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Summary

An analytical method has been developed to determine gear-
tooth surface coordinates of face-milled spiral bevel gears. The
method uses the basic gear design parameters in conjunction
with the kinematical aspects of spiral bevel gear manufacturing
machinery. A computer program entitled ‘‘SURFACE’’ was
developed to calculate the surface coordinates and provide
three-dimensional model data that can be used for finite
element analysis. Development of the modeling method and
an example case are presented in this report. This method of
analysis could also be applied in gear inspection and near-net-
shape gear forging die design.

Introduction

Spiral bevel gears are currently used in all helicopter power
transmission systems. This type of gear is required to turn the
corner from a horizontal engine to the vertical rotor shaft.
These gears carry large loads and operate at high rotational
speeds. Recent research has focused on understanding many
aspects of spiral bevel gear operation, including gear geometry
(refs. 1 to 12), gear dynamics (refs. 13 to 15), lubrication
(ref. 16), stress analysis and measurement (refs. 17 to 210),
misalignment (refs. 22 and 23), and coordinate measurements
(refs. 24 and 25), as well as other areas.

Research in gear geometry has concentrated on
understanding the meshing action of spiral bevel gears (refs. 8
to 11). This meshing action often results in much vibration
and noise due to an inherent lack of conjugation. Vibration
studies (ref. 26) have shown that in the frequency spectrum
of an entire helicopter transmission, the highest response can
be that from the spiral bevel gear mesh. Therefore if noise
reduction techniques are to be implemented effectively, the
meshing action of spiral bevel gears must be understood.

Also, investigators (refs. 18 and 19) have found that typical
design stress indices for spiral bevel gears can be significantly
different from those measured experimentally. In addition to
making the design process one of trial and error (forcing one
to rely on past experience), this inconsistency makes
extrapolating over a wide range of sizes difficult, and an overly
conservative design can result.

Research has been ongoing in an attempt to predict stresses
(i.e., bending and contact) by using the finite element method.
A great deal of work (refs. 27 to 30) has gone into finite

element modeling of parallel axis gears to determine the stress
field. Loads are typically applied at the point of highest single
tooth contact, and then the stress in the fillet region is
examined. Computer programs that perform this type of
analysis are usually two dimensional in nature and have
computer storage requirements that are small enough for
personal computers. These attributes make them very popular
and attractive to designers. However, a limited number of
researchers (refs. 16 and 21) have investigated finite element
analysis of spiral bevel gears.

Parallel axis components (involute tooth geometry) have
closed-form solutions that determine surface coordinates.
These coordinates can be used as input to finite element
methods and other analysis tools. Spiral bevel gears, on the
other hand, do not have a closed-form solution to describe their
surface coordinates. Coordinate locations must be solved
numerically. This process is accomplished by modeling the
kinematics of the cutting or grinding machinery and the
geometry of the basic gear design.

The objective of the research reported herein was to develop
a method for calculating spiral bevel gear-tooth surface
coordinates and a three-dimensional model for finite element
analysis. Accomplishment of this task required a basic
understanding of the gear manufacturing process, which is
described herein by use of differential geometry techniques
(ref. 1). Both the manufacturing machine settings and the basic
gear design data were used in a numerical analysis procedure
that yielded the tooth surface coordinates. After the tooth
surfaces (drive and coast sides) were described, a three-
dimensional model for the tooth was assembled. A computer
program, SURFACE, was developed to automate the
calculation of the tooth surface coordinates, and hence, the
coordinates for the gear-tooth three-dimensional finite element
model. The development of the analytical model is explained,
and an example of the finite element method is presented.

Determination of Tooth Surface
Coordinates

The spiral gear machining process described in this paper is
that of the face-milled type. Spiral bevel gears manufactured in
this way are used extensively in aerospace power transmissions
(i.e., helicopter main/tail rotor transmissions) to transmit power
between horizontal gas turbine engines and the vertical rotor




shaft. Because spiral bevel gears can accommodate various shaft
orientations, they allow greater freedom for overall aircraft
layout.

In the following sections the method of determining gear-tooth
surface coordinates will be described. The manufacturing process
must first be understood and then analytically described.
Equations must be developed that relate machine and workpiece
motions and settings with the basic gear design data. The
simultaneous solution of these equations must be done
numerically since no closed-form solution exists. A description
of this procedure follows.

Gear Manufacture

Spiral bevel gears are manufactured on a machine like the one
shown in figure 1. This machine cuts away the material between
the concave and convex tooth surfaces of adjacent teeth
simultaneously. The machining process is better illustrated in
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Machine
center

Sliding base—/

figure 2. The head cutter (holding the cutting blades or the
grinding wheel) rotates about its own axis at the proper cutting
speed, independent of the cradle or workpiece rotation. The head
cutter is connected to the cradle through an eccentric that allows
adjustment of the axial distance between the cutter center and
cradle (machine) center, and adjustment of the angular position
between the two axes to provide the desired mean spiral angle.
The cradle and workpiece are connected through a system of
gears and shafts, which controls the ratio of rotational motion
between the two (ratio of roll). For cutting, the ratio is constant,
but for grinding, it is a variable.

Computer numerical controlled (CNC) versions of the cutting
and grinding manufacturing processes are currently being
developed. The basic kinematics, however, are still maintained
for the generation process; this is accomplished by the CNC
machinery duplicating the generating motion through point-to-
point control of the machining surface and location of the
workpiece.
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center-
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Figure 1.—Machine used to generate spiral bevel gear-tooth surface.

(9]




Cradle axis —  »— Cutter axis

[, Cr’acfle'héu%ir'ugi///ﬁ;/////
///i VAN % \/
A .

~— Head cutter

Workpiece

,— Cradle
housing

— Workpiece

Cradle
/2

~— Mean
contact

point

‘ ¢ Cradle
\anglﬁ

— Spiral angle

N— Cutter circle

N

Machine 7/
\— Cutter center

center
Front view

5

Figure 2.—Orientation of workpiece to generation machinery.

Coordinate Transformations

The surface of a generated gear is an envelope to the family
of surfaces of the head cutter. In simple terms this means that
the points on the generated tooth surface are points of tangency
to the cutter surface during manufacture. The conditions
necessary for envelope existence are given kinematically by the
equation of meshing. This equation can be stated as follows: the
normal of the generating surface must be perpendicular to the
relative velocity between the cutter and the gear-tooth surface
at the point in question (ref. I).

The coordinate transformation procedure that will now be
described is required to locate any point from the head cutter
into a coordinate system rigidly attached to the gear being
manufactured. Homogeneous coordinates are used to allow
rotation and translation of vectors simply by multiplying the
matrix transformations. The method used for the coordinate
transformation can be found in references 1, 5, and 8 to 11.

Let us begin with the head-cutter coordinate system S, shown
in figure 3. This report assumes that the cutters are straight sided
(not curved as commonly used on the wheel for final grinding).
Surface coordinates « and 6 determine the location of a current
point on the cutter surface as well as the orientation of the current
point with respect to coordinate system S,. Angles v, and ),
are the inside and outside blade angles. The inside and outside

Inside blade (convex side);

Outside blade (concave side);
u = |AB]|

Figure 3.—Head-cutter cone surfaces.

blades cut the convex and concave sides of the gear teeth,
respectively. A point on the cutter blade surface is determined
by the following:

rcot Y —u cos y

u sin ¥ sin 6
(1)

u sin ¥ cos 6

1

where fixed value r is the radius of the blade at x. = 0, and v
is the blade angle. Parameters « and ¢ locate a point in system
S. and are unknowns whose value will be determined.

The head-cutter coordinate system S, is rigidly connected to
coordinate system S (fig. 4). System S; is rigidly connected to
the cradle that rotates about the x,, axis of the machine
coordinate system S,,. Coordinate system S, is a fixed
coordinate system and is connected to the machine frame.

To reference the head cutter in coordinate system S, the
following transformation is necessary:
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Figure 4.—Orientation of cutter, cradle, and fixed coordinate systems S, S,
and S,,, respectively.
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where g is the cradle angle and s is the distance between the
Coordinate system S, and S, origins (s = O.0;). The upper
and lower signs preceding the various terms in this matrix
transformation (and the rest of the paper) pertain to left- and right-
hand gears respectively.

Now, to transform from S; to the fixed coordinate system Sy,
the roll angle of the cradle ¢, is used. This transformation is
given by

1 0 0 0
0 cos o, +sin ¢, 0
MIII.\' = (3)
0 Fsin¢, cosop. O
0 0 0 |

Coordinate system S, locates the machine center, and
coordinate system S, orients the pitch apex of the gear being
manufactured. The transformation from coordinate system S,
to coordinate system S, requires the machine tool settings L,
and E,, along with dedendum angle 6 from the component
design (see figs. 5 and 6). Machine tool settings L,, and E,, can
be found from the summary sheet that typically accompanies a
gear, or the methods in reference 8 can be used. Reference 8
converts standard machine tool settings for the sliding base, the
offset, and the machine center-to-back into settings L,, and E,,
as shown in table I. The transformation matrix is given by
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Figure 5.—Coordinate system orientation to generate a right-hand gear surface
(¢ = 0 shown here).
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Figure 6. — Coordinate system orientation to generate a left-hand gear surface
(6. = 0 shown here).
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This is shown in figure 5 for a right-hand member and in figure 6
for a left-hand member. Figure 7 is given to clarify the orientation
of the coordinate systems and machine tool settings (L,,,E,,).

The next transformation involves rotation of system S, to S,,.
The common origin for coordinate system S, and S, locates the
apex of the gear under consideration with respect to coordinate
system S,,. This requires rotation about y, by the pitch angle
p (see fig. 7). This is given by

cosu 0 sinp

M, = 5

[ap|

—sinp 0 cospu

The final transformation is from coordinate system S, to
coordinate system S,,, which is fixed to the component being
manufactured. A rotation about the z,-axis through an angle ¢,,
is required. Angle ¢,, shown in figure 8, is the workpiece
rotation angle; it is directly related to the angle of rotation of
the cradle ¢, (this relationship will be described in the next
section). The S, to §,, coordinate transformation is given by

TABLE I.—SIGN CONVENTIONS OF MACHINE-TOOL SETTINGS
[From ref. 8.]

Setting Sign Right-hand member Left-hand member
Cradle angle, g + Counterclockwise (CCW) Clockwise (CW)
= Clockwise (CW) Counterclockwise (CCW)
Machining offset, £, + | Above machine center Below machine center
— Below machine center Above machine center
Machine center-to-back, + | Work withdrawal Work withdrawal
Xucn — | Work advance Work advance
Sliding base, Xgp + | Work withdrawal Work withdrawal
— | Work advance Work advance
Vector sum of Xgp t | Xsp + Xyep — Xspo +7 Xvcp —
and Xjycp = | Xsp = Xyep + Xsp — i Xy +
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(a) Machine settings and orientation.
(b) Plane 7 and orientation of generated gear coordinates.

Figure 7.—Orientation of machine settings and generated gear coordinate systems.

cos ¢, =xsinp, 0 0O
Fsin ¢, cos o, 0 O
M= ©)
0 0 1 0
0 0 0 1

Using these matrix transformations, we can determine the
coordinates in S, of a point on the generating surface from

r\l‘ = [M\\'(l] [M(l[)] [M[)]H] [MIH.\'] lM.\('] r(' (7)
or
N, = [Myolfio) 1M [Mp] (M5 () 1 [M Jre (u,60) - (8)

or

rH = r\\'(ll'e'(b(') (9)

This transformation describes the location of a point in the
gear fixed coordinate system based on machine settings (L,
E,, q, s, r, and {), parameters (u, 0, and ¢.), and gear
design information (x and 6).
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Figure 8.—Rotation of workpiece for left- and right-hand gears during tooth-
surface generation.

Tooth Surface Coordinate Solution Procedure

In order to solve for the coordinates of a spiral bevel gear-
tooth surface, the following items must be used simultaneously:
the transformation process, the equation of meshing, and the
basic gear design information. The transformation process
described previously is used to determine the location of a point
on the head cutter in coordinate system S,,. Since there are
three unknown quantities (#, 6, and ¢.), three equations
relating them must be developed.

Values for u, 6, and ¢, are used to satisfy the equation of
meshing given by references 1 and 9:

n-Vv=0 (10)

where n is the normal vector to the cutter and workpiece
surfaces at the specified location of interest, and V is the
relative velocity between the cutter and workpiece surfaces
at the specified location. From the reference 9 equation of
meshing for straight-sided cutters with a constant ratio of roll
between the cutter and workpiece, equation (10) is defined as




(u — r cot Y cos y)cos y sin 7
+ s[(m,, — sin y)cosy sin 6 F cos y sin ¥ sin (¢ — ¢,)]
+ E,, (cos vy sin ¢ + sin y cos ¥ cos 7)
— L, sinycos ¢ sint=0 (11)

where v is the root angle of the component being
manufactured, and

T=0Fq=%x9¢.) (12)
and
(c)
Mg, = % (13)
w

where m,,. is the ratio of angular velocity of the cradle to that
of the workpiece. Since the ratio of roll in this report is
assumed to be constant, equation (13) can be written as

(¢)
oo =9

s

and
o = w0 _
dt dt
therefore
5 o
o, dt =— | o dt
! ()
or
(o}
o, = (14)
My,

Equation (14) is the relationship between the cradle and
workpiece for a constant ratio of roll and is used directly in
equation (6).

Gear design information is then used to establish an
allowable range of values of the radial () and axial (5)
positions that are known to exist on the gear being generated.
This is shown in figure 9.

First the equation of meshing must be satisfied. This was
shown earlier to be

or

fitu, 0, ¢.) =0 (15)

Xar Xw

! — Point P

_F:‘T—:%—’Zp

> 7

Za, Zw -
View A

View A

Figure 9.—Orientation of gear to be generated. with assumed positions rand .

The axial position must match the value found from
transforming the cutter coordinates S. to workpiece
coordinates S,.. This is satisfied by the following (fig. 9):

—z=0 (16)

&
&N

or
S, 0, ¢.) =0 (17)

Finally the radial location from the work axis of rotation must
be satisfied. This is accomplished by using the magnitude of
the location in question in the x, -y, plane (see fig. 9):

r— (2 +y3)7 =0 (18)
or
fu, 8, ¢.) =0 (19)

Now a system of three equations (eqgs. (15), (17), and (19))
is solved simultaneously for the three parameters u, 6, and
¢., for a given gear design with a set of machine tool
settings. These are nonlinear algebraic equations that can be
solved numerically with commercially available mathematical
subroutines. These equations are then solved simultaneously
for each location of interest along the tooth flank, as shown
in figure 10. In the SURFACE program a 10 by 10 grid of
points is used on each side of the tooth. From the surface grids,
the active profile (working depth) occupied by a single tooth
is defined.
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Figure 10.—Calculation points (10 by 10 grids, i.e., 100 points each side)
for concave and convex sides of tooth surface.

Application of Solution Technique

An application of the techniques previously discussed will
now be presented. The component to be modeled was from
the NASA Lewis Spiral Bevel Gear Test Facility. A photo-
graph of the spiral bevel gear mesh is shown in figure 11, and
the design data for the pinion member are shown in table II.

The gear design data were used along with the methods of
reference 9 to determine the machine tool settings for straight-
sided cutters (see table II). These values were then used as
input to SURFACE. This program calculates the coordinates

Figure 11.—NASA spiral bevel gear test rig components.

of the concave and convex sides of the gear tooth (fig. 10),
orients the surfaces such that the top land is of the proper
width, and then generates the required data for the three-

TABLE II.—EXAMPLE CASE OF SURFACE COORDINATE GENERATION
(a) Pinion design data

Number of teeth

Addendum angle, deg
Pitch angle, deg
Shaft angle, deg
Mean spiral angle, deg

R WA I e e e 25.4 (1.0)
Mean cone distance, Mm (IN.) ....ooviniieieieie e, 81.05 (3.191)
Inside radius of gear blank, mm (in.).....................ocoooiiin... 15.3 (0.6094)

Top land thickness, mm (in.) .............
Clearance, mm (in.)..:...oeommmoes

........ 2.032 (0.080)
..................................... 0.762 (0.030)

(b) Generation machine settings

Concave Convex

Radius of cutter, », mm (in.)

Blade angle, ¢, deg

Vector sum, L,,, mm (in.)

Machine offset, £,, mm (in.)

Cradle to cutter distance, s, mm (in.)

75.222 (2.9615)

161.358
1.0363 (0.0408)
3.9802 (0.1567)
74.839 (2.9646)

78.1329 (3.0761)
24.932

—1.4249 (-0.0561)
—4.4856 (—0.1766)
71.247 (2.8050)

Cradle angle, g, deg 64.01 53.82
Ratio of roll, m,,, 0.308462 0.321767
Initial cutter length, &, mm (in.) 239.5 (9.43) 181.1 (7.13)
Initial cutter orientation, 6, deg 120.0 120.0

Initial cradle orientation, ¢, deg 0.0 0.0




dimensional modeling program PATRAN (ref. 31). The details
of the procedure are described in the following paragraphs.

Surface Coordinate Calculation

Using figures 10 and 12 as references, we will describe the
calculation procedure for surface coordinates. First, the
concave side of the tooth is completely defined before moving
to the convex side. These points are calculated by starting at
the toe end and at the lowest point of active profile. Nine steps
of equal distance are used from the beginning of the active
profile to the face angle (addendum) of the gear tooth, and
then back to the next axial position (see fig. 12). The procedure
is repeated until the concave side is completely described. Then
the same procedure is followed for the convex side.

In the discussion of surface coordinate determination, the
cutting blades were described as straight sided. The point
radius r (eq. (1)) is the radius the cutter would have if it were
projected down to the y,—z. plane (figs. 3, 5, and 6). Actually,
the blade has a theoretical point width and corner radii that
generate the portion of the tooth from the working depth to
the root cone (see fig. 13). In the section Coordinate Transfor-
mations, this part of the cutting blade was not modeled, so
the current analysis by SURFACE either assumes a full fillet
radius between the lowest point of active profile on adjacent
teeth or sets the fillet radius equal to the clearance (fig. 14).

Concave and Convex Orientation

Since both sides of the gear-tooth surface are not analyzed
simultaneously, for proper alignment of the surfaces, their
orientation relative to each other must be established by
determining the amount of rotation in the fixed coordinate

Xc

A

Xw  Surface coordinate
¥ \ calculation grid
Xm

Figure 12.—Cross section of calculation grid: I', root angle: 6, dedendum
angle; &, addendum angle; r;, inside radius of gear blank.

system S,,. This is done by checking the tooth thickness at the
face angle on the toe end of the gear tooth. (Also, in the case
of a gear, remember that a given cutting operation using cutters
as shown in fig. 3 actually cuts adjacent teeth on the convex
and concave sides simultaneously.) The distance between these
two locations must correspond to the top land width. The
convex surface is then rotated according to the angle deter-
mined by the points at the face angle at the toe position. This
is shown in figure 15. (Note that this same procedure could
have been done by considering the tooth mean circular
thickness instead of the tooth thickness at the face angle as
was done in this report.)

Active profile
beginning —

Cutter axis
of rotation

profile \
beginning -

|« Outside blade radius————‘

Figure 13.—Detailed view of straight-sided cutter geometry.
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program; p,., constant fillet and root radius; p, fillet radius equal to the
clearance; N, number of teeth: r;, inside radius of gear blank.

Figure 16.—Hidden line plot of one-tooth model generated by the SURFACE program using PATRAN (constant fillet and root radius model).



Generation of Three-Dimensional Model Data

Once the surface coordinates are described and properly
oriented, then the data necessary for PATRAN have been
produced. Currently, the model in SURFACE can have two
different fillet and root radii configurations. The fillet radius
can be constant at the cross section between adjacent teeth or
be equal to the clearance with a flat between the fillet radii
of the adjacent teeth at the root angle. Also a constant inside
radius of the gear blank is used in this modeling method. These
assumptions are depicted in figure 14.

At this point, we have produced a one-tooth model for use
in PATRAN. Now, the analyst must determine how complex
the model need be for a given application. If a complete gear
is required, simply rotate the one-tooth model in PATRAN.

Once the required number of teeth have been described, then
the finite element mesh density and the boundary condition
information are generated within the PATRAN environment.
PATRAN produces the bulk data deck for MSC/NASTRAN
and many other computer codes. The example given in this
report used MSC/NASTRAN for the static analysis.

1724 MPa (250 ksi)
pressure load
normal to gear
surface =1

Example Model and Results

From the one-tooth model described earlier the analysis
techniques can be demonstrated. The model shown in figure
16 is that for a constant fillet and root radius (also called full
fillet) model. The fillet and root radius on the convex side has
been added along with the tooth section (without the tooth)
to make the model symmetric about the tooth centerline. Figure
16 shows a hidden line plot of the finite element mesh with
eight-noded isoparametric three-dimensional solid continuum
elements. This model has 765 elements and 1120 nodes. The
boundary conditions are shown in figure 17. A 1724-MPa
(250 ksi) constant pressure load was applied normal to the
tooth surface of nine elements, and the two edge surfaces of
the gear rim had all degrees of freedom constrained.

The results were calculated by MSC/NASTRAN and were
subsequently displayed by PATRAN. Figure 18 shows the
principle stresses, and figure 19 shows the total displacements
for the boundary conditions shown in figure 17.

\ .
“~— Fixed surface

RS
X N

“— Fixed surface

Figure 17.—Boundary conditions for constant fillet and root radius model for the example application.



Figure 18.—Major principal stress for boundary conditions specified in figure
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Figure 19.—Total displacement for the boundary conditions specified in figure 17.
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Summary of Results

A method has been presented that uses differential geometry
techniques to calculate the surface coordinates of face-milled
spiral bevel gear teeth. The coordinates must be solved for
numerically by a simultaneous solution of nonlinear algebraic
equations. These equations relate the kinematics of manu-
facture to the gear design parameters. Coordinates for a grid
of points are determined for both the concave and convex sides
of the gear tooth. These coordinates are then combined to form
the enclosed surface of one gear tooth. A computer program,
SURFACE, was developed to solve for the gear-tooth surface
coordinates and provide input to a three-dimensional geometric
modeling program (i.e., PATRAN). This enables an analysis
by the finite element method. An example of the technique
was presented.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 19, 1990
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