Appendix I

MPD WORK AT MIT

by

M. Martinez-Sanchez

D.E. Hastings

PRESENTED AT THE MPD THRUSTER TECHNOLOGY WORKSHOP

NASA HEADQUARTERS, MAY 16, 1991

GOALS VS. ACHIEVEMENTS

<table>
<thead>
<tr>
<th>GOALS</th>
<th>EFFICIENCY (%)</th>
<th>I_p (sec)</th>
<th>CATIODE EROSION ($\mu g/C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELF FIELD MPD</td>
<td>50%</td>
<td>5000</td>
<td>10^{-4}</td>
</tr>
<tr>
<td></td>
<td>42% (H$_2$, Ref. 1)</td>
<td>6000 (H$_2$, Ref. 1)</td>
<td>2×10^{-3} (H$_2$, Ref. 9)</td>
</tr>
<tr>
<td></td>
<td>30% (A, Ref. 2)</td>
<td>3000 (A, Ref. 2)</td>
<td>6×10^{-4} (N$_2$, Ref. 9)</td>
</tr>
<tr>
<td>APPLIED FIELD MPD</td>
<td>70% (Li, Ref. 3)</td>
<td>6800 (H$_2$, Ref. 5)</td>
<td>3×10^{-5} (H$_2$, Ref. 7)</td>
</tr>
<tr>
<td></td>
<td>70% (H$_3$, Ref. 4)</td>
<td>5800 (Li, Ref. 3)</td>
<td>2×10^{-3} (N$_2$, Ref. 8)</td>
</tr>
<tr>
<td></td>
<td>50% (N$_2$, Ref. 4)</td>
<td>2800 (A, Ref. 6)</td>
<td></td>
</tr>
</tbody>
</table>

1. Uematsu, K et al., 1984
2. Wolff, M. et al., 1984
3. Connolly, D.J. et al., 1968
4. Tahara, H. et al., 1988
5. Arakawa Y. et al., 1987
6. Connolly et al., 1971
7. Ducati, A.C. et al., 1964
8. Esiker, D.W., 1969
## PERFORMANCE FEATURE	LIMITING EFFECT	COMMENTS
THrust EFFICIENCY | FROZEN LOSSES ELECTRODE DROPS | HIGHEST AT "ONSET" LIMITING IGNITATION/KINETIC ENERGY, (MAY DEPEND ON GEOMETRY) FORCE SELF-FIELD MPD TO MW POWER LESS IMPORTANT WITH APPLIED FIELD
SPECIFIC IMPULSE | VARIOUS FORMS OF "ONSET" | HIGHEST WITH LIGHTEST GASES
LIFE, (erosion) | ELECTRODE EVAPORATION GAS IMPURITIES CATHODE MICROARCS MASsIVE ARCS AT ONSET | THERMAL DESIGN, IMPREGNANT DISPENSER COMPOSITION CONTROL MAY BE IRRELEVANT FOR HOT OPERATION ULTIMATE LIMITER

THE MIT PROGRAM

- SUPPORTED BY AFOSR GRANTS (1983 - PRESENT)
- MAINLY THEORETICAL WORK, WITH TWO EXCEPTIONS:
 - JOINT PROGRAM WITH R & D ASSOCIATES (HEMERDINGER, KILFOYLE)
 - JOINT PROGRAM WITH PHILLIPS LAB (GAIDOS)
- HAS CONCENTRATED ON MODELING FLUID DYNAMICS AND PHYSICS OF SELF-FIELD THRUSTERS:

 1-D MODELS DYNAMICS OF HIGH MAGNETIC REYNOLDS NO. FLOWS EFFECTS OF AREA CONTOURING EFFECTS OF KINETICS, TRANSPORT

 2-D MODELS ANODE DEPLETION AND OTHER HALL EFFECT CONSEQUENCES FRICTION, DIFFUSION, HEAT LOSS DEVELOPMENT OF MACROSCOPIC INSTABILITIES

 STABILITY IONIZATION, LOWER HYBRID AND ELECTROTHERMAL INSTABILITIES

 KINETICS UPPER LEVEL POPULATIONS, INLET EFFECTS
WHO DID (DOES) WHAT

<table>
<thead>
<tr>
<th></th>
<th>1-D Models</th>
<th>1 1/2-D Models</th>
<th>2-D Models (Numerical)</th>
<th>2-D Models (Analytical)</th>
<th>Stability Theory</th>
<th>Radiation, Kinetics</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Helmerdinger (Ph.D)</td>
<td>Contouring</td>
<td>Anode Depletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contoured Channel</td>
</tr>
<tr>
<td>Tan Wing Room (MS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Kilfoyle (MS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exit Plane</td>
</tr>
<tr>
<td>J.M. Chanty (Ph.D. cand.)</td>
<td>High E_m</td>
<td>Low Interaction</td>
<td>Asymptotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.H. Niewood (Ph.D. cand.)</td>
<td>Physics</td>
<td>Ball, z-accurate</td>
<td>Lower Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott Miller (Ph.D. cand.)</td>
<td>Transport Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeff Preble (MS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric Sheppard (Ph.D. cand.)</td>
<td>Inlet Effects</td>
<td></td>
<td>Radiation, Kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric Guides (Ph.D. cand.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Martinez-Sanchez</td>
<td>High E_m</td>
<td>Anode Depletion</td>
<td>Asymptotics</td>
<td>Electro-thermal</td>
<td>Lower Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Hastings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUASI ONE DIMENSIONAL MODELING

- **BY SACRIFICING GEOMETRICAL DETAIL, EXPLORATION OF A BROAD RANGE OF PHYSICAL EFFECTS IS POSSIBLE IN THE CONTEXT OF 1-D MODELS WITH AREA VARIATION**

- **SHOWN ARE EXAMPLES OF E. NIEWOOD’S RESULTS ILLUSTRATING**

 (a) **DEGREE OF AGREEMENT WITH THRUST DATA FROM TWO PRINCETON U. THRUSTERS**

 (b) **RELATIVE IMPORTANCE OF VARIOUS ELECTRON ENERGY SOURCES/SINKS ALONG THE LENGTH OF A THRUSTER**
TWO-DIMENSIONAL MODELING - TRANSPORT EFFECTS

- VISCOS DRAG IMPORTANT IN SLENDER THRUSTERS
- VISCOS DISSIPATION CONTRIBUTES TO HIGH ION TEMPERATURE
- DIFFUSION AND HEAT CONDUCTION IMPORTANT AS DAMPING EFFECTS
 -- RESULTS BELOW FROM S. MILLER'S WORK, FOR D. HEIMERDINGER'S CHANNEL, NEGLECTING HALL EFFECT.
 -- NOTICE BOUNDARY LAYER DEVELOPMENT TO NEAR-FULLY DEVELOPED FLOW.
 -- LACK OF SYMMETRY IS REAL, AND ARISES FROM ENERGY TRANSPORT BY TRANSVERSE CURRENT.
Two-Dimensional Viscous MPD Flow

Magnetic Field
- Max = 0.1 T
- Min = 0.0 T
- Inc = 0.004 T

Fluid Velocity
- Max = 5000 m/s
- Min = 0 m/s
- Inc = 200 m/s

Gas Temperature
- Max = 10000 K
- Min = 0 K
- Inc = 400 K

TWO-DIMENSIONAL MODELING - HALL EFFECT

- THE HALL EFFECT STRONGLY DISTORTS THE PLASMA FLOWS, AS SHOWN IN THE 2-D RESULTS SHOWN NEXT. CONDITIONS ARE
 - \(H = 2 \text{ CM.} \)
 - \(L = 10 \text{ CM} \)
 - \(B_0 = 0.1 \text{ T} \) (\(I = 30 \text{ kA} \))
 - ARGON, \(m = 4 \text{ g/sec} \)

- NOTICE STRONG AXIAL CURRENT ALONG ANODE. THIS PRODUCES LARGE DISSIPATION (SEE T. MAP) AND HIGH IONIZATION FRACTION. PLASMA IS KEPT ELECTROTHERMALLY STABLE BY ELECTRON HEAT CONDUCTION

- VERY STEEP VOLTAGE DROP NEAR ANODE FROM LOCALLY HIGH HALL FIELD. SEE POTENTIAL CUT IN NEXT GRAPH. THIS WAS SEEN IN OUR TESTS UNDER SIMILAR CONDITIONS (SEE BELOW)
Two Dimensional MPD with Hall Effect

Current Lines

Max = 0.1 T
Min = 0.0 T
Inc = 0.002 T

Electron Temperature

Max = 34000 K
Min = 10000 K
Inc = 500 K

Ionization Fraction

Max = 1.0
Min = 0.0
Inc = 0.02

2-D MPD EQUATIONS

POT

13 May 91
Microscopic Instabilities in MPD Flows

- Microscopic plasma instabilities have been shown to be common in many plasma regimes, eg. fusion plasmas, ionospheric plasmas.
- In MPD thrusters, current represents a large source of free energy, which may drive instabilities.
- Modified Two Stream instability was chosen as a likely candidate for importance in MPD.

Modified Two Stream Instability

- Significant increases in heavy species temperature due to anomalous heating
- Significant increase in ionization fraction due to increased dissipation
- Increase in plasma resistivity but no macroscopic plasma instability
Conclusions

- Plasma can evolve to new equilibrium in presence of Modified Two Stream Instability, with increased ionization fraction and heavy species temperature.
- Microscopic plasma instabilities could lead to large variations in operating voltage and, therefore, efficiency.
- Plasma instabilities are important in modelling MPD flows.
- Experiments, both existing and, when required, new, should be used to ascertain what types of instabilities may be excited in MPD flows.

Electrothermal Stability Theory

- Unbounded plasma becomes statically unstable near full ionization. Conductivity = $T_e^{3/2}$, so regions of higher T_e tend to channel current, further raising T_e.
- Effect is masked at partial ionization by energy absorption in ionization process. Similarly, heat diffusion or electron-ion pair diffusion dampen it for small (less than ~2 - 4 cm) lengths.
- We coupled a standard stability analysis with a 1-D MPD model to predict conditions when
 (a) Instability would develop somewhere (usually at exit)
 (b) Growth rate would exceed some threshold
- Results show good agreement with onset trends versus
 (a) Length
 (b) Width
 (c) Mass flow rate (this deviation from I^2/r scaling was unexplained before)
SEPARATION OF 'ONSET' AND ANODE DEPLETION

- FROM OUR COOPERATIVE WORK WITH R&D ASSOCIATES (HEIMERDINGER, 1988)
- USING QUASI - 2D CHANNEL AND 4g/sec. ARGON
- PROBE AT = 2 mm FROM ANODE DETECTS LARGE ΔV_a AT = 30 KA (CLOSE TO THEORY PREDICTION), BUT PLASMA REMAINS "QUIET"
- AT 60 KA, LARGE, QUASI-PERIODIC VOLTAGE FLUCTUATIONS OCCUR
 - VERY CLEAR SEPARATION OF EFFECTS
Variation of the Anode Voltage Drop and the Voltage Hash as a function of the Thruster Current in the Fully Flared Channel for an Argon Mass Flow Rate of 4 g/s

EXIT PLANE SPECTROSCOPIC MEASUREMENTS

- During the same test series, D. Kilfoyle used a 1.26 m. spectroscope to measure line widths and line intensity ratios of argon II and I lines (H₂ used as a diagnostic additive).

- Data show high argon ion temperatures (higher than Tₑ in the anode region), which could imply the presence of micro-instabilities.

- Data also show strong anode depletion (at I = 60 ka), in agreement with ΔVₐ data.
ONSET AS PERFORMANCE LIMITER, PHENOMENA

- AT HIGH CURRENT/LOW MASS FLOW SEVERAL PHENOMENA OCCUR (NOT ALWAYS SIMULTANEOUSLY WHICH LIMIT I_0 RANGE.

<table>
<thead>
<tr>
<th>PHENOMENON</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) SHARP RISE IN UNSTABILITY</td>
<td>MOST COMMON DEFINITION, PLASMA INSTABILITY LOCALIZED DOWNSTREAM</td>
</tr>
<tr>
<td>(b) INCREASED WALL EROSION</td>
<td>CLOSELY ASSOCIATED TO (a) CURRENT CONCENTRATIONS</td>
</tr>
<tr>
<td>(c) DEVELOPMENT OF LARGE ANODE DROP</td>
<td>NOT ALWAYS PRESENT, ALLEVIATED BY ANODE GAS INJECTION</td>
</tr>
<tr>
<td>(d) TRANSITION $V_0 \rightarrow V = P$</td>
<td>PROBABLY UNRELATED, BUT HAS BEEN ASSOCIATED WITH ONSET</td>
</tr>
</tbody>
</table>

APPROXIMATE EMPIRICAL CORRELATION:

$$I^2 \propto m \propto K \propto L$$

I = CURRENT
m = FLOW RATE
M = MOLECULAR MASS
L = ACCELERATOR LENGTH
H = INTER-ELECTRODE DISTANCE
k = CONSTANT

ORIGINAL PAGE IS OF POOR QUALITY
<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>BASIC ASSUMPTIONS</th>
<th>PREDICTIONS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) EQUIPARTITION, CRITICAL IONIZ.</td>
<td>'ONSET' OCCURS WHEN</td>
<td>(\eta_{\text{FROZEN}} = 1/2)</td>
<td>PROVIDES ROUGH CORRELATION OF MOST DATA</td>
</tr>
<tr>
<td>VELOCITY</td>
<td></td>
<td>(1^2 = \frac{\lambda}{m} \sqrt{\frac{2eV_1}{m_1}} W)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((W = \text{CHANNEL DEPTH}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((H = \text{INTERELECTRODE DISTANCE}))</td>
<td></td>
</tr>
<tr>
<td>(b) ANODE DEPLETION</td>
<td>HALL AXIAL CURRENT ...</td>
<td>(\frac{l_1^2 m_1^2}{m^2} = \frac{945 \pi k (T_e + T_R)}{16 \alpha \mu_0^2 H^5})</td>
<td>APPROXIMATELY SAME EFFICIENCIES AND DATA</td>
</tr>
<tr>
<td></td>
<td>FORCES PLASMA AWAY FROM ANODE</td>
<td></td>
<td>PRESUMPTION IN THAT ANODE SHEATH WILL BREAK DOWN</td>
</tr>
<tr>
<td></td>
<td>'ONSET' WHEN</td>
<td>(\eta_{\text{ANODE}} = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) FULL IONIZATION</td>
<td>ONE OF SEVERAL ANOMALOUS EVENTS</td>
<td>(\eta_{\text{FROZEN}} = \text{F (GEOMETRY)})</td>
<td>A VARIATION ON (a)</td>
</tr>
<tr>
<td></td>
<td>OCCURS AS IONIZATION ENERGY SINK DISAPPEARS</td>
<td>(\frac{I_2^2 l_2}{m_2} = \frac{l_1^2 l_1}{m_1} \sqrt{\frac{2eV_1}{m_1}} W_2) (\sqrt{1 - \eta_{\text{FR}}})</td>
<td>PROVIDES MORE DETAIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W_2 = \text{DEPTH AT INLET})</td>
<td>STILL NO MECHANISM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A^* = W^* H^* = \text{THROAT AREA})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\tilde{u}e = \frac{w_2}{\tilde{u}{\text{FR}}})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\eta_{\text{FR}}) \text{ VELOCITY FOR MOMENTUM MAGNETIC FORCE}</td>
<td>ELEC. THERMAL INSTAB. PROVIDES MECHANISM FOR (c)</td>
</tr>
<tr>
<td>(d) INSTABILITIES</td>
<td>SEVERAL PROPOSED:</td>
<td>(\eta_{\text{INSTABILITY THRESHOLD}}) \text{ (DEPENDS ON TYPE)}</td>
<td>MICRO-INSTABILITIES MAY EXPLAIN HIGH (T_e)</td>
</tr>
<tr>
<td></td>
<td>- IONIZATION INSTAB.</td>
<td>(- \text{DOMINANT WAVELENGTH})</td>
<td>ALL VERIFIABLE BY DELAYED PROBING</td>
</tr>
<tr>
<td></td>
<td>- MICROINSTABILITIES OF TWO-STREAM TYPE</td>
<td>(- \text{FREQUENCIES})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STATIC ELECTROTHERMAL</td>
<td>(- \text{HEATING EFFECTS, ETC.})</td>
<td></td>
</tr>
</tbody>
</table>

I-12
GEOMETRY EFFECTS ON ONSET

- BASED ON 1-D, VARIABLE AREA MODEL WITH P NEGLECTED. "ONSET" ASSUMED WHEN

\[V = \frac{1}{2} m u^2 = m e V / m \]

- TWO CONTOURS:
 (a) CONSTANT AREA
 (b) CONV. - DIV. (SPACING CHOSEN FOR CONSTANT CURRENT DENSITY)

- LENGTH MEASURED BY MAGNETIC REYNOLDS NO. BASED ON ALFVEN CRITICAL SPEED:

\[R_{m} = \mu_{a} \sigma \cdot V_{A} \cdot l \]

\[V_{A} = \sqrt{\frac{2}{m} \frac{e V}{m}} \]

- TWO MEASURES OF "ONSET"

1) NORMALIZED \(I^2/m \) :

\[Y = U_{ref} \cdot V_{A} \]

\[U_{ref} = \left[\frac{1}{2} \mu_{a} \sigma A_{x} \right] \frac{I^2}{m} \]

2) NORMALIZED EXIT VELOCITY:

\[Z = \frac{U_{E}}{V_{A}} \]

- RESULTS SHOW SIGNIFICANT GAINS IN \(\eta_{FR} \) AND \(I_{p} \) BY CONTOURING

- BUT NO GAINS OF \(I^2/m \) - SHOWING LIMITATIONS OF \(I^2/m \) PARAMETER

- GAINS HIGHEST AT LARGE \(R_{m} \)

ONSET AT FULL IONIZATION - CONSEQUENCES

- PREBLE'S WORK ON ELECTROTERMAL INSTABILITY PREDICTS CORRECTLY SEVERAL TRENDS, INCLUDING DEVIATIONS FROM \(I^2/m \) RULE.

- ELECTROTERMAL INSTABILITY SEEN TO OCCUR AT \(\alpha \approx 0.9 \) ONLY. HOWEVER, 'FULL IONIZATION' IS NECESSARY FOR INSTABILITY, NOT SUFFICIENT.

(a) GROWTH MAY BE WEAK IN PASSAGE TIME
(b) IN SMALL CHANNELS OR AT LOW PRESSURES, DIFFUSIVE EFFECTS PROVIDE STABILITY

- THEORY STILL TOO CRUDE (LINEAR, CONSTANT BACKGROUND, NO ION DYNAMICS...)

HOWEVER, GIVEN ITS SUCCESS, IT IS INTERESTING TO EXPLORE CONSEQUENCES OF 'FULL IONIZATION' MODEL.
ANODE DEPLETION LIMIT INCREASES ONLY WEAKLY WITH LENGTH (R_{MA}). HENCE, IF R_{MA} IS INCREASED IN ORDER TO GAIN EFFICIENCY AND I_{P}, DEPLETION MAY HAPPEN BEFORE ONSET.

THIS WAS CLEARLY OBSERVED IN OUR OWN TESTS. ALSO SEEN BY KURIKI ET AL. (AIAA-81-0683) IN KIII THRUSTER. HERE, ΔV_{A} FIRST INCREASED GREATLY WITH CURRENT, THEN COLLAPSED AS ONSET FLUCTUATIONS OCCURRED.

THE GRAPH ALSO SHOWS A BAND OF PREDICTED DEPLETION NORMALIZED I^2/m	
PARAMETER (Y) FOR ARGON. FOR H_{2}, THRUSTERS MAY ENCOUNTER DEPLETION FIRST.

NOTICE THAT (PARTICULARLY FOR CONSTANT AREA), DEPLETION AND FULL IONIZATION HAPPEN (IN ARGON) AT ABOUT THE SAME TIME FOR THE IMPORTANT R_{MA} RANGE. THIS HAS BEEN NOTED REPEATEDLY, AND HAS BEEN A SOURCE OF CONFUSION.
SUMMARY ON SELF-FIELD MPD

- Efficient only at high power due to low voltage, large electrode losses.
- High power operation limited by "onset".
- Physics of onset not yet clear, but it appears to dictate ratio of frozen loss to kinetic energy. However, this ratio may be controlled by design.
- Anode depletion is separate limiter, especially for long channels. Should design for coincident onset and depletion (or find ways to reduce ΔV_{anode}).
- Life issues difficult, but progress is encouraging.
- Specific impulse appears sufficient if using H₂ or L₂.

APPLIED FIELD MPD - THE LOGICAL GROWTH PATH

- No technology for high Isp, compact thrusters in the 50 - 100 kW range.
- AF - MPD poorly understood, but has shown potential to fill this role. In addition, no apparent high power limit (may become SF at high power).
A PRIORI ARGUMENTS:

(a) INCREASED IMPEDANCE DUE TO $U_0 B_z$ VOLTAGE LESSEN IMPACT OF ELECTRODE ΔV's - SHOULD ALLOW FOR POWER OPERATION.

(b) PLASMA ROTATION REDUCES ELECTRODE DAMAGE BY ARCS OR OTHER FAULTS - MAY ALLOW POST-ONSET OPERATION.

(c) MAGNETIC CONFINEMENT SHOULD HELP PROTECT WALLS - REDUCE WALL LOSSES, LENGTHEN LIFE.

(d) MAGNETIC NOZZLE SHOULD ALLOW SOME FROZEN LOSS RECOVERY BY EXTERNAL EXPANSION.

THE CHALLENGES OF AF MPD

(a) ADDED OPERATIONAL COMPLEXITY. BUT SEE RECENT WORK (TAIWARA ET AL., ARAKAWA ET AL.) SHOWING POTENTIAL FOR SERIES LOOPS OR PERMANENT MAGNETS.

(b) INCREASED TESTING DIFFICULTIES (LONG MAGNETIZED PLUME). BUT LOW POWER OPERATION TO COUNTER.

(c) GREAT PHYSICAL COMPLEXITY THRUST - PRODUCING MECHANISMS STILL DEBATED. SPATIAL-TEMPORAL UNIFORMITY NOT GUARANTEED. REGIMES OF OPERATION UNCHARTED.
RECOMMENDATIONS

- Reproduce and verify selected applied field MPD experiments from early literature and/or from abroad.

- Support theory/modeling work on AF thrusters to exploit existing computational capabilities.

- Continue quasi-steady SF and AF testing to study detailed plasma mechanisms responsible for "onset" and other bulk effects.

- Use 100 - 500 kW steady state facilities for
 (a) studies of electrode life and thermal design for both, AF and SF thrusters.
 (b) performance mapping and system integration for AF thrusters.