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1 Progress Report

The major accomplishment during this contract period has been the incor-
poration of the multiblock derivative interface algorithm into the flux-split
Euler code developed here at MSU. The code can now be used to compute
flow on any multiblock configuration provided the block boundary surfaces
coincide. There is no need for any type of grid line or slope continuity at
the block boundaries. We do not permit the overlapping of blocks so that
all interpolation can be done on surfaces, which is a two- dimensional in-
terpolation problem. Since our Euler code is a cell-centered scheme, there
arose some unexpected problems as to how the phantom points should be up-
dated. This is mainly a problem with the second-order scheme where there
are two surrounding layers of phantom points that must be updated after
each time step. After trying several alternatives, it was decided that linear
extrapolation from the values on the block boundary worked best. These
problems did not arise with the MacCormack method that was used in our
earlier developmental work. One of our concerns in the earlier work with
this interface procedure was whether the updating at the boundary could
be done efficiently. The update procedure is an implicit algorithm and the
boundary values are computed at each time step using an ADI scheme. In
a three-dimensional test case, it was observed that the number of ADI it-
erations has practically no effect'on the numerical solution. Therefore, we
are using only one ADI iteration per time step. Thus, in terms of operation
count, the update procedure is competitive with any explicit procedure. It
should be noted that these conclusions are preliminary since we only recently
began computations on three- dimensional multiblock grids.

The following example is included to illustrate the type of results that
have been seen. The geometry is a simple three- dimensional axisymmetric
body with a spherical grid system. A supersonic flow is computed with a zero
angle of attack. Discontinuities in grid lines occurs when the grid is refined
near the leading and trailing edges. The contours appearing in the following
figure were plotted from a solution computed using, the derivative interface
procedure. As a check on the procedure, a solution was also computed by
extending the grid lines into the neighboring block and interpolating solution
values. There was no noticeable difference in the two solutions.

The presentation "Derivative Interface Conditions for Multiblock Grids"
made at the Third International Conference on Numerical Grid Generation in
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Figure 1: Interface procedured applied to a three-dimensional grid with grid
line discontinuity

Barcelona included our results as of June 1991. The paper which appeared in
the Proceedings was submitted earlier in the spring and was attached to our
last semiannual report. We have included with this report the paper entitled
"Linear Variational Methods and Adaptive Grids". The paper was recently
accepted for publication in Computers and Mathematics with Applications.
The manuscript was submitted over a year ago and contains work that was
done about two years ago. However, since there is now a renewed interest in
variational methods, the work is still timely.
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1 Introduction

The progression of larger and larger supercomputers has not eliminated
the need for adaptive grids in computational fluid dynamics. Instead, it
has brought demands for more detailed resolution in the flow field and the
solution of more complicated fluid flow problems. Regardless of the chosen
algorithm, the resolution of shock waves and boundary layers demands ex-
tremely close spacing of grid points. Shock waves can be especially difficult
to deal with because they appear in the interior of the computational region
and may be a transient phenomena.

The adaptive grids considered in this report will be structured grids
and will be constructed by moving existing grid points into regions where
solution variables have large derivatives. In recent years the term adaptive
grid has expanded to encompass such topics as local grid refinements and
fine grid overlays. These techniques can be used without having to deal with
problems of grid distortion, but they do require an additional level of data
structure and cannot be easily incorporated into an existing grid generation
/ flow solver package.

The redistribution of grid points in the construction of adaptive grids
can be done using either direct algebraic methods or iterative methods that
are derived from variational problems or elliptic boundary value problems.
Algebraic methods are the simplest and generally involve a spline fit of the
points based on some equidistribution principle. As with all algebraic meth-
ods, there is no way of insuring against grid folding (negative Jacobians),
especially if the redistribution is done in more than one coordinate direc-
tion. Iterative methods for constructing adaptive grids have now been used
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routinely for several years. The initial work on the variational based meth-
ods was done by Brackbill and Saltzman [3]. The foundations for the most
popular elliptic method were laid by Anderson and Steinbrenner [1] using
the system of elliptic partial differential equations developed by Thompson
et al [9]. Presently the equations of Anderson and Steinbrenner are most
widely used for three-dimensional problems since the Euler equations for the
variational method are very lengthy.

Comprehensive review articles on adaptive grids have been written by
Eiseman [5] and Thompson [8]. The elliptic grid generation equations of
Thompson are accepted as the best system for constructing arbitrary curvi-
linear grids. There is only one problem that may arise in implementing the
method. The elliptic equations which must be solved numerically are nonlin-
ear and iterative methods for solving the equations do not always converge.
This is particularly true in the case of adaptive grid construction where
there are large variations in grid spacing. The nonlinearity also implies that
numerical algorithms will only be locally convergent and, therefore, con-
vergence will only occur if the iterative sequence starts with a reasonable
estimate of the final grid. While none of these problems are insurmountable,
it has lead to an interest in grid generation methods based on the solution
of linear systems of algebraic equations. Linear algebraic equations may
be derived from the discretization of linear systems of partial differential
equations or from the direct discretization of certain variational problems.
Most recently work in this area has been reported by Castillo et al [4]. A
somewhat similar approach was followed by Kennon and Dulikravich [6].
The latter method was based on a discrete optimization problem while the
former considered a continuous variational problem. Depending on the dis-
cretization used in the variational problem, the methods may or may not
generate the same system of linear algebraic equations. A comparison of
grids generated by linear and nonlinear methods can be found in the reports
of Castillo et al and Mastin et al [7].

The objective of this report is to derive linear systems for grid gener-
ation which naturally tend to generate nonfolding grids. The key to the
method is to attempt to preserve the aspect ratios of the grid cells when
transforming between the physical and computational regions. Surprisingly,
this fact was noted many years ago by Barfield [2]. Only two-dimensional
grids were considered, in which case the appropriate generating equations
can be derived from properties of conformal mappings. The same equa-
tions will be derived here in a slightly different way which leads to grid
generating equations in three dimensions and also equations for construct-



ing two and three-dimensional adaptive grids. Examples have demonstrated
that nonfolding grids can be constructed for many nonconvex regions where
methods that use smoothing formulas derived from Laplace's equation fail.
The adaptive grids constructed using linear methods are similar to those
constructed by nonlinear methods and are more orthogonal in some cases.
However, the methods which are presented here should not be considered as
a replacement for existing elliptic and variational schemes. There were cases
where they failed to generate a satisfactory grid while the existing nonlinear
schemes were successful. On the other hand, they are still attractive because
all the traditional iterative schemes to solve the linear systems of algebraic
equations will always converge regardless of the initial grid coordinates.

2 Two-Dimensional Grid Generation

The variations! approach will be used to generate the difference equa-
tions. This leads directly to the generalization to three dimensions and the
equations for adaptive grids. Since one of the problems in the construction
of adaptive grids is skewness, the development will begin with the variational
principle of conformal mappings.

The adaptive grid will be constructed from the mappings in Figure 1.
An arbitrary bounded simply-connected region R in the xy-plane can be
conformally mapped onto a rectangular region with four given points of R
mapping to the vertices of the rectangle. If one of the mapping functions
is scaled, the resulting transformation maps R onto a square S. The aspect
ratio of the rectangular region is a conformal invariant of R called its module
and denoted by M. The transformation from the square onto R minimizes
the following integral

r 1

(1)

The conformal mapping also satisfies boundary orthogonality constraints
which will not be considered in this development. One-dimensional stretch-
ing transformations can be composed with conformal mappings without de-
stroying the one-to-one and orthogonality properties of the mapping. Thus,
one-dimensional transformations defined by the equations

M = a(o, o < e < i
v = 6(77), 0 < T/ < 1



V

A
•n
A

Figure 1: Composite Mappings for a Two-Dimensional Grid

will be included in the mapping from the square onto the region R. The
resulting transformation minimizes the integral

(2)

One of the objectives of an adaptive grid is to equidistribute some quantity
over the total region. The transformations a and b can be chosen from an
equidistribution property. Suppose that /(£ ) is a positive function defined
for 0 < £ < 1. A one-dimensional mapping will equidistribute the function
/ on the unit interval if

where c is a constant to be determined. The equation can also be written
as

a'(0 =

Integrating from f = 0 to f = 1 gives
/CO'

(3)

1 =



or

c =

Therefore, an equidistribution of /(£) in the ^i/-plane can be accomplished
from the one-dimensional stretching transformation given by the above dif-
ferential equation or explicitly as

0(0 = C f
Jo

rdr.
J(r)

Since the mapping from the /j^-plane to the xy-plane is generated from
properties of conformal mappings, the resulting grid will also locally exhibit
an approximate equidistribution property. An equidistribution in the other
coordinate direction would be done by choosing the function 6(77) in a similar
fashion. If orthogonality is essential, then the adaptivity functions are re-
stricted to one-dimension. However, since the orthogonality condition is not
really our aim, two-dimensional equidistribution functions will be allowed
so that the integral in (2) can be generalized. Two functions /(£, 77) and
#(£,77) will be considered with / controlling adaptation in the ^-direction
and g controlling adaptation in the rj-direction. It will be assumed that
these functions have been normalized along grid lines so that the constant
in (3) is at least approximately c = 1. The adaptive grid is constructed by
minimizing the integral

Two things are still needed to make this an easily solvable problem. The
boundary correspondence must be given. Equidistribution of a weight func-
tion along a curve is a simple algebraic procedure and it will be assumed
that this has been done before the interior grid points are to be calculated.
No attempt will be made to duplicate the boundary correspondence of the
conformal mapping since that would lead to a nonlinear problem. The quan-
tity M must also be calculated. Computational experience has shown that
only a crude approximation is necessary. If this grid generation scheme is
to be an iterative scheme, the initial grid may be a_n algebraic grid on R.
In that case one could compute an average aspect ratio of all cells of the
algebraic grid. Using the mapping notation, we would compute M as



where

y =
is any mapping of the square region onto the region R. A simpler procedure
which avoids the need for an initial algebraic grid is to define M as the ratio
of the average lengths of opposite sides of R.

A discretization of the integral (4) leads to a least-squares problem which
in turn yields linear equations for the coordinates x and y. Since both
equations are the same, we let r = (z,y), i and j denote the grid point
indices, and write the system as

j_ i (f-j_ i - rv,y ) = 0

where

.
••±u

Since P and Q are positive, this linear system of equations for the grid
points (xij,yi,j) is diagonally dominant and can be solved using any direct
of iterative method.

It should be noted that this grid adaptation method causes grid cluster-
ing by controlling the cell aspect ratio. The same control function cannot
be used to cluster simultaneously in the £ and r\ directions because if / = g,
the integral (4) reduces to integral (1). Of course, grid adaptation could be
achieved by introducing a weight function in (1), that is, replace dp,di> by
w(ft, v) dfj, dv, but then the method would loose much of the orthogonality
inherent in its development.

3 Three-Dimensional Grid Generation

The basic concept in the two-dimensional development is preservation of
cell aspect ratios in conformal mappings. Although conformal mappings do
not extend to three dimensions, this basic concept can be formulated. The
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Figure 2: Composite Mappings for a Three-Dimensional Grid

initial assumption is that given a three-dimensional region R, a one-to-one
mapping of a rectangular region Q onto R can be found which minimizes
the integral

/ / / l l^ull2+• ll^vll2 + ||J\i;||2rfudt;dt«
J J JQ

provided the length, L, width, W, and height, H, of Q are properly defined
and suitable boundary conditions are imposed. Although this may seem a
plausible statement, no results of this type have been found in the literature
and it is doubtful that it is true for all regions. Thus the three-dimensional
generalization begins on a less firm footing and the value of the final grid
generation algorithm must be judged by its ability to generate nonfolding
grids of practical interest.

A sequence of mappings will be examined as illustrated in Figure 2.'The
first step will be the mapping of the rectangular region Q onto a unit cube,
C. This can be done by scaling so that

u = Lp, v = Wvt w = Hu.

The integral (5) becomes

L f f i L W
(5)



In view of our basic assumption it is now evident that the mapping of the
unit cube onto an arbitrary region should depend on the dimensions of the
region. Here we have three parameters to approximate instead of one as in
integral (1). Proceeding as in two dimensions, if an initial grid is given on
R from say an algebraic mapping of the cube, then the following ratios can
be computed.

Once again the geometric ratios of the region R are approximated by com-
puting the average ratios of all the grid cells in R. Grid adaptivity can also
be included by first considering one-dimensional stretching and then gen-
eralizing the control functions so that the degree of stretching is allowed
to vary between grid lines. If the stretching transformations map the unit
cube in fTjC-space to the unit cube in uvu -space and the functions to be
approximately equidistributed along the £, 77, and C grid lines are /, g, and
h, then the integral (6) to be minimized becomes

[ f [ f 2 g
III MI— TV + M-y-—- TV,

J J Jc gh ' fiv
Three-dimensional adaptivity can also be achieved by weighting the differ-
ential as described in the previous section. A direct discretization of the
variational problem leads to the foDowing diagonally dominant linear sys-
tem.

ii rij,*) + #,j,;k_i(n,j,fc-i — nj,fc) = 0

where

R =
AC/5
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4 Conclusions

The objective of this report has been to present a reliable linear system
for grid generation in two and three dimensions. The method is robust in
the sense that convergence is guaranteed but is not as reliable as other non-
linear elliptic methods in generating nonfolding grids. The construction of
nonfolding grids depends on having reasonable approximations of cell aspect
ratios and an appropriate distribution of grid points on the boundary of the
region. Some guidelines have been included on approximating the aspect
ratios, but we can offer little help on setting up the boundary grid other
than to say that in two dimensions the boundary correspondence should be
close to that generated by a conformal mapping.

It has been assumed that the functions which control the grid distribu-
tion depend only on the computational variables, £,r?, and £, and not on the
physical variables, x,y, and z. Whether this is actually the case depends
on how the grid is constructed. In a dynamic adaptive procedure where the
grid is constructed in the process of solving a fluid flow problem, the grid
is usually updated at fixed iteration counts using the current value of the
control function. Since the control function is not being updated during the
iteration of the grid equations, the grid construction is a linear procedure.
However, in the case of a static adaptive procedure where a trial solution
is computed and used to construct an adaptive grid, the control functions
may be recomputed at every step,of the adaptive grid iteration based on the
current location of the grid points. This latter case gives rise to a nonlin-
ear system and convergence cannot be guaranteed regardless of the elliptic
system used for grid generation.
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