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SUMMARY

MSFC is participating in the current U.S. resurgence of interest in new
liquid propellant rocket propulsion systems. In the course of this work
modification of existing MSFC test stands is in process. As a part of the
activation of the new liquid propulsion test facilities it is necessary to analyze
total propulsion system stability. To accomplish this, several codes have been
built to run on desktop 386 machines. These codes enable one to analyze the
stability questions associated with the propellant feed systems. In addition, the
work of Dr. Mitchell at Colorado State has been adapted to this computing
environment and furnished along with the other codes. This latter inclusion
furnishes those interested in high frequency oscillatory combustion behavior
(that does not couple to the feed system) a set of code for investigations of
proposed liquid rocket engines.



INTRODUCTION

As the decade of the 1980's ended there was a resurgence of interest in
the United States in advanced liquid propulsion systems. This resurgence
manifested itself in the inauguration of a number of programs by both the USAF
and the NASA. These programs take the form of both analytical work to take
advantage of the vast increases in computer power which occurred during the
decade of the 80's and some experimental work with new or modified engines.
At the Marshall Space Flight Center (MSFC/NASA) test stands which have lain
dormant since the sixties are being activated and modified. Because of the
extensive modification of the test stands e.g., new tanks and lines, and the new
engine design(s) to come, the MSFC needs the capability to predict stability of
the new stand and engine combination(s). In addition, as research continued it
became apparent that several codes for intrinsic engine stability (i.e., the high
frequency) investigations were available and could be adapted for execution on
the same PC 386 class of machine as the other stability codes developed under
this effort. Thus the thrust of this work has been to gather the specifics of the
technology applying to all of the major anticipated stability problems attributed
directly to a propulsion system that might occur on the new or revamped MSFC
test stands, install them on 386 class desktop computers and apply them (as
first users) to the new stands and engines taking form at MSFC.

References in this field are legion. Text books such as references one
and two are available. A well known comprehensive coverage of the work
available through the early 1970's edited by Messrs. D. T. Harrje and F. H.
Reardon, is found in NASA SP-194 (reference three which contain 778
references). Discussions with engine manufacturers and with Dr. Reardon of
the University of California in Sacramento reveal a consensus that stability
prediction theory has not changed a great deal since SP-194 was published.
Thus the low and intermediate frequency stability analyses are based upon that
technology. We have drawn upon the very recent work of Professor Mitchell at
Colorado State (USAF funded; see references four, five and six) for the high
frequency stability modeling and prediction codes.

PRECEDING PAGE BLANK NOT FILMED



In his two volume report, Professor Mitchell and his group have extended
greatly their earlier work (see reference four). This report contains 54
references, a fair number of which are dated after those of SP-194 i.e., after
circa 1968. In this latest work, combustion chambers of rectangular as well as
circular cross section, are analyzed. In addition, quarter wave, Helmholtz and
arbitrary geometry (L,T etc.) dampers are covered as are damping chamber
liners. In this latest stability code virtually any combination of these devices may
be present simultaneously in the combustion chamber in rather arbitrary
locations e.g., there may be a partial liner in the combustion chamber while
there are simultaneously resonators around the periphery of the injector end of
the combustion chamber. Because Mitchell's work covers only high frequency
stability questions dealing with combustion chamber design and not test stand
design or modification it is of most interest to engine designers or those
monitoring the development of new engine designs (or the modification of
existing engine designs).

Professor Mitchell and the USAF (Mr. J. Levine AFSC Edwards Air Force
Base) have been most helpful in providing access to his work especially by
providing copies of his source code on computer media.

Our primary goal then was to create a family of programs running on
tabletop computers that are of immediate use to engineers designing test
stands destined for use with new liquid propellant propulsion systems. These
programs have been formulated and installed in such a way that engineers
without exhaustive backgrounds in fluid dynamics, stability theory and
advanced mathematics will find them useful to the point of turning to and using
them during the design and the checkout phases of their new propulsion
hardware initiatives. In addition, we have concatenated to these programs
those of Professor Mitchell, modified for the desktop environment, for the use of
those people interested in high frequency combustion stability questions.



THEORY

Directly associated with an engine and propellant feed system there are
generally taken to be three separate stability regimes. They are classified by
the frequencies at which they tend to oscillate. Reasonably enough they are
called the low, intermediate and high frequency regimes.

While in concept the analysis of all three regimes could be lumped into
one extremely large set of code, in practice separate modules or programs are
used for each regime. A further distinction between the regimes occurs in that,
as will be developed, the low and intermediate regimes involve an intrinsic
interaction between the combustion chamber processes and the propellant
feedlines while the high frequency regime phenomena are usually confined to
the immediate environs of the combustion chamber i.e. the combuster.

For these reasons the test stand designers may well want to pay
particular attention to the two lower frequency stability regimes.

In what follows linear analysis is used. This is permissible if the
quantities in question (e.g. mass flow rate and pressure) are assumed not to
deviate very far from their set point (mean or average) values. Thus stability is
evaluated, for example by investigating whether or not a pressure or mass flow
rate, once perturbed, will return to its average or mean value i.e., whether or not
the perturbation or small deviation vanishes with time. Because of this linear
approach all the analytical tools of linear stability analyses are available. Also,
because of this approach a number of analyses of any given hardware system
will have to be performed; each corresponding to a different operating condition
of the propulsion system. Different conditions would include such things as
different amounts of liquid in the propellant tanks, operation with different
mixture ratios and different valve settings.



THEORY OF PROPELLANT FEED LINES

To characterize dynamically a propellant feed system it is necessary to
treat it in the same vein as other circuit problems. The circuit elements
encountered may be categorized as follows. Distributed lines (incorporating the
effects of distributed hydraulic capacitance and inertance), discrete hydraulic
capacitors (used to model the engine manifolds and the propellant tanks),
hydraulic resistors (which are used to characterize such things as the injectors
through which propellant is introduced into the combustion chamber) and
propellant pumps.

The methodology suggested in section 5.4.1 of SP-194 is used as
follows. The admittance, G, at any point in the feed system is defined to be, in
general, a complex quantity given as the ratio of the mass flow rate perturbation
to the local pressure perturbation. Also, in general, any "downstream"
admittance is a function of an "upstream" admittance. To illustrate the last point,
it will be shown that the admittance of the feedline attached to a tank is a
function of the admittance "looking into" the tank. With the foregoing in mind,
the admittance as seen "looking" from the combustion chamber system toward
the tank is formed by the following product of admittance ratios.

Gj=
Go

'G21
Gm-1

Gi
Gr

where each ratio represents the admittance ratio associated with a given
feedline circuit element. Typically one starts at the tank, considered to be a
large, here constant pressure, liquid source and work one's way down the
piping to and through the engine injectors. These admittance expressions are a
key element in evaluating both the low and intermediate stability modes of the
engine - propellant feed system.

In the work which follows immediately below, it is convenient to have at
hand a general expression for the input admittance ratio of a certain network.
This expression may be used to characterize all the combinations of discrete
hydraulic circuit elements of interest. This general network is shown below



where the Z's represent linear impedance
2L''

and G's the linear admittance

Zi
1

Jl =>

> 1
Z2

n

1

All the circuit elements will be taken to have sign convention
corresponding to passive circuit elements. As will be pointed out below this

J_
needs very special interpretation in the case of a pump. Combining Z2 and GI
in parallel and then summing with Z-i (after a little algebra) produces

Gi
1+a.+ZiGi

Note that if it is desired to open up a circuit element (i.e., no flow through it) then
the appropriate Z is set equal to <» (or G to 0). If a circuit element is to present
no obstacle to flow then its Z is set equal to 0 (or G to°o).

HYDRAULIC RESISTANCE
The first derivation will concern itself with an energy dissipating hydraulic

resistance used to characterize an orifice. First consider the development of the
linearized relationship between pressure drop and liquid flow through an
orifice. This relationship is usually characterized by a square law relationship,
i.e.

p=Rm2

such that



tfl
mass flo v rate

The incremental resistance to flow at the operating point (defined by P
and m )is taken to be the slope of the p versus rh curve evaluated at P=P and
rn=rh.
Thus

T'.- |P=E_m=m

and from before

P

Substituting yields

m=m

so

r '=2 ±=2?=
rh

In all this work the pressure is normalized by the average combustion pressure
/ \

(Pc) and the mass flow by the total propellant average mass flow im), Thus the
normalized resistance is



where rfi|_ is the average mass flow rate through the resistor. This derivation
holds for a short orifice i.e., one in which the transit time of the fluid through the
orifice is short. With this expression for resistance in hand, the admittance ratio
is developed. A diagram is helpful at this point.

ZQ

o AAAA o

Orifice Circuit

From the figure it is seen that zi=zo and Z2=°° jn the general formulation. Thus
the input admittance ratio is

G2_
GI 1+ZoGi

HYDRAULIC CAPACITANCE

Hydraulic capacitance is needed to account for the compressibility of the
propellant liquids. For a lumped capacitance an analogous development to that
of the resistor holds with the exception that time rates of change of pressure
must be introduced i.e., the dynamics of fluid compression govern the dynamic
behavior of the element. By definition the dynamics of a lumped capacitor are
governed by

dt c

Under the assumption that forced solutions are of paramount interest here, the
initial conditions applying to P' and rh' are assumed zero yielding the LaPlace
transformed equation as

cs



where

s = LaPlace Operator

P'(s)=L[p'(0] assumed to exist

mXs^LOh'Ct)] assumed to exist

Once again a picture is helpful as

Hydraulic Capacitor Circuit

As before, from inspection, 1= an 2 cs. substitution yields

Two observations are in order. First consider the defining differential equation

dt c .

From this it is evident that for c very large, as might occur with a propellant tank

characterization, it will be difficult for p1 to change. A second observation is

evident from the transform of the differential equation i.e.,

p'(s)=

Letting s=jw to consider frequency response effects shows



Thus as ^^O m'Qco^O when characterizing a tank then care must be taken if

the frequency of interest is very low. In that case additional characterization
should be considered e.g. perhaps an orifice or other purely real admittance
should be added to the description.

PROPELLANT FEED PUMP
Following the methodology of SP-194 a lumped parameter

characterization of a pump may be formulated. Some contemplation of a pump
is first in order. The same pump may, depending upon the operating point,
have either a rising, flat, or falling pressure change versus fluid flow
characteristic. Graphically this may be shown as below.

Rising

Ap
(head)

Flat

Falling

rh (capacity)

From the figure it is clear that the slope of

dp'
drh1

may be greater, equal to or less than zero (this sign may very well vary with a
given pump's operating point). Thus the pump impedance corresponding to the
head-capacity relationship may be taken to be a resistor but one whose sign
may not be "taken for granted". Clearly there is fluid in the pump. Therefore, it
is necessary to associate with a dynamic pump model some inertance and
capacitance. Numerical values of these quantities probably have to be gotten
from dynamic testing. Such things as cavitation effects could cause values all

10



out of relationship to the nominal amount of fluid in the pump. The equivalent
pump circuit is as shown.

Zp L

»— rvvvr- WJ

~
1

— C 1
Gi

1

Hydraulic Pump Circuit

By inspection

thus

HZp+Ls)cs4{Zp+Ls)Gi l-KLs+Zp)(cs+Gi)

or

r:tD=r

Note: in this formulation (to be consistent with the general formulation)

It may very well be that

11



In which case a negative number should be inserted for P in the admittance

ratio.

PROPELLANT DUCT
Another major non-active propellant delivery circuit element for which the

admittance ratio is needed is the pipe or duct which carries the liquid from
element to element. The following development is for a pipe of uniform cross
section. Pipes of nonuniform cross section may well require the application of
an ad hoc numerical solution for each one (there are some exceptions e.g.,
incompressible flow in a rigid wall pipe). The following development will be
started including in the development the effect of a resistive pressure drop.
However initial calculations on one proposed MSFC test stand design showed
very low values of such drop and hence at the appropriate time they were
dropped as being negligible. However the development can be readily
expanded to include the resistive effect.

Partial differential equations may be used (for an alternate treatment see
Appendix A) to treat the distributed nature of the feedline. One could, of course,
approximate the feedlines by an interconnected set of discrete resistors,
capacitors and inertances. But aside from the approximation (which could be
made as negligible as desired by adding more elements) it is arguably more
computationally efficient to use the results of the continuous representation.

The dynamic characterization of a constant cross section fluid duct with
rigid walls will be accomplished with three objectives in mind. The first will be to
characterize a lossless duct to obtain its admittance ratio. Then a short
exposition will be included to indicate the straightforward way in which the
analysis may be expanded to include dissipating (distributed resistance) effects.
Lastly will be developed expressions for the standing pressure and flow waves
to be found along a duct (pipe).

The dynamics of the pressure flow relations in a duct are governed by the
one dimensional wave equation. The development is begun by deriving the
wave equation. Refer to the figure which depicts an infinitesimally small

segment of a uniform duct

12
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< — dx >
I zdx
:T
lydx
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-

r
S y NJ

•m_jp

where
A

Z=per unit length series impedance (resistance, inertance)

A
y=per unit length shunt admittance (typically conductance,

capacitors)

note that x is measured from the receiving end of the duct.

By inspection the pressure drop across the element, along the duct is
dP=mzdx or ̂ =mz

dx
and as the liquid flows through the element there is a decrease

drh=Pydx ord^=yP
dx

Note in these equations that in general P»m>y. ar|d z are either functions of x or
the LaPlace variable S or both. The most usually used expression for Z in
transmission line network theory is probably

z=Ls+R

and for the admittance
y=G+cs

13



Some discussion of y is in order. The use of shunt capacity and
conductance is in accord with usual network theory models. However, unless
the duct leaked uniformly along its length, G, the conductance, would be set
equal to zero for the purposes of this work. But it should be borne in mind that
the use of other admittance functions has been suggested. For example, if a
duct has internal damping such as might be provided by a liner which could be
modeled as a set of distributed Helmholtz resonators then the following model
has been proposal (in SP-194 on p. 274, Section 6.2.5.4) for the shunt
admittance.

Rn

Ln

~Cn

In this case y may be computed as follows.

=> Gi

T

1
G2 => y

y=C bs
Rn+LnS

LnCnS
2+RnCnS+1 } Q

CnS

14



(LnCn+CbCn)s2+RnCnS+1
Y~ CnS

Returning to the overall derivation the derivative of each equation is taken with

respect to x and the results substituted to obtain the one dimensional wave
equations for pressure and flow as

Assume a solution for the pressure of the form

P=Aeax

thus

= Aae"* and d-B. = Aa2ectx

dx dx2

Substituting into the wave equation yields

&E- = Aa2eax = zyAe"*• f\ j
dx2

from which it is seen that

a2 = zy or a = ±Vzy

Thus the traveling wave expression for pressure becomes

Recalling the original expression

15



Zdx

and substituting for P the expression just obtained yields

m =

The constants A and B are evaluated from the end conditions. Let pr and

*r be the pressure and flow rate at the receiving end of the duct. Then recalling

that here x is measured from the receiving and let x = 0 to obtain

Pr = A + B

solve simultaneously for A and B

Substituting into the expression for pressure gives

P =

P = Pr cosh xvzy + mry sinh xvzy

Similarly for the mass flow rate

m = rhr cosh xVzy + Pr sinh

These equations have been written when the distance is measured from

the receiving end. These equations can be written in terms of sending end

pressure and mass flow rate and with distance measured from the sending end

provided -x is substituted for x in the equations above.

16



Because in the above equations positive x is measured back along the

duct from the receiving end (with x = 0 at the receiving end), distances along the

line (with x = 0 at the sending end), are to be regarded as -x. Recalling that

cosh is an even function and sinh is an odd function then substituting -x for x

yields

P = Ps cosh xVzy - ms'\fj sinh xVzy

rh = rhs cosh xVzy" - PSV — sinh xVliy

for a sending point |x| distance from the sending end. It is convenient to define

the surge or characteristic line impedance as

Letting the length of the duct be 1 and the ratio of Pr to n\ be Zr then the input
impedance of the duct as seen from the sending end is the quotient of Ps and ̂ s.

Ps = Pr cosh I/zy H-ri^Zo sinhlVzy

^j
rhs = rhr coshlVz7 +^- sinh Kzy

Zo

fs.
riis

Zr cosh IVzy +Z0 sinh
Z0 cosh lYzy +Zr sinh

To obtain the result in SP-194 (5.4.1-2) divide by cosh lYzy

-, _ 7\Z r + Zp tanh jVzy 1

ZQ + Z{ tanh

and factor out ZQ and divide by Zr

ZjL
Zr

- tanhlVzy

Zo

17



Let

= - and 62 = ^
Zr 7.2

then

Zr G2

or

_ 1+fManhKzy 1 + —L-tanh IVzy
Gig _ Zp GiZp

Gi ! + Zo tanh Iviy- ~ 1 + GiZ0 tanh IVzy
Zr

This is the desired admittance ratio which allows the duct to be treated in the
same manner as a discrete element in the propellant feed line.

In modeling one proposed MSFC Test Stand piping layout a number of elbows
were encountered. It has been shown by Jackson (as reported in SP-194,
Section 3.2.2) that the inertance of an elbow can be regarded as the sum of two

contributions. One of these is the inertance associated with the fluid treated as
if it were flowing in a straight duct. The other is an increase in inertance caused
by the duct's curvature. The analytical and experimental results of Jackson are
shown as a curve of the latter contribution as a function of duct diameter and

parameterized by the angle through which the duct is bent. The curve is
reproduced here for convenience.

18



The approach taken by this author is to derive an equivalent lumped series
circuit element. This element models the curved duct as a straight pipe with a
decreased area and an increased length compared to a straight pipe having the
length of the curved duct's center line and having a decreased cross section
area compared to the bent duct. In this development a constant volume of the
two ducts' fluid is maintained. The deviation is a follows. Note that the
expressions for hydraulic inertance and capacitance for a lumped line are given
by

Thus for two straight ducts of the same volume one may write
expressions for inertance and capacitance for each as

C2 = (£>12A2

L,=!L L2=Jk

For a constant (lumped) volume of fluid the compressibility will be

the same regardless of its form. Therefore,

C-| = C2

and thus

|-|flj = I2fla

or

19



Now let

Where A. is defined by this equation. Then substituting m in the inertance
relationship yields

from which

Al \ b / 2

from before

substituting

thus the "new area" of the equivalent line becomes

and the "new" line length of the equivalent line is

L=

All that remains is to evaluate X . This is done by recalling

X=Li

where

and L" is found from the graph. Our current experience indicates that because

20



the effect of the added inertance is small especially at low frequencies it speeds
computation to ignore this effect upon first analysis and then add its effect at the
high frequencies at a later date to evaluate its effect upon stability.

FEEDLINE PRESSURE AND FLOW RELATIONSHIPS

During the course of this work the question of where to place pressure taps in
the feedlines arose. This question came about because previous experience
showed the importance of location when measuring pressure in a feedline.
Fortunately all the methodology developed to this point is applicable. Recall
that expressions for the admittance (and hence impedance) at any circuit
element location (hydraulic capacitor, inertance, valve of duct end) "looking
back" toward the tank have been developed. Similar methodology could be
used to develop the admittance of impedance expressions "looking
downstream" toward the engine's combuster. With these recollections in mind it
is seen that it is possible to fashion a model of a duct being driven by an
excitation source in series with a source or generation impedance and
terminated in a load or receiving end impedance.

In the interest of additional pedagogy and to develop additional notation the
pressure flow relations applicable to a duct will be rederived. However, the
derivation will be done in such a way as to expose the functional relationships
between pressure and flow and such things as excitation description, source
and load impedances and the line parameters.

From before the duct is treated as a transmission line.

O-

o--

m

L

P

^

GAx ^L

RAx
A A AV V V

CAx

LAx m + -=r
nOC\ "?

P +
v,

r

^
aJ

^
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Recall the previous discussion about the various impedances e.g. in cases of

smooth ducts it is expected that G ->o, R is small and the dynamics are

dominated by L and C). If other conditions obtain then the methodology

followed here may be used to solve the other case. Assuming the first term of

the Taylor's Series expansion is adequate to describe the change in pressure

and mass flow rate the differential equations for this infinitesimal length of duct

are formulated by equating the source pressure (at x) to the pressure drop

across the duct element summed with the pressure at the receiving end of the

duct.

p(x,t)= RAxm(x,t) +LAx^<l + p(x,t)
OX

Likewise the equation for the flow rate relationship is formulated by

equating the input flow rate to the element to that flowing through the shunt

admittance summed with the flow leaving the element.

m(x,t)=p(x,t)GAx + cAx + m(x,t)+, .
at ox

From these two equations it follows that

ot

are the defining equations. To transform from the time domain to the frequency

domain (and hence transform from differential equations in time to algebraic

equations in the complex frequency variable s) the La Place transform is

utilized. Initial conditions will be set equal to zero on heuristic grounds. Thus

the effects of driven or particular solutions may be studied as the problem is

formulated. If a given set of initial conditions were known the equations may be

rederived to include them. The LaPlace transformed equations are

= Rm(x,s) + Lsm(x,s) = (Ls + R)m(x,s)
ox

= GP(x,s) + csP(x,s) = (cs + G)P(x,s)
ox

Taking the partial derivative with respect to x of each of these equations and

substituting the expression above for the resulting first partials yields.

°2p(*'s) - (R + Ls)(G+cs)P(x,s)=0
8x2

22



82m(x.s)
9x2

- (R + Ls)(G+cs)m(x,s)=0

now define
n2 = (Ls + R)(G + cs): the propagation constant and note that for a lossless line

(a usual first approximation)

n2 =Lcs2

To achieve a solution, one is assumed, analogously with previous work.

m(x,s) = Ai(s)e-nx + Bi(s)enx

P(x,s) = A2(s)e-M + B2(s)enx

Note the functional arguments of the "constants." The "constants" (A's and B's)

are evaluated from boundary conditions. Therefore, to evaluate them some

specific configuration must be specified.

The configuration is chosen as shown below.

P.(8)

Zg(s)

tamped-*

Duct

= 0
Distributed

m(d,s)

Pfd,s)

p

= d
•^Lumped-

By inspection
P(0,s) = Pg(s) - Zgm(0,s) = A2 (s) + B2(s)

P(d,s) = Zt(s) m(d,s)

Differentiate the assumed pressure solution with respect to x

_ — = -nA2(s)e-nx + nB2(s)e
nx

ox

23



and substitute it into the original transformed PDE relating the rate of change of

pressure to the mass flow rate to yield
m(x,s) = * [nA2(s)e-"* - nB2(s)e

M]

Comparing this expression with the assumed solution for the mass flow rate

produces the relationships among the "constants"

A.fs)- nA2(s)
Al(S)~(Ls + R)

These expressions for AI(S) and BI(S) may be substituted into the originally

assumed solutions to yield
nB2(s)

eR) (Ls + R)

P(x,s) = A2(s)e-M + B2(s)enx

Note that
n / (Ls + R)(Cs + G) _ / (Cs + G) _ i
+ R) V (Ls + R)2 V ( L s + R) ZD

where ZG is defined to be the surge or characteristic impedance and

i:
C for a lossless line.

using the definitions above produces

P(x,s) = A2(s)e-M + B2(s)eM

The sending end boundary conditions are applied to yield

P(0,s) = Pg(s) - Zg(s)rh(0,s) = Pg(s) - =^[A2(s) - B2(s)] = A2(s) + B2(s)
A>

and the receiving end boundary conditions yield

24



P(s,d)= Ztrii(s,d)=

These two simultaneous linear equations in the unknowns A2(s) and
may be solved to yield

A2(s)=
1 + MNe-21"1

1 -

where the reflection operators are defined by

M =
Zp - Zg

7 j-7£-*O ~ •̂'C

Using these solutions for A2 and B2 and substituting them into the assumed
solutions for pressure and flow rate produces the transfer functions between the
pressure generator pg(s) and the pressure and flow perturbations at a given
distance down the duct as

_o - r
P(X,S) Zp+Zg

L

o - - t o g 1 6 J

and

t. n(2d-x)]
t; J

Pg(s) r . [(Z0-Z t)(Z0-Zg)
^ J

While there are special cases of interest (some considered below) it is seen,
especially recalling that all the z's are functions of s (s = a+jo> ^ that the
solutions following from this transfer function, given a generating function are
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generally of a complicated nature. This fact leads to numerical investigations to
explore given cases. But before investigating numerical approaches consider
some special cases.

The most perfect (and impossible) case occurs when the duct is considered
lossless and the reflection operators are zero (the matched load, lossless case
i.e., zs = Z^Zo ). Under these assumptions the transfer functions yields

P(x,s) = Pg(s)e-«

This indicates that an input pressure signal will travel down the duct undistorted
in wave shape and only delayed in time (transport lag phenomenon) or, from
the frequency domain viewpoint, there is introduced a phase lag proportional to
the distance down the duct.

Another special case of some interest occurs when G = 0 and R « Ls. The
problem to be attacked is that the quantity n contains s in a square root form.

n = V(Ls + R)(G + Cs)

Under this set of assumptions
n = V(Ls + R)Cs =

or

Once again, assuming a matched load i.e. duct terminated in the surge or
characteristic impedance Z<> and zs= Z° the pressure as a function of distance
and the generation pressure is given by

P(x,s) = Pg(s)

The inverse transform to get to the time domain is obtained by inspection as

P(t,x) =e-^>R/fx pg(t -YLCx)u(t -YECx)
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where u(t-YECx) js the familiar unit step function notation used as a sectioning

function so that no time response occurs before t=VECTx i.e. this is a causal
system (therefore physically realizable). Thus this wave may be interpreted as

an attenuated wave traveling at a speed = VHT , having zero value until
t > VLC'X . Notice that the form of this solution is the same as that
encountered previously for the lossless line with the exception that here there is
attenuation i.e. the wave maintains its shape as it moves along but it shrinks in

amplitude.

There are other combinations of the duct parameters which yield a (possibly)
attenuated but undistorted traveling wave. These other cases are not of
particular interest here because they do not assume G to be zero. In any case a
duct having parameters so designed is called a "distortionless" or "heaviside"
duct.

Before moving away from duct characterization the subject of transient events
will be addressed. There are a number of catastrophic events that could be
postulated as transient events. However, the attention here will concern itself
only with a step change to a different load. This might be used to model fairly
rapid changes in valve settings (openings or closings). The general approach
to handling any transient event of this generic type will always involve solving
the given forced-solution for the first configurations' solution which in turn
become initial conditions for the solution of the second configuration etc. To this

point the solutions of the wave equation where these have involved transforms
have assumed the initial condition to be zero (to get transfer functions, for
instance). To relax this assumption return to the two first order PDE'S which
define the pressure and mass flow rate dynamics when they are LaPlace
transformed but this time include the initial conditions.

= Rm(x,s) + Lsm(x,s) - Lm(x,0)

•drc(x's) = GP(x,s) + CsP(x,s) - CP(x,0)
ox

It is of course recognized that the last term in each equation is caused by the
indicated initial condition. These equations are now manipulated as before to
yield the wave equations in mass flow rate and pressure.
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- n2P(x,s) = 1 . C(Ls + R)P(x,0)
dx2 ox

- n2m(x,s) = C^l - L(Cs + G)m(x,0)
dx2

Written in this form all the terms on the right hand sides (rhs) are due to the
initial conditions. One now has a choice of how to proceed. Which way is
chosen depends upon the particular analyst and what computational or other
insightful factors are involved. The conceptually most straightforward way is to
terminate one solution at the switch time, determine the pressure and mass flow
rates in the duct , use these as the initial conditions for the new configuration
(having written its equations) and solve another subsequent problem etc. There
are other approaches. One of these is by the use of cancellation sources which
model the pressure and/or flow rates of the switches after the configuration
change. This is done by introducing ideal pressure (hence no generation
source impedance) and ideal mass flow rate sources (hence infinite source
impedance). This technique is especially useful for solving switching modeled
configurations changes. It converts from a problem with initial conditions to two
or more problems without initial conditions but whose total response is obtained
by summing the response of all the problems.

Returning to the original question of where to place pressure taps in the line in
order to measure standing waves in the duct some inspection of the p(x,s)/Pg(s)
transfer function is in order. Standing waves are associated with steady state
sinusoidal duct responses. This type of response may be examined by
restricting s to the imaginary axis in the s-plane i.e. let s=jw. One notes in
passing that transient information is not lost by so doing. Making an appeal to
the Weierstrass Approximation Theorem allows one to think of the transfer
functions as approximated by a ratio of polynomials in s, for a given x. Provided
the resulting transfer function is analytic in the right hand plane and on the
imaginary axis an exact inverse Fourier Transform may be written as

h(t) = 2-1 { Real H(jco)cos tcojdco t > 0
Til

Jo

where h (t) is the impulse response of the system and
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L[h(t) ]=H(s)

Having let s=jw it is seen that the numerator of the duct transfer function consists
of two terms of phasors which may be visualized as a magnitude and phase
angle in the complex plane. The one term is

»-nx

which for the example of a lossless line would be represented by a unit phasor
at an angle determined by the frequency of interest, the duct parameters and
the location chosen on the duct.

The second term is more involved but it also may be interpreted as a phasor in
the complex plane for a given x. It is not unreasonable to expect that the
difference of these two phasor quantities would experience maxima and
minima. As a matter of fact for a lossless duct it may be shown that for a variety
of conditions the pressure and mass flow are displaced along the duct by one
quarter wavelength and both are zero at points separated by one half a
wavelength.

As a practical matter a specific configuration, one supplied by MSFC (a
proposed LOX feedline), was used as an example to explore the transfer
functions from a numerical standpoint. Two problems arise as far as visualizing
the solution is concerned. One is that of presenting the results as a function of
both position down the duct and as a function of frequency. The solution
suggests itself as a three dimensional plot with transfer function magnitude,
frequency and duct position as the three coordinate axes. Fortunately
MATHEMATICA has a built in 3D plotting capability which has been enhanced
in the latest release. In addition its contour plot capability proved to be
extremely useful in determining the granularity of the solution. The second
problem is that of the granularity. The duct chosen is 62 feet in length and
somewhat arbitrarily a frequency range of zero to six thousand radians per
second was chosen initially . At this point the age old question of granularity
across the 2D grid of displacement versus frequency arose.
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An initial range was chosen as shown with the results shown in the figure
below.

MACKITUPl IATIO

DISTANCE

LOX Feediine Pressure Transfer Function 3D Depiction
Fig. 3D-1

The number of points were then increased and Fig 3D-2 produced.

DISTANCE

LOX Feedline Pressure Transfer Function 3D Depiction
Fig. 3D-2 PUQUUCT
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Clearly a great deal more detail has arisen. The cost is clearly in sharply
increased computing time and, eventually, saturated memory. At this point a
contour plot of the data was run producing figure 3D-3.

60 .••

50 .

0 1000. 2000, 3000, 4000, 5000, 60CO

Fig. 3D-3
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Note that many of the "ridge lines" of response peaks are smeared together e.g.
the ones at 3250 and 1575 radians per second while it was unclear what was
happening below about 750 radians per second. Consider that usually there is
more energy in lower frequency modes than higher frequency ones and also
that one usually expects a half wave to develop between the two ends of the
duct. At this point the frequency range was reduced to zero to one thousand
and the same number of points plotted as before. This yielded fig. 3D-4. This

figure was created using an updated version of MATHEMATICA which allowed

labeling the axes. Also the plotting code is included to illustrate the use of this

program for this purpose.
Fig. 3D-4

Plot3D[Ab»[((3.28+I*u*32.37*10A-4)/(4.33+I*u*32.37*10A-4))
*

(lxp[-l*I*4.3*10A-4*u*x]-((-l + I*2.76*u)/(H.I*u*2.76))*Exp[
-1*
I*u*4.3*10*-4*(124-x)])/{!-(((-l+Z*u*2.76)/(l+X*u*2.76))*(
(2.23+X*u*.0034)/
<4.33+1*u*.0034))*Exp[-5.33*10A-2*I*u]))],{u,0,1000),<x, 0,
62),PlotPoints
->30,PlotLmb«l->"LOX Feedline Pressure Transfer Function
3D D«piction"]

80<

iodcP
LOX Feedline Pressure Transfer Function 3D Depiction

Fig. 3D-4
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In this figure the half wave of pressure becomes discernable below 150
radians/sec and much better resolution of the other lower modes occurred.
Therefore the upper frequency value was once again reduced, this time to 400
and fig. 30-5 resulted.

200

30

LOX Feedline Pressure Transfer Function 3D Depiction
Fig. 3D-5

This figure clearly depicts the three lowest frequency modes in reasonable
detail. These types of figures could be developed for any other band of
frequencies of interest. To. develop additional information including numerical
data contour plots were made for the frequency ranges 0-150; 200-300; and
300-400/ In addition a series of 2D plots of amplitude versus lengin for the fixed
frequencies 120, 240 and 358.3 radian per second were made. These latter
plots were made to depict the standing pressure waves corresponding to the
first three lowest modal or resonant frequencies. They have been grouped
together below for ease of association and cross interpretation. Once again, for
each type of plot one representative set of code is included.

33



-1 + 1*2.

(2 . 2 3 + X « « « . 0094) /
< 4 . 3 3 + X « u « . 0 0 3 4 ) ) «I«p ( - S . 33 •! 0*- 2 • X»u J ) ) J , < u , 0 , l 3 0 ) , ( K , 0 , «
2) , F lo tFo ia t*
->30,FlotL»i)«l->"tOX Ft»»aiio« Fr»» tv»r« Tr«n»f«r Function
3D Dep ic t ion" )

(0

40

JO

10

0 J O 4 0 * 0 1 0 o

LOX Feedline Pressure Transfer Function Topological Depiction
Fundamental Frequency

Fig. 3D-6

U - X 2 0
» 1 0 t ( J U ) » l ( ( 3 . 2 » + I » o « 3 2 . 3 7 « l O * - 4 ) / ( 4 . 33* I « u « 3 2 . 37* 10 A- 4 ) ) •

-1*

.0034)/
.33 + I«\»«.0034)) •*Kp[-3.33»10A-2«X«u]

->30, »lott«U»»l->"l,OX
20 Ovpietioa']

, («,0, 62),?lotFoi

rr«*«ur« Tr»n»f«r Function

To To To Jo To to

LOX Feedline Pressure Transfer Function 2D Depiction
F u n d a m e n t a l Frequency

Fig. 3D-7
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Fig. 3D-8
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Fig. 3D-9
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Fig. 3D-10
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From these plots it is readily apparent that several instrumentation issues arise.
Amongst them is the fact that instrumentation placed to measure a given mode
may well miss another mode. For example, if it were desired to measure the
lowest frequency modal pressure and the instrument tap is put at mid duct the
pressure due to the next mode which nulls at mid duct would not be measured.
Thus if it were desired to measure the next modes' pressure taps at 15 or 45
feet (approximately one quarter of the way down the duct) would be
appropriate. And so forth for the other modes. Using the contour and 2D plots
numerical data can be developed to aid in placing the taps. It also is helpful in
specifying the bandwidth of the instrumentation system. It would seem to be
good engineering practice to record the output of the instrumentation and
perform a spectral analysis on it to confirm the modal frequency and to make
sure that the desired modal pressures were measured and evaluated.

INTRODUCTION TO COMBUSTION STABILITY

Combustion driven or coupled stability questions associated with liquid fueled
rocket engine systems have been amply shown to be accurately categorized as
having a high frequency regime and a lower frequency regime. In addition the
lower frequency regime is subdivided in two regimes, sometimes called the low
and intermediate modes of oscillation.

The high frequency mode of oscillation is exclusively associated with a specific
combuster design. It depends greatly on such things as injector design,
combuster shape, fuel characteristics etc. A key element in analyzing this
regime's effects are the acoustical resonant modes of the combuster. Indeed
the first approximation of the high frequency combuster modes includes a
classical acoustical analysis which is used as a good first approximation to an
analysis which modifies the classical acoustical analysis to account for the
effects of combustion. Thus high frequency combustion stability is basically the
purview of the combuster designer rather than the test stand designer.
However, to allow a monitoring capability a late version of Dr. Mitchell's (of
Colorado State sponsored by the USAF under contract F046 11-86-k-0020)
analysis software has been modified for and installed on the MSFC computers
in EP-64. Sadly the current state of the art is such that "from scratch" predictive

37



stability analysis is impossible. This is because the detailed
aerothermochemistry processes involved are not at all well understood. Even
the equations that are available are complex and difficult to solve. Perhaps with
time and the renewed interest in liquid propulsion in the USA (after an hiatus of
twenty years) progress will be made. Various supercomputers e.g. the Cray
YMP and the TMC Connection Machine (CM) are being employed to investigate
various single aspects of the aerothermochemical processes. However, much
is yet to be done even approach simulating an entire combuster with all its
interconnected processes.

The state of the art for predicting the lower frequency oscillatory modes is farther
advanced than that for the high frequency regime. While still depending on a
number of factors e.g. n and T that define the combustion effects in a from-
outside-the-black-box or phenomenalistic viewpoint the ability to analyze and
predict stability questions is reasonably well in hand. And is covered below.
Unlike the high frequency oscillatory behavior which is almost exclusively the
province of the combuster designer the lower frequency oscillating modes
involve intimate coupling between the combuster and the propellant feed
systems. Thus the lower frequency stability questions are very much the
concern of the test stand designer (who must of course confer with the
combuster designers or engine suppliers for certain engine or combuster
parameters).

Thus it is seen that except for a much wider use of much more powerful
computing capacity the state of the art in stability analysis stands not much
advanced from where it was in 1970. Such manner as those of Von Karman,
Crocco, Reardon and Tsien are associated with that era (along with many
others of course, see SP-194). The authors of this report have talked to Dr.
Reardon during the winter of 1989-90. He had recently set about seeing if a
sequel to SP-194 could or should be written. He contacted various groups
once again active in the field and concluded that not enough new technology
had been developed at this point in time to warrant a new volume on the
subject.

Diagrammatically the frequency separation of the modes and stability
associated phenomena are shown in a general way in the figure below.
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LOW FREQUENCY STABILITY

Liquid propellant rocket systems couple the propellant supply system (feed
ducts, tanks etc) to the combuster through the injection process. Typically a
number of nozzles are fed from a manifold with fluid pressurized to an average
pressure substantially above that in the combuster so as to feed the propellant
into the ignition process at a desired average rate. The specific requirements on
the injectors and the conditioning of propellant for combustion vary from
propellant to propellant but for bipropellant non-hypergolic types they may be
summarized as follows.

(1) To obtain good atomization of the fluid it is necessary to assure a large
surface area of contact between the liquid and the hot recirculating gases.
(2) A proper proportion between the mass of the propellant and the mass of the
hot gases surrounding it must be obtained.
(3) A good renewal of the hot gases to activate surface exchanges must be

assured.
(4) A fast, uniform as possible, mixing between the two propellants must be

ensured.

Some contemplation of the injection and.subsequent combustion process
shows that as the propellants travel downstream in the combustion zone of the
engine they initially are little effected by the hot gases surrounding them.
However as they continue down the chamber they begin to mix, be heated by
the environment and finally begin to burn. Thus in this Crocco style scenario it
is seen that there is a time delay between the time of propellant injection and
the time at which it burns or turns from a liquid phase into a gaseous one.

Crocco et al proposed a model, in wide use, in which the process described
above is modeled approximately by a time delay or transport lag phenomena
modeling the time it takes for the liquid propellant to enter the combuster travel
downstream and (instantaneously) turn into gas. This phenomenon is shown in
the figure (note the step function approximation).
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\\ the .time delay from propellant injection to ignition is dominated by one of the
propellants in a bipropellant system as is the case with, for example, LOX-RP1
(where the rapid evaporation rate of the LOX causes the RP1 evaporation rate
to control the combustion process rates) then a single delay model is justified. If
the delays of both constituents are comparable then a two delay model is to be
used. Fortunately while it introduces some more computational complexity the
inclusion of another delay is an easy, straight forward analytical thing to do, as
will be seen below.

It is now necessary to consider how variations in combustion parameters
couples in to the combustion process. This is necessary to establish a feedback
mechanism or gain between perturbations in the process and the energy
release due to combustion that can feed an instability if the proper conditions

occur. Crocco does this in the following way. He assumes that the rate of
processes at a given location and time are a function of physical factors such as
pressure, temperature and other factors. He then assumes that all these factors
influence the pressure and develops a functional relationship as follows. Using
a Taylor's Series Expansion where over bars denote average values and
primes denote small perturbations he_writes_

f(p,T,z,...) = f(p,T,z) + + T' + z' + ...

where the partials are evaluated at the respective average value of P.T.... .

Assuming that T and z are correlated to p then
T = T(p) ^d z = (p)



thus factoring the expression above yields

f(p,T,z,...) = f(p,T,z,...J 1 + p'i||̂ -

where the barrel quantity is to be evaluated at the average values for the
quantities involved. At this point the quantity n is defined as the interaction
index given by

Thus the instantaneous processes rate is written
f(p,T,Z...)=f(pTT,Z...)[l+n£]

If one assumes that the process rate is only proportional to a power of pressure
then

from which as before

f(p)

f(p)

Thus the same result as before results under the assumption of only pressure
dependence. Therefore, under the assumption that the physical factors are
correlated one can disregard the explicit effects of all the factors except that of
the pressure. Crocco and Cheng propose a few examples of physical
processes which suggest values for n. However historical design values seen
to be the best source of quantitative data for n's value.

LOW FREQUENCY STABILITY MODELING

With the simplified models and concepts described above the tools are in hand
to develop the first and simplest mode, suitable for stability investigations. The
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overall approach taken is to work with small perturbations in propellant feed
rate and combuster pressure. This local linearizations around a nominal
engine operating point allows the use of all the techniques of linear stability
theory e.g. Nyquist diagrams and Bode Plots. In what follows primes are used
to denote perturbation variables and the pressure is normalized (divided by) the
nominal or average combuster pressure and the mass flow rate by the total
nominal or average propellant mass flow rate. Both normalizing factors are
denoted by the average or superbar notation.

Assuming that both propellants undergo the same time delay (if) to ignition and
where b denotes burn, i injection, f fuel, ox oxidizer and t time one writes as
follows for the propellant mass flow rates.

m'oxbCO = m0xi(t)(t- Tf)

' = m'Fi(t)(t- Tf)

The admittance expressions of the feed systems which relate propellant
delivery rate perturbation to combine for pressure perturbations (as seen from
the combustion chambers) are developed in explicit from elsewhere in the
report in terms of feedsystem parameters. Here from the combuster location
they are expressed as

m p

24
m p

or rearranging
m'OXi _ -p'
GOX P

GF p

Equating like quantities

m °^L = ~- = mpi

Goxm P GFih
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These expressions link the propellant feedsystem to the combustion process via
the chamber measure.

The use of perturbation analysis has been amply displayed in the foregoing by use of
the prime notation, Taylor's Series etc. This approach will be enlarged upon below
but before that the major assumptions governing low frequency dynamic behavior will
be listed.

1. The gas pressure in the combuster is uniform and oscillates about a mean
value (i.e. no wave motion is considered until the intermediate frequency
oscillations are considered).

2. The temperature of the gas in the chamber is uniform and constant i.e. not
effected by pressure oscillations.

3. The time lag from injection of propellant to the burned state is the same for
all propellant elements.

4. Propellant feedsystem dynamics including wave motion must be taken into
account.

5. Combustion is characterized by a delay.

As already pointed out the explicit expressions for the feedline admittances are in
hand. Now the explicit relationships for the combustion process must be derived.

One relationship follows from the principle of mass conservation. It states that the rate
of change of the mass of gas in the chamber is equal to the difference between that
entering (i.e. burned) and that leaving the chamber (i.e. emitted)

Perturbation quantities are now introduced,

p = p +p : nib(t) = nib + m^ : nie = r

thus

dt dt mb

now define

m

Substitute into the conservation equations
d p — - , . , —

V-- = mb + mb - me - mb
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but in the steady state as much mass on the average is leaving the engine as there is
entering. Thus

and
A/V—

Normalizing by the average mass flow rate and density values yields

VP dfp \^m b nj
m3tl j) I m 55

The equation of state for a gas is (R is the gas constant)
P = pTR

The perturbation development is _
p = p + p' : p = p + p' : T = T + T'

substitute to obtain (second order infinitesimals are as usual set equal to zero)

from which _ _
p = p~TR : p'=[pT' + Tp']R

and

"at"

dividing by P produces

where the last term on the right hand side of the equation is assumed zero. The
literature suggests that good results may be obtained from this assumption and that
appears to be, aside from mathematical tractability, its main justification.

From elementary theory describing the flow of a compressible gas through a nozzle
(see reference 8, P. 8-37 equation (47) the mass flow rate of the emitted gas may be
expressed as

From this the perturbation analysis proceeds as
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P + Pr r

but from perturbation theory
T'«T

thus from the binomial theorem

from which

Sk = £._.£.
me P 2T

An alternate ratio in terms of the characteristic rocket velocity (C*) to express the last
term in the last equation is useful. From the definition of C*

m

from previous discussion
PCm
VT

thus by substitution

let

C* = C* + C*' = B[(T + T')]2 = B
2T^J

and then

C* 2T

Using this relationship and the previous development to yield

nie P c*

Making all the substitutions developed to this point yields.

<K\p/ m P c*

It is now necessary to relate C* to the mixture ratio (r=nio/mf) and chamber pressure to
continue the development. Evidence in the literature suggests that

C* = f(Pc,r)
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Using the expression for the total differential produces

C* = 8C* ac*

however other literature states that the first term on the right is negligible with respect
to the second. Thus

8C*1C* = r

Dividing by c* yields the desired ratio

c*

Now it is necessary to develop an expression for r. The rate at which propellant is
being burned is given by the sum of the rates at which the oxidizer and the fuel burn.

nib = rii =

Performing the usual perturbation analysis and making use of the definition of the
mixture ratio yields (after some tedium).

r '^(l+r)m'ob (!+?)„•
r r ~ T ft>r r m m _

This expression may be used in conjunction with the expression for the c*Vc* ratio to
substitute into the differential equation developed earlier to produce the defining
equation for low frequency stability investigations.

( l+r )3C*l . - f. i(l+i)/ac*\M+ _ ^— mob+ 1- v__ ' mf>
c* ^ J L c* \ ^ 'J /

a P P 1Q<^-\ + « —cat\P/ \pi m

A common way to investigate low frequency stability is by means of a Nyquist plot. To
transform the equation above into a form suitable for such an investigation recall that

rfafb = rhfi(t -Tf)

Making use of the LaPlace transform to move to the complex s-plane and making all
the substitutions indicated above yields the stability equation in a form suitable for the
Nyquist plot.

9C*1

[ec

fS L , (l_+r)[3C

+ lll ~ C * \ a r GOX+ I ' -

C*
Gf =-1

which is of the well known form (let s=j w)
K (jw) = -1

It is evident that not only does K(jw) encompass a transport lag but also includes
possibly transcendental functions in the admittance functions (from the duct transfer
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admittances). However it is well established that this presents no conceptual problem
to applying the Nyquist procedure (see reference nine, p. 467, section 16).
Realistically it does, however, require a computer to evaluate the contours of interest.
One word of caution is in order. When using applications programs care should be
taken to determine how the terms such as the transport lag or the complex hyperbolic
functions are evaluated. For example, some programs use a Fade' approximation to
the complex exponential. This approximation is only good over a limited frequency
range. Other programs such as the new symbolic programs (e.g. MATHEMATICA)
evaluate the various exponential functions without amplitude approximation although
the treatment of phase angles greater than stipulated range(e.g. plus or minus pi)
should be investigated.

Inspections of the stability equation suggests a simple extension to the case where
both the fuel and the oxidizer time lags have to be accounted for separately. Merely
multiply the transport lag exponential inside the brackets and note that each term is
delayed. One term applies to the oxidizer, the other to the fuel. Now instead of one
identical time lag being associated with each of the propellant constituents separate
time lags may be associated with each constituent. This procedure yields the "double
time lag model."

Also note in this development that n (the sensitivity index) does not appear. It would
appear if the variability of the time delay term is taken into account. Indeed the
literature suggests that in any but the low frequency investigations it must be taken
into account. However, it may be neglected in the low frequency regime if the
variability is small compared to the total time delay (see reference three, section 5.3).

Some examples of the Nyquist plots to be expected are exhibited in the Appendix
titled FEEDLINE. In this appendix an increasing number of terms are included in an
example problem to illustrate their cumulative effect. In this example the feedsystem
admittance functions were calculated based on a proposed MSFC test stand design.
Some of the engine parameters e.g.steady state mass flow rates were furnished by
MSFC. However, other parameters such as the variation of C* with respect to mixture
ratio were estimated from the general literature.

INTERMEDIATE FREQUENCY STABILITY MODELING

As previously indicated the next frequency range of interest is the intermediate one.
In this regime the effects of combustion coupling with the feedsystem play a part as
does the variability of the combustion time delay (hence introducing n directly). In
addition the longitudinal oscillatory ("organ pipe") modes of the combustion chamber
gases play a significant part in the stability analysis i.e. the chamber pressure etc is
not considered to be constant throughout the chamber volume as was done in the low
frequency stability analysis.

Because intermediate frequency stability in a given combuster propellant feed system
combination depends upon the two combustion related parameters n and t it is
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customary to characterize graphically the stability condition of the system in terms of a
parameter plane rather than a Nyquist plot. This plane (the n versus i plane) contains
contour separated regions denoting either stable or unstable system operation (in the
small). Thus proximity to the stability boundary is to be avoided (keeping to the stable
side, of course). An example of such a parameter plane is shown in the Code
Development section.

Included immediately below is a synopsis of the intermediate frequency stability
investigation and results. An extensive mathematical development leading to these
results is contained in the Appendix titled "Intermediate Frequency Oscillations in a
Liquid Propellant Rocket Nozzle."
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Intermediate Frequency Mode

Problem Description

The intermediate frequency mode couples the feed lines, combustion chamber,
and the nozzle. Lower frequency modes couple only with the feed lines and the
higher frequency modes couple only with the nozzle. Thus, for the intermediate
mode, the whole system must be modeled.

The results of the low frequency mode study are used to determine the
admittances for the fuel and LOX lines. The flow in combustion chamber is a
complex phenomena and therefore some simplifying assumptions are made. The
medium in the chamber consists of reactant gases, liquid oxidizer and fuel, and
the gaseous products of combustion. This is represented as a two-phase mixture
comprised of a mass-averaged gas comprising all species and a single mass-
averaged liquid phase. The flow is inviscid (except for the existence of a
droplet drag). The gases are thermally and calorically perfect. The liquid
phase is well dispersed throughout the chamber. The variations of the energy
(internal plus kinetic) of the liquid are neglected. And, for this analysis,
there is no heat transfer to the walls.

The physical setup is illustrated by the schematic:

fuel

injector
face

LOX —

combustion chamber nozzle sonic throat

Le

The engine consists of an injector face where the liquid propellants enter
and the throat where the gaseous products exit. The rest of the surfaces are
solid. Conservation requires that the mass of gaseous products leaving must
equal the mass of the liquid propellants entering. The momentum of the two must
also be equal. The energy of the products leaving must be equal to the energy
of the propellants entering plus the energy due to chemical reaction and change
of phase. The conservation equations are:

mass: &/°/&t + vXfV) + a/°L °/e>t + U-(/°L°VL) = 0

momentum: otrW&t + \7-(/°V-V) + vp = -d(/°L °Vi.)/dt - U-(/°L °VL-VL)

energy: 5(/°e8)/bt + y-(/°e8V) + d(/°L°ei.s)/dt + MrY °eusV) + tf'(pV) = E
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The boundary conditions may be expressed as

1. For the liquid phase, specify the injection velocity and the
injection density

2. The admittance conditions are used as the boundary condition
at the combustion chamber - nozzle interface

3. The condition at solid surfaces is the vanishing of the normal
velocity component

4. There is no information passed upstream through the throat.

The mathematical development of the equations and boundary conditions are
presented in the appendix titled "Intermediate Frequency Oscillations in a
Liquid Propellant Rocket Nozzle" and will not be presented here. The non-
dimensional ized equations based on small perturbation theory will be summarized.

Auxiliary equations:

Xi = (5 - 1)uuo + (1 + r)(dhu7dr)(M/s)e-6TT(Gox - rGf)Poo

Yi = -upo

Zi = (1/S)upo

Wi = 2uuo

Mi =

where #f(s) = (1 + srr)(Gox + Gf) - effect of total mass flux oscillations

/Ks) = (1 + r)[(r/c*)(dc*/or) - nrST](Gox - rGf)/r - effect of mixture
ratio fluctuations

= n(1 - e8T)

po = Poo cosh(sx)

uo = -(1/S)Poo sinh(sx)

'x

ui = Yi + {[s(Wi - Xi) + Mi]cosh[s(x - x ' ) ]
. 0

+ s(Yi + Zi)sinh[s(x - x ' ) ] }dx '

'x

pi/8 = -Wi - - Xi) + Mi]sinh[s(x - x ' ) ]
Jo

s(Yi + Zi)cosh[s(x - x ' ) ] }dx '

51



Applying the boundary conditions at Lc (as developed in section 3.6 of SP-194)

u'(Lc) +.-<* p'(Le) + C o'(Lc) = 0

u' = uo + ui

p' = po + pi

o' = oo + 01 = -(1/u)
X

{((5 - 1)/5)po + (1 + r)(dtu/dr)(Gox
o

- -- rGf)Pooe-"T}M exp[-s (1/u)dx"]dx'
Jx'

6 is generally small compared with A and may be deleted for small perturbations.
For rockets which have a cylindrical combustion chamber and conical nozzle, A
may be approximated by M(5 - 1)/(2S), where M is the Mach Number at the
intersection of the chamber and nozzle.

Parameter plane stability can be investigated by setting h = 0 and regard u
as an independent variable. Then the boundary equation can be used as a
relation between two of the engine design parameters or operating parameters
(e.g. n vs T). Values of u in the intermediate mode may be chosen in the range

1/TT < U < 1/T.
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CODE DEVELOPMENT

Three FORTRAN codes are being delivered. These cover the three major
modes of oscillation in a liquid propel!ant rocket: low frequency mode
(feedline-combustion chamber interaction), intermediate frequency mode
(feedline-combustion chamber-nozzle interaction), and high frequency mode
(combustion chamber-nozzle interaction). Along with the codes, sample runs
will also be included on the diskettes. Program listing of each of the codes
will be furnished.

Low Frequency Program (FEEDLINE)

The code for the low frequency mode oscillations (FEEDLINE) is based on
the MATHEMATICA program for the Macintosh as presented in appendix titled
"A MATHMATICA File for Creating a Model of an Engine Feed System". The
mathematical derivations are given in this report. The FORTRAN program was
developed to generate input for the intermediate mode program and to allow the
use of any PC compatible computer to run the code. Because the FORTRAN code
is compiled and not interpreted, as with MATHEMATICIA, execution time is
greatly reduced. The increased speed of the compiled program makes it a
canidate for the primary code for the low frequency mode.

The code uses various files for the input and output of data. The input
may be input by a data file, input interactively, or a combination of both.
If the input is entered interactively, either completely or as changes to the
data file, the input information is written to the input file for later runs
or for use by IMODE, the intermediate frequency mode program. The file names
used by the program are:

FUEL.DAT - file with parameters for engine, tank, and fuel
also with piping configuration,

LOX.DAT - file with parameters for engine, tank, and lox
also with piping configuration,

ADMIT.DAT - output of admittances computed (print file),
ADMIT.PRN - LOTUS file of admittances computed (plot file).

The code is interactive with the user, asking questions of the user and
using the answers to determine what needs to be done. The first question
asked is "IS THIS SETUP FOR FUEL OR OXIDIZER? ENTER F OR 0.". This question
is to determine whether to use FUEL.DAT for fuel or LOX.DAT for oxidizer.
The other questions are asked of the user to read data from the file, input
the data interactively, or to modify the data on the file. Once the system is
completely described, then the admittance calculations are begun. This allows
a range of frequencies to be run.

Certain results are output to the screen in order for the user to follow
the progress of the calculations and possibly request additional frequency
ranges to be run. Further output is directed to a print file (ADMIT.DAT) and
a plot file (ADMIT.PRN). The print file may later be directed to a printer
to obtain a hardcopy. The plot file may be used with LOTUS to obtain plots of
admittance vs frequency. Either frequency or normalized frequency may be used
for plotting as both are output to the plot file. A sample plot is included
below.
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Intermediate Frequency Program (IMODE)

The code for the intermediate mode oscillations (IMODE) is an
implementation of the equations presented in the appendix titled "Intermediate
Frequency Oscillations in a Liquid Propellent Rocket Nozzle". The intermediate
mode couples with the piping (using the results from FEEDLINE) and with the
nozzle (using the combustion chamber - nozzle interface boundary condition).
The program was designed to allow the parametric study of two variables at a
given frequency of oscillation.

The program allows the user to specify an independent and a dependent
variable. The dependent variable is iterated upon until the real part of the
nozzle boundary condition is within 10~5 of zero. If it doesn't converge
within 10 iterations, the current values are printed out and the user can
decide whether to continue the iteration. By running through a series of
values of the independent variable, data for a parameter plane stability plot
is created. This may be plotted by using LOTUS. A sample n vs tau curve is
included below.
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Five files are used by the program. Two are from FEEDLINE:
FUEL.DAT - file with parameters for engine, tank, and fuel

also with piping configuration,
LOX.DAT - file with parameters for engine, tank, and lox

also with piping configuration.
The other three files may have any names. The default names are:

IMODE.INP - file with parameters for the physical configuration,
IMODE.OUT - output of calculations (print Tile),
IMOOE.PRN - LOTUS file with parametric values (plot file).

The user may use the default names or specify them at run time.

The program interactively allows the user to input values, modify values,
change independent and dependent variables, change independent variable value,
or exit program. Also, current values of input parameters may be listed or
the names and dimensions (e.g. ft/sec) of them may be displayed.

55



High Frequency Program (FDORC)

The high frequency code was obtained from Dr. Mitchell at Colorado State
University. The program was written for a VAX computer and has been modified
to run on a PC. Three modes of oscillation are handled; radial, transverse,
and longitudinal. No coupling with the piping 1s considered because of the
high frequencies the program is designed to analyze. A complete description
of the program is given 1n Refs. 5 and 6.

Several changes were made to the code to get it to run on a PC. In one
subroutine, several variables were dimensioned by (0:100,0:100). However, in
the instructions, a maximum of 10 was allowed for the upper dimension.
Therefore, these were changed to (0:10,0:10) and the modified code would run
on a PC. Without the changes, the compiled code required more than 640K of
RAM. Also, a few other aesthetic changes were made.

Thirteen files are used by the program. The input files are:
PIN
NOZIN
ZONIN
CAV1DAT
CAV2DAT
RADIN
AX IN

The output files are:
ZDAT
ZNTAU
NTPLOT
RADOUT
AXOUT
POUT

pressure input,
input for nozzle admittance calculation,
general combustor input,
input for radially oriented absorbers,
Input for axially oriented absorbers,
radial cavity input,
axial cavity Input.

summary of results and echo of input,
summary of stability plot results,
contains n, tau data tabulated for plotting,
results specific to radial absorbers,
results specific to axial absorbers,
contains desired pressure point calculations.
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Nomenclature

kj
G - admittance \pi
01 - perturbation in mass flow rate
? - perturbation in pressure

z - impedance
p - pressure
R - ratio of pressure drop across a dissipative hydraulic circuit element

e.g. an orifice to the square of the mass flow rate through the
element

r - linearized value of pressure mass flow rate ratio
_ evaluated at an operating point
m_ - total propeilant flow average value
*L - a propeilant flow rate average value
L - hudraulic circuit symbol for inertance
C - hydraulic circuit symbol for capacitance
A - cross sectional area of duct
1 - length of duct
P - fluid density
k - bulk modulus of fluid
PDE - partial differential equation
S - complex LaPlace operator
LOX - liquid oxygen
RP1 - hydrocarbon fuel (kerosene like)
V - volume of combustion chamber
T - temperature on an absolute scale
t - time
R - gas constant in equation of state
C - characteristic exhaust velocity
At - nozzle throat area
r - mixture ratio (oxidizer mass rate/ fuel mass rate)
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APPENDIX I

Four Terminal Network Approximations To Duct Admittances

In the main body of this report the transfer admittance of a duct is developed
using a continuous distributed model. This is a good approach especially for
uniform ducts. Another way to develop a model is to approximate the dynamics
by assuming a finite element model. This is done by subdividing the duct into a
number of pieces and then assuming that each piece is characterized by a
lumped inertance, lumped capacitor and as applicable a lumped resistor. The
number of elements to choose is an heuristic matter. Aerojet recommends
choosing an element length eight times smaller than the wavelength of the
highest harmonic of interest. A more conservative choice would be the oft-used
order of magnitude. What with powerful computers as ubiquitous as they
currently are an iterative approach in which successively smaller length
elements are chosen until some figure of merit e.g. the nth harmonic frequency
change is met would seem a tractable and rational way to assess the element
length choice. On notes that in case the duct is not uniform but of arbitrary cross
section versus position certainly the finite element model technique takes on
considerable additional appeal.

To treat the duct or indeed any cascade or tandem connection of elements use
in made of four-terminal or two terminal pair network theory. This theory is well
covered in the technical literature e.g. in the works of E.A. Guillemin but enough
will be developed below for the purposes at hand. Consider the network
specified in the figure below.
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The indicated reference conditions (polarities or signs) for pressure and mass
flow rate are an important part of the basic structure. The network in the box is
arbitrary, except that it is composed of linear and bilateral elements and does
not contain any pressure or mass flow rate sources or sinks. In the
development that follows it is most convenient to use transform notation i.e. The
LaPlace transform notation which converts time domain dynamics (differential
equations) to s-domain algebraic ones. A summary of the zero initial condition
hydraulic element relationship on interest here is given below.

Capacitor:

_L
T Cs

P(t)= Lm(t)
dt

P(s) = Lsm(s)

p(t)=Rm(t) P(s) = Rm(s)

Assuming a topologically flat network in the box it is possible to write the
following set of equations.
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+ - + p\nmn = PI

The factors PPI have the dimensions of hydraulic impedance. When p=q they

are the sum of all impedances on a loop contour. When P*4 ,Ppq is + or - the
impedances Using the "window pane" method of traversing all loops in the
same direction e.g. clockwise the sign will be negative. As an example
c o n s i d e r the 3 l oop or mesh n e t w o r k
below

P33 =

Zd Pl3 = P31 = 0

P23 = P32 = -Zd

= 0

Solving the set of equations consists of determining the kfft mass flow rate
according to

where k= 1, 2,... N successively and 4 is the system determinant

Pll Pl2 — Pin
P21 P22 — P2n

Pnl P«2 — Pnn

and the PPI terms are the cofactors of A. The actual performance of these
operations becomes quite tedious if N is greater than about 3. If it should ever
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be required to determine them for larger order systems a symbolic computer
language such as MATHEMATICA is suggested.

Choosing k = 1 and k = 2 yields a solution to the four terminal network problem
as

A A

A A
It is conventional as well as convenient to define the following quantities.

A

= —

So that the equations may be written as below.

These expressions are called the y-system equations. If the y matrix formed
from the y coefficients is inverted and left multiplied times the left and right sides
of the equation above one obtains

Pi = Zn/Wi - Z12/W2 nr \P{\ _ fZi i -Ziil [wii
°T IP2J ~ LZ21 -Z22J Uj

where
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This latter formulation is sometimes referred to as the z-system equations for a
four terminal network.

Both the y and z equations are relationships among the four variable
P\, PI, mi, W2. A third set of equations is possible. They may be derived from
the y and z set as follows. From the second equation in the y set solve for PI as

Now substitute this expression into the first y equation to yield

mi =yi i

or
M

mi = ̂ pP2 + ̂ m2 (recall yn =

A similar procedure carried out on the z set yields

nil = - j>2
Z21

Because there are now two sets of equations relating the vectors
[PI miY and [?% mj both can be expressed as the same equation by defining
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A =

Z21

B =
221

Thus a simple set of equations may be written in terms of the ABCD parameters
as

PI = AP2 +
m\ =

It is to be noted that the equations above yield descriptions of the four terminal
network in terms of three y or three z coefficients whereas the general equation
has four coefficients. This is because the ABCD are not mutually independent.
This dependency can be expressed as

AD - BC = 1

as can be verified by direct substitution of the y's or z's.

In as much as the motivation for this Appendix was to treat a duct as a
succession of finite elements it is now necessary to demonstrate how to
cascade networks. Actually use of the ABCD methodology renders it
straightforward. Consider the figure

For each network the input-output relations are given as
" ' B]\P2]

A B
C'D

however
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therefore

.nl
= A B A' B

Multiplying out the matrices immediately to the right of the equals mark yields a
two by two matrix equation relating the input and output pairs of the network. In
the main body of work input impedance or its reciprocal, admittance, is used.
Thus an expression for it is required. Given the overall expressions

PI = EP2 + Fm2
nil = GP2 + Hm2

The impedance looking into the network at the I -11 terminals is given by
z =Pi _ EP2 + Fni2

1 nil GP2 + Hm2

now let

so that
ni2

= EzL±]F_
1 Gzr + H

is the desired result. EFG and H are obtained from the elements of a matrix
resulting from multiplying together individual finite element transmission
matrices. Thus depending upon the desired usage they could either be done
symbolically or numerically (for a given frequency for example) by computer.

Perusal of an Aerojet report circa 1967 dealing with some propellant
feedsystem analyses shows use of yet another alternate formulation. This
formulation makes use of a propagation function derivable from the work above.
Closer study shows it to produce a result directly parallel to the development in
the main body of text in this report. The defining function for the propagation
function is taken to be

or
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Perhaps it is now apparent through the foregoing somewhat formal
development that the transfer admittance technique used in the main text is
highly related to this ABCD technique. As a matter of interest both formalisms
will be used in the example given below.

As an example the lumped element model of a duct section element will be
taken to have the same configuration as that used on an infinitesimal scale for
t h e c o n t i n u o u s d i s t r i b u t e d
model.

22

0-

J Z
7*G2

'in

— ii—

Zl 1
Gl

Z1=£
Z2 = R + Ls

T

Using network reduction techniques as before one writes

G i _

Gifzi + z2 +^-\
\ Gi/

as the desired transfer admittance ratio for this element. To formulate this
problem using the ABCD method designate loops and write equations as
shown below.
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= z\m\ - Z2/W2

or

These equations are of the form used in the derivation. Therefore by matching
coefficients

[z] = Z1Z2

so

Z21

Z22

221 21
and from before

Azr + B

2l|22 + ^-
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This result is of course precisely the same as previously developed from
network reduction theory.

To summarize then if it is desired to cascade finite element models such as
finite dimensional duct segments modeled as having finite lumped inertance,
capacitance and resistance several techniques are available. Two are
developed above. These are the transfer admittance approach as used
previously and the ABCD approach. The use of either would be greatly
facilitated in actual practice by use of computer based techniques to perform the
manipulations (symbolic mathematics) and the numerical evaluations.
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FEEDLINE

A MATHMATICA FILE FOR CREATING AN IMPEDANCE
MODEL OF A PRESSURE FED LIQUID PROPELLANT

ROCKET ENGINE FEED SYSTEM

DECEMBER 1989

Il-ii



About FEEDLINE

The FEEDLINE Mathmatica file can be used to create a model for an
engine feed system. Using the approach found in document SP-194 by
Harrje and Reardon, FEEDLINE calculates admittance ratios for each
component of the feed system. These components may include the
fuel tank, straight piping, bends in piping, valves, bellows, manifold
and injector orifices. The file then calculates an overall admittance of
the system (as seen from the engine), by multiplying these separate
admittance ratios together. From this equation, frequency response
plots such as Bode and Nyquist can be created to study low frequency
instability (chugging), or it can be used as input to the intermediate
combustion stability model developed separately.

Shown below is the analytical approach to FEEDLINE, using a simple
system as in figure 1. It is important to note where each component
"occurs" in the feed system, because each admittance ratio depends on
the admittance ratios of the sections above it.

The equation for the overall admittance is:

where,

GO =admittance at the top of the fuel tank
Gj.
GO =admittance ratio for the tank
GI
GI =admittance ratio for line 1
Gj^
G2 =admittance ratio for the valve
GI
GS =admittance ratio for line 2
Gj.
G4 =admittance ratio for bend 1
GJL
GS =admittance ratio for line 3
GI
Ge =admittance ratio for bend 2
GJL
G? =admittance ratio for line 4
69
Gg =admittance ratio for the bellows
GIO
GQ =admittance ratio for line 5
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On
Gio=admittance ratio for the manifold

Gn=admittance ratio for the orifices

Since there is no fuel flowing into the top of the tank (for a pressure fed
system),

G0=0
therefore, by cancelation of terms,

Each component of the feed system has a general equation for its
admittance ratio. Therefore, it is easy to accommodate changes in the
system by simply calculating the additional section's admittance ratio
and inserting it in the proper place in the equation above. Adding a
ratio, however, will cause the subscripts in the following ratios to
change. Therefore, check all subscripts when an addition is made.
Another important note to make is that several sections of the feed
system may have similar parameter values. For example the diameter
of all the straight lines may be the same, or the bends may have the
same angles. Therefore, you may want to define a general parameter
value that may be used in calculating several different admittance
ratios. Finally, it is very important to use the correct units, or all
calculations will be inaccurate. The general admittance ratio equations
for various components, normalized with respect to the combustion
chamber pressure, are shown below:

^Admittance ratio for the fuel tank:

GI
Go=l+sctank

for GQ=O,

Gi=sctank

ctank=capacitance associated with the fuel tank

den*vol*prchamb
ktank*tflow

den=density of fluid ft3

vol=volume of fuel tank (ft3)

ktank=bulk modulus of fluid in tank ft2
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(Jb_)
prchamb=pressure inside combustion chamber ft2

rlb_N
tflow=total flow rate of fluid inside engine *• s '

s=jw

* Assume x&y are subscripts, y=x+l

* Admittance ratio for constant area feed line: (straight pipe)

Gx l+GxZline tanh(stl)

Zline=impedance associated with the feed line

Zline=
areal*prchamb*g

a= velocity of sound in the fluid 's '

areal=area of feed line (ft )
(32.2 4)

g=acceleration of gravity s2

tl=time constant of line

tl=lenl/a (s)

lenl=length of line (ft)

*Admittance ratio for orifices:

Gx 1+ZorGx

Zor=impedance associated with the orifices

„ 2*dpror*tflow
lflow*prchamb

(Jb)
dpror=pressure drop across orifices ft2

lflow=flow rate of fluid through the line (~s~'

*Note that this method (for orifices) may also be used to find the admittance
ratio for a valve.
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*Admittance ratio for bellows:

model as straight pipe for now

* Admittance ratio for manifold: (similar to model of fuel tank)

Cm=capacitance associated with manifold
(refer to equation used for ctank)

^Admittance ratio for bends in the line: From Dr. George Doane

In representing a bend in the feed line, you want to show an
increase in inertance with constant fluid volume. Therefore, a
bend is modeled as a straight pipe with a decreased area and an
increased length. Assume that the bend is two feet long (one
foot on each side). Therefore,

11 = 2 (ft)
Al = area of straight pipe (ft2)

Recall, for hydraulic lines:

L=1/A inertance
C=(p/k)lA capacitance

therefore, we can say,

C2=(|)12A2

for a constant fluid volume,

Ci=C2
then,

now set L2=XLi

where A. is a constant
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then,
Jb ĵL

Ail2=XA2l!

dividing by h:

Using the information found previously,

then,

A2=-
"new area of line"

"new length of line"

to find A.:

H?
where,

L2=L!+L"

L" found from graph in SP194, P. 109 (see APPENDIX A)
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Using FEEDLINE

The first step in using FEEDLINE is to break the system up into its
various components so that each section will have a separate admittance
ratio. By dearly indicating these divisions, you will avoid confusion in the
latter calculations.

One of the most tedious tasks in using this model is obtaining the
parameter values needed for calculations. One piece of information that is
important in finding accurate values for viscosity, bulk modulus, etc.. is the
pressure drop down the feed line. Disk 1 is set up to help with these
calculations. First, however, the analytical approach is discussed below:

The first step is to calculate the Reynold's number in the line, which
determines whether the flow is laminar or turbulent.

Form the equation on p. 81 of Fluid Mechanics:

N den*vel*dia
vis

den=density of fluid ft3

rv

vel=velocity of fluid ("s~'

vel_ Iflow
den*areal

where,

lflow=flow rate of fluid in line ^ s

areal=area of line (ft )

dia=diameter of line (ft)

vis=viscosity of fluid "'s

For a Reynold's number greater than 10,000, we can assume that the flow is
turbulent.

The next step is to find an approximate friction factor associated with the
Reynold's number. This can be done using the chart in Appendix B, which
comes from p. 195 of Fluid Mechanics. Assume that we are using smooth
pipes.
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We then want to find the head loss in each section using the equation found
on p. 93 of Fluid Mechanics:

dia*2*g
where,

fr=friction factor
len=length of section (ft)

With this information, we can calculate the pressure drop in the pipe, and the
pressure drop due to friction.

For the pressure drop in the pipe we use the equation from p. 98 of Fluid
Mechanics:

And, for the pressure drop due to friction, the equation on p. 98 of Fluid
Mechanics:

With these values for each component of the feed system, we can find the
total pressure drop, which in turn, allows us to find more accurate values of
the bulk modulus of the fluid, viscosity of the fluid, etc...
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On the computer

Insert DISK1 to calculate the pressure drop in the line. Click on to the
FEEDLINE1 disk icon and then four Mathmatica icons will appear to choose
from. Each file is set up for various systems. There are two LOX systems, one
with bends and one without bends, and two RP-1 systems, one with bends
and one without bends. Choose the appropriate file by clicking onto the icon,
and Mathmatica will then be started. You are now ready to make changes or
add new parameters to the file.

*It is important to remember, when entering these parameters, that you want
to evaluate each entry as a separate piece of information. To do this, press
shift/return after you are finished working on the entry, and a bracket should
appear on the right side of the screen as shown below:

den = 53.3

Note that in the example above, the bracket has an extra stem on the upper
side. This indicates that the cell is INACTIVE. If the entry on the screen
appears with a bracket containing only one stem rather than two stems as
shown below,

den = 53.3

then this cell is ACTIVE.

In order for Mathmatica to recognize this cell and use the information in it,
you want the cell to be ACTIVE. To activate an INACTIVE cell, click onto the
cell and go up to CELLS. Under CELLS, the word INACTIVE should appear
with a check mark beside it. Go down to the word INACTIVE and highlight
it. This will make the check mark disappear, and the cell will be ACTIVE and
ready to be evaluated by Mathmatica.

*In all of these files, general parameter abbreviations have been designated
with meanings and units shown in the list in APPENDIX C.
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*Once again, it is important that the proper units are used in defining these
parameters, or the calculations will be inaccurate.

For the pressure calculations on DISK1, you must first find a value for the
friction factor. Notice that the file already contains values for the friction
factors. However, those factors are associated with the parameter values
initially used, therefore, if any parameter value is changed, you must
evaluate the notebook again with the new values entered. The easiest way to
do this is to first make the parameter changes, checking that all those cells are
ACTIVE. Then, you want to go to the top of the screen under SPECIAL, and
choose EVALUATE NOTEBOOK. Mathmatica will then evaluate every
ACTIVE cell in the notebook. You then want to look to see what the new
Reynold's numbers are. Using these values and assuming that the pipes are
smooth, use the chart in APPENDIX B to find the associated friction factors.
Once you have those values, go back to your file and enter them in the proper
place. Now, go under SPECIAL and pick EVALUATE NOTEBOOK again.
Mathmatica will evaluate every ACTIVE cell, and will give you the new
pressure drop calculations.

*Remember that you must have pressure drop equations for every section of
the feed system. Make sure that each equation contains the parameters with
the proper subscripts associated with that section.

With the information from this file, you can go to various references (see the
list in APPENDIX D) to find values for the bulk modulus, viscosity, etc...

Once you have found all the necessary parameters, you are ready to use DISK2
to calculate the admittance ratios.

Insert DISK2 and dick on to the FEEDLINE2 disk icon. As before, you will see
four icons, representing the four different systems. Choose the appropriate
icon and the Mathmatica program will begin.

You will then see a list of parameters similar to those in the files on DISK1.
In the same manner as before, you may make changes in these values,
checking that each cell is still ACTIVE. After making these changes, you
should once again, check all the equations to make sure that the proper
subscripts are inserted, and that each section is included. You may then
evaluate the entire notebook by going up to SPECIAL, and choosing
EVALUATE NOTEBOOK. Another option is to evaluate each entry step by
step, by pressing shift/return for each entry.

The Mathmatica file that you are working on may contain plot commands
from previous runs. Since these plots require a lot of memory and time to
run, it is best to make these cells INACTIVE when they are not needed, so
that Mathmatica will ignore them when you choose EVALUATE
NOTEBOOK.
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Frequency Plots

We have found in running these files, the feed systems including the bends
require a tremendous amount of calculations to produce a plot. This is
because of the larger number of admittance ratios in these systems. When
trying to produce frequency plots of these systems, the kernel of Mathmatica
is usually destroyed due to lack of memory. We realize that the cause of this
problem stems from the fact that in the initial setup of these files, Mathmatica
will not remember the previous calculations it has made. Therefore, it
recalculates every equation over each time a new admittance ratio is figured.
One can see from this that the time and memory required for calculation as
admittance ratios are added grows exponentially. Efforts are still being made
to write commands that will cause Mathmatica to remember the values it has
already found, thus using less memory and speeding up the time needed. An
approach that has been used to get frequency plots is discussed next.

Once you have entered all necessary parameters (using the systems without
bends), you may plot your results in different forms of frequency response
plots. These plots, as said before, require a lot of time and memory to run.
Therefore, it is best that the commands are only evaluated one at a time
(using shift/return), rather than using EVALUATE NOTEBOOK.

Now you are ready to make some plots. Some examples are shown.
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This plot gives you the magnitude of your admittance versus frequency:

pgi5 - ParametricPlotl{(iiJ*tl)/Pi,Rbs[gi[uj]]},{iu,.0001,1000},
RHesLabel->{"(ii>*tl)/Pi ","gi"}l

Hw*tl) /Pi

-Graphics-

The basic form for a plot of this type is:

Parametric Plot [{x, y}, {x, x min, x max} ]
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This plot gives you the admittance ratio in decibels versus w on a log scale:

pgi2 -ParametricPlot[(Log[10,uj],20*Log[10,fib$[gi[uJl]]},{ID,62.8,6280},
flHe$Label->{Mlogliiil","db"}l

db
log[w]

-20.

-30.

-40.

-50.'

-Graphics-

2.5 3. 3.5
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*Note that the previous plots were made using the feed systems without
bends. Since the time required for plotting the feed systems with bends is so
great, you may just want to create a table of a few points which can then be
plotted. An example follows.

As a note, this table containing only five points required about 30 or 45
minutes to be produced:

tgiiiib • Table[{uj*.0202284/3.14,Rbs[gi[ii>]]},{uJ,50,250,50}]

{{0.322108, 0.137589), {0.644217, 0.244106}, {0.966325, 0.941706},

{1.28843, 0.0210737), {1.61054, 0.338609}}

ptgiuib - ListPlotltgiwb]

0.8-

0 . 6

0.4

0.2

0.4 0.6 0.8 1.2 1.4 1.6

-Graphics-
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Even though the table may not produce a meaningful plot, when compared
with the plot of the system without bends, you can get a good idea of its form.
This example uses the show command to put plots on top of each other.

Shoo>[pgi5,pgiujb]

o.i

0.2 0.4 0.6 0.8 1. 1.2
+-»-(w*tl) /Pi

-Graphics-
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Nyquist Plots

Using the overall admittance equations for both the LOX and RP-1 feed
systems, you may create Nyquist plots to aid in stability checking, etc

To do this, you first need to get both overall admittance equations into one
file, in their INPUT format. Insert DISK 2 and get into either the LOX or RP-1
file. To get an equation, enter,

gi[w] (shift/return)

This will give an equation for the overall admittance. Since the equation will
initially be in the output format, you may first want to unformat it to save
space. To do this, click onto the cell and go up to CELLS. Under CELLS,
highlight FORMATTED and this should make the check mark disappear, and
the equation will be condensed. Now COPY the equation over. Once it is
copied, you want the cell to be in the INPUT form by going up to STYLE,going
down to CELL STYLE and highlighting INPUT. Now, set the equation equal
to gi in the form:

gi [w_]: = equation

COPY the equation again in its INPUT form onto the clipboard. Close the
file on DISK 2, eject DISK 2 and then insert DISK 3. Open up one of the
Nyquist files and PASTE the equation into the file. You will need to rename
the equation to something unique, such as

gilox[w_] or girpl [wj

since both admittance equations are called gi[w_] on DISK 2. Save the file,
close it, and eject DISK 3. Insert DISK 2, once again, get into the other feed
system file, and as before, COPY the overall admittance equation (in its
INPUT form) onto the clipboard. Eject DISK 2, insert DISK 3, get into the
same file as before and PASTE the other equation into the file. Once you
have renamed the second equation, you are ready to form some Nyquist
Plots.

*NOTE: There are other methods of transferring the admittance equations to
the Nyquist files. One may be to COPY one equation into the same file as the
other. Then you would copy both equations simultaneously onto the
clipboard for transfer to DISK 3. The choice of method is up to the user.

The Nyquist plots are basically just a plot of the real versus imaginary plots of
an equation. Some examples that have been calculated follows:
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This plot is for the equation:

-J'

where,

"Y, are constants

_] :- 2*EHp[-rii>*taut]/(1*(thetac*l*ii>))

pgi - ParametricPlotI{Re[gi[iii]]flm[gi[ii>]]}, (in, 0.01, 7000},
flnesLabel -> {"re","lm'}l

-1.25

Out[12]-
-Graphics-

re
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This plot is for the equation:

where,

are constants

Inl20]:-
pgi2 - ParometrlcPlot[{Re[giluj]]Jm[gi[uj]]},{uj,0.01,7000},

flHesLabel -> {"re Vim"}]

im

0.2 0 .4 0 .6 0 .8
re
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A final example shows the plot of the equation:

Int23]:-
pgi3a • PorametricPlot[{Be[gJ[ii"]],lmIgiIu>]J},{LU,0.01,1000},

RHesLabel -> {"reVim"}]

im

re
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The process described in the previous pages was used in modeling the feed
systems shown in APPENDIX E. Since a detailed explanation has already
been given, a short example will show the calculation of some of the
parameters for the LOX feed system:

for LOX:

line 1:
lenll =17.97 (ft)
diall = 1.04 (ft) = diameter for all lines
areall = .852 (ft2) = area for all lines

line 2:
.Ienl2 =8.138 (ft)

line 3:
lenlS =32.51 (ft)

line 4
Ienl4 =8.652 (ft)

line 5:
lenlS =4.12 (ft)

75° bend: (assume 1 foot on each side)

R2 = .52 (ft) (inner radius of bend)
Rl = 1.56 (ft) (outer radius of bend)

RZ/Rl = .333

from chart in APPENDIX A:

- .
Ri-R2

L.. = (.n)(1.56-.52)=2()8(ft)

L2=L'+L"= 2.56 (ft)

I _ L-2 _ 2.56 _ 1 no
X-LT~2l5

II = 2 (ft) (assumed length of bend)
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Ienb75 =

2.18 (ft)

Areab75 =

.816 (ft2)

From AEROJET DATA:

flowrateLOX = 1 flowLOX = 2264 Ib m/s

flowrateRpi = 1 flowRpi = 848 Ib m/s

tflow = 1 flowLOX + 1 flowRpi = 3112 Ib m/s

*density and viscosity of fluid found in references in APPENDIX D.
den = 72.13 (Ib/ft3)
vis = 14.32*10-5(lb/ft s)

With this information, you can run the file for pressure drop calculations and
then find remaining parameters.
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APPENDIX A

DYNAMICS OF COMBUSTION AND r*/>W P8OCC88U §3.2 109

0 OJ 0.2 O.S 0.4 O.S

Fiouu due to duet eurr»tura.
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Parameters for FEEDLINE APPENDIX C

den
vis
areal
areab ~~
dial
diab
lenl
lenb
g
a
Iflow
tflow
voltank
volman
prchamb
dpror
veil
velb
reynolds
frl
frb
headl
headb
dprfr
dprlin
kman

ktank

cman
ctank
g
r
zline
zbend
zor
tlortb

density of fluid (Ib/ft3)
absolute viscosity of fluid (Ib/ft* s)
area of line (ft2)
area of bend (ft2)
diameter of line (ft)
diameter of bend (ft)
length of line (ft)
length of bend (ft)
acceleration of gravity (32.2 ft/s2)
velocity of sound in fluid (ft/s)
flowrate of fluid through the line (Ib/s)
total flowrate of fluid to chamber (Ib/s)
volume of tank (ft3)
volume of manifold (ft3)
combustion chamber pressure (Ib/ft2)
pressure drop across orifices (Ib/ft2)
velocity of fluid in line (ft/s)
velocity of fluid in bend (ft/s)
Reynold's number
friction factor in line
friction factor in bend
head loss through line (ft)
head loss through bend (ft)
pressure drop due to friction (Ib/ft2)
pressure drop in line without friction (Ib/ft2)
bulk modulus of fluid at manifold pressure
(Ib/ft2)
bulk modulus of fluid at tank pressure
(Ib/ft2)
capacitance associated with manifold (sec)
capacitance associated with tank (sec)
admittance of section
admittance ratio of each section
impedance associated with line
impedance associated with bend
impedance associated with orifice
time constant (sec)
overall admittance seen from engine
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APPENDIX D

References for FEEDLINE Parameters

1. AEROJET, "Characterisctics of RP-1 Rocket Fuel," Sacremento,
California, Libraray Aerojet-General Corporation Liquid Rocket Plant,
February 14,1957

2. Binder, R. C, Fluid Mechaics, New York, Prentice-Hall Inc., 1950, 361 p

3. Chemical Propulsion Information Agency (CPIA), "Summary of
Properties," Laurel, Maryland, The Johns Hopkins University Applied
Physics Laboratory, November, 1987

4. Harrje, D. T. and Reardon, F. H., "Liquid Propellant Combustion
Instability," NASA SP-194 (1972)

5. McCarty, Robert D. and Weber, Lloyd A., "Thermophysical Properties
of Oxygen from the Freezing Liquid Line to 600 K for Pressures to 5000 PSIA,"
NBS Technical Note 384 (1971)

6 Von Doehren, Paul J., "Propellant Handbook," Edwards, California, Air
Force Rocket Propulsion Laboratory, Research and Technology Division,
January, 1966

"Other parameters were obtained from NASA data
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Intermediate Frequency Oscillations

In a Liquid Prope11 ant Rocket Nozzle

Wilbur C. Armstrong

Introduction

Oscillations in a liquid propulsion rocket nozzle have been of Interest since
World War II. Possibly they were of Interest before then when liquid rockets
first began to be studied (e.g. Dr. Goddard). During the 50's and 60's much
progress was made 1n understanding some of the problems of low frequency and
intermediate frequency oscillations. In 1941 von Karman suggested Introducing a
time lag as way to explain combustion instabilities. Crocco (ref. 1) and others
developed and applied the idea of a combustion time lag. This use of a time lag
1s used 1n the analysis of this report.

A volume edited by Harrje and Reardon (ref. 2) was published in 1972 which
presented much of the work done on oscillations 1n a liquid rocket (SP-194).
Chapters 3, 4, and 5 form the basis for this paper. An effort will be made to
develop the fluid dynamic equations and fill in some of the missing mathematics.
Also, SP-194 has several typographical errors which are difficult to find without
a detailed following of the mathematics. The emphasis will be on the intermediate
mode of oscillation; however, the initial development is applicable to all modes.

In the 1970's, much work was done by Mitchell and associates at Colorado
State University with high frequency instability. A report by Mitchell and Eckert
(ref. 3) describes a simplified computer program for predicting linear
instabilities. In the early eighties their work slowed down. However, it has
resumed and Mitchell has a new computer program which should be released soon.

At an AGARD meeting in October, 1988, Cullck (ref. 4) presented an overview
paper on combustion Instabilities in liquid propulsion systems. Included is an
excellent bibliography for rockets, thrust augmentors, ramjet engines, and passive
and active control of instabilities.

in-l



Problem Description

The flow 1n a rocket nozzle 1s a complex phenomena and therefore some
simplifying assumptions will be made. The medium 1n the chamber consists of
-eactant gases, liquid oxldlzer and fuel, and the gaseous products of combustion.
This will be represented as a two-phase mixture comprised of a mass-averaged gas
comprising all species, Identified by no subscript, and a single mass-averaged
liquid phase Identified by the subscript ( )L. The flow 1s 1nv1sc1d (except for
the existence of a droplet drag). The gases are thermally and calorically
perfect. The liquid phase 1s well dispersed throughout the chamber. The
variations of the energy (Internal plus kinetic) of the liquid are neglected.
And, for this analysis, there 1s no heat transfer to the walls.
The assumptions made allows the use of the following:

equation of state: p =

speed of sound a = / Sp/f = / SRT

The rocket 1s considered to be comprised of two parts: the combustion chamber
where the Mach number 1s low and the nozzle where the Mach number Increases to 1.0
at the throat. The effect of the fuel lines will be Initially Ignored, but will
be added later In the discussion. The physical setup Is as follows:

Injector
face

combustion chamber nozzle sonic throat

The rocket motor consists of an Injector face where the liquid propellants enter
and the throat where the gaseous products exit. The rest of the surfaces are
solid. Conservation requires that the mass of gaseous products leaving must equal
the mass of the liquid propellants entering. The momentum of the two must also
be equal. The energy of the products leaving must be equal to the energy of the
propellants entering plus the energy due to chemical reaction and change of phase.
The conservation equations are:

mass: orVot + V-(fV) + drV/dt + vXrVVu) = 0 (1)

momentum: 5(/°V)/ot + vX/°V-V) + vp = -&(r\ °VL)/ot - vXrVVt-Vi.) (2)

energy: 5(fe8)/dt + vXr^V) + o(rVei.e)/dt + MrVet.V) + vXpV) = E (3)
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The boundary conditions may be expressed as

1. For the liquid phase, assign the Injection velocity and the
Injection density

2. The admittance conditions are used as the boundary condition
at the combustion chamber - nozzle Interface

3. The condition at solid surfaces is the vanishing of the normal
velocity component

4. There is no information passed upstream through the throat.

The last boundary condition is more conveniently used by computing the nozzle
admittance conditions at the chamber-nozzle Interface and applying the conditions
there.

Fluid Flow Equations for Liquid Rocket

The conservation equations (1-3) are used to study the oscillations in a
liquid propellent rocket. First the equations are written in a different form.
Then they are non-dimensional 1zed. Next, small perturbation theory is applied and
finally the one-dimensional longitudinal equations are solved.

The conservation of mass equation may be rewritten and M defined.

d/°/ot + vX/°V) = M = -e>/°L°/ot - y.(r\°VL) (4)

Expand the momentum equation

VOrYot + vX/°V)) + /°oV/ot + /"V-flV + Sp =

-Vt(drV/ot - vXrVVO) - l°L°oVi./ot - rVVt-vVL

and substitute M where appropriate.

/°dV/dt + fV'vV + 7p = M(Vt - V) - rV6Vt/ot - rVVL-Wi. (5)

The next step 1n the development of these equations is to non-dimensional ize
by use of reference values. Pressure, density, temperature, etc. are divided by
their values at the injector face. Velocities are divided by the speed of sound
at the Injector face, distances by the length of the combustion chamber, and time
by (length of combustion chamber) / (speed of sound at injector face). Thus

P = Pdln/Pr, U = Udlm/ar, X = Xdln/Lc, t = td1«/(Lc/ar ) ,
M = MdW(rVar/Lc), e = edim/hr, etc.
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Substituting Into equation (4) we obtain

6(/°/°r)/5(tLc/ar) + fl-(/>/°rVar) = M(frar/Lc) = -&(/°L 'fr )/&(tLc/ar ) - V

(rVar/Lc)[drVot + tf-(/°V)] = M(r>ar/Lc) = -(Pr&r/Lc ) [o/»L V&t + U-(rVVL)]

5/Vot + \7-(/°V) = M = -dfL°/ot - g-(/°L°VL). (6)

Substituting into equation (5) we obtain

rY»rO(Var)/o(tLc/ar) + /°/°rVar -S(Var ) + S'(ppr)

= M(/°rar/Lc)(Vl.ar-Var) - /°L °/°r (5(VLar )/o(tLc/ar ) - rYYrVLar-^Vuar)

/°rar2/Lc{^&V/5t + />V-UV + [Pr/(^rar2)]9p}

= /°rar2/Lc{M(VL-V) - /°L°5VL/&t - ^L'VL-WL}

but, ar2 = Spr//*r giving

/°dV/ot + /°V'W + (1/S)Up = M(VL - V) - ^>L °&VL/&t - />L °VL -\7VL (7)

Substituting into equation (3) we obtain

o(/°/°re8hr)/o(tLc/ar) + 7 • (^rBshrVar )/Lc + O(/»L VrBLshr )/5(tLc/ar )

+ 9-(/°L°/°reL8hrVar)/Lc + S- (pprVar )/Lc = EEr

/°rhrar/Lc[o(^e8)/Ot + ^'(^esV) + 6(/°L°eL8)/Ot + U-( / °L°eL8VL) ]

+ (p ra r/Lc)V-(pV) = EEr

o(/>e.)/dt + ^(/"eaV) + 5(/°L°eL8)/&t + \7-(^L°eLsVL) + V«(pV) = E

The assumption was made that the internal energy of the liquid did not vary with
time or space. Also that ee = hs - p//°. Thus,

d(/°e8)/dt + fl'[f(hs - pX/'JV] + eL8[o(fL°)/dt + ^.(/°L°VL)] + tf-(pV) = E

5(/°e8)/dt + y-(fh.V) - \7-(pV) - MeL8 + tf'(pV) = E

If e8 is rewritten as internal energy and chemical energy, then

o(/°e8) + tf-(fh8V) = MeL8

The normalization process makes e = T/5, ha = T8, ets = 1 , T8 = T + J(5 - DV2.

/>e8 = fe + J(5 - D/'V2 = />e + /°(T8 - T) = />T8 + /°(e - T) = /°T8 + /»(!/»- T)

1) = fTa - p(8 - D/5
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Substitute this Into above equation to obtain

atfTe - ((5 - 1)/5)p]/dt + v-(r'TBV) = M (8)

Substituting Into the equation of state we obtain

ppr = rYVRTTr

Ppr = (rVRTr)/°T

P = /°T (9)

Sjnall Perturbation Theory

If the perturbations of such things as pressure and velocity are small with
respect to the mean (steady-state) values, the parameters may be represented 1n
the form

p = p + Real(p'e8t) (10)

where p 1s the mean value, p' Is the perturbation value, and s Is 1n the form
s = h + 1u. The perturbation value 1s a function of location only, the time
variation is taken care of by e8t. Substituting into equation (6) to obtain

r"e"*)(V + V'e8t)] = M +

of/dt + s/o'e8* + v-[fV + 7v'e8t + /°'Ve9t + /°'V'e29t) = M + Me8*

5?/&t + \7-(̂ V) + e»*[sf>' + v-(^V') + v-(r"V) + e8t\7.(/»'V')] = M + M'e8t

Subtract M from both sides, divide by eat, and set higher order terms to zero.

sr" + v-(^V') + v'(/°'V) = M' (11a)

similarly,

= M'

Rewrite equation (7) without M and substitute the perturbation equations to
obtain

d(/°V)/ot + v

/>'eat)(V + V'e'tJl/dt + v-[(7 + ̂ 'e«*)(V + V'e9t)(V + V'e8t)]

(p + p'e8t) = -5[(7L° + /°L°'e8t)(VL + Vt'e8t)]/dt

+ rVe8t)(VL + VL'e
8t)(VL
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o(/°V + V'est + £'Ve8t + /°'V'e28t)/ot + tf-(/°V2 + 2/°W'e8t

+ /°'V2e8t + 2f'VV'e28t + i°'V'2e38t) + (1/5)tf'p +

+ /°L°'Vi.'e28t)/dt -

set higher order terms to zero

{5(7v) + 7'(?V2) + (1/S)\7-p} + esMs^V' + s/°'V + V

= -{O(/°L°VL) + ^•(/"L'VL2)} - e8t[s?u°VL' + S/°L°'VL

+ rV'VL2)]

the terms in {} are equal by equation (3) and may be deleted

+ s/°'V + \7-(2^W' + />'V2) + (1/W-p1 = -S^L'VL' - srV'Vi.

(1/8)\7'P' = -s(/°°VL' + ^L°'VL) (12)

' - /°L°'VL2)

Substitute perturbation equations into equation (8) to obtain

/°'e8t)(T8 + TVe
8') - ((s - D/5)(p + p'e8t)]/ot

T8 'e8 t)(V + V'e8t)] = M + M'e8t

- ((5 - 1)/5)(p + p'e8')]/dt

+ /°'T8'V'e3
8t] = M + M'e8t

- 1)/8)p)]/0t + S-(?T8V)} + esttsC^' + f'Ts - ((5 -

+ tf'C^TsV + ̂ T8'V + /°'?8V)] = M + M'e
8t

items in {} are H by equation (8)

' + /°'Ts - ((5 - D/5)p'] + y-C/^TsV' + ̂ T8'V + /°'T8V)] = M'
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but, Ta = 1 and s/>' + vXfV) + vXf'V) = M' by equation (11a)

thus,

(13)

The energy equation can also be written in terms of entropy (a). Entropy is
defined by the equation

f> = p(

Substituting the perturbation equations gives

/» + r"e8t = (P + p'e8t)(i/*)exp[-(o + o'e8*)]

7 + /°'e8t = pd/Jf)(l + p'/P e8t)n/»)exp(-a)exp(-a'e8t)

Divide by /•

1 + /<>'/? e8t = (1 + p'/P e«t)n/«>exp(-o'e8t)

Replace the factors on the RHS with their series representation and retain only
up to the first order terms

1 + /°Yf e8t = [1 + (l/5)p'/P est](1 - a'e8t)

1 + /»'/? e8* = 1 - a'e8t + (1/8)p'/p e8* - (1/S)p'/po'e28t)

/•'/? = -o' + (1/8)p'/p

/»'p/?= -po' + p'/5

po' = p'/5 - T/»'

Substitute this into equation (13)

s[rT' + (8 - OfV-V - ((5 - 1)/8)p'] + ̂•{mT' + (5 - 1)V-V']} = 0

s[po' + (5 - 1)^V-V] + v--{V[pa' + ((» - D/5)p' + (5 - Or^V-V]} = 0

s[po' + (5 - Dr^V-V] + v--{V[po' + (8 - Dr^V-V']} = -((S - 1)/S)vXp'V) (14)

Now apply the perturbation equations to equation (9)

p + p'eat = (7 + /°'e8t)(T + T'e8t)

p + p'e8t = TT + ?T'e8t + /°'Te8t + /o'j'

p' = /O'T + ?T'
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which may be rewritten as

?T' - ((S - O/8)p' s p'/8 - /»? (15)

AlSO,

T8 + T8'e8t s ? + T'e«t + J(S - 1)CV + V'e8t)(V

f. + Ts'e8t = T + T'e«t + j(8 - t)(vv + 2W'e*<

TV = T' + (5 - 1)W' (16)

Substitute equation (16) Into equation (13)

st?r * (8 - DW - ((8 - D/8)p'3 + s-t?vr + (8 - iwv] s o
use equation (15) to obtain

s(p'/8 - /°'f) + s(8 - D/̂ W't V-[V(?T' + (8 - 1)?VV')] s 0

s(p'/8 - /"f) + s(8 ~ D/sW'* 9-[V(p' - f'T + (8 - 1)/»W')] s 0

s(f - p'/8) = s(1 - f)/" + 8(8 - 1)?W'+ V'[V(p* - P7T + (8 - 1)?W')]

let X = (5 - 1)?V*V' 4- (1 - ?)/•'

' - p'/8) = sX + 9-[Vp' - V̂ 'T + (8 - 1)7V(V-V')3

- p'/8) = SX + 7«[Vp' + (1 - T)/»'V + (8 - 1)?V(V'V) - />'V]

Let Y = -Vp* + (1 - ?)V - (8 - DWV-V) - (1 - f)V/°'

s(/»' - p»/8) = sX - t?-Y + 9'V - 7-(i»V') - <Kf'V)

or,

s/0' s sp'/5 + SX - 7-Y + 7-V - 9-(?Vf) - 7-(/>'V) (17)

Use equation (!7) to eliminate f>' from LHS of equations (Ha) and (12)

sp'/8 + SX - 9-Y + 7»V - 7-(?Vf) - 9*(/»'V) + 9-(/°V') + V»(^'V) = M'

Sp'/8 + 7-V = -SX + ?'Y * M' (18)

and now consider equation (12)

S(?V + /»'V) +
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Add sV to both sides and rearrange

sV +

Let Z = Vf ' + rVVi.' + VL/'L" - (1 - ?)V

and W = 2fW' + 2rY °VcVL ' + V
2r" + Vt2/0!."

Thus,

sV + (1/8M7-P1 = -sZ - \7-W (19)

The development of the mass burning rate perturbation 1s presented 1n
section 5.3.1 of SP-194 and will not be given here. The results are

M'= M{e-«T[«s) + Ms)] - PCs)}p'/P

where K(s) = (1 + STT)(GOX + Gf ) - effect of total mass flux oscillations

Ms) = (1 + r)[(r/c*)(5c*/dr) - nrsT](Gox - rGf)/r - effect of mixture
ratio fluctuations

PCs) = n(1 - e««)

One Dimensional Equations

When u and u' are small with respect to the sonic velocity, and thus higher
order terms may be deleted from the equations. This makes the equations linear 1n
terms of the perturbations. Thus, terms such as

(1 - p), (1 - T), etc. are small and may be deleted.

This also allows the superposition of solutions.

Thus,

p' = po + pi +
u' = uo + ui +

where all terms of order higher than 1 will be dropped.
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Consider now the Intermediate mode of oscillation. This mode interacts with
the feed line system. This mode is a longitudinal oscillation and we need to
consider variations In.the x - direction only. This simplifies the equations

zeroth order: (s/S)po + duo/dx = 0 (20a)

suo + (1/S)dpo/dx = 0 (20b)

first order: (s/5)pi + dui/dx = -sXi + dYi/dx + Mi (21a)

sui + (1/S)dpi/dx = -sZi - dWi/dx (21b)

where Xi = (5 - 1)uuo + (1 + r)(dhL/dr)(M/s)e-«Tr(Gox - rGOPoo (22)

Yi = -upo (23)

2i = (1/8)upo + fL°uuo (24)

Wi = 2uuo (25)

Mi = M{e-"i[£(s) + W(s)]Poo - «s)po} (26)

Note: A term has been added to X to account for fluctuating enthalpy (hi.) of the
liquid propellents resulting from mixture ratio oscillations.

The zeroth order equations are homogeneous and may be solved
in a straight forward manner. Use the second equation to remove uo
from the first equation. This results in an equation in the form

(D2 - s2)po = 0

po = A cosh(sx) + B s1nh(sx)

uo = -(1/5)[B cosh(sx) + A s1nh(sx)]

Apply the boundary conditions that at x = 0, p' = Poo and u* = 0.

po = Poo cosh(sx) (27)

uo = -(1/5)Poo sinh(sx) (28)

The first order equations are non-homogeneous and are a bit more
difficult to solve. First obtain an equation in terms of one
variable. For example, ui. This may be written as

- S2)U1 = RHS

where RHS 1s the right hand side of the equation. In this case,

RHS = d(-sXi + dYi/dx + Mi)/dx + s(sZi + dWi/dx)
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which 1s non-homogeneous and may be solved by assuming a solution
in the form

ui = vi cosh(sx) + V2 sinh(sx)

then take first and second derivatives

Oui = svi sinh(sx) + sv? cosh(sx)

+cosh(sx)dvi/dx + sinh(sx)dv2/dx

where the second line is set equal to zero.

D2ui = s2vi s1nh(sx) + s2V2 cosh(sx)

+s s1nh(sx)dvi/dx + s cosh(sx)dv2/dx

The second line 1s equal to RHS because when substituted Into the
equation

(D2 - sz)ui = RHS

everything disappears except the second line. Thus, we have two
equations in two unknowns.

cosh(sx)dvi/dx + sinh(sx)dvz/dx = 0

s[s1nh(sx)dvi/dx + cosh(sx)dv2/dx] = RHS

Solving these two equations for dvi/dx and dvz/dx

s[cosh2(sx) - s1nh2(sx)]dV2/dx = RHS cosh(sx)

dv2 = (1/s)RHS cosh(sx)dx

dvi = -(1/s)RHS s1nh(sx)dx

thus,
'X 'x

ui = -cosh(sx)(1/s)

Substitute for RHS

cosh(sx)(1/s) [d(-sXi
I ft

RHS s1nh(sx)dx + sinh(sx)(1/s) RHS cosh(sx)dx

'x

sinh(sx)(1/s) [d(-sXi

Mi )/dx + s2Zi +

Mi)/dx + s22i

]s1nh(sx)dx

]cosh(sx)dx
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'X

ui = -cosh(sx)(1/s) [d(-sXi MO/dx]s1nh(sx)dx

s1nh(sx)(1/s) [d(-sXi
Jo

Mi )/dx]cosh(sx)dx

rx rx
- cosh(sx) [sZi + fl-Wi]s1nh(sx)dx + sinh(sx) [sZi + 9-Wi ]cosh(sx)dx

Jo Jo

let u = s1nh(sx) and dv = [d(-sXi +

then udv = (-5X1 + ^7-Yi + Mi)sinh(sx) - s

Mi)/dx]dx

£
'X

(-3X1 + 57-Yi + Mi )cosh(sx)dx

substituting Into equation for ui

'X

ui = -cosh(sx)[(1/s)(-sXi + y-Yi + Mi)sinh(sx) - (-3X1 + y-Yi + Mi)cosh(sx)dx]

s1nh(sx)[(1/s)(-sXi + Mi)cosh(sx) - K-sXi + \7'Yi + Mi )sinh(sx)dx]
Jo

fx

- cosh(sx)
'x

[sZi + tf-Wi]sinh(sx)dx + slnh(sx) [sZi + tf'Wi]cosh(sx)dx

ui = cosh(sx) (-sXi + \7-Yi + Mi)cosh(sx)dx - s1nh(sx) (-sXi + 7-Yi + Mi)s1nh(sx)dx

- cosh(sx) [sZi + y-Wi]s1nh(sx)dx + s1nh(sx)

Jo

[sZi + fl«Wi]cosh(sx)dx
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ui = cosh(sx)
'X

[S(W1 - Xi) + Mi
0

- sWi)]cosh(sx)dx

- sinh(sx) [s(Wi - Xi) + Mi + (9-Yi - sWi)]s1nh(sx)dx
Jo

- cosh(sx) [s(Yi + Zi)
Jo

- s1nh(sx) [s(Yi + Zi)

- sYi)]sinh(sx)dx

- sYi)]cosh(sx)dx

ui = cosh(sx) [s(Wi - Xi) + Mi]cosh(sx)dx - sinh(sx)
Jo

[s(Wi - XO + Mi]sinh(sx)dx

- cosh(sx)

cosh(sx)

- cosh(sx)

s(Yi + ZOsinh(sx)dx + sinh(sx) s(Yi + Zi)cosh(sx)dx

)cosh(sx)dx - sinh(sx)

- sYi)s1nh(sx)dx + sinh(sx)

- sWi)sinh(sx)dx

- sYi)cosh(sx)dx

ui = [s(Wi - Xn) + Mi][cosh(sx)cosh(sx') - sinh(sx)sinh(sx')]dx'
o

s(Yi + Zi)[cosh(sx)s1nh(sx') - s1nh(sx)cosh(sx')]dx'
o

'x

cosh(sx)

- cosh(sx)

- sWi)cosh(sx)dx - s1nh(sx) (tf-Yi - sWi)s1nh(sx)dx

rx
- sYi)s1nh(sx)dx + s1nh(sx) - sYi)cosh(sx)dx
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U1 = - Xi) + Mi]cosh[s(x - x1)] + s(Yi + Zi)s1nh[s(x - x')]}dx' + C

fx 'X

where C = cosh(sx) (tf-Yi - sWi)cosh(sx)dx - sinh(sx)
Jo

- sWOs1nh(sx)dx

rx rx
- cosh(sx) (tf'Wi - sYi)sinh(sx)dx + s1nh(sx) (U'Wi - sYi)cosh(sx)dx

Jo Jo

tf'Yi = dYi/dx = -d(upo)/dx = -udpo/dx - podu/dx = -usPoosinh(sx)

- Poocosh(sx)du/dx

fl'Wi = dWi/dx = 2d(uuo)/dx = 2uduo/dx + uodu/dx = -2u(s/5)Poocosh(sx)

- (2/5)Poos1nh(sx)du/dx

substituting into equation for C

'X

C = cosh(sx)

- sinh(sx)

- cosh(sx)

s1nh(sx)

[-(($ - 2)/5)sPoou sinh(sx) - Poo cosh(sx)du/dx] cosh(sx)dx

- 2)/S)sPoou s1nh(sx) - Poo cosh(sx)du/dx] sinh(sx)dx

[-((5 - 2)/5)sPoou cosh(sx) - (2/5)Poo s1nh(sx)du/dx] s1nh(sx)dx

'X

[-((5 - 2)/5)sPoou cosh(sx) - (2/5)Poo s1nh(sx)du/dx] cosh(sx)dx

111-14



'X

C = -((» - 2)/8)sPoo{cosh(sx) u s1nh(sx)cosh(sx)dx - s1nh(sx)
Jo

fx- P-+ (cosh(sx) u cosh(sx)s1nh(sx)dx - sinh(sx) u cosh2(sx)dx}
Jo Jo

u s1nh2(sx)dx

fx _ fx _
-Poo(cosh(sx) (du/dx) cosh2(sx)dx - s1nh(sx) (du/dx)cosh(sx)s1nh(sx)dx

Jo Jo

'X

- cosh(sx)(2/5) (du/dx) s1nh2(sx)dx + sinh(sx)(2/S) (du/dx)s1nh(sx)cosh(sx)dx)

'X

C = -((5 - 2)/S)sPoo{cosh(sx)
'X

u s1nh(2sx)dx - s1nh(sx) u cosh(2sx)dx}

-Poo{cosh(sx) (du/dx)[1.+ s1nh2(sx)-(2/8)sinh2(sx)]dx

'X

- ((5 - s1nh(sx) (du/dx) s1nh(sx) cosh(sx)dx)

'X

C = -((» - 2)/»)sPoo{cosh(sx)
'x

u s1nh(2sx)dx - s1nh(sx) u cosh(2sx)dx}

'X

-Poocosh(sx) (du/dx)dx - ((5 - 2)/5)Poo{cosh(sx)Kdu/dx)s1nh2(sx)dx

'X

- ((5 - s1nh(sx) (du/dx) s1nh(sx) cosh(sx)dx)

'X

Consider (du/dx)s1nh2(sx)dx

let u = s1nh*(sx) and dv = (du/dx)dx v = u

u s1nh2(sx) - 2s u s1nh(sx)cosh(sx)dx = u s1nh2(sx) - s u s1nh(2sx)dx
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Now, consider (du/dx)s1nh(sx)cosh(sx)dx
Jo

let u = s1nh(sx)cosh(sx) and dv = (du/dx)dx v = u

u s1nh(sx)cosh(sx) - s

u s1nh(sx)cosh(sx) - s

thus,

u s1nhz(sx)dx - s

u cosh(2sx)dx

u cosh2(sx)dx

C = -((5 - 2)/5)sPoo{cosh(sx)
I

u s1nh(2sx)dx - s1nh(sx) u cosh(2sx)dx}
Jo Jo

-Poou cosh(sx) - ((» - 2)/5)Poo{cosh(sx)[u s1nhz(sx)

t fx-
u sinh(2sx)dxl - s1nh(sx)[u sinh(sx)cosh(sx) - s I u cosh(2sx)dx]}

Jo

C = Yi

or,

ui = Y 1{[s(Wi - Xi) + Mi]cosh[s(x - x')lo

+ s(Yi + ZOs1nh[s(x - x')]}dx'

Substituting dui/dx Into equation (21a)

(s/5)pi ••• dYi/dx + sWt - sXt + Mi + s{s1nh(sx) fs(Wi-Xi) + Mi]cosh(sx)dx
Jo

(29)

- cosh(sx) [s(Wi - XO + Mi]s1nh(sx)dx + cosh(sx) s(Yi + ZOcosh(sx)dx

- s1nh(sx) s(Yi + Zi)slnh(sx)dx) = -sXi + dYi/dx + Mi
Jo

111-16



(s/5)pi = s{ [s(Wi - Xi) + Mi][s1nh(sx)cosh(sx') - cosh(sx)s1nh(sx')]dx'

s(Yi + Zi)[cosh(sx)cosh(sx') - sinh(sx)s1nh(sx')]dx'}

pi/5 = -V - Xi) + Mi]s1nh[s(x - x ' ) ]

+ s(Yi + Zi)cosh[s(x - x')]}dx' (30)

Applying the boundary conditions at Lc (as developed 1n section 3.6 of SP-194)

u'(Lc) + A p'(Lc) + Co'(Lc) = 0 (31)

'X

where o' = oo + 01 = -(1/u) {((8 - 1)/5)po r)(dhL/dr)(Gox

'X

- rGf)Pooe-8Tr}M exp[-s (1/u)dx"]dx' (32)

£ is generally small compared with A and may be deleted for small perturbations.
For rockets which have a cylindrical combustion chamber and conical nozzle, A
may be approximated by M(S - 1)/(2S), where M is the Mach Number at the
intersection of the chamber and nozzle.

When the perturbation equations are substituted Into the boundary equation
(31), a complex equation for s 1s obtained. The solution for s is difficult.
However, stability can be Investigated by setting h = 0 and regard u as an
Independent variable. Then equation (31) can be used as a relation between two of
the engine design parameters or operating parameters. Values of u in the
Intermediate mode may be chosen between _ _

1/TT < U < 1/T.
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Summary

The equations to analyze Intermediate mode Instabilities have been developed.
In some cases with long and laborious mathematics. The pertinent equations are
scattered throughout the report, therefore they have been grouped together for the
convenience of the reader.

Xi = (8 - Duuo + (1 + r)(dhL/dr)(M/s)e-«*T(Gox - rGf)Poo

Yi = -upo

Zi = (1/5)upo + ?L°ULO

Wi = 2uuo

Mi = M{e-«-r[£(s) + Ws)]Poo -

po = Poo cosh(sx)

uo = -(1/5)Poo sinh(sx)

fx

ui = Yi Mi]cosh[s(x - x')]

s(Yi + Zi)s1nh[s(x - x ' ) ] }dx '

'x

pi/5 = -Wi - - Xi) + Mi]sinh[s(x - x ' ) ]

+ s(Yi + Zi)cosh[s(x - x ') ]}dx'

u'(Le) + A p'(Lc) + Co'(Lc) = 0

0' = 00 + O1 = ~(1/U)

'X

{((8 - D/8)po
o

r)(dht/dr)(Gox

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

- rGf)Pooe-STr}M exp[-s
rx
(1/u)dx"]dx'
X '

(32)

Recall that u' = uo + ui and p' = po + pi.
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Recommendations and Future Plans

The equations have been developed for obtaining stability limit curves as a
function of two variables. A computer program may be written for a PC to solve
the equations for various combinations of variables (e.g. n vs T). If any
parameter, such as mixture ratio (r), is changed, new stability limits could be
computed and compared to the old.

A FORTRAN program for the PC will be written to determine the stability
limits as a function of n and T. After the program is checked-out, plans will be
made to extend the program to allow the use of other parameters to investigate
stability.
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Nomenclature

a - speed of sound

ar - reference speed of sound

A - nozzle pressure admittance coefficient

6 - nozzle entropy admittance coefficient

D - differential operator

e - static internal energy

- stagnation internal energy of liquid

es - stagnation internal energy e8 = e + iV
2 dimensional

es = e + i(S - DV2 non-dimensional

E - energy released per unit time per unit volume in the combustion chamber
due to chemical reaction and change of phase

Gox - Oxidizer injection admittance

Gf - Fuel injection admittance

hu - enthalpy of liquid

hs - stagnation enthalpy hs = es + p//°

Ms) - combustion response function for mixture ratio oscillations

X(s~) - combustion response function for mass flow oscillations

Lc - length of combustion chamber

M - combustion response

Mi - first order term of combustion response perturbation

n - pressure interaction index

nr - mixture ratio interaction index

p - pressure

p<nm - dimensional pressure

Pr - reference pressure
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po - zeroth Drder term of pressure perturbation

pi - first order term of pressure perturbation

Poo - maximum pressure at injection face

PCs) - combustion response function for pressure

R - gas constant

RHS - right hand side of differential equation

r - mixture ratio

s - oscillatory term in perturbation equation

T - temperature

t - time

u - axial component of gas velocity

uo - zeroth order term of velocity perturbation

ui - first order term of velocity perturbation

ULO - axial component of liquid velocity

V - velocity vector of gas

VL - velocity vector of liquid

W - function defined for equation (19)

Wi - first order term of W

X - function defined for equation (18)

Xi - first order term of X

Y - function defined for equation (18)

Yi - first order term of Y

Z - function defined for equation (19)

Zi - first order term of Z
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5 - ratio of specific heats

6 - partial derivative

^ - damping of oscillation

P - density of gas

PL' - mass of liquid per unit chamber volume

o - entropy

T - sensitive time lag

TT - total time lag

u - frequency of oscillation

tf - nabla operator

Mean values are Indicated by (e.g. p - mean pressure)

Perturbation values are Indicated by ' (e.g. p' - perturbation pressure)
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FORTRAN Listing of IMODE
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Listing of Program IMODE

PROGRAM MAIN
C
C IMODE - INTERMEDIATE MODE OSCILLATIONS
C
C VARIABLES IN COMMON /CMPVAL/ COMPLEX
C
C X1 - FIRST ORDER TERM OF X
C Y1 - FIRST ORDER TERM OF Y
C Z1 - FIRST ORDER TERM OF Z
C W1 - FIRST ORDER TERM OF W
C M1 - FIRST ORDER TERM OF M
C PO - ZEROTH ORDER TERM OF PRESSURE
C P1 - FIRST ORDER TERM OF PRESSURE
C UO - ZEROTH ORDER TERM OF VELOCITY
C U1 - FIRST ORDER TERM OF VELOCITY
C RFH - COMBUSTION RESPONSE FUNCTION FOR MIXTURE RATIO
C RFK - COMPUSTION RESPONSE FUNCTION FOR MASS FLOW
C RFP - COMBUSTION RESPONSE FUNCTION FOR PRESSURE
C S - LAMDA + MU 1 - PERTURBATION OSCILLATION 13
C GF - FUEL INJECTION ADMITTANCE 14
C GOX - OXIDIZER INJECTION ADMITTANCE 15
C RFA - NOZZLE PRESSURE ADMITTANCE COEFFICIENT 16
C RFC - NOZZLE ENTROPY ADMITTANCE COEFFICIENT 17
C
C
C VARIABLES IN COMMON /RELVAL/ REAL
C
C N - PRESSURE INTERACTION INDEX 1
C TAU - SENSITIVE TIME LAG 2
C DTAU - DELTA TIME LAG (TOTAL TIME LAG = TAU + DTAU) 3
C NR - ENTHALPY INTERACTION INDEX 4
C RBAR - MEAN MIXTURE RATIO 5
C MBAR - MEAN COMBUSTION RESPONSE FUNCTION 6
C GAMMA - RATIO OF SPECIFIC HEATS 7
C POO - MAXIMUM PRESSURE AT INJECTION FACE 8
C DHLDR - CHANGE IN ENTHALPY WITH CHANGE IN MIXTURE RATIO 9
C CSTAR - CHARACTERISTIC VELOCITY AT COMBUSTOR EXIT 10
C DCSDR - CHANGE IN CSTAR WITH CHANGE IN MIXTURE RATIO 11
C RHOLO - MASS OF LIQUID PER UNIT CHAMBER VOLUME 12
C ULO - AXIAL COMPONENT OF LIQUID VELOCITY 13
C LAMDA - DAMPING OF PERTURBATION
C MU - FREQUENCY OF PERTURBATION
C TAUT - TOTAL TIME LAG
C UBAR(50) - VELOCITY ALONG AXIS
C XBAR(SO) - X LOCATIONS ALONG AXIS
C XLC - X LOCATION OF CHAMBER-NOZZLE INTERFACE (1.0?)
C
C
C VARIABLES IN COMMON /DIMVAL/ REAL
C
C ND - PRESSURE INTERACTION INDEX 1
C TAUD - SENSITIVE TIME LAG SEC 2
C DTAUD - DELTA TIME LAG (TOTAL TIME LAG = TAU + DTAU) SEC 3
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

NRD -
LAMDAD -

MUD -
CDIAM -
TDIAM -
XLCD -

GAMMAD -
RGAS -
POOD -

MBARD -
RBARD -
DCSDRD -
DHLDRD -
RHOLOD -
ULOD -

PBAR(50) -
TBAR(50) -
XBARD(50) -

NVAL -

PP -
UP -

SIGP -
FUNB -

II -
ID -

ENTHALPY INTERACTION INDEX
DAMPING OF PERTURBATION
FREQUENCY OF PERTURBATION
CHAMBER DIAMETER FT
THROAT DIAMETER FT
X LOCATION OF CHAMBER-NOZZLE INTERFACE FT
RATIO OF SPECIFIC HEATS
GAS CONSTANT FT2/SEC~2/°R
MAXIMUM PRESSURE AT INJECTION FACE LBF/FT2
MEAN COMBUSTION RESPONSE FUNCTION LBM/SEC
MEAN MIXTURE RATIO
CHANGE IN CSTAR/CHANGE IN MIXTURE RATIO FT/SEC
CHANGE IN ENTHALPY/CHANGE IN MIXTURE RATIO FT2/SEC*2
MASS OF LIQUID PER UNIT CHAMBER VOLUME LBM/FT"3
AXIAL COMPONENT OF LIQUID VELOCITY FT/SEC
PRESSURE ALONG AXIS LBF/FT2
TEMPERATURE ALONG AXIS °R
X LOCATIONS ALONG AXIS FT

VARIABLES IN COMMON /INTVAL/ INTEGER

NUMBER OF INPUT POINTS ALONG AXIS

VARIABLES IN COMMON /RESULTS/ COMPLEX

P' = PO + P1
U' = UO + U1
SIG' = SIGO + SIG1
BOUNDARY FUNCTION = U' + RFA * P' + RFC * SIG'

NUMBER OF INDEPENDENT VARIABLE
NUMBER OF DEPENDENT VARIABLE

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

NUMBER VARIABLE
1 N
2 TAU
3 DTAU
4 NR
5 LAMDA
6 MU
7 CDIAM
8 TDIAM
9 XLC
10 GAMMA
1 1 RGAS
12 POO
13 MBAR
14 RBAR
1 5 DCSDR
16 DHLDR
17 RHOLO
18 ULO
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

-

ADMIT
BOUND
EVAL
FUEL
ITER
LOX

NONDIM
READIN
SETVAL
SETVAR
ZREAD

CCOSH
CSINH
CTANH

FP1
FSIGP

FU1

19
20

PCHMB
TCHMB

SUBROUTINES

COMPUTES ADMITTANCE FOR FUEL AND LOX
EVALUATES THE BOUNDARY FUNCTION FUNB
EVALUATES PARAMETERS AT A GIVEN X LOCATION
OBTAINS ADMITTANCE FOR FUEL LINE
ITERATES FOR DEPENDENT VARIABLE (REAL BC - ORIGINAL)
OBTAINS ADMITTANCE FOR LOX LINE
NON-DIMENSIONALIZES VARIABLES
READS INPUT DATA
SET VALUES FROM ITERATED VARIABLES
SET ITERATED VARIABLES FROM VALUES
READS FREE FORMAT INPUT

COMPLEX FUNCTIONS

COMPUTES COMPLEX HYPERBOLIC COSH
COMPUTES COMPLEX HYPERBOLIC SINH
COMPUTES COMPLEX HYPERBOLIC TANH
EVALUATES P1
EVALUATES SIG'
EVALUATES U1

COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /RESULT/PP,UP,SIGP,FUNB
COMMON /INTVAL/NVAL
COMMON /DIMVAL/HOLDD(20),XBARD(50),PBAR(50),TBAR(50)
COMMON /TITL/TITLE
REAL MBAR,N,NR,LAMDA,MU,RVAR(13)
COMPLEX S,X1,Y1,Z1,W1,M1,PO,P1,UO,U1,GF,GOX,RFH,RFK,RFP,RFA,RFC
COMPLEX FP1,FU1,FSIGP,PP,UP,SIGP,FUNB,CSINH,CCOSH,CVAR(17)
EQUIVALENCE (N,RVAR(1)),(X1,CVAR(1))
CHARACTER*8 VAR(20),VARP(20)
CHARACTER*! ANS
CHARACTER*70 TITLE
CHARACTER*24 ROCIN,ROCOUT,ROCPLT
DATA VAR / N ='

MU ='
RGAS ='

DHLDR ='
DATA VARP/ N
* MU
* RGAS '
* DHLDR '
DATA TOL/.0001/

1 FORMAT(A8,1PE13.5,2X,A8,E13.5,
2 FORMAT(A)
3 FORMAT(/3X,A8,5X,A8,5X,' FUNB(R)',5X,' FUNB(I)V)
4 FORMAT(1P6E13.5)

TAU =
CDIAM =

POO =
RHOLO =
TAU

CDIAM
POO

RHOLO

f DTAU =
TDIAM =
MBAR =
ULO =
DTAU

TDIAM
MBAR
ULO

' NR =
XLC =

' RBAR =
' PCHMB =
' NR
' XLC
' RBAR
' PCHMB

LAMDA -
GAMMA =
DCSDR =
TCHMB r
LAMDA
GAMMA
DCSDR
TCHMB /

FUNB=',2E13.5)
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5 FORMATC ')
6 FORMATC"',A,"")
7 FORMATC2X, "" , A8, "" ,3X, "" ,A8,'" ' )
WRIT€C*,*)' ARE THE FILES YOU ARE USING'
WRITEC*,*)' IMODE.INP - INPUT DATA'
WRITEC*,*)' IMODE.OUT - OUTPUT DATA'
WRITE(*,*)' IMODE.PRN - LOTUS PLOT DATA'
WRITEC*,'(A\)')' ENTER Y OR N '
READ(*,2)ANS
IFCANS.EQ.'Y'.OR.ANS.EQ.'y') THEN
OPENC5,FILE='IMODE.INP')
OPEN(6fFILE='IMODE.OUT',STATUS='NEW')
OPEN C 7,FILE='IMODE.PRN',STATUS='NEW')
ELSE
WRITEC*,'CA\)')' ENTER NAME OF FILE CONTAINING INPUT
READC*,2)ROCIN
OPENC5,FILE=ROCIN)
WRITEC*,'CA\)')' ENTER NAME OF FILE FOR OUTPUT '
READC*,2)ROCOUT
OPENC6,FILE=ROCOUT,STATUS='NEW')
WRITEC*,'CA\)')' ENTER NAME OF FILE FOR LOTUS PLOT '
READC*,2)ROCPLT
OPENC7,FILE=ROCPLT,STATUS='NEW')
ENDIF
XLC=1.0
WRITEC*,*)' '
WRITEC*,*)1
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)' Welcome to IMODE'
WRITEC*,*)' '
WRITEC*,*)' Intermediate Mode Rocket Stability Aide'
WRITEC*,*)' '
WRITEC*,*)' There are three types of input, rocket parameters,'
WRITEC*,*)' Oxidizer feed parameters, and fuel feed parameters,'
WRITEC*,*)' Each may be read from files or from the keyboard'
WRITEC*,*)' '
WRITEC*,*)' File Name Input'
WRITEC*,*)' '
WRITEC*,*)' IMODE.INP or NAME read in Rocket Parameters '
WRITEC*,*)' LOX.DAT Oxidizer Parameters'
WRITEC*,*)' FUEL.DAT Fuel Parameters
WRITEC*,*)' '
WRITEC*,*)' If keyboard entry, you will be prompted for values'
GO TO 21

20 CONTINUE
WRITEC*,*)' '
WRITEC*,'(A\)')' Do you want to run another case? Enter Y or N '
READC*,2)ANS
IFCANS.EQ.'N'.OR.ANS.EQ.'n') STOP

21 CONTINUE
CALL READIN
WRITEC*,*)' '
WRITEC*,*)' Codes for independent and dependent variables'
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' CODE
1
3
5
7
9

' 11
' 13
1 15
1 17
' 19
» i

Variable Name
N

DTAU
LAMDA
COIAM
XLC
RGAS
MBAR
DCSDR
RHOLO
PCHMB

CODE
2
4
6
8
10
12
14
16
18
20

Variable Name
TAU
NR
MU

TDIAM
GAMMA
POO
RBAR
DHLDR
ULO

TCHMB

THEN

Code for Independent Variable OUT OF RANGE'

THEN

Code for Dependent Variable OUT OF RANGE'

WRITEC*,*)'
WRITE(*,*)'
WRITEC*,*)1

WRIT€(*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)1

WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*)'
WRITEC*,*CA\)')' Enter codes for Independent and dependent variabl
*es '

22 CONTINUE
READ(*,*)II,ID
IBAD=0
IFCII.LT.1.0R.II.GT.20)
IBAD=1
WRITEC*,*)'
ENDIF
IFCID.LT.1.0R.ID.GT.20)
IBAD=1
WRITEC*,*)'
ENDIF
IFCIBAD.EQ.1)
WRITEC*,'(A\)')'
GO TO 22
ENDIF
WRITEC*,*)' '
WRITE(6,5)
WRITEC6,2)TITLE
WRITEC6,3)VARPCII).VARPCID)
WRITE(7,6)TITLE
WRITE(7,7)VARPCII),VARPCID)

23 CONTINUE
CALL ITERCID.TOL)
WRITE(6,4)HOLDD(II),HOLDD(ID),FUNB
WRITEC7,4)HOLDDCII),HOLDDCID)
WRITEC*,1)VARCII),HOLDDCII),VARCID),HOLDDCID),FUNB
WRITEC*,'CA\)')
* ' Enter new value for Independent variable (-999 to stop)
READC*,*,END=99)VAR1
IFCVAR1.EQ.-999.0) GO TO 20
CALL SETVARCVAR1.il)
GO TO 23

99 CONTINUE
STOP
END

THEN
Enter codes again
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SUBROUTINE ADMIT (S , GADM , A , AREA , CMAN , CTANK , DPROR , L , LFLOW , PCHMB ,
* SECTN,SEGMN,TFLOW)

C
C THIS ROUTINE WILL COMPUTE THE ADMITTANCE RATIO FROM THE TANK TO
C THE COMBUSTION CHAMBER
C
C A = VELOCITY OF SOUND IN THE FLUID (FT/S)
C AREA(I) = AREA OF FEED LINE (FT2)
C CMAN = CAPACITANCE ASSOCIATED WITH THE MANIFOLD
C CTANK = CAPACITANCE ASSOCIATED WITH THE TANK
C DPROR = PRESSURE DROP ACROSS ORIFICES (LB/FT2)
C G(I) = ADMITTANCE FROM TANK THROUGH PIPE I
C GADM = OVERALL ADMITTANCE AS SEEN FROM ENGINE
C GRAV = ACCELERATION OF GRAVITY (32.2 FT/S"2)
C L(I) = LENGTH OF LINE (FT)
C LFLOW = FLOW RATE OF FLUID THROUGH THE LINE(LB/S)
C PCHMB = PRESSURE INSIDE COMBUSTION CHAMBER (LB/FT2)
C S = COMPLEX FREQUENCY OF OSCILLATION
C SECTN(I) = TYPE OF LINE
C SEGMN = NUMBER OF SECTIONS OF LINE
C TFLOW = TOTAL FLOW RATE OF FLUID INSIDE ENGINE(LB/S)
C TL = TIME CONSTANT
C ZLINE = IMPEDANCE ASSOCIATED WITH THE FEED LINE
C ZOR = IMPEDANCE ASSOCIATED WITH THE ORIFICES
C

COMPLEX CTANH,G(76),GADM,S,W
REAL AREA(75),L(75), LFLOW
INTEGER SEGMN ,SECTN(75)
DATA GRAV/32.2/
W=S*A*3. 141593
G(1)=CTANK*W
GADM=G(1)+1.0
ZTOP=A*TFLOW/(GRAV*PCHMB)
ZOR=2.0*DPROR*TFLOW/(LFLOW*PCHMB)
DO 22 I=2,SEGMN+1
IF(SECTN(I-1).EQ.1) THEN
ZLINE=ZTOP/AREA(I-1)
TL=L(I-1)/A
G(I)=(1.0+CTANH(W*TL)/(G(I-1)*ZLINE))/(1.0+G(I-1)*ZLINE*

* CTANH(W*TL))
GO TO 21
ELSEIF(SECTN(I-1).EQ.2) THEN
G(I) = 1.0+(CMAN*W/G(I-D)
GO TO 21
ELSEIF(SECTN(I-1).EQ.3) THEN
G(I)=1.0/(1.0+ZOR*G(I-1))
ENDIF

21 CONTINUE
GADM=GADM*G(I)

22 CONTINUE
RETURN
END
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SUBROUTINE BOUND(PP,UP,SIGP,FUNB)
COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* • S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
REAL MBAR,N,NR,LAMDA,MU
COMPLEX S.XI.YI.ZI.WI.MI.PO.PI.UO.GF.GOX.UI.RFH.RFK.RFP.RFA.RFC
COMPLEX FP1,FU1,FSIGP,PP,UP,SIGP,FUNB,CSINH,CCOSH

EVALUATE PP.UP.SIGP, AND FUNB
P1=FP1(XLC)
U1=FU1(XLC)
PO=POO*CCOSH(S*XLC)
UO=-(1.0/GAMMA)*POO*CSINH(S*XLC)
PP=PO+P1
UP=UO+U1
SIGP=FSIGP(XLC)
FUNB=UP+RFA*PP+RFC*SIGP
RETURN
END
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COMPLEX FUNCTION CCOSH(S)
COMPLEX S
REAL LAMDA, MU
LAMQA=REAL(S)
MU=AIMAG(S)
COSHR=COSH(LAMDA)*COS(MU)
COSHI=SINH(LAMDA)*SIN(MU)
CCOSH=CMPLX(COSHR,COSHI)
RETURN
END

COMPLEX FUNCTION CSINH(S)
COMPLEX S
REAL LAMDA, MU
LAMDA=REAL(S)
MU=AIMAG(S)
SINHR=SINH(LAMDA)*COS(MU)
SINHI=COSH(LAMDA)*SIN(MU)
CSINH=CMPLX(SINHR,SINHI)
RETURN
END

COMPLEX FUNCTION CTANH(S)
COMPLEX S,CTANN,CTAND,CSINH,CCOSH
CTANN=CSINH(S)
CTAND=CCOSH(S)
CTANH=(0.0,0.0)
IF(CTAND.NE.O.O) CTANH=CTANN/CTAND
RETURN
END
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SUBROUTINE EVAL(X)
COMMON /CMPVAL/X1,Y1,21,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* ' S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
REAL MBAR,N,NR,LAMDA,MU
COMPLEX S.XI.YI.ZI.WI.MI.PO.PI.UO.UI.GF.GOX.RFH.RFK.RFP.RFA.RFC
COMPLEX CSINH.CCOSH

EVALUATE EVERYTHING EXCEPT PP.UP.SIGP
IF(NVAL.EQ.I) THEN
UB-UBAR(1)
GO TO 23
ENDIF
DO 21 I=2,NVAL
IF(X.LE.XBARU)) GO TO 22

21 CONTINUE
UB-UBAR(NVAL)
GO TO 23

22 CONTINUE
FAC=(X-XBAR(I-1))/(XBAR(I)-XBAR(I-1))
UB=UBAR(I-1)+FAC*(UBAR(I)-UBAR(I-1))

23 CONTINUE
RFH=(1.0+RBAR)*((RBAR/CSTAR)*DCSDR-NR*S*TAU)*(GOX
* -RBAR*GF)/RBAR
RFK=(1.0+S*TAUT)*(GOX+GF)
RFP=N*(1.0-CEXP(S*TAU))
PO=POO*CCOSH(S*X)
UO=-(1.0/GAMMA)*POO*CSINH(S*X)
X1=(GAMMA-1.0)*UB*UO+(1.0+RBAR)*DHLDR*(MBAR/S)
* *CEXP(-S*TAUT)*(GOX-RBAR*GF)*POO
Y1=-UB*PO
Z1=(1.0/GAMMA)*UB*PO+RHOLO*ULO
W1=2.0*UB*UO
M1=MBAR*(CEXP(-S*TAUT)*(RFK+RFH)*POO-RFP*PO)
RETURN
END
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COMPLEX FUNCTION FP1(XL)
COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* ' S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
REAL MBAR,N,NR,LAMDA,MU
COMPLEX S,X1,Y1,21,W1,M1,PO,P1,UO,U1,GF,GOX,RFH,RFK,RFP,RFA,RFC
COMPLEX CSINH,CCOSH
COMPLEX VINT

EVALUATE P1
DX=XL/50.0
FP1=CMPLX(0.0,0.0)
DO 23 1=1,51
X=(I-1)*DX
CALL EVAL(X)
VINT=(S*(W1-X1)+M1)*CSINH(S*(XL-X))

* +S*(Y1+Z1)*CCOSH(S*(XL-X))
IFCI.EQ.1.0R.I.EQ.51) THEN
FP1=FP1+0.5*VINT*DX
ELSE
FP1=FP1+VINT*DX

ENDIF
23 CONTINUE

FP1=-GAMMA*(W1+FP1)
RETURN
END
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COMPLEX FUNCTION FSIGP(XL)
COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* • S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDRJRHOLO,ULO,LAMDA,MU>TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
REAL MBAR,N,NR,LAMDA,MU
COMPLEX S,X1,Y1,Z1,W1,M1,PO,P1,UO,U1,GF,GOX,RFH,RFK,RFP,RFA,RFC
COMPLEX CSINH.CCOSH
REAL UB(51)
COMPLEX VINT (51), WINT (51), FSIG2, FCON

EVALUATE FSIGP (INTEGRATION NOT CHANGED YET)
DX=XL/50.0
DO 23 1=1,51
X=(I-1)*DX
IF(NVAL.EQ.I) THEN
UB(I)=UBAR(1)
GO TO 23
ENDIF
DO 21 11=2,NVAL
IF(X.LE.XBARUI)) GO TO 22

21 CONTINUE
II=NVAL

22 CONTINUE
FAC=(X-XBAR(II-1))/(XBAR(II)-XBAR(II-1))
UB(I)=UBAR(II-1)+FAC*(UBAR(II)-UBAR(II-1))

23 CONTINUE
DO 24 1=1,51
X=(I-1)*DX
CALL EVAL(X)
VINT(I)=((GAMMA-1.0)/GAMMA)*PO
VVINT(I)=1.0/UB(I)

24 CONTINUE
FCON=(1.0+RBAR)*DHLDR*(GOX-RBAR*GF)*POO
* *CEXP(-S*TAUT)
DO 26 1=1,51
FSIG2=CMPLX(0.0,0.0)
DO 25 J=I,51
IF(J.EQ.I.OR.J.EQ.51) THEN
FSIG2=FSIG2+0.5*VVINT(J)*DX

ELSE
FSIG2=FSIG2+WINT(J)*DX

ENDIF
25 CONTINUE

FSIG2=CEXP(-S*FSIG2)
VINT(I)=(VINT(I)+FCON)*MBAR*FSIG2

26 CONTINUE
FSIGP=CMPLX(0.0,0.0)
DO 27 1=1,51
IF(I.EQ.1.0R.I.EQ.51) THEN
FSIGP=FSIGP+0.5*VINT(I)*DX
ELSE
FSIGP=FSIGP+VINT(I)*DX
ENDIF

27 CONTINUE
FSIGP=-FSIGP/UB(51)



RETURN
END
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SUBROUTINE FUEL(S.GF)
C
C A = VELOCITY OF SOUND IN THE FLUID (FT/S)
C AREAjCl) = AREA OF FEED LINE (FT2)
C CHAN = CAPACITANCE ASSOCIATED WITH THE MANIFOLD
C CTANK = CAPACITANCE ASSOCIATED WITH THE FUEL TANK
C DENS = DENSITY OF FLUID (LBM/FT~3)
C DIA(I) = DIAMETER OF LINE (FT)
C DPROR = PRESSURE DROP ACROSS ORIFICES (LB/FT2)
C GF = OVERALL ADMITTANCE OF FUEL AS SEEN FROM ENGINE
C KMAN = BULK MODULUS OF FLUID AT MANIFOLD PRESSURE (LBF/FT"2)
C KTANK = BULK MODULUS OF FLUID IN TANK (LBF/FT2)
C L(I) = LENGTH OF LINE (FT)
C LFLOW = FLOW RATE OF FLUID THROUGH THE LINE(LB/S)
C PCHMB = PRESSURE INSIDE COMBUSTION CHAMBER (LB/FT2)
C S = COMPLEX FREQUENCY OF OSCILLATION
C SECTN(I) = TYPE OF LINE
C SEGMN = NUMBER OF SECTIONS OF LINE
C TFLOW = TOTAL FLOW RATE OF FLUID INSIDE ENGINE(LB/S)
C VOL = VOLUME OF FUEL TANK (FT3)
C VOLMF = VOLUME OF MANIFOLD (FT"3)
C

COMMON /PIPES/PFACE.TFACE
COMPLEX GF,S
REAL AREA(75),DIA(75),L(75),KMAN,KTANK,LFLOW
INTEGER SEGMN,SECTN(75)
DATA ISTRT/0/

1 FORMAT(F15.0)
2 FORMAT(I5,3F15.5)
IF(ISTRT.EQ.O) THEN
ISTRT=1
OPEN(UNIT=11,FILE='FUEL.DAT')
READ(11,1)DENS
READ(11,1)TFLOW
READ(11,1)VOLMF
READ(11,1)KMAN
READ(11,1)PCHMB
READ(11,1)DPROR
READ(11,1)VOL
READ(11,1)LFLOW
READ(11,1)KTANK
READ(11,1)A
READ(11,1)CTANK
READ(11,1)CMAN
READ(11,2)SEGMN
READ(11,2)(SECTN(I),L(I),AREA(I),DIA(I),1=1,SEGMN)
ENDIF
FLOWL=LFLOW*TFACE/TFLOW
CTANK=(DENS*VOL*PFACE)/(KTANK*TFACE)
CMAN=(DENS*VOLMF*PFACE)/(KMAN*TFACE)
CALL ADMIT(S,GF,A,AREA,CMAN,CTANK,DPROR,L,FLOWL,PFACE,
* SECTN,SEGMN,TFACE)
RETURN
END
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COMPLEX FUNCTION FU1(XL)
COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* • S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA>MU,TAUT,UBAR(50)>XBAR(50),XLC
COMMON /INTVAL/NVAL
REAL MBAR,N,NR,LAMDA,MU
COMPLEX S.XI.YI.ZI.WI.MI.PO.PI.UO.UI.GF.GOX.RFH.RFK.RFP.RFA.RFC
COMPLEX CSINH.CCOSH
COMPLEX VINT

EVALUATE U1
DX=XL/50.0
FU1=CMPLX(0.0,0.0)
DO 23 1=1,51
X=(I-1)*DX
CALL EVAL(X)
VINT=(S*(W1-X1)+M1)*CCOSH(S*(XL-X))

* +S*(YHZ1)*CSINH(S*(XL-X))
IFU.EQ.1.0R.I.EQ.51) THEN
FU1=FU1+0.5*VINT*DX

ELSE
FU1=FUHVINT*DX

ENDIF
23 CONTINUE

FU1=YH-FU1
RETURN
END
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SUBROUTINE ITER(ID,TOL)
C
C ITERATE FOR DEPENDENT VARIABLE
C

COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
COMMON /RESULT/PP,UP,SIGP,FUNB
REAL MBAR,N,NR,LAMDA,MU,RVAR(13)
COMPLEX S.XI.YI.Z^WI.MI.PO.PI.UO.UI.GF.GOX.RFH.RFK.RFP.RFA.RFC
COMPLEX FPI.FUI.FSIGP.PP.UP.SIGP.FUNB.CSINH.CCOSH.CVAROT)
EQUIVALENCE (N,RVAR(O), (X1 ,CVAR(1))
CALL SETVAL(VAL1,ID)
CALL BOUND(PP,UP,SIGP,FUNB)
FUN1=REAL(FUNB)
IF(ABS(FUN1).LE.TOL) GO TO 22
VAL2=1.01*VAL1
IF(VALLEQ.O) VAL2=0.01
CALL SETVAR(VAL2,ID)
CALL BOUND(PP,UP,SIGP,FUNB)
FUN2=REAL(FUNB)
IF(FUN1.EQ.FUN2) THEN
VAL=VAL1+VAL2
ELSE
VAL=VAL1-FUN1*(VAL2-VAL1)/(FUN2-FUN1)
ENDIF
DO 21 1=1,10
CALL SETVAR(VAL.ID)
CALL BOUND(PP,UP,SIGP,FUNB)
FUN=REAL(FUNB)
IF(ABSCFUN).LE.TOL) GO TO 22
IF(ABS(FUN).LT.ABS(FUN1)) THEN
FUN2=FUN1
FUN1=FUN
VAL2=VAL1
VAL1=VAL
ELSE
FUN1=FUN2
FUN2=FUN
VAL1=VAL2
VAL2=VAL
ENDIF
IFCFUN1.EQ.FUN2) THEN
VAL=VAL1+VAL2
ELSE
VAL=VAL1-FUN1*(VAL2-VAL1)/(FUN2-FUN1)
ENDIF

21 CONTINUE
22 CONTINUE

RETURN
END
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SUBROUTINE LOX(S,GOX)
C
C A = VELOCITY OF SOUND IN THE FLUID (FT/S)
C AREAH) = AREA OF FEED LINE (FT2)
C CHAN = CAPACITANCE ASSOCIATED WITH THE MANIFOLD
C CTANK = CAPACITANCE ASSOCIATED WITH THE LOX TANK
C DENS = DENSITY OF FLUID (LBM/FT3)
C DIA(I) = DIAMETER OF LINE (FT)
C DPROR = PRESSURE DROP ACROSS ORIFICES (LB/FT2)
C GOX = OVERALL ADMITTANCE OF LOX AS SEEN FROM ENGINE
C KMAN = BULK MODULUS OF FLUID AT MANIFOLD PRESSURE (LBF/FT2)
C KTANK = BULK MODULUS OF FLUID IN TANK (LBF/FT"2)
C L(I) = LENGTH OF LINE (FT)
C LFLOW = FLOW RATE OF FLUID THROUGH THE LINEUB/S)
C PCHMB = PRESSURE INSIDE COMBUSTION CHAMBER (LB/FT2)
C S = COMPLEX FREQUENCY OF OSCILLATION
C SECTN(I) = TYPE OF LINE
C SEGMN = NUMBER OF SECTIONS OF LINE
C TFLOW = TOTAL FLOW RATE OF FLUID INSIDE ENGINE(LB/S)
C VOL = VOLUME OF FUEL TANK (FT"3)
C VOLMF = VOLUME OF MANIFOLD (FT~3)
C

COMMON /PIPES/PFACE,TFACE
COMPLEX GOX,S
REAL AREA(75),DIA(75),L(75),KMAN,KTANK,LFLOW
INTEGER SEGMN,SECTN(75)
DATA ISTRT/0/

1 FORMAT(F15.0)
2 FORMAT(I5,3F15.0)
IF(ISTRT.EQ.O) THEN
ISTRT=1
OPEN(UNIT=10,FILE='LOX.DAT')
READ(10,1)DENS
READ(10,1)TFLOW
READ(10,1)VOLMF
READ(10,1)KMAN
READ(10,1)PCHMB
READ(10,1)DPROR
READ(10,1)VOL
READ(10,1)LFLOW
READ(10,1)KTANK
READ(10,1)A
READ(10,1)CTANK
READ(10,1)CMAN
READ(10,2)SEGMN
READ(10,2)(SECTN(I),L(I),AREA(I),DIA(I),1=1,SEGMN)
ENDIF
FLOWL=LFLOW*TFACE/TFLOW
CTANK=(DENS*VOL*PFACE)/(KTANK*TFACE)
CMAN=(DENS*VOLMF*PFACE)/(KMAN*TFACE)
CALL ADMIT(S,GOX,A,AREA,CMAN,CTANK,DPROR,L,FLOWL,PFACE,
* SECTN,SEGMN,TFACE)
RETURN
END
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c
c
c

SUBROUTINE NONDIM(HOLD)

ROUTINE TO NON-DIMENSIONALIZE INPUT PARAMETERS

COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
COMMON /DIMVAL/HOLDD(20),XBARD(50),PBAR(50),TBAR(50)
COMMON /PIPES/PFACE,TFACE
COMMON /TITL/TITLE
REAL MBAR,N,NR,LAMDA,MU,RVAR(15)
REAL MBARD,ND,NRD,LAMDAD,MUD
REAL HOLD(20),UBARD(50),RHOBAR(50)
COMPLEX S,X1,Y1,Z1,W1,M1,PO,P1,UO,U1,GF,GOX,RFH,RFK,RFP,RFA,RFC
COMPLEX CVAR(17)
CHARACTER*8 VAR(13),VARD(20)
CHARACTER*70 TITLE
EQUIVALENCE (N,RVAR(1)),(X1,CVAR(1))
EQUIVALENCE
* (ND,HOLDD(1)),(TAUD,HOLDD(2)),(DTAUD,HOLDD(3)),
* (NRD,HOLDD(4)),(LAMDAD,HOLDD(5)),(MUD,HOLDD(6)),
* (CDIAM,HOLDD(7)),(TDIAM,HOLDD(8)),(XLCD,HOLDD(9)),
* (GAMMAD,HOLDD(10)),(RGAS,HOLDD(11)),(POOD,HOLDD(12)),
* (MBARD,HOLDD(13)),(RBARD,HOLDD(14)),(DCSDRD,HOLDD(15)),
* (DHLDRD,HOLDD(16)),(RHOLOD,HOLDD(17)),(ULOD,HOLDD(18)),
* (PCHMB,HOLDD(19)),(TCHMB,HOLDD(20))

, DATA VAR/' N='
* ' MBAR='
* ' DCSDR='
DATA VARD/' N =

* MU =
* ' RGAS =
* ' DHLDR =
DATA PI/3.141593/.GC/32.174/

1 FORMAT(A)
2 FORMAT(A8,1PE13.5,2X,A8,E13.5,2X,A8,E13.5)
3 FORMATC ')

TAU='
GAMMA= '
RHOLO= '

' TAU =
' CDIAM =

POO =
' RHOLO =

DTAU= '
P00='
ULO='/

' DTAU =
' TDIAM =
' MBAR =

ULO =

NR='
' DHLDR= '

l
NR =

,' XLC =
,' RBAR =
,' PCHMB =

RBAR= '
' CSTAR= '

,' LAMDA =
, ' GAMMA =
,' DCSDR =
, ' TCHMB =

»
i
»/

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

N
TAU
DTAU
NR
LAMDA
MU
CDIAM
TDIAM
XLC
GAMMA
RGAS
POO
MBAR
RBAR
DCSDR
DHLDR

- HOLD(1)
- HOLD(2)
- HOLD(3)
- HOLD(4)
- HOLD(5)
- HOLD(6)
- HOLD(7)
- HOLD(8)
- HOLD(9)
- HOLD(10)
- HOLDC11)
- HOLD(12)
- HOLD(13)
- HOLD(14)
- HOLD(15)
- HOLD(16)
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RHOLO -
ULO -
PCHMB -

.-TCHMB -
PBAR -
TBAR -
XBAR -

HOLD(17)
HOLD(18)
HOLD(19)
HOLD(20)
PBAR
TBAR
XBARD

c
c
c
c
c
c
c
c
C PCHMB = PBAR(1)
C TFLOW = LFLOW(LOX) + LFLOW(FUEL)
C LFLOW = LINE FLOW OF LOX OR FUEL
C

DO 21 1=1,20
HOLDD(I)=HOLD(I)

21 CONTINUE
IF(PCHMB.NE.PBAR(1)) THEN
FAC=PCHMB/PBAR(1)
DO 22 I=1,NVAL
PBAR(I)=FAC*PBAR(I)

22 CONTINUE
ENDIF
IF(TCHMB.NE.TBAR(1)) THEN
FAC=TCHMB/TBAR(1)
DO 23 I=1,NVAL
TBAR(I)=FAC*TBAR(I)

23 CONTINUE
ENDIF
CAREA=0.25*PI*CDIAM**2
WRITE(6,3)
WRITE(6,*)' CAREA=',CAREA
TAREA=0.25*PI*TDIAM**2
WRITE(6,*)' TAREA=',TAREA
PFACE=PBAR(1)
PEXIT=PBAR(NVAL)
TFACE=MBARD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
WRITE(6,*)' ASTAR=',ASTAR
CSTARD=PEXIT*TAREA*GC/MBARD
WRITE(6,*)' CSTARD=',CSTARD
DO 24 I=1,NVAL
RHOBAR(I)=PBAR(I)*GC/(RGAS*TBAR(I))
WRITE(6,*)' RHOBAR=',RHOBAR(I)
UBARD(I)=MBARD/(RHOBAR(I)*CAREA)
WRITEC6,*)' UBARD=',UBARD(I)

24 CONTINUE
N=ND
TAU=TAUD*ASTAR/XLCD
DTAU=DTAUD*ASTAR/XLCD
TAUT=TAU+DTAU
NR=NRD
RBAR=RBARD
MBAR=MBARD/(RHOBAR(1)*ASTAR*CAREA/XLCD)
GAMMA-GAMMAD
POO=POOD/PBAR(1)
DHLDR=DHLDRD
CSTAR=CSTARD/ASTAR
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DCSDR=DCSDRD/ASTAR
RHOLO=RHOLOD/RHOBAR(1)
ULO=ULOD/ASTAR
LAMQA= LAMDAD*XLCD/ASTAR
MU=MUD*XLCD*PI/ASTAR
XLC=1.0
DO 25 I=1,NVAL
XBAR(I)=XBARD(I)/XLCO
UBAR(I)=UBARD(I)/ASTAR

25 CONTINUE
S=CMPLX(LAMDA,MU)
CALL FUEL(S,GF)
CALL LOX(S.GOX)
RFAR=(GAMMA-1.0)*UBAR(1)/(2.0*GAMMA)
RFA=CMPLX(RFAR,0.0)
RFC=CMPLX(0.0,0.0)
WRITEC*,*)' '
WRITE(*,1)TITLE
WRITEC*,*)' DIMENSIONAL VARIABLES'
WRITEC*,'C" NVAL=",I5)')NVAL
WRITEC*,'(" XBAR=",1P4E13.5/(8X,4E13.5))')CXBARDCI),I=1,NVAL)
WRITEC*,'C" UBAR=",1P4E13.5/C8X,4E13.5))')CUBARDCI),I=1,NVAL)
WRITE(*,2)(VARD(I),HOLDD(I),I=1>20)
WRITE(6,3)
WRITE(6,1)TITLE
WRITE(6,3)
WRITE(6,*)' DIMENSIONAL VARIABLES'
WRITE(6,'(" NVAL=",I5)')NVAL
WRITE(6,'(" XBAR=",1P4E13.5/(8X,4E13.5))')(XBARD(I),I=11NVAI )
WRITE(6,'(" UBAR=",1P4E13.5/(8X,4E13.5))')(UBARD(I),I=1,NVAL)
WRITE(6,2)(VARD(I),HOLDD(I),I=1,20)
WRITEC*,*)' NON-DIMENSIONAL VARIABLES'
WRITE(*,'(" NVAL=",I5)')NVAL
WRITE(*,'(" XBAR=",1P4E13.5/(8X,4E13.5))')(XBAR(I),I=1,NVAL)
WRITE(*,'(" UBAR=",1P4E13.5/(8X,4E13.5))')(UBAR(I),I=1,NVAL)
WRITEC*,'(" S=",1P2E13.5)')LAMDA,MU
WRITE(*,2)(VAR(I),RVAR(I),I=1,13)
WRITE(*,'(" GF=",1P2E13.5,5X," GOX=" ,2E13.5)')GF,GOX
WRITEC*,'(" RFA=",1P2E13.5,5X," RFC=" ,2E13.5) ' )RFA,RFC
WRITE(6,3)
WRITEC6,*)' NON-DIMENSIONAL VARIABLES'
WRITE(6,'(" NVAL= ',I5)')NVAL
WRITE(6,'(" XBAR=
WRITEC6,'(" UBAR=
WRITE(6,'(" S=
WRITE(6,2)CVARCD,RVARCI),I=1,13)
WRITE(6,'(" GF=

MP4E13.5/(8X,4E13.5))')CXBARU),I=1,NVAL)
',1P4E13.5/C8X,4E13.5))')CUBARCD,I=1,NVAL)
',1P2E13.5)')LAMDA,MU

' ,1P2E13.5,5X,'' GOX=" .2E13.5)' )GF,GOX
WRITEC6,'(" RFA= ', 1P2E13.5,5X, " RFC=" ,2E13.5) ' )RFA,RFC
WRITEC*,'(A\)')' Hit ENTER to continue
READC*,*)
RETURN
END
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SUBROUTINE REAOIN
C
C . INPUT PARAMETERS
C
C
C VARIABLES IN COMMON /DIMVAL/ REAL
C
C ND - PRESSURE INTERACTION INDEX 1
C TAUD - SENSITIVE TIME LAG SEC 2
C DTAUD - DELTA TIME LAG (TOTAL TIME LAG = TAU + DTAU) SEC 3
C NRD - ENTHALPY INTERACTION INDEX 4
C LAMDAD - DAMPING OF PERTURBATION 5
C MUD - FREQUENCY OF PERTURBATION 6
C CDIAM - CHAMBER DIAMETER FT 7
C TDIAM - THROAT DIAMETER FT 8
C XLCD - X LOCATION OF CHAMBER-NOZZLE INTERFACE FT 9
C GAMMAD - RATIO OF SPECIFIC HEATS 10
C RGAS - GAS CONSTANT FT2/SEC~2/'R 11
C POOD - MAXIMUM PRESSURE AT INJECTION FACE LBF/FT~2 12
C MBARD - MEAN COMBUSTION RESPONSE FUNCTION LBM/SEC 13
C RBARD - MEAN MIXTURE RATIO 14
C DCSDRD - CHANGE IN CSTAR/CHANGE IN MIXTURE RATIO FT/SEC 15
C DHLDRD - CHANGE IN ENTHALPY/CHANGE IN MIXTURE RATIO FT~2/SEC~2 16
C RHOLOD - MASS OF LIQUID PER UNIT CHAMBER VOLUME LBM/FT"3 17
C ULOD - AXIAL COMPONENT OF LIQUID VELOCITY FT/SEC 18
C PBAR(50) - PRESSURE ALONG AXIS LBF/FT~2
C TBAR(50) - TEMPERATURE ALONG AXIS °R
C XBARD(50) - X LOCATIONS ALONG AXIS FT
C
C

COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* S,GF,GOX,RFA,RFC
COMMON /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /INTVAL/NVAL
COMMON /DIMVAL/HOLDD(20),XBARD(50),PBAR(50),TBAR(50)
COMMON /TITL/TITLE
REAL MBAR,N,NR,LAMDA,MU,RVAR(15)
REAL MBARD,ND,NRD,LAMDAD,MUD,HOLD(20)
COMPLEX S,X1,Y1,Z1,W1,M1,PO,P1,UO,U1.GF.GOX.RFH.RFK.RFP.RFA.RFC
COMPLEX CVAR(17)
EQUIVALENCE (N,RVAR(1)) , (X1 ,CVAR(D)
EQUIVALENCE (ND.HOLD(D) , (TAUD,HOLD(2)), (DTAUD,HOLD(3)),
* (NRD,HOLD(4)),(LAMDAD,HOLD(5)),(MUD,HOLD(6)),
* (CDIAM,HOLD(7)),(TDIAM,HOLD(8)),(XLCD,HOLD(9)),
* (GAMMAD,HOLD(10)), (RGAS,HOLD(H)),(POOD,HOLD(12)),
* (MBARD,HOLD(13)),(RBARD,HOLD(14)),(DCSDRD,HOLD(15)),
* (DHLDRD,HOLD(16)),(RHOLOD,HOLD(17)),(ULOD,HOLD(18)),
* (PCHMB,HOLD(19)),(TCHMB,HOLD(20))
CHARACTER*8 VAR(20),VARP(20),VARL(20),NAME
CHARACTER*! ANS
CHARACTER*70 TITLE
DATA IGO/0/
DATA VAR /' ND =',' TAUD =',' DTAUD =',' NRD =','LAMDAD =',
* ' MUD =',' CDIAM =',' TDIAM =',' XLCD =','GAMMAD =',
* ' RGAS =',' POOD =',' MBARD =',' RBARD =','DCSDRD =',
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'RHOLOD =
'TAUD
'CDIAM
'POOD
'RHOLOD
'taud
'cdlam
'pOOd
'rholod

, ' ULOD =
, ' DTAUD
, 'TDIAM
,'MBARD
,'ULOD
, 'dtaud
,'td1am
, 'mbard
,'ulod

, ' PCHMB =
,'NRD
,'XLCD
, ' RBARD
, ' PCHMB
,'nrd
,'xlcd
, ' rbard
, ' pchmb

' TCHMB
' LAMDAD
'GAMMAD
'DCSDRD
'TCHMB
'lamdad
' gammad
'dcsdrd
'tchmb

* 'DHLDRD ='
DATA VARP/'ND

* • 'MUD
* . 'RGAS '
* 'DHLDRD '
DATA VARL/'nd
* 'mud
* 'rgas '
* 'dhldrd '

1 FORMAT(1615)
2 FORMAT(4E15.6)
3 FORMAT03E15.6)
4 FORMAT(A)
5 FORMATC Enter X (ft), P (lbf/ft~2), and T (*R) for point ',
* 13,' ')
6 FORMAT(1P4E15.6)
7 FORMAT(2X,A8,2X,A8,2X,A8,2X,A8,2X,A8)
8 FORMAT(2X,A8,1PE13.5,2XfA8,E13.5,2X,A8,E13.5)
9 FORMAT(1P3E15.6)
IF(IGO.EQ.I) THEN
WRITE(*,'(A\)')' Do you wish to use old data with or without

*ges? Y or N '
READ(*,4)ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') GO TO 24

ENDIF
IGO=1
WRITE(*,*)' '
WRITE(*,'(A\)')' Is your rocket input on file? Y OR N '
READ(*,4)ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') THEN
WRITE(*,'(A\)')f Does the file need to be rewound? Y OR N '
READ(*,4)ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') REWINDS
READ(5,4,END=99)TITLE
READ(5,1,END=99)NVAL
IF(NVAL.EQ.O) GO TO 99
READ(5,3)(XBARD(I),PBAR(I),TBAR(I),I=1,NVAL)
PCHMB=PBAR(1)
TCHMB=TBAR(1)
READ(5,2)ND,TAUD,DTAUD,NRD
READ(5,2)LAMDAD,MUD
READ(5,2)CDIAM,TDIAM,XLCD
READ(5,2)GAMMAD,RGAS,POOD
READ(5,2)MBARD,RBARD
READ(5,2)DCSDRD,DHLDRD,RHOLOD,ULOD
ELSE
WRITE(*,'(A\)')' How many points along centerline? '
READ(*,*,END=99)NVAL
IF(NVAL.EQ.O) GO TO 99
DO 21 I=1,NVAL
WRITE(*,5)I
READ(*,*)XBARD(I),PBAR(I),TBAR(I)

21 CONTINUE
PCHMB=PBAR(1)
TCHMB=TBAR(1)
WRITE(*,*)' Enter Title'

_ >
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READ(*,4)TITLE
WRITE(*,*)' Enter N (pressure interaction index) and NR',

* • ' (enthalpy Interaction index)'
READ(*,*)ND,NR
WRiTE(*,*)' Enter TAU (sensitive time lag - sec) and DTAU',

* ' (invarient time lag - sec)'
READ(*,*)TAUD,DTAUD
WRITE(*,*)' Enter LAMDA and MU (real and imaginary parts',

* ' of frequency'
READ(*,*)LAMDAD,MUD
WRITE(*,*)' Enter XLCD (length of combustion chamber - ft)'
READ(*,*)XLCD
WRITE(*,*)' Enter CDIAM (chamber diameter - ft) and TDIAM',

* ' (throat diameter - ft)'
READ(*,*)CDIAM,TDIAM
WRITE(*,*)' Enter GAMMA (ratio of specific heats), RGAS',

* ' (gas constant - ft~2/sec~2/°R)'
READ(*,*)GAMMAD,RGAS
WRITE(*,*)' Enter POO (maximum overpressure - lbf/ft~2)'
READ(*,*)POOD
WRITE(*,*)' Enter MBAR (mean combustion response function -',

* ' lbm/sec)f
WRITE(*,*)' and RBAR (mean mixture ratio)'
READ(*,*)MBARD,RBARD
WRITE(*,*)' Enter DCSDR (dc*/dr - ft/sec) and DHLDR',

* ' (dh/dr - ft~2/sec~2)'
READ(*,*)DCSDRD,DHLDRD
WRITE(*,*)' Enter RHOLO (mass of liquid/unit chamber vol -',

* 'lbm/ft"3)'
WRITE(*,*)' and ULO (axial component of liquid velocity',

* ' - ft/sec)'
READ(*,*)RHOLOD,ULOD
WRITE(5,4)TITLE
WRITE(5,1)NVAL
WRITE(5,9)(XBARD(I),PBAR(I),TBAR(I),I=1,NVAL)
WRITE(5,6)ND,TAUD,DTAUD,NR
WRITE(5,6)LAMDAD,MUD
WRITE(5,6)CDIAM,TDIAM,XLCD
WRITE(5,6)GAMMAD,RGAS,POOD
WRITE(5,6)MBARD,RBARD
WRITE(5,6)DCSDRD,DHLDRD,RHOLOD,ULOD
ENDIF
CALL NONDIM(HOLD)
RETURN

24 CONTINUE
WRITE(*,'(A\)')' are there any changes? Y or N '
READ(*,4)ANS
IF(ANS.EQ.'N'.OR.ANS.EQ.'n') THEN
CALL NONDIM(HOLD)
RETURN
ENDIF
WRITE(*,'(A\)')' Do you wish to change title? Y or N '
READ(*,4)ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') THEN
WRITE(*,*)' Enter Title'
READ(*,4)TITLE
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ENDIF
GO TO 29

27 CONTINUE
WRITEC*,*)' VARIABLE NAMES AND DESCRIPTIONS'
WRITEC*,*)' '
WRITEC*,*)' NO - pressure Interaction index'
WRITEC*,*)' TAUD - sensitive time lag sec'
WRITEC*,*)' DTAUD - invarient time lag sec'
WRITEC*,*)' NRD - enthalpy interaction index'
WRITEC*,*)' LAMDAD - damping of perturbation'
WRITEC*,*)' MUD - frequency of perturbation'
WRITEC*,*)' CDIAM - chamber diameter ft'
WRITEC*,*)' TDIAM - throat diameter ft'
WRITEC*,*)' XLCD - length of combustion chamber ft'
WRITEC*,*)' GAMMAD - ratio of specific heats'
WRITEC*,*)' RGAS - gas constant
* 'Cft/secr2/°R'
WRITEC*,*)' POOD - maximum pressure ',
* 'lbf/ft~2'
WRITEC*,*)' MBARD - mean combustion response funct. ',
* 'Ibm/sec'
WRITEC*,*)1 RBARD - mean mixture ratio'
WRITEC*,*)' DCSDRD - dCc*)/dCmixture ratio) ft/sec'
WRITEC*,*)' DHLDRD - d(enthalpy)/dCmixture ratio) ',
* 'ft~2/sec~2'
WRITEC*,*)' RHOLOD - mass of liquid/unit chamber volume ',

WRITEC*,*)' ULOD - axial component of liquid velocity ft/sec'
WRITEC*,*)' PCHMB - chamber pressure at injector ',
* 'lbf/ft"2'
WRITEC*,*)' TCHMB - chamber temperature °R'
WRITEC*,*)' '
GO TO 30

28 CONTINUE
WRITEC*,*)' VARIABLE NAMES AND VALUES'
WRITEC*,*)' '
WRITEC*,8)CVARCI),HOLDCI),1=1,20)

29 CONTINUE
WRITEC*,*)' '
WRITEC*,*)' Enter ? to print variable names & descriptions'
WRITEC*,*)' * to print variable names & values'
WRITEC*,*)' END when all changes have been made'
WRITEC*,*)' '

30 CONTINUE
WRITEC*,'(A\)')' Enter variable name and new value, END, ?, or #
* '
CALL ZREAD(NAME,VALUE)
IFCNAME.EQ.'?') GO TO 27
IFCNAME.EQ.'#') GO TO 28
IFCNAME.EQ.'END'.OR.NAME.EQ.'end') THEN
CALL NONDIM(HOLD)
RETURN
ENDIF
DO 31 11=1,20
1=11
IFCNAME.EQ.VARP(I).OR.NAME.EQ.VARLCD) GO TO 32
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31 CONTINUE
WRITEC*,*)' Invalid name, try again1

GO TO 27
32 CONTINUE

HOLD(I)=VALUE
GO TO 30

99 CONTINUE .
STOP
END

IV-24



SUBROUTINE SETVAL(VAL.ID)
COMMON /DIMVAL/HOLDD(20),XBARD(50),PBAR(50),TBAR(50)
VAL=HOLDD(ID)
RETURN
END"
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SUBROUTINE SETVAR(VAL.ID)
COMMON /CMPVAL/X1,Y1,Z1,W1,M1,PO,P1,UO,U1,RFH,RFK,RFP,
* • S,GF,GOX,RFA,RFC
COMMPN /RELVAL/N,TAU,DTAU,NR,RBAR,MBAR,GAMMA,POO,DHLDR,CSTAR,
* DCSDR,RHOLO,ULO,LAMDA,MU,TAUT,UBAR(50),XBAR(50),XLC
COMMON /RESULT/PP,UP,SIGP,FUNB
COMMON /INTVAL/NVAL
COMMON /DIMVAL/HOLDD(20),XBARD(50),PBAR(50),TBAR(50)
REAL MBAR,N,NR,LAMDA,MU,RVAR(13)
REAL MBARD,ND,NRD,LAMDAD,MUD
COMPLEX S.XI.YI.ZI.WI.MI.PO.PI.UO.UI.GF.GOX.RFH.RFK.RFP.RFA.RFC
COMPLEX FPl.FUI.FSIGP.PP.UP.SIGP.FUNB.CSINH.CCOSH.CVARd?)
EQUIVALENCE (N,RVAR(1)),(X1,CVAR(1))
EQUIVALENCE

* (ND,HOLDD(1))J(TAUD,HOLDD(2)),(DTAUD,HOLDD(3)),
* (NRD,HOLDD(4)),(LAMDAD,HOLDD(5)),(MUD,HOLDD(6)),
* (CDIAM,HOLDDC7)),(TDIAM,HOLDD(8)),(XLCD,HOLDD(9)),
* (GAMMAD,HOLDD(10))>(RGAS,HOLDD(11)),(POOD,HOLDD(12)),
* (MBARD,HOLDD(13)),(RBARD,HOLDD(14)),(DCSDRD,HOLDD(15)),
* (DHLDRD,HOLDD(16)),(RHOLOD,HOLDD(17)),(ULOD,HOLDD(18))>

* (PCHMB,HOLDD(19)),(TCHMB,HOLDD(20))
DATA PI/3.141593/,GC/32.174/
HOLDD(ID)=VAL
IF(ID.EQ.I) THEN

NO
N=ND
RETURN

ENDIF
IF(ID.EQ.2) THEN

TAUD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
TAU=TAUD*ASTAR/XLCD
TAUT=TAU+DTAU
RETURN
ENDIF
IF(ID.EQ.3) THEN

DTAUD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
DTAU= DTAUD*ASTAR/XLCD
TAUT=TAU+DTAU
RETURN
ENDIF
IFUD.EQ.4) THEN

NRD
NR=NRD
RETURN
ENDIF
IF(ID.EQ.5) THEN

LAMDAD
ASTAR=SQRT(GAMMAD*RGAS*TBAR (1))
LAMDA=LAMDAD*XLCD/ASTAR
S=CMPLX(LAMDA,MU)
RETURN
ENDIF
IFUD.EQ.6) THEN

MUD
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ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
MU=MUD*XLCD*PI/ASTAR
S=CMPL.X(LAMDA,MU)
RETURN
ENDfF
IFUD.EQ.7) THEN

CDIAM
CAREA=0.25*PI*CDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
DO 21 I=1,NVAL
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
UBARD=MBARD/(RHOBAR*CAREA)
UBAR(I)=UBARD/ASTAR

21 CONTINUE
RETURN
ENDIF
IF(ID.EQ.8) THEN

TDIAM
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
CSTARD= PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
RETURN
ENDIF
IFUD.EQ.9) THEN

XLCD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
TAU=TAUD*ASTAR/XLCD
DTAU=DTAUD*ASTAR/XLCD
TAUT=TAU+DTAU
LAMDA=LAMDAD*XLCD/ASTAR
MU=MUD*XLCD*PI/ASTAR
S=CMPLX(LAMDA,MU)
DO 22 1=1,NVAL
XBAR(I)=XBARD(I)/XLCD

22 CONTINUE
RETURN
ENDIF
IF(ID.EQ.IO) THEN

GAMMAD
GAMMA=GAMMAD
CAREA=0.25*PI*CDIAM**2
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
TAU=TAUD*ASTAR/XLCD
DTAU= DTAUD*ASTAR/XLCD
TAUT=TAU+DTAU
LAMDA= LAMDAD*XLCD/ASTAR
MU=MUD*XLCD*PI/ASTAR
S=CMPLX(LAMDA,MU)
ULO=ULOD/ASTAR
DCSDR=DCSDRD/ASTAR
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
MBAR=MBARD/(RHOB1*ASTAR*CAREA/XLCD)
CSTARD=PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
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00 23 1=1,NVAL
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
UBARD=MBARD/(RHOBAR*CAREA)
UB^R(I)=UBARD/ASTAR

23 CONTINUE
RETURN
ENDIF
IF(ID.EQ.11) THEN

RGAS
CAREA=0.25*PI*CDIAM**2
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
TAU=TAUD*ASTAR/XLCD
DTAU=DTAUD*ASTAR/X LCD
TAUT=TAU+DTAU
LAMDA= LAMDAD*XLCD/ASTAR
MU=MUD*XLCD*PI/ASTAR
S=CMPLX(LAMDA,MU)
ULO=ULOD/ASTAR
DCSDR=OCSDRD/ASTAR
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
RHOLO=RHOLOO/RHOB1
MBAR=MBARD/(RHOB1*ASTAR*CAREA/XLCD)
CSTARD= PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
DO 24 1=1,NVAL
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
UBARD=MBARD/(RHOBAR*CAREA)
UBAR(I)=UBARD/ASTAR

24 CONTINUE
RETURN
ENDIF
IF(ID.EQ.12) THEN

POOD
POO=POOD/PCHMB
RETURN
ENDIF
IFUD.EQ.13) THEN

MBARD
CAREA=0.25*PI*CDIAM**2
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
MBAR=MBARD/(RHOB1*ASTAR*CAREA/XLCD)
CSTARD= PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
DO 25 1=1,NVAL
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
UBARD-MBARD/(RHOBAR*CAREA)
UBAR(I)=UBARD/ASTAR

25 CONTINUE
RETURN

ENDIF
IFUD.EQ.14) THEN

RBARD
RBAR=RBARD
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RETURN
ENDIF
IFUD.E.Q.15) THEN

OCSDRD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
DCSDR=DCSDRD/ASTAR
RETURN
ENDIF
IFUD.EQ.16) THEN

DHLDRD
DHLDR=DHLDRD
RETURN
ENDIF
IF(ID.EQ.17) THEN

RHOLOD
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
RHOLO=RHOLOD/RHOB1
RETURN

ENDIF
IFUD.EQ.18) THEN

ULOD
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
ULO=ULOD/ASTAR
RETURN

ENDIF
IFUD.EQ.19) THEN

PCHMB
CAREA=0.25*PI*CDIAM**2
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
FAC=PCHMB/PBAR(1)
DO 26 I=1,NVAL
PBAR(I)=FAC*PBAR(I)
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
UBARD=MBARD/(RHOBAR*CAREA)
UBAR(I)=UBARD/ASTAR

26 CONTINUE
CSTARD= PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
RHOLO=RHOLOD/RHOB1
MBAR=MBARD/(RHOB1*ASTAR*CAREA/XLCD)
POO=POOD/PCHMB
RETURN
ENDIF
IFUD.EQ.20) THEN

TCHMB
DO 27 1=1,NVAL
TBAR(I)=FAC*TBAR(I)

27 CONTINUE
CAREA=0.25*PI*CDIAM**2
TAREA=0.25*PI*TDIAM**2
ASTAR=SQRT(GAMMAD*RGAS*TBAR(1))
FAC=TCHMB/TBAR(1)
DO 28 1=1,NVAL
RHOBAR=PBAR(I)*GC/(RGAS*TBAR(I))
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UBARD=MBARD/(RHOBAR*CAREA)
UBAR(I)=UBARD/ASTAR

28 CONTINUE
CSTARD= PBAR(NVAL)*TAREA*GC/MBARD
CSTAR=CSTARD/ASTAR
RHOB1=PBAR(1)*GC/(RGAS*TBAR(1))
RHOLO=RHOLOD/RHOB1
MBAR=MBARD/(RHOB1*ASTAR*CAREA/XLCD)
ENDIF
RETURN
END
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SUBROUTINE ZREAD(NAME,VALUE)
SUBROUTINE TO READ NAMES AND VALUES

CHARACTER*! NAME(8)
CHARACTER*! CARD(80),PLUS.MINUS,PERIOD,LE,E,NUMBER(10)
CHARACTER*! LEND(3),CEND(3),POUND,QUEST,BLK,COMMA
CHARACTER*80 DCARD
EQUIVALENCE (CARD(1),DCARD)
DATA PLUS/' + Y,MINUS/'-'/,PERIOD/'. Y,LE/'eY,E/'EY,BLK/' '/
DATA NUMBER/fOVr,'2V3f,'4','5V6'f'7V8',

f9'/,COMMA/f, Y
DATA LEND/'eVn','dY,CEND/'E','NVDY,POUND/'* Y,QUEST/'?'/

! FORMAT(A)
DO 21 1=1,8
NAME(I)=BLK

21 CONTINUE
READ(*,1)DCARD
IF(CARD(1).EQ.POUND) THEN
NAME(1)=POUND
RETURN

ENDIF
IF(CARD(1).EQ.QUEST) THEN
NAME(!)=QUEST
RETURN
ENDIF
DO 22 1=1,3
IF(CARD(I).NE.LEND(I).AND.CARD(I).NE.CEND(I)) GOTO 23
NAME(I)=CEND(I)

22 CONTINUE
RETURN

23 CONTINUE
DO 24 1=1,8
11=1
IF(CARD(I).EQ.BLK.OR.CARD(I).EQ.COMMA) GO TO 25
NAME(I)=CARD(I)

24 CONTINUE
25 CONTINUE

DO 26 1=11,80
ID=I
IF(CARD(I).NE.BLK.AND.CARD(I).NE.COMMA) GO TO 27

26 CONTINUE
VALUE=0.0
WRITE(*,*)' NO VALUE GIVEN, ZERO ASSUMED'
RETURN

27 CONTINUE
SIGN=1.0
IF(CARD(ID).EQ.MINUS) THEN
SIGN=-1.0
ID=ID+1
ELSEIF(CARDCID).EQ.PLUS) THEN
ID=ID+1
ENDIF
WHOLE=0.0
DO 30 1=10,80
11=1
IF(CARD(I).EQ.PERIOD) GO TO 31
IF(CARDU).EQ.PLUS) GO TO 36
IF(CARD(I).EQ.MINUS) GO TO 36
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IF(CAROU).EQ.E.OR.CARDU).EQ.LE) GO TO 35
DO 28 J=1,10
JJ=J-1
IFCCARDd).EQ.NUMBER(J)) GO TO 29

28 CONTINUE
VALUE=SIGN*WHOLE
IF(CARD(I).EQ.BLK) RETURN
WRITEC*,*)' INPUT ERROR, VALUE SET TO ZERO'
VALUE=0.0
RETURN

29 CONTINUE
WHOLE=WHOLE*10.0+JJ

30 CONTINUE
VALUE=SIGN*WHOLE
RETURN

31 CONTINUE

FRACT=0.0
ICOUNT=0
DO 34 I=ID,80
ICOUNT=ICOUNT+1
11=1
IF(CARD(I).EQ. PERIOD) THEN
WRITE(*,*)' INPUT ERROR, VALUE SET TO ZERO'
VALUE=0.0
RETURN
ENDIF
IF(CARD(I).EQ.PLUS) GO TO 36
IF(CARDd).EQ. MINUS) GO TO 36
IF(CARD(I).EQ,E.OR.CARD(I).EQ.LE) GO TO 35
DO 32 J=1,10
JJ=J-1
IF(CARD(I).EQ.NUMBER(J)) GO TO 33

32 CONTINUE
VALUE=SIGN*(WHOLE+FRACT)
IF(CARDd).EQ.BLK) RETURN
WRITEC*,*)' INPUT ERROR, VALUE SET TO ZERO'
VALUE=0.0
RETURN

33 CONTINUE
FRACT=FRACT+JJ/10.0**ICOUNT

34 CONTINUE
VALUE=SIGN* ( WHOLE+FRACT )
RETURN

35 CONTINUE
11=11+1

36 CONTINUE
VALUE=SIGN*( WHOLE+FRACT)
SIGN=1.0
IF(CARD(II).EQ. MINUS) THEN
SIGN=-1.0
11=11+1
ELSEIF(CARD(II).EQ.PLUS) THEN
11=11+1
ENDIF
WHOLE=0.0
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DO 39 1=11,80
DO 37 J=1,10
JJ=J-1
IF(CARD(I).EQ.NUMBER(J)) GO TO 38

37 CONTINUE
VALUE=VALUE*10.0**(SIGN*WHOLE)
IF(CARD(I).EQ.BLK) RETURN
WRITE(*,*)' INPUT ERROR, VALUE SET TO ZERO'
VALUE=0.0
RETURN

38 CONTINUE
WHOLE=WHOLE*10.0+JJ

39 CONTINUE
VALUE=VALUE*10.0**(SIGN*WHOLE)
RETURN
END
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Listing of Program FEEDLINE

C PROGRAM TO CALCULATE ADMITTANCE COEFFICIENTS FROM TANK
C THROUGH FEEDLINES TO ROCKET CHAMBER
C
C A = VELOCITY OF SOUND IN THE FLUID (FT/S)
C AREA(I) = AREA OF FEED LINE (FT~2)
C CMAN = CAPACITANCE ASSOCIATED WITH THE MANIFOLD
C CTANK = CAPACITANCE ASSOCIATED WITH THE FUEL TANK
C DENS = DENSITY OF FLUID (LB/FT"3)
C DIA(I) = DIAMETER OF LINE
C DPROR = PRESSURE DROP ACROSS ORIFICES (LB/FT2)
C G(I) = OVERALL ADMITTANCE AS SEEN FROM ENGINE
C GRAV = ACCELERATION OF GRAVITY (32.2 FT/S~2)
C INERT = INERTANCE DUE TO DUCT CURVATURE
C KMAN = BULK MODULUS OF FLUID AT MANIFOLD PRESSURE (LB/FT~2)
C KTANK = BULK MODULUS OF FLUID IN TANK (LB/FT"2)
C L(I) = LENGTH OF LINE (FT)
C LFLOW = FLOW RATE OF FLUID THROUGH THE LINEUB/S)
C PCHMB = PRESSURE INSIDE COMBUSTION CHAMBER (LB/FT2)
C RATIO = RATIO OF INNER RADIUS TO OUTER RADIUS
C TFLOW = TOTAL FLOW RATE OF FLUID INSIDE ENGINE(LB/S)
C TL = TIME CONSTANT
C VOL = VOLUME OF FUEL TANK (FT~3)
C VOLMF = VOLUME OF MANIFOLD (FT"3)
C ZLINE = IMPEDANCE ASSOCIATED WITH THE FEED LINE
C ZOR = IMPEDANCE ASSOCIATED WITH THE ORIFICES
C

COMPLEX G(76),CTANH,G1,S
REAL AREA(75),DIA(75),L(75),INERT,INRAD,KMAN,KTANK,LBEND,LFLOW,
* LFREQ,LPRME,MAG,NEWLN,MAG1
INTEGER N(75),SECTN(75),PTS,RSPON,SECT,SEGMN
CHARACTER ANS*1
CHARACTER*20 TITLE,TITLF.TITLO
DATA GRAV/32.2/,PI/3.1415927/
DATA TITLF/' FUEL LINE '/
DATA TITLO/' OXYGEN LINE '/

1 FORMAT(E15.6)
2 FORMAT(I5,3E15.6)
3 FORMAT(1P4E15.6)
4 FORMAT(1PE13.5,' (' ,E12.5,',',E12.5,') (',E12.5,',',E12.5,')')
5 FORMAT(/' FREQ>,8X,'FREQ-NORM',9X,'G(R)',11X,'G(I)V)
6 FORMAT(/2x,'" FREQ1" ,7X,'"FREQ-NORM"',5X,'" /G1/"',6X,
* '" /G/"V)
7 FORMAT("",A,"")
8 FORMAT(1PE15.6)
9 FORMAT(I5,1P3E15.6)
WRITE(*,'(A\)')' IS THIS SETUP FOR FUEL OR OXIDIZER? ENTER F OR 0
*. '
READ(*,'(A)')ANS
IF(ANS.EQ.'F'.OR.ANS.EQ.>f>) THEN
TITLE=TITLF
OPEN(UNIT=11,FILE='FUEL.DAT',STATUS='OLD')
ELSE
TITLE=TITLO T



c
c
c
c
c
c

OPEN(UNIT=11,FILE='LOX.DAT',STATUS='OLD')
ENDIF '
OPEft(UNIT=12,FILE='ADMIT.DAT',STATUS='NEW')
OPEN (UNIT=7, FILE='ADMIT. PRN',STATUS='NEW)
WRITE(*,'(A\)')'IF THERE IS DATA STORED ENTER
READ(*,'(A)')ANS
IF(ANS.EQ.'N'.OR.ANS.EQ.'n') THEN
RSPON=3
GO TO 21
ENDIF
READ(11,1)DENS
READ(11,1)TFLOW
READ(11,1)VOLMF
READ(11,1)KMAN
READ(11,1)PCHMB
READ(11,1)DPROR
READ(11,1)VOL
READ(11,1)LFLOW
READ(11,1)KTANK
READ(11
READ(11

YES

READ(11
READ(11

,DA
,1)CTANK
,1)CMAN
,2)SEGMN

READ(11,2)(SECTN(I)>L(I),AREA(I),DIA(I),I=1>SEGMN)

The first stage in this program is to define the parameters then
we will begin the initial calculations. Because these parameters
are as likely to change as not, a provision is made to update the
parameters if necessary.

WRITE(12
WRITE(12
WRITE(12
WRITE(12
WRITE (1 2
WRITE(12
WRITE (12
WRITE ( 12
WRITE (12
WRITE (12
WRITE(12
WRITE (12
WRITE(12
WRITE( 12
WRITE (12
WRITE(12
WRITE (12
WRITE(12
WRITE(12
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,

,*)' '
,*)TITLE
,*)' '
,*) 'PRESENT CONDITIONS ARE AS FOLLOWS:'
, *)'DENS=', DENS
,*)'FUEL TANK VOLUME=',VOL
,*) 'MANIFOLD VOLUME= ' , VOLMF

ENGINE CHAMBER PRESSURE: ' , PCHMB
PRESSURE DROP ACROSS ORIFICE=' ,DPROR
TOTAL FLOW RATE=',TFLOW
LINE FLOW RATE=',LFLOW
BULK MOD. OF FUEL TANK=',KTANK
BULK MOD. OF MANIFOLD=' ,KMAN

,*) 'VELOCITY OF SOUND IN FLUID=',A
,*) 'CAPACITANCE OF FUEL TANK=',CTANK
,*) 'CAPACITANCE OF MANIFOLD=' ,CMAN
,*)' STATUS LENGTH AREA
,9)(SECTN(I),L(I),AREA(I),DIA(I),I=1,SEGMN)
,*)' '
*)' '
*)TITLE
*)' '
*)f PRESENT CONDITIONS ARE AS FOLLOWS:'
*)'DENS=',DENS
*)'FUEL TANK VOLUME=',VOL
«) 'MANIFOLD VOLUME=' , VOLMF

,*)
,*) '
,*)
,*)
,*)
,*)

DIAMETER'



WRITEC*,*)'ENGINE CHAMBER PRESSURE=',PCHMB
WRITEC*,*)'PRESSURE DROP ACROSS ORIFICE=',DPROR
WRITEC*,*)'TOTAL FLOW RATE=',TFLOW
WRITEC*,*)'LINE FLOW RATE=',LFLOW
WRITEC*,*)'BULK MOD. OF FUEL TANK=',KTANK
WRITEC*,*)'BULK MOD. OF MANIFOLD=',KMAN
WRITEC*,*)'VELOCITY OF SOUND IN FLUID=',A
WRITEC*,*)'CAPACITANCE OF FUEL TANK=',CTANK
WRITEC*,*)'CAPACITANCE OF MANIFOLD=',CMAN
WRITEC*,*)' STATUS LENGTH AREA DIAMETER'
WRITEC*,9)CSECTN(I),L(I),AREA(I),DIA(I),1=1,SEGMN)
WRITEC*,*)' If revisions on the design have been made*
WRITEC*,*)' Cchanges in fuel, pipelength,diameter,bends, etc.)'
WRITEC*,'(A\)')' Please enter yes for revisions or no to continue.
* '
READC*,'(A)')ANS
IFCANS.EQ.'N'.OR.ANS.EQ.'n') GO TO 28
WRITEC*,*)'CHANGES IN FUEL LINE SPECIFICATIONS ENTER 1'
WRITEC*,*)'CHANGES IN ENGINE,TANK, AND FUEL SPECS. ENTER 2'
WRITEC*,*)'CHANGES FOR BOTH FUEL LINE AND ENGINE SPECS. ENTER 3'
REAOC*,*)RSPON
REWIND 11
IFCRSPON.EQ.2) GO TO 27

C
C AT THIS POINT, YOU NEED TO FURNISH ME WITH SOME INFORMATION, LIKE
C WHAT ARE THE LENGTHS AND AREAS OF THE SEGMENTS, HOW MANY BENDS ARE
C THERE, WHERE ARE THEY LOCATED ON THE PIPE, WHAT IS THE ANGLE THAT
C THEY MAINTAIN, WHAT IS THE RADIUS FOR THE BEND, AND ARE THERE
C VALVES, WHERE ARE THEY LOCATED, ETC.
C

21 CONTINUE
C.
C *** REMEMBER TO RESOLVE AMBIGUITY CONCERNING THE LENGTHS FOR
C MANIFOLDS AND ORIFICES, SINCE THE PARAMETERS FOR THEIR
C IMPEDENCE WILL BE INPUT. 2-22-90
C

WRITEC*,'(A\)')'HOW MANY SEGMENTS IS THE PIPE BROKEN INTO? '
READC*,*)SEGMN
LCI)=0.0
AREACI)=0.0
DIA(I)=0.0
SECTN(I)=0
DO 26 1=1,SEGMN
WRITEC*,*)'SPECIFY 0 for bend, 1 FOR STRAIGHT PIPE,1

WRITEC*,*)' 2 FOR MANIFOLD, OR 3 FOR ORIFICE'
WRITEC*,*)'IN ORDER,SPECIFY LENGTH,AREA, AND DIAMETER OF'
WRITE(*,*)'EACH SEGMENT'
WRITEC*,*)'EX. INPUT: 1.LENGTH,AREA,DIAMETER'
WRITEC*,*)' OUTPUT: 1 LENGTH AREA DIAMETER'
READC*,*) SECT,VALUE,AREAB,DIME
IFCSECT.EQ.O) GO TO 24
IFCSECT.EQ.1) GO TO 22
IF(SECT.EQ.2) THEN
WRITEC*,'CA\)')'DENSITY OF FLUID '
READC*,*)DENS
WRITEC*,'(A\)')'TOTAL FLOW RATE '



READ(*,*)TFLOW
WRITEC*,'(A\)')'VOLUME FLUID IN MANIFOLD '
RfcAD(*,*)VOLMF
WRITE(*,'(A\)')'BULK MODULUS OF FLUID IN MANIFOLD '
READ(*,*)KMAN
WRITEC*,'(A\)')'ENGINE CHAMBER PRESSURE '
READ(*,*)PCHMB
CMAN=(DENS*VOLMF*PCHMB)/(KMAN*TFLOW)
WRITEC*,*)'MANIFOLD CAPACITANCE=',CMAN
VALUE=0.0
AREAB=0.0
DIME=0.0
SECT=2
GO TO 23
ELSEIFCSECT.EQ.3) THEN
WRITEC*,'(A\)')'PRESSURE DROP ACROSS ORIFICE '
READ(*,*)DPROR
GO TO 22
ENDIF

22 CONTINUE
L(I)=VALUE
AREA(I)=AREAB
SECTN(I)=SECT
DIA(I)=DIME

23 CONTINUE
WRITE(*,*)SECTN(I),L(I),AREA(I),DIA(I)
GO TO 26

24 CONTINUE
C
C THIS PART OF THE PROGRAM FINDS NEW LENGTHS AND AREAS FOR
C SECTIONS OF THE PIPE WITH BENDS IN THEM BY MAKING USE OF
C THE IDEA THAT A BEND CAN BE MODELED AS A STRAIGHT PIPE WITH
C DECREASED AREA AND INCREASED LENGTH. THIS SECTION LOOKS AT
C TWO CASES: MITERED AND ELBOW BENDS.
C

WRITE(*,'(A\)')'PLEASE ENTER LENGTH OF BEND (E.G. 1/3 LENGTH) '
READ(*,*)LBEND
WRITE(*,*)'THE INNER AND OUTER RADIUS OF THE BEND FROM THE LOCUS'
WRITEC*,*)' AN INNER RADIUS OF 0.0 DENOTES A MITERED BEND'
READC*,*)INRAD,OTRAD
WRITEC*,'(A\)')'ENTER THE INITIAL AREA OF THE PIPE '
READ(*,*)ARBND
WRITE(*,*)LBEND,INRAD,'FT',OTRAD,'FT',ARBND,'FT2'
WRITEC*,'(A\)')'ENTER THE ANGLE OF THE BEND '
READC*,*)BEND
RATIO=INRAD/OTRAD
X=RATIO
WRITE(*,*)BEND,'DEGREES'
CALL GINERT(BEND,X,Y)

25 CONTINUE
INERT=(Y*(OTRAD-INRAD))/ARBND
LPRME-LBEND/ARBND
NEWLN=LPRME+INERT
GAMMA=NEWLN/LPRME
L(I)=GAMMA*LBEND
AREA(I)=ARBND/SQRT(GAMMA)
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26 CONTINUE
27 CONTINUE

IF(RSPON.EQ.I) GO TO 28
IFCKSPON.EQ.2) THEN
WRITE(*,'(A\)')'ENTER FUEL DENSITY '
READ(*,*)DENS
WRITE(*,'(A\)')'ENTER TOTAL FLOW RATE INSIDE ENGINE '
READ(*,*)TFLOW
WRITE(*,'(A\)')'ENTER MANIFOLD VOLUME '
READ(*,*)VOLMF
WRITE(*,'(A\)')'ENTER BULK MODULUS OF FLUID INSIDE MANIFOLD '
READ(*,*)KMAN
WRITE(*,'(A\)')'ENTER CHAMBER PRESSURE IN ENGINE '
READ(*,*)PCHMB
WRITE(*,'(A\)')'ENTER PRESSURE DROP ACROSS ORIFICE '
READ(*,*)DPROR
ENDIF
WRITE(*,'(A\)')'ENTER FUEL TANK VOLUME '
READ(*,*)VOL
WRITE(*,'(A\)')'ENTER FLOW RATE INSIDE LINE '
READ(*,*)LFLOW
WRITE(*,'(A\)')'ENTER BULK MODULUS OF FLUID INSIDE TANK '
READ(*,*)KTANK
WRITE(*,'(A\)')'ENTER VELOCITY OF SOUND IN FLUID '
READ(*,*)A
CTANK=(DENS*VOL*PCHMB)/(KTANK*TFLOW)
CMAN=(DENS*VOLMF*PCHMB)/(KMAN*TFLOW)
WRITE(11,8)DENS

' WRITE(11,8)TFLOW
WRITE(11,8)VOLMF
WRITE(11,8)KMAN
WRITE(11,8)PCHMB
WRITE(11,8)DPROR
WRITE(11,8)VOL
WRITE(11,8)LFLOW
WRITE(11,8)KTANK
WRITE(11,8)A
WRITE(11,8)CTANK
WRITE(11,8)CMAN
WRITE(11,9)SEGMN
WRITE(11,9)SECTN(I),L(I),AREA(I),DIA(I)

C
C THIS SECTION COMPUTES THE NEW ADMITTANCE OVER VARYING FREQUENCIES.
C

28 CONTINUE
WRITEC*,*)'ENTER RANGE OF FREQUENCIES EX: 1,2,10'
WRITEC*,*)'LOW FREQ=1 HIGH FREQ=2 #PTS=10'
READ(*,*)LFREQ,HFREQ,PTS
IF(PTS.LE.I) GO TO 32

C
C THIS SECTION WILL COMPUTE THE ADMITTANCE RATIO FOR THE FUEL TANK
C AND THEN IT WILL COMPUTE THE ADMITTANCE RATIOS FOR EACH SEGMENT,
C SINCE THERE ARE L(I) I=1,SEGMN LENGTHS, THEN THERE WILL BE AT LEAST
C AS MANY ADMITTANCE RATIOS, THEREFORE I AM SETTING UP AN ARRAY FOR
C EACH LENGTH L(I) HAVING AN ADMITTANCE RATIO G(I).
c



SSIZE=(HFREQ-LFREQ)/(PTS-1)
WRITE(*,*)'STEP SIZE'.SSIZE
WRITE(*,«) ' '
WRITE(*,«) ' FREQUENCY G G1
WRITE(*,«) ' •
WRITE(12,5)
WRITE(7,7)TITLE
WRITE(7,6)
ZTOP=A*TFLOW/(GRAV*PCHMB)
ZOR= 2.0*DPROR*T FLOW/(LFLOW*PCHMB)
TLT=0.0
DO 29 I-1,SEGMN
TLT=TLT+L(I)

29 CONTINUE
TLT=TLT/(PI*A)
DO 31 K=1,PTS
W=LFREQ+SSIZE*(K-1)
S=CMPLX(0.0,W)
G(1)=CTANK*S
G1=G(1)+1.0
DO 30 I=2,SEGMN+1
IF(SECTN(I-1).EQ.1) THEN
ZLINE=ZTOP/AREA(I-1)
TL=L(I-1)/A
G(I)=(1.0+CTANH(S*TL)/(G(I-1)*ZLINE))/(1.0+G(I-1)*ZLINE*

* CTANH(S*TL))
ELSEIF(SECTN(I-1).EQ.2) THEN
G(I)=1.0+CMAN*S/G(I-1)
ELSEIF(SECTN(I-1).EQ.3) THEN
G(I)=1.0/(1.0+ZOR*G(I-1))
ENDIF
G1=G1*G(I)

30 CONTINUE
MAG=CABS(G(SEGMN+1))
MAG1=CABS(G1)
WN=W*TLT
WRITE(12,3)W,WN,G(SEGMN+1)
WRITE(7,3)W,WN,MAG1,MAG
WRITE(*,4)W,G(SEGMN+1),G1

31 CONTINUE
32 CONTINUE

WRnE(*,'(A\)')'TO CONTINUE ENTER YES '
READ(*,'(A)')ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') GO TO 28
STOP
END
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COMPLEX FUNCTION CTANH(S)
COMPLEX CCOSH,CSINH,S
CTANH=CSINH(S)/CCOSH(S)
RETURN '
END -

COMPLEX FUNCTION CSINH(S)
COMPLEX S
REAL LAMDA, MU
LAMDA=REAL(S)
MU=AIMAG(S)
SINHR-SINH(LAMDA)*COS(MU)
SINHI=COSH(LAMDA)*SIN(MU)
CSINH=CMPLX(SINHR,SINHI)
RETURN
END

COMPLEX FUNCTION CCOSH(S)
COMPLEX S
REAL LAMDA, MU
LAMDA=REAL(S)
MU=AIMAG(S)
COSHR=COSH(LAMDA)*COS(MU)
COSHI=SINH(LAMDA)*SIN(MU)
CCOSH=CMPLX(COSHR,COSHI)
RETURN
END

SUBROUTINE GINERT(BEND,X,Y)
C'
C AO,A1,A2 = INERTANCE FIT FOR GIVEN BEND ANGLE
C B(I) = COEFFICIENT ARRAY OF INERTANCE FIT
C BEND - ANGLE OF BEND (DEGREES)
C X = RATIO OF INNER RADIUS TO OUTER RADIUS (RI/RO)
C Y = INERTANCE
C

DIMENSION B(3)
DATA B/0.0,0.7877014E-02,-0.2814679E-04/
A=B(1)+(B(2)+B(3)*BEND)*BEND
Y=A*(X-1.0)**2
RETURN
END
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