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Abstract - The limited availability and high cost of crew time and

scarce resources make optimization of space operations critical.

Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex
scheduling problems that were previously considered computationally intractable. This paper describes a class of scarch
techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms 1o optimize the
scheduling of space crew, payload and resource operations are also discussed.

Using Heuristics for Optimization

The development of techniques to solve scheduling
problems has historically centered around the investigation
of idealized scheduling models which were often simpler
than problems typically encountered in the rcal world.*5
Except for the simplest modcls, scheduling problems can be
described mathematically as “NP-Hard.”> *  All known
mathematical techniques for finding optimal solutions to
NP-Hard problems are 100 slow to solve realistically large
problems.’ '

In practical applications, heuristic techniques arc
often used to solve problems which are otherwise intractable.
Heuristics usually produce solutions of good quality but do
not always find the most optimal solution. Whereas the
computational difficulty of finding the exact optimum solu-
tion increases cxponentially as a function of the size of an
NP-Hard scheduling problem, with heuristic algorithms the
difficultly of finding *quasi-optimal™ solutions usually in-
creases only in a polynomial (ashion. Polynomial heuristic
algorithms can therefore find solutions to realistic problems
in a computationally feasible search time.

In some cases, heuristic techniques can be shown to
produce solutions which have desirable propertics such as
guarantecing to always be within a certain percent of the
optimal solution. For more complicated problems, however,
even these guarantees may not be possible. In the case of
many space related scheduling problems, the optimization
criteria can be inexact and the data base (¢.g., estimates of the
expected time necessary (o complete an activity) may be
uncertain; hence, a heuristic can be considered successful if
it can be applied 1 a sct of test problems and shown to
consistently produce schedules which are nearly optimal.
With confidence in such a heuristic it could then be applied
1o larger and more complicated problems for which finding
the optimum is not realistic. Additionally, having a heuristic
which can compute a solution on a time scale fast enough for
the solution o be used immediately (as would be necessary
to perform real-time replanning) is superior t0 producing a
nominally better solution which cannot be obtained in real
time.
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Intelligent Perturbation Algorithms

A typical scheduling problem involves the placing
of activities onto a timeline while respecting constraints
which may restrict the times at which the activilics many be
performed and the resources available for the activitics 10
usc. A grading function is established to judge the relative
merits of different schedules.

Intelligent Perturbation Algorithms are heuristic
techniques that have been developed by the author for the
quasi-optimization of complex scheduling problems. These
algorithms iteratively search the combinatoric solution space
justas techniques such as gradient searchare uscd for solving
continuous domain optimization problems. Like other itera-
tive search techniques such as Simulated Annealing Algo-
rithms" 3716 and Genetic Algorithms'”%, Intelligent Pertur-
bation Algorithms iteratively examine (and make perturba-
tions upon) successive schedules in an attcmpt to find a
progressively better solution. Unlike these other techniques
(which search in a more random fashion), Intelligent Pertur-
bation Algorithms use a strategy that considers both the
structure of the problem’s constraints and its objective func-
tion to decide how to modify a schedule to increase the like-
lihood that the next perturbation will yield a more optimal
solution.

To create an initial schedule (the first itcration), a
method is devised to generate a ranking of all unscheduled
activities, and then the highest ranked activity is added to the
timeline. The procedure is then repeated 10 select the activity
with the next highest ranking, adding it to the timeline. This
continues until all the activities (or asmany as possible) have
been added to the schedule. The particular method used 1o
initially rank the activities and the specific way in which
activities are added to the timeline are not pertinent to the
general operation of the Intelligent Perturbation Algorithm.

Following this first iteration, the rankings of the
activities are adjusted using a problem specific procedure
called a perturbation operator. These new rankings are then
used on the next iteration to produce another schedule which
is hopefully of superior quality (as measured by the grading
function). This process then repeats for subsequent iterations
until a cutoff criteria is reached. The best schedule found
during the course of the search is then recalled.



Emperical experience has shown that good pertur-
bation operators sharc many characteristics:

1) The operator should increase the rankings of an
activity or activities which were not satisfactorily
scheduled during the previous iteration. The opera-
tor should also increase the rankings of “bottle-
neck” activities (which may have becn successfully
scheduled) that prohibited the satisfactory schedul-
ing of other activities due to temporal constraints
linking those activities to the bottleneck activity.

2) The operator should be able to potentially span the
search space in a small number of steps.

3) The computational overhead of computing the
perturbations between each iteration should be
small compared to the computational cost of pro-
ducing a single schedule. Extensive testing has
shown that by looking at many good schedules,
Intelligent Perturbation Algorithms are likely to
find a very good schedule in a reasonable number of
iterations. There is a greater payoff in searching
through more schedules than in investing a great
deal of computation in the perturbation operator.
This is consistent which the strategy employed by
the best chess playing computer programs which
achieve their skill by scarching through a large
number of positions rather than through the use of
strategy.

4) The perturbation operator should have a random
component (or some other provisions) for avoiding
loops and getting trapped near local optima.

For many space operations, the costs of opportuni-
ties which arc lost due to inefficient scheduling can casily
amount to millions of dollars per week. The proper design of
the perturbation operator is critical to the success of the Intel-
ligent Perturbation Algorithm, and will vary for different
types of scheduling problems. The specific details can be
considered proprictary; as the utilization of space becomes
more commercial, the possession of good perturbation op-
crators can provide a capability to operate more cfficiently
and thereby bestow a competitive advantage.

Intclligent Perturbation Algorithms can be made
flexible enough to accommodate a large range of problem
structures including highly

complicated constraintenvi- Ilplln:

Autoplan Constraints

timelinc which allowed completion of a set of time and
resource-constrained activities as early as possible. Using
non-iterative heuristic techniques standard in operations
rescarch literature, solutions were found which averaged
about 23% longer than optimal; after 10 scarch steps using an
Intelligent Perturbation Algorithm, average schedule quality
was improved to within 10% of the optimum, a significant
improvement. After 100 scarch steps, the average schedule
quality was improved to only 7% longer than the optimum.
Usage on many different problems has shown that whilc the
scaling of the axes will vary for different types of scheduling
problems, the general character of the “leaming curve”
relating schedule quality to the number of iterations remains
largely unchanged.
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Figure 1: Solution Improvement with Heration Number

Intelligent Perturbation Algorithm Applications

Acrospace systems have been developed which
apply Intelligent Perturbation techniques o the scheduling of
crew, payloads, and resources aboard space-based systems.
Space Industrics is examining the application of Intelligent
Perturbation Algorithms beyond the acrospace industry into
diverse arcas such as the optimization of petrochemical plant
operations and the scheduling of medical operating rooms.
Additionally, an independently developed iterative refine-
ment methodology, called chronology-directed scarch, has
been developed at JPL and is being applied to the scheduling
of deep space missions.?

Space Station Scheduling

Aboard the International Space Station Freedom,
crewmembers would benefit from having the capability to
participate in the scheduling of their own activities. To
address this need a prototype
interactive software tool
known as the MFIVE Space
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Figure 2: MFIVE Space Station Scheduling Worksheet Showlng
Task Assignment and Resource Usage for Five Crewmembers

sary to provide a real-ime
scheduler for usc aboard
Freedom.



MFIVE was not intended to provide a fully robust
model of the realistic Space Station environment butrather to
demonstrate some of the features which will be necessary o
support development of actual Space Station planning and
scheduling tools. While the MFIVE system was created 0
deal primarily with manned activities, it is also capable of
dealing with unmanned operations. First prototyped in 1986,
MFIVE was used to develop and test the initial implementa-
tions of the Intelligent Perturbation Algorithm. MFIVE also
demonstrated user-friendly features such as graphics, win-
dows, menus and a mouse-driven interface on a low cost
Macintosh desktop computer.

MFIVE is currently being usced by the MIT Man-
Vehicle Laboratory to examine scheduling scenarios for the
Spacelab SLS-1 and IML-1 life scicnces pre/postilight
baseline data collection facility. These data collection ses-
sions provide control data to comparc against data collected
on-orbit and mecasure post-mission readjustment to carth’s
gravity.

Another optimization ool using the Intelligent Per-
turbation Algorithm has been developed to support work
being done for the Space Station Program Support Contract
for the scheduling of Space Station Design Reference Mis-
sions (DRMs). Scheduling of DRMs involves generating
demonstration timelines for Space Station crew and payload
operations at selected periods during the lifetime of the Space
Station. As shown in Figure 3, schedules have been gencr-
ated which show significant improvements over schedules
produced with standard scheduling tools, both in terms of
resource utilization and in the accomplishment of mission
prioritics 2 The analysis of this DRM required the schedul-
ing of 422 requested operations of 74 payloads over a two
weck period. Three resources werc considered: crew,
power, and the availability of a high quality microgravity
environment. Assuming a rate of $100,000 per IVA crew-
hour (as called out by NASA in its recent request for propos-
als for the Commercial Middeck Augmentation Module),
the optimization analysis saved 5.3 million dollars per week
in opportunity costs that would have otherwise been lost
through inefficient scheduling.

DRM 4 - Command & Control Payload Crew-Hours

2one Opeutions/nan-Tended Runs Scheduled

Free Flyer Servicing

Requested 422 539 hr, 10 min (118.1%)
Available N/A 456 hr, 30 min {100.CW)
NASA Provided Baseline 272 333 hr, 35 min { 73.1W)
Space Industries Result s? 440 hr, 10 min ( 96.4%)

Figure 3: DRM 4 Resource Utilization Optimization

Industrial Space Facility Scheduling

The ability to provide flexible manifesting and
scheduling is critical to the operation of the Industrial Space
Facility (ISF),aman-tended free-flying space platform being
developed by Space Industries for launch in the 1990s. The
ISF has been designed 1o serve as a bridge to the Spacc
Station era, providing a high-power, low-gravity cnviron-
ment for conducting microgravity research. A softwarc ol
called the Prototype ISF Experiment Scheduler has demon-
strated that efficient and cost-effective operation of the ISE
is possible through the use of multi-variable optimization
techniques based on the Intelligent Perturbation Algorithm.®

297

Figure 4 (nextpage) shows resource ulilization profiles foran

optimized 100 day ISF mission. The objective function was

based largely on maximization of power utilization.
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