Research Institute for Advanced Computer Science
NASA Ames Research Center

BIRD: A General Interface For
Sparse Distributed Memory Simulators

SNV & O
David Rogers {jj) 58

pI7

January 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 90.3

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188858) EIRD: A GENERAL INTERFACE N92-10292

FOR SPARSE DISTRIBUTED MEMURY SIMULATORS

(Research Inst. for Advanced Computer

Science) 100 p CSCL 098 unclas
G3/60 0043058

ol el

i

il e

n TOVRRR M)

e

L T

BIRD: A General Interface For
Sparse Distributed Memory Simulators

David Rogers

January 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 90.3

NASA Cooperative Agreement Number NCC 2-387

BIRD: A General Interface For

Sparse Distributed Memory Simulators

David Rogers
Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5
Moffett Field, CA 94035
RIACS Technical Report 90.3

January 1990

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

BIRD: A general interface for Sparse Distributed Memory simulators

David Rogers
1 August 1990

Document version 1.0 for
BIRD program release 3.169 syntax version 1.1

Research Institute for Advanced Computer Science
" Mail Stop Ellis, NASA Ames Research Center
Moffett Field, CA 94035
- (415) 604-6363
(Internet address: drogers@riacs.edu)

RIACS Technical Report 90.3

Copyright © 1990 Resarch Institute for Advanced Computer Science and David Rogers

1. Purpose

Kanerva’s sparse distributed memory (§SDM) has now been implemented for at least six dif-
ferent computers, including SUN3 workstations, the Apple Macintosh, and the Connection Ma-
chine. A common interface for input of commands would both aid testing of programs on a broad
range of computer architectures and assist users in transferring results from research environments
to applications. A common interface also allows secondary programs to generate command se-
quences for a sparse distributed memory, which may then be executed on the appropriate hardware.
The BIRD program is an attempt to create such an interface. Simplifying access to different sim-
ulators should assist developers in finding appropriate uses for an SDM.

BIRD can currently be used (currently) to access three different simulators for Kanerva’s
Sparse Distributed Memory (SDM). The first of these simulators is based on the local UNIX host;
the second, on the SDM hardware prototype developed at Stanford; the third, on the Connection
Machine. I anticipate future systems, such as MasPar and Cray, may be added to this interface in
the future.

-2- BIRD Reference Manual

2. Introduction

The command language used by BIRD has several basic organizing features. It is text-
based; no special characters are used. It is line-oriented; a command is composed of a series of
command words, separated by whitespace characters (tab or space), and ended with a carriage-re-
turn. Itis English-based; the command lines can be read as pseudo-English "sentences”. Itis case-
independent; most command tokens can be written in any mixture of upper and lower case. Itis
extensible; future implementations may add new commands to the language to accommodate en-
hancements. -

Given the diversity of simulators that currently run some version of the sparse distributed
memory algorithm, it is inevitable that some commands in the interface will be functional in some
implementations and not in others. For example, a given hardware prototype may require a spe-
cific memory size, or a software simulator may not have implemented features such as input masks
and dont-care bits. In these cases, the BIRD will try to do the "appropriate” thing, whatever that
may be, and to warn the user of the situation.

-

In this document, sample command lines will be shown preceded by the BIRD> prompt.

3. Description of a command line

The command lines are described by giving a line of boldface command keywords and
bracketed special tokens. For example:

Set Memory Random-Seed <number>

This command is composed of three keywords (Set, Memory, and Random-Seed) and one
special token (<number>). This description can be used to instantiate an instance of a command
by filling in legal values for each special token in the command. For example, a legal command
instantiated from the description above would be:

BIRD> Set Memory Random-Seed 113

Oftentimes, a given command has different legal tokens which are allowed; for example,
the description may read:

Set System Time-Commands [Off | On]

The square brackets "[]" are used to delimit a list of options. You must select one of the
options to make a legal command, such as:

BIRD> Set System Time-Commands On

(RN

r

BIRD Reference Manual -3-

It is also possible to have optional fields, where the user is allowed to request one of a set
of options, but is not required to. In the case where the user does not specify any selection, the first
item from the list is taken. Curly brackets "{}" are used to delimit such a list. An example is:

Set Memory Radius {Automatically | <number>})

In this case, the user can either specify the keyword Automatically or give a number. If
the user does not give the fourth argument, the BIRD program selects Automatically. For exam-
ple, the command:

BIRD> Set Memory Radius
Radius setto 111

causes the BIRD program to automatically select a radius.

4. Interacting with the command line parser

We have already seen simple commands that the command line parser accepts. The parser
has a number of features that assist the user in inputting a correct command line.

Nonsyntactic command lines generate an error. The program checks for syntax every time
the user types a whitespace character (space, tab, or newline). When an error occurs, the parser
signals the user, and leaves the user at BIRD top-level with a fresh prompt:

BIRD> Set Mmeory
?7No match - "mmeory"

Empty command lines are accepted, but do no operation. The program simply returns again
with the BIRD> prompt and waits for more.

The semicolon ™" is the comment character; it is ignored, and any characters following it
are ignored, up to the end of line.

BIRD> Set Memory Radius ; this command sets the radius
Radius setto 111

The BIRD command parser does not require that full keywords be typed; only enough of
the keyword must be typed to disambiguate it from the other choices. For the previous example,
we could have typed:

BIRD> Set Mem Rad ; this command sets the radius
Radius setto 111

If in doubt, you can hit the "2" character at any time to get help as to what the legal com-
pletions of the line are. For example:

_4- BIRD Reference Manual

BIRD> set mem r? akeyword, one of the following:
Radius Random-Seed Reference-Type
BIRD> setmemr

In this case, the user typed "set mem r?2" and the program responded by giving the list
of possibilities, followed by retyping the command line (without the "?"). You can now complete
the command line, or use backspace to rub out any or all of the current line.

The "?" will also show if there are any defaults. A default is the value assigned to the ar-
gument if it is not given by the user:

BIRD> dotimes 2 the count

or a string, beginning with "$"--

(defaultis "1")

BIRD> dotimes

There are several other characters you can use to interact with the command parser.

.

- ¥ You can hit ESCAPE to have the pfogfém attempt to fill-out the current field. For example,
if the command expects a file, and the file name is unique but long, typing ESCAPE will complete
the name:

BIRD> Input File very-long-? an existing file name, one of the following:
very-long-file-name

BIRD> Input File very-long-<ESCAPE>

results in:

BIRD> Input File very-long-file-name

In this example, the "?" showed that only one very long name matched. Rather than typing
in that name, we hit ESCAPE, and the command parser filled the name in, then beeped the terminal.

The "AU" (control-U) character erases the entire command line.

The "AR" (control-R) character retypes the command line.

DELETE and "AH" (control-H or backspace) are equivalent; these characters erase the pre-
viously typed character.
5. Description of some command tokens

The descriptions of BIRD commands contain a number of tokens, which are words delim-

BIRD Reference Manual -5-

ited by angle brackets "<". We have already seen <number>, which represents an integer number;
here is a list of additional tokens used in the command descriptions.

<number>: This token represented a positive or negative integer number. However, the fact that
a command is syntactically valid does not mean that your command makes sense; for ex-
ample, set memory radius -1234 is syntactically valid, but is likely to signal an error when
executed, or produce incorrect results later.

<variable>: This token represents an integer variable name, which is represented as a "$" followed
by a string. The variables "$1", "$2", ..., "$9" are predefined; the user can create others
with the Create Variable command. Variables can be used in BIRD nearly any place that
numbers can be used.

<newfile>: This token represents the name of a file that is not expected to be currently on the file
system. If it does not exist, it will be created; if it does exist, it will be removed and a new
file created.

<oldfile>: This token represents the name of a file that is expected to be currently on the file sys-
tem. An error is signalled and the command is not executed if the file does not exist.

<address>: This token represents a string that can be translated into a binary or trinary address. It
expects a string of "0", "1", and possibly "*" characters, or a special text string which refers
to an existing address.

If the string contains only "0", "1", and "*" characters, it is read as a series of binary digits.
The "*" character is called a dont-care bit; in a Hamming-distance calculation, it matches
eitheraQor a 1. If the string ends before the expected address size is réached, the remainder
of the address is filled with "0" bits. If the string ends with a hyphen "-", packing is con-
tinued restarting at the beginning of the string. Some examples of addresses:

000111- isreadas 000111000111000111000111000111...
1%- istead as 1¥I*P*D*RDRPRDRPRDRPEDRDRDRIR]L
1111 isread as 111100000000000000000000000000...

If the address contains more than these characters, it may be an address tag, which is a
string of characters that represents some address. For example, the string "A" represents
the last address given to the Address command. The user can create addresses using the
Create Address command.

6. Why the BIRD program has so many commands

The BIRD program was developed as a research tool; I have made no attempt to trim the
program for this release. This leads to two problems: first, the number of commands in the pro-
gram is large, and second, many of the research-oriented commands are not robust and may fail.

-6- BIRD Reference Manual

Furthermore, many of the commands have been well-exercised on some simulators and not on oth-
ers, leading to further potential problems.

I have resisted the temptation to strip the program, instead deciding to leave the system in-
tact. This should allow both the simple user to access the stable, simple commands, and the more
advanced user to risk using more powerful, advanced commands.

To assist the user in dealing with the large number of commands, I have organized chapters
in this manual to first focus the user on the most-used and most-reliable commands in the BIRD
program, then to develop more advanced topics.

To assist the user in accessing many of the more obscure commands, Appendix A contains
a listing of all (or nearly all!) possible commands for the BIRD program in alphabetical order. The
user can also use the Help command in the bird program to access most of the command descrip-
tions on-line.

The user is encouraged to use the Bug command in the BIRD program to report bugs. This
will allow future releases to incorporate known bug fixes.

I anticipate that this program will be used primarily as a research tool. If this expectation
proves wrong, a future release may be made of a reduced BIRD program for application program-
mers who require more stability in their test environment.

7. Simple operation of the BIRD program

This section is designed to point the user to the most basic commands and command se-
quences that are useful for sparse distributed memory.

For most uses of the BIRD program, the basic chain of command events is as follows:

« Set Default commands are used to set up the defaults for the memory.

« The Create Memory command is used to create one Or more memories.

« (Otherwise, the Input Memory command may be used to read a memory from a file).
. Address, Read, and Write commands are used to operate on the memory.

« Show commands are used to inspect the memory.

« The Qutput Memory command is used to save the memory to a file.

A sample sequence of BIRD commands is:

BIRD> Set Default Address-Size 256 ; 256 bits of address
BIRD> Set Default Data-Size 256 ; 256 bits of data

BIRD> Set Default Number-Of-Locations 1000 ; 1000 locations
BIRD> Create Memory Test ; Memory named "Test"

Memory Test, 1000 locations, size 256/256

BIRD Reference Manual -7-

BIRD> Address 1010- ; Address with 1010...
Selected 21 locations, radius used was 111

BIRD>Write 11110000- ; Write

BIRD> Read ; See if it’s there
Read data

1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000

BIRD> Show Memory ; Show memory info
[lots of information about the setup of the memory)

BIRD> Show Qutput-Sums ; Show output sums
[information about the output sums]

BIRD> Output Memory Test.memory ; Output to a file

(You may wish to try to proceeding command sequence to ensure that your local version
of the BIRD program is functioning. You should type the commands which are on the lines begin-
ning with the BIRD> prompt (but don’t retype the prompt!)).

(It is perfectly normal for the number of selected locations to be different from the 21 se-
lected in the above examples.) '

7.1. Using the Set Default command

The Set Default command is used to setup the parameters of the memory before it is cre-
ated. (Many of these commands, but not all of them, can be reset using the Set Memory command
after the memory is created.)

You can type "Set Default 2" for a full listing of the possible commands; the most
useful of the commands are:

Set Default Address-Size [<number>| <variable>]

This sets the default address size for future memories. The address size is the number of
bits used for addressing the memory. The initial value for this default is 256.

Set Default Data-Size [<number> | <variable>]

This sets the default data size for future memories. The data size is the number of bits used
for reading from and writing to the memory. The initial value for this default is 256.

Set Default Number-Of-Locations [<number> | <variable>]

This sets the default number of locations for future memories. The program will attempt

-8- BIRD Reference Manual

to create future memories with that many hard memory locations.

Set Default Hardware [Software-Simulator | Connection-Machine |
Stanford-Hardware]

This sets the default simulator for future memories. The program will attempt to create fu-
ture memories using the specified simulator.

For example, we can set the defaults for memory creation to make a memory with 200 ad-
dress bits, 10 data bits, and 8192 locations, and to use the Connection Machine:

BIRD> Set Default Address-Size 200

BIRD> Set Default Data-Size 10

BIRD> Set Default Number-Of-Locations 8192 .

BIRD> Set Default Hardware Connection-Machine

You can look at the current list of defaults by using the Show Defaults command.

Remember, you do not have to type the complete command, only enough for uniqueness.
For example, the following command is acceptable:

BIRD> set def hard conn
7.2. Creating, inputting, and outputting memories

Once the memory defaults are assigned, we can create a memory using the Create Mem-
ory command.

Create Memory <memory-name> {<address-size>) {<data-size>}

This command creates new memory. The memory is assigned the given name. The address
size and data size arguments are optional; if not given, the default address size and data size are
used.

For example, we can create a new memory with the command:

BIRD> Create Memory Tweety 256 256
Memory Tweety, 1024 locations, size 256/256

If the defaults were already set to an address size of 256 and a data size of 256, we could
have typed to get the same result:

BIRD> Create Memory Tweety
Memory Tweety, 1024 locations, size 256/256

If we try to create two memories with the same names, the program signals an error and

BIRD Reference Manual -9.

refuses to create the new memory:

BIRD> Create Memory Sylvester
Memory Sylvester, 1024 locations, size 256/256
BIRD> Create Memory Sylvester
?Memory Sylvester already exists

Instead of creating a new memory, we can read in a memory previously output to a file (us-
ing the Qutput Memory command). We do this with the Input Memory command.

Input Memory <oldfile>

No memory name is supplied by the user; the memory is given the name it had when saved.
If that name conflicts with a memory already in use, the string "New-" is prepended to it. For ex-
ample, if we had previously saved a memory named "Age" in file Age.memory, we could type:

BIRD> Input Memory Age.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
Memory New-Age, 0 writes, created Fri Dec 29 12:44:07 1989

You may wish to try to following command sequence to ensure that your local version of
the BIRD program is functioning. You should type the commands which are on the lines beginning
with the BIRD> prompt (but don’t retype the prompt!):

BIRD> Set Default Number-of-locations 1000
BIRD> Create Memory Testl 256 256

Memory Testl, 1000 locations, size 256/256

BIRD> Output Memory Testl.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
BIRD> Input Memory Testl.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
Memory New-Testl, O writes, created Fri Dec 29 12:44:07 1989

Finally, you can switch from one memory to another using the Set Active-Memory com-
mand. It takes the name of a currently defined memory (that is, defined using either Create Mem-
ory or Input Memory) and makes that the "current” memory. The current memory is the one that
all memory-related commands act upon; for example, Qutput Memory writes the current memory
to a file, and Address does an addressing operation on the current memory.

Set Active-Memory <memory-name>

For example, the following sequence of commands creates two memories, then activates
each of them in turn and does an addressing and write operation:

-10- BIRD Reference Manual

BIRD> Create Memory Test-A 256 256
Memory Test-A, 1000 locations, size 256/256
BIRD> Create Memory Test-B 256 256
Memory Test-B, 1000 locations, size 256/256
BIRD> Set Active-Memory Test-A

BIRD> Address 1100- ; Address at 11001100...
Selected 19 locations, radius used was 111
BIRD> Write 11110000- ; Write 1111000011110000...

BIRD> Set Active-Memory Test-B
BIRD> Address 1100-

Selected 18 locations, radius used was 111
BIRD>Write 11110000~ ; Write the same as for Test-A

It is possible to create the different memories on different hardware devices; thus, you
could create one memory on the Connection Machine, and one memory on the front-end computer
using the software simulator, and compare their results.

7.3. Using the Address, Read and Write commands

Once a memory has been created, we can perform memory operations on it. The primary
memory operation are Address, Read, and Write.

Address does an addressing operation: it selects a subset of memory locations from the
memory; these locations are then active for subsequent Read and Write operations. Read sums
the data counters in the selected locations, and returns the result as an address. Write writes an ad-
dress to the memory; that is, it changes the data counters in the selected locations so that future

reads will likely return the written address.

(For a more detailed description of how a sparse distributed memory works, you should re-
fer to one of the papers or books in the reference list.)

Now, for the full descriptions or Address, Read, and Write:
Address <address> {Verbosely | Silently}

The Address command takes two arguments: an address, and an optional keyword. The
address is mandatory; it is used to change the state of the current memory. This command causes
the selection a number of memory locations, which are then active for future Read and Write op-

erations.

The second argument to Address is optional; it determines whether the command will print
out helpful information about the addressing operation when completed. The default is for that in-

formation to be given.

BIRD Reference Manual -11-

Write <address>

The Write command writes the given address to the currently active memory. You must
have some time previously used the Address command for this command to have any effect on the
state of the memory.

Read {<address>)} {Verbosely | Silently}

The Read command takes two arguments: an optional address, and an optional keyword.
This command reads the memory; if no first argument is given, the command prints the read ad-
dress. If the first argument is given, the read address is compared against that address and the dis-
tance between them is printed.

The second argument to Read is optional; it determines whether the command will print
out distance information when the read operation is completed. The default is for that information
to be given.

The simplest process for using the BIRD program involves creating a memory, addressing
it at some sample address, writing a sample data address to it, then reading from the same sample
address to confirm that the sample data address can be retrieved correctly:

BIRD> Create Memory Test ; Memory named "Test"
Memory Test, 1024 locations, size 256/256

BIRD> Address 1010- ; Address with 1010...
Selected 21 locations, radius used was 111

BIRD>Write 11110000- ; Write

BIRD> Read ; See if it’s there
Read data

1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000

Itis sometimes difficult to manually study the read data pattern for errors; in this case, you
can use the first argument to Read to compute the distance between the read address and any given
address:

BIRD> Read 11110000- ; Compare
Distance is 0
BIRD> Read 11111111- ; Compare against 1l's

Distance is 128

Of course, the memory can store more than one pattern if they are stored at different ad-
dresses:

BIRD> Address 1010- ; Address with 1010...

-12- BIRD Reference Manual

Selected 21 locations, radius used was 111

BIRD> Write 11110000- ; Write

BIRD> Address 1110- ; Address with 1110...
Selected 20 locations, radius used was 111

BIRD>Write 00000001- ; Write

Now we can read at the two sample addresses:

BIRD> Address 1010- ; Address with 1010...
BIRD> Read ; See what’s there
Readdata -~ —— o
1111000011110000111100001111000011110000111100001111000011110000
[...etc...]

BIRD> Address 1110- ; Address with 1110...
BIRD> Read ; See what’s there
Read data

0000000100000001 0000000100000001 0000000100000001 0000000100000001
[...etc...]

7.4. Using the Show command

The Show command is used to show the user things about the current state of the BIRD
program and the memories it contains. Here is a subset of useful Show commands:

Show All Memories
This command shows all currently defined memories. Example:

BIRD> Show all memories
Memory Woof, 1024 locations, size 256/256
Memory Arf, 8192 locations, size 256/256, on Connection Machine

Show Defaults
This command shows all the current defaults. Example:

BIRD> Sshow Defaults

Set Default Address-Size 256

Set Default Address-Type Bit-Addresses
Set Default Area 15

[...etc...]

The Show Defaults command prints out the defaults in a format that looks like
system commands; this allows the user to capture the commands for future use.

Show Distance <address-1> <address-2>

BIRD Reference Manual -13-

This shows the distance between two addresses. Example:

BIRD> Show Distance 11110000- 11110001-
Distance is 32

This example illustrates something we haven’t previously seen: how does the system as-
sign the length to recursive addresses (that is, addresses that end in "-")? In most cases, it is done
by context: for example, if we use an address in the Address command, then the expected length
is the address size of the memory. If there is no expected length given by the context, then the value
of the default address size (as set by Set Default Address-Size) is used for the size.

Show Input-Sums
Most of the simulators keep values called an input sum. Whenever a write operation is con-
ducted, the input sum counters are also incremented and decremented. The input sums are equiv-

alent to a memory location which is always selected during writing, though it does not contribute
during reading.

This command also shows the total number of data addresses written into the memory.
Show Location [<number> | <variable>]

This command gives extensive information about the given location. The command re-
quires an argument, which is the index of the location in the current active memory. Locations are

numbered from 1 to the number of locations in the currently active memory. Example:

BIRD> Show Location 333
[Lots of stuff about the location, including the location address and counters.]

Show Memory

This command gives a sequence of commands which should be able to recreate the given
memory, though it does not keep track of the read and write operations which have taken place fol-
lowing memory creation.

BIRD> Show Memory .
[Lots of Set Default, Create Memory, and Set Memory commands.]

Show Qutput-Sums

When a read operation is requested, the memory collects the data counters columnwise into
sums, then thresholds these sums to create the read address. You can see these sums before thresh-
olding with this command. For example:

BIRD> Show Qutput-Sums

- 14 - BIRD Reference Manual

[NOW: 16] 16-1616-16 16-1616-16 16 -16 16-16 16 -16 16 -1616-1616-1616-16
16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16
16-16 16 -1616-16 16-16 16-16 16 -16 16 -16 16 -16 16 -16 16 -16 16 -16 16-1616-1616-16
16-1616-16 16 -16 16 -16 16 -16 16 -16 [...]

In this example, NOW gives the number of individual location writes which contributed to
the sums. The output sums are then printed out. In this case, the memory likely had the address
10101010... written to it near where we were reading.

Show Selected

This command shows a list of the selected memory locations from the last Address opera-

tion, it also gives the distance from that memory location address to the sample address. For ex-

ample,

BIRD> Address 1010-

Selected 16 locations, radius used was 111

BIRD> Show Selected

Format is: index <distance>

59 <106>, 90 <110>, 175 <111>, 194 <110>, 298 <111>, 339 <109>, 390 <106>,
516 <110>, 583 <108>, 600 <111>, 611 <110>, 617 <108>, 662 <111>, 716 <106>,

776 <110>, 791 <109>
We could confirm that a given distance is correct by typing:

BIRD> Show distance L59 1010- ; dist btw loc 59 and address
Distance is 106

7.5. Using the Set Memory command

Once a memory has been created, it is useful to be able to change parameters of its func-
tioning. For example, we may wish to change the radius used by the memory, or switch the mem-
ory to area-based addressing, so that it uses the number of selected locations rather than a radius

during addressing.
The following is a list of some of the more commonly-used commands.
Set Memory Radius { Automatically | <number> | <variable>}

When standard radius-based addressing is used, this command sets the radius. For exam-
ple, we may decide that we wish to have a larger radius for our 256-bit address size memory than
the standard radius of 111 bits; we could change it by:

BIRD> Set Memory Radius 114

Future Address commands will now use this new radius in calculating the set of selected

BIRD Reference Manual -15-

locations.

If the keyword Automatically is given, the program calculates what is considers a reason-
able radius, and uses that value.

Set Memory Type-Of-Addressing [Area | Radius]

The Kanerva model assumes that the location addresses are randomly placed. When this is
true, statistics operate well so that any address contains roughly the same number of locations with-
in a given radius. s

When the location addresses are not randomly placed, this is no longer true, and a one given
address may select many more locations than another address. Because of this breakdown, I pro-
posed the use of area-based addressing. Specifically, area-based addressing selects the radius only
once the address is given to the Address command; it selects the radius to get as close to a desired
number selected locations as possible. The default type of addressing is Radius; to use area-based
addressing, type:

BIRD> Set Memory Type-of-addressing Area

(Area addressing is only available when using the software simulator or the Connection
Machine simulator. It has not yet been implemented for the Stanford SDM hardware.)

Set Memory Area { Automatically | <number> | <variable>)

When area-based addressing is used, this command sets the desired area, that is, the desired
number of selected locations. Experiments by Kanerva suggest that a reasonable number of loca-
tions is 1/2 * sqrt (number of locations); thus, for a 1000-location memory, an area of 1/2 * sqrt
(1000) or 16 locations would be useful:

BIRD> Set Memory Area 16

Future Address commands will now use this area in calculating the set of selected locations
when the memory has been set to area-based addressing mode.

If the keyword Automatically is given, the program calculates what is considers a reason-
able area, and uses that value. .

Set Memory Threshold [<number> | <variable> | Type]

The threshold of a memory is the number the memory uses to determine whether the data
counter sum represents a "0" or a "1" in the read address. The default is zero; if the data sum is
greater than or equal to zero, that bit is taken to be a "1", else it is taken to be a"0". Zero is a good
threshold only if that bit is, on the average, "0" half the time and "1" half the time in the written
data addresses.

-16- BIRD Reference Manual

Thresholding is a complex topic, and one which I won’t get into there. You can refer to the
section on the Set Memory Threshold command in Appendix A.

Set Memory Input-Mask [<address> | None]

The input mask is a set of bits that we should ignore during the addressing operation. Nor-
mally, the hamming distance is calculated using all the bits in the sample address; the input mask
says that some of the bits should be ignored, that is, always be counted as matching during the ham-
ming distance calculation. You will have to readjust the radius after you do this... the more bits are
masked, the greater the number of addresses will be within a given radius.

Giving the keyword None as the argument unmasks all the bits.

This command is useful in conjunction with area-based addressing, as the radius will be dy-
namically changed to select the proper number of locations. For example, we can mask off every
other bit:

BIRD> Set Memory Type Area

BIRD> Set Memory Area 16

BIRD> Addr 1010-

Selected 16 locations, desired 16, radius used was 112

BIRD> Set Memory Input-Mask 101010-

BIRD> Addr 100101100111010110100101111110100101~
Selected 19 locations, desired 16, radius used was 52

Note that the radius changed from 112 to 52. This is a sensible result; with half of the bits masked,
the distances were roughly halved. Thus, one would expect the radius to also drop by about half.

7.6. Using the Output Memory command

Once we have written data to a memory, it is nice to be able to save that memory, in that
state, for later restoration.

Output Memory <newfile> {Binary | Hex}

This command takes the current memory and outputs it to the given filename. That mem-
ory file can later be restored using the Input Memory command. If the default second argument
is given, it is the format we wish to use for the output of the location addresses. The default output
format is Hex.

The memory file is an ASCII file that can be transferred from machine to machine. While
bulky, this is intentional: the desire was to allow a memory to be created using one simulator, and
then loaded into another simulator, which may be residing on a different computer. A "transfer”
of a memory currently in BIRD to another simulator can be done by saving the memory, setting a
new default hardware type, and reading the memory back in:

BIRD Reference Manual -17 -

BIRD> Output Memory Testl.memory
BIRD> Set Default Hardware Connection-Machine
BIRD> Input Memory Testl.memory

[Addresses: 10% 20% 30% 40% S50% 60% 70% 80% 90% 100%]
[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
Memory New-Testl1, 333 writes, created Fri Dec 29 12:44:07 1989
BIRD> Show All Memories

Memory New-Test1, 8192 locations, size 256/1, on Connection Machine
Memory Test1, 8192 locations, size 256/1

In this way, a memory can be "copied”.

Someday, when the Delete Memory command works; I could suggest that you now delete
the original memory to reclaim the space, but those days aren’t here yet...

If you simply wish to save the memory location addresses, you will save space and time by
using the Output Location-Addresses command:

Output Locations-Addresses <newfile> {Binary | Hex}

This command outputs all of the location addresses of the currently active memory to the
given file. They can later be restored in a memory using the command sequence Create Array
followed by Initialize Memory Using-Address-Array. The default output format is Hex.

BIRD> Output Location-Addresses LOCS Hex

[Then, much later...]

BIRD> Create Array locs LOCS

Array locs contains 1024 addresses

BIRD> Initialize Memory Using locs

7.7. Using the Help command

A large number of on-line help files come with the BIRD program. The goal is to allow
any user questions to be answered on the spot, without having to consult this manual.

The simplest use of the Help command is to just type "help” followed by the top-level com-
mand name. For example, we could get help on the Plot command:

BIRD> Help plot
BIRD> Help Plot
PLOT [Address | Array | Data-File | Memory | Plot-File | Self-Array |
Weather-Item]

The PLOT command is used to create or display information best shown

- 18- BIRD Reference Manual

as a graph.

The help file for the Plot command tells you a few things about the command, and also
gives you the acceptable arguments for the command.

However, many commands have a command structure that goes down many layers. This
command allows you to follow all keyword arguments by giving multiple arguments to the Help
command. Thus, from looking at the Plot help file, we may see the argument Address; we can
now get more help on the Plot Address command:

BIRD> Help Plot Address
PLOT ADDRESS <address> <array> {Distances | Integrated-Distances | Both}

This command plots the distribution of distances between the given
address and the addresses in the given array. You can plot the distance
distribution, the integration of the distance distribution, or both.

It creates the files Address-info.data and Address-info.plot.
If possible, it displays the created plot file.

Example:

BIRD> Plot Address 1010- W Distances ; This plots the distance from
: 10101010... to each weather address

Thus, typing Help Plot Address got us a blurb on the command, and an example of its use.
Such use of the Help command can reduce the need to reference this manual, and speed the leamn-
ing of the BIRD program syntax.

Finally, some special topics not associated specifically with any one command are avail-
able by typing Help On-Topic <topic-name>.

7.8. Using the initialization file .birdrc and the Input File command

Often, the user begins a program run by typing a number of initialization commands. For
example, a certain memory size might be a preferable default for your uses, and so you start by
typing a sequence of Set Default commands. This process can be automated by using the file ".bir-
drc".

When started, the BIRD program looks for two files, in sequence, until it finds one that ex-
ists: ".birdrc", then "birdrc". If it finds a file, it assumes that it is a file of BIRD commands. It
executes these commands before it displays the first prompt.

For example, my .birdrc file looks like this:

Set Default Address-Size 256
Set Default Data-Size 1

BIRD Reference Manual -19-

Set Default Type-of-addressing Area
Set Random Seed 333
Set Random Address-Seed 444

The first two commands set the default size of the memory. The third line makes the default
for the memory to use area-based addressing. The last two lines set the random number generators
to always given the same sequence, which aids in debugging.

Tt also is possible to create a file of BIRD commands and to execute them on demand, using
the Input File command. :

Input File <oldfile> {Verbosely | Silently}

This command assumes that the given file name is a file of BIRD commands. It opens the
file and executes the commands until it reaches end of file.

The default is to show you the commands as they are executed. If you specify the second
argument as Silently, the commands are not shown, though any output that the commands generate
is still shown.

Appendix B contains a number of script files that can be executed in this fashion. The
BIRD source directory contains these files as scriptl.incl, script2.incl, etc.

8. Advanced operation of the BIRD program

While the commands of the previous chapter allow the user some access to a memory, to
run a full range of experiments the user needs to have a wider selection of commands. As a re-
search tool, the BIRD program has grown enormously over the past year, and many of the ad-
vanced commands were added in response to a real experimental need. They are not always sim-
ple, but much effort was made to integrate them cleanly into the system, and to make their syntax
obvious.

This chapter of the manual is composed of a number of sections. In each section, I assume
that the reader has familiarity with material that was covered in previous sections, and has little
familiarity with material that has not yet been presented. Thus, while not required, I encourage you
to at least skim the earlier sections before jumping to a later topic that may interest you.

I have always disliked having to drop down into source code level to run my experiments;
many of the features to be described are meant to bring the power of that level up to the user, so
that simple experiments no longer require expertise in the "C" programming language or an under-
standing of the internals of the BIRD program, the Connection Machine, or of the Stanford hard-
ware.

For your convenience, I offer a thumbnail sketch of each of the sections contained in this
chapter:

-20- BIRD Reference Manual

8.1. Arithmetic operations: variables, assignment, and functions

This chapter discusses the creation and use of integer variables, and how to use simple
arithmetic functions contained in the BIRD program. The use of variables is key to writing com-
mand scripts for the running of experiments.

8.2 Iteration and control commands

This chapter discusses the primitives available for iteration and control. Combined with
variables, these commands give the BIRD command language enough power to be able to avoid
writing code on the "C" level and having to integrate it into the BIRD source code.

8.3 Address tags and address arrays

The concept of "address" appears again and again when manipulating memories. I created
a symbolic representation for an address, called an address tag, and a similar form for arrays of
addresses. These address tags are much like variables; they can be created, assigned, and used in
any place where an address is valid.

8.4 K nearest neighbor searches

Kanerva’s sparse distributed memory is related to another scheme of associative memory
called "K nearest neighbor" searching. Because it is common to compare the performance of new-
er associative memories with K nearest neighbor memories, I included K nearest neighbor style
memories in the BIRD program. The mothod is to load the array of addresses into a SDM memory,
with the memory read type (set using Set Default Read-From) set to use the associated array. The
memory is set to area-based addressing (using the Set Memory Type-Of-Addressing Area) with
a desired area of K (set using Set Memory Area).

I have not yet rewritten this section of the manual after my wholesale revision of how K
nearest neighbor searches are done in the program.

8.5 Definition of new commands

A limited capability to define new commands is given. Another section of the program still
under development, though what is there should work rather well.

8.6 Operating system calls: Bug and Exec
A few commands don’t fit into other categories well, and operating system calls are among
this group. A quick round-up of some random operating system calls that are accessible through

the BIRD command level.

8.7 Plotting information

BIRD Reference Manual -21-

I usually prefer to see my information graphically. this is especially important when one is
dealing with large amounts of statistically-based data. Thus, the BIRD program contains hooks for
interfacing with a number of plotting programs.

8.8 Genetic recombination

There has been much recent interest in combining neural-network approaches with a class
of algorithms known as Genetic Algorithms. This section of the BIRD program is the most exper-
imental, and the user is advised to stay away from it unless they are ready to start playing with "C"
source code internals, as many of these commands are still under development and have bugs. If
you are interested, however, you should read my paper in the Proceedings of the 1989 Neural In-
formation Processing Systems Conference.

8.1. Arithmetic operations: variables, assignment, and functions

To run experiments using the BIRD program, it is very useful to be able to do some simple
arithmetic operations. To give the user this capability, the BIRD program includes commands
which allow integer variables to be created, some simple arithmetic operations, and the assignment
and testing of variables. These features (with the exception of testing, which will be discussed in
a following section on Control) will be discussed in this section.

8.1.1. Integer variables

Variables in the BIRD program are denoted by a string name proceeded with the dollar sign
"$". The program comes with the variables "$1", "$2", ..., "$9", and "$10" already created. These
variables can be used in nearly any place where an integer value is legal. For example:

BIRD> Show Variable $5

Valueis 112

BIRD> Set Memory Radius $5
BIRD> Address 1010-

Selected 24 locations, radius used was 112

In this example, we set the memory radius not to a number, but to the value of the variable
"$5||.

We can assign the value of a variable using the Assign Variable command:
BIRD> Assign Variable $5 3333

BIRD> Show Variable $5

Value is 3333

Assign Variable <variable> [<function> | <variable> | <number>)

This command assigns the variable to the value of the given number, variable, or function.

-22- BIRD Reference Manual

(The legal functions will be presented in the following section.)

While 10 variables are useful, users may wish to create their own variables, either because
they need more than 10, or because they wish to give the variables more descriptive names. You
can create variables using the Create Variable command:

Create Variable <variable> [<function> | <variable> | <number>]

This command creates a new variable of the given name. For example, we could rewrite
the above example to be more descriptive: -

BIRD> Create Variable $Radius 112

BIRD> Set Memory Radius $Radius

BIRD> Address 1010-

Selected 24 locations, radius used was 112

As shown above, you can see the value of any variable using the Show Variable command:
Show Variable [<function> | <variable> | <number>]

For example:

BIRD> Show Variable SRadius
Valueis 112

If a variable that has not been created is given to this command, the value "0" is printed.
This is a widespread practice; using a variable that has not been defined is not an error, but uses

the value zero. This is true for all commands except assignment; it is an error to try to assign the
value of a variable that does not exist. For example:

BIRD> Assign Variable $never-created 12345
Not a variable: $never-created

We can delete variables using the Delete Variable command:

Delete Variable <variable>

This command deletes the given variable name from its table of variables. Variables are
fairly inexpensive to keep around, so you shouldn’t need to worry about this command unless you
are used to cleaning up after yourself.

(Some system-created variables are undeletable; the system will signal an error and refuse
to delete them if you try.)

We can get a list of all the defined variables using the Show All Variables command:

BIRD Reference Manual -23-

Show All Variables
This command prints a list of all currently defined variables and their current value:

BIRD> Show All Variables

$NUMBER-OF-WRITES: 0, $TOTAL-NUMBER-OF-WRITES: 0,
$DISTANCE: 0, $SGENETIC-DONE: 0, SLOCATION-SELECTED: 0,
$SUNWEIGHTED-DISTANCE: 0, $LOCATION-DISTANCE: 0,
$GENETIC-FAILED: 0, $GENETIC-OK: 0, SLOCATION-AVG-VOTE: 0,
$BAD: 0, $GOOD2: 0, $GOOD1: 0, SLOCATION-RADIUS: 0,
$SELECT-COUNT: 24, $SDM-RADIUS: 111,

$PROGRAM-ID: 649180109, $LOCATION-BIRTHDATE: 0,
$LOCATION-WEIGHT: 0

Finally, we can do two other operation with variables, called pushing and popping.
Push Variable <variable> [<function> | <variable>| <number>)

Pop Variable {<variable>} {<variable>} {<variable>} {<variable>} (<variable>} {<vari-
able>) (<variable>} {<variable>)} {<variable>} {<variable>}

The Push Variable command pushes a new value onto the given variable name; future ref-
erences to that variable will use that new variable. However, the old value is retained, and is re-
stored when the Pop Variable command is given. These commands are useful when you wish to
use a variable, but are not sure if other routines have already assigned its value. '

The Pop Variable command can take up to 9 variables to pop.

Variable pushing and popping is mostly used in script files to avoid smashing the values of
variable between script files.

8.1.2. Arithmetic functions

The previous section showed how to create and manipulate variable. To get full use of
these variables, however, it is necessary to be able to perform simple arithmetic operations on vari-
ables and numbers. The BIRD program contains some commands which allow simple arithmetic
operations; these commands are available anywhere the command accepts the <function> token.
Wherever this token is legal, any of the following list of commands is legal:

" <Function>: {Not} [Address-Size | Array-Size | Count | Distance | EQ | NEQ |

GT ! GE|LT | LE | If-Undefined | Location-Selected | Minus | Mod | Not |
Plus | Quotient | Random | Real-Index | Same | Selected-Location | Times |
Variable-Exists | <number> | <variable>]

Some commands which accept an argument of an integer value allow simple mathematical

-24 - BIRD Reference Manual

functions to be given. For example, Assign Variable allows the variable to be assigned to the val-
ue of a function:

BIRD> Assign Variable $ARF Plus $Dog SBone
BIRD> Echo SUM: $Dog "plus” $Bone "equals" SArf
SUM: 11 plus 22 equals 33

Another example is the creation of a new variable:
BIRD> Create Variable $NewArf Plus $arf 10

The ability to perform simple arithmetic, when combined with simple control constructs
such as If and Do (see following section for a description of Control), allows the user to write com-
mand scripts directly to the BIRD command interpreter, without having recode program internals.

The following is a simple explanation of the possible functions:

Not [<function> | <variable> | <number>] returns "0" if the argument has a non-zero value, and
returns "1" otherwise.

BIRD> Assign Variable $1 Not Equal 333 444
BIRD> Show Variable $1

Valueis 1

BIRD> Assign Variable $1 Not EQ 333 333
BIRD> Show Variable $1

Valueis 0

Address-Size <address> returns the number of elements in the given address.

BIRD> Create Memory Aardvark 256 256

Memory Aardvark, 100000 locations, size 256/256, on Connection Machine
BIRD> Address 11110000~

Selected 376 locations, desired 350, radius used was 102
BIRD>Print A

Address:

1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000
1111000011110000 1111000011110000 1111000011110000 1111000011110000

Bitcount: 1:128 0:128

BIRD> Assign Variable $ASize Address-Size A
BIRD> Show Variable $Asize

Value is 256

In this example, we create a memory and address it. The tag "A" contains a copy of the

BIRD Reference Manual -25-

address we used. We assign the variable $ASize to the size of this address. This may be useful if
we have multiple memories of different sizes, and need to change our commands depending on the
address size.

Array-Size <address-array> returns the number of addresses in the given address array.

For example, the array "L" (L1, L2, etc) is the size of the number of memory locations. We
can test:

BIRD> Create Memory Aardvark 256 256

Memory Aardvark, 100000 locations, size 256/256, on Connection Machine
BIRD> Assign Address $1 Array-Size L

BIRD> Show Variable EQ $1 100000

Valueis 1

In this example, we create a memory,'and then assign variable "$1" to the size of L. This
should be equal to the number of locations in the memory; we test that in the final statement, and
it returns "1" (true).

Count <address> returns a count of the number of non-zero elements in the given address.

The Count keyword is useful for counting bits. Here is an example (which admittedly uses
some commands we haven’t seen yet):

BIRD> Create Address AAA 256 Bit
BIRD> Create Address BBB 256 Bit
BIRD> Create Address CCC 256 Bit
BIRD> Assign Address AAA Z

BIRD> Assign Address BBB Z

BIRD> Assign Address CCC XOR AAA BBB
BIRD> Show Variable Count CCC

Value is 123

In this example, we create three 256-bit binary addresses, AAA, BBB, and CCC. We as-
sign the first two addresses to random values, then assign the last to the XOR of the first two. We
can then count the number of bit positions at which AAA and BBB differ. A more direct way of
doing this example would have been to use the Distance keyword:

Distance <addrl> <addr2> returns the L1 distance between the addresses. (For binary addresses,
this is the Hamming distance.)

BIRD> Create Address AAA 256 Bit
BIRD> Create Address BBB 256 Bit
BIRD> Assign Address AAA Z

BIRD> Assign Address BBB Z

BIRD> Show Variable Distance AAA BBB

-26-

BIRD Reference Manual

Value is 123

In this example, we create two addresses, and set them to random values. We can then cal-

culate the distance between them.

EQ [<variablel>| <number>] [<variable2> | <number>]
NEQ [<variablel>| <number>] [<variable2>] <number>]
GT [<variablel> | <number>] [<variable2> | <number>]
GE [<variable]l> | <number>] [<variable2> | <number>]
LT [<variablel> | <number>] [<variable2> | <number>]

LE [<variablel> | <number>] [<variable2>| <number>]
Minus [<variablel> | <number>] [<variable2> | <number>]
Plus [<variablel> | <number>] [<variable2> | <number>)
Quotient [<variablel> | <number>] [<variable2> | <number>]
Times [<variablel> | <number>] [<variable2> | <number>]
Mod [<variablel>| <number>] [<variable2> | <number>]

A large block of functions involve simple arithmetic operations on integer arguments. I
won’t go into detailed explanations of these keywords; suffice it to say that each of them returns
the “‘obvious’’ value from a computation on its arguments. A simple example is:

BIRD> Assign Variable $ARF Plus $Dog $Bone
BIRD> Echo SUM: $Dog "plus" $Bone "equals" SArf
SUM: 11 plus 22 equals 33

If-Undefined <variable1> <variable2> returns the value of <variablel> if it is undefined; else, it
returns the value of <variable2>.

This keyword is most useful in script files. Arguments are given to scripts through integer
variables; it is often useful to have the equivalent of "optional” arguments that some languages
support. This command allows that; for example, let’s say we wish to use a variable "$Size", and
to have it default to a value of 1000 if it was not defined previously:

BIRD> Create Variable $Size If-Undefined 1000 $Size

This command creates a variable $Size; if the variable already existed, it is simply assigned
to its previous value, else it is initialized to 1000.

This command is especially useful with the Push Variable command.

Location-Selected [<variable> | <number>] returns 1 if the given location is selected in the current
memory, and 0 otherwise.

BIRD> Address 11110000-
Selected 376 locations, desired 350, radius used was 102
BIRD> If Location-Selected 10

BIRD Reference Manual -27-

BIRD> Echo "Location 10 was selected"
BIRD> End

Random [<variable> | <number>] returns a number in the range [0, <variable>).
Sometimes randomness can be useful.

BIRD> Show Variable Random 10
Valueis 3

BIRD> Show Variable Random 10
Valueis 9)

BIRD> Show Variable Random 10
Valueis 1

(Of course, this command sequence would have been easier to write using the DoTimes
command, which will be explained in a following section:)

BIRD> DoTimes 3

DOTIMES> Show Variable Random 10
DOTIMES> End

Valueis 3

Valueis 9

Valueis 1

Real-Index <array-element> returns the physical index of the array element, ignoring any reorder-
ing which have taken place.

This keyword isn’t very useful to anyone other than real hackers. As we reorder arrays and
create array aliases, it is sometimes useful to be able to access the physical index of an array in a
file. This command allows that.

Same <address1> <address2> returns "1" if the addresses are the same, and "0" otherwise.

This keyword tests for the identicalness of the two addresses. Useful with control state-
ments such as If; we can make a block of commands conditional on the equality (or nonequality,
if proceeded with Not) of two addresses.

Selected-Location [<variable> | <number>] returns the index of the <number>th selected loca-
tion.

This is used to walk-through the list of selected locations. The first selected loca-
tion is index 1. For example:

BIRD> Address 11110000-
Selected 2 locations, desired 3, radius used was 102
BIRD> Show Selected

-28- BIRD Reference Manual

Format is; index <distance>

565 <102>, 864 <102>

BIRD> Show Variable Selected-Location 1
Value is 565

BIRD> Show Variable Selected-Location 2
Value is 864

Variable-Exists <variable> returns "1" if the variable name has been defined, and "0" otherwise.

This command is related to the If-Undefined keyword. It similarly tests for the existence
of variables; for variables with more complex initialization routines, this keyword, combined with
a control statement such as If, can make a block of command conditional on the existence or non-

existence of a variable.

8.2. Iteration and control commands

Iteration (the execution of a command sequence a number of times) and control (the option-
al execution of commands) are essential if the BIRD interface is to be general enough to allow the
user to perform useful experiments. The BIRD interface has four such commands: Do, DoTimes,

If, and While.

These commands differ from most other commands in that they take more than one line to
fully specify. For each one, after the initial command line is typed, the user is prompted for a set
of syntactically-correct command lines, which are not executed, but are stored. The user completes
the input of command lines with the End command. It is only at this point that the command se-
quence is executed.

DoTimes [<number>| <variable>]

The simplest command of this class is DoTimes; it simply repeats the execution of a given
block of commands a given number of times:

BIRD>Dotimes 3
DOTIMES> Echo "ARF!"
DOTIMES> End

ARF!

ARF!

ARF!

This command illustrates the basic features of this class of commands. First, the DoTimes
command is entered, which places the user into command-input mode. This mode change is made
apparent to the user by a change of prompt to DOTIMES>. Next, the user inputs a command se-
quence, in this case, the single Echo command, then terminates the input with an End command.
At this point the command is executed the given number of times.

BIRD Reference Manual -29.-

Do <do-variable> {<start> | <variable>} {<end>|<variable>} {<step>| <variable>}

A more complex iteration command is the Do command. Itrepeatedly executes a block of
commands, but also assigns a variable to a new value for each iteration.

The do variable is the name of a currently existing variable. The next argument is the start-
ing value of the do variable; if not given, this defaults to "1". The next argument is the final value
of the do variable; when the iteration results in a variable value over this number, the command
finishes. This value defaults to "1" if not given. The final argument is the step size, which is the
amount by which the do variable is incremented each step. The value defaults to "1" if not given.

For example, we could have rewritten the command sequence given in the DoTimes expla-
nation by having it print the iteration number:

BIRD>Do $1 1 3
DO>Echo "ARF: " $1
DO> End

ARF: 1

ARF:2

ARF: 3

The Do command is useful for manipulating address arrays. If an array name ends with the
name of an integer variable, the variable is replaced by its value. For example, we could write a
memories own location addresses to itself:

BIRD> Create Variable $NOL Array-Size L
BIRD>Do $1 1 $NOL

DO> Address L$S1

DO>Write L$1

DO> End

[Print out of each addressing operation follows]

In this sequence, "L$1" is replaced each step by the value of "$1"; for example, if the value
of "$1" is 123, then "L$1" is equivalent to L123, which is the address of the 123rd memory loca-
tion.

This issue is discussed more in the section on Address Tags and Address Arrays.

If [<function> | <variable> | <number>]

This command is used to conditionalize a sequence of commands. "True" is defined as a

non-zero value, and "false” a zero value. Thus, "If 1" always executes its block of commands, and

"If 0" never executes its block of commands.

For an example of the use of this command, we may wish to print out a message whenever
the read address (kept in the address tag "R") and the written address:

-30- BIRD Reference Manual

BIRD> If Not Same R 1010-
IF> Echo "The addresses are not the same"

IF> End

Itis also possible to use the Else command to separate the block of commands into two sec-
tions, the first of which is executed if the condition is true, and the second executed if the condition

is false.

Else

The else command is only legal inside of an If command block. For example:

BIRD> If Same R 1010-
IF> Echo "The addresses are the same™

IF>Else
IF> Echo "The addresses are not the same"”

IF> End

This sequence of command will print out a message every time it is executed, but the mes-
sage printed will vary depending on whether the addresses are the same or not.

While [<function> | <variable>| <number>]

Finally, we have a command which executes its block as long as the test is true (non-zero).
For example, we may wish to write an address to the memory was long as reading the address does
not result in the written address:

BIRD> Read

BIRD>wWhile Not Same R 1010-
WHILE> Write 1010-

WHILE> Read

WHILE> End

8.3. Addresses, address tags and address arrays

Many commands in the BIRD program require an address; to this end, the program has
methods for creating, inputting, and manipulating addresses. This section will discuss the use of

addresses, address tags, and address arrays.

Most important to the user is the ability to specify an address in a command. For example,
assuming a memory has been created, the user may wish to do an Address command to the mem-

ory.

The simplest form of inputting an address requires that the user type in a string of the char-

BIRD Reference Manual -31-

acters "0" and "1". If the memory requires 32 bit input addresses, we could given the command:

BIRD> Address 10101010101010101010101010101010
Selected 15 locations, radius used was 12

In this case, we typed out the full 32 character string. However, the input routines recog-
nize the character "-" as a signal for recursion: reading continues at the beginning of the string.
Thus, the above example is equivalent to:

BIRD> Address 10-
Selected 15 locations, radius used was 12

All addresses are implicitly padded with zeroes at the end; that is, if there are not enough
characters to complete the address, the remaining bits are loaded with "0" bits. -

8.3.1. Address tags

It would be tiring to always refer to addresses by their full typed expansion. Thus, the
BIRD program contains alphanumeric "tags" which represent addresses. It is also possible to cre-
ate new "tags" using the Create Address command. For example, we could have written the ex-
ample in the previous section using the Create Address and Assign Address commands.

Create Address <name> [<address-size> | <variable>)
{Bit-Addresses | Float-Addresses}

This command creates an address tag of the size and type. In the future, you can use the
tag name in any command that requires an address.

Assign Address <destination-address> [<address-op> | <address>]

This command assigns the destination address to the value of the source address or the giv-
en operation. (The definition of legal address operation is given later this chapter.)

Given these two commands, we can now write:

BIRD> Create Address AAA 32 Bit-Address
BIRD> Assign Address AAA 1010-

BIRD> Address AAA

Selected 15 locations, radius used was 12

In this case, we created a new address tag named AAA, assigned a value to it, then used
that tag to address the memory.

The BIRD program also contains several built-in address tags, which are automatically cre-
ated by the program: o

-32- BIRD Reference Manual

"A" refers to the last address used to address the memory. For example, after the previous
example, the tag A would contain the value 10101010101010101010101010101010.

"R" refers to the last address read from the memory.
"W" refers to the last address written to the memory
"M" refers to the current input mask for the current memory.

wzv. returns a random address with no dont-care bits. Each reference using "Z" returns a
different random address.

8.3.2. Address arrays

Some address come naturally in the form of arrays rather than individually. For example,
the location addresses of a memory can be best considered as an array of addresses. The BIRD
program allows the manipulation of arrays, both as individual elements and as blocks.

Create Array <array-name> <oldfile>
Create Array <array-name> [<array-length> | <variable>] [<address-size> | <variable>]
{Bit-Addresses | Float-Addresses}

This first command creates an array using the addresses in the given file. The addresses are
not read into the memory; instead, a list of pointers to the addresses is kept, and the addresses are
read in as needed. This allows the system to deal with very large databases of addresses, at a price
of some speed.

The second command create an array in memory with the given number of addresses in it.
While more memory-consumptive, this array is faster to access; for arrays that will be used a lot,
you may wish to transfer them into an internal array by copying using the Assign Array command.

Assign Array <address-array> <source-address-array> {<start>| <variable>}
{* | <end> | <variable>)

This command is used to assign a block of addresses from one array to another. The com-
mand tries to copy as many addresses as it can; the user can limit the range of addresses in the
source array by giving a start and end index.

For example, if we had two arrays, an internal array named INTERNAL and a file array
named TEST, we could copy from the file array to the internal array:

BIRD> Assign Array INTERNAL TEST
Copied 1024 addresses

It is also possible to assign only a range of addresses:

BIRD Reference Manual -33-

BIRD> Assign Array INTERNAL TEST 100 199
Copied 100 addresses

The BIRD program also contains several built-in address arrays, which are automatically
created by the program:

"L" followed by a number, such as "L100", refers to the address of the corresponding mem-
ory location. (Locations are numbered starting at 1.

"Z" followed by a single-digit number, such as "Z5", returns a random address with no
dont-care bits. Each reference returns the same random address.

When a memory is created, the memory name can be used to reference the location address-
es of that memory. (If the name is already taken, a new name is given to that memory’s
location addresses.) For example, if we had typed Create Memory ARF, then we could
use "ARF10" to refer to the tenth memory location address.

If the Darwin weather data is included in your BIRD release, then two additional address
arrays are defined:

"W" followed by a number, such as "W2345", returns a weather state from the Darwin
weather file, coded into a 256-bit address. (Note that "W" with no trailing number is a dif-
ferent type of address, namely the last address written to the memory.)

"R" followed by a number, such as "W2345", returns rain information from the Darwin
weather file, coded into a 1-bit address. The bitis "1" if it rained during that weather period,
and "0" otherwise. (Note that "R" with no trailing number is a different type of address,
namely the last address read from the memory.)

8.3.3. Address operations

The previous section showed how to create and manipulate addresses and address arrays.
To get full use of these addresses, however, it is necessary to be able to perform simple address
operations on them. The BIRD program contains some commands which allow simple address op-
erations; these commands are available anywhere the command accepts the <address-op> token.
Wherever this token is legal, any of the following list of commands is legal:

<address-op>: [And | Coords | Cross | Mutate | Not | Or | Random | Xor | <address>]

Some commands which accept an argument of an address allow these address operations
to be given. For example, Assign Address allows the address to be assigned to the value of an
address operation:

BIRD> Assign Address ARF XOR DOG 10101010-
BIRD> Echo "The XOR of BOG and 101010- is"
BIRD> Print ARF

-34 - BIRD Reference Manual

Address:

1011010001111110 0110101000001101 1011101010110000 1000110001011011
0001010101010000 1110001111011111 0011111001111101 0010100000000110
0011100010001110 1111111001011011 1000011011101011 0110000100110110
1001001111101101 0111010110010000 1111100101110001 1000100000010000

Bit count: 1:130 0:126
The following is a simple explanation of the possible address operations:

And <address-1> <address-2> returns the boolean AND of the given addresses. If the addresses
are float addresses, it returns the MIN of the addresses.

Coords [<number> | <variable>] returns an address which contains exactly number bits "1" and
the remainder "0"..

Cross <address-1> <address-2> returns a crossover between the two addresses.

Mutate <address-1> [<number>| <variable>] returns a copy of the first address with number bits
mutated.

Not <address-1> returns the boolean NOT of the first address. If the address is a float address, it
returns an address with each bit having the value (1.0 - b) of the original address..

Or <address-1> <address-2> returns the boolean OR of the given addresses. If the addresses are
float addresses, it returns the MAX of the addresses.

Random returns a random address.

Xor <address-1> <address-2> returns the boolean XOR of the given addresses. If the addresses
are float addresses, I’m not sure what I do, perhaps average.

8.3.4. Using dont-care bits

If the string contains only "0", "1", and "*" characters, it is read as a series of binary digits.
The "*" character is called a dont-care bit, in a Hamming-distance calculation, it matches either a
Oora 1. If the string ends before the expected address size is reached, the remainder of the address
is filled with "0" bits. For example, we could address a 32-bit memory while ignoring the first 6

bits:

BIRD> Address **x*x%*%x10101010101010101010101010
Selected 345 locations, radius used was 12

Dont-care bits in the address are equivalent to a one-time input mask.

Of course, since the dont-care bits always match, you need to reduce the radius to avoid

BIRD Reference Manual -35-

selecting too many locations. The easiest way to use dont-care bits is to set the memory for area-
addressing: that is, to select a radius automatically to give the proper number of selected locations.
In the previous example, we selected too many locations. It would have worked better if we had
set the memory to area addressing:

BIRD> Set Memory Type-0Of-Addressing Area

BIRD> Set Memory Area 15

BIRD> Address *****x*10101010101010101010101010
Selected 10 locations, desired 15, radius used was 9

8.4. K nearest neighbor searches
(This section not yet written.)
8.5 Definition of new commands

As BIRD developed, I found myself creating command files which performed specific
functions. For example, I wanted a command that would fill a memory with a given number of
random addresses. Tiring rather quickly of constantly using the Input File command to input this
sequence of commands, I created the Define command to allow the definition of new top-level
command sequences.

Define <name> {Variable <variable>} {Variable <variable>} {Variable <variable>
{Variable <variable>} {Variable <variable>} {Variable <variable>}
{Variable <variable>)} {Variable <variable>} {Variable <variable>}

This command is used to define new top-level commands. The arguments allowed are cur-
rently all variables; when the command is given by the user, the user’s arguments are bound to
these variables, then the command is executed.

It is usually more efficient to define a command rather than to constantly use the Input File
command.

For example, we could create the Fill command, which writes a given number of random
data patterns into the memory at random locations:

BIRD>Define Fill Variable $How-Many
DEFINE> Dotimes $How-Many

DOTIMES2> Address Z Silently
DOTIMES2>Write 2

DOTIMES2> End

DEFINE> End

At this point, the Fill command is defined. We can now fill the memory with a given num-
ber of patterns with:

-36- BIRD Reference Manual

BIRD>Fill 100

You can see all command definitions using the Show All Definitions command. You can
see a specific definition using the Show Definition command.

Show All Definitions

This command shows all commands defined with the Define command. For a more de-
tailed description of an individual definition, use the Show Definition command.

BIRD> Show All Definitions
There is 1 command defined.
Define FILL Variable $How-Many

Show Definition {<command-name>}

This command shows the definition for the given command, if the command was previous-
ly defined using the Define commands. For example:

BIRD> Show Definition Fill
Define FILL Variable $How-Many
DoTimes $How-Many
Address Z Silently
Write Z
End
End

Finally, we can delete obsolete command using the Delete Definition command:
Delete Definition <defined-command>

This command deletes the given defined command from the system. The command must
have been previously created using the Define command.

8.6 Operating system calls: Bug and Exec

The BIRD program contains some commands that call operating systemroutines. The most
important of these commands is Bug, which sends bug reports:

Bug

This command is used to send a bug report. Please include in the bug report all the infor-
mation needed to reproduce the bug, along with the version numbers and site of your BIRD pro-

gram.

BIRD Reference Manual -37-

BIRD> bug

Executing: /usr/ucb/mail -s "Bug report for BIRD" drogers@riacs.edu

Please type in the problem:

In BIRD version 3.0, on host brain.damaged.edu, the following
command sequence caused the program to crash:

Set default number-of-locations 999
Create memory test-memory 257 257
Output location-addr file.mem hex

Signed,

A. User
user@brain.damaged.edu
AD

EOT

Mail sent OK

The user is encouraged to send bug reports whenever any issue, big or small, arises con-
cerning the BIRD program. We will try to quickly fix and send patches for any bugs we find in the
BIRD program sources.

We also appreciate solutions to bugs found by more advanced users who find problems in-
side the source code. The more sharing of problems and solutions we do, the better this public-

domain program will be!

The BIRD program also contains methods for executing UNIX programs, or getting to the
UNIX shell:

Exec Program <string>

This command tries to execute the given program name. When completed, the user is re-
turned to the BIRD program.

BIRD> Exec Program date
Wed Jan 3 16:10:13 PST 1990

Exec UNIX

This command starts off a UNIX shell and leaves the user there. Upon exiting that shell,
the user is returned to the BIRD program.

8.7 Plotting information
This section not yet completed.

8.8 Genetic recombination

-38-

BIRD Reference Manual

This section not yet completed.

BIRD Reference Manual -39-

-40 - BIRD Reference Manual

PRECEDING PAGE BLANK NOT FILMED
APPENDIX A: Alphabetical list of BIRD commands

Abort

The Abort command is used to abort out of a block of input from Define, Do, DoTimes,
If, and While, without executing any commands. It is for the occurrence that you change your
mind after initiating a block of input.

BIRD> DoTimes 1000
DOTIMES> Address Z ; oops... changed my mind here...

DOTIMES> Abort
7No commands to execute in DOTIMES statement

Address <address> {Verbosely | Silently}

The Address command takes two arguments: an address, and an optional keyword. The
address is mandatory, and changes the state of the memory. It selects a number of memory loca-
tions, which are then active for future Read and Write operations.

The second argument to Address is optional; it determines whether the command will print
out helpful information about the addressing operation when completed. The default is for that in-
formation to be given.

BIRD> Address 1010-
Selected 19 locations, radius used was 111

Assign [Address | Array | Variable]

This command is used to assign the value of predefined objects: address tags, address ar-
rays, or integer variables. See the specific help for the given type of assignment for more details.

Assign Address <destination-address> [<address-op> | <address>]

This command assigns the destination address to the value of the source address or the giv-
en operation.

For help on the available address operation, type Help On-Topic Address-Op.

For example, we could assign the value of the previously created address TEST-X by giv-
ing the command:

BIRD> Assign Address Test-X 1010-
We could also assign the value of the address using an address operation:

BIRD> Assign Address Test-X XOR Test-Y Test-2Z

BRI

BIRD Reference Manual -41 -

In this case, Test-X is assign to a value which is the XOR of the addresses Test-Y and Test-

You can delete a created address using the Delete Address command.

Assign Array <address-array> <source-address-array> {<start>| <variable>}
{* | <end> | <variable>}

This command is used to assign a block of addresses from one array to another. The com-
mand tries to copy as many addresses as it can; the user can limit the range of addresses in the

source array by giving a start and end index.

For example, if we had two arrays, an internal array named INTERNAL and a file array
named TEST, we could copy from the file array to the internal array:

BIRD> Assign Array INTERNAL TEST
Copied 1024 addresses

It is also possible to assign only a range of addresses:

BIRD> Assign Array INTERNAL TEST 100 199
Copied 100 addresses

Finally, we can start the block copy into a place inside the destination array, by giving the
index of the starting position in the destination array name:

BIRD> Assign Array INTERNAL100 TEST
Copied 924 addresses

In this case, the first address of TEST was copied into the 100th address of INTERNAL,
and so on.

Assign Variable <variable> [<function> | <variable> | <number>]
This command assigns the variable to the value of the given number, variable, or function.
For help on the available functions, type Help On-Topic Functions.
For example, we could assign the value of the variable "$1" by typing the command:
BIRD> Assign Variable $1 333
Or we could assign the value of the variable to a function result:

BIRD> Assign Variable $1 Plus $2 $3

-42. BIRD Reference Manual

You can delete a created variable using the Delete Variable command.
Bug

This command is used to send a bug report. Please include in the bug report all the infor-
mation needed to reproduce the bug, along with the version number and site of your BIRD pro-

gram.

BIRD> bug

Executing: /usr/ucb/mail -s "Bug report for BIRD" drogers@riacs.edu

Please type in the problem:

In BIRD version 3.0, on host brain.damaged.edu, the following

command sequence caused the program to crash:

Set default number-of-locations 999
Create memory test-memory 257 257
Output location-addr file.mem hex

Signed,

A. User
user@brain.damaged.edu
AD

EOT

Mail sent OK

Clear [Addresses | Data | Folds | History | Location]

This command clears things. Clear Addresses resets the address in the memory. Clear
Data clears out all data written to the memory. Clear Folds is not yet implemented. Clear His-
tory clears out the history list in a memory. See the specific help for the given clear command
for more details.

Clear Addresses

This command restores the addresses of the current memory, erasing any changes that oc-
curred since creation.

Clear Data

This clears the current memory of all data, this is, makes it appear that the memory never
had anything written into it.

Clear Folds

(Not yet implemented in BIRD 3.0).

BIRD Reference Manual -43 -

Clear History

This command clears the history list of the given memory.
Clear Location [<variable> | <location-index>]

This command clears the given location, that is, makes it appear as if it was never written to.
Create [Address | Alias | Array | Memory | State-File | Variable]

This command is used to create objects in the BIRD environment, which can then be ma-
nipulated by other BIRD commands. See the specific help for the given type of creation for more
details.

Create Address <name> [<address-size> | <variable>]
{Bit-Addresses | Float-Addresses}

This command creates an address tag of the size and type. In the future, you can use the
tag name in any command that requires an address. For example, we could create an address of
size 256 bits, assign it to a random sequence of bits, and then use it to address the memory:

BIRD> Create Address TEMP 256 Bit
BIRD> Assign Address TEMP 2

BIRD> Address TEMP

Selected 19 locations, radius used was 111

Create Alias <alias-name> <address-array> {<start>| <variable>}
{* | <end> | <variable>}

This command is used to create new names for previously defined address arrays. The alias
array can be of smaller size than the original array, and can "capture” the current ordering of the

source address array.

For example, we may have a script that uses the array ADDR to denote memory addresses.
If we have a currently defined array TEST that we wish to use in the script, we could create ADDR
as an alias of TEST:

BIRD> Create Alias ADDR TEST

We could also have created ADDR to be some subset of TEST:

BIRD> Create Alias ADDR TEST 1 100

Array aliasing has another feature, which is that is captures the current ordering of a source
array. For example, assume that we had randomly ordered TEST, and then created the alias

-44 - BIRD Reference Manual

ADDR, then again reordered, and created an alias :

BIRD> Reorder TEST Randomly
BIRD> Create Alias ADDR-A TEST
BIRD> Reorder TEST Randomly
BIRD> Create Alias ADDR-B TEST

In this case, the arrays ADDR-A and ADDR-B will contain the same addresses, but in dif-
ferent orderings.

The Reorder command can also be used to reorder alias arrays; restoring their order to -
their Original-Order restores the order to the order at the time of their creation.

Aliases can be deleted with the Delete Array command.

Create Array <array-name> <oldfile>
Create Array <array-name> [<array-length> | <variable>] [<address-size> | <variable>]
(Bit-Addresses | Float-Addresses}

This first command creates an array using the addresses in the given file. The addresses are
not read into the memory; instead, a list of pointers to the addresses is kept, and the addresses are
read in as needed. This allows the system to deal with very large databases of addresses, ata price
of some speed.

The second command create an array in memory with the given number of addresses in it.
While more memory-consumptive, this array is faster to access; for arrays that will be used a lot,
you may wish to transfer them into an internal array by copying using the Assign Array command.

For an example, assume that we have a file of addresses called test.addr. We can now cre-
ate an array from this file with the command:

BIRD> Create Array TEST test.addr
Array TEST contains 1024 addresses

We can now print out (or otherwise use) any member of this array:

BIRD>Print test222

Address:
1110011111101010 1010000110001101 1001111101011010 1011000000110001

1100101010100111 0001001100110000 1010000011010111 0110111010111111
1010001111000111 1100100100111011 1101011100100110 0111100111100001
0011001100111111 0001000000000111 1100011110110110 1001010000010010

Bit count: 1:133 0:123

We could create an internal array of the same size, and copy the file array item-by-item into

BIRD Reference Manual -45-

it:

BIRD> Create Array INTERNAL 1024 256
Array internal contains 1024 addresses

BIRD>Do $1 1 1024

DO> Assign Address INTERNAL$1 TESTS1
DO> End

(Though this copying is done easier using the Assign Array command.)
Create Memory <name> {<address-size>)} (<data-size>)

This command creates new memory. The memory is assigned the name <name>. The ad-
dress size and data size arguments are optional; if not given, the default address size and data size
are used.

For example, we can create a new memory with the command:

BIRD> Create Memory Tweety 256 256
Memory Tweety, 1024 locations, size 256/256

If the defaults were already set to an address size of 256 and a data size of 256, we could
have typed to get the same result:

BIRD> Create Memory Tweety
Memory Tweety, 1024 locations, size 256/256

If we try to create two memories with the same names, the program signals an error and
refuses to create the new memory:

BIRD> Create Memory Tweety
Memory Tweety, 1024 locations, size 256/256
BIRD> Create Memory Tweety
?Memory Tweety already exists

Creation of a memory automatically creates a new address array. The address array is given
the name of the memory if possible. Thus, a memory created with the name ARF allows us to ref-
erence the tenth location address with the address tag "ARF10".

The location addresses of the current active memory can be referenced using the tag "L";
thus, the tenth location addresses can be referenced with "L.10".

Create State-File

(This command is not yet functional in BIRD 3.0.)

- 46 - BIRD Reference Manual

Create Variable <variable> [<function>| <variable> | <number>]

This command creates a new variable of the given name. For example, we could rewrite
the above example to be more descriptive:

BIRD> Create Variable $Radius 112
BIRD> Set Memory Radius $Radius
BIRD> Address 1010~

Selected 24 locations, radius used was 112

Define <name> (Variable <variable>} {Variable <variable>} {Variable <variable>
{Variable <variable>} {Variable <variable>) {Variable <variable>}
{Variable <variable>} {Variable <variable>) {Variable <variable>)

This command is used to define new top-level commands. The arguments allowed are cur-
rently all variables; when the command is given by the user, the user’s arguments are bound to
these variables, then the command is executed.

It is usually more efficient to define a command rather than to constantly use the Input File
command.

For example, we could create the Fill command, which writes a given number of random
data patterns into the memory at random locations:

BIRD> Define Fill Variable $SHow-Many
DEFINE> Dotimes $How-Many

DOTIMES2> Address Z Silently
DOTIMES2> Write Z

DOTIMES2> End

DEFINE> End

At this point, the Fill command is defined. We can now fill the memory with a given num-
ber of patterns with:

BIRD>Fill 100

You can see all command definitions using the Show All Definitions command. You can
see a specific definition using the Show Definition command.

Delete [Address | Array | Definition | Memory | State-ID | Variable]

This command is used to delete objects created by the Create or Define command. See the
specific help for the given type of deletion for more details.

Delete Address <address>

BIRD Reference Manual -47 -

This command deletes the given address from the system. The address must have been pre-
viously created using the Create Address command.

Delete Array <address-array>

This command deletes the given address array from the system. The address array must
have been previously created using the Create Array or Create Alias commands.

Delete Definition <defined-command>

This command deletes the given defined command from the system. The command must
have been previously created using the Define command.

Delete Memory <name>

This command deletes the given memory name and reclaims the resources used by that
memory.

(This command is not yet functional in BIRD 3.0.)
Delete State-ID [</D-number> | <variable>] <oldfile>

(This command is not yet functional in BIRD 3.0.)
Delete Variable <variable>

This command deletes the given variable name from its table of variables. Variables are
fairly inexpensive to keep around, so you shouldn’t need to worry about this command unless you

are used to cleaning up after yourself.

(Some system-created variables are undeletable; the system will signal an error and refuse
to delete them if you try.)

- Do <do-variable> {<start> | <variable>)} (<end>|<variable>} {<step>|<variable>}

A more complex iteration command is the Do command. It repeatedly executes a block of
commands, but also assigns a variable to a new value for each iteration.

The do variable is the name of a currently existing variable. The next argument is the start-
ing value of the do variable; if not given, this defaults to "1". The next argument is the final value
of the do variable; when the iteration results in a variable value over this number, the command
finishes. This value defaults to "1" if not given. The final argument is the step size, which is the
amount by which the do variable is incremented each step. The value defaults to "1" if not given.

For example, the following commands print a text string and the iteration number:

-48 - BIRD Reference Manual

BIRD>Do $1 1 3
DO> Echo "ARF: " $1
DO> End

ARF: 1

ARF: 2

ARF: 3

The Do command is useful for manipulating address arrays. If an array name ends with the
name of an integer variable, the variable is replaced by its value. For example, we could write a

memories own location addresses to itself:

BIRD> Create Variable SNOL Array-Size L
BIRD>Do $1 1 $NOL ST
DO> Address LS$S1

DO>Write LS1

DO> End

[Print out of each addressing operation follows]

In this sequence, "L$1" is replaced each step by the value of "$1"; for example, if the value
of "$1" is 123, then "L$1" is equivalent to L123, which is the address of the 123rd memory loca-

tion.
DoTimes [<number> | <variable>]

The is the simplest iteration command; it simply repeats the execution of a given block of
commands a given number of times:

BIRD> Dotimes 3
DOTIMES> Echo "ARF!"
DOTIMES> End

ARF!

ARF!

ARF!

First, the DoTimes command is entered along with the number of iterations; the user is
placed into command-input mode. This mode change is made apparent to the user by a change of
prompt to DOTIMES>. Next, the user inputs a command sequence, in this case, the single Echo
command, then terminates the input with an End command. At this point the command is executed
the given number of times.

Echo {To-TTY | No-CR | <string>} (<string>) (<string>} {<string>} {<string>) {<string>)
(<string>} (<string>} {<string>}

This command echoes the given series of strings to the current echo device, followed by a
carriage return. By default, the echo goes to the terminal; however, it can be reset using the Out-

BIRD Reference Manual ~49 -

put Echo and Push Qutput Echo commands.

If the string is a variable name, then the value of that variable is printed rather than the
string. For example:

BIRD>Do $1 1 3
DO>Echo "ARF: " S§1
DO> End

ARF: 1

ARF: 2

ARF: 3

If the first argument of Echo is To-TTY, then the echo is done to the TTY no matter what
echo device is set. If the first argument of Echo is No-CR, then the echo is done to the TTY with-
out a carriage return.

Echo is commonly used in script files to let the user know what is happening.
Else
The else command is only legal inside of an If command block. For example:

BIRD>If Same R 1010-

IF> Echo "The addresses are the same"

IF> Else

IF> Echo “"The addresses are not the same”
IF> End

This sequence of command will print out a message every time it is executed, but the mes-
sage printed will vary depending on whether the addresses are the same or not.

End

The End command is used to end a block of input from Define, Do, DoTimes, If, and
While. Tt is also used to end a command level initiated with the Exec BIRD command.

Exec [BIRD | Program | Restart | Unix]

This command is used to execute new system command levels, UNIX programs or shells,
or to restart the program. See the specific help for the given type of Exec command for more de-
tails.

Exec BIRD

This command executes a new command level of the BIRD executive. This is most useful
in command files, where you wish to allow the user a chance to interact with the program before

-50- BIRD Reference Manual

continuing with the command script.
Exec Program <string>

This command tries to execute the given program name. When completed, the user is re-
turned to the BIRD program.

BIRD> Exec Program date
Wed Jan 3 16:10:13 PST 1990

Exec Restart

This command restarts the BIRD program from scratch. All current state is lost.

Exec UNIX

This command starts off a UNIX shell and leaves the user there. Upon exiting that shell,
the user is returned to the BIRD program.

Genetic {No-Address | <address>}

This command attempts to do one genetic recombination of the location addresses in the
current memory. Still pretty experimental.

Help {On-Topic <topic-name> | <defined-command>}
The Help command is used to access on-line help documents.

For most commands, you simply type the keyword sequence to get the help document. For
example, to get help on the Set Status command, type;

BIRD> Help set status
[Lots of help.]

The On-Topic keyword is used to access help files that are not directory associated with a
given command.

If [<function> | <variable> | <number>]

This command is used to conditionalize a sequence of commands. "True" is defined as a
non-zero value, and "false" a zero value. Thus, "If 1" always executes its block of commands, and
"If 0" never executes its block of commands.

For an example of the use of this command, we may wish to print out a message whenever
the read address (kept in the address tag "R") and the written address:

BIRD Reference Manual -51-

BIRD> If Not Same R 1010-
IF> Echo "The addresses are not the same"
IF> End

It is also possible to use the Else command to separate the block of commands into two sec-
tions, the first of which is executed if the condition is true, and the second executed if the condition
is false. For example:

BIRD> If Same R 1010-

IF> Echo "The addresses are the same"

IF> Else

IF> Echo "The addresses are not the same™
IF> End

This sequence of command will print out a message every time it is executed, but the mes-
sage printed will vary depending on whether the addresses are the same or not.

Initialize Memory {Old-Addresses | New-Addresses | Using-Address-Array <array> | From-
Memory <memory-name>}

This command initializes the current memory. If we specify Old-Addresses, the current
location addresses in the memory are not changed. If we specify New-Addresses, the memory is
given new random location addresses. If we specify Using-Address-Array, the addresses are set
from the addresses in the given address array. If we specify From-Memory, the addresses are tak-
en from the addresses of the given memory.

Input [Address | File | Memory | State-Info]

This command is used to input objects in the BIRD environment from external files. See
the specific help for the given input command for more details.

Input Address <address> <oldfile>

This command inputs a single address from a file. The address file can be created using the
Output Address command.

Input File <oldfile> {Verbosely | Silently}

This command assumes that the given file name is a file of BIRD commands. It opens the
file and executes the commands until it reaches end of file.

The default is to show you the commands as they are executed. If you specify the second
argument to Silently, the commands are not shown, though any typing that the commands do is
still printed to the terminal.

Input Memory <oldfile>

-52- BIRD Reference Manual

No name is needed; the memory is given the original name it had when saved. If that name
conflicts with a memory already in use, the string "New-" is prepended to it. For example, if we
had previously saved a memory named "Tweety" in file Tweety.memory, we could type:

BIRD> Input Memory Tweety.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]
[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Tweety, 0 writes, created Fri Dec 29 12:44:07 1989
Input State-Info [<state-ID> | <variable>]

(Not yet fully implcmen;ed.) 7
Mutate [Location-Addresses]

This command currently has only one argument, which must be Location-Addresses. It is
used to change a given number of bits in each location address.

Mutate Location-Addresses [<#-of-bits> | <variable>]
This command causes the given number of bits to be changed in each location address.

Output [Address | Alias-Mapping | Array | Array-Mapping | Command-Echo |
Command-Record | Echo | Location-Addresses | Memory | Session]

This command is used to output objects from the BIRD environment to external files. See
the specific help for the given output command for more details.

Output Address <address> <newfile> {Binary | Hex}

This comman