Gond 7
SV C [cre
—
58735
Final Report: Chief and Delta Projects Fg }
John Bruner, Hoichi Cheong, David Kuck,]A’ V
Alexander Veidenbaum, and Pen-Chung Yew (Chief) f\,
Gregory Jaxon, David Padua, (J ‘

and Paul Petersen (Delta)

December 20, 1990

Project Summary
Title of Effort: Parallel Machine Architecture and Compiler Design Facilities
Grant Number NCC 2-559

Organization:
Center for Supercomputing Research and Development (CSRD)
University of Illinois
305 Talbot Laboratory
104 S. Wright St
Urbana, 1L 61801

Principal Investigators:

David J. Kuck (217) 333-6150 kuck@csrd.uiuc.edu
Pen-Chung Yew (217) 244-0045 yew@csrd.uiuc.edu
David Padua (217) 333-4223 padua@csrd.uiuc.edu
Ahmed Sameh (217) 333-6352 sameh@csrd.uiuc.edu

Alex Veidenbaum (217) 244-0043 sasha@csrd.uiuc.edu

Obhjective:
The objective of the Chief project is to provide an integrated simulation environment for
studying and evaluating various issues in designing parallel systems, including machine
architectures, parallelizing compiler techniques, and parallel algorithms.

The objective of the Delta project is to provide a facility to allow rapid prototyping of
parallelizing compilers that can target toward different machine architectures.

(NASA-CR-188784) PAR
RALLEL MACHINE
A
F?g:{Tgcruns AND CCMPILER DESIGN FACILITIES N92-10304
eport (Illinois uUniv.) 5] PCSCL 098

Unclas
G3/61 00387135

Major Accomplishments

I

6.

Developed a program instrumentation and simulation facility, MaxPar, that can measure
the maximum inherent parallelism in application programs and also can measure the
effectiveness of various parallelizing compiler techniques.

Developed parallel simulation kerncls on the Alliant FX/8 parallel computer based on a
conservative (Chandy-Misra) and optimistic (Time Warp) event-driven models.

Developed a parallel simulation kernel, PARSIM, on the Alliant FX/8 parallel computer,
that employs a hybrid time- and event-driven model to speed up simulations. PARSIM will
also run on uniprocessor machines such as high-performance workstations.

Designed and implemented a high-level language CARL (Computer Architecture Rescarch
Language), which is based upon C and is used for writing simulators.

Developed preprocessors to translate CARL into C and C++ code. The resulting code can
be compiled with a standard compiler to allow the simulations to be carried out either on a
workstation or on a parallel computer such as the Alliant FX/8.

Developed a high-level graphical interface to assist in simulator configuration and to run
suites of benchmark executions on the Chief simulators.

Developed a bitmapped graphical interface for PARSIM, PARSIM-UI, that allows a user to
display and control the state of the simulation. Its operation may be customized with an
interpreted language to display simulation-specific information according to user
preferences.

Developed a data display tool that plots the results of simulation runs on a bitmapped
workstation,

Implemented two pilot parallel simulators on the Alliant FX/8. They can run a FORTRAN
program suite through a parallelizing compiler to generate parallel traces. In one case, the
resulting traces drive the simulation of a shared-memory multiprocessor system with a
multistage shuffle-exchange network. In the other case, the traces drive the simulation of
an eight-processor system similar to an FX/8 system.

1. Chief Project Overview
Chief is a parallel simulation environment for studying parallel systems. Figure 1 shows its
hasic structure.

Benchmarks

Restructuring

Compilets
Architecture Trace
Specification Generalion

Simulation Maxlmt'Jm
Engin Parallelism
ngine Measurement
Result

Visualization

Figure 1 — Chief Project Overview

Parallel systems are studied by creating simulators and driving those simulators with
benchmark programs. These benchmark programs are restructured according to the architecture
of the target system, and parallel traces are created.

A simulator for the target system is constructed from the architecture specification. The
core of the simulator is a simulation kernel (based upon one of three paradigms). The simulator
includes a powerful bitmapped window interface that provides the user with a complete view of
nd control over the execution. The user can vary a set of parameters to the simulated system.
The simulator is driven by the parallel traces described above.

Statistics are collected during simulation runs. The Chief environment provides tools to
cxamine these statistics and plot their values against the simulation parameters.

A separate tool, MaxPar, can be used to instrument programs to measure the maximum
inherent parallelism within them. The results MaxPar generates are an upper bound on the
available parallelism, and can be used to evaluate the cffectiveness of the restructuring compilers
and simulated system.

2. Simulation Facilities

2.1. Execution-driven Simulation: MaxPar

MaxPar is an execution-driven parallelism profiling and extraction facility. It instruments
an application (such as a Perfect Club! benchmark) to collect statistics based upon the actual
cxecution of the program. It can determine the inherent maximum paralielism of an application
program and the optimal parallelism of the program with system constraints (such as the number
of processors, storage-related data dependences, and the synchronization overhead). MaxPar can
locate the bottlenecks in the program. Finally, MaxPar can generate parallel execution traces for
the program.

MaxPar instruments an application program to record timing and scheduling information
for cach data object, where a data object is either a scalar variable or an array element. To store
this information, MaxPar associates additional variables, called shadow variables, with each data
object. For each variable X, the read shadow irX records the last time X was read and the write
shadow nvX records the last time X was written. Given the operation

C=AopB

where C, A, and B can be scalar variables or array clements, and the op can be any arithmetic or
lngical operator, then the equations used to update the shadows are:

mwC = compute_time(op) + max(twC, irC, twA, iwB)
trA = max(trA, twC)
irB = max(oB, mC)

When a data object is read, its write shadow is checked to determine the earliest possible
time for the read operation to proceed. The read can proceed only after the previous write has
completed. If the read and write are {from different processors, the overhead resulting from data
synchronization is computed. The read shadow is then updated to that time. When a data object
is written, both its read shadow and its write shadow are checked to compute correct timing and
to perform any necessary synchronization.

MaxPar also takes other system features into consideration. The number of processors in
the target system may be specified as a finite number or may be infinite. Parallelism may be
measured at one of four levels of granularity: operation-level, statement-level, loop-level, or
subprogram-level. MaxPar can also tnke into account scheduling schemes and the
synchronization overhead for data synchronization and barrier synchronization. The anti- and
output-dependences of a program can be climinated by an optional dynamic storage allocation
«cheme. MaxPar can compute the amount of additional storage required to achieve this ‘‘pure”
data-flow type of execution.

MaxPar instruments the application program, producing a new source program. This is
compiled on the host machine, linked with runtime libraries, and executed. The program
produces computationally correct answers. In addition, it produces an execution profile by
counting the number of operations that can be exccuted at each time instance. A parallel trace
can also be generated. Figure 2 shows the profile of a 512-point fast Fourier transform. The
nine ‘‘peaks’’ represent the high parallelism present at the start of each phase of the FFT. The
plot does not include the first part of the program, which performs initialization. The parallelism
in this example is measured at the loop level with an unlimited number of processors and with
no overhead due to scheduling and synchronization.

Number of OPs exccuted

AR R R I A I
500 |-

[

200 -

100 .1

T ﬁ

20 — -

1 | ﬁ
I“LLLL !

R T T TR A [T

5000 5200 5400 5600 5800 6000 6200 6400
[Exccution ime

Figure 2 — MaxPar’s Exccution Profile of a 512-point FFT

2.2. Parallel Simulation Kernels

A Chief simulation consists of a group of modules interconnected by nets. A module
encapsulates some function, presenting it to the “outside world”’ through a set of inputs and
outputs. The inputs and outputs of the modules within a system are connected together by nets.
The inputs and outputs may be scalars or arrays (with a maximum of three dimensions), the size
of which can be specified during runtime configuration. Modules may be implemented directly
15 a set of low-level functions that directly read values from input nets and write values to output
nets. Alternatively, modules may be constructed from other modules. The simulation is
implemented as a hicrarchy of modules. The root of the module hierarchy is the simulation
itself. Many common low-level modules will be provided in a simulation library.

In order to reduce the time required to simulate large parallel systems, Chief provides three
different parallel discrete event simulation (PDES) kernels. Simulators built with these kernels
<hare a common user interface, and a single language is used to write code for all three
simulation paradigms.

The PDES kernels include a conservative approach (based upon the work of Chandy and
Misra?), an optimistic approach (based upon the Time Warp® technique), and a approach that
employs a hybrid of time-driven and event-driven techniques (called PARSIM, for parallel
simulator). Tt is well known that the performance of these PDES approaches is problem- and
application-dependent. By providing all three simulation kernels with a single user interface and
simulation language, Chief gives users the ability to write one simulator specification and select
one of the three approaches at compile time. All three approaches are currently implemented on
an Alliant FX/8 system. In addition, PARSIM is also implemented on uniprocessor Sun
Microsystems machines.

The usci describes each simulation component and the interconnection of components that

forms the system. The component definitions arc written in the language CARL (described in
section 3). Two kinds of components can be defined: behavioral components and hierarchical

-0 -

components. Behavioral components are described by defining their local state, their inputs and
ouputs, the actions that should be taken when one or more of their inputs change, and the
initialization that should be performed when the simulation starts or is re-executed. Hierarchical
components are described by defining the subcomponents that constitute them and the manner in
which subcomponents are connected to one another and to the inputs and outputs of the
hicrarchical component.

A Chief simulator is constructed from a collection of these component definitions. The
construction stage comprises two independent phases: the translation phase and the code
generation phase. During the translation phase, the component definitions are translated into C
structures (for PARSIM) or C++ classes (for Chandy-Misra and Time Warp) that define the
various types of the participating components. The data members of each C structure or C++
class represent the state associated with the respective components in the simulation.

For Chandy-Misra and Time Warp simulations, the function members of the C++ class
constitute the set of routines needed to simulate the respective components. The system is
represented as a collection of logical processes, each of which simulates a component and
communicates with other components. Each logical process is the set of member functions
detined in its class. An important goal of the construction stage is to to minimize the
communication overhead and maximize the potential parallelism in the execution of the
simulation. To achieve this goal, we partition the logical processes into sets and assign the
simulation of each of these sets to a processor. This assignment is achieved by generating
appropriate code to be executed by each physical process.

For PARSIM simulations, the structure definitions are created in a header file and the
cxecutable routines that simulate the component are created in a separate code file. The code file
is compiled along with the header files of its own component and any included subcomponents
to create an executable module. A complete simulation consists of a Jinked set of of simulation
maodules.

‘The execution of the simulation is the final stage of the simulation process. The Chandy-
Misra and Time Warp paradigms are based on the exchange of messages to convey information
from one component to another. Chandy-Misra also incorporates a means for avoiding
deadlock. The machine on which we are developing this tool (an Alliant) is a shared memory
machine; therefore, instead of using actual messages we use shared memory to convey
information and (in the Chandy-Misra case) to avoid deadlock. By doing so we reduce the cost
associated with the use of messages. Each component, for which there are events to simulate is
extracted from the ready queue maintained by each physical process, and is simulated on the
outstanding events. When there are no more events 1o simulate it is blocked waiting for new
events (messages) to arrive, and control is transferred to another ready logical process. This
cvele is repeated until all components have been simulated up to a certain (virtual) time, which
has been defined by the user as the End_of_the_simulation_time.

PARSIM employs a combination of the time-driven and event-driven approaches to
cimulation. PARSIM maintains a system event queue that is a time-ordered list of event lists.
Fach sublist contains events that occur at the same simulation time. PARSIM also maintains
event quetes for each of the nets affected by clock-induced events.

PARSIM executes events in groups. It dequeucs the first list of events from the system
event list. Then, in parallel, it evaluates these events, resulting in new values being assigned to
nets. Each component that is affected by the change in the nets may specify an ‘‘action routine’’
that updates that components status. PARSIM makes a list of all of the action routines that must
be processed. After all of the nets have been updated, all of the action routines are evaluated in
parallel. These routines may, in turn, post additional events to the global event queue.

-7-

3. CARL — Computer Architecture Research Language

The Chief project provides three different paths by which simulators can be constructed,
according to the PARSIM, Chandy-Misra, and Time Warp paradigms, respectively. Although
the simulation techniques are different, in all three cases the simulated system is specified as a
connected set of hierarchically-defined components.

Components are written in a semi-abstract language called CARL. The use of this
language frees the component designer from the need to know the low-level details of the
various implementations. More importantly, component definitions written in CARL can be
incorporated into any of the Chief simulators simply by using an appropriate preprocessor to
convert CARL code to C (for PARSIM) or C++ (for Chandy-Misra and Time Warp).

A component description in CARL consists of sections of C-like code headed by CARL
keywords. The keywords are COMPTYPE, INPUTS, OUTPUTS, SUBCOMPONENTS, VAR,
ACTION, INIT, STRUCTURE, BEGIN, and END. The COMPTYPE, INIT, STRUCTURE,
BEGIN-END sections contain executable statements modelling a component’s behavior and
specifying its internal structure.

#define ADD
#define SUB
#define AND
#define OR

WNRO

COMPTYPE Alulé6 (speed)
int speed;

INPUTS
short in[2]: alu_eval;
char op: alu _eval;

OUTPUTS
short sum;

VAR
int Speed;

ACTION alu_gval

switch (op) {

case ADD:
gum = in[0] + in[1] after Speed;
break;:

case SUB:
sum = in[0] - in[1l] after Speed;
break;

case AND:
sum = in[0] & in[1] after Speed;
break;

case OR:
sum = in[0] | in[1l] after Speed;
break;

}

BEGIN
Speed = speed;
END

Figure 3 — CARL definition of a 16-bit ALU
Figure 3 shows the CARL definition of a simple ALU, capable of performing four

operations upon its two 16-bit inputs. The component, whose type is Alulé, has one
parameter: the delay between a change to its inputs and a ncw value on its outputs:

_8-

~ The Chief project includes (w0 preprocessors. PSPP, the PARSIM Preprocessor, converts
CARL into C. PSPP is a compiled program that uses the tools ““lex’” and “‘yacc’” to read CARL
programs. It generates two files: a header file that defines PARSIM data structures and a C code
file that contains module creation, connection, initialization, and action routines. The host
machine’s C compiler will convert the code files into object modules that can be linked with the
PARSIM runtime libraries and user interface to form a PARSIM simulator.

C2CMTW, the CARL *“2”° Chandy-Misra/Time Warp preprocessor, converts CARL into
Ci++. C2CMTW, like PSPP, is an exccutable program. It generates two files: a header file that
detines C++ classes for each component type and a C++ code file that contains the definitions of
the class member functions. The host machine’s C++ compiler will convert these files into
object modules that can be linked with either the Chandy-Misra runtime libraries or the
Time Warp libraries to creatc a simulator.

4. Ul — PARSIM User Interface

‘The PARSIM user interface (PARSIM-UI, or simply UI) displays information in bitmapped
windows using the X11 window system. It provides control facilities for starting, stopping,
continuing, and breakpointing simulation runs. Nets can be viewed graphically. By creating
ceveral windows, the user can interact with the simulation from multiple contexts.

The core of PARSIM-UT is an execution engine that parses and executes commands written
in a simple language. The graphical interface *‘wrapper’’ accepts input in the form of menu
selections, button presses, etc. and transforms it into commands that are interpreted by the
engine. The user-interface language is also directly available, so that the user can customize his
or her debugging scssions as necessary.

PARSIM-UI can directly access objects in the simulation system: components, inputs,
outputs, and nets. It also provides and operates upon simulator variables. Variables may contain
integer, floating-point, or string values, or may contain one of three special typed values: error,
high-impedance, and unknown. Their type is dynamic — an assignment to the variable sets the
tvpe as well as the value. The value of an uninitialized variable is the integer zero.

A set of operators combines components, nets, variables, and literal constants into more
complex expressions. An expression may be used whenever the PARSIM user interface expects
a value. In particular, an expression may be used within a component or net array subscript.
Function calls may also appear within expressions. I'hey are called using the syntax

function_name (args)

where function_name is the function name and args is a comma-separated list of expressions that
represent the arguments to the function. The number and type of arguments are function-
specific. PARSIM-UI provides a set of standard built-in functions, which provide access to the
simulation state. Users can define additional functions.

The primary interface to PARSIM-Ul is graphical; however, in recognition of the fact that
text input is sometimes necessary, macros can be used to hid some of the programming-language
appcarance from the user. A set of built-in macros is provided. The user may define any
number of new macros and is free to redefine the built-in macros if he or she so desires.

The PARSIM-UI language provides primitives for grouping, iteration (WHILE),
conditionals (IF), function definition, and macro definition. The syntax is vaguely similar to
Algolor C.

PARSIM-UI provides a powerful breakpoint facility. Breakpoint conditions are expressed
as an arithmetic expression and therefore may depend upon nets, constants, and variables. This
provides great flexibility; for instance, it is possible to check if the currently-addressed register

_9.

in a register file is zero or if the values of two registers are equal. When a breakpoint condition
is satisfied a second expression (the breakpoint ‘‘action’’) is evaluated. The action may include
stopping simulation after the current simulation time step, but it need not do so. Other possible
actions might include printing a message, updating a display, or collecting statistics in a counter.

The user may display any subset of the simulation state by defining one or more
awtodisplays. An autodisplay is a window that continuously displays sets of expressions.
Effectively it is a snapshot of a uscr-specificd subset of the current simulation state.
Autodisplays allow the user to create views of collections of nets and to watch them change as
the simulator executes. They are updated each time that the simulator stops (e.g., due to a
breakpoint) and at other times as directed by the user or breakpoint definitions. The appearance
of an autodisplay window is primarily under the user’s control.

The contents, format, and location of all autodisplay items are user-configurable. The fields
within an autodisplay can be moved and resized using the mouse.

PARSIM-UI can save any part of its user interface state to a file. Thus, the definition of
one or more autodisplays, breakpoints, functions, macros, andfor variables can be preserved
from one simulation run to the next. This gives the PARSIM-UT user significant control over the
configuration of his or her environment and makes PARSIM-UT a powerful tool for debugging
and running simulations.

5. Parallel Trace Generation Facilitics

3.1. Optimal Parallel Traces (MaxPar)

MaxPar can produce an optimal parallel trace by instrumenting a program at the source
code level with tracing instructions. The traces that arc generated when the program is executed
arc optimal in the sense that they reflect the best possible parallelism within a prograny
therefore, they can provide an idealistic performance upper bound for the program. The
‘nformation in this trace is independent of the machine architecture and the parallelizing
compiler.

2.2, Symbolic Parallel Traces (Parafrase)

Symbolic parallel traces are used for generic shared-memory systems with an optional
vector processing unit in each processor. The sct of traces generated can be targeted toward a
particular machine organization such as SIMD, MIMD, etc. It provides users with a good mix of
realistic computer architecture characteristics, and also allows them to specify particular
characteristics of their own machines. For example, a user can specify the number of processors
in the system, the scheduling scheme, the data layout in the shared memory, etc. The resulting
parallel traces reflect the possible parallelism that can be obtained by a parallelizing compiler as
opposed to the maximum paratlelism that can be obtained using MaxPar.

Parafrase-based parallel trace generation consists of three steps:

I Generate program intermediate form. The syntax and the semantics of the intermediate
Janguage resemble an assembly language for a vector multiprocessor. The output is
generated for each subroutine scparately. An infinite number of symbolic registers is
assumed for the system.

Link and load modules for execution. This resolves symbolic references, processes
parameter passing, lays out common blocks, determines which data is global and which is
local, and produces a load map.

™~

3 Execute the load modules symbolically. ‘This step simulates parallel execution of the load
modules and produces time stamps for instructions accessing memory. The result is a

- 10 -

memory reference trace that can be used to drive multiprocessor simulators created by the
Chief tools.

5.3, Alliant FX/8 Traces

Alliant supplies an emulator for the FX/8. Programs are compiled with the parallel Alliant
Fortran or C compiler. The resulting object modules are linked with runtime routines to create
executables. These are then emulated to produce Alliant-specific memory reference traces. The
programs produce computationally correct results, and the traces are a very realistic reflection of
the program’s parallel behavior. However, because the traces are machine-specific, they cannot
be made to accomodate a memory hierarchy or a configuration consisting of more than eight
Processors.

6. Data Visualization Tool

The Chief visualization tool plots data for display on a bitmapped workstation. The data is
collected from a suite of simulation runs in which simulation parameters are varied from run to
run. The data from each run is stored into a file. A separate description file identifies all of the
data items. The visualization tool reads the description file and all of the data files. The user can
plot any data item against any simulation paramcter while constraining the values of other
simulation parameters.

7. Top-Level Chief Environment

All of the Chief tools are assembled into a top-level bitmapped environment. The
environment guides the user through the creation of a simulator from a set of components stored
in a component library. More than one version of some components may be archived, so the
environment allows the user to view the current sct of components and select the desired version
for each one. Each component contains a set of parameters that control its behavior. The
environment extracts a complete list of parameters from the specified components and provides
mouse-driven tools that allow the user to specify new parameter values.

The environment provides a simple interface that allows the user to specify a set of
compiler parameters, compile a benchmark, and generate a trace file. The editing of compiler
parameters is similar to the editing of simulation parameters. In addition, the environment also
allows the user to invoke MaxPar to analyze the parallelism within the benchmark.

When instructed to build a simulator, the environment will invoke the appropriate Chief
preprocessor for each component definition (written in CARL), will invoke the system compiler
to create object files for all components, and will link those object files with the appropriate
kernel and user interface libraries. A simple command will execute the resulting simulator.

The power of the Chief environment lies in its ability to execute a suite of compilation and
simulation runs while varying the input parameters. The user specifies a set of values for each
parameter, and the environment will automatically compile the benchmark to produce a trace
file, build the simulator, and invoke the simulator with the trace file as input. The output from
cach simulation run will be written to a scparate file. The user can then use the Chief
visualization tool described above to display these results graphically.

11 -

8. Pilot Simulations

Two simulators have been developed to demonstrate the utility of the Chief environment.
First, the simulations can be run in parallel, resulting in fast execution time. Furthermore, the
simulations are written in CARL, which is extremely modular, allowing faster initial code
development. This allows component models to be replaced much more easily than in dedicated
simulation programs.

8.1. Cedar-like System Simulator

A simulator has been developed to simulate the Cedar global memory system4’5. It consists
of models for the Omega networks, the global memories, and a simple processor. The simulator
i< driven by traces of Fortran programs gencrated by Parafrase. It allows different system
configurations to be simulated by changing the size of the system and the size and configuration
of the network switches, and by replacing the switch and memory component models to test,
¢.¢., different internal buffering configurations.

The system model is a simplification of Cedar, in that processors are not clustered as in
Cedar. Furthermore, the current processor model does not simulate the effects of caching or
cluster memory. Some of these effects can be accommodated by changing the way traces are
gathered by Parafrase. More advanced processor models are also under development.

8.2. Cedar Cluster Simulator

A simulator has been developed to simulate a Cedar cluster. 1t consists of models for the
caches. the cluster memory, and eight simple processors. Traces created by the Alliant FX/8
emulator drive the simulation.

References

1. M. Berry, et. al,, ““The Perfect Club Benchmarks: Effective Performance Evaluation of

Supercomputers,”” The International Journal of Supercomputer Applications, vol. 3, pp. 3-

40, 1989.

K. M. Chandy and J. Misra, “‘Asynchronous Distributed Simulation via a Sequence of

Parallel Computations,” Communications of the ACM, vol. 24, no.4, pp. 198-206,

April 1981.

3. D. R. Jefferson, “Virtual Time,”” ACM Transactions on Programming Languages and
Systems, vol. 7, no. 3, pp. 404-425, July 1985.

1. P. Yew, “The Architecture of the Cedar Parallel Supercomputer,” Parallel Systems and
Computation, edited by G. Almasi, R. Hockney, and G. Paul (North-Holland, Amsterdam),
pp. 137-148, 1988.

D. J. Kuck, E. Davidson, D. Lawrie, and A. Samch, ““Paralle! Supercomputing Today and
the Cedar Approach,’” Science, pp. 967-974, February 1986.

1~

N

December 14, 1990 1

NASA NCC 2-56569

[Ammag0] Zahira Ammargucllat. A Control-Flow Normalization Algorithm and its Com-

[Andr90]

[BCVYOO]

[BcerO]

[Brun90}

[Brun90}

[ChiTa90]

[ChVeg0]

[ChVe90]

[DaYe90]

[FuChg0]

plezity. Submitted for publication, June 1990.

John Barrett Andrews. “A Ilardware Tracing Facility for a Multiprocessing
Supercomputer’”’, CSRD Report No. 1009, UILU-ENG-90-8026, Univ. of
Illinois at Urbana—-Champaign, Ctr. for Supercomputing Res. & Dev., May
1990.

John Bruner, Hoichi Cheong, Alexander Veidenbaum and Pen-Chung Yew.
Chief: A Parallel Simulation Environment for Parallel Systems. Submit-
ted for publication, November 1990.

Michael Waitsel Berry. “Multiprocessor Sparse SVD Algorithms and Applica-
tions’’, CSRD Report No. 1049 UILU-ENG-90-8031, Univ. of Illinois at
Urbana-Champaign, Cntr. for Supercomputing Res. & Dev., November
1990.

John Bruner. “PARSIM User Interface Reference Manual™, CSRD Report No.
1002, Univ. of Illinois at Urbana-Champaign, Ctr. for Supercomputing
Res. & Dev., September 1990,

John DBruner. “PARSIM User Interface Tutorial”, CSRD Report No. 1040,
Univ. of Tlinois at Urbana-Champaign, Cntr. for Supercomputing Res. &
Dev., September 1990.

Jyh-Herng Chow and Luddy Harrison. Switch-Stacks: A Scheme for Micro-
tasking Nested Parallel Loops. Proc. of Supercomputing '90, New
York, NY, pp. 190-199, November 12-16, 1990.

Hoichi Cheong and Alcxander Veidenbaum. Compiler—directed Cache
Management in Multiprocessors. IEEE Computer Journal, Vol. 23, No.
8, pp. 39-47, June 1990.

Yung-chin Chen and Alexander V. Veidenbaum. Compartson and Analysis of
Software and Directory. Submitted for publication, November 1990.

Timothy Davis and Pen-Chung Yew. A Stable Non-deterministic Parallel
Algorithm for General Unsymmetric Sparse LU Factorization. SIAM J. on
Matrix Analysis and Applications, Vol. 2, No. 3, pp. 383-403, July
1990.

Chuigang Fu. “Evaluating the Effectiveness of Fortran Vectorizers by

Deeember 14, 1990 2

Measuring Total Parallelism”, CSRD Report No. 1033, UILU-ENG-90-
8029, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing
Res. & Dev., August 1990.

[GaBe90] Hui Gao and Michael Berry. “DPerformance Studies of LAPACK on Alliant
FX/80 and 1 Cedar Cluster”, CSRD Report No. 1001, Univ. of Illinois at
Urbana—Champaign, Cenler for Supercomputing Res. & Dev., May 1990.

[GoGV90] Edward . Gornish, Elana D. Granston and Alexander V. Veidenbaum.
Compiler—directed Data Prefetching in Multiprocessors with Memory
Hierarchies. Proc. of ICS’90, Amsterdam, The Netherlands, Vol. 1,
pp. 354 -368, May 1990.

[GrVvego] Elana D. Granston and Alexander V. Veidenbaum. Detecting Opportunities
for Data Reuse. Submitted for Publication, November 1990.

[lIsYe90] William Tsun-yuk Ilsu and Pen-Chung Yew. An Effective Synchronization
Network for Large Multiprocessor Systems. Subm. the 5th Int’l Parallel
Processing Symp., Disneyland Hotel Convention Center, April 30
— May 2, 1991, September 1990.

[LiYe90] David J. Lilja and Pen-Chung Yew. “The Interaction of Cache Block Size
and Parallel Loop Scheduling Strategy”, CSRD Report No. 989, Univ. of
Illinois at Urbana-Champaign, Cntr. for Supercomputing Res. & Dev,,
July 1990.

[LiYe90] David Lilja and Pen-Chung Yew. The Performance Potential of Fine-Grain
and Coarse-Grain Parallel Archileclure. Submitted for publication,
June 1990.

[1iYe90] David J. Lilja and Pen-Chung Yew. “A Compiler-Assisted Directory-Based
Cache Coherence Scheme”, Univ. of Illinois at Urbana-Champaign, Center
for Supercomputing Res. & Dev., November 1990.

[LiYe90] David J. Lilja and Pen-Chung Yew. Combining Hardware and Software
Cache Coherence Strategies. Submitted for publication, December
1990.

[Malo90] Allen Davis Malony. “Performance Observability”’, CSRD Report No. 1034,
UILU-ENG-90-8030, Univ. of Illinois at Urbana-Champaign, Cntr. for
Supercomputing Res. & Dev., September 1990.

[MaLLR90] Allen Malony, John Larson and Daniel Reed. Tracing Application Program
Ezecution on the Cray X-MP and Cray 2. Proc. of Supercomputing

[MiP2ag0]

[Padu89)

[Poin90]

[PoJag0]

[SharQO]

[ShLY90]

[ShShQO]

(SMBS90]

[YeBr90|

[Chen89]

December 14, 1990 3

'90, New York, NY, pp. 60-73, November 12-16, 1990.

Sam Midkiff and David Padua. Issues in the Compile-Time Optimization of
Parallel Programs. Proc. of Int’l Conf. on Parallel Processing 1990,
Vol. II, pp. 105-113, August 1990.

David Padua. Problem Solving Environments for Parallel Computing. Proc.
of an International Conf. organized by the IPSJ to Commemorate
the 30 Anniversary, pp. 323-330, November 1990.

Lynn Pointer. “Perfect: Performance Evaluation for Cost-Effective Transfor-
mations Report 2", CSRD Report No. 964, University of Illinois at
Urbana- Champaign, Center for Supercomputing Res & Dev, March 1990.

David Pointer and Greg Jaxon. “Cedar Synchronization Processor Instruction
Set Reference”, CSRD Report No. 1017, Univ. of Illinois at Urbana-
Champaign, Center for Supercomputing Res & Dev., July 1990.

Sanjay Sharma. Real-Time Visualization of Concurrent Processors. To be
presented at the Joint Conf. on Vector and Parallel Processing,
Zurich Switzerland, November 1990.

Zhiyu Shen, Zhiyuan Li and Pen-Chung Yew. An Empirical Study of Fortran
Programs for Parallelizing Compilers. IEEE Trans. on Parallel and
Distributed Systems, pp. 350-364, July 1990.

Priyamvada Sinvhal-Sharma and Sanjay Sharma. “CPROF: A Trace Based
Profiler for Shared Memory Multiprocessor Systems’”, CSRD Report No.
1016, Univ. of Illionis at Urbana-Champaign, Cntr. for Supercomputing
Res. & Dev., June 1990.

Sanjay Sharma, Allen Malony, Michael Berry and Priyanvada Sinvhal-
Sharma. Run-Time Monitoring and Performance Visualization of Con-
current Programs. Proe. of Supercomputing 90, November 1990,
New York, NY, pp. 784-793, November 12-16, 1990.

Pen-Chung Yew and John Bruner. SEE: A System Evaluation Environment
Jor Studying Parallel Systems. To be presented at the First Workshop
on Parallel Processing, National Tsing Hua, Univ., Taiwan, Dec.
20-21, 1990, December 1990.

Ding-Kai Chen. “MaxPar: An Execution Driven Simulator for Studying
Parallel Systems”, CSRD Report No. 917, UILU-ENG-89-8013, Univ. of
Ilinois at Urbana-Champaign, Cenler for Supercomputing Res. & Dev.,

[Cheo89)]

[ChSY89]

[Davigg)

[GaFM89]

[GaSa89]

[Gorn89]

[Koss89]

[Lave89]

[Lilj89]

[LiMY89)

December 14, 1990 4

October 1989.

Hoichi Cheong. ‘“Compiler-Directed Cache Coherence Strategies for Large-
Scale Shared-Memory Multiprocessor Systems', CSRD Report No. 953,
UILU-ENG--89-8018, Univ. of Illinois at Urbana-Champaign, Center for
Supercomputing Res. & Dev., December 1989.

Ding-Kai Chen, Ifong-Men Su and Pen-Chung Yew. The Impact of Syn-
chronization and Granularity on Parallel Systems. To appear in the
Proc. of the 17th Int’'l. Symp. on Computer Architecture, Seattle,
WA, December 1989.

Timothy Alden Davis. **A Parallel Algorithm for Sparse Unsymmetric Factor-
ization”, CSRD Report No. 907, UILU-ENG-89-8012, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing Res. & Dev., September
1989.

e

E. Gallopoulos, G. Frank and U. Meier. Ezpertments with Elliptic Problem
Solvers on the Cedar Multicluster. Proc. of Fourth SIAM Conf. Par.
Proc. Sci. Comput., Chicago, IL, pp. 245-250, December 1989.

E. Gallopoulos and Youcef Saad. Some Fast Elliptic Solvers on Parallel Archi-
tectures and Their Complezities. Int’l. J. High Speed Computing, Vol.
1, No. 1, pp. 113-141, May 1989.

Edward H. Gornish. “Compile Time Analysis for Data Prefetching”, CSRD
Report No. 949, UILU-ENG-89-8016, Univ. of Hlinois at Urbana-
Champaign, Center for Supercomputing Res. & Dev., December 1989.

Peter Koss. “Application Performance on Supercomputers”, CSRD Report
No. 847, UILU-ENG-89-8001, Univ. of Illinois at Urbana-Champaign,
Center for Supercomputing Res. & Dev., January 1989.

Daniel M. Lavery. “The Design of a Hardware Performance Monitor for the
Cedar Supercomputer”’, CSRD Report No. 866, UILU-ENG-89-8006,
Univ. of Illinois at Urbana~Champaign, Center for Supercomputing Res. &
Dev., May 1989.

David Lilja. Efficient Generation of Poisson Distributed Random Numbers.
Trans. of Soc. for Comp. Simulation, Vol. 6, No. 1, pp. 31-41, 1989.

David Lilja, David Marcovitz and Pen-Chung Yew. “Memory Referencing
Behavior and a Cache Performance Metric in a Shared Memory Multipro-
cessor’’, CSRD Report No. 836, Univ. of Illinois at Urbana-Champaign,

1iYZ89]

(LiZh89]

[MiPC89]

[Suzu89|

[T2YZ90]

[Turn89]

[TuVe89]

December 14, 1990 5

Center for Supercomputing Res. & Dev., February 1989.

Zhiyuan Li, Pen-Chung Yew and Chuan-Qi Zhu. Date Dependence Analysis
on Multi-Dimensional Array References. Proc. of 1989 Int'l. Conf. on
Supercomputing, pp. 215-224, Junc 1989.

Zhiyuan Li. “Intraprocedural and Interprocedural Data Dependence Analysis
for Parallel Computing”, CSRD Report No. 910, UILU-ENG-89-8011,
Univ. of 1llinois at Urbana-Champaign, Center for Supercomputing Res. &
Dev., August 1989.

Samuel P. MidkilT, David Padua and Ronald G. Cytron. Compiling Programs
with User Parallelism. Research Monographs in Parallel & Distri-
buted Computing, C. Jesshope, D. Klappholz (eds.), Pitman Pub-
lishing, 1989., 1989.

Hiroshi Suzuki. “A Serial Communication Interface for a Parallel Simulation
System', CSRD Report No. 950, UILU-ENG-89-8017, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing Res. & Dev,, December
1989.

Peiyi Tang, Pen-Chung Yew and Chuan-Qi Zhu. A Parallel Linked List for
Shared-Memory Multiprocessors. Proc. of the 13th Annual Int’]l Com-
puter Software & Application Conf., pp. 130-135, September 1989.

Stephen Wilson Turner. ““Shared Memory and Interconnection Network Per-
formance for Vector Multiprocessors’”’, CSRD Report No. 876, UILU-
ENG-89-8007, Univ. of Illinois at Urbana-Champaign, Center for Super-
computing Res. & Dev., May 1989.

Stephen Turner and Alexander Veidenbaum. *‘Burst Traffic in MIN-Based
Shared Memory Systems”, CSRD Report No. 855, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing Res. & Dev,, February
1989.

o
Project Summary
The Delta Program Manipulation System *

Gregory Jaxon David Padua Paul Petersen
Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

March 1, 1991

Abstract

This report summarizes the status of the Delta Program Manipulation System [Pad89]
project at the expiration of its initial project development grant. Included are a review
of the project’s objectives and surveys of the program manipulation tools developed, the
environmental software supporting Delta, and the compiler research projects in which
Delta has played a role. An appendix describes the Delta system in detail.

1 Objectives

FOoRTRAN 77 programs are portable to many computer architectures. But the program
characteristics that yield the best performance vary from machine to machine. The com-
mon goal of researchers in automatic restructuring is to capture and preserve the meaning
of a program while varying the program structures that most influence its speed and ef-
ficiency on different computer systems. Although a number of commercial and research
program restructurers have been written, the cost of exploring new techniques or optimiza-
tion strategies is still extremely high.

The Delta Program Manipulation System{Pad89] is an open system of tools and compo-
nents and a workbench environment for developing new compiler techniques in automatic
program restructuring. Included are: a FORTRAN parser; an extensive repertoire of opera-
tions and data structures common to vectorizing and parallelizing compilers; and the tools
and methodology needed to generate and test new compilation methods and strategies. We
believe that this approach can reduce the cost of research and development for advanced
compilers in the same way that domain-specific languages (e.g. Mathematica) have reduced
the cost of problem solving in other technical fields.

Openness An ‘open system’ is one which exposes its component parts for modification,
replacement, or reuse in new contexts. Several factors contribute to the openness achieved
in Delta.

“This work was supported by the National Aeronautics and Space Administration and the Defense Ad-
vanced Research Projects Administration under Grant No. NASA NCC 2-559. Part of this work was carried
out by James R.B. Davies.

R

¢ The implementation language (SETL) is very high level. This means the amount of
text invested in any one design commitment tends to be small, and thus manageable.

¢ An ‘applicative’ programming methodology has been followed in which components
are relatively insensitive to the context in which they are used.

e The central data structures in Delta are labelled maps. Because they are self-docu-
menting and flexible, they are easy to use in new ways, or modify for new uses.

e Environmental software has made the SETL source of Delta ‘content addressable’.

In the following sections we will describe parallelization and illustrate Delta’s program
manipulation tools, then survey the environmental software supporting Delta and the com-
piler technology research at CSRD in which Delta is beginning to play a part. Appendix A
gives a detailed description of the Delta system.

2 Programs and Manipulations

Delta operates on FORTRANT7 programs. To make them tractable, they are represented
internally as abstract syntax trees that supress the lexical and syntactic quirks of FORTRAN.
In SETL, data objects can share storage under a discipline of ‘copy-on-write’. Each FORTRAN
program appears to be a separate SETL data object. Delta transformations take FORTRAN
programs as ‘call-by-value’ arguments and deliver revised programs as results. Memory
requirements do not multiply since only the few substructures which change need new
storage.
Internally, Delta breaks a program into its:

o Imperative statements

¢ Symbol table ¢ Initial data values
¢ Applicative expressions

¢ I/0 format specifiers ¢ Common storage layout
e Storage equivalences

Each substructure collects and indexes one class of program components. The component
descriptions are collections of named attributes. Some attributes link components together
(by their names or indices) into semantic networks. Delta works by discovering and deriving
facts about the program’s behavior when it is executed. Facts are added to the tree both
as new top level structure and as annotations to low level components.

An executing FORTRAN program produces a sequence of stores into memory cells, refer-
ences to stored values, and calculations creating new values. The program’s text may refer
to one storage cell in many different ways. The cells of an array are identified by subscripts
which are integer arithmetic formulae. Symbolic algebra and Diophantine analysis can be
used to test whether two subscript formulae ever intersect. Where they do, the two uses of
that array may involve the same storage cell. Such a pair, where at least one storage action
is a write, forms a data dependence and requires that the two memory references occur
in their original order.

The sequencing of storage actions is captured in data dependence graphs, a control flow
graph, and a subroutine call graph. The graphs summarize how the parts of the program
cooperate to achieve its net result. These graphs are examined before most program changes

2

to verify that the transformed code will be equivalent to the original. As the program is
changed, these graphs are updated or regenerated to reflect the current organization of the
program. The incremental cost to do this is small because optimizing transformations tend
to preserve most storage relationships.

Parallelism can be recognized in a sequential program as a pattern of data and control
independence. Parallelizing is the process of producing these patterns by modifying loop
structure, introducing auxiliary storage cells, and reorganizing calculations to avoid small
cycles of dependence which can only be supported by serial loops.

Today the Delta system includes sufficient preconditioning, analysis, and transformation
components to parallelize and restructure many example programs. It can permute the
nesting order of a collection of loops, distribute loops into vector form, or split them into
parallel and serial pieces. It can normalize them, stripmine them, or reverse their iteration
spaces. It recognizes scalar inductions carried by a single loop, scalar variables local to a
single loop, summations, and DOALLs.

In the next half year we will extend Delta’s parallelization techniques by collecting
dependence cycle breakers: particular transforms, triggered by the appearance of a circular
path in the data or control dependence graph, and designed to break the cycle. Some of these
cycles are easily broken by recognizing which variables are loop invariant, linearly varying,
or localizable. Such properties of a loop are discovered by the preconditioning passes already
built for Delta and appear as annotations to the internal program representation for later
passes to use.

3 Environmental Support

3.1 SETL

For now, any serious user of Delta must become a SETL programmer. Fortunately most
programmers can intuit the basic principles of SETL by imagining a cross between Algol
control constructs, Set Theory notation, and Lisp recursive data structures. A key to the
power of SETL is the flexibility of sets and tuples for representing data structure. It is
especially important for Delta programmers to understand maps. A map is a set of ordered
pairs (i.e. 2-tuples). SETL allows a map to be applied to an argument like a function; the
result is the second element of the ordered pair whose first element matches the argument.
For example, if we create a map from the first four integers to their names:

> number_to_name := {[1,"one"], [2,"two"], [3,"three"], [4,"four"l};
then we can use this variable like a function:

> number_to_name(1);
llonell .

If the argument is not in the domain of the map (i.e. the set of first elements of the ordered
pairs), the mapping operation returns ‘OM’. If more than one ordered pair has the same
first element, then the map is referred to as multi-valued. A special form of the mapping
operation, using curly braces instead of parentheses, will return the set of all second elements
of ordered pairs in the map whose first element matches the argument:

3

> number_to_name := number_to_name union {[1,"uno"]};
> number_to_name{1};

{"uno”, llonell};

> number_to_name{2};

{"tWO“};

A mapping operation with parentheses is illegal for members of the domain with multiple
values. The test for this error occurs at runtime. The choice of which algorithm to use to
perform the mapping is also made at runtime. Very little of SETL’s syntax is devoted to
specifying implementation details. Runtime choices are expensive. They are avoidable in a
commercial restructurer, but are welcome in Delta because they reduce the amount of text
that must be changed to revise a design choice.

3.2 Interactive Delta

A typical Delta development session might start out as follows. First the interpreter is
started and it reads all of the Delta source code:

shell’, idelta

DELTA Program Manipulator Last update: Feb 14 16:09
(c) 1991, Board of Trustees, Univ. of Illinois (CSRD)
ISETL 2.0 Last updated on 89/12/12 at 13:18:09.

(c) Copyright 1987,1988,1989 Gary Levin

Enter !quit to exit.

50080, New Limit = 4000000
3996384, Limit = 4000000

Current GC memory
Current GC memory

> matmul := read_program('matmul.f");
> display_program(matmul);
SUBROUTINE MATMUL(A,B,C,N)
S2 p0oI=1, N, 1
S3 poJ=1, N, 1
sS4 X=20.0
S5 DOK=1, N, 1
s7 X = X+B(I,K)*C(K,T)
S8 ENDDO
S10 A(T,]) = X
Si1 ENDDO
S12 ENDDO
S13 RETURN
END
OM; ’

Function read._program invokes the Delta scanner (a separate program, written in C) on its
filename argument. The scanner produces a SETL data structure that completely describes
the program. Read_program loads this structure as a variable within the iSETL session,
annotates it with its control flow graph and variable cross reference, and returns the whole

4

package as its functional result. Here we assigned it to the variable ‘matmul’. A call to
display_program lists out the executable statements of ‘matmul’ in FORTRAN form.

The >’ is an iSETL prompt; a statement typed here will execute and have its value
printed. The value of display _program was undefined, which SETL treats as a constant
called ‘OM’ (for Omega or omitted). We can begin to examine matmul as a SETL map by
asking:

> domain(matmul);
{"statements", "initial_statement", "final_statement",
"expression”, "loop_info", "routine_type", 'symtab"};

In more complex programs we might also see substructures for "common blocks", "equi-
valences", and other FORTRAN features.

Compiler authors rely on utility functions to abbreviate most data accesses. For ex-
ample, one query function in Delta is called stmts_of _type. It returns a tuple of names of
statements of a given type, in the order that they appear in the program. If lexical order is
not important, the raw SETL needed to acquire the same subset is almost as brief:

> stmts_of_type(matmul,"D0");

["52", "33", "SS“];

> all_stmts := matmul("statements");

> { stmt : attr = all_stmts(stmt) | attr("st") = "DO" };

{"32”, nssn’ ussn};

At the top level of compiler construction, transformation and analysis functions are
more common. Here we have composed many Delta steps into a ‘precondition’ function,
which returns a heavily annotated version of its argument. We then apply an experimental
vectorizer to the annotated program and put the parallelized result into a separate iSETL
variable called ‘matmul_vector’.

> matmul_vector := tiny_vectorizer (precondition (matmul));
S2 is a DOALL

S3 is a DOALL

S5 is a summation

We have chosen to express parallelism as an annotation to a fundamentally serial program.
Preserving the sequential view of the program’s semantics means that sequential analyses
are still applicable to the transformed program.

> display_program