)*a(Kr,Ar) + BP(Xe)*a(Kr,Xe)

BP(Kr) = (-185*.94+-108*.91)/(.94+.91) = -147.1

[JLC = E^i/N (if A^ not large)

(1 + l)/2 - 1

c = E 7^. * o- * a * 7Q/7V

= (1*. 94*. 75* 1 + 1*. 91*. 75* 1)/(1 + 1) = .6175

(1 + l)/2 -

= (1 * .94 * .75 * 1 + 1 * .91 * .75 * 1) = .6175



Comparison of parameters:

Parameter
BP

H

la
4>
7*

A SPEC
-149.8

1
.6925

1
.6925

A SIM
-147
1

.6175
1

.6175

Actual
-152

-
-
-
-

Choose results obtained by A SPEC since it yields infer-

ence with higher confidence.



CONCLUSION

Plausible Reasoning provides a useful mechanism to manip-

ulate available knowledge base to infer conclusions not arriv-

able by traditional logic.




