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FUZZY LOGIC OPERATORS AND NEURON ACTIVATION FIELDS
Abstract

A neural structure in light of fuzzy sets and operators is examined. During
a study of underwater acoustic signatures, it was discovered that a simple
version of the avalanche could be improved for classification purposes by
adding two simulated hardware memories (or latches) to each neuron. The
performance of the new structure, called a neuron ring, approximates the
performance of cross correlation. Only simple operators, such as the sigma-
count and the triangular norms MAX and MIN are necessary. In brief, the
pattern exciting the neuron is viewed as simply a means to induce a possi-
bility distribution in the neuron. The height of the distribution is
partial support for the hypothesis in question. The summation of support
after a time sequence of excitation is support for the hypothesis.
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INTRODUCTION

Fuzzy sets [15,17] and their operators
have interesting applications in neural net-
works. The performance of fuzzy decision
rules for pattern classification provides a
compelling reason to use graded set mem-
bership functions. As we will show, fuzzy
operators enable a simple structure, the
neuron ring, to classify non-stationary pat-
terns in the presence of severe noise. With-
out fuzzy processing, the ring is exceptional-
ly sensitive to noise. Its operation as a shift
invariant filter is not appropriate.

The underlying problem with non-fuzzy
rings is that decision rules examine terminal
activation instead of the historical activation
record.

In this paper, we report the performance
of neural structures trained with undersea
ship signatures from San Diego Bay and
elsewhere. We compare performance to
cross correlation - a conventional process-
ing algorithm that seldom fails. Backpropa-
gation [9,10,13] performance is also com-
pared both with and without stationarity
assumptions.

Reference to ship signatures should not
sidetrack the reader from recognizing the
contributions of fuzzy processing to pattern
recognition. Fuzzy processing may be the
best model for non-stationary patterns -
those patterns that change their descriptive
statistics over time'. That ship acoustic
energy survives to propagate oOver geo-
graphic distances is amazing. Yet the digi-

1 See reference 2 for definitions.

tal computer, simulating fuzzy rings, correct-
ly identifies ships in the presence of pseudo-
white, colored, chirp, and other types of
noise. This being the case, the algorithm
outlined in this paper has intrinsic value
apart from its underwater application.

FUZZY SET EXAMPLE

The indicator function of a standard set
is either a 1 or a 0. Either the set element is
present or it is not. In distinction, the indica-
tor function of a fuzzy set admits graded
membership. An element can be present or
absent, or it may be present to a degree. A
simple example will illustrate this concept.

Suppose a man with a full head of hair
is the subject of an experiment to quantify
baldness. The experiment consists of pluck-
ing a single hair then recording the answer
to the question, "Is this man bald?" The
first time, the answer is definitely "no".
However, continued experiments with the
same subject and other observers will lead
to positive answers. The outcome of the
experiment is justification for statements of
the form "the probability that this man is
bald is .50." '

Are there other ways to estimate bald-
ness? The answer is yes, and fuzzy set the-
ory provides an approach.

A fuzzy practitioner views bald individ-
uals as a set and tries to estimate an indi-
vidual’s membership from data. For exam-
ple, he estimates the number of hairs on the
average head, then estimates the number of
hairs on the subject’s head. Without solici-
taton, he is able to use an estimate of the




number of hairs as the numerator of the ratio
of the subject’s hair to the average. This is
an estimate of the approximate baldness
degree. His membership in the set of bald
individuals is about the ratio.

Often, there is no information or even
requirement to justify probability estimation
either from a frequentist’s or from a Baye-
sian’s viewpoint. It is in these situations
that fuzzy sets offer complementary value.

THE NEURON RING

There are a number of connection inten-
sive networks for pattern classification [7].
The Grossberg avalanche [5] cascades neu-
ral elements to learn and recognize spa-
tiotemporal patterns. In signal processing
terminology, the avalanche recognizes non-
stationary patterns. Hecht-Nielsen [6] fur-
ther reduced the connectivity of this struc-
ture in the commercial SPR (spatiotemporal
pattern recognizer) feedforward network.

The neuron ring resembles the SPR but
has new architectural features. Its closest
approximation is the torus of Goles [4].
The ring’s processing element is the DPNL-
the dot product neuron with Jlatches that
hold time (T) and activation (M) values.
These are visible in figure 1.

The DPNL operates in the following

manner. During training, the reference pat-
tern is hardwired (fast-learn mode) into the
neuron as vector Z. During recognition, the
test pattern U is dotted with Z yielding a
scalar. This quantity initializes an accumula-
tor in DPNL i. The next operation multiplies
the unit’s old activation, X ,, by -a. Another
term is computed with decouple gating the
activation of the previous neuron. The acti-
vation sum is multiplied by a gain factor A,
yielding the activation increment 5X ™.

Decouple couples a small fraction of
activation or encouragement forward. When
zero, the signal enables a special mode for
spectral classification using permutations of
firing order as similarity metrics. When
decoupled, the DPNLs activate indepen-
dently, leaving an audit trail of firing order.

Equation (1) relates these quantities
for DPNL i with a variation in the terminolo-
gy established by Hecht-Nielsen for the
SPR.

Figure 2 illustrates the tertiary struc-
ture of a ring assembly. The lateral feedfor-
ward and the single return are its gross fea-
tures. The input layer is not shown.

A pattern sequence excites the ring to a
graded activation level. Rather than invoke
the all or none firing principle, the DPNL
exports its activation untouched except for
hard limiting the value to the unit interval
[0,1]. The basis for excitation is partial cor-
relation by dot product. That is, correlation
at zero time lag. For pattern vectors of unit
length, the dot product is in the unit interval.
The higher the number, the greater the simi-
larity between V1 and V2 on the unit hyper-
sphere in R". Each pattern excites every
DPNL. Initially, both latches are reset to 0.
As the patterns arrive at the DPNL, the reg-
isters latch new values. The max latch, M,
changes only when the current activation
exceeds M.

After complete pattern presentation,
the activation field or max latch array is ana-



lyzed with fuzzy primitives. It is this histor-
ical record and processing that is absent in
most network paradigms.

+
XMW = x4 4ALa X9+ b1 +c )

Equation 1

XY Activation for neuron i

Xi°'d = Old activation

A = Attack factor

a = Decay constant for old activation

b = Gain for activation from previous
neuron (decouple)
I, = Activation from previous neuron
(o] = Gain for dot product
L, = Dot product _Bf pattern 'Z>l with
unknown U,

Before discussing fuzzy activation field
processing, we first examine two point-sen-
sitive decision rules in common use before
this study. They are:

D,: The ring with the highest acceptable
activation in its last neuron wins.

D,: The ring with the first activation of 1
wins the competition.

We eliminate D, immediately. Imagine
a ring with 100 neurons. Suppose the test
input is identical to the training pattern
except that time slice vector 99 is an attenu-
ated version of the true vector. DPNL 100
will not be fully excited. Another ring, condi-
tioned on a different signal, may win at the
end of time slice 100 by a simple twist of
fate at time 99.

The other rule has competitive merit but
it makes little sense when applied in a noisy
environment with rampant phase errors.
Transients may induce random neuron firing.

Point failure is serious because a sys-
tem which allows it to occur discounts his-
torical evidence in favor of the current state
as does a markov process. Other decision
rules are possible. Before addressing the
rule(s) of choice, we will discuss some
aspects of sampling and phase error.

Pattern 1 L@ ( ) ,@ =®

2

Pattern 3 L@___>@ @ .

Figure 2:
supports a microhypothesis (MH) for time j.

A three pattern ring assembly. Pattern i conditions ring i. Each DPNL




Phase error can be illustrated with an
example from the undersea application.
Assume the acoustic signature is a periodic
and deterministic function of propeller angle
as it spins. Suppose the training pattern
was sampled when the propeller was verti-
cal. The remaining samples follow at equal
intervals. During a sea trial, the probability
that sampling started with a vertical pro-
peller is small. This being the case, the test
. and the training signal are similar except for
a phase difference.

The re-entrant ring compensates for
phase, although the effect is large only for
small rings. It makes no difference which
DPNL is first stimulated; DPNLs activate
around the ring by virtue of the syndetic
lines. Phase displacement lies latent in the
T latch chain.

A better decision rule or heuristic for
pattern classification will now be sought.

Each DPNL continually provides a sta-
tistic for testing the hypothesis the pattern
is as expected as a correlation by-product.
The first DPNL in a ring holds the pattern
vector for time slice 1. Therefore, it esti-
mates the grade of membership or suitabili-
ty of the test pattern’s first vector. The sec-
ond DPNL estimates the suitability of the
second pattern vector. Anthropomorphically,
operation is a question and answer se-
quence: "How well, on a unit scale, do you
like what you see at this time?" The prob-
lem is to decide, that of all the activations
generated by a DPNL during presentation,
which best indicates support for the hypoth-
esis? '

The answer is stated without proof; it is
the height of the time series of activation for

the DPNL, otherwise called the fuzzy possi-

bility measure. Itis just the contents of M.
We estimate the compatibility of the
test pattern with the ring as a whole. The
appropriate operator is the sigma-count
[16] of the fuzzy set M. Kosko [8] proved

the sigma-count, ZC, is a positive measure

of set cardinality. It represents support for
the ring’s hypothesis.

Up to the present time, the discussion
has been limited to a single ring. More sig-
nals require more rings. The supervisory
system, if it exists, recruits empty rings and
conditions them as necessary based on
mean squared error criteria.

Assuming XC, is support for signal i,
what rule robustly adjudicates the race for
classification?

This discussion argues that no point
estimate from the ring during excitation will
suffice as a fuzzy statistic, unless its value
is unity. We propose the following calcula-
tions as a foundation for a better decision
rule.

Support; = Z Mij
Non-support; = Card - support;

where support is belief in the hypothesis the

pattern is i, and j is the DPNL index. Card
is the cardinality of the ring’s non-fuzzy
superset, i.e., the number of DPNLs per
ring. Non-support is the degree to which the
hypothesis is not warranted.

A walk through figure 3 data will clarify
the procedure for classification. Morphologi-
cally, the assembly that generated the data
had 10 rings. Each had 20 DPNLs, one per
time slot.

The numbers in the top matrix are the
contents of the max latches at the end of the
excitation. Rows index the pattern while
columns index time.

The contents of the max latch for DPNL
for pattern 1, time 18, is 9 (the lack of a deci-
mal is a concession to display technology).
The 114 under ZC is the support for pattern
1 while its non-support is 200 - 114 = 86.
With the implied decimal, these values are
9, 11.4, 20, and 8.6.

The certainty ratio (CR) is calculated:




CR = Support,/Z (Support;)

Next, each CR is divided by the maxi-
mum in the CR column. Finally, "FUZZY
MEMBERSHIP" (FM) is reported as a per-
centage.

The quantities under "FUZZY MEM-
BERSHIP" indicate the degree to which the
training pattern is supported by the data if a
decision must be made. Its associated
degree of non-support is 100 - itself. For
pattern 1, the values are 100 and 0.

If a delayed decision is permitted, the
ZC column is more appropriate than FM. If
the support for any ship is lower than a
threshold, classification can be deferred until
more samples are available.

The formal definition of the possibility
computations is as follows. Let the time slot
set for a single neuron be A = (1, 2, 3, ...,
n}. Let x, be the activation of a neuron at

time i:
x ={x, Xx, x,)

S

STATISTICS FOR TEST FILE: SHIPS INPUT SIGNAL: Boat 2
WINDOW = 1 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19 20 XC
Boat 2 0 02465554667 776 8 7 [g1010[f14]
Boat 3 0O 000 OOOOOTOOOOT OO OUOU OO OO 0
Elizabeth 0 02 43 3 3 3322 2 22 22 2 455 51
SEINER oo02111111111 111 00000 14
FF1041A 0 00O0OOOOOOOT OUOTG OO OTGOU OO OO OO O 0
FF1041B oo0211111111 11 00O0O0O0O0 O0 12
FFG41B 0O 00 0OOOOOO OO OO OO OO OO OOOTUOTMOO 0
FFG41C 0O 000 O OOOO OO OO OT OO OTUOU OO OO OTPQ O 0
DREDGE oo0oo021111111 111111 2 2 1 2
ZODIAC 0 02 45 55 4 4 4 4 4 3 3 3 3 3 3 4 6 69
CERTAINTY MEASURES FOR INPUT SIGNAL: Boat 2
TRAINING SIGNAL CERTAINTY RATIO FUZZY MEMBERSHIP
Boat 2
Boat 3 0.000 0
Elizabeth 0.182 45
SEINER 0.050 12
FF1041A 0.000 0
FF1041B 0.043 1
FFG41B 0.000 0
FFG41C 0.000 0
DREDGE 0.071 18
ZODIAC 0.246 61
CLOSEST MATCH FOR INPUT SIGNAL: Boat 2
CURRENT PERTURBATION PERCENT = 40
TEST NUMBER = 25
FIGURE 3. Computer screen depicting the excitation signal Boat 2
with 40 % noise in its power spectrum. Numbers in the top matrix are
the contents of the max latch at termination. The last column is the
measure of support for the hypothesis implied by the row heading.




Then the possibility distribution:

Iy =x/1+x/2+x /n

is induced on the neuron. The term x,/1
means: the possibility that the signal is
appropriate given the signal at time 1 is x,.
Then the possibility measure

n(A) = max( Xx,, X,, X5, ... X)

is held in the max latch, M.

Either the XC or the FM statistic is
now considered a better decision statistic
than those used by either D, or D,. We
adopt a decision rule:

D, = arc(U £C))
1
or

D,=arc(UJFM))
1

where the functor arc is a pointer back to the
pattern name. Thus D,(114) is boat 2.

One objective of pattern recognition is
to generalize [1] , to go from a specific sig-
nal to the class to which it belongs. An
admissible algorithm is driven by the joint
similarity between the training pattern(s)
and the set of all patterns produced by the
same signal source. It infers that while the
test signal is different from any in the train-
ing set, it has the gross properties of, say, a
frigate. There are at least two variations on
generalization. The first is mentioned only
for the sake of completeness.

Variation 1 examines the output string
of the supervisory system if present. For
example, the ring’s postprocessor declares
the signal to be the frigate Mir on the basis
of its emissions. Variation 1 parses the text
string for the underlined word and subse-

quently declares the class to be frigate.

Variation 2 scrutinizes the output of the
ring - the £C or FUZZY MEMBERSHIP
tal data alone. Figure 3 illustrates that two
of the fishing boats excite the ring but that
the Zodiac raft does also. These boats have
much in common in the frequency domain.
On a broader note, the ring permits the test-
ing of any fuzzy hypothesis that can be con-
structed from the universe of discourse.

Analysis of the activation history or
field is facilitated with an element of set the-
ory called the power set - the set of all sub-
sets from the universe of discourse. Its car-
dinality is 2°.

Two constructs derivable from the pow-
er set are the frame of discernment or dis-
junctive frame (Strat [11]) and the frame of
concernment or conjunctive frame. In all,
they contain 2®*D-(n+1) unique hypotheses
and from them, any hypothesis with conjunc-
tion/disjunction is constructible. For exam-
ple, support for the hypothesis:

H( Elizabeth)

is 51 in the £C column. We can also test:
H(the Elizabeth or boat 3)

with MAX, the fuzzy set union operator.

The arithmetic is a straightforward
application of the sigma-count, and the
Frank [3] triangular norms and co-norms
MAX and MIN:

H(Elizabeth) = 51

H(Elizabeth or boat 3) =
MAX(0, 51) =51

H(Elizabeth or boat 3)



AND
H(FF1041A or FF1041B) =
MIN(12,51)=12

Yager [14] and Zadeh [15,17] discuss other
operators for reasoning with uncertain infor-
mation. Similar exercises apply to FM.

EXPERIMENTS AND NOISE

Signatures from ten vessels were col-
lected from San Diego Bay with an omnidi-
rectional hydrophone. They joined an exten-
sive library of marine mammal vocalizations,
munition launches, seismic explosions, and
other acoustic events.

We soon developed a comprehensive
procedure for simulating ship encounters
and testing performance. Classification mer-
it is equated to the probability of correct
classification, PCC. Graphs of this function
have PCC on the vertical axis and percent
noise perturbation on the horizontal. The
graph indicates the sensitivity level of the
procedure under test to levels of increasing
noise. Noise is added as percentage of sig-
nal power from O to 100 percent. A noise
level of 25% implies there is 25% uncertain-
ty in the true value of any frequency bin.

All signatures had ambient bay noise.
They also contained aperiodic impulse
spikes from nearby power rails. These were
attenuated with a median filter (Taber [12])
before Fourier transformation.

Uniformly distributed pseudo-white
noise is not the only kind of noise in the

ocean. As an aid to more comprehensive sit-

uations, we used five noise types.
« uniform white

« ramp up with frequency

« ramp down with frequency
* time shift
» convex combinations of signals

Uniform noise occurs in narrow band
samples. Our passband was 0-3.5 KHz. In
some cases, the uniform noise assumption
is justifiable. However, for example, the
sudden appearance of a second boat in the
water injects frequency and range depen-
dent noise.

Ramp up and ramp down are analogous
to linear chirp in radar. The amount of noise
is frequency dependent; the amplitude of the
zero mean noise either increases or de-
creases with frequency, simulating ocean
anomalies and opening and closing ranges.

Time shifts are expected. Seldom will
the training signal be an exact replica of the
test. An ocean buoy for monitoring harbor
traffic must contend with tracking vessels
over a range of perhaps hundreds of miles.
In the laboratory, we simulate the buoy by
taking the test signal from a different tape or
tape segment than the training signal.

Finally, convex combinations of existing
signals test the resolving power of the net-
work to identify fleets of ships. Can it gener-
ate activation consistent with known signal
mixes? For example, if we mix 75% destroy-
er with 25% frigate, can the network confirm
the 75/25 split? Convexity means that for

any combination C, of signals, S,

C = GSI + B82+ 'YS3 ceey

the coefficients sum to 1.

RESULTS

Our experiments tested the ring’s abili-
ty to recognize signals in the presence of
severe noise. Figures 4 and 5 illustrate the




varied behavior of the algorithms in uniform
zero mean noise. Cross correlation almost
always recognizes the signal. Backpropaga-
tion (BP) trained with the average Fourier
power spectrum rather than the entire non-
stationary spectrum does not perform ade-
quately. Its failure justifies the use of the
non-stationary signals for training in spite
of the expensive training sweeps. The BP
network for figure 4 has 16 input neurons, 9
middle layer neurons, and 5 in the output
layer (16:9:5). The BP networks for figures
5 and 7 are 320:20:5. BP training time on a
Sun 3/140 for ten non-stationary signals is
approximately 30 minutes. Training time for

the ring is less than a second if training time
is measured from the time a pattern is
interned to the time the network is prepared
to recognize signals.

The non-fuzzy rules make the ring into
a very narrow bandwidth matched filter for
uniform noise. It does not matter whether
D, or D.2 is selected; the results are similar

to the trace in figure 4b.
The ramp up and ramp down tests

caused a single fault in the PCC graph. All
plots for the fuzzy ring were constant at

100% PCC for noise levels that started at
25% in the 0-60 Hz band and escalated to
75% in the 3.5 KHz band, and constant for
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Figure 4. Probability of correct classification (PCC) as a function of additive noise percentage for
back-propagation (BP), the neuron ring (NR), cross correlation (CC), and the non-fuzzy ring
structure using non-fuzzy rules D; or D,. Non-fuzzy performance is approximate. BP trained on
spatial data ; spatio-temporal patterns produced by averaging Fourier data records. Top and
bottom graphs pertain to the frigate FF 1041A and to the Elizabeth, respectively. Each trace is
based on 5000 simulated ship encounters or trials.




the reverse situation for noise ramping
down from 75% to 25% with increasing fre-
quency. Thus, the effective correct classifica-
tion percentage is 99.99% for these tests.

The format of the convexity test was
simply to mix the signals then excite the
network with the mixture. Work is still in
progress to detect if the mix percentage
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Figure 5. Performance of backpropagation and the fuzzy ring in uniform additive zero mean
percentage noise for the frigate and boat 2. Training is with spatio-temporal patterns.
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Figure 6. PCC as a function of additive noise. Signals shifted in time by several minutes.
Top diagrams are for the frigate FF1041A and the bottom diagrams are for boat 2. BP train-
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Figure 7. Probability of correct classification as a function of uniform additive noise.
Time shift ~ 2 minutes. a) BP and NR for boat 2; b) cross correlation for boat 2.
c) BP and NR for the frigate; and d) cross correlation for the frigate. Training is
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propagates to the decision metrics dis-
cussed earlier.

SUMMARY

This study implies that the analysis of
the historical activation record or activation
field is more effective than using point esti-
mates, at least for simple structures such as
the neuron ring. We simulated over a quar-
ter of a million ship encounters in the study;
the graphs indicate typical performance. The
breadth of the noise and signal characteris-
tics lend credence to the thesis of this
paper; namely, that excitation induces a pos-
sibility distribution on the neuron’s activa-
tion. The total support for the ring’s hypoth-

esis is the sum of each neuron’s possibility
measure. This support is a better indicator
of pattern class than those used before this
study. :
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WHAT CAN FUZZY LOGIC
DO

FOR NEURAL NETWORKS ?
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This paper describes the results of a study to find minimal neural structures
that are able to recognize ships from underwater recordings.

We propose some architectural change to the neuron.

Experiments were designed to test the ability of neural networks to
correctly classify ships. During the tests, it became clear that the
avalanche worked as an extremely narrow band matched filter.
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We went back to the basics and asked:
"What is the neuron doing?"
"Can we boost performance?"

4 Performance = *@

PCC .

noise noise
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AT THE HEART OF MOST NEURAL NETWORKS

DOT PRODUCT NEURON
PERFORMS

Uev=xX

u = prestored reference vector
Vv = unknown or test vector

X = nascent excitation scalar
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WHY THIS WORKS

Suppose u, v are positive unit vectors on Hypersphere in R"
uev

lull < [Ivll

But |[u]] * |[v]| = 1 (unit vectors)

=cos ¢

Socosp=u-ve(0,1)
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CORRELATION

+r

B 1 N-r
R“"(rAt)_ N-r i§1 Ui.vi

for time delay = 0:

_ 1 3
Ruv— Ni§1 Ui‘V.

if N is constant over all patterns.

S UsV=R,

Activation by correlation
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BASIC OPERATION

UeV=x
Activation = F(x)

1

1+e

Example: F = ”

What happens to information if F(x) # x?

a. We make-up spurious information
or
b. We discount good information
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If we add spurious information (spurium?)

a.
are we degrading performance ?
If we discount good information,
b.
are we degrading performance ?
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The problem domain is underwater acoustics

We would like a system to tell us what ship or kind of ship is in the water

We designed a series of experiments to find a system model
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DATA CAPTURE

» Record ships with a hydrophone

» Filter the analog waveform at 8 KHz

» Digitize .6 seconds at 20 KHz

» 1024 pt Fourier transform on 20 time slots per ship
» Compute power spectra

» Train neuron rings for the pattern set

* Pick test signal
» Add noise to test
* Classify
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NOISE TYPES

» Pseudo-white

« Ramp up with frequency

« Ramp down with frequency
 Time shift

« Convex combinations of existing signals
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NEURON RING

Pattern 1 L@ @__,@__.@_

Pattern 2L® @ @

Pattern 3L® D——@)—@)—
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X;new = x.old yAl-a X,0ld + b Iy + ¢ I,]*

X;"eW= Activation for neuron i

Xi°!d = OId activation
A = Attack factor

a = Decay constant for old activation

b = Gain for activation from previous
neuron (decouple)

l{ = Activation from previous neuron

c = Gain for dot product

lo = Dot produgct of pattern Z with
unknown U;
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Probability of correct classification vs. noise
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PERCENTAGE OF NOISE (50 TRIAL RUNS PER POINT)
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Consider fuzzy sets and multi-valued logic.

* Distribution free
» Graded membership is an attractive idea

Probability Possibility
P(eor~e)=1 Po(eor~e)=max (eor~e)
P(.8or.2)=1 Po(.80r.2)=.8
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N

Cl

This enables fuzzy processing

|

P
>

X old l
DECOUPLE
T > :
. D "_Xi -1

—T M T

v
f— A

{

new
OX;

The Dot Product Neuron with Latches
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LET'S ALLOW THE FOLLOWING F:

F(x) = < X if 0<x<1
10f x> 1

THEN WE MINIMIZE THE MODIFICATION OF INFORMATION
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PROCEDURE

» Gate each pattern to every neuron
. Présent all 20 vectors

+ Decide which patternitis D, ... D,

D1: The ring with the highest acceptable

activation in its last neuron wins.

D2: The ring with the first activation of 1

wins the competition.

D, =arc(UXC)

D, = arc(UFM))
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Figure 4. Probability of correct classification (PCC) as a function of additive noise percentage for
back-propagation (BP), the neuron ring (NR), cross correlation (CC), and the non-fuzzy ring
structure using non-fuzzy rules D4 or D,. Non-fuzzy performance is approximate. BP trained on
spatial data only; spatio-temporal patterns reduced by averaging Fourier data records.

Top frigate; bottom boat 2.
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Figure 5. Performance of backpropagation and the fuzzy ring in uniform additive zero mean noise
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Figure 7

Figure 7. Probability of correct classification as a function of uniform additive noise.
Time shift ~ 2 minutes. a) BP and NR for boat 2; b) cross correlation for boat 2.
c) BP and NR for the frigate; and d) cross correlation for the frigate. Training is
spatio-temporal. '
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FUZZY PROCESSING

1. Patterns induce a Possibility distribution on the neuron
2. Height of the distribution equates to possibility measure

3. XC of the heights —— classification
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D,: The ring with the highest acceptable
NON-FUZZY activation in its last neuron wins.

D,: The ring with the first activation of 1
wins the competition.

D, = arc(UXC)
FUZZY '

D

4 = arc(UFM)

>C = Sigma-count
arc = pre-image of the argument
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STATISTICS FOR TEST FILE: SHIPS

WINDOW= 1 2 3 4 5 6 7 8
Boat 2 0 02 46 555 466 7 77
Boat 3 000 0OOOOOOOOT OO OO OO
Elizabeth 0 02 43 3333222222
SEINER oo02111 11111 1 1 11
FF1041A 0 00 0OO0OOOOOOOTDOTU OU OO
FF1041B oo0211111111 1100
FFG41B 0 00 0O0OOOOOOOO OO OTU OTU OO
FFG41C 0 00O0OO0OOOOOOT OO OTU OO
DREDGE oo0oo021t1t1t1t1 1111 11
ZODIAC 0 02 45554444 43 3 3
CERTAINTY MEASURES FOR INPUT SIGNAL: Boat 2
TRAINING SIGNAL CERTAINTY RATIO FUZzy

Boat 2

Boat 3 0.000

Elizabeth 0.182

SEINER 0.050

FF1041A 0.000

FF1041B 0.043

FFG41B 0.000

FFG41C 0.000

DREDGE 0.071

ZODIAC 0.246

CLOSEST MATCH FOR INPUT SIGNAL: Boat 2
CURRENT PERTURBATION PERCENT = 40
TEST NUMBER = 25

6 -

INPUT SIGNAL: Boat 2
9 10 11 12 13 14 15 16 17 18 19 20 XIC

7 [o] 10 10 [114]

(]
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SUMMARY

We fuzzified the neuron

1ifx>1
Oifx<O

F(x) =xif0<x<1

graded membership

T latches time

M latches maximum F(x)

possibility

>C of M yields hypothesis support | graded membership

© approaches 0 near optimal performance

GENERAL DYNAMICS

ELECTRONICS DIVISION






