LOS ALAMOS NEP RESEARCH
IN ADVANCED PLASMA THRUSTERS

Kurt Schoenberg and Richard Gerwin

Presented to the NASA
MPD Thruster Technology Workshop
May 16, 1991

PLASMA THRUSTER RESEARCH

Los Alamos has initiated research in advanced plasma thrusters that capitalizes on Laboratory capabilities in plasma science and technology

THE PROGRAM GOAL:

• Elucidate the scaling issues of MPD thruster performance in support of NASA's MPD thruster development program

THE PROGRAM OBJECTIVE:

• Address multi-megawatt, large scale, quasi-steady-state MPD thruster performance
ADVANCED PLASMA THRUSTERS
Active Research Activities

- A CTX coaxial plasma gun, with tungsten-coated electrodes, is being operated as a function of current, gas pressure, gas type, applied axial magnetic field, and electrode polarity.

- The steady-state properties of nozzle-based coaxial plasma guns are being modeled by an evolving magnetic Bernoulli equation that provides analytic predictions for thruster power, mass flow rate, thrust, and specific impulse.

- Research Results:
 * A new quasi-steady-state operating regime has been obtained at SEI-relevant power levels (5 to 10 MW), that enables direct coaxial gun - MPD comparisons of thruster physics and performance.
 * Radiative losses are negligible
 * Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters.
 * Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions.
 * Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway.
 * Model applications to advanced mission logistics are underway.
ELECTROMAGNETIC THRUSTERS: $J_f B_\phi$ DRIVES $\rho \dot{v}_z$

MPD THRUSTERS

![Diagram of MPD Thrusters]

- $I = \text{few kA}$
- $v = 100 \text{ volts}$
- $n = 10^{20} - 10^{21} \text{ m}^{-3}$

COAXIAL GUNS

![Diagram of Coaxial Guns]

- $I = 50-100 \text{ kA}$
- $v = \text{few 100 volts - few kV}$
- $n = 10^{20} - 10^{21} \text{ m}^{-3}$
COAXIAL GUN DISCHARGE # CTX19645

Diagram

Visible Emission

Intensity Contours (0–255)
COAXIAL GUN DISCHARGE # CTX19659

Diagram

Visible Emission

Intensity Contours (0–255)

ORIGINAL PAGE IS OF POOR QUALITY
DEFLAGRATION + NOZZLE = THRUST

BUILT-IN NOZZLE

MAGNETICALLY-FORMED NOZZLE
PLASMA THRUSTER RESEARCH

Spatial Field Measurements

3-D Spatial |B| plot
We hypothesize that scale is important to optimize MMW mission applications.

We hypothesize that scale may directly affect the MMW thruster performance characteristics:
- lower current density
- smaller gradient scale lengths
- transition from resistive to more "ideal like" MHD operation
- lower plasma turbulence - higher efficiency

Thrust power as a function of I and r
ADVANCED PLASMA THRUSTERS
Envisioned Experimental Program

NEAR-TERM

- Characterize QSS power balance at large scale, MMW
 - Electrode Losses
 - Radiation
 - Axial, radial transport

- Compare global loss estimates with locally determined power balance

FARTHER-TERM

- Achieve QSS and mass-flow steady state
- Benchmark power balance
- Address performance optimization
 - electrode configuration
 - nozzle configuration (magnetic)
 - spatial scale
SCALING ISSUES FOR MPD THRUSTERS

- Possible Reasons for Scaling with R-

 - Mission Scaling
 - Transport Scaling
 - Macroscopic Stability
 - Microscopic Stability
 - Optimization of Thruster Efficiency
SCALING ISSUES FOR MPD THRUSTERS

- Mission Scaling -

\[
\begin{align*}
\text{time floats} & \quad P \quad \text{time constrained} \\
\uparrow & \quad \uparrow \\
u & \quad u \\
\end{align*}
\]

In either case,

- \(M_{\text{En}}, M_{\text{Pr}}, M_{\text{Sp}} \) all scale with \(m_{\text{Pr}} \)

where \(m_{\text{Pr}} = \frac{1}{2} N_{\text{th}} S_0 A_0 f \) \((f = V_0/V_e) \).

Note: \(m_{\text{Pr}} \sim N_{\text{th}} P R^2 \) \((\text{fixed } A/R) \)

- \(I \sim R P^2 \) for fixed \(I_{\text{Sp}} \).

\(m_{\text{Pr}} \): "specific mass of the propellant"
SCALING ISSUES FOR MPD THRUSTERS

— Transport Scaling —

May be related to the mechanism of plasma production and "ingestion".
Scaling Issues for MPD Thrusters

- Plasma Production and Heating -

Model: "Sand dropped on Conveyor Belt"

Assume $T_e = T_i$

Approach: Boltzmann Equation with Source

Get: $\left(\frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right)$

\[\frac{2}{\gamma-1} \frac{dT}{dt} + 2T \vec{V} \cdot \vec{V} = \]

= Ohmic Heating + Viscous Heating

- Thermal Conduction Loss

\[+ m_o \langle \sigma V \rangle_o \left[\frac{1}{2} m \dot{\vec{v}} \vec{v}^2 - \frac{2}{\gamma-1} T - e_i \right] \]

\[+ m \langle \sigma V \rangle \left[\frac{1}{2} m \dot{\vec{v}} \vec{v}^2 - \frac{2}{\gamma-1} T - (e_i - e*) \right] \]

ionization of excited states:

\[- \frac{m_o \langle \sigma V \rangle_o}{m \langle \sigma V \rangle} e* \]

where $\frac{1}{2} m \dot{\vec{v}} \vec{v}^2$ means $\frac{1}{2} m \dot{\vec{v}} \left(\vec{v} - \vec{v}_m \right)^2$.

H-13
SCALING ISSUES FOR MPD THRUSTERS

- Transport Scaling -

- Mass Transport ($\omega_c < v_e$)
 \[\frac{t_e}{t_i} \sim R_{mag} \sim \left(\frac{V_e A}{D_2} \right) \sim \frac{T}{R} \sim \left(\frac{I}{RP^{1/2}} \right) R \]

- Mass Transport ($\omega_c > v_e$)
 \[\frac{V_t t_i}{\Delta} \sim \frac{c}{\omega_{pi}} \]
 [Ions carry some current.]

- Heat Transport by classical ions
 \[g \left[\frac{MW}{m^2} \right] \]
 (next slides)
SCALING ISSUES FOR MPD THRUSTERS

PREDICTIONS FROM "CONVEYOR BELT" MODEL OF ION HEATING (HYDROGEN)

\[
T_i (eV) = 5.0 \times 10^{10} \left(\frac{I^2}{n_i r^2} \right)_{\text{MKS}}
\]

\[
\frac{\omega_{ci}}{\nu_{ii}} = 4.6 \times 10^{29} \left(\frac{I^4}{n_i^{5/2} r^4} \right)_{\text{MKS}}
\]

\[
\frac{\omega_{ce}}{\nu_e} = 30 \frac{\omega_{ci}}{\nu_i} \quad \text{assuming} \quad T_e = T_i
\]

\[
\eta_i \left(\frac{MW}{m^2} \right) = 6.3 \times 10^{33} \left(\frac{I^7}{n_i^{7/2} r^8} \right)_{\text{MKS}} \frac{1}{1 + 2 \left(\frac{\omega_{ci}}{\nu_{ii}} \right)^2} \left(\frac{r}{\Delta} \right)
\]

\[
R_v = 0.58 \times 400 \times 10^{-40} \left(\frac{n_i^{3.5}}{I^4} \right)_{\text{MKS}} \left(\frac{\Delta}{r} \right) \left[1 + 3 \left(\frac{\omega_{ci}}{\nu_{ii}} \right)^2 \right]
\]
SCALING ISSUES FOR MPD THRUSTERS

\[Q_{i,j} := Q_i[I, i, n, r] \]

\[I = 5 \cdot 10^3 \]

\[I = 5.5 \cdot 10^4 \]

\[r = 0.01 \]

\[r = 0.51 \]

\[n = 3 \cdot 10^{20} \]

\[G_i \left[\frac{MW}{m^2} \right] \]

(Hydrogen)

\[Q_{0,0} = 15.448 \]

\[Q_{0,10} = 2.3 \cdot 10^{-10} \]

\[Q_{10,0} = 1.406 \]

\[Q_{10,10} = 0.004 \]
SCALING ISSUES FOR MPD THRUSTERS

- Macroscopic Stability -

The viscous Reynolds number (with magnetized ions) may become large and may thereby induce turbulent channel flow.
Viscous Reynolds number: \(\frac{V \Delta}{D_v} = R_v \)

Ion Shear Viscosity: \(\frac{1}{7} \frac{v_{thi}^2}{\nu_a} \frac{\nu_a}{\omega_{ci}^2} = D_v \)

\(\nu_a = \text{const.} \times m^{-3/2} \)

Hence \(R_v = \text{const.} \times \Delta \times \left(V \frac{B^2}{m} \frac{1}{T_i} \right) \)

If \(T_i \) "does scale" (like \(V^2 \))

then \(R_v = \text{const.} \times \Delta \times V^k \sim \left(\frac{I^2}{\dot{M}} \right) \)
Scaling Issues for MPD Thrusters

$$RV1_{1,j} = \log(10) \left[RV1_{1,1} \right]$$

$$I = 5 \times 10^3$$
$$r = 0.01$$
$$n = 2 \times 10^2$$

$$I = 5.5 \times 10^4$$
$$r = 0.51$$
$$n = 2.10$$

Large Guns

MPD

$$RV1_{0,0} = 2.964$$

$$RV1_{10,0} = 7.13$$

$$RV1_{0,10} = 6.107$$

$$RV1_{10,10} = 2.277$$

$$20^\circ$$

H-19
SCALING ISSUES FOR MPD THRUSTERS

— Microscopic Stability —

\[V_{dr, R} \lesssim v_{thi} \quad (\text{threshold}) \]

Equivalent to

\[\frac{I^2}{\dot{M}} \lesssim \frac{4\pi}{\mu_0} \frac{R}{c/\omega_i} v_{thi} \]

If \((T_{\theta} \text{ does not scale with } V^2)\)

Then \(\frac{I^2}{\dot{M}} \lesssim \text{approx. const.}\)

If \((T_{\theta} \text{ scales with } V^2 [hi I])\)

Then \(\frac{I}{\dot{M}} \lesssim \text{const. [observed at hi I]}\)