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ABSTRACT 

Our concern is with the flow around an infimte cylinder, which at a certain instant is 

impulsively started to spin. The growth of vortices in the resulting boundary layer occurring 

outside the cylinder is investigated. This layer is essentially a Rayleigh layer which grows 

with time, so the mechanism involved is similar to that studied in Hall (1983). Vortices 

with wavenumber comparable to the layer thickness are shown to be described by partial 

differential equations. It is found necessary to solve the unsteady partial differential equations 

that govern the system numerically. We assume that the Rayleigh layer is thin so particles 

are confined to move in a path with radius of curvature the same as the cylinder. The Gortler 

number is a function of time, so we consider the time scale which produces an order one 

Gortler number. We consider the right hand branch calculation by letting the time tend to 

infinity, also inviscid Gortler modes are considered. 
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tract No NASl-18605 whIle the author was m reSIdence at the Institute for Computer Applications m 
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§1 Introduction 

The problem we are considering, is that of an infinite cylinder held fixed, until at a 

certain instant when a torsional impulsive velocity is imparted to the cylinder, without 

loss of generality this time may be considered to be t = O. The cylinder is immersed 

in a fluid of kinematic viscosity v and density p, and the cylinder has radius a. The 

torsional velocity imparted to the cylinder is n. It is known that a layer of thickness 
1 

a(vt)! occurs at the cylinder, this is a Rayleigh layer which was shown to occur on 

a infinite flat plate by Stokes (1855) and later by Rayleigh (1911). We consider small 

time scales so that the resulting layer is thin and thus the particles contained in this 

layer can be considered to move in paths with the same radius of curvature as the 

cylinder. We may define the Gortler number as 

(1.1) 

in the same way as in Seminara & Hall (1976) and Hall (1984). These papers considered 
1 1 

centrifugal instabilities in Stokes layers, so (vtp is replaced by (v/w)2, where w is the 

frequency of the oscillations. The Reynolds number is defined here by 

na2 

Re = --. 
v 

(1.2) 

The ensuing problem is similar initially to Hall (1983), who considered a spatially 

growing boundary layer occurring on a concave wall. We wish to investigate vortices 

similar to those round to occur by Taylor (1923) and Gortler (1940). In Hall (1982 

a,b) a self-consistent asymptotic description of the growth of short wavelength Gortler 

vortices was given. In particular in Hall (1982 a), it was shown that the equations gov­

erning the centrifugal instabilities are partial differential and not ordinary differential 

equations as discussed by Gortler (1940) and subsequent authors. In Hall (1982 b) the 

nonlinear development of the vortices was considered. In this paper we concentrate on 

disturbances with wavelengths initially of order one, but will consider the right hand 

branch in terms of local wavelength and local Gortler number. 
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We may now apply the usual non-dimensionalisation and non-dimensionalise time 

with respect to a2 lv, thus the Gortler number in (1.1) may be written in terms of the 

Reynolds number R e , and the non-dimensional time T as 

(1.3) 

To invoke the mechanism as described in Seminara & Hall (1976), it is necessary 
_1 

to regard G as order one, and this can be seen to occur if T rv Re 3, and since we 

consider Re » 1, this is a small time scale. We may define a similarity variable 7], and 

thus it is possible to solve the basic flow equations in the resulting layer, note that we 
2 

consider a radial scaling of R; 3" so that 

R-a e=-l =0(1), 
2T2 

(1.4) 

where R is a dimensional radial variable. The essential point here is that the equations 

governing the motion in this layer involve temporal derivatives as well as radial ones, 

this is equivalent to ensuring x-derivatives are retained in spatial problems, a fact 

that seems to have been first noted by Smith (1955). Smith (1955) retained some of 

the terms associated with the non-parallelism of the Gortler problem. For Tollmien­

Schlichting waves Bouthier (1973) and Gaster (1974) incorporated extra terms to ap­

preciate the effect of boundary layer growth, which greatly improved the comparison 

between experimental and theoretical results. Although it was noted by Gaster (19,74) 

that the Bouthier- Gaster work just amounts to a successive approximation technique, 

Smith (1979) attempts to remedy this and does so effectively. Here we consider an 

unsteady instability, this is included in Kerczek & Davis (1974) and subsequently in 

Kerczek & Davis (1976) and Kerczek (1982), where in these papers they consider pe­

riodic flow. The description of the flow in a boundary layer growing with time on a 

semi-infinite flat plate was attempted in Otto (1992 b), employing a triple deck struc­

ture as in Smith (1979 a), so it is known theoretically that vortices occur in a time 

dependent growing boundary layer. 

Here we concentrate on disturbances, of order one wavelengths as mentioned pre­

viously as these are most likely to be of practical importance. The development of 
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the vortices is caused by the inclusion of a small hump. This hump is considered to 

be the same size as the boundary layer, this technique was employed in Denier, Hall, 

& Seddougui (1991) in the spatially varying Gortler problem. Various forms of this 

hump are chosen and give rise to different regions of vortex activity, subsequently re­

ferred to as vortex wedges. In this paper we do not have the freedom of Denier, Hall 

& Seddougui (1991) to introduce the disturbance at a certain spatial position as we 

have said that the impulsive motion starts at time equals zero, and the hump must be 

present for all time. 

The identification of the time station 'i', when a particular vortex wavenumber is 

neutral incurs the same problem as in non-parallel spatial calculations, refer to Hall 

(1983), Gaster (1974) and Smith (1979 a). In this paper the flow quantity chosen to 

be representative of the vortex size is 

00 

E= U dY, J -2 

o 

and thus the neutral position is defined by the position where (J', defined by 

becomes zero. 

_IdE 
(J' = E dT' 

(1.5) 

(1.6) 

Thus at this time station we may calculate the local wavenumber at' and the local 

Gortler number GT. The values of the equivalent pair in Denier, Hall, & Seddougui 

(1991) are found t.o depend on the initial form of the disturbance. The initial form of 

the disturbance is a function of the hump at the wall. 

We now go to investigate inviscid Gortler modes, where we have at' '" 1 and 

Gt' ~ 1 described in Denier, Hall, & Seddougui (1991). We also consider the right hand 

branch problem such that for at' ~ 1, we have Gt' rv a~, as investigated in Hall (1982 

a). In this problem we have constant curvature, thus the right hand branch cannot be 

encountered by letting K, rv X! as in Hall (1982 a). In order to investigate the right 
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hand branch it is found necessary to consider very small initial wavelengths k at a 

time T such that, 

with T~1. (1.7) 

We also consider matching between the inviscid solutions and right hand branch solu­

tions as in Denier, Hall & Seddougui (1991). 

The approach adopted in the remainder of this paper is as follows; in section 2 we 

derive the linear 0(1) wavenumber regime problem, in section 3 the inviscid Gortler 

problem is tackled, section 4 contains details of the right hand branch calculatiqns, 

section 5 includes description of the numerical techniques involved in the solution 

of the equations derived in sections 3 and 4. Finally section 6 contains results and 

discussions including comments on matching between the solutions of section 4 and 

section 5, and a discussion of possible further developments to take account of fully 

nonlinear right hand branch calculations. A discussion of extension to the problem to 

further geometries is also included. 
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§2 Formulation of linear order one problem 

We non-dimensionalise the velocity field with respect to an, and the pressure 

terms with respect to pa2 n2. The induced motion is taken to be independent of 8, ,the 

coordinate system employed is that of cylindrical polars with components (r, 8, z), and 

corresponding velocity components (u, v, w), the Navier-Stokes equations then become, 

1 8U 8U 8U V 2 8P 1 (( 8
2 

8
2

) 1 8 1 ) --+U-+W---=--+- --+- +---- U, (2.1a) 
Re at 8r 8z r 8r Re 8r2 8z2 r 8r r2 , 

(2.1b) 

1 8W 8W 8W 8P 1 (( 8
2 

8
2

) 1 8) 
Re at + U 8r + W 8z = - 8z + Re 8r2 + 8z2 + ;: 8r W, (2.1c) 

8U + U + 8W =0. 
8r r 8z 

(2.1d) 

We now introduce an axi-symmetric hump at the cylinder, defined by r = 1 + 6 f (z) 

. Following the arguments in the introduction, it is found necessary to look at a time 
_i 

scaling T '" Re 3 so that the Gortler number is order one, and in this section it will be 

taken to be one with no loss of generality. Thus we define boundary layer variables, TJ 

and Z given by 
_1 

z = Re 3 Z, 

and a time boundary layer variable T, defined by 

_i 
T = Re 3 T , 

(2.2a) 

(2.2b) 

To determine the basic flow we assume it to be independent of Z and a function of e, 
a similarity variable given by 

TJ e=-l' 
2T2 

The basic flow is found to be governed by 

5 

(2.3) 

(2.4a) 



with boundary conditions 

v=o as e --+ 00, 

v=l at e = 0, 

The solution of (2.4) is the error function, given by 

We now introduce a disturbance so that the flow field is now given by 

1 1 2 

U = (0, v, O,p) + <5(R;3U, ii, R;3W, R;3p) + ... , 

(2.4b) 

(2.4c) 

(2.5) 

(2.6) 

where the quantities with tildes are functions of 'T}, Z and T, and, as previously stated 

independent of B. We take <5 to be a small vanishing parameter, so that we are in a 

linear regime, with this assumption the governing equations are found to be, 

(2.7a) 

(2.7b) 

(2.7d) 

with boundary conditions given by 

as 'T} --+ 00, (2.7e) 

so that the disturbance is confined to the Rayleigh layer, 

- - 8v a u=v=-= 
8'T} 

at 17 = feZ). (2.7/) 

Here (2.7 f) represents the no-slip boundary conditions at the hump on the cylinder, 

which is chosen to be scaled with the boundary layer thickness multiplied by the dis­

turbance size 8. Note that since we looking close to the cylinder the terms proportional 
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to secondary radial corrections are neglected, such as 1/r :r' Let us now apply the 

Fourier transform to the disturbance quantities, thus the transform U of u is defined 

by 
00 

U = _1_ J ueikZdZ. 
V2i 

-00 

Thus the system (2.7) now becomes 

oU _ - oft (02 2) ---2vV=--+ --k U 
~ ~ ~2 ' 

oW . - ( 0
2 2)--=-zkP+ --k W, 

OT 07]2 

with boundary conditions of 

oU -
-+ikW=O, 
07] 

as 7] --+ 00, 

U=W=O, at 7] = O. 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2:ge) 

(2.91) 

where F is the Fourier transform of the hump fez). Note that is the absence of the 

hump there would be no vortex mechanism. Now by elementary manipulation, we 

may eliminate Wand ft, to obtain the coupled partial differential system, 

( 
02 2 0 ) ( 0

2 2) - 2----k -- ---k U=2k vV, 
07]2 OT 07]2 

(2.10a) 

(2.10b) 

this system is the Gortler equations for a vortex with temporal growth, with Gortler 

number equal to one. It is now noted that there will be a discontinuity in the dis­

turbance flow field due to the impulsive start, so it is necessary to solve the problem 

asymptotically for small T. Since the solution of (2.10) necessitates a numerical ap­

proach, this asymptotic solution may be used as an initial condition. It can be seen 
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from (2.10 b) that V(O,r) tv r-~, U(O,r) tv ri for r ~ 1 following this scaling we 

seek a solution of the form 

(2.11a) 

(2.11b) 

where e is the similarity variable defined by (2.3), it may be shown that Voce) satisfies 

(2.12a) 

with boundary conditions 

Vo(O) = 2FJ) and Vo(oo) = 0, (2.12b, c) 

where F(k) is the Fourier transform of fez), the form of the hump. The solution of 

(2.12) is given by 

v;- - 2F(k) -e 
0- Vie , (2.13) 

Note that we take the radial component Uo to be zero for small r, as it is Q( r2) smaller 

than Yo. The equations may now be solved numerically, the solution is discussed in 

section 5. Note that since this system is linear F(k) may be taken to be unity, this 

corresponds to a 6'-function shaped hump, so is relevant to a localised imperfection on 

the surface of the cylinder. 

§3 The inviscid limit of the Gortler problem 

In Denier, Hall & Seddougui (1991) the inviscid Gortler problem was discussed, 

it corresponds to a large Gertler number and order one wavenumbers. The temporal 

inviscid Gertler problem is virtually identical to the inviscid problem set as an exercise 

by Drazin & Reid (1979) and solved by Floryan (1986). Thus we have the governing 

equations (2.10) with a Gertler number other than one, taken to be G 

( 
82 2 8 ) ( 8

2 
2) - - 2 _ ---k -- ---k U=2Gk vV, 

81]2 8r 81]2 (3.la) 
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(3.1b) 

We now consider a solution of (3.1) in the inviscid regime, that is G ~ 1 with k = 0(1). 

It may be shown that the growth rate is proportional to G~ following Denier, Hall & 

Seddougui (1991). Thus the disturbance in this regime takes the form 

(U, V) = E(U, G-! V), (3.2a) 

where 

(3.2b) 

This form of the disturbance may be substituted into (3.1), and the two equations can 

be combined to produce, 

(3.3) 

In Denier, Hall & Seddougui (1991) the equivalent equation has a closed form of 

solution. Unfortunately (3.3) does not, so thus must be solved numerically. The 

equation (3.3) was solved using a fourth order Runge-Kutta scheme. The growth rate 

is plotted against k in figure 1. It is interesting to look at the solution of (3.3) as k 

increases to infinity, thus effectively encountering the right hand branch. We anticipate 
1 

that the growth rate tends to a constant Pi, so that we expand the growth rate as 

(3.4), 

the size of the second order term is found from the size of the layer found to occur 

adajacent to 'r/ = 0, from elementary observations of the numerical results. 

Thus we introduce a boundary layer variable x, given by 

(3.5) 

In this layer it is known that the basic flow v tends to 

(S.6) 
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where>. = -vl1 ll1=o = ,Jrr. Expand the disturbance U as 

(3.7) 

at leading order we obtain 

-{3oUo + 2>.Uo = o. (3.8) 

This is a compatibility condition, so for non-trivial solutions we require {30 = 2>', at 

next order we obtain 

~~o _ (>. ( X + ~\)) Uo = O .. (3.9) 

For decaying solutions as X -+ 00, the solution of (3.9) is given by 

(3.10) 

To solve the boundary condition at X = 0 we require that 

Ai(~) =0, 
{30>' a 

(3.11) 

thus we can find the second order growth rate {31 in terms of the eigenvalues of the 

Airy function. Notice that this function has many zeros on the negative real axis, we 

are interested in the highest value of the growth rate, that is the first eigenvalue. Thus 

as k -+ 00, we have 
. In\' 3.372 5 2 

{3 -+ v2>' - -->.ak-a + ... 
3! 

(3.12) 

which we compare with the right hand branch growth rate in section 4, this result is 

also included in figure 1, note this agreement is reasonable, but it should be noted that 

k-i term does not tend to zero very quickly. Also included in figure 1 is the righthand 

growth rate value, and it can be seen that the solid curve is tending to this value. 

§4 Right hand branch calculation 

We consider the right hand branch where k is large, and large Gortler number, 

G as introduced in section 3. Neutral vortices in this regime were described by Hall 

(1982 a). In the neighbourhood of the neutral position, temporally amplified modes 
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with growth rate O(k2), are found to occur. In this regime, we know for neutral modes 

G '" k4
, so we write 

t - 1 
k = A G"4, (4.1) 

We note that the vortex activity is likely to be concentrated where the Rayleigh cri­

terion is most violated, for the problem considered here this occurs at the wall, which 

is the same as the Taylor problem, one of the problems considered by Hall (1982 a). 

We consider a disturbance proportional to 

(
iZ 1 it ) E = exp -; + €2 /30 ( <jJ) + €/3t( <jJ) + ... d<jJ , (4.2) 

where 1/€ = k, and thus G may be expanded as 

00 

G = L 9n€-4+n. (4.3) 
n=O 

Thus the governing equations become 

(4.4a) 

( 4.4b) 

Here we consider non-neutral solutions, thus /30 is non-zero it is possible to derive 

a compatibility relation, so in (4.4) we now have 

(4.5) 

We introduce a layer of thickness At-~G-k, that is k-~. So substituting (4.5) into 

(4.4) in this layer, located at the cylinder, we obtain 

( A t
2 + /3) A t

2 
Uo = 2vo, 

(A t
2 + /3) Vo = AUOA t

2 

(4.6a) 

(4.6b) 

where we have assumed for TJ ~ 1, v -+ 1- ATJ + .... Thus combining (4.6 a) and (4.6 

b) we obtain, 

(4.7) 
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Thus as ,.\ t -t 0, the growth rate f3 tends to v'2X, which agrees with the inviscid 

problem as k -t 00. Note that we also have an order one cut off point where the 

growth rate is zero given by 

(4.8) 

Thus it is now possible to continue in the same manner as Hall (1982 a) and derive 

the form of the neutral modes, this analysis is not included as the conversion to this 

case is trivial and has the same conclusions. Note that in Denier, Hall & Seddougui 

(1991) they found that the position of the vortex activity varies with ,.\ t, we do not 

have that here because our growth rate is temporal and associated with a j aT, whereas 

in Denier, Hall & Seddougui (1991) the growth rate is associated with uajax. They 

also found as ,.\ t -t 0, that there is a singularity in the growth rate and thus there is 

an intermediate Gt wavenumber regime required to match with the inviscid problem 

but that does not occur here, as we have direct correlation between large-k inviscid 

growth rate and small-k right hand branch growth rate. 

§5 The numerical work 

Now let us discuss the numerical scheme employed to integrate the inhomogeneous 

system for fj and V. The scheme is based ona finite difference scheme in the 7J-direction 

together with an Euler step in T. Thus for example (2.10 b) becomes 

(5.1) 

where i denotes grid position in the 1]-direction, whilst ± denotes the function evaluated 

at T + D..T and T respectively. Furthermore hand D..T are the step lengths in the 1] 

and T directions respectively. If the disturbance velocity field is known at time T, then 

the tridiagonal system associated with (2.1) can be solved to give V at time T + D..T, 

a similar discretization of (2.10 a) then produces a pentadiagonal system for tJ, this 

system can be solved for tJ at time T + D..T; this procedure can then be repeated to 

march forward in time. This scheme is fully implicit so is stable for D..T = O(h) rather 

than D..T = O(h2) which would be the case with an explicit scheme. 
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After some grid checks we found that 300 steps in "l, with infinity "l = 20 was 

sufficient to present the given results to sufficient accuracy. The value of AT used 

to calculate the results given, was AT = 0.001. The initial value of T where the 

calculations were begun was varied until it was sufficient small to calculate fj and V 
with sufficient accuracy, the value used was AT = 0.01. 

As an indication of vortex growth, the energy was computed, defined by 

(5.2) 

as mentioned in the introduction and then the growth rate f3 was calculated, defined 

by 

(5.3) 

For all our calculations f3 was found initially to be negative so at sufficient value of 

time the flow is stable. At a later time, say TO, we found that f3 becomes positive until 

T1, where f3 again becomes negative. Thus there is a finite time interval where the 

basic unsteady boundary layer is unstable. At T = TO and T = T1, the instantaneous 

wavenumber kTt can be plotted against the instantaneous Gortler number GT! to 

generate the neutral curve for spin-up, this is shown in figure 2, for G = 1. 

We conclude that spin-up is instantaneously unstable for small time interval, 
_4 

'" Re 3; during this time turbulent flow will almost certainly be set up so that stable 

rigid body rotation may never be achieved in the practical situation. Furthermore 

we note that the induced velocity for any shaped bump can be found by numerical 

integration of the transformed velocity field. Several different humps were tried, and 

the results were found to be quantitatively similar, so we only include the plots for 

the humps included in Denier, Hall & Seddougui (1991). In the graphs the ordinate is 

the z-axis and the abscissa represents the time axis. Figure 3, represents the contours 

of maximum V component for the hump 7rt /4e- z2 /16, and figure 4 the contours.for 

7r~ zj32e-Z2 /16. Note these are basically the symmetric and anti-symmetric cases. 

The region of vortex activity is basically the same for any form of hump, even step 

functions. 
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§6 Conclusion 

We have shown for the spin-up problem, that G6rtler vortices may occur when 

forced by an axi-symmetric hump at a cylinder started to move impulsively, also that 

the shape of the hump does not effect the amplitude of the vortices found to evolve, 

or greatly alter the time of the onset of the instability. 

We note that the growth rate, for an order one initial wavelength has two ze:ros, 

namely T = TO and T = T1, thus between TO and T1, f3 the growth rate is positive and 

during this finite time interval spin up flow is unstable. The neutral curve is plotted 

for the humps, notice it is independent of hump shape as it is done before the Fourier 

inversion. We also produce figures showing vortex growth for each hump considered, 

the plots are of time against the maximum value of V for a given z, this quantity is 

taken to be representative of the vortex amplitude. Note that to graphical accuracy 

the wavelength of the vortices obtained corresponds to the critical wavelength from 

the relevant neutral curve. 

In section 3, we described the inviscid G6rtler modes, which we found to have 

a growth rate of .j2Xat, as k --+ 00, in section 4 the growth rate of the right hand 

branch in the limit k --+ 0, was found to tend to a t .j2X, thus we have matching of 

the growth rates, there is therefore no further structure brought on by a singularity in 

the growth rate, as was found to occur in Denier, Hall, & Seddougui (1991). 

In section 4 we did not include the description of neutral vortices but briefly we 

see that the first order disturbance term satisfies, 

82 Vo (J2 
----Vo-aVo=O 
882 4 ' 

(6.1) 

where 

(6.2a) 

and 

where a= 
+ + ! 

(-4 (Vo.; + VO!)) 4 

VOl VOl 
(6.2b, c) 

14 



where the superscript + denotes evaluation at 7]+, the position of vortex activity, in 

this case 7]+ equals zero. Thus Vo is given by a parabolic cylinder function, ensuring 

the required decay as X ~ 00, if a = -~ - m, thus we have 

1 
T2 

go = - v,+v,+ 
00 01 

gl = 0 
3a2 

g2 = - 2V,+V,+ ' 
00 01 

(6.3) 

note the terms vot are the coefficients of the Taylor series of the basic flow evaluated 

in a layer of thickness k-t, situated at 7]+. 

It is also possible to extend the small wavelength analysis to a fully non-linear 

calculation, performing a similar calculation to Hall & Lakin (1988). 

It should be also noted that we may extend this analysis to further geometries, 

the first obvious extension would be to the case involving a sphere, a brief outline of 

the method involved follows. Firstly it is necessary to invoke slightly different scaling 

for a sphere involved in spin-up about an axis of symmetry, the scaling are now 

W'" W, u, v'" aW2 lv, r '" a, (6.4) 

These scaling are the same as those employed in the torsional case of Otto (1992 a), 

where w the frequency is now replaced with v I a2 Thus the governing equations become 

au 2 (au v au v2) w2 ap (2 2u 2 a . ) -+R u-+---- -- = --+ V' u--- . -(vsm(}), (6.5a) at e ar r a(} r r ar r2 r2 sm () a(} 

_aw_ + R2 (u_aw_ + ~_aw_ + _uw_ + _vw_ cot ()) = (V'2w _ __ w--;::-_) at e ar r a(} r r r2 sin2 () , 
(6.5c) 

1a(2 1 a(.) 2"-a r u) + -.-(} a(} vsm(} = 0, 
r r rsm 

(6.5d) 

where, 

V' = -- r - + - sm - . 21a(2a) 1 a(.(}a) r2 ar ar r2 sin () a(} a(} 
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Note that we have assumed that the flow is independent of the azimuthal coordinate 

</>, as was done in the torsional case of Otto (1992 a), this also corresponds to assuming 

the flow in the cylinderical case is independent of (). A Reynolds number has also been 

introduced, where this is given by W a/ v. 

From similar arguments to those employed in the torsional case discussed in Otto 

(1992 a), the onset of a vortex stability is most likely to occur at the equator, thus we 

regard the basic velocity in this area. The derivation of the basic flow was attempted 

in Benton (1965), and he showed the basic flow components to be given by, 

iii f'V sin () f(7', t), (6.6a) 

V f'V cos () sin ()g( 7', t). (6.6b) 

Note in the region of 7r /2 we introduce a boundary layer variable 0 ~ 1, and the basic 

flow quantities expand as 

iii f'V f(7', t) + 0(02
) ••• 

U f'V 0(0) + ... 

The Gortler number is given by 

(6.7a) 

(6.7b) 

(6.8) 

and so in a similar manner to the cylinder problem, we employ a time scaling so that 

the Gortler number remains of order one, thus we introduce 

_1 

7' = 1 + Re 3"" (6.9) 

Now in the region of the equator of the sphere the basic flow is found to be given 

by an error function, we perturb this basic state by the quantity 

(6.10) 

As thus we arrive at the governing equations 

(6.l1a) 
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(6.11b) 

(6.11c) 

(6.11d) 

Thus note if a Fourier transform is now applied to the these equations we arrive at the 

equations (2.9), with v replaced by w. Therefore we have shown that a sphere involved 

in spin-up is locally unstable to the same vortex structure as that found at a cylinder 

in the same situation. Although it should be noted that as in the torsional case of 

Otto (1992 a), difficulties may be experienced actually at the equator, so extension of 

the problem into the complex 8-plane may be necessary. 
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Figure 1 Inviscid growth rate curve 
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Figure 1: Inviscid growth rate curve, including asymptotic inviscid growth rate 

and the righthand branch growth rate value. 
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Figure 2 The neutral curve 
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Figure 2: Neutral curve of local Gortler number GT against local wavenumber 

aT, for a form of hump scaled on boundary layer thickness. 
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Figure 3: Contours of the maximum of the V component of the vortex evolving 

with time, for a symmetric hump. 
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